Skip to content

Instantly share code, notes, and snippets.

@balzer82
Last active August 29, 2015 14:14
Show Gist options
  • Save balzer82/019a4e6ba55a4b2e9de7 to your computer and use it in GitHub Desktop.
Save balzer82/019a4e6ba55a4b2e9de7 to your computer and use it in GitHub Desktop.
We have a LogLog Graph and need some Values out of it
# n [1/min] P [kW]
250.0 3.0
260.0 3.2
270.0 3.4
280.0 3.6
290.0 3.8
300.0 4.1
310.0 4.3
320.0 4.5
330.0 4.8
340.0 5.0
350.0 5.3
360.0 5.5
370.0 5.8
380.0 6.0
390.0 6.3
400.0 6.6
410.0 6.9
420.0 7.1
430.0 7.4
440.0 7.7
450.0 8.0
460.0 8.3
470.0 8.6
480.0 8.9
490.0 9.2
500.0 9.5
510.0 9.9
520.0 10.2
530.0 10.5
540.0 10.8
550.0 11.2
560.0 11.5
570.0 11.9
580.0 12.2
590.0 12.6
600.0 12.9
610.0 13.3
620.0 13.7
630.0 14.0
640.0 14.4
650.0 14.8
660.0 15.2
670.0 15.6
680.0 15.9
690.0 16.3
700.0 16.7
710.0 17.1
720.0 17.5
730.0 17.9
740.0 18.4
750.0 18.8
760.0 19.2
770.0 19.6
780.0 20.0
790.0 20.5
800.0 20.9
810.0 21.3
820.0 21.8
830.0 22.2
840.0 22.7
850.0 23.1
860.0 23.6
870.0 24.1
880.0 24.5
890.0 25.0
900.0 25.5
910.0 25.9
920.0 26.4
930.0 26.9
940.0 27.4
950.0 27.9
960.0 28.3
970.0 28.8
980.0 29.3
990.0 29.8
1000.0 30.3
1010.0 30.9
1020.0 31.4
1030.0 31.9
1040.0 32.4
1050.0 32.9
1060.0 33.4
1070.0 34.0
1080.0 34.5
1090.0 35.0
1100.0 35.6
1110.0 36.1
1120.0 36.7
1130.0 37.2
1140.0 37.8
1150.0 38.3
1160.0 38.9
1170.0 39.4
1180.0 40.0
1190.0 40.6
1200.0 41.1
1210.0 41.7
1220.0 42.3
1230.0 42.9
1240.0 43.5
1250.0 44.0
1260.0 44.6
1270.0 45.2
1280.0 45.8
1290.0 46.4
1300.0 47.0
1310.0 47.6
1320.0 48.2
1330.0 48.8
1340.0 49.5
1350.0 50.1
1360.0 50.7
1370.0 51.3
1380.0 51.9
1390.0 52.6
1400.0 53.2
1410.0 53.8
1420.0 54.5
1430.0 55.1
1440.0 55.8
1450.0 56.4
1460.0 57.1
1470.0 57.7
1480.0 58.4
1490.0 59.0
1500.0 59.7
1510.0 60.4
1520.0 61.0
1530.0 61.7
1540.0 62.4
1550.0 63.1
1560.0 63.7
1570.0 64.4
1580.0 65.1
1590.0 65.8
1600.0 66.5
1610.0 67.2
1620.0 67.9
1630.0 68.6
1640.0 69.3
1650.0 70.0
1650.0 70.0
1660.0 70.4
1670.0 70.8
1680.0 71.2
1690.0 71.7
1700.0 72.1
1710.0 72.5
1720.0 72.9
1730.0 73.3
1740.0 73.7
1750.0 74.2
1760.0 74.6
1770.0 75.0
1780.0 75.4
1790.0 75.8
1800.0 76.2
1810.0 76.7
1820.0 77.1
1830.0 77.5
1840.0 77.9
1850.0 78.3
1860.0 78.7
1870.0 79.1
1880.0 79.6
1890.0 80.0
1900.0 80.4
1910.0 80.8
1920.0 81.2
1930.0 81.6
1940.0 82.1
1950.0 82.5
1960.0 82.9
1970.0 83.3
1980.0 83.7
1990.0 84.1
2000.0 84.5
2010.0 85.0
2020.0 85.4
2030.0 85.8
2040.0 86.2
2050.0 86.6
2060.0 87.0
2070.0 87.4
2080.0 87.9
2090.0 88.3
2100.0 88.7
2110.0 89.1
2120.0 89.5
2130.0 89.9
2140.0 90.3
2150.0 90.8
2160.0 91.2
2170.0 91.6
2180.0 92.0
2190.0 92.4
2200.0 92.8
2210.0 93.2
2220.0 93.7
2230.0 94.1
2240.0 94.5
2250.0 94.9
2260.0 95.3
2270.0 95.7
2280.0 96.1
2290.0 96.6
2300.0 97.0
2310.0 97.4
2320.0 97.8
2330.0 98.2
2340.0 98.6
2350.0 99.0
2360.0 99.5
2370.0 99.9
2380.0 100.3
2390.0 100.7
2400.0 101.1
2410.0 101.5
2420.0 101.9
2430.0 102.3
2440.0 102.8
2450.0 103.2
2460.0 103.6
2470.0 104.0
2480.0 104.4
2490.0 104.8
2500.0 105.2
2510.0 105.7
2520.0 106.1
2530.0 106.5
2540.0 106.9
2550.0 107.3
2560.0 107.7
2570.0 108.1
2580.0 108.5
2590.0 109.0
2600.0 109.4
2610.0 109.8
2620.0 110.2
2630.0 110.6
2640.0 111.0
2650.0 111.4
2660.0 111.8
2670.0 112.3
2680.0 112.7
2690.0 113.1
2700.0 113.5
2710.0 113.9
2720.0 114.3
2730.0 114.7
2740.0 115.1
2750.0 115.6
2760.0 116.0
2770.0 116.4
2780.0 116.8
2790.0 117.2
2800.0 117.6
2810.0 118.0
2820.0 118.4
2830.0 118.9
2840.0 119.3
2850.0 119.7
2860.0 120.1
2870.0 120.5
2880.0 120.9
2890.0 121.3
2900.0 121.7
2910.0 122.2
2920.0 122.6
2930.0 123.0
2940.0 123.4
2950.0 123.8
2960.0 124.2
2970.0 124.6
2980.0 125.0
2990.0 125.4
3000.0 125.9
3010.0 126.3
3020.0 126.7
3030.0 127.1
3040.0 127.5
3050.0 127.9
3060.0 128.3
3070.0 128.7
3080.0 129.1
3090.0 129.6
3100.0 130.0
3110.0 130.4
3120.0 130.8
3130.0 131.2
3140.0 131.6
3150.0 132.0
3160.0 132.4
3170.0 132.9
3180.0 133.3
3190.0 133.7
3200.0 134.1
3210.0 134.5
3220.0 134.9
3230.0 135.3
3240.0 135.7
3250.0 136.1
3260.0 136.6
3270.0 137.0
3280.0 137.4
3290.0 137.8
3300.0 138.2
3310.0 138.6
3320.0 139.0
3330.0 139.4
3340.0 139.8
3350.0 140.2
3360.0 140.7
3370.0 141.1
3380.0 141.5
3390.0 141.9
3400.0 142.3
3410.0 142.7
3420.0 143.1
3430.0 143.5
3440.0 143.9
3450.0 144.4
3460.0 144.8
3470.0 145.2
3480.0 145.6
3490.0 146.0
3500.0 146.4
3510.0 146.8
3520.0 147.2
3530.0 147.6
3540.0 148.1
3550.0 148.5
3560.0 148.9
3570.0 149.3
3580.0 149.7
3590.0 150.1
3600.0 150.5
3610.0 150.9
3620.0 151.3
3630.0 151.7
3640.0 152.2
3650.0 152.6
3660.0 153.0
3670.0 153.4
3680.0 153.8
3690.0 154.2
3700.0 154.6
3710.0 155.0
3720.0 155.4
3730.0 155.8
3740.0 156.3
3750.0 156.7
3760.0 157.1
3770.0 157.5
3780.0 157.9
3790.0 158.3
3800.0 158.7
3810.0 159.1
3820.0 159.5
3830.0 159.9
3840.0 160.4
3850.0 160.8
3860.0 161.2
3870.0 161.6
3880.0 162.0
3890.0 162.4
3900.0 162.8
3910.0 163.2
3920.0 163.6
3930.0 164.0
3940.0 164.4
3950.0 164.9
3960.0 165.3
3970.0 165.7
3980.0 166.1
3990.0 166.5
4000.0 166.9
4010.0 167.3
4020.0 167.7
4030.0 168.1
4040.0 168.5
4050.0 169.0
4060.0 169.4
4070.0 169.8
4080.0 170.2
4090.0 170.6
4100.0 171.0
4110.0 171.4
4120.0 171.8
4130.0 172.2
4140.0 172.6
4150.0 173.0
4160.0 173.5
4170.0 173.9
4180.0 174.3
4190.0 174.7
4200.0 175.1
4210.0 175.5
4220.0 175.9
4230.0 176.3
4240.0 176.7
4250.0 177.1
4260.0 177.5
4270.0 178.0
4280.0 178.4
4290.0 178.8
4300.0 179.2
4310.0 179.6
4320.0 180.0
4320.0 180.0
4330.0 180.0
4340.0 180.0
4350.0 180.0
4360.0 180.0
4370.0 180.0
4380.0 180.0
4390.0 180.0
4400.0 180.0
4410.0 180.0
4420.0 180.0
4430.0 180.0
4440.0 180.0
4450.0 180.0
4460.0 180.0
4470.0 180.0
4480.0 180.0
4490.0 180.0
4500.0 180.0
4510.0 180.0
4520.0 180.0
4530.0 180.0
4540.0 180.0
4550.0 180.0
4560.0 180.0
4570.0 180.0
4580.0 180.0
4590.0 180.0
4600.0 180.0
4610.0 180.0
4620.0 180.0
4630.0 180.0
4640.0 180.0
4650.0 180.0
4660.0 180.0
4670.0 180.0
4680.0 180.0
4690.0 180.0
4700.0 180.0
4710.0 180.0
4720.0 180.0
4730.0 180.0
4740.0 180.0
4750.0 180.0
4760.0 180.0
4770.0 180.0
4780.0 180.0
4790.0 180.0
4800.0 180.0
4810.0 180.0
4820.0 180.0
4830.0 180.0
4840.0 180.0
4850.0 180.0
4860.0 180.0
4870.0 180.0
4880.0 180.0
4890.0 180.0
4900.0 180.0
4910.0 180.0
4920.0 180.0
4930.0 180.0
4940.0 180.0
4950.0 180.0
4960.0 180.0
4970.0 180.0
4980.0 180.0
4990.0 180.0
5000.0 180.0
5010.0 180.0
5020.0 180.0
5030.0 180.0
5040.0 180.0
5050.0 180.0
5060.0 180.0
5070.0 180.0
5080.0 180.0
5090.0 180.0
5100.0 180.0
5110.0 180.0
5120.0 180.0
5130.0 180.0
5140.0 180.0
5150.0 180.0
5160.0 180.0
5170.0 180.0
5180.0 180.0
5190.0 180.0
5200.0 180.0
5210.0 180.0
5220.0 180.0
5230.0 180.0
5240.0 180.0
5250.0 180.0
5260.0 180.0
5270.0 180.0
5280.0 180.0
5290.0 180.0
5300.0 180.0
5310.0 180.0
5320.0 180.0
5330.0 180.0
5340.0 180.0
5350.0 180.0
5360.0 180.0
5370.0 180.0
5380.0 180.0
5390.0 180.0
5400.0 180.0
5410.0 180.0
5420.0 180.0
5430.0 180.0
5440.0 180.0
5450.0 180.0
5460.0 180.0
5470.0 180.0
5480.0 180.0
5490.0 180.0
5500.0 180.0
5510.0 180.0
5520.0 180.0
5530.0 180.0
5540.0 180.0
5550.0 180.0
5560.0 180.0
5570.0 180.0
5580.0 180.0
5590.0 180.0
5600.0 180.0
5610.0 180.0
5620.0 180.0
5630.0 180.0
5640.0 180.0
5650.0 180.0
5660.0 180.0
5670.0 180.0
5680.0 180.0
5690.0 180.0
5700.0 180.0
5710.0 180.0
5720.0 180.0
5730.0 180.0
5740.0 180.0
5750.0 180.0
5760.0 180.0
5770.0 180.0
5780.0 180.0
5790.0 180.0
5800.0 180.0
5810.0 180.0
5820.0 180.0
5830.0 180.0
5840.0 180.0
5850.0 180.0
5860.0 180.0
5870.0 180.0
5880.0 180.0
5890.0 180.0
5900.0 180.0
5910.0 180.0
5920.0 180.0
5930.0 180.0
5940.0 180.0
5950.0 180.0
5960.0 180.0
5970.0 180.0
5980.0 180.0
5990.0 180.0
6000.0 180.0
6010.0 180.0
6020.0 180.0
6030.0 180.0
6040.0 180.0
6050.0 180.0
6060.0 180.0
6070.0 180.0
6080.0 180.0
6090.0 180.0
6100.0 180.0
6110.0 180.0
6120.0 180.0
6130.0 180.0
6140.0 180.0
6150.0 180.0
6160.0 180.0
6170.0 180.0
6180.0 180.0
6190.0 180.0
6200.0 180.0
6210.0 180.0
6220.0 180.0
6230.0 180.0
6240.0 180.0
6250.0 180.0
6260.0 180.0
6270.0 180.0
6280.0 180.0
6290.0 180.0
6300.0 180.0
6310.0 180.0
6320.0 180.0
6330.0 180.0
6340.0 180.0
6350.0 180.0
6360.0 180.0
6370.0 180.0
6380.0 180.0
6390.0 180.0
6400.0 180.0
6410.0 180.0
6420.0 180.0
6430.0 180.0
6440.0 180.0
6450.0 180.0
6460.0 180.0
6470.0 180.0
6480.0 180.0
6490.0 180.0
6500.0 180.0
6510.0 180.0
6520.0 180.0
6530.0 180.0
6540.0 180.0
6550.0 180.0
6560.0 180.0
6570.0 180.0
6580.0 180.0
6590.0 180.0
6600.0 180.0
6610.0 180.0
6620.0 180.0
6630.0 180.0
6640.0 180.0
6650.0 180.0
6660.0 180.0
6670.0 180.0
6680.0 180.0
6690.0 180.0
6700.0 180.0
6710.0 180.0
6720.0 180.0
6730.0 180.0
6740.0 180.0
6750.0 180.0
6760.0 180.0
6770.0 180.0
6780.0 180.0
6790.0 180.0
6800.0 180.0
6810.0 180.0
6820.0 180.0
6830.0 180.0
6840.0 180.0
6850.0 180.0
6860.0 180.0
6870.0 180.0
6880.0 180.0
6890.0 180.0
6900.0 180.0
6910.0 180.0
6920.0 180.0
6930.0 180.0
6940.0 180.0
6950.0 180.0
6960.0 180.0
6970.0 180.0
6980.0 180.0
6990.0 180.0
7000.0 180.0
7010.0 180.0
7020.0 180.0
7030.0 180.0
7040.0 180.0
7050.0 180.0
7060.0 180.0
7070.0 180.0
7080.0 180.0
7090.0 180.0
7100.0 180.0
7110.0 180.0
7120.0 180.0
7130.0 180.0
7140.0 180.0
7150.0 180.0
7160.0 180.0
7170.0 180.0
7180.0 180.0
7190.0 180.0
7200.0 180.0
7210.0 180.0
7220.0 180.0
7230.0 180.0
7240.0 180.0
7250.0 180.0
7260.0 180.0
7270.0 180.0
7280.0 180.0
7290.0 180.0
7300.0 180.0
7310.0 180.0
7320.0 180.0
7330.0 180.0
7340.0 180.0
7350.0 180.0
7360.0 180.0
7370.0 180.0
7380.0 180.0
7390.0 180.0
7400.0 180.0
7410.0 180.0
7420.0 180.0
7430.0 180.0
7440.0 180.0
7450.0 180.0
7460.0 180.0
7470.0 180.0
7480.0 180.0
7490.0 180.0
7500.0 180.0
7510.0 180.0
7520.0 180.0
7530.0 180.0
7540.0 180.0
7550.0 180.0
7560.0 180.0
7570.0 180.0
7580.0 180.0
7590.0 180.0
7600.0 180.0
7610.0 180.0
7620.0 180.0
7630.0 180.0
7640.0 180.0
7650.0 180.0
7660.0 180.0
7670.0 180.0
7680.0 180.0
7690.0 180.0
7700.0 180.0
7710.0 180.0
7720.0 180.0
7730.0 180.0
7740.0 180.0
7750.0 180.0
7760.0 180.0
7770.0 180.0
7780.0 180.0
7790.0 180.0
7800.0 180.0
7810.0 180.0
7820.0 180.0
7830.0 180.0
7840.0 180.0
7850.0 180.0
7860.0 180.0
7870.0 180.0
7880.0 180.0
7890.0 180.0
7900.0 180.0
7910.0 180.0
7920.0 180.0
7930.0 180.0
7940.0 180.0
7950.0 180.0
7960.0 180.0
7970.0 180.0
7980.0 180.0
7990.0 180.0
8000.0 180.0
8010.0 180.0
8020.0 180.0
8030.0 180.0
8040.0 180.0
8050.0 180.0
8060.0 180.0
8070.0 180.0
8080.0 180.0
8090.0 180.0
8100.0 180.0
8110.0 180.0
8120.0 180.0
8130.0 180.0
8140.0 180.0
8150.0 180.0
8160.0 180.0
8170.0 180.0
8180.0 180.0
8190.0 180.0
8200.0 180.0
8210.0 180.0
8220.0 180.0
8230.0 180.0
8240.0 180.0
8250.0 180.0
8260.0 180.0
8270.0 180.0
8280.0 180.0
8290.0 180.0
8300.0 180.0
8310.0 180.0
8320.0 180.0
8330.0 180.0
8340.0 180.0
8350.0 180.0
8360.0 180.0
8370.0 180.0
8380.0 180.0
8390.0 180.0
8400.0 180.0
8410.0 180.0
8420.0 180.0
8430.0 180.0
8440.0 180.0
8450.0 180.0
8460.0 180.0
8470.0 180.0
8480.0 180.0
8490.0 180.0
8500.0 180.0
8510.0 180.0
8520.0 180.0
8530.0 180.0
8540.0 180.0
8550.0 180.0
8560.0 180.0
8570.0 180.0
8580.0 180.0
8590.0 180.0
8600.0 180.0
8610.0 180.0
8620.0 180.0
8630.0 180.0
8640.0 180.0
8650.0 180.0
8660.0 180.0
8670.0 180.0
8680.0 180.0
8690.0 180.0
8700.0 180.0
8710.0 180.0
8720.0 180.0
8730.0 180.0
8740.0 180.0
8750.0 180.0
8760.0 180.0
8770.0 180.0
8780.0 180.0
8790.0 180.0
8800.0 180.0
8810.0 180.0
8820.0 180.0
8830.0 180.0
8840.0 180.0
8850.0 180.0
8860.0 180.0
8870.0 180.0
8880.0 180.0
8890.0 180.0
8900.0 180.0
8910.0 180.0
8920.0 180.0
8930.0 180.0
8940.0 180.0
8950.0 180.0
8960.0 180.0
8970.0 180.0
8980.0 180.0
8990.0 180.0
9000.0 180.0
9010.0 180.0
9020.0 180.0
9030.0 180.0
9040.0 180.0
9050.0 180.0
9060.0 180.0
9070.0 180.0
9080.0 180.0
9090.0 180.0
9100.0 180.0
9110.0 180.0
9120.0 180.0
9130.0 180.0
9140.0 180.0
9150.0 180.0
9160.0 180.0
9170.0 180.0
9180.0 180.0
9190.0 180.0
9200.0 180.0
9210.0 180.0
9220.0 180.0
9230.0 180.0
9240.0 180.0
9250.0 180.0
9260.0 180.0
9270.0 180.0
9280.0 180.0
9290.0 180.0
9300.0 180.0
9310.0 180.0
9320.0 180.0
9330.0 180.0
9340.0 180.0
9350.0 180.0
9360.0 180.0
9370.0 180.0
9380.0 180.0
9390.0 180.0
9400.0 180.0
9410.0 180.0
9420.0 180.0
9430.0 180.0
9440.0 180.0
9450.0 180.0
9460.0 180.0
9470.0 180.0
9480.0 180.0
9490.0 180.0
9500.0 180.0
9510.0 180.0
9520.0 180.0
9530.0 180.0
9540.0 180.0
9550.0 180.0
9560.0 180.0
9570.0 180.0
9580.0 180.0
9590.0 180.0
9600.0 180.0
9610.0 180.0
9620.0 180.0
9630.0 180.0
9640.0 180.0
9650.0 180.0
9660.0 180.0
9670.0 180.0
9680.0 180.0
9690.0 180.0
9700.0 180.0
9710.0 180.0
9720.0 180.0
9730.0 180.0
9740.0 180.0
9750.0 180.0
9760.0 180.0
9770.0 180.0
9780.0 180.0
9790.0 180.0
9800.0 180.0
9810.0 180.0
9820.0 180.0
9830.0 180.0
9840.0 180.0
9850.0 180.0
9860.0 180.0
9870.0 180.0
9880.0 180.0
9890.0 180.0
9900.0 180.0
9910.0 180.0
9920.0 180.0
9930.0 180.0
9940.0 180.0
9950.0 180.0
9960.0 180.0
9970.0 180.0
9980.0 180.0
9990.0 180.0
10000.0 180.0
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "",
"signature": "sha256:db29df71954fe1168badcedd77462d0f3f8a0550ae4449d1bbab66ba5a87ae79"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"We have a LogLog diagram and need the values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Diag](Leistungsdiagramm_E2-180.png)"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"So, let's Un-LogLog it"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"from scipy.optimize import curve_fit"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 14
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Get some Datapoints, e.g. with [DigitizeIT](http://www.digitizeit.de/)"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# for the E2-180 curve\n",
"logx = np.array([250.0, 1650.0, 4320.0, 10000.0]) # rpm\n",
"logy = np.array([3.0, 70.0, 180.0, 180.0]) # power"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 15
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Because the diagram is [LogLog](http://en.wikipedia.org/wiki/Log-log_plot) and has only straight lines, that means we can fit a function of the form $P(n)=c \\cdot n^m$ to find the parameters `c` (constant) and `m` (slope)."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def loglog(n, c, m):\n",
" return c * n**m"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 16
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now lets fit the three parts of the LogLog graph to find the parameters."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"var={} # Dictionary to save the optimal parameters\n",
"for p in range(3):\n",
" # do the curve fitting\n",
" popt, pcov = curve_fit(loglog, logx[p:p+2], logy[p:p+2])\n",
" \n",
" # Save the optimal parameters\n",
" var[p] = [popt[0], popt[1]]\n",
" \n",
" # Print them\n",
" print('Constant: %.6f, Slope: %.3f for %i. part of the graph' % (popt[0], popt[1], p+1))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Constant: 0.000298, Slope: 1.669 for 1. part of the graph\n",
"Constant: 0.048736, Slope: 0.981 for 2. part of the graph\n",
"Constant: 180.000001, Slope: -0.000 for 3. part of the graph\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So now we have the variables for the function $P(n)=c \\cdot n^m$, we can calc a continuous function"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"n=[]\n",
"P=[]\n",
"for p in range(3):\n",
" x=np.arange(logx[p], logx[p+1]+1, 10)\n",
" n.extend(x)\n",
" P.extend(loglog(x, var[p][0], var[p][1]))"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 22
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's plot it and see, if the original datapoints and the found curve are fitting"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plt.loglog(n, P, label='Curve Fit', ls='--')\n",
"plt.loglog(logx, logy, label='Original', alpha=0.6)\n",
"\n",
"plt.xlabel('n / 1/min')\n",
"plt.ylabel('P / kW')\n",
"plt.title('Leistungsdiagramm E2-180')\n",
"plt.ylim(0, 200)\n",
"plt.legend(loc='best')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 23,
"text": [
"<matplotlib.legend.Legend at 0x10a340f50>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEiCAYAAAABGF7XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8FPX9+PHXezd3SAgJhHAkJAQUOUSpdxEPLN4X4lm/\nX5RatbVq/YlKW/VrPWq8W6toW/Ho4UnFoiKCVMV4IhRUKMoRkhCOALnvze7n98dsQog5dnPNzub9\nfDzygJn9zMw7y7Dv/XzeM58RYwxKKaVUMFx2B6CUUsp5NHkopZQKmiYPpZRSQdPkoZRSKmiaPJRS\nSgVNk4dSSqmgafJQbRKRTBHxichxdsfSm0TkeRFZ3t6yUqptmjzCVA98CBYAacAXAR7vdhHJ68bx\n7NTyZqfrgVl2BRKK/OeSr42fihZtbhGRT0WkRERKReQjETk1gH1Hi8hzIrJGRBpEZFM77Y4QkWUi\nsk9EykUkV0ROadUmUkQeFJEdIlLjj2FK998B1RZNHuHLcOCHYnAbG+MzxhQbYxp7MKZQJU1/McZU\nGmPKe/2AIlG9fYwethLry0TLn9EtXj8JeAY4ETgS+AR4K4CeqxuoB/4EvEQb56yIxAPvAiXAVOAI\nYC3wpoiMatH0IWAOcLU/hq3AeyIyNIjfUwXKGKM/YfgDPA8s7+D1of42xUAFkAsc3+L1TMAHHNdi\n3a+BLUCdf7ulQAxwhb9ty587/dtsA37T6tjPAO+3WP4A+AtwB7AT2Ae8AMS3aCPA74A9/nj/DtwI\neFq0GQn809+m1h/r3BavJwOvAFXALuAe/3GWt/e+AVOAd4DdQCVWT+zUVr9PCvCaf787gTvb2M8H\n/t/7Hn+bHf71lwGfA2X+uN8Cxrbx73Ap1gdoNbAB60M0w/9vUAWsB6a22O5E/3anA58CNcAq4BDg\nUOBj/74+Bw4J4Fxa1oVzcB3wcBDt7wI2tbH+MP/vMqHFugT/urP9y4n+f/OrWrRx+d/r/7P7/2M4\n/mjPox8SkVjgfSAeOA3rP+cSYLmIjGtnm5nAbcANwBjgR/5tAF4GHgC2s/9b6cP+19rrAbVeNwtI\nAk4ALgHO8h+vyU1YQ0q/BA4HVmN9SLfcz3ysD5XpwMHAT/wxNVng3/Ys4GSsD+bzWu2jdbwJWN+I\nT/Rv+y6wWETGtmjzHDAJONN/7Ezg3DZ+x4uwEs1JWO8fQBRwt3/fpwBe4G0RiWy17T3Ak1j/Vhux\n3vMXgKf8224AXhSRiFbb3Qv8CvgB4PFvNx+43b+uwR9/Z6TzJi0ai7iAgViJrbv+C+QBc0Qkxv/e\nXIv1JeNTf5sfANFYyRSwes/AcqxEq3qa3dlLf3rnhw56Hlg9hULA3Wr9CuAx/98zadHzwPrw/haI\naGeftwN5bazPA37dal1bPY//tGozH/ikxXIR8NtWbV7iwJ7HWtr5lomV8HzA9BbrIrGSy7IW69p9\n31od59f+v4/17/ekFq9HYNWMlrX6HTcG8O+W7N/fsa3+HW5o0eYI/7qbWqxr+nY+3r98on/5nBZt\nZvnXnd9i3Xn+dXGdnEserJ5Xy59/dbDN7VjDTMODOGfvoo2eh/+1bP/55/XHUgRMafH6Zf7fI6LV\ndg8B3/T0/y/90Z5Hf3UkVu+gTEQqm36A47E+ZNvyCtaHbb6/wHm5iAzooXgM1hBHSzuxhtYQkYHA\nMOCzVm1aL/8e+LWIfCYiOSJyfIvXxvv//KT5oMZ4sIZy2iUiQ0Rkvoj8118IrgQmYA0ZtdxvcyzG\nqhN92cbuVrex/8NEZJGIbPUXoPP9L41q1bTl+7Pb/+dXbaxL7aHtWvsMmNzq55q2GorIz7F6O7OM\nMTv86zJEpKrF+Ta/k+O13N9ArKHD/wDHAkcDb2LVVNID3Y/qWa27uKp/cGENBZzXxms1bW1gjNnh\nH9I6CWvI5w7gARE52hizva1t/Hx8f8ij9ZAMWMMnBxyS71/Q0eEFAMaY50VkKdZQ3EnAOyKyyBjz\nPx1s1tlwzPNYtZRbsHpRdVhDP60L3q1ja71fg1Vj2N9AJA5YhlWMvgLrg1yw6het9+9p41htrWv9\nnnV1u9bqjDFbO2mDiMzF6kGcbYz5d4uXirBqLU0qCNylWF92fmyM8frXXSsi07GK4021MvztWp6P\nQ4EdQRxLBUh7HuGtvQ/bVVhXylQaY7a2+tnV7s6MaTDGvGuMuQ1rjD8Oa2wfrA9/dxubFQMjWq07\nvIPY2jpuOdYHQOsrd45pvR9jzC5jzPPGmNnAVcCP/T2kDf4mP2xq67/i6chODn88MN8Y85YxZj1W\noT27xetN+22OzV93+EEAv9ohwGCsCwpWGmO+xRq2Cqq+0Ec6/fcSkbuxPshPb5U4MMZ4W51ne4M4\ntgvrS0jrGHwt/r4a66qt01rE48KqI+UGcSwVIO15hLcEEZnMgR9GtcA/sGoYb4vIb4BNWN/QTgY2\nGGP+1XpHIvIT/35WYV0ZNB2rmNz04ZkHpInIMcBmoNoYUwu8B/xcRBZh1QGuxRry2ddy93T+gfkI\n8FsR2eiP4UysonPzB4qIPAG8DXyHdRXYTKDAGFMFbBaRxcCTInINVlKbBwzo5NjfApeLyMdY/1/u\nxvowEwBjzCYRebPFfvcCN2Nd/dPyw66t3zEf6wPvBhF5FKu+kUMQibUPRfsveT3gd2j6siEiv8fq\nBVwKbBKRNH+TGmNMh70MERmP1dNKA6JanLPr/UOLS4EHgQUi8hBW3eMaIAtY7I+jQkSeBn4nIjux\nrvK7BauI/qdu/u6qDZo8wpfBGhv+T6v1G40x40XkBKwrcZ4DhmBdJvo5+6+gatpHkxJgLtZ/4mis\ny2B/aox53//6IqzLVd8GBmENXdyNdRXWKKyaiQfriqHXOPDbe1tXZLVe93t/nH/ASgxvYiWUX7Xa\n7vdAOtbw26dYl6o2mYN1ddJb/tf/4o97eAfHvRLrw+cLrF7Hg0BsO23ewSok/wlrOCqmo9/RGLNX\nRC4H7vfHtgErqa9o471oLZB1Xd2urdePZ//QUPN6ERlijCnBugrPYL2fLT2P9bt15G3213gM1jlr\nsJJDgTFmq4ichnU+fYTVw92AVfhvWbO6BasH/AzWlXtfAj8yxuxG9TgxJhS/5CjVORF5FphkjOls\n6KlPiYgb63LaN4wxt9gdj1K9QXseyhFEZBjWMNT7WMMWZwP/A1xnZ1wA/qu6hmJ9Y07A6j1kYH3r\nViosafJQTuHFuk/hbqzhoE3AtcaYBbZGZXEDv8G6zNkDfI1138d6W6NSqhfpsJVSSqmg6aW6Siml\ngub4Yauf/exnprq6msmTJ3PYYYfZHU6XrV271pb4e+O43d1nV7YPZptA23bWrruvO4kdv0t/PDcD\nbd+dNmvXrmXdunXEx8fz1FNPdfmeIscnj+rqav7whz/YHUa3LVu2jClT+v7RA71x3O7usyvbB7NN\noG07a9fd153Ejt+lP56bgbbvTpumdTfeeGPAMbXF8cNWu3a1e0O0o0ydas/En71x3O7usyvbB7NN\noG07a9fZ6wUFBQHHFOrsOD/747kZaPueatMdji+Yz5gxw7zyyit2h6HU9/z85z9n/vyA5/9TNmko\n34Sp2z/hgS9l9PcbGYOrpO0HZTqxvYlJ4rY7n+Kvf/1r/x22OvXUTp90qZQtLrvsMrtDUB1oqMqj\n8PMrqKz6ev9Kl4uGI9uYR9PnI2rV376/3qHtvcMnMXny7O+3C4Ljk0e4FCRV+LFrKFJ1rmTnYorW\nXIe3sbrzxmGqu5+djk8ea9eubbMoZIyhuLgYr9fbxlaqN7ndblJTUxEJxclh+05ubq4mkBDj9dWR\nX/E6e83nREbHII3VCBAjSSAC4sLlHvL9DcVLtGtQG+ud2b7RnUL991sFxfHJoz3FxcUkJCQQFxdn\ndyj9Tk1NDcXFxQwdOtTuUJRqVtWQz5byv1Pv3QsuF57s40n8agWZY+4iZsKVne/g7DuCO2CIt1+z\nZk1w27fi+OTRXtfL6/Vq4rBJXFwcZWVldodhO+11hAZjfOyoXkFR1VJaPgJk8KBTGHX673FHJdoX\nnIM5PnkopVR7GqoKKPjPNZRkZUFENABuiSEz8UJSYsPjHhy7OP4+j7Vr19odglJtys3VB9jZqWzr\n3/n2w6lUlXxORN6nYGBAZBYTB9+iiaMHaM9DBeTmm29m2LBhzJ071+5QlOqQ11PNzi+uZu++d5of\nc+UuyWd4dSZD036B9XRa1V2OfxedeqnuwoULOfnkk8nIyGD8+PFcdNFFfPbZZ3aHRU5ODqmpqWRk\nZDT//PGPf+SRRx5pThy5ublMnDjR5khDn9Y8+l517WY2rTiavXv3J45oXzQHZT9I2pgbNXH0IO15\n2ODJJ5/k8ccf59FHH+Xkk08mKiqKFStWsHTpUo455pig9tXY2EhERM/9M4oIF1xwAU899VSP7VOp\n3maMYVfN+2yvXIJrUCLuXTsAGCxjGHbiP3APGmtzhOHH8WnYaTWPiooKHnjgAR566CHOPPNMYmNj\ncbvdzJgxg7vuuguA6667jvvuu695m9bf9CdPnszjjz/O1KlTSU9P5/HHH+eKK6444Djz5s1j3rx5\nzce8/vrrGT9+PBMmTOC+++7D5/PRFmMMbU1Z0xRTTU0NF110Ebt27WrumezerY+IbovWPPpGg7ec\nb0ufprDyTQxevOlH4IodTNbgOYw48xNNHL2k3/Y8Yt7LIXbFg99bXzv9VupOmRdQ+/baduSLL76g\nrq6Os846q8N2nd1g9/rrr/Pqq6+SkpLCnj17ePDBB6mqqmLAgAF4vV4WL17M3/5mTUdw3XXXkZqa\nyurVq6muruaSSy5hxIgR30s4nRER4uLieO2117jmmmv45ptvgtpeqZ5WWvcNeeUv02j23ykeHz2a\n7BNWEhOdZmNk4c/xPQ+n1TxKS0tJSUnB5er4re9owkoR4eqrr2b48OFER0czcuRIDj30UN5++20A\nVq5cSWxsLD/4wQ8oLi7mvffe47777iM2NpbBgwfzs5/9jEWLFrW7/zfeeIOsrCyysrIYPXp088zF\nTTE5fTLNvqI1j97jbayh6OPZbC68v0XiEIbFn8Ihyddr4ugD/bbnYZdBgwaxb98+fD5fpwmkIyNG\njDhgedasWfzzn//k4osvZuHChcyaNQuAwsJCPB4PhxxySHNbn8/HyJEj2933+eefrzUPFbJq966i\n4Msrqa3fQUTlADwTzyYqKpXRST8mMWqM3eH1G45PHu3NbdWZulPmBTXkFGz79hx11FFER0fz1ltv\ncc4557TZJj4+ntra2ubltmoKrYe1zjnnHO644w527NjBkiVLWLZsGWAlmejoaLZs2RJQshKRdnsW\nTcfs73NWBUrntupZxhj2fX0vO/KfwOfzACD1VaQWlTHyyAeJcMXbHGH/4vhhK6dJTExk3rx53Hrr\nrSxZsoSamho8Hg/Lly9vLphPnDiR5cuXU1ZWxu7du3n66ac73e/gwYP54Q9/yHXXXUdmZiZjx1pF\nwrS0NE466SR+85vfUFlZic/nIy8vj08++aTN/XQ0JNX02pAhQygtLaWioiLI316prvF4K8j76Gy2\n5z3WnDjcRshKmc2oI17QxGEDxycPp9U8wCpg33vvvTzyyCMcfPDBHHrooTz77LOceeaZAFx88cVM\nnDiRyZMnc+GFFzJz5syAvu3PmjWLlStXcsEFFxywfv78+Xg8Ho499lhGjx7NlVde2e4VUiLS7rGa\n1h900EHMnDmTKVOmMHr0aL3aqh3a6+gZZfUb+HrfQ5QMjm5eF28GcfCUVxg49THE7fgBFEdy/JME\nV6xYYdoattqxYwfDhw+3ISIF+v6r7vMZD4WVb7K75qPmdRF5nzKiIpUhJ7yAK6aNKclVwNasWcP0\n6dO7PAbt+J6H0+7zUP2H3ufRdTWenazf99gBiSPSlUj2Yc8x9NTFmjhCgPb3lFIhwxhDyTc55Hs/\npjFt/819SdETyRp4MZGuATZGp1pyfPJwYs1D9Q9a8wiOp3YnRZ/MpqzqS1wuF5KQDPFpZCSeS2rs\ncXqVX4hxfPJQSjlfVf7r5H99Mx5vubXC52Pglg2MPOkB4iKH2RucapPWPJTqJVrz6JzPNFL01a/Y\nvO6n+xMHkBZzLGOOf1cTRwjTnodSyha1jbvZUvZ3agbuJcoVAV4PUb5IMkb/mgGTb7Q7PNUJxycP\nrXmoUKU1j7YZY9hT+zkFFYvw0QDRA2jMOpYhW7cx4of/IGLwBLtDVAFwfPJQSjlHo6+avPJXKa3/\nqnmdEMHIzP/H0HE/RNxuG6NTwdCah0M89thj3HhjYF35YNp2JiUlhW3btvXIvvobrXkcqCr/X2z8\n9AxK6/YnjtiINCak/JK0+GmaOBwmZHseInIucCaQCCwwxiy3OaQe9eKLL/Lkk0+Sn59PQkICZ555\nJnfeeSeJiYlttr/pppsC3ncwbZXqbT5vA8Vf3MCuPa+BMbjiY/GlHUJq3FQyEs7BJZF2h6i6IGR7\nHsaYfxljrgauBS5ur50Tax5PPPEEd999N/fccw/5+fksW7aMwsJCZs6cicfj+V57r9drQ5Squ7Tm\nAfUlX7Fl2dHsKn4V/FMhxRZ8xdj4y8hMvEATh4P1afIQkWdFZLeIfN1q/WkislFENonIba02ux14\nou+i7F0VFRU8+OCDPPDAA5x88sm43W7S09N59tlnKSgo4NVXXyUnJ4fZs2dz7bXXMmrUKF588UVy\ncnK49tprm/fz8ssvc+ihhzJmzBgefvhhJk+ezMqVKwEOaFtQUEBKSkpz+7Fjx/Loo48272f16tXM\nmDGDrKwsxo8fz2233dZmAlMqGMYY9m1/le9yZ1DdkN+8fqCkc/Bx7zIo4Ugbo1M9oa+HrZ4D/gj8\ntWmFiLixksMpQBGwSkQWAxuBHOAdY0y7hY2uPM/ji109O6xzVNpjgR/b/xjas88++4D18fHx/OhH\nP+KDDz5gzJgxLF26lOeff56nn36auro6/vCHPzS33bhxI7feeiuvvfYaU6ZM4Z577ml+2h+0/byN\nzz//nFWrVrF582ZOOeUUzj77bMaOHUtERAT3338/hx9+OEVFRVx44YUsWLDggESluqa/Ps+j0VfD\ntorXKHGtITI+EanaiwAjB80i+bgnkIgou0NUPaBPex7GmI+A0larjwI2G2O2GWM8wMvAucAvgOnA\nLBG5pi/j7E0lJSXtPoZ26NCh7Nu3D7AeGnX66acDEBMTc8BzNhYvXsxpp53G0UcfTWRkJL/61a8O\nSBhtzZR86623Eh0dzYQJE5gwYQJff211/iZPnswPfvADXC4X6enpzJ49u91nfSjVmcqGrXyz92FK\n6taCy4Un+3hi3SkcPOk5Uqb9WRNHGAmFgvkIoLDF8nbgaGPM9Vi9lA45reaRnJzc7mNod+3aRUpK\nCkCH05nv2rXrgNdjY2NJTk7u8LhDhw5t/ntcXBw1NTUAbN68mdtvv51169ZRU1OD1+t13HsaqvpT\nr8MYH0VVy9hRvRzwNa8fMmgGGac9gTsi1r7gVK8IheTRrQeKLFy4kGeeeYaMjAwABg4cyKRJkxg9\nenS72wQzzNTTmh5Du3jxYs4777zm9VVVVaxYsYI77riDoqKiDieBS0tLY/Pmzc3LtbW1lJSUdCme\nuXPnMnnyZBYsWEB8fDxPPfUUb775Zpf21Zamy1WbPkh1OfyWPZXbGBn9F0rHTmDdf6yBhSlHjyZr\n4EVs+LKSIlaHVLz9dTk3N5cXX3wRgIyMDFJTU5k+fTpd1ecPgxKRTOBNY8wk//IxwF3GmNP8y78C\nfMaYBwLZ3yOPPGLmzJnzvfWh/DCixx9/nPnz5/Pkk08ybdo0du7cydy5c9m7dy9Lly7l0UcfZdu2\nbQc8fjYnJ6d53X//+19OPfVUFi5cyGGHHcbvfvc7nnrqKV577TWmTZt2QNuCggIOP/xw9uzZ09zT\nOeecc7jooou4/PLLOeWUUzj11FOZO3cumzZt4vLLL2fw4MEsWbIEsO7zWL16NZmZmUH9jqH8/veV\n/lDzKFv/OIVb7sdr6vElZ9A45iQSorLJTrqcKHeS3eGpDoTDw6C+BMaKSKaIRGFdlrvY5ph61Q03\n3MDtt9/OnXfeSWZmJjNmzCA9PZ033niDqKioNh8F23LdIYccwgMPPMBVV13F+PHjGTBgAIMHDyYq\nKup7bZuW23PPPfewcOFCRo0axU033cT5558f8Laq//LW7WP7v89i2+a78Jp6ANwlBWTUHcy45J9r\n4ugH+rTnISIvAScAKUAxcKcx5jkROR34PeDGuiHw/kD3qY+htYa8Ro8ezerVq0lPT7c7HKB/vf/9\nTVX1Rra/fxZ13v1DpTEMYNTEx4jNvsDGyFQwutvz6NOahzHm0nbWvwO805exON3SpUuZNm0axhju\nvPNOJkyYEDKJQ4UnY3zsqF5BUdVS3EPScO+ykseQ6MMYNu0lXHFDO9mDCiehMGzVLQsXLiQnJ6ff\nzSP0zjvvNF92m5eXxzPPPGN3SKqVcDon672lbCyZT1HVEsCHN30Krvg0RqffzIhTV2jicJDc3Fxy\ncnK6PS9gnxfMe5oTC+b9gb7/4VMwL6lbS175q3hNbfO6AZFZZA/8MdERKTZGprrDUcNWvUHvSVCh\nyumJw1tfys5PrmTnyHhMQqp/rYsRA2YwPP5HiDh+4EJ1g+OTh1Kq59UWvUfBf66l1ltCxJZ4PBPP\nISo6jeyBl5MQlWV3eCoEOP6rQ3vjdm63u/kuatW3ampqcOuzGRxZ8zBeL3s/v4nvvryEWv/VVFJf\nzdBd9UxMuVkTh2oWtj2P1NRUiouLKSsrszuUfsftdpOamtp5QxVSGrzlFH5wHpVV65rXuYkgfeT1\nDDz8N0gb87Gp/isskkdOTg5Tp049YIxZRA6Yz0mpvuakmkdp3Tfklb+Mb3gKEd9Z6wa4hpFx1PNE\nDdXp08NJbm4uubm5zpuepKe1d5OgUqpzXtNAYcViims/bl4Xse1zRtZnM/i4P+OK1AkNw1U4TE/S\nLf3lGebKeUK95lHt2c76vY8ekDiiXEmMOfwFUk/4myYO1aGwGLZSSgXO+HyUfHkb+ZFf0zjskOb1\nyTGTyUy8kAhXvI3RKadwfPLQ+zxUqArFmkdj+Va2f3IZZQ3f4RJBEoYgA4YzKvF8BscerRNhqoA5\nPnkopQJTuXEBBd/diafpTnFjGJi/hfQTHiE2Qq+OU8HRmodSvSSUah7FH17Blm9v2Z84gLSk0xgz\nbbkmDtUl2vNQKsztqfmMwrg83BUR4GskSuLIGHc/Aw76H7tDUw7m+J4H0C9n1VWhLxRqHpUNeWyr\nWAjuSPA1kuRJ5qATP9bE0Y/prLp+ep+HUm1r8Jaxft+jeHyVAMS6hzE+5UbcrmibI1OhQO/z0JqH\nClF29oa9poHvShc0J44Iieeg5Ks0cageozUPpcKM8fnIL3yEmuhiAAQ3YwZdQbQ72ebIVDhxfM9D\n7/NQocqumsfez35BxbqHce36LxgYlTiTxKgxtsSiwpfjk4dSar/KDU9TtPdlMIaI/C8YvieC1Ljj\n7A5LhSHHJw+teahQ1dc1j7qdK9m26f/Afw1MYmQWw8ff06cxqP7D8clDKQXeyu1sWzUbLx4AoiWR\njOMX4YqIsTkyFa7CInnofR4qFPVVzcNnvGzeM586dx1gPcAp64gXiEjI6JPjK2fR+zz89D4P1d9t\nq/gnxTW5UFdF5KZ/kz38JhIn/MLusFSI0/s8tOahQlRf9IaLaz6zEgdAzABSj35CE4fqE45PHkr1\nVxUNW8ivWNi8nBwzmeEJp9kYkepPHH+ToN7noUJVb9Y86ut3sbn8eQxeAOIiRpCVeKk+j0P1Ge15\nKOUw3voSCpafhNn+KRiIcA1g7KCf6NQjqk85PnlozUOFqt6oeRivl6IPZlLt3Y27cA2RWz5mbNKV\nRLsH9fixlOqI45OHUv3J3k9/RkndV83LmXFnkBA12saIVH/l+OShNQ8Vqnq65lGx/gmK9u0vkA9N\nmM6gKXf16DGUCpTjC+Zr165l2bJlTJ06NSQevqNUb6ipy2dbwcPNywMjs0mb9g8bI1JOlZubS25u\nLqmpqUyfPr3L+3F88gCYN2+e3SEo9T25ubk98oXG463ku8q/0jBhBpHfvU9sTSMZxy9CIqJ6IErV\n3zR90V6zZk239hMWyUOpcOUzXjaXvUCDtwSi4vFOOI/MiItwJ4y0OzTVzzk+eWjNQ4Wqnuh1FFQs\notKzxb8kZA+6gpiYCd3er1Ld5fiCuVLhanfNxxTXfty8PHLAGQzSxKFChOOTh97noUJVd+7zqNny\nCkXrbwf/xKXJMYczLL7rxU2leprjh62UCjcNe9eS981NuKgjoraE6IMvIWvgJTr1iAopju95aM1D\nhaqu1Dy8dfvY9tnFeLCezRFdto+xUefiFr2ySoUWxycPpcKF8XrZ/uFMarx7AHDhImvSk0QNGm9z\nZEp9n+OTh9Y8VKgKtuZRvOpGSuu+bl7OSL+RuKxzezospXqE45OHUuGgpG4t+cMbMQmpAKQlziBp\nyh02R6VU+xxfMNeahwpVgdY8qj3b2Vr2EkTF4hk3g+SdpQydvKCXo1OqexyfPHRuK+VkHm8lm0qf\nxUcDADGRaWQenoO4tECueofObdWCzm2lQlFnc1v5TCObyp6jwVcKgFtiGDtoDhGuuL4KUfVDOreV\nUg5mfD62b/gVVckN4HIBQnbS/xAbkWZ3aEoFxPEFc615qFDVUa+j9MtfU7JlARHfrYDGBtITziIp\nWi/JVc7h+OShlNNUb/oHhTv/AoCrfAfD8opJizvJ5qiUCo7jk4fe56FCVVv3eTTsWUPehrkYrDmr\nBriHM+LoBTr1iHIcxycPpZzCW1PMts8uppF6AKIknlE/XIgrKtHmyJQKnuOTh9Y8VKhqWfMwxrC1\n6hWqEqxLcF24yDx0PpGDxtkVnlLd0mnyEJGjRMTdF8EoFa62Vy2h1LeVxoNOwZs2joxRNxOXebbd\nYSnVZYH0PN4HykVkmYjcLiLHi4TOFJ9a81Chqqnmsa92DTur37NWulwMOWQeSYf9ysbIlOq+QO7z\nSAKOAI43wBwAAAAYV0lEQVQHpgH/D4gVkS+AlcBKY8zy3gtRKeeq9hSytfzl5uWBUYeQnnCWjREp\n1TM67XkYYzzGmE+NMQ8aY84CUoCjgaXAT/1/2kZrHipUHTM5nU37/oLBA0CMO5XspMsRcXypUanA\n7zAXkRT29z6mAenA58BHvROaUs7l81STv/JsfLENMPYk3FFJjB30E516RIWNQArm80Xka2AVMAv4\nFrgCSDPGnGOMeah3Q+yY1jxUqDE+Hzs+nMVH32zHVVlM1PolZA+4mNiIVLtDU6rHBNLzmA3kA89j\n9TI+NcbU9WZQSjlZyapb2Vv9efNy+qALSIrX4VUVXoIpmE/FKpYfJSJbsRLJSuBjY0xp74XYMa15\nqFBS9e0LbN/1LACHjYPBcUeTfOTDNkelVM/rNHkYYzzAp/6fh8SaR2EScCbwDDA4kP30Fn2ehwoV\ndY172Fr8lH/iEUhwj2D4Ca8iLi2Qq9DR58/zEJFkrIL5CVgF88lAMfBql4/eQ/R5Hspujb5avit9\nhroxx+DeHk3czjwKI35DdlSC3aEpdYA+e56HiMzHShaHYNU+PgSeBD4yxmzu1tGVCgPG+NhS/nfq\nvMUggi/9aDLGzWffOttGc5XqdYH0PNzA77CSRWEvxxM0rXkou22vepvy+g3Ny6MHXkJ87AR0FFWF\ns0BuErzGGPMikNXW6yIyp8ejUsoh9tasYmf1v5uXh8VPJyV2io0RKdU3gqnk/V1Ejmi5QkSuBe7s\n2ZCCo/d5KLvU5r/N9k9nQ0MNAEnRExg54Izm19t6nodS4SKY5HEZ8LqIjAcQkRuAW4ATeyEupUKa\np+xb8tZdC1W7iFr/FnE1huyBOvWI6j8CvtrKGJMrIlcDS0TkFeB84ES76yBa81B9zddQSX7uBTSY\nagAiGnwcNOBy3K6YA9rppeMqnHWYPERkdKtV3wF/Am4ALgQiRWS0MWZrL8WnVEhpmnqkyrsDAEHI\nHP8QUalHdLKlUuGls55HR5firvT/abCuyLLF2rVrmTJFC5Sqb+zd+DB7a1Y1L49M+wkDxl7eZtvc\n3Fztfaiw1eEArTHGFcCPPmVQ9Qtl9RvIG7QL78jDARgSfxzJR+bYHJVS9rBtWpGeojUP1RdqG3ez\npexvIAbviEOJTziUYVn3djj1iPY6VDhzfPJQqrc1+mrYVLoAr38y6SjXILKzf4nLHW9zZErZx/HX\nFep9Hqo3GeNjS9nfqPPuAcBFFGMHzSHSndjptnqfhwpn2vNQqgO7vrye8tQGiB4AwOikS4mPHGlz\nVErZL5AnCRaKyJ9F5DwRCbl+utY8VG8p+8997N7xElHr30IqdjM8fgbJMYGfb1rzUOEskGGro4Ev\ngP8FtonIeyJyk4gc3LuhKWWfmm2LKSh4zFrw1JOaV8SIAafZG5RSISSQiRF3GGOeMcbMBIYD9wMj\ngUUiskVEHheR00QkpuM99Q6teaie1lC6gW1f/RwfPgDiXIMZOW0h1nPQAqc1DxXOgiqYG2M8xpgV\nxpibjTHjgVOw7jq/3v+jlKP5PFXkf3whDcaa7DBCosk89lXcsUNsjkyp0NKtgrkxJg94wv9jC615\nqJ5ijCGvahHlI0YQUbgTMULWhMeIGty1c0xrHiqc6dVWSvntrP43++rXwLAJeGKTyK45hPjsS+wO\nS6mQ5Pj7PBYuXEhOTo6OL6tuKa1bz/aqt5uXBw+7kEGH39Wtfeo5qUJRbm4uOTk53a4XO77nMWbM\nGObM0YcZqq6rbdzFlvK/Yc3xCQmR2YxKPD/oArlSTjB16lSmTp3KmjVrurWfTpOH/96O24GJwBrg\nd8aY+m4dtQdpzUN1h7eqiE37HsUXbV1ZFeVOZkzSbFzS/e9VWvNQ4SyQYasngLOAjcAFwCO9GpFS\nfcQ0NlCw8jx83/wdKSvCRRQHJc0h0p1gd2hKhbxAksfpwKnGmFv8fz+rd0MKjt7nobpq10eXU+7Z\nAo0eIr9bQTYnEBc5osf2rzUPFc4CSR7xxpgdAP5Hzg7s3ZCU6n2la37L7or3mpeHJ89kUNoZNkak\nlLMEMrDrFpGT/X8XIKLFMgDGmH/3eGQB0pqHClbN1kUUFP6xeTk5ZhJDjn26x4+jNQ8VzgJJHsXA\nghbL+1otA2T1WERK9aJ6bymbql/CiAEDce5URpy4CHHrAzGVCkYgc1tlGmOyWvy0XrY1cWjNQwXK\naxrYVPos9UNG4Bl3KhFRg8g69jXc0cm9cjyteahw5vj7PJQKhDGGvPKXqGncbq1IHE7GSUuJjBlr\nb2BKOZTj7zDXmocKxI7q9yip299LHZV4AYm9nDi05qHCmeOTh1KdKa1aTVHVkubl1LippMYda2NE\nSjmf45OH1jxUR+p2rGT7B+fiKikAICFqDBkJ5/XJsbXmocKZ45OHUu3xVm4n78v/xeutIWLT+8Tt\nLPRPPaJXVinVXY5PHlrzUG3xNdaR/9G51JsKANxEMmboDUS6BvRZDFrzUOHM8clDqbbsWvljKjx5\nzcuZY+8iZvg0GyNSKrw4PnlozUO1tmfnQoqrP2xeHjHkYhLG/6zP49Cahwpnjk8eSrVU0bCFbfIZ\nnkNOh6hYUmIOY/AxT9odllJhx/E3CWrNQzWp95awufQ5DF4YMJjIQ3/K8ME3IC57viNpzUOFM8cn\nD6UAvL56vitdQKOpBiDSlcCYITfidg+yOTKlwpPjh6205qGMMWwtf4naxh0ACG7GJF1JtM2JQ2se\nKpxpz0M53p7Pfk55wk4YbM3RmZk4i4QonehZqd7k+OShNY/+reKbx9lR/AoRxeCtLWXwQTcwJO4Y\nu8MCtOahwpvjh61U/1VX9G/yt9zbvJy8p4aM+LNtjEip/sPxyUNrHv1TY8U28lZfiZdGAGJkIBnT\n3kAiomyObD+teahw5vjkofofn2mk4NOLqTeVgDX1SOaRf8M9YITNkSnVfzg+eWjNo38xxpBf8Tr7\nxo7DRMcDkHnQPcQMC736gtY8VDhzfMFc9S/FtZ+wp/ZTiEvGM+EsMkvTSDjkarvDUqrfcXzPQ2se\n/UdF/SYKKhY1L6ckHMeQSXfaGFHHtOahwpnjk4fqH+oa97G57AVr6hEgPiKdrIGXICI2R6ZU/+T4\n5KE1j/Dnrd3D1o1zW0w9ksjYQXNwSaTNkXVMax4qnGnNQ4U04/Wy/cOZNNSvx109Dl/GsYxNupIo\nd5LdoSnVr4Vsz0NEskTkGRF5raN2WvMIb3s++Sml9esBcO/ayJjy0QyIyrQ3qABpzUOFs5BNHsaY\nPGPMVXbHoexT8fXv2VHyRvNy2sBTGTTuOhsjUko16dPkISLPishuEfm61frTRGSjiGwSkduC2afW\nPMJT3fb3yN96X/NyUuRYhk59wcaIgqc1DxXO+rrn8RxwWssVIuIGnvCvHw9cKiKH9HFcKoR4vBV8\n2/gWjTHWTYCxrkGkn/CvkJp6RKn+rk+ThzHmI6C01eqjgM3GmG3GGA/wMnCuiCSLyNPAYR31RrTm\nEV58ppFNZc9THyN4JpyJa9BoMo/8O+74NLtDC5rWPFQ4C4WrrUYAhS2WtwNHG2NKgGs72/jDDz/k\nyy+/JCMjA4CBAwcyadKk5iGDpv/Auhz6y8YY/rnsfsrqNzD5qDSIiGaH95dUbPYy1Z87QileXdZl\nJy3n5uby4osvApCRkUFqairTp0+nq8QY0+WNu3RAkUzgTWPMJP/yBcBpxpif+pcvx0oe1weyvxUr\nVpgpU6b0UrSqL+2u/oj8ytebl9MTzmFY/Ek2RqRU+FqzZg3Tp0/v8l22odDzKALSWyynY/U+VD9S\nsXcl+Z43wH8qp8QcQVrcibbGpJRqXyhcqvslMFZEMkUkCrgYWBzoxlrzcL6GPasp+PhiIrZ9DD4f\n8ZGjyBp4keOnHtGahwpnfX2p7kvAJ8BBIlIoIlcaYxqBXwDvAhuAV4wx/+3LuJR9vDXF5H12CY3U\n4yreRNymTxmbdGXITz2iVH/Xp8NWxphL21n/DvBOV/ap93k4l/F6KFx5PrW+fQC4cJGdeRdR7oE2\nR9Yz9D4PFc5CoebRLWvXrmXZsmVMnTpV/7M6TPHHV1FWv7+TOWrUrcSOOsPGiJQKf7m5ueTm5nb7\naivHJw+AefPm2R2CCtK+ik/YUf9RU32cYUlnMPCwW22Nqafl5ubqFxoVcpq+aK9Zs6Zb+wmFgrnq\nZ6o9hWyteQPP+DPwDUonKepgUqc+Z3dYSqkgOL7noTUPZ2nwVrCp9FkMHnBHEjHuYkYmXoO4w69A\nrr0OFc4cnzyUc/iMh81lz9HgKwPALbGMTb6KiIgUmyNTSgXL8cNWep+HMxifj23lr1Hl2eZf42JM\n0v8SG5FqZ1i9Su/zUOHM8clj8+bN5OTk6H/UEFey6hbKvnkEfI0AZCScw8DocTZHpVT/k5ubS05O\nTre/ePf53FY9Tee2Cn1V377Alo03YQATn0LSpFvITP2p4+8gV8rJuju3leN7Hiq01e/+nLxvb6Pp\nK0pifSyjkn+siUMph3N88tCaR+hqrClm2xc/xmsaAIiWAYyaughXZLzNkfUNHUpV4czxyUOFJmN8\nFKy+ilpfCQAu3GQe/mciBmbbHJlSqic4PnnofR6hqbDyLfaOHoUvJROAUVm3EZt+WscbhRm9z0OF\nM73PQ/W4vbWr2FXzPrgjaMw+gZFplzFwzFy7w1JK9SDH9zwWLlyol+qGkKqGAvLKX2teToqZyLDs\nm22MyD56TqpQ1FOX6jq+5zFmzBjmzJljdxgKaPCWs6lsgTX1CBAbkUb2QL2ySqlQohMj+mnNIzT4\nGirJ++JyPB7r2RxuiWNs0k9wu2Jsjsw+WvNQ4czxyUPZz/h8FH04i9rij4ncsASpr2ZM0mxiIgbb\nHZpSqpc4PnnofR722/fFTeyrWQWA1JQxes8QBkYfZHNU9tOahwpnjk8eyl6VGxewffffmpeHDPgh\nyVPusTEipVRfcHzy0JqHfeqLvyD/2183LydEZDBs2iuIy/GnVY/QmocKZ/q/XHVJo6+Gb827NAwZ\nBfinHjl+Ea7IOJsjU0r1BccnD73Po+8Z42Nz2V+pMyU0Zv0QM+o4sqY8R0Rilt2hhRQ9J1Uo0vs8\n/PQ+j75XWLmYioZvrQWBUePuJSZGhw+VcgK9z8NPax59a0/tF+yq+bB5eXj8DJI1cbRJax4qnDm+\n56H6Tk3RcraZNyHCDcCg6EmMGNC/JjtUSlkc3/PQ+zz6RkPpBvJWX0nE+sVQW05sxDBG69QjHdKa\nhwpnjk8eqvd5G8rJ//hCPKYGqasgbsO/GZs4G7cr2u7QlFI2cXzy0JpH7zI+Hzs+uIBq704ABGH0\nuAeIiRpqc2ShT2seKpw5Pnmo3rX3sxvYV7v/qoz0ET8jLvtiGyNSSoUCxycPrXn0ntLabyh0739/\nUxOmkXzEvTZG5Cxa81DhTK+2Um2q8exkS8Xf8Y06ElfsQJKLikk7/kW7w1JKhQjH9zwAvcO8hzX6\nqtlU9iw+Uw9A5LBjSZ+xQqceCZLWPFQo6qk7zMUY00Mh2WPFihVmypQpdocRNnzGy3elf6KiYRMA\nLolmfPL1xEWOsDkypVRPWrNmDdOnT+/ytfaO73lozaNnFZa+2pw4AEYPvEwTRxdpb1iFM8cnD9Vz\nStfcRckXtyI1pQCMGHA6yTGH2hyVUioUOT556H0ePaN66+sUFD6B1FcTuWEJKdWJDI//kd1hOZrW\nPFQ4c3zyUN3XULKebd9cj8EHQLxJJnPkjTr1iFKqXY5PHlrz6B5vfQn5H8/CY2oBiJRYMo97DXd0\nss2ROZ/WPFQ4c3zyUF1njKHgu99S7dsNWFOPZE34A5Epk2yOTCkV6hyfPLTm0XU7qt9jzxAXjdnH\ng8tNxsjriMueZXdYYUNrHiqc6R3m/VRJ3VcUVS0BwDd4NMkpZzJo2NU2R6WUcgrH9zy05hG8Gs8O\ntpbvn2okMWosI9N+YmNE4UlrHiqcOT55qOB4fFUHTD0S7R7MmKTZuMRtc2RKKScJi+Shc1sFxtdY\nR8H7Z9FQ/i1gTT0yNmkOEa54myMLT1rzUKFI57by07mtArfj3zMprvwAXC4as6aSPeZeBsVMtDss\npZQNdG4rrXkEpOTL263EAeDzMapimCaOXqa9YRXOHJ88VOdqtrxKYdFTzcspsYcx+JgnbYxIKeV0\njk8eep9Hx+pq8slb/0sM1vBkvHsow094HXE5/p8+5GnNQ4Uz/QQJY15fPZtqXqF2zLHgjiBSYhl1\n3D9xRyfZHZpSyuEcnzy05tE2Ywxby1+ktnEnvuQMGsefRdah84lKHm93aP2G1jxUONM7zMNUUdW7\nlNZ/1bw8Ku1q4uKOsTEipVQ4cXzPQ2se31dSt44d1e82Lw+Nm8YQTRx9TmseKpxpzyPM1BWtIK/6\nBUhMASAx6mAyEs61OSqlVLhxfM9Dax77NVbkkbd6Du6Nb+Mq/s4/9cj/IuL4f2ZH0pqHCmeO/1TZ\nvHmz3SGEBJ+nhvyPZlJvKsEYovO+5ODIc4hwxdkdWr/19ddf2x2CUu3q7hdvxyeP6upqu0OwnfH5\n2LnyEiob85vXZR58HzFJ+lAnO5WXl9sdglLtWrduXbe2d3zyCBfdGeIoXf0b9lTt335k6uUkjLuq\n14/bW/vsyvbBbBNo287a9adhKTt+1/54bgbavqfadIfjk8euXbvsDqFHdPUfurz+O7YmbIWISABS\n4o4g5ejf9/pxe3Of4ZI8CgoKAo4p1Gny6Pr24Zo8HH+1VXZ2NjfeeCOTJ0929GW7qamprFmzpkvb\nurgN37DbANgD7AliLLM7x+2tfXZl+2C2CbRtZ+06e/2II47o8ffWLr1xnthxzFA/NwNt3502a9eu\nZd26dcTHd+9RDI6fkl0ppVTfc/ywlVJKqb6nyUMppVTQNHkopZQKmiYPpZRSQQu75CEi54rIn0Xk\nZRH5kd3xKNVERMaJyFMi8qqI/MTueJRqSUTiRWSViJwZUPtwvdpKRJKAh40xgd0tp1QfEWuysZeN\nMRfZHYtSTUTkt0Al8F9jzNudtXdEz0NEnhWR3SLydav1p4nIRhHZJCK3tdrsduCJvotS9UfBnpsi\ncjbwNvByX8eq+pdgzk3/KM0GrFvFAtu/E3oeInI8UAX81Rgzyb/ODXwLnAIUAauAS4GNQA6wzBiz\nwp6IVX8RzLlpjPlvi+3+ZYzRufJVrwnyc/PHQDwwHqgFzjedJAdH3GFujPlIRDJbrT4K2GyM2QYg\nIi8D52K9KdOBRBEZY4z5Ux+GqvqZYM5NEUkFZgIxwPt9GKbqh4I5N40xt/uXZwN7Oksc4JDk0Y4R\nQGGL5e3A0caY64E/2hOSUkD75+aHwIf2hKQU0M652bRgjHkh0B05oubRjtAfb1P9lZ6bKlT12Lnp\n5ORRBKS3WE7HyqJK2U3PTRWqeuzcdHLy+BIYKyKZIhIFXAwstjkmpUDPTRW6euzcdETyEJGXgE+A\ng0SkUESuNMY0Ar8A3sW6xOyVllezKNUX9NxUoaq3z01HXKqrlFIqtDii56GUUiq0aPJQSikVNE0e\nSimlgqbJQymlVNA0eSillAqaJg+llFJB0+ShlFIqaJo8lFJKBU2Th1IhTEQyRKRSRMTuWJRqSZOH\nUgESkT+JyE/bWD9RRN4VkT0i4mtn2+EiUtjWax0xxhQYYxICeb6CUn1Jk4dSgTsN6xGyrTVgPVb2\nJx1sewbwTm8EpZQdNHmofklEtonIzSKyTkTKRORlEYnuoP2hQJkxZkfr14wx3xljnsOaaK49ZwBL\nWhx7roh85R+SWiAiQ0XkHREpF5HlIpLkb5spIj4RcfmXPxCRu0UkV0Qq/D2elO68F0p1hSYP1V8Z\n4ELgVCALOBS4ooP2ZwBvdeVAIhIJHA8sb3HsmViPSz4YOAurVzIPSMX6f3lDB7u81B9rKhAFzO1K\nXEp1hyYP1Z89bozZZYwpBd4EDuugbXPPoQumAeuMMdUt1v3RGLPH35P5CPjUGLPOGFMPLAIOb2df\nBnjOGLPZGFMHvNpJ3Er1Ck0eqj/b1eLvtcCAthr5h5DGYT0boSvO4Pu1kt2tjt1yua69WPwCilup\n3qTJQylLR1cznQqs6MYVT6fTea9FL8VVjqLJQylLRx/ebfUcDtxYJAar/oCIRDcV30UkC4g2xnzb\nU4GiiUaFAE0eSlkMbfQ+/DfnzQCWtrehiGQCNcA3/n3UAk2P9jyTThJPi+O3F0vruDpqq1Sf0MfQ\nKtUBETkKq7B+TBe3fxurON5u8lHKibTnoVTHDPB/3dj+A/+PUmFFex5KKaWCpj0PpZRSQdPkoZRS\nKmiaPJRSSgVNk4dSSqmgafJQSikVNE0eSimlgvb/AdlPU3pI4zWmAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x107733350>"
]
}
],
"prompt_number": 23
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You see, exactly!"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Plot it with normal scale axes"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plt.figure(figsize=(10,6))\n",
"plt.plot(n, P)\n",
"\n",
"plt.xlabel('n / 1/min')\n",
"plt.ylabel('P / kW')\n",
"plt.title('Leistungsdiagramm E2-180')\n",
"plt.ylim(0, 200)\n",
"plt.savefig('Leistung-E2-180.png', dpi=300, bbox_inches='tight')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAGNCAYAAAB6wPf6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVPXVx/HPmdk+S7GCDbG3oGiwBmxYsASNMSoKxlii\nj0Z9TGKCJUaTPEZNjMZYYhQLYNfYKxJRsBPs2FARUQELyPY2v+ePexmGZWB32Zm589v5vl+veTG/\nO7ec3TO7nP3dc++Ycw4RERER8VMs6gBEREREZNWpmBMRERHxmIo5EREREY+pmBMRERHxmIo5ERER\nEY+pmBMRERHxmIo5kR7EzAaaWdLMdos6llwys1vMbNKKxiIixUTFnEgByUJRMgfoD7zSyeOdb2af\ndON4UUq/SebpwOFRBVKIwvdSMsNjcdo6Z5vZi2b2rZktNLOpZrZ/J/ZdbmY3m9kMM2s2sw9XsN4Q\nM3vKzL4xs+/MbJqZ7dNunVIzu8zMvjCz+jCGHbr/HRApHirmRAqLY9kipWsbO5d0zi1wzrVmMaZC\nZUueOOdqnHPf5fyAZmW5PkaWPUdQ3Kc/Nk57fS/gRmBPYEfgBeCRTszsxoEm4HrgDjK8Z80sATwJ\nfAsMBYYArwMPm9mGaav+BTge+HkYw8fA02bWrwtfp0hRUzEnUliMtCJluRfN+oUzLgvMbHE40zEs\n7fXlTrOa2blm9pGZNYbbPWFmFWZ2HPAHYMO0WZsLwm1mm9l57Y59o5k9kzaeYmY3mNnvzOzLcPbl\n1vA/8SXrmJldbGZfhfFONLMzzawlbZ31zey+cJ2GMNZfp72+upndZWa1ZjbPzP7Y/nuU4bTrDmb2\nuJnNN7MaM3ul/YyTma1hZveE+/3SzC7IsJ8p4df9RzP7EpgdLj/azF42s0Vh3I+Y2WYZ8jDKzJ40\nszozm2lmQ81sQJiDWjN7x8yGpm23Z7jdAeGMWb2ZvWpmW5nZtmb2fLivl81sqxW9T9I0h8V9+uPr\nJS865w50zo1zzr3pnJvlnPstMBM4bGU7dc7VO+dOcc5dD3zSPh+hzYDVgD865951zn0InAOUA9uG\nX29v4GRgrHPuEefcO8DPCArFUzrx9YkIKuZEvGFmlcAzQAIYAQwGHgMmmdmWK9jmMOC3wBnApsC+\n4TYAdwKXAnNZOmvz1/C1Fc0Qtl92ONAX2AM4Cjg4PN4SZxGcAv1fYHvgv8AF7fZzLdALGA5sAZwQ\nxrTEuHDbg4G9gYHAoe320T7eXgQzRnuG2z4JPJRecAE3A4OAg8JjDwQOyfA1HgGsQTCLtW+4rIyg\nEN4e2AdoAx41s9J22/4RuIYgV+8RfM9vBa4Lt50J3G5mJe22+xNB4fN9oCXc7lrg/HBZcxh/R1b4\nh0HGlc1iQB+gtivbrcC7BIXe8eEfD6UEBdo3wIvhOt8nKO6eWLKRcy4JTCKYzRORznDO6aGHHgXy\nAG4BJq3gteOAz4B4u+WTgSvC5wOBJLBbOD4LeB8oWcE+zwc+ybD8E+DcdstuBJ5JG08BXmu3zrXA\nC2njz4GL2q1zB9CSNn4d+P0K4ts0/HqGpy0rJSj2nurM963dcc4Nn28W7nevtNdLCHoOn2r3Nb7X\nibytHu5v13Z5OCNtnSHhsrPSlg0Ol20djvcMxyPT1jk8XPajtGWHhsuqOngvtQA17R4PrmSb8wlO\ni67bhffshcCHK3htk/D91xbG8jmwQ9rrR4dfR0m77f4CvJ3tny899OipD83MifhjR4LZs0XhqcMa\nM6sBhhEUPZncRVD8fGpBw/poM6vOUjwOeKPdsi+BfgBm1gdYB3ip3Trtx1cC55rZS2Z2SfppY2Dr\n8N8XUgd1rgV4dWWBmdlaZnatmb1rQWN/DbANMKDdflOxuKDPcHqG3f03w/4Hm9n9ZvaxBRcUfBq+\ntGG7VdO/P/PDf9/MsGztLG3X3kvAdu0eJ2da0cxOJZgNPNw590W4bEB4OnjJ++3aDo6Xvr8+wOPA\na8CuwM7AwwQ9eRt0dj8i0rH2U/siUrhiBKeuDs3wWn2mDZxzX4SnYPciOEX5O+BSM9vZOTc30zah\nJMufomt/ChGC033LHJLl2zdWekGHc+4WM3uC4NTxXsDjZna/c27MSjbr6PThLcD6wNkEs4yNBKcq\n21/A0D629vt1QN0yK5hVAU8RXFxwHEFhZcA7GfbfkvbcrWRZ++/Zqm7XXqNz7uMO1iHsUbwQ+KFz\n7j9pL31O2N8WWkznjSL44+MY51xbuOwUMxtOcLHD7wiKf8L10t+P/YAvunAskaKmmTmRwrOi4udV\ngisRa5xzH7d7zFvhzpxrds496YLm9kFAFUFvGATFWDzDZguA9dot234lsWU67ncE/yG3vzJyl/b7\ncc7Nc87d4pz7KXAicEw4gzgzXOUHS9a14IrSHTs4/DDgWre0qX4ewSm/JZbsN/1CkRKCHq6ObAWs\nCZznnHvOOfc+wWnWLvWn5UmH+TKzPxAUVge0K+RwzrW1e599nXkvGcUI/ihoH0My7fl/CS52GJEW\nT4ygD3FaF44lUtQ0MydSeHqZ2XYsWxw0ALcR9MA9asGVph8SzGDsDcx0zj3YfkdmdkK4n1eBRQSN\n/r1YWsx8AvQ3s12AWUCdc64BeBo41czuJ+gjO4XgFOU36bun4wLmcuAiM3svjOEggosIUv/Bm9nV\nwKPAB0AFwZWUc5xztcAsM3sIuMbMTiYoMscC1R0c+31gtJk9T/B77g8ExYUBOOc+NLOH0/b7NfAr\noDfLFh+ZvsZPCQqQM8zsbwT9cZfQhUI3j8otuMXHMl/DkuLfzK4kmCUbBXxoZv3DVeqdcyudhTOz\nrQlmIvsDZWnv2XfCU+FPAJcB48zsLwR9cycDGwEPhXEsNrN/AhenXS18NsFFEdd382sXKRoq5kQK\niyPoLXqt3fL3nHNbm9keBFc63gysBXwFvMzSK1SX7GOJb4FfE/ynWg58BJzknFtyi5H7gXsIiqnV\nCE61/YHgKtcNCXruWgiuyLyHZWe3Ml3x2n7ZlWGcfyco1B4mKPDOabfdlcAGBKeLXwQOSHvteIKr\nPx8JX78hjHvdlRz3ZwTFwCsEs3KXAZUrWOdxggsDric4fVqxsq/ROfe1mY0G/hzGNpOgyJ6c4XvR\nXmeWrep2mV4fxtJTmanlZraWc+5bgqucHcH3M90tBF/byjzK0h5BR/CedQTF2hzn3MdmNoLg/TSV\nYAZ4JsGFHOk9j2cTzBDfSHBl9HRgX+fcfESkU8y53P8xGTa7jido1nXAv5xzV5nZ6gT/WWxI8BfZ\nEc65ReE25xD8MmkjuCLsqZwHKiI5Z2Y3AYOccx2dKs0rM4sT3D7kAefc2VHHIyLSWfkq5voD/Z1z\nr4d9MP8laOL+GfC1c+4yM/stsJpzbmw4fX87QV/MegSnfDZ3wf2HRMQTZrYOwWnTZwj+MPshwYzW\nac65f0Uc2zCC09SvEZx6PovgXnk7hH12IiJeyMsFEGFz8+vh81qCK/LWA0YS3ECT8N8lV+kdAtzh\nnGtxzs0m6OXZKR+xikhWtRHcJ20qMAMYDZwSdSEXigPnEdx/7j8EvW97qZATEd/kvWfOzAYSXBX3\nMtAvrS9iPuH9qQh6YdLvRTWX5a+sE5EC55xbQHC7kYLjnJtC8LtIRMRreb01SXiK9T7gTOdcTfpr\nLjjfu7JzvoV4pZiIiIhIpPI2Mxd+Lt99wATn3APh4vlm1t85Ny/srVkQLv+c4Mq2JdYPly1j5MiR\nrrGxkf79g6vpE4kEm266KYMHDwbg9ddfB9C4AMdLnhdKPBorf8U0Vv78HS9ZVijxaNxxvt544w3m\nzQtuBbrJJptw3XXXZf2elPm6AMIIeuK+cc6dlbb8snDZpWY2Fujb7gKInVh6AcSmrl2wxx57rPv7\n3/+e8/gl+y655BLGjh0bdRiyipQ/vyl//lLu/HbmmWcyfvz4rBdz+ZqZ+wFB4/ObZrbk/lnnENxo\n8+7wxqazgSMAnHMzzexugnsStQKnti/kgFSlK/6ZM2dO1CFINyh/flP+/KXcSSZ5Keacc9NYcX/e\nPivY5mLg4pwFJSIiItIDeP3ZrPvvv3/UIcgqOvroo6MOQbpB+fOb8ucv5c5v2223XU72m5eeuVyZ\nPHmy22GHHaIOQ0RERKRDM2bMYPjw4VnvmfN6Zi79ahHxy7Rp06IOQbpB+fOb8ucv5U4y8bqYExER\nESl2Os0qIiIikgc6zSoiIiIiy/G6mFPPnL/U9+E35c9vyp+/lDvJxOtiTkRERKTYqWdOREREJA/U\nMyciIiIiy/G6mFPPnL/U9+E35c9vyp+/lDvJxOtiTkRERKTYqWdOREREJA/UMyciIiIiy/G6mFPP\nnL/U9+E35c9vyp+/lDvJxOtiTkRERKTYqWdOREREJA/UMyciIiIiy/G6mFPPnL/U9+E35c9vyp+/\nlDvJxOtiTkRERKTYqWdOREREJA/UMyciIiIiy/G6mFPPnL/U9+E35c9vyp+/lDvJxOtiTkRERKTY\nqWdOREREJA/UMyciIiIiy/G6mFPPnL/U9+E35c9vyp+/lDvJpCTqAESkSDkHydaooyhOyVZoa4k6\nClkVyp1koJ45Ecm7ko+mkrjjBGJ1X0cdiohI3kz+ydM56ZnTzJyI5FXs649ITDyWWON3UYciItIj\neF3Mvf7662hmzk/Tpk1j6NChUYchq2iV89e4mOoJx6QKOWcGFs9ydNKRKZ8n2XM9r1umi5ZyJ5l4\nXcyJiEeSbSTuOpn4gg8AcCUV1Jz8KG3rbx9xYMWndto0FumPKS8pd56bMSMnu1XPnIjkRcWTf6Jy\nyt9S47ojrqd5+59EGJGISH7pPnMi4q3SN/+9TCHXuPvpKuRERLLE62JO95nzl+6V5Leu5C/++Rsk\n7j09NW7ZfDgN+1+Qi7Ckk/Tz5y/lTjLxupgTkcJmtV9RPWE01tIAQNuam1J31I0Q00UPIiLZop45\nEcmN1maqxx1K6eyXAHDlvVh82tMk19os4sBERKKhnjkR8UrVw2OXFnJm1B51owo5EZEc8LqYU8+c\nv9T34beO8lf28s2Uv3JLatyw/wW0brlvjqOSztLPn7+UO8nE62JORApPyScvUPXQb1Pj5u1+TNPu\nZ0QYkYhIz6aeORHJmtjCz+h1zfDUZ662rrsdNSc/CmVVEUcmIhI99cyJSGFrricxYXSqkEtWr0Xt\nmAkq5EREcszrYk49c/5S34fflsufcyTuO52SL98KhvFSao+5Fdd3/Qiik47o589fyp1k4nUxJyKF\nofzZv1P25v2pcf3IS2kbuEuEEYmIFA/1zIlIt5S89xTV40dh4e+Sxp2Pp+HQv0YclYhI4VHPnIgU\nnNiC96m+86RUIdey0W40HHxxxFGJiBQXr4s59cz5S30ffps2bRrW8B3V40djTTUAtPVdn7qjb4aS\nsoijk47o589fyp1k4nUxJyIRSSZJ3Hki8W8+AsCVVlI3ZiKueq2IAxMRKT5eF3ODBw+OOgRZRUOH\nDo06BOmGfev+Q+kHk1PjusP/Qdu620YYkXSFfv78pdxJJl4XcyKSf6Wv30vFc1elxg17/pKWbQ+L\nMCIRkeLmdTGnnjl/qe/DT/HPXydx3xlM+SIYN2+5P437nhttUNJl+vnzl3InmXhdzIlI/ljNAqon\njMZaGwFoW2sz6o68HmL6NSIiEiWvfwurZ85f6vvwTGsz1bf9lNh3wZTc7hv3pnbMbVDRO+LAZFXo\n589fyp1k4nUxJyJ54BxVD/2Gkk9fDoYWo+6oG0mutWnEgYmICHhezKlnzl/q+/BH2cs3U/7q+NS4\nYcQFTPmqIsKIpLv08+cv5U4y8bqYE5HcKvn4eaoeHpsaN213OE3DTo8wIhERaU+fzSoiGcUWzqHX\nNcOJ1X0DQOu621FzymNQWhlxZCIiftJns4pI/jTXkZgwOlXIJavXonbMBBVyIiIFyOtiTj1z/lLf\nRwFzjsS9v6Dky7eDYbyU2mNuxfVdP7WK8uc35c9fyp1k4nUxJyLZVzHlCsreejA1rh95GW0Dd4kw\nIhERWRn1zIlISum7T5CYcAwW/l5o3OVEGg65LOKoRER6BvXMiUhOxRa8T+Kun6cKuZaNfkDDwf8X\ncVQiItIRr4s59cz5S30fhcUaFlE9fjTWVAtAW98NqDv6ZoiXZlxf+fOb8ucv5U4y8bqYE5EsSLaR\nuONE4t98BIArraJuzERc9ZoRByYiIp2hnjmRIlf5+O+peO4fqXHt0TfRMujQCCMSEemZ1DMnIllX\n9trdyxRyDXv9SoWciIhnvC7m1DPnL/V9RC8+9zWq/n1maty81Qga9zmnU9sqf35T/vyl3EkmXhdz\nIrJqrGY+1RNGY61NALStvTl1R/wTYvqVICLiG/XMiRSb1iZ63XgIJZ++AkCyog81pz1Ncs1NIg5M\nRKRnU8+ciHSfc1Q9eHaqkHMWo27UjSrkREQ85nUxp545f6nvIxrlL42jfPrE1LjhgAtp3Xx4l/ej\n/PlN+fOXcieZeF3MiUjnlXw8jcpHll7g0DT4CJqGnhZhRCIikg3qmRMpArGFc+h19d7E6r8FoHW9\n7ak5+REorYw4MhGR4qGeORFZNc11JMYfkyrkktVrUztmvAo5EZEewutiTj1z/lLfR544R+Ke0yiZ\n904wjJdSO/pWXJ/1urVb5c9vyp+/lDvJJG/FnJndZGbzzeyttGUXmtlcM3stfByQ9to5Zvahmb1n\nZvvlK06RnqTimcspe/uh1Lj+kL/StuHOEUYkIiLZlreeOTMbBtQC451zg8JlvwdqnHN/a7fu1sDt\nwI7AesDTwObOuWT6euqZE1mx0pmPUT1hdGrcuOtJNIy8NMKIRESKm/c9c865qcDCDC9l+qIOAe5w\nzrU452YDs4CdchieSI8Sm/8uibtOSY1bNh5Kw0F/ijAiERHJlULomTvdzN4ws3Fm1jdcti4wN22d\nuQQzdMtQz5y/1PeRO1a/kOrxo7HmWgDaVhtA3dE3Q7w0a8dQ/vym/PlLuZNMoi7mrgM2AgYDXwKX\nr2Rdf++hIpIvba0k7jiB+LefAOBKq6gbcxsusUbEgYmISK6URHlw59yCJc/N7Ebg4XD4ObBB2qrr\nh8uWMWvWLE499VQGDBgAQJ8+fRg0aBBDhw4Flv4Fo3HhjYcOHVpQ8fSUcflLN7HfN1MAmPIFNOxz\nOruss03Wj6f8+T1W/jTWOD/jJc/nzJkDwJAhQxg+vOufutORvN402MwGAg+nXQCxjnPuy/D5WcCO\nzrmj0y6A2ImlF0Bs6toFqwsgRJYqm3EXiXv+JzVu2PvXNO57boQRiYhIOu8vgDCzO4AXgC3M7DMz\nOx641MzeNLM3gD2AswCcczOBu4GZwOPAqe0LOVDPnM/S/2qR7ot/NoOq+/83NW7e6gAah4/N2fGU\nP78pf/5S7iSTknwdyDk3KsPim1ay/sXAxbmLSKRnsMXzqJ44BmttAqBt7S2oO+I6iEXdEisiIvmg\nz2YV8VlrE71uGEnJnFcBSFb0oea0ySTX3DjiwEREpD3vT7OKSJY5R9WDv04Vcs5i1I0ap0JORKTI\neF3MqWfOX+r76L7yF2+gfPptqXHDARfRuvneeTm28uc35c9fyp1k4nUxJ1KsSj56jspHz0uNm7Y/\nkqahp0YYkYiIREU9cyKeiX37Kb2u3ptYQ/DpeK3r70DNzx+G0sqIIxMRkZVRz5yIQFMtiQnHpAq5\nZK9+1I4er0JORKSIeV3MqWfOX+r7WAXJJIl7T6Nk3kwAXLyM2mNuxfVZN++hKH9+U/78pdxJJl4X\ncyLFpOKZyyl7++HUuP7Qy2nbcKcIIxIRkUKgnjkRD5TOfIzqCaNT48bdfk7DDy+JMCIREekq9cyJ\nFKnY/HdJ3HVKatyyye40HPjHCCMSEZFC4nUxp545f6nvo3OsfiHV40djzbUAtK22IXWjboJ4aaRx\nKX9+U/78pdxJJl4XcyI9WlsriTuOJ/7tJwC4sgS1x96GS6wecWAiIlJI1DMnUqAqHzmPiuevS41r\nj7mFlu+NjDAiERHpDvXMiRSRsv/esUwh17D32SrkREQkI6+LOfXM+Ut9HysWnzOdqgd+mRo3b30Q\njcN/G2FEy1P+/Kb8+Uu5k0y8LuZEehpb/CXVE4/FWpsAaOu3JXVHXAsx/aiKiEhm6pkTKRQtjfS6\n4YeUfPZfAJKVfak5bTLJNTaKODAREckG9cyJ9GTOUfXgr1KFnLMYdUffpEJOREQ65HUxp545f6nv\nY1nlL/yL8v/ekRo3HPhHWjfdM7qAOqD8+U3585dyJ5l4XcyJ9AQls56l8rHzU+OmHUbR9INTVrKF\niIjIUuqZE4lQ7NvZ9Lp6OLGGhQC0rr8DNT9/BEorIo5MRESyTT1zIj1NUy2JCaNThVyyVz9qx0xQ\nISciIl3idTGnnjl/FX3fh3Mk7v0FJfNmBsN4GbWjx+N6rxNxYJ1T9PnznPLnL+VOMvG6mBPxVcWU\nv1H29kOpcf2hf6VtwI4RRiQiIr5Sz5xInpW++ySJCUdj4c9e464n0TDy0oijEhGRXFPPnEgPEFvw\nAYm7TkoVci0bD6XhoD9FHJWIiPjM62JOPXP+Ksa+D2v4juoJo7GmWgDa+m5A3aibIF4acWRdV4z5\n60mUP38pd5KJ18WciDeSbSTu+jnxr2cB4EorqRszEVe9ZsSBiYiI79QzJ5IHFU/+kcopV6TGtaNu\npGXbwyKMSERE8k09cyKeKn3z/mUKucY9zlQhJyIiWeN1MaeeOX8VS99H/Mu3Sdx7emrcsvk+NOx3\n/kq28EOx5K+nUv78pdxJJl4XcyKFzOq+ITH+GKylHoC2NTah7qgbIBaPODIREelJ1DMnkgttLVTf\ndDilH08FwJVXs/jUSSTX3iLiwEREJCrqmRPxSOVjv0sVcgB1R1yvQk5ERHLC62JOPXP+6sl9H2XT\nb6PihX+lxg37nEPL1gdEGFH29eT8FQPlz1/KnWTidTEnUmjic6ZT9cCvUuPmbQ6mca9frWQLERGR\n7lHPnEiW2OJ59L5mOLHFXwLQ1m8rFv/Pk1BeHXFkIiJSCNQzJ1LIWpuonnhsqpBLVvaldsxEFXIi\nIpJzXhdz6pnzV4/q+3COqgfPpuSz6cHQYtQdfRPJNTaKOLDc6VH5K0LKn7+UO8nE62JOpBCUvzSO\n8ukTU+OGAy6iddM9owtIRESKinrmRLqh5OPnqR73IyzZCkDT4COoP+I6sKy3RIiIiOfUMydSYGIL\nPyNx+3GpQq51ve2pP+wKFXIiIpJXXhdz6pnzl/d9H831JCaOIVb3DQDJ6rWoHX0rlFZGHFh+eJ+/\nIqf8+Uu5k0y8LuZEIuEcifvOoOSLN4NhvJTaY27F9V0/4sBERKQYqWdOpIvKn72KqicuTI3rDv0b\nzTsfF1k8IiLiB/XMiRSAkvefpvLJi1Ljpp2OUyEnIiKR8rqYU8+cv3zs+4h9/RGJO0/EwtnsloG7\nUP/DSyKOKho+5k+WUv78pdxJJl4XcyJ507iY6gnHEGtcDECyz7rUHX0LlJRFG5eIiBQ99cyJdCSZ\nJDFxDGXvPg6AK6mg5uRHaVt/+4gDExERn6hnTiQiFZMvTRVyAPWHXalCTkRECobXxZx65vzlS99H\n6dsPU/mfv6TGjUNPpXn7IyKMqDD4kj/JTPnzl3InmXhdzInkUmzeTBL3nJoat2y6Jw0jLowuIBER\nkQzUMyeSgdUvpNc1w4l/OxuAttUHUnPaZFzVatEGJiIi3lLPnEi+tLWSuOOEVCHnyhLUjpmoQk5E\nRAqS18Wceub8Vch9H5VPXkTprCmpcd1PriXZf+voAipAhZw/6Zjy5y/lTjLxupgTybay1+6hYuo1\nqXHD3r+m5Xs/jDAiERGRlVPPnEgo/vnr9PrngVhrIwDNWx1A3egJENPfPCIi0n3qmRPJIatZQPWE\n0alCrm3tzak74joVciIiUvC8/p9KPXP+Kqi+j9ZmErcfR+y7LwBIVvSmdvREqOgdcWCFq6DyJ12m\n/PlLuZNMvC7mRLKh6pFzKJ39EgDOjLqjbiS51qYRRyUiItI56pmTolb2yi0k7v9lalw/4vc07XFm\nhBGJiEhPFVnPnJntZGbxbB9YJGrx2S9R9dBvU+PmbQ+jafczIoxIRESk6zpzmvUZ4Dsze8rMzjez\nYWZWluvAOkM9c/6Kuu/Dvvuc6tuOw9paAGhdZxB1P74KLOt/MPVIUedPukf585dyJ5mUdGKdvsAQ\nYBiwO/BLoNLMXgGeA55zzk3KXYgiWdbSQPWEY4nVLgAgmViDujEToawq4sBERES6rss9c2ZmwCDg\nIOBMYC3nXCSnYdUzJ13mHFX3nEr5a3cFw1ic2hPup3XjoREHJiIiPV2ueuY6MzMHgJmtwdLZud2B\nDYCXganZDkokV8qfvy5VyAE0HHSxCjkREfFaZy6AuNbM3gJeBQ4H3geOA/o750Y65/6S2xBXTD1z\n/oqi76Nk1hQqH7sgNW4acgxNu56Y9zh6AvXt+E3585dyJ5l0Zmbup8CnwC0Es3AvOucacxmUSLbF\nvp1N4vYTMJcEoHWDIdQf8ldd8CAiIt7rsGfOzEoJLoAYSnB6dSfgY4LC7jngeefcwhzHmZF65qRT\nmmrpfd3+xOe/C0CyV38W/2Iyrvc6EQcmIiLFJLKeOedcC/Bi+PhLuwsgbgTW7Mx+RCLhHIl7T0sV\nci5eRu3o8SrkRESkx+j0x3mZ2epmdghwOXAT8AegDbg7R7F1SD1z/spX30fFM5dT9vbDqXH9oZfT\nNmBIXo7dk6lvx2/Kn7+UO8mkwxk1M7uW4PTqVgS9c88C1wBTnXOzchueyKorffcJKiddnBo37vpz\nmoccE2FEIiIi2deZnrnrCQq4qc65z/ISVSepZ05WJLbgfXpfuy/WVAtAy8bDqD3+XoiXRhyZiIgU\nq8g+m9U5d7Jz7nZgo0yvm9nx2Q5KpDus4Tuqx49OFXJtfTeg7uibVMiJiEiP1OmeOWCimS3TbGRm\npwAXrGD9nFPPnL9y1veRbCNx50nEv/kIAFdaSd2YibjEGrk5XpFS347flD9/KXeSSVeKuaOBf5vZ\n1gBmdgbLvy0RAAAfmUlEQVRwNrBnZzY2s5vMbH54A+Ily1Y3s0lm9oGZPWVmfdNeO8fMPjSz98xs\nvy7EKUWs4qn/o/SDp1PjusP/Qdu6gyKMSEREJLe69NmsZjYC+CdwF/AjYHhn++jMbBhQC4x3zg0K\nl10GfO2cu8zMfgus5pwbGxaMtwM7AusBTwObOxfe8TWknjlJV/rmv6m+Y+knOjTs8b80johs4lhE\nRGQZkfTMmdnG6Q/gA+B64FjgeKA0XN4h59xUoP3NhUcCt4bPbwUODZ8fAtzhnGtxzs0GZhHcrFgk\no/gXb5G49/TUuGXzfWjc77wIIxIREcmPjk6zzsrw+D+gH8GnP8wCPuzG8fs55+aHz+eH+wVYF5ib\ntt5cghm6Zahnzl/Z7Puwum9ITBiNtTQA0LbmptQddQPE4lk7hixLfTt+U/78pdxJJiu9z5xzris9\ndd3inHNmtrJzvsu99uyzzzJ9+nQGDBgAQJ8+fRg0aBBDhw4Flr7pNe7B42QbI97/G/FFnzHlC3Cl\nFexw1gRcZZ/CiE9jjTXWOIvjJQolHo07zte0adOYM2cOAEOGDGH48OFkW5d65rp9MLOBwMNpPXPv\nAXs65+aZ2TrAM865Lc1sLIBz7pJwvSeA3zvnXk7fn3rmpPKRc6l4/p8AODPqxtxGy1YjIo5KRERk\neZHdZy7HHgJ+Gj7/KfBA2vKjzKzMzDYCNgNeiSA+KWBlM+5MFXIAjcPHqpATEZGik7dizszuAF4A\ntjCzz8zsZ8AlwL5m9gGwdzjGOTeT4DNfZwKPA6e6DFOI6pnzV/tTBl0Vn/saVfeflRo3b3MwjXv9\nqrthSSd1N38SLeXPX8qdZFKSrwM550at4KV9VrD+xcDFmV6T4mY1C6ieOAZrbQKgbe0tqPvJNRCL\neqJZREQk/zrz2ayfEcyOPQZMcs7V5SOwzlDPXBFqa6H6xkMpnf0iAMmKPtScNpnkmp26Q46IiEhk\nouyZ25mgX+1YYLaZPW1mZ5nZFtkORqQjlY+clyrknBl1R92gQk5ERIpah8Wcc+4L59yNzrnDCO7/\n9mdgfeB+M/vIzK4ysxFmVpHrYNtTz5y/VqXvo2z6RCpeujE1btjvd7RukfEsveSY+nb8pvz5S7mT\nTLrUZBR+IsNk59yvnHNbE/S7fQCcHj5EciI+ZzpVD/w6NW4edAhNe5wZYUQiIiKFIa/3mcs29cwV\nB1s8j97XDCe2+EsAWvtvTc3/PAlliYgjExER6byeep85kZVrbab69uNShVyysi91YyaqkBMREQl5\nXcypZ85fne37qHp4LCWfBveLdhajbtQ4kqsPzGFk0hnq2/Gb8ucv5U4y8bqYk56t7OVbKH/lltS4\n4YALad1sr+gCEhERKUCduc9cAjgf+B4wA7jYOdeUh9g6pJ65nis++yV63XgI1tYCQNN2h1N/5PVg\nWW81EBERyYsoe+auBg4G3gN+DFye7SBE0tl3X1B923GpQq51nUHUH3alCjkREZEMOlPMHQDs75w7\nO3x+cG5D6jz1zPlrhX0fLY1UTzyWWO0CAJKJNcILHqryGJ10RH07flP+/KXcSSadKeYSzrkvAJxz\nnwF9chuSFC3nqHrobErmzgiGsTh1o24iudoGEQcmIiJSuEo6sU7czPYOnxtQkjYGwDn3n6xH1gmD\nBw+O4rCSBUOHDl1uWflL4yiffltq3HDgH2ndZFg+w5JOypQ/8Yfy5y/lTjLpTDG3ABiXNv6m3Rhg\no6xFJEWp5JMXqHzk3NS4afujaNrt5AgjEhER8UNnPpt1oHNuo7RH+3FkhZx65vyV3vdhi+aSuO04\nLNkKQOt621P/o8t1wUMBU9+O35Q/fyl3konuMyfRamkILnio+xqAZPVa1I6+FUorIw5MRETED/ps\nVomOc1Tdcyrlr90VDGMl1J74IK0b7RpxYCIiItmnz2aVHqf8hetThRxAw8F/ViEnIiLSRV4Xc+qZ\n89eLd19D5WO/S42bhoymaZfjI4xIukJ9O35T/vyl3EkmXhdz4qfYwjlUPH0ZlmwDoHWDIdQf8hdd\n8CAiIrIKvC7mdJ85DzXXk5gwhr3XqAEg2atfcMFDSXnEgUlX6F5XflP+/KXcSSZeF3PiGedI/PtM\nSr58KxjGS6k95hZc73UiDkxERMRfXhdz6pnzS/nUqyl74z4ApnwB9SMvo23DnSOOSlaF+nb8pvz5\nS7mTTLwu5sQfJR8+Q+UTF6XGzVvuT/NOP40wIhERkZ5B95mTnIt9O5teV+9NrGERAK0b7kzNiQ9C\nSVnEkYmIiOSP7jMnfmqqJTFhdKqQS/Zeh9pjblEhJyIikiVeF3PqmStwzpG49xeUzJsZDONl1I4e\nj+vVT30fnlP+/Kb8+Uu5k0y8LuaksFU8eyVlbz+UGtcfejltG3w/wohERER6HvXMSU6UvD+J6luP\nwsL3V+OuJ9Ew8tKIoxIREYmOeubEG7GvPyJx50mpQq5lo91oOOhPEUclIiLSM3ldzKlnrgA11VA9\nYTSxxsUAJPusR93RN0O8dJnV1PfhN+XPb8qfv5Q7ycTrYk4KTDJJ4u5TiS94HwBXUkHtmAm46rUi\nDkxERKTnUs+cZE3F5L9Q+fSfU+O6n1xH8w5HRhiRiIhI4VDPnBS00pmPL1PINf7gf1TIiYiI5IHX\nxZx65gpDbMEHJO4+OTVu2WR3Gg64aCVbqO/Dd8qf35Q/fyl3konXxZwUgMbFVE8cgzXVAtDWdwPq\nRo2DeEnEgYmIiBQH9czJqksmSUw4hrL3ngTAlVZSc8oTtK07KOLARERECo965qTgVEy+JFXIAdT9\n+CoVciIiInnmdTGnnrnolL7zCJX/+Wtq3Lj76bRs9+NOb6++D78pf35T/vyl3EkmXhdzEo3Y/HdJ\n3H1qatyy2V407H9BhBGJiIgUL/XMSZdYwyJ6XbMP8W8+BqBt9YHUnDYZV7VaxJGJiIgUNvXMSfSS\nbSTuPClVyLmyBLVjJqqQExERiZDXxZx65vKrYtLFlH4wOTWuO/xqkv23XqV9qe/Db8qf35Q/fyl3\nkonXxZzkT+mb91M55YrUuGHPX9Iy6JAIIxIRERFQz5x0QvzLd+h91bDUuGWLfak99naIxSOMSkRE\nxC/qmZPIJMaPWmZcd+S/VMiJiIgUCK+LOfXM5V788zeIL5qbGi8++TFcZZ9u71d9H35T/vym/PlL\nuZNMvC7mJPcqpvwt9bx5m4NpG7hLhNGIiIhIe+qZkxWKLXif3lfuhoXvkcVnTKVtnW0ijkpERMRP\n6pmTvKuYcmWqkGveaoQKORERkQLkdTGnnrnciX37KWVv3JsaN+55Vlb3r74Pvyl/flP+/KXcSSZe\nF3OSOxXPXYUl2wBo2WR32gbsGHFEIiIikol65mQ5tvhL+ly2PdbWDEDNiQ/QusnuEUclIiLiN/XM\nSd5UTL0mVci1bjCE1o2HdbCFiIiIRMXrYk49c9lndd9S/vItqXHjXr8Ey/ofEer78Jzy5zflz1/K\nnWTidTEn2Vf+/HVYSz0Arf23oWXL/SOOSERERFbG62Ju8ODBUYfQo1j9Qipe+Fdq3LjXWTmZlQMY\nOnRoTvYr+aH8+U3585dyJ5l4XcxJdpU/fx3WVANA29qb0/K9QyKOSERERDridTGnnrnssfqFVDx/\nfWrcsPfZEIvn7Hjq+/Cb8uc35c9fyp1k4nUxJ9mz3KzcoEMjjkhEREQ6w+tiTj1z2bHcrNxeuZ2V\nA/V9+E7585vy5y/lTjLxupiT7FhmVm6tzWjZVrNyIiIivvC6mFPPXPdZw6J2vXK/yfmsHKjvw3fK\nn9+UP38pd5KJ18WcdF/5NM3KiYiI+MzrYk49c90TzMr9MzXO16wcqO/Dd8qf35Q/fyl3konXxZx0\nj2blRERE/Od1MaeeuVUX5awcqO/Dd8qf35Q/fyl3konXxZysuvLn/qFZORERkR7A62JOPXOrxmrm\nL3sF6z5j8zorB+r78J3y5zflz1/KnWTidTEnq6bimSuwlnoAWtcZpM9gFRER8ZjXxZx65routvAz\nyl+5OTVu2O88iOX/baC+D78pf35T/vyl3EkmXhdz0nUVky/F2loAaN1wJ1q32DfiiERERKQ7zDkX\ndQyrbPLkyW6HHXaIOgxvxBZ8QO8rd8NcEoCakx6mdeMfRByViIhIcZgxYwbDhw+3bO9XM3NFpPLp\nP6cKuZbN9lIhJyIi0gMURDFnZrPN7E0ze83MXgmXrW5mk8zsAzN7ysz6tt9OPXOdF//iTcreejA1\nbtjv/AijUd+H75Q/vyl//lLuJJOCKOYAB+zpnNveObdTuGwsMMk5tzkwORzLKqp86v9Sz5u3OZi2\n9bePMBoRERHJloLomTOzT4Ahzrlv0pa9B+zhnJtvZv2BKc65LdO3U89c58Rnv0Tv6w8EwJmx+Mzn\nSfbbsoOtREREJJt6es+cA542s+lmdlK4rJ9zbn74fD7QL5rQPOcclU/+ITVsHnykCjkREZEepFCK\nuR8457YHDgBOM7Nh6S+6YPpwuSlE9cx1rPTdxymd/RIALl5K4z6/iTiigPo+/Kb8+U3585dyJ5mU\nRB0AgHPuy/Dfr8zsfmAnYL6Z9XfOzTOzdYAF7bd79tlnmT59OgMGDACgT58+DBo0KPVxJ0ve9EU7\nfu5Zqu79LcMTwfdrUu8RNM2cy9ChAwsjPo011lhjjbs0XqJQ4tG443xNmzaNOXPmADBkyBCGDx9O\ntkXeM2dmVUDcOVdjZgngKeAiYB/gG+fcpWY2FujrnFvmIgj1zK1c2cs3k3jgVwC48l58d/YMXGKN\niKMSEREpTrnqmSvJ9g5XQT/gfjODIJ7bnHNPmdl04G4zOwGYDRwRXYgeaqqh8ulLUsOGPc9SISci\nItIDRd4z55z7xDk3OHx8zzn353D5t865fZxzmzvn9nPOLWq/rXrmVqxi6jXEar8CINlnXZp+cHLE\nES2r/SkD8Yvy5zflz1/KnWQSeTEn2WeL51Ex9ZrUuGHf86C0MsKIREREJFe8LuYGDx4cdQgFqXLy\npVhzHQCt/behefvCO0O9pElU/KT8+U3585dyJ5l4XczJ8mIL3qfs1QmpccMBF0IsHl1AIiIiklNe\nF3PqmVte5eMXYi4JQMume9K6efYvgc4G9X34Tfnzm/LnL+VOMvG6mJNllXzwH8reexIIPrar4YAL\now1IREREcs7rYk49c2naWql69LzUsHmHUbStu22EAa2c+j78pvz5Tfnzl3InmXhdzMlS5S/fTHzB\n+wC4smoa9v9dxBGJiIhIPnhdzKlnLmD1C6lIv0Hw3r/C9eoXYUQdU9+H35Q/vyl//lLuJBOvizkJ\nVDx9KbGGhQC0rT6Qph+cEnFEIiIiki+RfzZrd+izWSE2/z16XzUMS7YBUDt6PC3bHBxxVCIiItJe\nrj6bVTNzPnOOqkfPSxVyLRsPo2XrgyIOSkRERPLJ62Ku2HvmSt97itIPnwHAWYyGgy8Gy3rBnxPq\n+/Cb8uc35c9fyp1k4nUxV9RaGqlMvxXJjsfSts42EQYkIiIiUfC6mCvm+8xVPPcP4t98DECyojcN\n+54bcURdo3sl+U3585vy5y/lTjLxupgrVrFvP6ViyhWpceN+5+Oq14wwIhEREYmK18VcsfbMVT48\nFmttBKB13e1o2vlnEUfUder78Jvy5zflz1/KnWTidTFXjEpnPp76/FWA+kP+ArF4hBGJiIhIlHSf\nOZ8019P7il2JL/oMgKYdx1B/2N8jDkpEREQ6Q/eZEyqmXJEq5JKVq9Gw/wURRyQiIiJR87qYK6ae\nudjXH1Hx3D9S44YRF+ASa0QYUfeo78Nvyp/flD9/KXeSidfFXNFwjqoHz8bamgFoXX8HmoeMiTgo\nERERKQTqmfNA2Yw7SdxzKgDOjJrTJtO2XvHeY09ERMRH6pkrUlb7FZWPLP2kh6Zdf65CTkRERFK8\nLuaKoWeu8pHziDUsBKCt7/o07HdeB1v4QX0fflP+/Kb8+Uu5k0y8LuZ6upL3J1H+xr2pcf2hl0N5\ndYQRiYiISKFRz1yhaqql95W7EV80Nxhudzj1R/0r4qBERERkValnrshUTro4Vcglq1an4eCLI45I\nRERECpHXxVxP7ZmLf/Zfyl+4PjVuOOhPuOo1I4wo+9T34Tflz2/Kn7+UO8nE62KuR2ptInHfGVh4\n+rtl0z1p3v7IiIMSERGRQuV1MTd4cM+7RUfF05cSn/8uAK60kvof/Q0s66fXIzd06NCoQ5BuUP78\npvz5S7mTTLwu5nqa+JxXqXjuqtS4YcSFJFcfGF1AIiIiUvC8LuZ6VM9cSwOJe3+BuWQw3HgYTbuc\nEHFQuaO+D78pf35T/vyl3EkmXhdzPUnlk38i/tWHALiyauoP/wfElB4RERFZOd1nrgCUfPIi1Tcc\nnLrooe5HV9C8008jjkpERESySfeZ66maaqm697SlV69uPpzmHY+NOCgRERHxhdfFXE/omat65Bzi\n384GIFnRh7rD/t4jr15tT30fflP+/Kb8+Uu5k0y8LuZ8V/rWA5RPvy01bhh5Ka7PuhFGJCIiIr5R\nz1xEbNFcev99GLHG74Dws1ePvL4oZuVERESKkXrmepJkG4m7Tk4Vcm2rDaD+0L+qkBMREZEu87qY\n87VnruLZKymd/SIAzmLUHXk9VPSOOKr8Ut+H35Q/vyl//lLuJBOvizkfxedMp+LpS1Ljxr3Ppm3D\nnSOMSERERHymnrk8svqF9PrHnsQXfQZA64Y7U3PSwxAviTgyERERyTX1zPkumaTqnlNThVyyondw\nelWFnIiIiHSD18WcTz1z5c9dRdl7T6bG9YdfQ3K1ARFGFC31ffhN+fOb8ucv5U4y8bqY80XJx9Oo\nfOpPqXHjsF/Qss1BEUYkIiIiPYV65nLMFs+j9z/2JFa7AICWgbtQe+KDEC+NODIRERHJJ/XM+ait\nlcSdJ6UKuWRiTeqOulGFnIiIiGSN18VcoffMVT52PqWfPA+AM6PuqBv0cV0h9X34Tfnzm/LnL+VO\nMvG6mCtkZdMnUvHCv1Ljxn3OoXXTPSKMSERERHoi9czlQPzTl+l1w0isrQWA5u/9kLpRN0NMtbOI\niEixUs+cJ2zRXKon/jRVyLX234a6w69RISciIiI54XWFUXA9c811VE88Nu2ChzWoO/Y2KK+OOLDC\no74Pvyl/flP+/KXcSSZeF3MFJdlG4s6TKPk8KDBdrIS6o28p6hsDi4iISO6pZy4bnKPyod9Q8dK4\n1KK6Q/9G887HRReTiIiIFBT1zBWw8qlXL1PINe5xpgo5ERERyQuvi7lC6JkrfesBqh7/fWrcvO1h\nNOz3uwgj8oP6Pvym/PlN+fOXcieZeF3MRa3kw2dI3HVKatwycFfqDr9aV66KiIhI3qhnbhXFP32Z\nXuN+jLXUA9C21mbUnPIErmq1SOIRERGRwqaeuQIS/+JNqm85MlXIJfusR83x96mQExERkbzzupiL\nomcutuADqm86nFjjYgCS1WtRc8L9uL7r5z0Wn6nvw2/Kn9+UP38pd5KJ18VcvsUWfECvcT8iVvc1\nAMmKPtQefx/JtTaNODIREREpVuqZ66TYvJn0GndY6tMdXFmCmuPvo23DnfJyfBEREfFbrnrmSrK9\nw54o/uXbVI/7EbG6b4CgkKv96R0q5ERERCRyXp9mzUfPXHzua1TfMHJpIVdeTc3P7qF146E5P3ZP\npr4Pvyl/flP+/KXcSSaamVuJkg8mU33bz7DmWgCSFb2p/dm9tA0YEnFkIiIiIgH1zK1A2Yw7qbrv\nDCzZCkCycjVqT/g3bettl5PjiYiISM+mnrl8cY6KKVdQ+dSfUouSfdaj5mf3kOy3ZYSBiYiIiCxP\nPXPpmutJ3PXzZQq51v7bsPh/nlQhl2Xq+/Cb8uc35c9fyp1kopm5kC2aS/WE0ZR88WZqWcvGw6gd\nMwEqekcYmYiIiMiKqWcOKPnwGRJ3nZy6GTBA007HUf/DS6CkrNv7FxEREVHPXC60NlP51J+omHp1\napGLlVA/8jKadz4uurhEREREOqloe+ZiX82i1z9HLFPIJavXpvbEB1XI5YH6Pvym/PlN+fOXcieZ\nFN/MXFsLFVOvpmLyZVhrU2pxy+bDqTv8GlyvtSMMTkRERKRriqpnLj73NaruO4OSee+klrl4KQ0j\nfk/TbqdAzOuJShERESlg6pnrJls8j17/PABra04ta113O+p/fBVt6w6KMDIRERGRVVfQU1FmNsLM\n3jOzD83st+1f70rPnOvdn6bdTgqel1ZSf8BF1Jw6SYVcRNT34Tflz2/Kn7+UO8mkYIs5M4sDVwMj\ngK2BUWa2Vfo6s2bN6tI+G/YZS9MOo1h85jSadj8d4kUzMVlw3nrrrahDkG5Q/vym/PlLufNb1j/s\nIFTI1cxOwCzn3GwAM7sTOAR4d8kKdXV1XdtjWYL6n1yTvQhllX333XdRhyDdoPz5Tfnzl3Lntzfe\neCMn+y3YmTlgPeCztPHccJmIiIiIhAq5mOvwMtt58+blIw7JgTlz5kQdgnSD8uc35c9fyp1kUsin\nWT8HNkgbb0AwO5eyySabcOaZZ6bG2223HYMHD85PdNItQ4YMYcaMGVGHIatI+fOb8ucv5c4vr7/+\n+jKnVhOJRE6OU7D3mTOzEuB9YDjwBfAKMMo59+5KNxQREREpIgU7M+ecazWzXwBPAnFgnAo5ERER\nkWUV7MyciIiIiHSskC+AWKGObiYs+WdmG5jZM2b2jpm9bWZnhMtXN7NJZvaBmT1lZn3TtjknzOF7\nZrZf2vLvm9lb4Wt/j+LrKVZmFjez18zs4XCs/HnCzPqa2b1m9q6ZzTSznZU/P4S5eCf8vt9uZuXK\nXeEys5vMbL6ZvZW2LGv5CvN/V7j8JTPbsMOgnHNePQhOuc4CBgKlwOvAVlHHVewPoD8wOHxeTdDv\nuBVwGfCbcPlvgUvC51uHuSsNczmLpTPFrwA7hc8fA0ZE/fUVywP4JXAb8FA4Vv48eQC3AseHz0uA\nPspf4T/C7//HQHk4vgv4qXJXuA9gGLA98FbasqzlCzgVuDZ8fiRwZ0cx+Tgzl7qZsHOuBVhyM2GJ\nkHNunnPu9fB5LcHNndcDRhL8J0P476Hh80OAO5xzLS64MfQsYGczWwfo5Zx7JVxvfNo2kkNmtj5w\nIHAjsOSDoJU/D5hZH2CYc+4mCHqOnXPfofz5YDHQAlSFF/5VEVz0p9wVKOfcVGBhu8XZzFf6vu4j\nuBB0pXws5nQz4QJnZgMJ/mp5GejnnJsfvjQf6Bc+X5dlbzWzJI/tl3+O8psvVwBnA8m0ZcqfHzYC\nvjKzm81shpndYGYJlL+C55z7FrgcmENQxC1yzk1CufNNNvOVqnOcc63Ad2a2+soO7mMxpys2CpiZ\nVRP8JXGmc64m/TUXzBkrfwXIzA4GFjjnXmPprNwylL+CVgLsQHBqZgegDhibvoLyV5jMbBPgfwlO\nwa0LVJvZ6PR1lDu/RJEvH4u5Dm8mLNEws1KCQm6Cc+6BcPF8M+sfvr4OsCBc3j6P6xPk8fPwefry\nz3MZtwCwGzDSzD4B7gD2NrMJKH++mAvMdc69Go7vJSju5il/BW8I8IJz7ptwFubfwK4od77Jxu/K\nuWnbDAj3VQL0CWdwV8jHYm46sJmZDTSzMoLmwIcijqnomZkB44CZzrkr0156iKCZl/DfB9KWH2Vm\nZWa2EbAZ8Ipzbh6wOLwSz4AxadtIjjjnznXObeCc2wg4CviPc24Myp8Xwu/7Z2a2ebhoH+Ad4GGU\nv0L3HrCLmVWG3/N9gJkod77Jxu/KBzPs63BgcodHj/qqkFW8kuQAgqslZwHnRB2PHg5gKEGv1evA\na+FjBLA68DTwAfAU0Ddtm3PDHL4H7J+2/PvAW+FrV0X9tRXbA9iDpVezKn+ePIDtgFeBNwhmd/oo\nf348gN8QFN9vETS+lyp3hfsgOHvxBdBM0Nv2s2zmCygH7gY+BF4CBnYUk24aLCIiIuIxH0+zioiI\niEhIxZyIiIiIx1TMiYiIiHhMxZyIiIiIx1TMiYiIiHhMxZyIiIiIx1TMiYiIiHhMxZyISJaZ2QAz\nqwnv7C4iklMq5kSkRzOz683spAzLv2dmT5rZV2aWXMG265rZZ109pnNujnOul9Nd2UUkD1TMiUhP\nNwJ4NMPyZuBO4ISVbHsg8HgughIRyRYVcyLiDTObbWa/MrM3zGyRmd1pZuUrWX9bYJFz7ov2rznn\nPnDO3UzwoeYrciDwWNqxf21mb4anUMeZWT8ze9zMvjOzSWbWN1x3oJklzSwWjqeY2R/MbJqZLQ5n\nBNfozvdCRGQJFXMi4hMH/ATYH9gI2BY4biXrHwg8sioHMrNSYBgwKe3YhwHDgS2Agwlm7cYCaxP8\nPj1jJbscFca6NlAG/HpV4hIRaU/FnIj45irn3Dzn3ELgYWDwStZNzaytgt2BN5xzdWnL/uGc+yqc\n6ZsKvOice8M51wTcD2y/gn054Gbn3CznXCNwdwdxi4h0moo5EfHNvLTnDUB1ppXCU55bAi+s4nEO\nZPleu/ntjp0+blxRLKFOxS0i0lUq5kTEZyu7WnR/YHI3rig9gI5n9XTrERGJnIo5EfHZyoqpTDNr\ny25sVkHQv4aZlS+5mMLMNgLKnXPvZytQVPiJSI6omBMRnzkyzM6FN+vdD3hiRRua2UCgHng73EcD\n8G748kF0UAimHX9FsbSPa2XrioisMtM9LUWkpzGznQgulNhlFbd/lOBihxUWgyIihUIzcyLSEzng\n993Yfkr4EBEpeJqZExEREfGYZuZEREREPKZiTkRERMRjKuZEREREPKZiTkRERMRjKuZEREREPKZi\nTkRERMRj/w8/5hGOx9j7TwAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x10a357a90>"
]
}
],
"prompt_number": 24
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now dump it to csv for use with `Excel` or something you guys are using..."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data = np.array([n, P])\n",
"np.savetxt('Leistung-E2-180.csv', data.T, fmt='%.1f', header='n [1/min], P [kW]', delimiter=',')"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 25
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Remember:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![XKCD Python](http://imgs.xkcd.com/comics/python.png)"
]
}
],
"metadata": {}
}
]
}
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <headingcell level=1>
# We have a LogLog diagram and need the values
# <markdowncell>
# ![Diag](Leistungsdiagramm_E2-180.png)
# <headingcell level=3>
# So, let's Un-LogLog it
# <codecell>
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
# <markdowncell>
# Get some Datapoints, e.g. with [DigitizeIT](http://www.digitizeit.de/)
# <codecell>
# for the E2-180 curve
logx = np.array([250.0, 1650.0, 4320.0, 10000.0]) # rpm
logy = np.array([3.0, 70.0, 180.0, 180.0]) # power
# <markdowncell>
# Because the diagram is [LogLog](http://en.wikipedia.org/wiki/Log-log_plot) and has only straight lines, that means we can fit a function of the form $P(n)=c \cdot n^m$ to find the parameters `c` (constant) and `m` (slope).
# <codecell>
def loglog(n, c, m):
return c * n**m
# <markdowncell>
# Now lets fit the three parts of the LogLog graph to find the parameters.
# <codecell>
var={} # Dictionary to save the optimal parameters
for p in range(3):
# do the curve fitting
popt, pcov = curve_fit(loglog, logx[p:p+2], logy[p:p+2])
# Save the optimal parameters
var[p] = [popt[0], popt[1]]
# Print them
print('Constant: %.6f, Slope: %.3f for %i. part of the graph' % (popt[0], popt[1], p+1))
# <markdowncell>
# So now we have the variables for the function $P(n)=c \cdot n^m$, we can calc a continuous function
# <codecell>
n=[]
P=[]
for p in range(3):
x=np.arange(logx[p], logx[p+1]+1, 10)
n.extend(x)
P.extend(loglog(x, var[p][0], var[p][1]))
# <markdowncell>
# Let's plot it and see, if the original datapoints and the found curve are fitting
# <codecell>
plt.loglog(n, P, label='Curve Fit', ls='--')
plt.loglog(logx, logy, label='Original', alpha=0.6)
plt.xlabel('n / 1/min')
plt.ylabel('P / kW')
plt.title('Leistungsdiagramm E2-180')
plt.ylim(0, 200)
plt.legend(loc='best')
# <markdowncell>
# You see, exactly!
# <headingcell level=3>
# Plot it with normal scale axes
# <codecell>
plt.figure(figsize=(10,6))
plt.plot(n, P)
plt.xlabel('n / 1/min')
plt.ylabel('P / kW')
plt.title('Leistungsdiagramm E2-180')
plt.ylim(0, 200)
plt.savefig('Leistung-E2-180.png', dpi=300, bbox_inches='tight')
# <markdowncell>
# Now dump it to csv for use with `Excel` or something you guys are using...
# <codecell>
data = np.array([n, P])
np.savetxt('Leistung-E2-180.csv', data.T, fmt='%.1f', header='n [1/min], P [kW]', delimiter=',')
# <markdowncell>
# Remember:
# <markdowncell>
# ![XKCD Python](http://imgs.xkcd.com/comics/python.png)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment