Last active
October 1, 2019 16:36
-
-
Save asukakenji/f54013283e905414de8af86e1e6ce1ab to your computer and use it in GitHub Desktop.
Deriving Trigonometry Formulae
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# Deriving Trigonometry Formulae\n", | |
| "\n", | |
| "## Step 1: Deriving Compound Angle Formulae\n", | |
| "\n", | |
| "Start with Euler's formula:\n", | |
| "\n", | |
| "$$\n", | |
| "e^{i\\theta} = \\cos\\theta + i\\sin\\theta\n", | |
| "$$\n", | |
| "\n", | |
| "Put $\\theta = A + B$:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{aligned}\n", | |
| "\\cos(A + B) + i\\sin(A + B) &= e^{i(A + B)} \\\\\n", | |
| "&= e^{iA} \\cdot e^{iB} \\\\\n", | |
| "&= (\\cos{A} + i\\sin{A}) \\cdot (\\cos{B} + i\\sin{B}) \\\\\n", | |
| "&= \\cos{A}\\cos{B} + i\\cos{A}\\sin{B} + i\\sin{A}\\cos{B} + i^2\\sin{A}\\sin{B} \\\\\n", | |
| "&= (\\cos{A}\\cos{B} - \\sin{A}\\sin{B}) + i(\\sin{A}\\cos{B} + \\cos{A}\\sin{B})\n", | |
| "\\end{aligned}\n", | |
| "$$\n", | |
| "\n", | |
| "Separate real and imaginary parts:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{aligned}\n", | |
| "\\cos(A + B) + i\\sin(A + B) &= (\\cos{A}\\cos{B} - \\sin{A}\\sin{B}) + i(\\sin{A}\\cos{B} + \\cos{A}\\sin{B}) \\\\\n", | |
| "\\implies \\quad \\cos(A + B) &= \\cos{A}\\cos{B} - \\sin{A}\\sin{B} \\\\\n", | |
| "\\text{and} \\quad \\sin(A + B) &= \\sin{A}\\cos{B} + \\cos{A}\\sin{B}\n", | |
| "\\end{aligned}\n", | |
| "$$\n", | |
| "\n", | |
| "Put $\\theta = A - B$:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{aligned}\n", | |
| "\\cos(A - B) + i\\sin(A - B) &= e^{i(A - B)} \\\\\n", | |
| "&= e^{iA} \\cdot e^{-iB} \\\\\n", | |
| "&= (\\cos{A} + i\\sin{A}) \\cdot (\\cos(-B) + i\\sin(-B)) \\\\\n", | |
| "&= (\\cos{A} + i\\sin{A}) \\cdot (\\cos{B} - i\\sin{B}) \\\\\n", | |
| "&= \\cos{A}\\cos{B} - i\\cos{A}\\sin{B} + i\\sin{A}\\cos{B} - i^2\\sin{A}\\sin{B} \\\\\n", | |
| "&= (\\cos{A}\\cos{B} + \\sin{A}\\sin{B}) + i(\\sin{A}\\cos{B} - \\cos{A}\\sin{B})\n", | |
| "\\end{aligned}\n", | |
| "$$\n", | |
| "\n", | |
| "Separate real and imaginary parts:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{aligned}\n", | |
| "\\cos(A - B) + i\\sin(A - B) &= (\\cos{A}\\cos{B} + \\sin{A}\\sin{B}) + i(\\sin{A}\\cos{B} - \\cos{A}\\sin{B}) \\\\\n", | |
| "\\implies \\quad \\cos(A - B) &= \\cos{A}\\cos{B} + \\sin{A}\\sin{B} \\\\\n", | |
| "\\text{and} \\quad \\sin(A - B) &= \\sin{A}\\cos{B} - \\cos{A}\\sin{B}\n", | |
| "\\end{aligned}\n", | |
| "$$\n", | |
| "\n", | |
| "Conclusion:\n", | |
| "\n", | |
| "$$\n", | |
| "\\boxed{\n", | |
| "\\begin{aligned}\n", | |
| "\\sin(A + B) &= \\sin{A}\\cos{B} + \\cos{A}\\sin{B} \\\\\n", | |
| "\\sin(A - B) &= \\sin{A}\\cos{B} - \\cos{A}\\sin{B} \\\\\n", | |
| "\\cos(A + B) &= \\cos{A}\\cos{B} - \\sin{A}\\sin{B} \\\\\n", | |
| "\\cos(A - B) &= \\cos{A}\\cos{B} + \\sin{A}\\sin{B}\n", | |
| "\\end{aligned}\n", | |
| "}\n", | |
| "$$\n", | |
| "\n", | |
| "## Step 1.5: Deriving Double / Half Angle Formulae (Special Cases of Compound Angle Formulae)\n", | |
| "\n", | |
| "Put $B = A$ into $\\sin(A + B)$ above:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{aligned}\n", | |
| "\\sin(A + B) &= \\sin{A}\\cos{B} + \\cos{A}\\sin{B} \\\\\n", | |
| "\\sin(A + A) &= \\sin{A}\\cos{A} + \\cos{A}\\sin{A} \\\\\n", | |
| "\\sin(2A) &= 2\\sin{A}\\cos{A}\n", | |
| "\\end{aligned}\n", | |
| "$$\n", | |
| "\n", | |
| "Put $B = A$ into $\\cos(A + B)$ above:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{aligned}\n", | |
| "\\cos(A + B) &= \\cos{A}\\cos{B} - \\sin{A}\\sin{B} \\\\\n", | |
| "\\cos(A + A) &= \\cos{A}\\cos{A} - \\sin{A}\\sin{A} \\\\\n", | |
| "\\cos(2A) &= \\cos^2{A} - \\sin^2{A}\n", | |
| "\\end{aligned}\n", | |
| "$$\n", | |
| "\n", | |
| "Write $\\cos(2A)$ in terms of $\\cos{A}$:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{aligned}\n", | |
| "\\cos(2A) &= \\cos^2{A} - \\sin^2{A} \\\\\n", | |
| "&= \\cos^2{A} - (1 - \\cos^2{A}) \\\\\n", | |
| "&= 2\\cos^2{A} - 1\n", | |
| "\\end{aligned}\n", | |
| "$$\n", | |
| "\n", | |
| "Write $\\cos(2A)$ in terms of $\\sin{A}$:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{aligned}\n", | |
| "\\cos(2A) &= \\cos^2{A} - \\sin^2{A} \\\\\n", | |
| "&= (1 - \\sin^2{A}) - \\sin^2{A} \\\\\n", | |
| "&= 1 - 2\\sin^2{A}\n", | |
| "\\end{aligned}\n", | |
| "$$\n", | |
| "\n", | |
| "Put $A = \\displaystyle\\frac{C}{2}$ into $\\cos(2A)$ in terms of $\\cos{A}$ above:\n", | |
| "\n", | |
| "$$\n", | |
| "\\displaystyle\n", | |
| "\\begin{aligned}\n", | |
| "\\cos(2A) &= 2\\cos^2{A} - 1 \\\\\n", | |
| "\\cos(2 \\cdot \\frac{C}{2}) &= 2\\cos^2{\\frac{C}{2}} - 1 \\\\\n", | |
| "\\cos{C} &= 2\\cos^2{\\frac{C}{2}} - 1 \\\\\n", | |
| "\\frac{\\cos{C} + 1}{2} &= \\cos^2{\\frac{C}{2}} \\\\\n", | |
| "\\pm\\sqrt{\\frac{\\cos{C} + 1}{2}} &= \\cos\\frac{C}{2} \\\\\n", | |
| "\\cos\\frac{C}{2} &= \\pm\\sqrt{\\frac{1 + \\cos{C}}{2}}\n", | |
| "\\end{aligned}\n", | |
| "$$\n", | |
| "\n", | |
| "Put $A = \\displaystyle\\frac{C}{2}$ into $\\cos(2A)$ in terms of $\\sin{A}$ above:\n", | |
| "\n", | |
| "$$\n", | |
| "\\displaystyle\n", | |
| "\\begin{aligned}\n", | |
| "\\cos(2A) &= 1 - 2\\sin^2{A} \\\\\n", | |
| "\\cos(2 \\cdot \\frac{C}{2}) &= 1 - 2\\sin^2{\\frac{C}{2}} \\\\\n", | |
| "\\cos{C} &= 1 - 2\\sin^2{\\frac{C}{2}} \\\\\n", | |
| "2\\sin^2{\\frac{C}{2}} &= 1 - \\cos{C} \\\\\n", | |
| "\\sin{\\frac{C}{2}} &= \\pm\\sqrt{\\frac{1 - \\cos{C}}{2}}\n", | |
| "\\end{aligned}\n", | |
| "$$\n", | |
| "\n", | |
| "Conclusion:\n", | |
| "\n", | |
| "$$\n", | |
| "\\displaystyle\n", | |
| "\\boxed{\n", | |
| "\\begin{aligned}\n", | |
| "\\sin(2\\theta) &= 2\\sin\\theta\\cos\\theta \\\\\n", | |
| "\\cos(2\\theta) &= \\cos^2\\theta - \\sin^2\\theta \\\\\n", | |
| "&= 2\\cos^2\\theta - 1 \\\\\n", | |
| "&= 1 - 2\\sin^2\\theta \\\\\n", | |
| "\\sin{\\frac{\\theta}{2}} &= \\pm\\sqrt{\\frac{1 - \\cos{\\theta}}{2}} \\\\\n", | |
| "\\cos\\frac{\\theta}{2} &= \\pm\\sqrt{\\frac{1 + \\cos{\\theta}}{2}}\n", | |
| "\\end{aligned}\n", | |
| "}\n", | |
| "$$\n", | |
| "\n", | |
| "## Step 2: Deriving Product-to-Sum Formulae\n", | |
| "\n", | |
| "From Step 1 above, add $\\sin(A - B)$ to $\\sin(A + B)$:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{array}{rrl}\n", | |
| " & \\sin(A + B) \\!\\!\\!\\!\\! &= \\sin{A}\\cos{B} + \\cos{A}\\sin{B} \\\\\n", | |
| "+ & \\sin(A - B) \\!\\!\\!\\!\\! &= \\sin{A}\\cos{B} - \\cos{A}\\sin{B} \\\\\n", | |
| "\\hline\n", | |
| "& \\sin(A + B) + \\sin(A - B) \\!\\!\\!\\!\\! &= 2\\sin{A}\\cos{B} \\\\\n", | |
| "& \\implies \\sin{A}\\cos{B} \\!\\!\\!\\!\\! &= (1/2)[\\sin(A + B) + \\sin(A - B)]\n", | |
| "\\end{array}\n", | |
| "$$\n", | |
| "\n", | |
| "From Step 1 above, subtract $\\sin(A - B)$ from $\\sin(A + B)$:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{array}{rrl}\n", | |
| " & \\sin(A + B) \\!\\!\\!\\!\\! &= \\sin{A}\\cos{B} + \\cos{A}\\sin{B} \\\\\n", | |
| "- & \\sin(A - B) \\!\\!\\!\\!\\! &= \\sin{A}\\cos{B} - \\cos{A}\\sin{B} \\\\\n", | |
| "\\hline\n", | |
| "& \\sin(A + B) - \\sin(A - B) \\!\\!\\!\\!\\! &= 2\\cos{A}\\sin{B} \\\\\n", | |
| "& \\implies \\cos{A}\\sin{B} \\!\\!\\!\\!\\! &= (1/2)[\\sin(A + B) - \\sin(A - B)]\n", | |
| "\\end{array}\n", | |
| "$$\n", | |
| "\n", | |
| "From Step 1 above, add $\\cos(A - B)$ to $\\cos(A + B)$:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{array}{rrl}\n", | |
| " & \\cos(A + B) \\!\\!\\!\\!\\! &= \\cos{A}\\cos{B} - \\sin{A}\\sin{B} \\\\\n", | |
| "+ & \\cos(A - B) \\!\\!\\!\\!\\! &= \\cos{A}\\cos{B} + \\sin{A}\\sin{B} \\\\\n", | |
| "\\hline\n", | |
| "& \\cos(A + B) + \\cos(A - B) \\!\\!\\!\\!\\! &= 2\\cos{A}\\cos{B} \\\\\n", | |
| "& \\implies \\cos{A}\\cos{B} \\!\\!\\!\\!\\! &= (1/2)[\\cos(A + B) + \\cos(A - B)]\n", | |
| "\\end{array}\n", | |
| "$$\n", | |
| "\n", | |
| "From Step 1 above, subtract $\\cos(A - B)$ from $\\cos(A + B)$ above:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{array}{rrl}\n", | |
| " & \\cos(A + B) \\!\\!\\!\\!\\! &= \\cos{A}\\cos{B} - \\sin{A}\\sin{B} \\\\\n", | |
| "- & \\cos(A - B) \\!\\!\\!\\!\\! &= \\cos{A}\\cos{B} + \\sin{A}\\sin{B} \\\\\n", | |
| "\\hline\n", | |
| "& \\cos(A + B) - \\cos(A - B) \\!\\!\\!\\!\\! &= -2\\sin{A}\\sin{B} \\\\\n", | |
| "& \\implies \\sin{A}\\sin{B} \\!\\!\\!\\!\\! &= (-1/2)[\\cos(A + B) - \\cos(A - B)]\n", | |
| "\\end{array}\n", | |
| "$$\n", | |
| "\n", | |
| "Conclusion:\n", | |
| "\n", | |
| "$$\n", | |
| "\\displaystyle\n", | |
| "\\boxed{\n", | |
| "\\begin{aligned}\n", | |
| "\\sin{A}\\cos{B} &= \\frac{1}{2}\\big[\\sin(A + B) + \\sin(A - B)\\big] \\\\\n", | |
| "\\cos{A}\\sin{B} &= \\frac{1}{2}\\big[\\sin(A + B) - \\sin(A - B)\\big] \\\\\n", | |
| "\\cos{A}\\cos{B} &= \\frac{1}{2}\\big[\\cos(A + B) + \\cos(A - B)\\big] \\\\\n", | |
| "\\sin{A}\\sin{B} &= -\\frac{1}{2}\\big[\\cos(A + B) - \\cos(A - B)\\big]\n", | |
| "\\end{aligned}\n", | |
| "}\n", | |
| "$$\n", | |
| "\n", | |
| "## Step 3: Deriving Sum-to-Product Formulae\n", | |
| "\n", | |
| "Let $C = A + B$ and $D = A - B$.\n", | |
| "\n", | |
| "Then, $A = \\displaystyle\\frac{C + D}{2}$, $B = \\displaystyle\\frac{C - D}{2}$.\n", | |
| "\n", | |
| "From step 2 above:\n", | |
| "\n", | |
| "$$\n", | |
| "\\begin{aligned}\n", | |
| "\\sin{A}\\cos{B} &= (1/2)[\\sin(A + B) + \\sin(A - B)] \\\\\n", | |
| "\\cos{A}\\sin{B} &= (1/2)[\\sin(A + B) - \\sin(A - B)] \\\\\n", | |
| "\\cos{A}\\cos{B} &= (1/2)[\\cos(A + B) + \\cos(A - B)] \\\\\n", | |
| "\\sin{A}\\sin{B} &= (-1/2)[\\cos(A + B) - \\cos(A - B)]\n", | |
| "\\end{aligned}\n", | |
| "$$\n", | |
| "\n", | |
| "After substitution:\n", | |
| "\n", | |
| "$$\n", | |
| "\\displaystyle\n", | |
| "\\begin{aligned}\n", | |
| "\\sin{\\frac{C + D}{2}}\\cos{\\frac{C - D}{2}} &= \\frac{1}{2}(\\sin{C} + \\sin{D}) \\\\\n", | |
| "\\cos{\\frac{C + D}{2}}\\sin{\\frac{C - D}{2}} &= \\frac{1}{2}(\\sin{C} - \\sin{D}) \\\\\n", | |
| "\\cos{\\frac{C + D}{2}}\\cos{\\frac{C - D}{2}} &= \\frac{1}{2}(\\cos{C} + \\cos{D}) \\\\\n", | |
| "\\sin{\\frac{C + D}{2}}\\sin{\\frac{C - D}{2}} &= -\\frac{1}{2}(\\cos{C} - \\cos{D})\n", | |
| "\\end{aligned} \\\\\n", | |
| "$$\n", | |
| "\n", | |
| "After rearrangement:\n", | |
| "\n", | |
| "$$\n", | |
| "\\displaystyle\n", | |
| "\\begin{aligned}\n", | |
| "\\sin{C} + \\sin{D} &= 2\\sin{\\frac{C + D}{2}}\\cos{\\frac{C - D}{2}} \\\\\n", | |
| "\\sin{C} - \\sin{D} &= 2\\cos{\\frac{C + D}{2}}\\sin{\\frac{C - D}{2}} \\\\\n", | |
| "\\cos{C} + \\cos{D} &= 2\\cos{\\frac{C + D}{2}}\\cos{\\frac{C - D}{2}} \\\\\n", | |
| "\\cos{C} - \\cos{D} &= -2\\sin{\\frac{C + D}{2}}\\sin{\\frac{C - D}{2}}\n", | |
| "\\end{aligned}\n", | |
| "$$\n", | |
| "\n", | |
| "\n", | |
| "Conslusion:\n", | |
| "\n", | |
| "$$\n", | |
| "\\displaystyle\n", | |
| "\\boxed{\n", | |
| "\\begin{aligned}\n", | |
| "\\sin{A} + \\sin{B} &= 2\\sin{\\frac{A + B}{2}}\\cos{\\frac{A - B}{2}} \\\\\n", | |
| "\\sin{A} - \\sin{B} &= 2\\cos{\\frac{A + B}{2}}\\sin{\\frac{A - B}{2}} \\\\\n", | |
| "\\cos{A} + \\cos{B} &= 2\\cos{\\frac{A + B}{2}}\\cos{\\frac{A - B}{2}} \\\\\n", | |
| "\\cos{A} - \\cos{B} &= -2\\sin{\\frac{A + B}{2}}\\sin{\\frac{A - B}{2}}\n", | |
| "\\end{aligned}\n", | |
| "}\n", | |
| "$$" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.7.4" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment