Skip to content

Instantly share code, notes, and snippets.

# You can use any branch but this article been tested with 0.1.2 only
git clone https://github.com/gclouduniverse/gcp-notebook-executor.git --branch v0.1.2
cd gcp-notebook-executor
source utils.sh
INPUT_NOTEBOOK="./demo.ipynb"
# Should be existing bucket
GCP_BUCKET="gs://b0noi-tmp/test-execution/"
IMAGE_FAMILY_NAME="tf-latest-gpu"
export IMAGE_FAMILY="tf-latest-gpu-experimental" # or tf-latest-cpu-experimental
export ZONE="us-west1-b"
export INSTANCE_NAME="my-instance"
export INSTANCE_TYPE="n1-standard-8"
gcloud compute instances create $INSTANCE_NAME \
--zone=$ZONE \
--image-family=$IMAGE_FAMILY \
--image-project=deeplearning-platform-release \
--maintenance-policy=TERMINATE \
--accelerator='type=nvidia-tesla-p100,count=1' \
export INSTANCE_NAME="my-instance"
gcloud compute instances describe "${INSTANCE_NAME}" --format json | jq '.metadata.items[] | select(.key=="proxy-url") | .value'
export IMAGE_FAMILY="tf-latest-gpu" # or put any required
export ZONE="us-west1-b"
export INSTANCE_NAME="my-instance"
export INSTANCE_TYPE="n1-standard-8"
gcloud compute instances create $INSTANCE_NAME \
--zone=$ZONE \
--image-family=$IMAGE_FAMILY \
--image-project=deeplearning-platform-release \
--maintenance-policy=TERMINATE \
--accelerator='type=nvidia-tesla-v100,count=8' \
export IMAGE_FAMILY="tf-2-0-cu100-experimental" # or tf-2-0-cpu-experimental if no GPU is needed
export ZONE="us-west1-b"
export INSTANCE_NAME="my-instance"
export INSTANCE_TYPE="n1-standard-8"
gcloud compute instances create $INSTANCE_NAME \
--zone=$ZONE \
--image-family=$IMAGE_FAMILY \
--image-project=deeplearning-platform-release \
--maintenance-policy=TERMINATE \
--accelerator='type=nvidia-tesla-p100,count=1' \
# usage: start_dlvm_for_user tf-latest-cpu [email protected] my-awesome-instance my-project us-west1-b
function start_dlvm_for_user() {
export IMAGE_FAMILY=$1
export USER_GOOGLE_ACCOUNT_MAIL=$2
export INSTANCE_NAME=$3
export PROJECT_ID=$4
export ZONE=$5
export INSTANCE_TYPE="n1-standard-8"
SERVICE_ACCOUNT_NAME="${INSTANCE_NAME}-sa"
export IMAGE_FAMILY="tf-latest-cpu" # or put any required
export ZONE="us-west1-b"
export INSTANCE_NAME="my-instance-wtih-limited-access"
export INSTANCE_TYPE="n1-standard-8"
gcloud compute instances create $INSTANCE_NAME \
--zone=$ZONE \
--image-family=$IMAGE_FAMILY \
--image-project=deeplearning-platform-release \
--machine-type=$INSTANCE_TYPE \
--boot-disk-size=120GB \
PROJECT_ID="" # PUT YOUR PROJECT ID
SERVICE_ACCOUNT_NAME="" # Service account name
GOOGLE_ACCOUNT_MAIL="" # user mail
gcloud iam service-accounts add-iam-policy-binding \
"${SERVICE_ACCOUNT_NAME}@${PROJECT_ID}.iam.gserviceaccount.com" \
--member="user:${GOOGLE_ACCOUNT_MAIL}" --role="roles/iam.serviceAccountUser"
# Replace osAdminLogin with osLogin if you do NOT want the user to have an
# ability to act as root.
gcloud projects add-iam-policy-binding ${PROJECT_ID} \
gcloud iam service-accounts create slava-dlvm-access-account
from PIL import Image
import numpy as np
import json
import codecs
img = Image.open("image.jpg").resize((240, 240))
img_array=np.array(img)
result = {