Skip to content

Instantly share code, notes, and snippets.

@ashishpatel26
Created March 18, 2020 05:59
Show Gist options
  • Save ashishpatel26/976b4c94119ded62d3caacf6cd9b9a8a to your computer and use it in GitHub Desktop.
Save ashishpatel26/976b4c94119ded62d3caacf6cd9b9a8a to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Stacking.ipynb",
"provenance": [],
"authorship_tag": "ABX9TyP6uxGd1ww4vJjfbwztW4cP",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/ashishpatel26/Ensemble-Learning-Algorithm-Medium/blob/master/Stacking.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "COhWmSXqImMq",
"colab_type": "text"
},
"source": [
"#Import\tIRIS\tdataset\tfrom\tsklearn"
]
},
{
"cell_type": "code",
"metadata": {
"id": "LmAaNZs-In8M",
"colab_type": "code",
"colab": {}
},
"source": [
"from\tsklearn\timport\tdatasets"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZG42X93cIqS-",
"colab_type": "text"
},
"source": [
"#Impoert\tRandom\tforest\tLogistic\tregression,\tnaive\tbayes\tand\tknn\tclassifier\tclasses\tfor\tcreating\tstacking"
]
},
{
"cell_type": "code",
"metadata": {
"id": "gfrzPwfZIpD1",
"colab_type": "code",
"colab": {}
},
"source": [
"from sklearn.ensemble\timport RandomForestClassifier\n",
"from sklearn.linear_model\timport LogisticRegression\n",
"from sklearn.naive_bayes\timport GaussianNB\n",
"from sklearn.neighbors import KNeighborsClassifier"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "9QJhDmDaJYE7",
"colab_type": "text"
},
"source": [
"# Import numpy for array based operations"
]
},
{
"cell_type": "code",
"metadata": {
"id": "puO_NK5LJWvT",
"colab_type": "code",
"colab": {}
},
"source": [
"import numpy as np"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "gUjuiqWTJe2L",
"colab_type": "text"
},
"source": [
"# Load the dataset"
]
},
{
"cell_type": "code",
"metadata": {
"id": "J5FFTMLiJdRK",
"colab_type": "code",
"colab": {}
},
"source": [
"iris = datasets.load_iris()"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "cTcZm1U2Jmfb",
"colab_type": "text"
},
"source": [
"# Extract data and target out of dataset"
]
},
{
"cell_type": "code",
"metadata": {
"id": "RuxlCFJrJlGx",
"colab_type": "code",
"colab": {}
},
"source": [
"X,y = iris.data[:,1:3], iris.target"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Z5CHi94aJ8rw",
"colab_type": "text"
},
"source": [
"# We will define a method to calculate accuracy of prericted output with known lables"
]
},
{
"cell_type": "code",
"metadata": {
"id": "a30zMP9XJyiR",
"colab_type": "code",
"colab": {}
},
"source": [
"def CalculateAccuracy(y_test, pred_label):\n",
" nnz = np.shape(y_test)[0] - np.count_nonzero(pred_label - y_test)\n",
" acc = 100*nnz / float(np.shape(y_test)[0])\n",
" return acc"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "T_ej07aBKYPo",
"colab_type": "text"
},
"source": [
"#Create\ta\tKNN\tclassifier\twith\t2\tnearest\tneighbors"
]
},
{
"cell_type": "code",
"metadata": {
"id": "dbbkJNMRJ5Oo",
"colab_type": "code",
"colab": {}
},
"source": [
"clf1\t=\tKNeighborsClassifier(n_neighbors=2)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "vIRqPjz1KcFs",
"colab_type": "text"
},
"source": [
"#We\twill\tcreate\ta\trandom\tforest\tclassifier\twith\t2\tdecision\ttrees"
]
},
{
"cell_type": "code",
"metadata": {
"id": "ib8tYBIfKZuG",
"colab_type": "code",
"colab": {}
},
"source": [
"clf2\t=\tRandomForestClassifier(n_estimators\t=\t2,random_state=1)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "cLXFrxIvKgMz",
"colab_type": "text"
},
"source": [
"#Create\ta\tNaive\tbayes\tclassifier"
]
},
{
"cell_type": "code",
"metadata": {
"id": "dnC5KuMaKd0u",
"colab_type": "code",
"colab": {}
},
"source": [
"clf3\t=\tGaussianNB()"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "7cxS0kTwKk2f",
"colab_type": "text"
},
"source": [
"#Finally\tcreate\ta\tlogistic\tregression\tclassifier\tto\tcombine\tprediction\tfrom\tabove\tclassifiers."
]
},
{
"cell_type": "code",
"metadata": {
"id": "hRhzOv5lKhqW",
"colab_type": "code",
"colab": {}
},
"source": [
"lr\t=\tLogisticRegression()"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "2tedDwXAKrit",
"colab_type": "text"
},
"source": [
"#Now\twe\twill\tTrain\tall\tfirst\tlevel\tclassifiers"
]
},
{
"cell_type": "code",
"metadata": {
"id": "4s4fzZhiKmr1",
"colab_type": "code",
"outputId": "80486c43-76f8-4168-f895-3c7eb8a51a0a",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"clf1.fit(X,\ty) \n",
"clf2.fit(X,\ty) \n",
"clf3.fit(X,\ty)"
],
"execution_count": 11,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"GaussianNB(priors=None, var_smoothing=1e-09)"
]
},
"metadata": {
"tags": []
},
"execution_count": 11
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8EhDjAnnKx1z",
"colab_type": "text"
},
"source": [
"#Predict\tthe\tlabels\tfor\tinput\tdata\tby\tall\tthe\tclassifier;\tprint\ttheir\taccuracy\tand\tstore\tthe\tprediction\tinto\tan\tarray\t(f1,f2,f3)"
]
},
{
"cell_type": "code",
"metadata": {
"id": "aOF0lKoFKs_F",
"colab_type": "code",
"outputId": "c9bcebee-2c3f-4fa3-c4e0-6d663c540f49",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"f1 = clf1.predict(X) \n",
"acc1 = CalculateAccuracy(y,\tf1) \n",
"print(\"accuracy from KNN: \"+str(acc1))"
],
"execution_count": 12,
"outputs": [
{
"output_type": "stream",
"text": [
"accuracy from KNN: 96.66666666666667\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "F_JMQ-Z2K8Zc",
"colab_type": "code",
"outputId": "4a6b046e-fda7-4fb0-dd53-0881e4395d6f",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"f2 = clf2.predict(X) \n",
"acc2 = CalculateAccuracy(y,\tf2) \n",
"print(\"accuracy from Random Forest: \"+str(acc2))"
],
"execution_count": 13,
"outputs": [
{
"output_type": "stream",
"text": [
"accuracy from Random Forest: 94.66666666666667\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "EmBxIl3RLKfb",
"colab_type": "code",
"outputId": "29af354b-159a-48d1-c8c3-7eb4929a3f47",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"f3 = clf3.predict(X) \n",
"acc3 = CalculateAccuracy(y,\tf3) \n",
"print(\"accuracy from Naive Bayes: \"+str(acc3))"
],
"execution_count": 14,
"outputs": [
{
"output_type": "stream",
"text": [
"accuracy from Naive Bayes: 92.0\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1xHG9NGDLatn",
"colab_type": "text"
},
"source": [
"#Combine\tthe\tpredictions\tinto\ta\tsingle\tarray\tand\ttranspose\tthe\tarray\tto\tmatch\tinput\tshape\tof\tor\tclassifier. "
]
},
{
"cell_type": "code",
"metadata": {
"id": "Aa8W_r6ULPTk",
"colab_type": "code",
"colab": {}
},
"source": [
"f\t=\t[f1,f2,f3] \n",
"f\t= np.transpose(f)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "8Lf29p2-LiEO",
"colab_type": "text"
},
"source": [
"#Now train the classifier"
]
},
{
"cell_type": "code",
"metadata": {
"id": "YWaO4ygrLeK6",
"colab_type": "code",
"colab": {}
},
"source": [
"lr.fit(f,\ty) \n",
"final\t=\tlr.predict(f)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Ep5EeixqLn1Z",
"colab_type": "text"
},
"source": [
"#Calculate\tand\tprint\tthe\taccuracy\tof\tfinal\tclassifier."
]
},
{
"cell_type": "code",
"metadata": {
"id": "2gbjrT4VLlCa",
"colab_type": "code",
"outputId": "086bdc20-1f87-49e0-b072-fb9c86334433",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"acc4 = CalculateAccuracy(y,\tfinal) \n",
"print(\"accuracy from Stacking:\"+str(acc4))"
],
"execution_count": 17,
"outputs": [
{
"output_type": "stream",
"text": [
"accuracy from Stacking:97.33333333333333\n"
],
"name": "stdout"
}
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment