Skip to content

Instantly share code, notes, and snippets.

@ayr-ton
Last active October 26, 2019 00:21
Show Gist options
  • Save ayr-ton/2d3ef5bdd701f5381802003a922a8e96 to your computer and use it in GitHub Desktop.
Save ayr-ton/2d3ef5bdd701f5381802003a922a8e96 to your computer and use it in GitHub Desktop.
Harmonia.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Harmonia.ipynb",
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/ayr-ton/2d3ef5bdd701f5381802003a922a8e96/harmonia.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "oMBPO7TBKsUg",
"colab_type": "text"
},
"source": [
"# Harmonia Musical e Kanban\n",
"A harmonia entre duas notas pode ser facilmente explicada pela razão entre as suas frequências\n",
"\n",
"[O Que Torna Duas Notas Harmônicas? - YouTube](https://www.youtube.com/watch?v=Pd5hBbzs-_Y&t=206s)\n",
"\n",
"## Afinação pitagórica\n",
"\n",
"| | | \n",
"| :------------- | :----------: \n",
"| 2:1 | Oitava perfeita (harmônico) | \n",
"| 3:2 | Quinta justa (quinta perfeita) | \n",
"| 4:3 | Quarta justa (quarta perfeita) |\n",
"\n",
"Quanto maior for o denominador da fração, maior é a complexidade daquele número. Quanto maior for a complexidade desse número, menor será a harmonia do acorde.\n",
"\n",
"## Métricas do Kanban\n",
"A gente precisa do similar a duas notas pra comparar, ou seja duas frequências da mesma natureza.\n",
"\n",
"Lead time por Lead time \n",
"Cycle time por Cycle time\n",
"WIP em diferentes etapas por outras etapas\n",
"\n",
"E assim por diante.\n",
"\n",
"Num histograma ou num CFD a gente consegue ter uma noção melhor dessas proporções."
]
},
{
"cell_type": "code",
"metadata": {
"id": "66uI89jHLZ96",
"colab_type": "code",
"colab": {}
},
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Xwn3T8pAOR4R",
"colab_type": "code",
"outputId": "39a39163-4cae-4097-8850-bd412d98bbce",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 265
}
},
"source": [
"## Histograma - Oitava Perfeita (Harmônico)\n",
"\n",
"harmônico = np.random.rand(35)*2.0\n",
"\n",
"plt.subplot(1, 2, 1) \n",
"plt.hist(harmônico)\n",
"plt.show()"
],
"execution_count": 0,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAAD4CAYAAACqlacbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKOElEQVR4nO3dbYxcZRnG8f9FW8JbI8Y2irTLYjQk\nSARqU0EMQRDDiykf5ENJwJRoNjEqYExM9YNEP2FiiG9E0wCKESFawFTeLIklhkSqu6VA2wUDiNCK\nsmCkFAlYcvthD8my2e08c2ae2emd65dsmO2cnb07/Wc4c86eZxURmGVy2EIPYNZvjtrScdSWjqO2\ndBy1pbO4xoMuW7YsRkdHazy0GRMTEy9FxPL57q8S9ejoKOPj4zUe2gxJfz/Y/d79sHQctaXjqC0d\nR23pOGpLx1FbOkVRS/qqpF2Sdkq6TdIRtQcza6tj1JKOB64CVkfEKcAiYF3twczaKt39WAwcKWkx\ncBTwj3ojmfWm4xnFiNgr6XvAc8DrwJaI2DJ7O0ljwBjAyMhIv+ccqNEN97T6umevu7jPk1gbJbsf\n7wYuAU4E3g8cLeny2dtFxMaIWB0Rq5cvn/e0vFl1JbsfnwL+FhFTEfE/4E7g43XHMmuvJOrngDMk\nHSVJwHnAZN2xzNrrGHVEbAM2AduBx5uv2Vh5LrPWin70NCKuBa6tPItZX/iMoqXjqC0dR23pOGpL\nx1FbOo7a0nHUlo6jtnQctaXjqC0dR23pOGpLx1FbOo7a0nHUlo6jtnRKLrw9SdKOGR/7JF0ziOHM\n2ihZIuFJ4DQASYuAvcBdlecya63b3Y/zgKcj4qAruZstpG6jXgfcVmMQs34pjlrS4cBa4Dfz3D8m\naVzS+NTUVL/mM+taN6/UFwLbI+Jfc93pFZpsWHQT9WV418MOAaXrUx8NnM/0kmNmQ610MZvXgPdU\nnsWsL3xG0dJx1JaOo7Z0HLWl46gtHUdt6ThqS8dRWzqO2tJx1JaOo7Z0HLWl46gtHUdt6ThqS8dR\nWzqO2tIpvZzrWEmbJD0haVLSmbUHM2ur6HIu4AfA/RFxabNUwlEVZzLrSceoJb0LOBtYDxARbwJv\n1h3LrL2S3Y8TgSngZ5IekXRjc3X5O3gxGxsWJVEvBlYBP4mI04HXgA2zN/JiNjYsSqLeA+yJiG3N\n55uYjtxsKHWMOiL+CTwv6aTmj84DdledyqwHpUc/vgLc2hz5eAa4st5IZr0pXaFpB7C68ixmfeEz\nipaOo7Z0HLWl46gtHUdt6ThqS8dRWzqO2tJx1JaOo7Z0HLWl46gtHUdt6ThqS8dRWzqO2tJx1JZO\n0ZUvkp4FXgXeAg5EhK+CsaFVeo0iwCcj4qVqk5j1iXc/LJ3SqAPYImlC0thcG3iFJhsWpVF/IiJW\nARcCX5J09uwNvEKTDYuiqCNib/PfF4G7gDU1hzLrRceoJR0taenbt4FPAztrD2bWVsnRj/cCd0l6\ne/tfRcT9Vacy60HHqCPiGeDUAcxi1hc+pGfpOGpLx1FbOo7a0nHUlo6jtnQctaXjqC0dR23pOGpL\nx1FbOo7a0nHUlo6jtnQctaXjqC0dR23pFEctaZGkRyTdXXMgs15180p9NTBZaxCzfimKWtIK4GLg\nxrrjmPWudC297wNfB5bOt0GzctMYwMjISO+T9cHohnsWeoQig5zz2esuHtj3gvZ/t17mLFn34zPA\nixExcbDtvEKTDYuS3Y+zgLXNcr63A+dK+mXVqcx60DHqiPhGRKyIiFFgHfCHiLi8+mRmLfk4taXT\nzaLrRMSDwINVJjHrE79SWzqO2tJx1JaOo7Z0HLWl46gtHUdt6ThqS8dRWzqO2tJx1JaOo7Z0HLWl\n46gtHUdt6ThqS8dRWzolV5MfIenPkh6VtEvStwcxmFlbJZdzvQGcGxH7JS0BHpJ0X0Q8XHk2s1Y6\nRh0RAexvPl3SfETNocx6UXThraRFwATwQeCGiNg2xzYdV2g6VFZMymwhVkwatKI3ihHxVkScBqwA\n1kg6ZY5tvEKTDYWujn5ExH+ArcAFdcYx613J0Y/lko5tbh8JnA88UXsws7ZK9qmPA25p9qsPA34d\nEV543YZWydGPx4DTBzCLWV/4jKKl46gtHUdt6ThqS8dRWzqO2tJx1JaOo7Z0HLWl46gtHUdt6Thq\nS8dRWzqO2tJx1JaOo7Z0HLWlU3KN4kpJWyXtblZounoQg5m1VXKN4gHgaxGxXdJSYELSAxGxu/Js\nZq10fKWOiBciYntz+1VgEji+9mBmbXW1Ty1plOmLcOdcoUnSuKTxqamp/kxn1kJx1JKOAe4AromI\nfbPv9wpNNiyKom5WO70DuDUi7qw7kllvSo5+CLgJmIyI6+uPZNabklfqs4ArgHMl7Wg+Lqo8l1lr\nJSs0PQRoALOY9YXPKFo6jtrScdSWjqO2dBy1peOoLR1Hbek4akvHUVs6jtrScdSWjqO2dBy1peOo\nLR1Hbek4akvHUVs6Jdco3izpRUk7BzGQWa9KXql/DlxQeQ6zvilZoemPwL8HMItZX5SspVdE0hgw\nBjAyMtKvhz2kjG64Z6FHqOZQ+rv17Y2iV2iyYeGjH5aOo7Z0Sg7p3Qb8CThJ0h5Jn68/lll7JSs0\nXTaIQcz6xbsflo6jtnQctaXjqC0dR23pOGpLx1FbOo7a0nHUlo6jtnQctaXjqC0dR23pOGpLx1Fb\nOo7a0nHUlk5R1JIukPSkpKckbag9lFkvSq5RXATcAFwInAxcJunk2oOZtVXySr0GeCoinomIN4Hb\ngUvqjmXWXskKTccDz8/4fA/wsdkbzVyhCdgv6cnex+vZMuClhR5iFs9UQN896EwnHOxr+7bsWERs\nBDb26/H6QdJ4RKxe6Dlm8kxlepmpZPdjL7Byxucrmj8zG0olUf8F+JCkEyUdDqwDNtcdy6y9ksVs\nDkj6MvB7YBFwc0Tsqj5ZfwzV7lDDM5VpPZMiop+DmC04n1G0dBy1pZMi6k6n8SWtlzQlaUfz8YXK\n8xz0lz9p2g+beR+TtKrmPIUznSPplRnP0bcGMNNKSVsl7Za0S9LVc2zT/XMVEYf0B9NvXp8GPgAc\nDjwKnDxrm/XAjwc409nAKmDnPPdfBNwHCDgD2DYEM50D3D3gf7vjgFXN7aXAX+f4t+v6ucrwSj10\np/Gj8y9/ugT4RUx7GDhW0nELPNPARcQLEbG9uf0qMMn0GeyZun6uMkQ912n82U8MwGeb/31tkrRy\njvsHqXTmQTtT0qOS7pP04UF+Y0mjwOnAtll3df1cZYi6xO+A0Yj4CPAAcMsCzzOMtgMnRMSpwI+A\n3w7qG0s6BrgDuCYi9vX6eBmi7ngaPyJejog3mk9vBD46oNnmM3Q/ehAR+yJif3P7XmCJpGW1v6+k\nJUwHfWtE3DnHJl0/Vxmi7ngaf9Y+2Fqm990W0mbgc807+zOAVyLihYUcSNL7JKm5vYbpNl6u/D0F\n3ARMRsT182zW9XPVt5/SWygxz2l8Sd8BxiNiM3CVpLXAAabfLK2vOVPzy5/OAZZJ2gNcCyxp5v0p\ncC/T7+qfAv4LXFlznsKZLgW+KOkA8DqwLprDDxWdBVwBPC5pR/Nn3wRGZszV9XPl0+SWTobdD7N3\ncNSWjqO2dBy1peOoLR1Hbek4akvn/w1Xhb4+xMlLAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "UOikFJZMMFJW",
"colab_type": "code",
"outputId": "37d765b4-64a1-47da-bf21-e95e188422dd",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 265
}
},
"source": [
"## Histograma - Quinta justa (Quinta Perfeita)\n",
"\n",
"quinta_perfeita = np.random.rand(35)*1.5\n",
"\n",
"plt.subplot(1, 2, 1) \n",
"plt.hist(quinta_perfeita)\n",
"plt.show()"
],
"execution_count": 0,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAALMAAAD4CAYAAACni9dcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAJ0UlEQVR4nO3dX4xcZRnH8e+PlgqthBraGGxZt0ZD\n0hCF2mAVQ5SKKdS0F3LRJqglml74BzAmpl41eoWJMWokYgMoKha00KSKICRADIlUd0vBQiEptUIr\nSsHIP01ryePFHrSsW+Y9M/PO7D7+PsmE2Z2zu88h30zPzNnzriICswxOGvYAZv3imC0Nx2xpOGZL\nwzFbGrNrfNMFCxbE6OhojW9txvj4+HMRsXDy56vEPDo6ytjYWI1vbYakP031eR9mWBqO2dJwzJaG\nY7Y0HLOl4ZgtjaKYJX1R0qOS9kjaKumU2oOZtdUxZkmLgCuB5RFxDjALWFd7MLO2Sg8zZgOnSpoN\nzAX+XG8ks+50PAMYEYckfQN4CvgncHdE3D15O0kbgY0AIyMj/Z7TZqjRTXd09XUHrlnd+mtKDjPe\nAqwFlgBvA+ZJunzydhGxJSKWR8TyhQv/57S5WXUlhxkfAf4YEYcj4l/A7cAH6o5l1l5JzE8BKyTN\nlSRgJbC37lhm7XWMOSJ2AtuAXcAfmq/ZUnkus9aKfgU0IjYDmyvPYtYTnwG0NByzpeGYLQ3HbGk4\nZkvDMVsajtnScMyWhmO2NByzpeGYLQ3HbGk4ZkvDMVsajtnScMyWRskFrWdL2n3c7UVJVw9iOLM2\nSpYaeAI4F0DSLOAQsL3yXGattT3MWAk8GRFTrlxuNkxtY14HbK0xiFmvimOWNAdYA/z8BI9vlDQm\naezw4cP9ms+sWJtn5kuAXRHx16ke9IpGNmxtYl6PDzFsGitdn3kecDETS3OZTUuli8C8ApxReRaz\nnvgMoKXhmC0Nx2xpOGZLwzFbGo7Z0nDMloZjtjQcs6XhmC0Nx2xpOGZLwzFbGo7Z0nDMloZjtjQc\ns6VRetnUfEnbJD0uaa+k99cezKytosumgG8Dd0XEZc2SA3MrzmTWlY4xSzoduBDYABARR4Gjdccy\na6/kMGMJcBj4gaSHJF3fXK39Ol4ExoatJObZwDLgexFxHvAKsGnyRl4ExoatJOaDwMGI2Nl8vI2J\nuM2mlY4xR8RfgKclnd18aiXwWNWpzLpQ+m7GF4Cbm3cy9gNX1BvJrDulKxrtBpZXnsWsJz4DaGk4\nZkvDMVsajtnScMyWhmO2NByzpeGYLQ3HbGk4ZkvDMVsajtnScMyWhmO2NByzpeGYLQ3HbGkUXWki\n6QDwEvAqcCwifNWJTTul1wACfDginqs2iVmPfJhhaZQ+Mwdwt6QAvh8RWyZvIGkjsBFgZGRkym8y\nuumOroY8cM3qrr5upvD/l/4ofWb+YEQsAy4BPifpwskbeEUjG7aimCPiUPPfZ4HtwPk1hzLrRseY\nJc2TdNpr94GPAntqD2bWVskx81uB7ZJe2/6nEXFX1anMutAx5ojYD7xnALOY9cRvzVkajtnScMyW\nhmO2NByzpeGYLQ3HbGk4ZkvDMVsajtnScMyWhmO2NByzpeGYLQ3HbGk4ZkvDMVsaxTFLmiXpIUm/\nrDmQWbfaPDNfBeytNYhZr4pilrQYWA1cX3ccs+6Vrmj0LeDLwGkn2qBkRaNB80pB/19K1s34GPBs\nRIy/0XZe0ciGreQw4wJgTbOs7S3ARZJ+UnUqsy50jDkivhIRiyNiFFgH3BsRl1efzKwlv89sabRZ\nbJyIuB+4v8okZj3yM7Ol4ZgtDcdsaThmS8MxWxqO2dJwzJaGY7Y0HLOl4ZgtDcdsaThmS8MxWxqO\n2dJwzJaGY7Y0HLOlUXJ19imSfifpYUmPSvrqIAYza6vksqkjwEUR8bKkk4EHJN0ZEQ9Wns2slY4x\nR0QALzcfntzcouZQZt0ouqBV0ixgHHgncG1E7Jxim2m3otGgdbuC0iDNhBm7VfQCMCJejYhzgcXA\n+ZLOmWIbr2hkQ9Xq3YyI+DtwH7Cqzjhm3St5N2OhpPnN/VOBi4HHaw9m1lbJMfOZwE3NcfNJwM8i\nwguO27RT8m7GI8B5A5jFrCc+A2hpOGZLwzFbGo7Z0nDMloZjtjQcs6XhmC0Nx2xpOGZLwzFbGo7Z\n0nDMloZjtjQcs6XhmC0Nx2xplFwDeJak+yQ91qxodNUgBjNrq+QawGPAlyJil6TTgHFJ90TEY5Vn\nM2ul4zNzRDwTEbua+y8Be4FFtQcza6toRaPXSBpl4uLWga5olHkVHuuf4heAkt4M3AZcHREvTn7c\nKxrZsBXF3Kz+eRtwc0TcXncks+6UvJsh4AZgb0R8s/5IZt0peWa+APgEcJGk3c3t0spzmbVWsqLR\nA4AGMItZT3wG0NJwzJaGY7Y0HLOl4ZgtDcdsaThmS8MxWxqO2dJwzJaGY7Y0HLOl4ZgtDcdsaThm\nS8MxWxqO2dIouQbwRknPStoziIHMulXyzPxDYFXlOcx6VrKi0W+Avw1gFrOetFrR6I3UXNFo0GbK\nCkozZc5B6dsLQK9oZMPmdzMsDcdsaZS8NbcV+C1wtqSDkj5dfyyz9kpWNFo/iEHMeuXDDEvDMVsa\njtnScMyWhmO2NByzpeGYLQ3HbGk4ZkvDMVsajtnScMyWhmO2NByzpeGYLQ3HbGk4ZkujKGZJqyQ9\nIWmfpE21hzLrRsk1gLOAa4FLgKXAeklLaw9m1lbJM/P5wL6I2B8RR4FbgLV1xzJrr2RFo0XA08d9\nfBB43+SNjl/RCDiSbKHFBcBzwx6iT2bEvujrb/jw26f6ZN+W54qILcAWAEljEbG8X9972DLtT6Z9\nmazkMOMQcNZxHy9uPmc2rZTE/HvgXZKWSJoDrAN21B3LrL2SRWCOSfo88GtgFnBjRDza4cu29GO4\naSTT/mTal9dRRAx7BrO+8BlAS8MxWxo9xdzpNLekN0m6tXl8p6TRXn5eTQX7skHSYUm7m9tnhjFn\niU5/VEkTvtPs6yOSlg16xioioqsbEy8GnwTeAcwBHgaWTtrms8B1zf11wK3d/ryat8J92QB8d9iz\nFu7PhcAyYM8JHr8UuBMQsALYOeyZ+3Hr5Zm55DT3WuCm5v42YKUk9fAza0l1yj46/1GltcCPYsKD\nwHxJZw5munp6iXmq09yLTrRNRBwDXgDO6OFn1lKyLwAfb/5Z3ibprCkenylK93dG8QvAcr8ARiPi\n3cA9/PdfHJsmeom55DT3f7aRNBs4HXi+h59ZS8d9iYjnI+JI8+H1wHsHNFsNKX9FoZeYS05z7wA+\n1dy/DLg3mlcg00zHfZl0TLkG2DvA+fptB/DJ5l2NFcALEfHMsIfqVde/NRcnOM0t6WvAWETsAG4A\nfixpHxMvSNb1Y+h+K9yXKyWtAY4xsS8bhjZwB80fVfoQsEDSQWAzcDJARFwH/IqJdzT2Af8ArhjO\npP3l09mWhl8AWhqO2dJwzJaGY7Y0HLOl4ZgtDcdsafwbCBxQ5EqwXCEAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "ZyBsuOM0OsO1",
"colab_type": "code",
"outputId": "a0fb4ac3-497c-4505-ec94-be3b70271771",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 265
}
},
"source": [
"## Histograma - Quarta Justa (Quarta Perfeita)\n",
"\n",
"quarta_perfeita = np.random.rand(35)*1.3\n",
"\n",
"plt.subplot(1, 2, 1) \n",
"plt.hist(quarta_perfeita)\n",
"plt.show()"
],
"execution_count": 0,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAALMAAAD4CAYAAACni9dcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAJWElEQVR4nO3dX4ildRnA8e/jqv0xUXCXENdpjEKQ\nKN0WMwwpxVA31ou8WKE/K8Vc9E8hiO0q6spuoiLJFrWsTK1VYcu0BJUQcmtWV1FXYZUNVyxHI/8F\nytrTxRxrHWc8v3PmvOfMPHw/cPDMnHdnnhe/vPue9935TWQmUgWHTXoAaVSMWWUYs8owZpVhzCrj\n8C6+6Nq1a3N6erqLLy2xe/fuZzNz3cLPdxLz9PQ0s7OzXXxpiYj422Kf9zRDZRizyjBmlWHMKsOY\nVYYxq4y+MUfEyRGx55DHCxFx2TiGkwbR9zpzZj4GnAoQEWuAp4BbOp5LGtigpxnnAI9n5qIXraVJ\nGvQO4Bbg+sVeiIgZYAZgampqmWO90fS2W4f6c/sv3zTSObSyNR+ZI+JIYDPwm8Vez8ztmbkxMzeu\nW/em2+ZS5wY5zTgfuC8z/9HVMNJyDBLzxSxxiiGtBE0xR8RRwLnAzd2OIw2v6Q1gZr4MHNfxLNKy\neAdQZRizyjBmlWHMKsOYVYYxqwxjVhnGrDKMWWUYs8owZpVhzCrDmFWGMasMY1YZxqwyjFllGLPK\nMGaVYcwqo/Wns4+NiB0R8WhE7I2Ij3Y9mDSo1uW5fgDcnpkX9VY2emeHM0lD6RtzRBwDnAVsBcjM\nV4FXux1LGlzLacZJwBzw04i4PyKu6i0K8wYRMRMRsxExOzc3N/JBpX5aYj4c2AD8ODNPA14Gti3c\nyIUTNWktMR8ADmTmrt7HO5iPW1pR+sacmX8HnoyIk3ufOgd4pNOppCG0Xs34KnBd70rGE8Al3Y0k\nDad14cQ9wMaOZ5GWxTuAKsOYVYYxqwxjVhnGrDKMWWUYs8owZpVhzCrDmFWGMasMY1YZxqwyjFll\nGLPKMGaVYcwqw5hVhjGrDGNWGcasMpp+Ojsi9gMvAq8BBzPTn9TWitO6bgbAJzLz2c4mkZbJ0wyV\n0XpkTuCPEZHATzJz+8INImIGmAGYmppa9ItMb7t1yDE1KuP+f7D/8k1j+16tR+aPZeYG4HzgyxFx\n1sINXAVUk9YUc2Y+1fvvM8AtwOldDiUNo2/MEXFURBz9+nPgk8BDXQ8mDarlnPndwC0R8fr2v8rM\n2zudShpC35gz8wngQ2OYRVoWL82pDGNWGcasMoxZZRizyjBmlWHMKsOYVYYxqwxjVhnGrDKMWWUY\ns8owZpVhzCrDmFWGMasMY1YZxqwyjFllNMccEWsi4v6I+F2XA0nDGuTIfCmwt6tBpOVqijki1gOb\ngKu6HUcaXuuR+fvAN4D/LLVBRMxExGxEzM7NzY1kOGkQLctzfQp4JjN3v9V2LpyoSWs5Mp8JbO6t\nnn8DcHZE/LLTqaQh9I05M7+ZmeszcxrYAtyZmZ/pfDJpQF5nVhmD/E4TMvNu4O5OJpGWySOzyjBm\nlWHMKsOYVYYxqwxjVhnGrDKMWWUYs8owZpVhzCrDmFWGMasMY1YZxqwyjFllGLPKMGaVYcwqw5hV\nhjGrjJYVjd4eEX+JiAci4uGI+PY4BpMG1bLUwCvA2Zn5UkQcAdwTEbdl5r0dzyYNpG/MmZnAS70P\nj+g9ssuhpGE0LQITEWuA3cD7gCsyc9ci28wAMwBTU1OjnHHsprfdOtbvt//yTWP9flU1vQHMzNcy\n81RgPXB6RHxgkW1cBVQTNdDVjMz8F3AXcF4340jDa7masS4iju09fwdwLvBo14NJg2o5Zz4euLZ3\n3nwY8OvM9Jf0aMVpuZrxIHDaGGaRlsU7gCrDmFWGMasMY1YZxqwyjFllGLPKMGaVYcwqw5hVhjGr\nDGNWGcasMoxZZRizyjBmlWHMKsOYVYYxqwxjVhktSw2cGBF3RcQjvYUTLx3HYNKgWpYaOAh8PTPv\ni4ijgd0RcUdmPtLxbNJA+h6ZM/PpzLyv9/xFYC9wQteDSYMa6Jw5IqaZX0PjTQsnSpPWtAooQES8\nC7gJuCwzX1jk9RW3Cui4V/Mct9Wwf8POOMzKqE1H5t4i4zcB12XmzYtt4yqgmrSWqxkBXA3szczv\ndT+SNJyWI/OZwGeBsyNiT+9xQcdzSQNrWTjxHiDGMIu0LN4BVBnGrDKMWWUYs8owZpVhzCrDmFWG\nMasMY1YZxqwyjFllGLPKMGaVYcwqw5hVhjGrDGNWGcasMoxZZRizyjBmldGybsY1EfFMRDw0joGk\nYbUcmX8GnNfxHNKytawC+ifgn2OYRVqW5oUT+1mJCyeuFqthAcTVYGRvAF04UZPm1QyVYcwqo+XS\n3PXAn4GTI+JARHyh+7GkwbWsAnrxOAaRlsvTDJVhzCrDmFWGMasMY1YZxqwyjFllGLPKMGaVYcwq\nw5hVhjGrDGNWGcasMoxZZRizyjBmlWHMKsOYVYYxqwxjVhlNMUfEeRHxWETsi4htXQ8lDaNl3Yw1\nwBXA+cApwMURcUrXg0mDajkynw7sy8wnMvNV4Abgwm7HkgbXsgroCcCTh3x8APjIwo0OXQUUeCki\nHluwyVrg2WGGXOHcrw7Ed9/y5fcs9smRLWmbmduB7Uu9HhGzmblxVN9vpXC/Vo6W04yngBMP+Xh9\n73PSitIS81+B90fESRFxJLAF2NntWNLgWhZOPBgRXwH+AKwBrsnMh4f4Xkuegqxy7tcKEZk56Rmk\nkfAOoMowZpUx8pj73fqOiLdFxI2913dFxPSoZ+hCw35tjYi5iNjTe3xxEnMOot8vLI15P+zt84MR\nsWHcMw4kM0f2YP4N4uPAe4EjgQeAUxZs8yXgyt7zLcCNo5yhi0fjfm0FfjTpWQfcr7OADcBDS7x+\nAXAbEMAZwK5Jz/xWj1EfmVtufV8IXNt7vgM4JyJixHOMWslb+tn/F5ZeCPw8590LHBsRx49nusGN\nOubFbn2fsNQ2mXkQeB44bsRzjFrLfgF8uvfX8Y6IOHGR11eb1v1eEXwDODq/BaYz84PAHfz/bx+N\nyahjbrn1/b9tIuJw4BjguRHPMWp99yszn8vMV3ofXgV8eEyzdWlV/VOGUcfccut7J/D53vOLgDuz\n925jBeu7XwvOJTcDe8c4X1d2Ap/rXdU4A3g+M5+e9FBLGdm/moOlb31HxHeA2czcCVwN/CIi9jH/\n5mPLKGfoQuN+fS0iNgMHmd+vrRMbuFHvF5Z+HFgbEQeAbwFHAGTmlcDvmb+isQ/4N3DJZCZt4+1s\nleEbQJVhzCrDmFWGMasMY1YZxqwyjFll/BexTRtmpRj4ngAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AKk4yzQ9RI52",
"colab_type": "text"
},
"source": [
"## Hipóteses\n",
"\n",
"- As pessoas vão sentir um grau alto de prazer(?) num sistema com essas frequências de entrega, pela nossa preferência cognitiva cerebral em perceber harmonias em padrões com denominadores pequenos.\n",
"- Ítens únicos só vão ser percebidos em caso de cacofonia (caso o denominador da proporção entre as frequências seja muito alto, isso não significa necessariamente demora na entrega)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tSMYOn8QR2Zi",
"colab_type": "text"
},
"source": [
"## Inspiração\n",
"\n",
"Duas garrafas de vinho, discussões sobre cosmologia e teoria musical entre Ayrton Araújo, Rapha Chewie e Luiz Lula "
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment