Last active
June 18, 2018 08:03
-
-
Save atamborrino/b8cfc74cff9211414826b34139de0f1c to your computer and use it in GitHub Desktop.
Example of use of TensorFlow Core API to train a linear regression model with standard normalization of data baked into the TF Computational Graph
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1.8.0\n" | |
] | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"import tensorflow as tf\n", | |
"\n", | |
"print(tf.__version__)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Describe TF Graph: standard normalization of inputs and ouputs (z-score) + linear regression\n", | |
"\n", | |
"batch_size = 100\n", | |
"\n", | |
"a = tf.get_variable(\"a\", [1], dtype=tf.float32)\n", | |
"b = tf.get_variable(\"b\", [1], dtype=tf.float32)\n", | |
"\n", | |
"x = tf.placeholder(tf.float32, shape=[batch_size])\n", | |
"x_mean = tf.placeholder(tf.float32, shape=[1])\n", | |
"x_std = tf.placeholder(tf.float32, shape=[1])\n", | |
"x_norm = (x - x_mean) / x_std\n", | |
"\n", | |
"y = a * x_norm + b\n", | |
"\n", | |
"y_true = tf.placeholder(tf.float32, shape=[batch_size])\n", | |
"y_mean = tf.placeholder(tf.float32, shape=[1])\n", | |
"y_std = tf.placeholder(tf.float32, shape=[1])\n", | |
"y_true_norm = (y_true - y_mean) / y_std\n", | |
"\n", | |
"loss = tf.losses.mean_squared_error(labels=y_true_norm, predictions=y)\n", | |
"\n", | |
"optimizer = tf.train.GradientDescentOptimizer(0.01)\n", | |
"train = optimizer.minimize(loss)\n", | |
"\n", | |
"# note: this part of the graph will be used only at inference time\n", | |
"y_denorm = y * y_std + y_mean\n", | |
"\n", | |
"# write Graph to TensorBoard\n", | |
"writer = tf.summary.FileWriter('.')\n", | |
"writer.add_graph(tf.get_default_graph())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Loss: 3.5527137e-13\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 0.9941406, 2.9941406, 4.9941406, 6.9941406, 8.994141 ,\n", | |
" 10.994141 , 12.993164 , 14.993164 , 16.993164 , 18.99414 ,\n", | |
" 20.99414 , 22.99414 , 24.99414 , 26.99414 , 28.99414 ,\n", | |
" 30.99414 , 32.993164 , 34.993164 , 36.993164 , 38.99414 ,\n", | |
" 40.99414 , 42.99414 , 44.99414 , 46.99414 , 48.99414 ,\n", | |
" 50.99414 , 52.993164 , 54.993164 , 56.993164 , 58.99414 ,\n", | |
" 60.99414 , 62.99414 , 64.99414 , 66.99414 , 68.99414 ,\n", | |
" 70.99414 , 72.993164 , 74.993164 , 76.993164 , 78.99414 ,\n", | |
" 80.99414 , 82.99414 , 84.99414 , 86.99414 , 88.99414 ,\n", | |
" 90.99414 , 92.993164 , 94.993164 , 96.99414 , 98.99414 ,\n", | |
" 100.99414 , 102.99414 , 104.99414 , 106.99414 , 108.99414 ,\n", | |
" 110.99414 , 112.993164 , 114.993164 , 116.99414 , 118.99414 ,\n", | |
" 120.99414 , 122.99414 , 124.99414 , 126.99414 , 128.99414 ,\n", | |
" 130.99414 , 132.99316 , 134.99316 , 136.99414 , 138.99414 ,\n", | |
" 140.99414 , 142.99414 , 144.99414 , 146.99414 , 148.99414 ,\n", | |
" 150.99316 , 152.99316 , 154.99316 , 156.99414 , 158.99414 ,\n", | |
" 160.99414 , 162.99414 , 164.99414 , 166.99414 , 168.99414 ,\n", | |
" 170.99316 , 172.99316 , 174.99316 , 176.99414 , 178.99414 ,\n", | |
" 180.99414 , 182.99414 , 184.99414 , 186.99414 , 188.99414 ,\n", | |
" 190.99316 , 192.99316 , 194.99316 , 196.99414 , 198.99414 ],\n", | |
" dtype=float32)" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Data\n", | |
"\n", | |
"x_values = np.arange(10000)\n", | |
"y_true_values = x_values * 2 + 1\n", | |
"\n", | |
"epoch = 100\n", | |
"\n", | |
"training_data_moments = {\n", | |
" x_mean:[np.mean(x_values)],\n", | |
" x_std:[np.std(x_values)],\n", | |
" y_mean:[np.mean(y_true_values)],\n", | |
" y_std:[np.std(y_true_values)]\n", | |
"}\n", | |
"\n", | |
"# Run training\n", | |
"sess = tf.Session()\n", | |
"\n", | |
"init = tf.global_variables_initializer()\n", | |
"sess.run(init)\n", | |
"\n", | |
"for _ in range(epoch):\n", | |
" for i in range(0, len(x_values), batch_size):\n", | |
" x_batch = x_values[i:i+batch_size]\n", | |
" y_batch = y_true_values[i:i+batch_size]\n", | |
" _, current_loss = sess.run((train, loss), feed_dict={x:x_batch, y_true:y_batch, **training_data_moments})\n", | |
" \n", | |
"print(\"Loss: \" + str(current_loss))\n", | |
" \n", | |
"# Inference (note: x normalization and y denormalization has been serialized into TF Graph)\n", | |
"y_test = sess.run(y_denorm, feed_dict={x:x_values[0:batch_size], **training_data_moments})\n", | |
"\n", | |
"y_test" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment