Last active
August 29, 2015 14:14
-
-
Save balzer82/019a4e6ba55a4b2e9de7 to your computer and use it in GitHub Desktop.
We have a LogLog Graph and need some Values out of it
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# n [1/min] | P [kW] | |
---|---|---|
250.0 | 3.0 | |
260.0 | 3.2 | |
270.0 | 3.4 | |
280.0 | 3.6 | |
290.0 | 3.8 | |
300.0 | 4.1 | |
310.0 | 4.3 | |
320.0 | 4.5 | |
330.0 | 4.8 | |
340.0 | 5.0 | |
350.0 | 5.3 | |
360.0 | 5.5 | |
370.0 | 5.8 | |
380.0 | 6.0 | |
390.0 | 6.3 | |
400.0 | 6.6 | |
410.0 | 6.9 | |
420.0 | 7.1 | |
430.0 | 7.4 | |
440.0 | 7.7 | |
450.0 | 8.0 | |
460.0 | 8.3 | |
470.0 | 8.6 | |
480.0 | 8.9 | |
490.0 | 9.2 | |
500.0 | 9.5 | |
510.0 | 9.9 | |
520.0 | 10.2 | |
530.0 | 10.5 | |
540.0 | 10.8 | |
550.0 | 11.2 | |
560.0 | 11.5 | |
570.0 | 11.9 | |
580.0 | 12.2 | |
590.0 | 12.6 | |
600.0 | 12.9 | |
610.0 | 13.3 | |
620.0 | 13.7 | |
630.0 | 14.0 | |
640.0 | 14.4 | |
650.0 | 14.8 | |
660.0 | 15.2 | |
670.0 | 15.6 | |
680.0 | 15.9 | |
690.0 | 16.3 | |
700.0 | 16.7 | |
710.0 | 17.1 | |
720.0 | 17.5 | |
730.0 | 17.9 | |
740.0 | 18.4 | |
750.0 | 18.8 | |
760.0 | 19.2 | |
770.0 | 19.6 | |
780.0 | 20.0 | |
790.0 | 20.5 | |
800.0 | 20.9 | |
810.0 | 21.3 | |
820.0 | 21.8 | |
830.0 | 22.2 | |
840.0 | 22.7 | |
850.0 | 23.1 | |
860.0 | 23.6 | |
870.0 | 24.1 | |
880.0 | 24.5 | |
890.0 | 25.0 | |
900.0 | 25.5 | |
910.0 | 25.9 | |
920.0 | 26.4 | |
930.0 | 26.9 | |
940.0 | 27.4 | |
950.0 | 27.9 | |
960.0 | 28.3 | |
970.0 | 28.8 | |
980.0 | 29.3 | |
990.0 | 29.8 | |
1000.0 | 30.3 | |
1010.0 | 30.9 | |
1020.0 | 31.4 | |
1030.0 | 31.9 | |
1040.0 | 32.4 | |
1050.0 | 32.9 | |
1060.0 | 33.4 | |
1070.0 | 34.0 | |
1080.0 | 34.5 | |
1090.0 | 35.0 | |
1100.0 | 35.6 | |
1110.0 | 36.1 | |
1120.0 | 36.7 | |
1130.0 | 37.2 | |
1140.0 | 37.8 | |
1150.0 | 38.3 | |
1160.0 | 38.9 | |
1170.0 | 39.4 | |
1180.0 | 40.0 | |
1190.0 | 40.6 | |
1200.0 | 41.1 | |
1210.0 | 41.7 | |
1220.0 | 42.3 | |
1230.0 | 42.9 | |
1240.0 | 43.5 | |
1250.0 | 44.0 | |
1260.0 | 44.6 | |
1270.0 | 45.2 | |
1280.0 | 45.8 | |
1290.0 | 46.4 | |
1300.0 | 47.0 | |
1310.0 | 47.6 | |
1320.0 | 48.2 | |
1330.0 | 48.8 | |
1340.0 | 49.5 | |
1350.0 | 50.1 | |
1360.0 | 50.7 | |
1370.0 | 51.3 | |
1380.0 | 51.9 | |
1390.0 | 52.6 | |
1400.0 | 53.2 | |
1410.0 | 53.8 | |
1420.0 | 54.5 | |
1430.0 | 55.1 | |
1440.0 | 55.8 | |
1450.0 | 56.4 | |
1460.0 | 57.1 | |
1470.0 | 57.7 | |
1480.0 | 58.4 | |
1490.0 | 59.0 | |
1500.0 | 59.7 | |
1510.0 | 60.4 | |
1520.0 | 61.0 | |
1530.0 | 61.7 | |
1540.0 | 62.4 | |
1550.0 | 63.1 | |
1560.0 | 63.7 | |
1570.0 | 64.4 | |
1580.0 | 65.1 | |
1590.0 | 65.8 | |
1600.0 | 66.5 | |
1610.0 | 67.2 | |
1620.0 | 67.9 | |
1630.0 | 68.6 | |
1640.0 | 69.3 | |
1650.0 | 70.0 | |
1650.0 | 70.0 | |
1660.0 | 70.4 | |
1670.0 | 70.8 | |
1680.0 | 71.2 | |
1690.0 | 71.7 | |
1700.0 | 72.1 | |
1710.0 | 72.5 | |
1720.0 | 72.9 | |
1730.0 | 73.3 | |
1740.0 | 73.7 | |
1750.0 | 74.2 | |
1760.0 | 74.6 | |
1770.0 | 75.0 | |
1780.0 | 75.4 | |
1790.0 | 75.8 | |
1800.0 | 76.2 | |
1810.0 | 76.7 | |
1820.0 | 77.1 | |
1830.0 | 77.5 | |
1840.0 | 77.9 | |
1850.0 | 78.3 | |
1860.0 | 78.7 | |
1870.0 | 79.1 | |
1880.0 | 79.6 | |
1890.0 | 80.0 | |
1900.0 | 80.4 | |
1910.0 | 80.8 | |
1920.0 | 81.2 | |
1930.0 | 81.6 | |
1940.0 | 82.1 | |
1950.0 | 82.5 | |
1960.0 | 82.9 | |
1970.0 | 83.3 | |
1980.0 | 83.7 | |
1990.0 | 84.1 | |
2000.0 | 84.5 | |
2010.0 | 85.0 | |
2020.0 | 85.4 | |
2030.0 | 85.8 | |
2040.0 | 86.2 | |
2050.0 | 86.6 | |
2060.0 | 87.0 | |
2070.0 | 87.4 | |
2080.0 | 87.9 | |
2090.0 | 88.3 | |
2100.0 | 88.7 | |
2110.0 | 89.1 | |
2120.0 | 89.5 | |
2130.0 | 89.9 | |
2140.0 | 90.3 | |
2150.0 | 90.8 | |
2160.0 | 91.2 | |
2170.0 | 91.6 | |
2180.0 | 92.0 | |
2190.0 | 92.4 | |
2200.0 | 92.8 | |
2210.0 | 93.2 | |
2220.0 | 93.7 | |
2230.0 | 94.1 | |
2240.0 | 94.5 | |
2250.0 | 94.9 | |
2260.0 | 95.3 | |
2270.0 | 95.7 | |
2280.0 | 96.1 | |
2290.0 | 96.6 | |
2300.0 | 97.0 | |
2310.0 | 97.4 | |
2320.0 | 97.8 | |
2330.0 | 98.2 | |
2340.0 | 98.6 | |
2350.0 | 99.0 | |
2360.0 | 99.5 | |
2370.0 | 99.9 | |
2380.0 | 100.3 | |
2390.0 | 100.7 | |
2400.0 | 101.1 | |
2410.0 | 101.5 | |
2420.0 | 101.9 | |
2430.0 | 102.3 | |
2440.0 | 102.8 | |
2450.0 | 103.2 | |
2460.0 | 103.6 | |
2470.0 | 104.0 | |
2480.0 | 104.4 | |
2490.0 | 104.8 | |
2500.0 | 105.2 | |
2510.0 | 105.7 | |
2520.0 | 106.1 | |
2530.0 | 106.5 | |
2540.0 | 106.9 | |
2550.0 | 107.3 | |
2560.0 | 107.7 | |
2570.0 | 108.1 | |
2580.0 | 108.5 | |
2590.0 | 109.0 | |
2600.0 | 109.4 | |
2610.0 | 109.8 | |
2620.0 | 110.2 | |
2630.0 | 110.6 | |
2640.0 | 111.0 | |
2650.0 | 111.4 | |
2660.0 | 111.8 | |
2670.0 | 112.3 | |
2680.0 | 112.7 | |
2690.0 | 113.1 | |
2700.0 | 113.5 | |
2710.0 | 113.9 | |
2720.0 | 114.3 | |
2730.0 | 114.7 | |
2740.0 | 115.1 | |
2750.0 | 115.6 | |
2760.0 | 116.0 | |
2770.0 | 116.4 | |
2780.0 | 116.8 | |
2790.0 | 117.2 | |
2800.0 | 117.6 | |
2810.0 | 118.0 | |
2820.0 | 118.4 | |
2830.0 | 118.9 | |
2840.0 | 119.3 | |
2850.0 | 119.7 | |
2860.0 | 120.1 | |
2870.0 | 120.5 | |
2880.0 | 120.9 | |
2890.0 | 121.3 | |
2900.0 | 121.7 | |
2910.0 | 122.2 | |
2920.0 | 122.6 | |
2930.0 | 123.0 | |
2940.0 | 123.4 | |
2950.0 | 123.8 | |
2960.0 | 124.2 | |
2970.0 | 124.6 | |
2980.0 | 125.0 | |
2990.0 | 125.4 | |
3000.0 | 125.9 | |
3010.0 | 126.3 | |
3020.0 | 126.7 | |
3030.0 | 127.1 | |
3040.0 | 127.5 | |
3050.0 | 127.9 | |
3060.0 | 128.3 | |
3070.0 | 128.7 | |
3080.0 | 129.1 | |
3090.0 | 129.6 | |
3100.0 | 130.0 | |
3110.0 | 130.4 | |
3120.0 | 130.8 | |
3130.0 | 131.2 | |
3140.0 | 131.6 | |
3150.0 | 132.0 | |
3160.0 | 132.4 | |
3170.0 | 132.9 | |
3180.0 | 133.3 | |
3190.0 | 133.7 | |
3200.0 | 134.1 | |
3210.0 | 134.5 | |
3220.0 | 134.9 | |
3230.0 | 135.3 | |
3240.0 | 135.7 | |
3250.0 | 136.1 | |
3260.0 | 136.6 | |
3270.0 | 137.0 | |
3280.0 | 137.4 | |
3290.0 | 137.8 | |
3300.0 | 138.2 | |
3310.0 | 138.6 | |
3320.0 | 139.0 | |
3330.0 | 139.4 | |
3340.0 | 139.8 | |
3350.0 | 140.2 | |
3360.0 | 140.7 | |
3370.0 | 141.1 | |
3380.0 | 141.5 | |
3390.0 | 141.9 | |
3400.0 | 142.3 | |
3410.0 | 142.7 | |
3420.0 | 143.1 | |
3430.0 | 143.5 | |
3440.0 | 143.9 | |
3450.0 | 144.4 | |
3460.0 | 144.8 | |
3470.0 | 145.2 | |
3480.0 | 145.6 | |
3490.0 | 146.0 | |
3500.0 | 146.4 | |
3510.0 | 146.8 | |
3520.0 | 147.2 | |
3530.0 | 147.6 | |
3540.0 | 148.1 | |
3550.0 | 148.5 | |
3560.0 | 148.9 | |
3570.0 | 149.3 | |
3580.0 | 149.7 | |
3590.0 | 150.1 | |
3600.0 | 150.5 | |
3610.0 | 150.9 | |
3620.0 | 151.3 | |
3630.0 | 151.7 | |
3640.0 | 152.2 | |
3650.0 | 152.6 | |
3660.0 | 153.0 | |
3670.0 | 153.4 | |
3680.0 | 153.8 | |
3690.0 | 154.2 | |
3700.0 | 154.6 | |
3710.0 | 155.0 | |
3720.0 | 155.4 | |
3730.0 | 155.8 | |
3740.0 | 156.3 | |
3750.0 | 156.7 | |
3760.0 | 157.1 | |
3770.0 | 157.5 | |
3780.0 | 157.9 | |
3790.0 | 158.3 | |
3800.0 | 158.7 | |
3810.0 | 159.1 | |
3820.0 | 159.5 | |
3830.0 | 159.9 | |
3840.0 | 160.4 | |
3850.0 | 160.8 | |
3860.0 | 161.2 | |
3870.0 | 161.6 | |
3880.0 | 162.0 | |
3890.0 | 162.4 | |
3900.0 | 162.8 | |
3910.0 | 163.2 | |
3920.0 | 163.6 | |
3930.0 | 164.0 | |
3940.0 | 164.4 | |
3950.0 | 164.9 | |
3960.0 | 165.3 | |
3970.0 | 165.7 | |
3980.0 | 166.1 | |
3990.0 | 166.5 | |
4000.0 | 166.9 | |
4010.0 | 167.3 | |
4020.0 | 167.7 | |
4030.0 | 168.1 | |
4040.0 | 168.5 | |
4050.0 | 169.0 | |
4060.0 | 169.4 | |
4070.0 | 169.8 | |
4080.0 | 170.2 | |
4090.0 | 170.6 | |
4100.0 | 171.0 | |
4110.0 | 171.4 | |
4120.0 | 171.8 | |
4130.0 | 172.2 | |
4140.0 | 172.6 | |
4150.0 | 173.0 | |
4160.0 | 173.5 | |
4170.0 | 173.9 | |
4180.0 | 174.3 | |
4190.0 | 174.7 | |
4200.0 | 175.1 | |
4210.0 | 175.5 | |
4220.0 | 175.9 | |
4230.0 | 176.3 | |
4240.0 | 176.7 | |
4250.0 | 177.1 | |
4260.0 | 177.5 | |
4270.0 | 178.0 | |
4280.0 | 178.4 | |
4290.0 | 178.8 | |
4300.0 | 179.2 | |
4310.0 | 179.6 | |
4320.0 | 180.0 | |
4320.0 | 180.0 | |
4330.0 | 180.0 | |
4340.0 | 180.0 | |
4350.0 | 180.0 | |
4360.0 | 180.0 | |
4370.0 | 180.0 | |
4380.0 | 180.0 | |
4390.0 | 180.0 | |
4400.0 | 180.0 | |
4410.0 | 180.0 | |
4420.0 | 180.0 | |
4430.0 | 180.0 | |
4440.0 | 180.0 | |
4450.0 | 180.0 | |
4460.0 | 180.0 | |
4470.0 | 180.0 | |
4480.0 | 180.0 | |
4490.0 | 180.0 | |
4500.0 | 180.0 | |
4510.0 | 180.0 | |
4520.0 | 180.0 | |
4530.0 | 180.0 | |
4540.0 | 180.0 | |
4550.0 | 180.0 | |
4560.0 | 180.0 | |
4570.0 | 180.0 | |
4580.0 | 180.0 | |
4590.0 | 180.0 | |
4600.0 | 180.0 | |
4610.0 | 180.0 | |
4620.0 | 180.0 | |
4630.0 | 180.0 | |
4640.0 | 180.0 | |
4650.0 | 180.0 | |
4660.0 | 180.0 | |
4670.0 | 180.0 | |
4680.0 | 180.0 | |
4690.0 | 180.0 | |
4700.0 | 180.0 | |
4710.0 | 180.0 | |
4720.0 | 180.0 | |
4730.0 | 180.0 | |
4740.0 | 180.0 | |
4750.0 | 180.0 | |
4760.0 | 180.0 | |
4770.0 | 180.0 | |
4780.0 | 180.0 | |
4790.0 | 180.0 | |
4800.0 | 180.0 | |
4810.0 | 180.0 | |
4820.0 | 180.0 | |
4830.0 | 180.0 | |
4840.0 | 180.0 | |
4850.0 | 180.0 | |
4860.0 | 180.0 | |
4870.0 | 180.0 | |
4880.0 | 180.0 | |
4890.0 | 180.0 | |
4900.0 | 180.0 | |
4910.0 | 180.0 | |
4920.0 | 180.0 | |
4930.0 | 180.0 | |
4940.0 | 180.0 | |
4950.0 | 180.0 | |
4960.0 | 180.0 | |
4970.0 | 180.0 | |
4980.0 | 180.0 | |
4990.0 | 180.0 | |
5000.0 | 180.0 | |
5010.0 | 180.0 | |
5020.0 | 180.0 | |
5030.0 | 180.0 | |
5040.0 | 180.0 | |
5050.0 | 180.0 | |
5060.0 | 180.0 | |
5070.0 | 180.0 | |
5080.0 | 180.0 | |
5090.0 | 180.0 | |
5100.0 | 180.0 | |
5110.0 | 180.0 | |
5120.0 | 180.0 | |
5130.0 | 180.0 | |
5140.0 | 180.0 | |
5150.0 | 180.0 | |
5160.0 | 180.0 | |
5170.0 | 180.0 | |
5180.0 | 180.0 | |
5190.0 | 180.0 | |
5200.0 | 180.0 | |
5210.0 | 180.0 | |
5220.0 | 180.0 | |
5230.0 | 180.0 | |
5240.0 | 180.0 | |
5250.0 | 180.0 | |
5260.0 | 180.0 | |
5270.0 | 180.0 | |
5280.0 | 180.0 | |
5290.0 | 180.0 | |
5300.0 | 180.0 | |
5310.0 | 180.0 | |
5320.0 | 180.0 | |
5330.0 | 180.0 | |
5340.0 | 180.0 | |
5350.0 | 180.0 | |
5360.0 | 180.0 | |
5370.0 | 180.0 | |
5380.0 | 180.0 | |
5390.0 | 180.0 | |
5400.0 | 180.0 | |
5410.0 | 180.0 | |
5420.0 | 180.0 | |
5430.0 | 180.0 | |
5440.0 | 180.0 | |
5450.0 | 180.0 | |
5460.0 | 180.0 | |
5470.0 | 180.0 | |
5480.0 | 180.0 | |
5490.0 | 180.0 | |
5500.0 | 180.0 | |
5510.0 | 180.0 | |
5520.0 | 180.0 | |
5530.0 | 180.0 | |
5540.0 | 180.0 | |
5550.0 | 180.0 | |
5560.0 | 180.0 | |
5570.0 | 180.0 | |
5580.0 | 180.0 | |
5590.0 | 180.0 | |
5600.0 | 180.0 | |
5610.0 | 180.0 | |
5620.0 | 180.0 | |
5630.0 | 180.0 | |
5640.0 | 180.0 | |
5650.0 | 180.0 | |
5660.0 | 180.0 | |
5670.0 | 180.0 | |
5680.0 | 180.0 | |
5690.0 | 180.0 | |
5700.0 | 180.0 | |
5710.0 | 180.0 | |
5720.0 | 180.0 | |
5730.0 | 180.0 | |
5740.0 | 180.0 | |
5750.0 | 180.0 | |
5760.0 | 180.0 | |
5770.0 | 180.0 | |
5780.0 | 180.0 | |
5790.0 | 180.0 | |
5800.0 | 180.0 | |
5810.0 | 180.0 | |
5820.0 | 180.0 | |
5830.0 | 180.0 | |
5840.0 | 180.0 | |
5850.0 | 180.0 | |
5860.0 | 180.0 | |
5870.0 | 180.0 | |
5880.0 | 180.0 | |
5890.0 | 180.0 | |
5900.0 | 180.0 | |
5910.0 | 180.0 | |
5920.0 | 180.0 | |
5930.0 | 180.0 | |
5940.0 | 180.0 | |
5950.0 | 180.0 | |
5960.0 | 180.0 | |
5970.0 | 180.0 | |
5980.0 | 180.0 | |
5990.0 | 180.0 | |
6000.0 | 180.0 | |
6010.0 | 180.0 | |
6020.0 | 180.0 | |
6030.0 | 180.0 | |
6040.0 | 180.0 | |
6050.0 | 180.0 | |
6060.0 | 180.0 | |
6070.0 | 180.0 | |
6080.0 | 180.0 | |
6090.0 | 180.0 | |
6100.0 | 180.0 | |
6110.0 | 180.0 | |
6120.0 | 180.0 | |
6130.0 | 180.0 | |
6140.0 | 180.0 | |
6150.0 | 180.0 | |
6160.0 | 180.0 | |
6170.0 | 180.0 | |
6180.0 | 180.0 | |
6190.0 | 180.0 | |
6200.0 | 180.0 | |
6210.0 | 180.0 | |
6220.0 | 180.0 | |
6230.0 | 180.0 | |
6240.0 | 180.0 | |
6250.0 | 180.0 | |
6260.0 | 180.0 | |
6270.0 | 180.0 | |
6280.0 | 180.0 | |
6290.0 | 180.0 | |
6300.0 | 180.0 | |
6310.0 | 180.0 | |
6320.0 | 180.0 | |
6330.0 | 180.0 | |
6340.0 | 180.0 | |
6350.0 | 180.0 | |
6360.0 | 180.0 | |
6370.0 | 180.0 | |
6380.0 | 180.0 | |
6390.0 | 180.0 | |
6400.0 | 180.0 | |
6410.0 | 180.0 | |
6420.0 | 180.0 | |
6430.0 | 180.0 | |
6440.0 | 180.0 | |
6450.0 | 180.0 | |
6460.0 | 180.0 | |
6470.0 | 180.0 | |
6480.0 | 180.0 | |
6490.0 | 180.0 | |
6500.0 | 180.0 | |
6510.0 | 180.0 | |
6520.0 | 180.0 | |
6530.0 | 180.0 | |
6540.0 | 180.0 | |
6550.0 | 180.0 | |
6560.0 | 180.0 | |
6570.0 | 180.0 | |
6580.0 | 180.0 | |
6590.0 | 180.0 | |
6600.0 | 180.0 | |
6610.0 | 180.0 | |
6620.0 | 180.0 | |
6630.0 | 180.0 | |
6640.0 | 180.0 | |
6650.0 | 180.0 | |
6660.0 | 180.0 | |
6670.0 | 180.0 | |
6680.0 | 180.0 | |
6690.0 | 180.0 | |
6700.0 | 180.0 | |
6710.0 | 180.0 | |
6720.0 | 180.0 | |
6730.0 | 180.0 | |
6740.0 | 180.0 | |
6750.0 | 180.0 | |
6760.0 | 180.0 | |
6770.0 | 180.0 | |
6780.0 | 180.0 | |
6790.0 | 180.0 | |
6800.0 | 180.0 | |
6810.0 | 180.0 | |
6820.0 | 180.0 | |
6830.0 | 180.0 | |
6840.0 | 180.0 | |
6850.0 | 180.0 | |
6860.0 | 180.0 | |
6870.0 | 180.0 | |
6880.0 | 180.0 | |
6890.0 | 180.0 | |
6900.0 | 180.0 | |
6910.0 | 180.0 | |
6920.0 | 180.0 | |
6930.0 | 180.0 | |
6940.0 | 180.0 | |
6950.0 | 180.0 | |
6960.0 | 180.0 | |
6970.0 | 180.0 | |
6980.0 | 180.0 | |
6990.0 | 180.0 | |
7000.0 | 180.0 | |
7010.0 | 180.0 | |
7020.0 | 180.0 | |
7030.0 | 180.0 | |
7040.0 | 180.0 | |
7050.0 | 180.0 | |
7060.0 | 180.0 | |
7070.0 | 180.0 | |
7080.0 | 180.0 | |
7090.0 | 180.0 | |
7100.0 | 180.0 | |
7110.0 | 180.0 | |
7120.0 | 180.0 | |
7130.0 | 180.0 | |
7140.0 | 180.0 | |
7150.0 | 180.0 | |
7160.0 | 180.0 | |
7170.0 | 180.0 | |
7180.0 | 180.0 | |
7190.0 | 180.0 | |
7200.0 | 180.0 | |
7210.0 | 180.0 | |
7220.0 | 180.0 | |
7230.0 | 180.0 | |
7240.0 | 180.0 | |
7250.0 | 180.0 | |
7260.0 | 180.0 | |
7270.0 | 180.0 | |
7280.0 | 180.0 | |
7290.0 | 180.0 | |
7300.0 | 180.0 | |
7310.0 | 180.0 | |
7320.0 | 180.0 | |
7330.0 | 180.0 | |
7340.0 | 180.0 | |
7350.0 | 180.0 | |
7360.0 | 180.0 | |
7370.0 | 180.0 | |
7380.0 | 180.0 | |
7390.0 | 180.0 | |
7400.0 | 180.0 | |
7410.0 | 180.0 | |
7420.0 | 180.0 | |
7430.0 | 180.0 | |
7440.0 | 180.0 | |
7450.0 | 180.0 | |
7460.0 | 180.0 | |
7470.0 | 180.0 | |
7480.0 | 180.0 | |
7490.0 | 180.0 | |
7500.0 | 180.0 | |
7510.0 | 180.0 | |
7520.0 | 180.0 | |
7530.0 | 180.0 | |
7540.0 | 180.0 | |
7550.0 | 180.0 | |
7560.0 | 180.0 | |
7570.0 | 180.0 | |
7580.0 | 180.0 | |
7590.0 | 180.0 | |
7600.0 | 180.0 | |
7610.0 | 180.0 | |
7620.0 | 180.0 | |
7630.0 | 180.0 | |
7640.0 | 180.0 | |
7650.0 | 180.0 | |
7660.0 | 180.0 | |
7670.0 | 180.0 | |
7680.0 | 180.0 | |
7690.0 | 180.0 | |
7700.0 | 180.0 | |
7710.0 | 180.0 | |
7720.0 | 180.0 | |
7730.0 | 180.0 | |
7740.0 | 180.0 | |
7750.0 | 180.0 | |
7760.0 | 180.0 | |
7770.0 | 180.0 | |
7780.0 | 180.0 | |
7790.0 | 180.0 | |
7800.0 | 180.0 | |
7810.0 | 180.0 | |
7820.0 | 180.0 | |
7830.0 | 180.0 | |
7840.0 | 180.0 | |
7850.0 | 180.0 | |
7860.0 | 180.0 | |
7870.0 | 180.0 | |
7880.0 | 180.0 | |
7890.0 | 180.0 | |
7900.0 | 180.0 | |
7910.0 | 180.0 | |
7920.0 | 180.0 | |
7930.0 | 180.0 | |
7940.0 | 180.0 | |
7950.0 | 180.0 | |
7960.0 | 180.0 | |
7970.0 | 180.0 | |
7980.0 | 180.0 | |
7990.0 | 180.0 | |
8000.0 | 180.0 | |
8010.0 | 180.0 | |
8020.0 | 180.0 | |
8030.0 | 180.0 | |
8040.0 | 180.0 | |
8050.0 | 180.0 | |
8060.0 | 180.0 | |
8070.0 | 180.0 | |
8080.0 | 180.0 | |
8090.0 | 180.0 | |
8100.0 | 180.0 | |
8110.0 | 180.0 | |
8120.0 | 180.0 | |
8130.0 | 180.0 | |
8140.0 | 180.0 | |
8150.0 | 180.0 | |
8160.0 | 180.0 | |
8170.0 | 180.0 | |
8180.0 | 180.0 | |
8190.0 | 180.0 | |
8200.0 | 180.0 | |
8210.0 | 180.0 | |
8220.0 | 180.0 | |
8230.0 | 180.0 | |
8240.0 | 180.0 | |
8250.0 | 180.0 | |
8260.0 | 180.0 | |
8270.0 | 180.0 | |
8280.0 | 180.0 | |
8290.0 | 180.0 | |
8300.0 | 180.0 | |
8310.0 | 180.0 | |
8320.0 | 180.0 | |
8330.0 | 180.0 | |
8340.0 | 180.0 | |
8350.0 | 180.0 | |
8360.0 | 180.0 | |
8370.0 | 180.0 | |
8380.0 | 180.0 | |
8390.0 | 180.0 | |
8400.0 | 180.0 | |
8410.0 | 180.0 | |
8420.0 | 180.0 | |
8430.0 | 180.0 | |
8440.0 | 180.0 | |
8450.0 | 180.0 | |
8460.0 | 180.0 | |
8470.0 | 180.0 | |
8480.0 | 180.0 | |
8490.0 | 180.0 | |
8500.0 | 180.0 | |
8510.0 | 180.0 | |
8520.0 | 180.0 | |
8530.0 | 180.0 | |
8540.0 | 180.0 | |
8550.0 | 180.0 | |
8560.0 | 180.0 | |
8570.0 | 180.0 | |
8580.0 | 180.0 | |
8590.0 | 180.0 | |
8600.0 | 180.0 | |
8610.0 | 180.0 | |
8620.0 | 180.0 | |
8630.0 | 180.0 | |
8640.0 | 180.0 | |
8650.0 | 180.0 | |
8660.0 | 180.0 | |
8670.0 | 180.0 | |
8680.0 | 180.0 | |
8690.0 | 180.0 | |
8700.0 | 180.0 | |
8710.0 | 180.0 | |
8720.0 | 180.0 | |
8730.0 | 180.0 | |
8740.0 | 180.0 | |
8750.0 | 180.0 | |
8760.0 | 180.0 | |
8770.0 | 180.0 | |
8780.0 | 180.0 | |
8790.0 | 180.0 | |
8800.0 | 180.0 | |
8810.0 | 180.0 | |
8820.0 | 180.0 | |
8830.0 | 180.0 | |
8840.0 | 180.0 | |
8850.0 | 180.0 | |
8860.0 | 180.0 | |
8870.0 | 180.0 | |
8880.0 | 180.0 | |
8890.0 | 180.0 | |
8900.0 | 180.0 | |
8910.0 | 180.0 | |
8920.0 | 180.0 | |
8930.0 | 180.0 | |
8940.0 | 180.0 | |
8950.0 | 180.0 | |
8960.0 | 180.0 | |
8970.0 | 180.0 | |
8980.0 | 180.0 | |
8990.0 | 180.0 | |
9000.0 | 180.0 | |
9010.0 | 180.0 | |
9020.0 | 180.0 | |
9030.0 | 180.0 | |
9040.0 | 180.0 | |
9050.0 | 180.0 | |
9060.0 | 180.0 | |
9070.0 | 180.0 | |
9080.0 | 180.0 | |
9090.0 | 180.0 | |
9100.0 | 180.0 | |
9110.0 | 180.0 | |
9120.0 | 180.0 | |
9130.0 | 180.0 | |
9140.0 | 180.0 | |
9150.0 | 180.0 | |
9160.0 | 180.0 | |
9170.0 | 180.0 | |
9180.0 | 180.0 | |
9190.0 | 180.0 | |
9200.0 | 180.0 | |
9210.0 | 180.0 | |
9220.0 | 180.0 | |
9230.0 | 180.0 | |
9240.0 | 180.0 | |
9250.0 | 180.0 | |
9260.0 | 180.0 | |
9270.0 | 180.0 | |
9280.0 | 180.0 | |
9290.0 | 180.0 | |
9300.0 | 180.0 | |
9310.0 | 180.0 | |
9320.0 | 180.0 | |
9330.0 | 180.0 | |
9340.0 | 180.0 | |
9350.0 | 180.0 | |
9360.0 | 180.0 | |
9370.0 | 180.0 | |
9380.0 | 180.0 | |
9390.0 | 180.0 | |
9400.0 | 180.0 | |
9410.0 | 180.0 | |
9420.0 | 180.0 | |
9430.0 | 180.0 | |
9440.0 | 180.0 | |
9450.0 | 180.0 | |
9460.0 | 180.0 | |
9470.0 | 180.0 | |
9480.0 | 180.0 | |
9490.0 | 180.0 | |
9500.0 | 180.0 | |
9510.0 | 180.0 | |
9520.0 | 180.0 | |
9530.0 | 180.0 | |
9540.0 | 180.0 | |
9550.0 | 180.0 | |
9560.0 | 180.0 | |
9570.0 | 180.0 | |
9580.0 | 180.0 | |
9590.0 | 180.0 | |
9600.0 | 180.0 | |
9610.0 | 180.0 | |
9620.0 | 180.0 | |
9630.0 | 180.0 | |
9640.0 | 180.0 | |
9650.0 | 180.0 | |
9660.0 | 180.0 | |
9670.0 | 180.0 | |
9680.0 | 180.0 | |
9690.0 | 180.0 | |
9700.0 | 180.0 | |
9710.0 | 180.0 | |
9720.0 | 180.0 | |
9730.0 | 180.0 | |
9740.0 | 180.0 | |
9750.0 | 180.0 | |
9760.0 | 180.0 | |
9770.0 | 180.0 | |
9780.0 | 180.0 | |
9790.0 | 180.0 | |
9800.0 | 180.0 | |
9810.0 | 180.0 | |
9820.0 | 180.0 | |
9830.0 | 180.0 | |
9840.0 | 180.0 | |
9850.0 | 180.0 | |
9860.0 | 180.0 | |
9870.0 | 180.0 | |
9880.0 | 180.0 | |
9890.0 | 180.0 | |
9900.0 | 180.0 | |
9910.0 | 180.0 | |
9920.0 | 180.0 | |
9930.0 | 180.0 | |
9940.0 | 180.0 | |
9950.0 | 180.0 | |
9960.0 | 180.0 | |
9970.0 | 180.0 | |
9980.0 | 180.0 | |
9990.0 | 180.0 | |
10000.0 | 180.0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:db29df71954fe1168badcedd77462d0f3f8a0550ae4449d1bbab66ba5a87ae79" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"We have a LogLog diagram and need the values" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"" | |
] | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 3, | |
"metadata": {}, | |
"source": [ | |
"So, let's Un-LogLog it" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import numpy as np\n", | |
"%matplotlib inline\n", | |
"import matplotlib.pyplot as plt\n", | |
"from scipy.optimize import curve_fit" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 14 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Get some Datapoints, e.g. with [DigitizeIT](http://www.digitizeit.de/)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"# for the E2-180 curve\n", | |
"logx = np.array([250.0, 1650.0, 4320.0, 10000.0]) # rpm\n", | |
"logy = np.array([3.0, 70.0, 180.0, 180.0]) # power" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Because the diagram is [LogLog](http://en.wikipedia.org/wiki/Log-log_plot) and has only straight lines, that means we can fit a function of the form $P(n)=c \\cdot n^m$ to find the parameters `c` (constant) and `m` (slope)." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def loglog(n, c, m):\n", | |
" return c * n**m" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 16 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now lets fit the three parts of the LogLog graph to find the parameters." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"var={} # Dictionary to save the optimal parameters\n", | |
"for p in range(3):\n", | |
" # do the curve fitting\n", | |
" popt, pcov = curve_fit(loglog, logx[p:p+2], logy[p:p+2])\n", | |
" \n", | |
" # Save the optimal parameters\n", | |
" var[p] = [popt[0], popt[1]]\n", | |
" \n", | |
" # Print them\n", | |
" print('Constant: %.6f, Slope: %.3f for %i. part of the graph' % (popt[0], popt[1], p+1))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"Constant: 0.000298, Slope: 1.669 for 1. part of the graph\n", | |
"Constant: 0.048736, Slope: 0.981 for 2. part of the graph\n", | |
"Constant: 180.000001, Slope: -0.000 for 3. part of the graph\n" | |
] | |
} | |
], | |
"prompt_number": 17 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"So now we have the variables for the function $P(n)=c \\cdot n^m$, we can calc a continuous function" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"n=[]\n", | |
"P=[]\n", | |
"for p in range(3):\n", | |
" x=np.arange(logx[p], logx[p+1]+1, 10)\n", | |
" n.extend(x)\n", | |
" P.extend(loglog(x, var[p][0], var[p][1]))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 22 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's plot it and see, if the original datapoints and the found curve are fitting" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plt.loglog(n, P, label='Curve Fit', ls='--')\n", | |
"plt.loglog(logx, logy, label='Original', alpha=0.6)\n", | |
"\n", | |
"plt.xlabel('n / 1/min')\n", | |
"plt.ylabel('P / kW')\n", | |
"plt.title('Leistungsdiagramm E2-180')\n", | |
"plt.ylim(0, 200)\n", | |
"plt.legend(loc='best')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 23, | |
"text": [ | |
"<matplotlib.legend.Legend at 0x10a340f50>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEiCAYAAAABGF7XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8FPX9+PHXezd3SAgJhHAkJAQUOUSpdxEPLN4X4lm/\nX5RatbVq/YlKW/VrPWq8W6toW/Ho4UnFoiKCVMV4IhRUKMoRkhCOALnvze7n98dsQog5dnPNzub9\nfDzygJn9zMw7y7Dv/XzeM58RYwxKKaVUMFx2B6CUUsp5NHkopZQKmiYPpZRSQdPkoZRSKmiaPJRS\nSgVNk4dSSqmgafJQbRKRTBHxichxdsfSm0TkeRFZ3t6yUqptmjzCVA98CBYAacAXAR7vdhHJ68bx\n7NTyZqfrgVl2BRKK/OeSr42fihZtbhGRT0WkRERKReQjETk1gH1Hi8hzIrJGRBpEZFM77Y4QkWUi\nsk9EykUkV0ROadUmUkQeFJEdIlLjj2FK998B1RZNHuHLcOCHYnAbG+MzxhQbYxp7MKZQJU1/McZU\nGmPKe/2AIlG9fYwethLry0TLn9EtXj8JeAY4ETgS+AR4K4CeqxuoB/4EvEQb56yIxAPvAiXAVOAI\nYC3wpoiMatH0IWAOcLU/hq3AeyIyNIjfUwXKGKM/YfgDPA8s7+D1of42xUAFkAsc3+L1TMAHHNdi\n3a+BLUCdf7ulQAxwhb9ty587/dtsA37T6tjPAO+3WP4A+AtwB7AT2Ae8AMS3aCPA74A9/nj/DtwI\neFq0GQn809+m1h/r3BavJwOvAFXALuAe/3GWt/e+AVOAd4DdQCVWT+zUVr9PCvCaf787gTvb2M8H\n/t/7Hn+bHf71lwGfA2X+uN8Cxrbx73Ap1gdoNbAB60M0w/9vUAWsB6a22O5E/3anA58CNcAq4BDg\nUOBj/74+Bw4J4Fxa1oVzcB3wcBDt7wI2tbH+MP/vMqHFugT/urP9y4n+f/OrWrRx+d/r/7P7/2M4\n/mjPox8SkVjgfSAeOA3rP+cSYLmIjGtnm5nAbcANwBjgR/5tAF4GHgC2s/9b6cP+19rrAbVeNwtI\nAk4ALgHO8h+vyU1YQ0q/BA4HVmN9SLfcz3ysD5XpwMHAT/wxNVng3/Ys4GSsD+bzWu2jdbwJWN+I\nT/Rv+y6wWETGtmjzHDAJONN/7Ezg3DZ+x4uwEs1JWO8fQBRwt3/fpwBe4G0RiWy17T3Ak1j/Vhux\n3vMXgKf8224AXhSRiFbb3Qv8CvgB4PFvNx+43b+uwR9/Z6TzJi0ai7iAgViJrbv+C+QBc0Qkxv/e\nXIv1JeNTf5sfANFYyRSwes/AcqxEq3qa3dlLf3rnhw56Hlg9hULA3Wr9CuAx/98zadHzwPrw/haI\naGeftwN5bazPA37dal1bPY//tGozH/ikxXIR8NtWbV7iwJ7HWtr5lomV8HzA9BbrIrGSy7IW69p9\n31od59f+v4/17/ekFq9HYNWMlrX6HTcG8O+W7N/fsa3+HW5o0eYI/7qbWqxr+nY+3r98on/5nBZt\nZvnXnd9i3Xn+dXGdnEserJ5Xy59/dbDN7VjDTMODOGfvoo2eh/+1bP/55/XHUgRMafH6Zf7fI6LV\ndg8B3/T0/y/90Z5Hf3UkVu+gTEQqm36A47E+ZNvyCtaHbb6/wHm5iAzooXgM1hBHSzuxhtYQkYHA\nMOCzVm1aL/8e+LWIfCYiOSJyfIvXxvv//KT5oMZ4sIZy2iUiQ0Rkvoj8118IrgQmYA0ZtdxvcyzG\nqhN92cbuVrex/8NEZJGIbPUXoPP9L41q1bTl+7Pb/+dXbaxL7aHtWvsMmNzq55q2GorIz7F6O7OM\nMTv86zJEpKrF+Ta/k+O13N9ArKHD/wDHAkcDb2LVVNID3Y/qWa27uKp/cGENBZzXxms1bW1gjNnh\nH9I6CWvI5w7gARE52hizva1t/Hx8f8ij9ZAMWMMnBxyS71/Q0eEFAMaY50VkKdZQ3EnAOyKyyBjz\nPx1s1tlwzPNYtZRbsHpRdVhDP60L3q1ja71fg1Vj2N9AJA5YhlWMvgLrg1yw6het9+9p41htrWv9\nnnV1u9bqjDFbO2mDiMzF6kGcbYz5d4uXirBqLU0qCNylWF92fmyM8frXXSsi07GK4021MvztWp6P\nQ4EdQRxLBUh7HuGtvQ/bVVhXylQaY7a2+tnV7s6MaTDGvGuMuQ1rjD8Oa2wfrA9/dxubFQMjWq07\nvIPY2jpuOdYHQOsrd45pvR9jzC5jzPPGmNnAVcCP/T2kDf4mP2xq67/i6chODn88MN8Y85YxZj1W\noT27xetN+22OzV93+EEAv9ohwGCsCwpWGmO+xRq2Cqq+0Ec6/fcSkbuxPshPb5U4MMZ4W51ne4M4\ntgvrS0jrGHwt/r4a66qt01rE48KqI+UGcSwVIO15hLcEEZnMgR9GtcA/sGoYb4vIb4BNWN/QTgY2\nGGP+1XpHIvIT/35WYV0ZNB2rmNz04ZkHpInIMcBmoNoYUwu8B/xcRBZh1QGuxRry2ddy93T+gfkI\n8FsR2eiP4UysonPzB4qIPAG8DXyHdRXYTKDAGFMFbBaRxcCTInINVlKbBwzo5NjfApeLyMdY/1/u\nxvowEwBjzCYRebPFfvcCN2Nd/dPyw66t3zEf6wPvBhF5FKu+kUMQibUPRfsveT3gd2j6siEiv8fq\nBVwKbBKRNH+TGmNMh70MERmP1dNKA6JanLPr/UOLS4EHgQUi8hBW3eMaIAtY7I+jQkSeBn4nIjux\nrvK7BauI/qdu/u6qDZo8wpfBGhv+T6v1G40x40XkBKwrcZ4DhmBdJvo5+6+gatpHkxJgLtZ/4mis\ny2B/aox53//6IqzLVd8GBmENXdyNdRXWKKyaiQfriqHXOPDbe1tXZLVe93t/nH/ASgxvYiWUX7Xa\n7vdAOtbw26dYl6o2mYN1ddJb/tf/4o97eAfHvRLrw+cLrF7Hg0BsO23ewSok/wlrOCqmo9/RGLNX\nRC4H7vfHtgErqa9o471oLZB1Xd2urdePZ//QUPN6ERlijCnBugrPYL2fLT2P9bt15G3213gM1jlr\nsJJDgTFmq4ichnU+fYTVw92AVfhvWbO6BasH/AzWlXtfAj8yxuxG9TgxJhS/5CjVORF5FphkjOls\n6KlPiYgb63LaN4wxt9gdj1K9QXseyhFEZBjWMNT7WMMWZwP/A1xnZ1wA/qu6hmJ9Y07A6j1kYH3r\nViosafJQTuHFuk/hbqzhoE3AtcaYBbZGZXEDv8G6zNkDfI1138d6W6NSqhfpsJVSSqmg6aW6Siml\ngub4Yauf/exnprq6msmTJ3PYYYfZHU6XrV271pb4e+O43d1nV7YPZptA23bWrruvO4kdv0t/PDcD\nbd+dNmvXrmXdunXEx8fz1FNPdfmeIscnj+rqav7whz/YHUa3LVu2jClT+v7RA71x3O7usyvbB7NN\noG07a9fd153Ejt+lP56bgbbvTpumdTfeeGPAMbXF8cNWu3a1e0O0o0ydas/En71x3O7usyvbB7NN\noG07a9fZ6wUFBQHHFOrsOD/747kZaPueatMdji+Yz5gxw7zyyit2h6HU9/z85z9n/vyA5/9TNmko\n34Sp2z/hgS9l9PcbGYOrpO0HZTqxvYlJ4rY7n+Kvf/1r/x22OvXUTp90qZQtLrvsMrtDUB1oqMqj\n8PMrqKz6ev9Kl4uGI9uYR9PnI2rV376/3qHtvcMnMXny7O+3C4Ljk0e4FCRV+LFrKFJ1rmTnYorW\nXIe3sbrzxmGqu5+djk8ea9eubbMoZIyhuLgYr9fbxlaqN7ndblJTUxEJxclh+05ubq4mkBDj9dWR\nX/E6e83nREbHII3VCBAjSSAC4sLlHvL9DcVLtGtQG+ud2b7RnUL991sFxfHJoz3FxcUkJCQQFxdn\ndyj9Tk1NDcXFxQwdOtTuUJRqVtWQz5byv1Pv3QsuF57s40n8agWZY+4iZsKVne/g7DuCO2CIt1+z\nZk1w27fi+OTRXtfL6/Vq4rBJXFwcZWVldodhO+11hAZjfOyoXkFR1VJaPgJk8KBTGHX673FHJdoX\nnIM5PnkopVR7GqoKKPjPNZRkZUFENABuiSEz8UJSYsPjHhy7OP4+j7Vr19odglJtys3VB9jZqWzr\n3/n2w6lUlXxORN6nYGBAZBYTB9+iiaMHaM9DBeTmm29m2LBhzJ071+5QlOqQ11PNzi+uZu++d5of\nc+UuyWd4dSZD036B9XRa1V2OfxedeqnuwoULOfnkk8nIyGD8+PFcdNFFfPbZZ3aHRU5ODqmpqWRk\nZDT//PGPf+SRRx5pThy5ublMnDjR5khDn9Y8+l517WY2rTiavXv3J45oXzQHZT9I2pgbNXH0IO15\n2ODJJ5/k8ccf59FHH+Xkk08mKiqKFStWsHTpUo455pig9tXY2EhERM/9M4oIF1xwAU899VSP7VOp\n3maMYVfN+2yvXIJrUCLuXTsAGCxjGHbiP3APGmtzhOHH8WnYaTWPiooKHnjgAR566CHOPPNMYmNj\ncbvdzJgxg7vuuguA6667jvvuu695m9bf9CdPnszjjz/O1KlTSU9P5/HHH+eKK6444Djz5s1j3rx5\nzce8/vrrGT9+PBMmTOC+++7D5/PRFmMMbU1Z0xRTTU0NF110Ebt27WrumezerY+IbovWPPpGg7ec\nb0ufprDyTQxevOlH4IodTNbgOYw48xNNHL2k3/Y8Yt7LIXbFg99bXzv9VupOmRdQ+/baduSLL76g\nrq6Os846q8N2nd1g9/rrr/Pqq6+SkpLCnj17ePDBB6mqqmLAgAF4vV4WL17M3/5mTUdw3XXXkZqa\nyurVq6muruaSSy5hxIgR30s4nRER4uLieO2117jmmmv45ptvgtpeqZ5WWvcNeeUv02j23ykeHz2a\n7BNWEhOdZmNk4c/xPQ+n1TxKS0tJSUnB5er4re9owkoR4eqrr2b48OFER0czcuRIDj30UN5++20A\nVq5cSWxsLD/4wQ8oLi7mvffe47777iM2NpbBgwfzs5/9jEWLFrW7/zfeeIOsrCyysrIYPXp088zF\nTTE5fTLNvqI1j97jbayh6OPZbC68v0XiEIbFn8Ihyddr4ugD/bbnYZdBgwaxb98+fD5fpwmkIyNG\njDhgedasWfzzn//k4osvZuHChcyaNQuAwsJCPB4PhxxySHNbn8/HyJEj2933+eefrzUPFbJq966i\n4Msrqa3fQUTlADwTzyYqKpXRST8mMWqM3eH1G45PHu3NbdWZulPmBTXkFGz79hx11FFER0fz1ltv\ncc4557TZJj4+ntra2ubltmoKrYe1zjnnHO644w527NjBkiVLWLZsGWAlmejoaLZs2RJQshKRdnsW\nTcfs73NWBUrntupZxhj2fX0vO/KfwOfzACD1VaQWlTHyyAeJcMXbHGH/4vhhK6dJTExk3rx53Hrr\nrSxZsoSamho8Hg/Lly9vLphPnDiR5cuXU1ZWxu7du3n66ac73e/gwYP54Q9/yHXXXUdmZiZjx1pF\nwrS0NE466SR+85vfUFlZic/nIy8vj08++aTN/XQ0JNX02pAhQygtLaWioiLI316prvF4K8j76Gy2\n5z3WnDjcRshKmc2oI17QxGEDxycPp9U8wCpg33vvvTzyyCMcfPDBHHrooTz77LOceeaZAFx88cVM\nnDiRyZMnc+GFFzJz5syAvu3PmjWLlStXcsEFFxywfv78+Xg8Ho499lhGjx7NlVde2e4VUiLS7rGa\n1h900EHMnDmTKVOmMHr0aL3aqh3a6+gZZfUb+HrfQ5QMjm5eF28GcfCUVxg49THE7fgBFEdy/JME\nV6xYYdoattqxYwfDhw+3ISIF+v6r7vMZD4WVb7K75qPmdRF5nzKiIpUhJ7yAK6aNKclVwNasWcP0\n6dO7PAbt+J6H0+7zUP2H3ufRdTWenazf99gBiSPSlUj2Yc8x9NTFmjhCgPb3lFIhwxhDyTc55Hs/\npjFt/819SdETyRp4MZGuATZGp1pyfPJwYs1D9Q9a8wiOp3YnRZ/MpqzqS1wuF5KQDPFpZCSeS2rs\ncXqVX4hxfPJQSjlfVf7r5H99Mx5vubXC52Pglg2MPOkB4iKH2RucapPWPJTqJVrz6JzPNFL01a/Y\nvO6n+xMHkBZzLGOOf1cTRwjTnodSyha1jbvZUvZ3agbuJcoVAV4PUb5IMkb/mgGTb7Q7PNUJxycP\nrXmoUKU1j7YZY9hT+zkFFYvw0QDRA2jMOpYhW7cx4of/IGLwBLtDVAFwfPJQSjlHo6+avPJXKa3/\nqnmdEMHIzP/H0HE/RNxuG6NTwdCah0M89thj3HhjYF35YNp2JiUlhW3btvXIvvobrXkcqCr/X2z8\n9AxK6/YnjtiINCak/JK0+GmaOBwmZHseInIucCaQCCwwxiy3OaQe9eKLL/Lkk0+Sn59PQkICZ555\nJnfeeSeJiYlttr/pppsC3ncwbZXqbT5vA8Vf3MCuPa+BMbjiY/GlHUJq3FQyEs7BJZF2h6i6IGR7\nHsaYfxljrgauBS5ur50Tax5PPPEEd999N/fccw/5+fksW7aMwsJCZs6cicfj+V57r9drQ5Squ7Tm\nAfUlX7Fl2dHsKn4V/FMhxRZ8xdj4y8hMvEATh4P1afIQkWdFZLeIfN1q/WkislFENonIba02ux14\nou+i7F0VFRU8+OCDPPDAA5x88sm43W7S09N59tlnKSgo4NVXXyUnJ4fZs2dz7bXXMmrUKF588UVy\ncnK49tprm/fz8ssvc+ihhzJmzBgefvhhJk+ezMqVKwEOaFtQUEBKSkpz+7Fjx/Loo48272f16tXM\nmDGDrKwsxo8fz2233dZmAlMqGMYY9m1/le9yZ1DdkN+8fqCkc/Bx7zIo4Ugbo1M9oa+HrZ4D/gj8\ntWmFiLixksMpQBGwSkQWAxuBHOAdY0y7hY2uPM/ji109O6xzVNpjgR/b/xjas88++4D18fHx/OhH\nP+KDDz5gzJgxLF26lOeff56nn36auro6/vCHPzS33bhxI7feeiuvvfYaU6ZM4Z577ml+2h+0/byN\nzz//nFWrVrF582ZOOeUUzj77bMaOHUtERAT3338/hx9+OEVFRVx44YUsWLDggESluqa/Ps+j0VfD\ntorXKHGtITI+EanaiwAjB80i+bgnkIgou0NUPaBPex7GmI+A0larjwI2G2O2GWM8wMvAucAvgOnA\nLBG5pi/j7E0lJSXtPoZ26NCh7Nu3D7AeGnX66acDEBMTc8BzNhYvXsxpp53G0UcfTWRkJL/61a8O\nSBhtzZR86623Eh0dzYQJE5gwYQJff211/iZPnswPfvADXC4X6enpzJ49u91nfSjVmcqGrXyz92FK\n6taCy4Un+3hi3SkcPOk5Uqb9WRNHGAmFgvkIoLDF8nbgaGPM9Vi9lA45reaRnJzc7mNod+3aRUpK\nCkCH05nv2rXrgNdjY2NJTk7u8LhDhw5t/ntcXBw1NTUAbN68mdtvv51169ZRU1OD1+t13HsaqvpT\nr8MYH0VVy9hRvRzwNa8fMmgGGac9gTsi1r7gVK8IheTRrQeKLFy4kGeeeYaMjAwABg4cyKRJkxg9\nenS72wQzzNTTmh5Du3jxYs4777zm9VVVVaxYsYI77riDoqKiDieBS0tLY/Pmzc3LtbW1lJSUdCme\nuXPnMnnyZBYsWEB8fDxPPfUUb775Zpf21Zamy1WbPkh1OfyWPZXbGBn9F0rHTmDdf6yBhSlHjyZr\n4EVs+LKSIlaHVLz9dTk3N5cXX3wRgIyMDFJTU5k+fTpd1ecPgxKRTOBNY8wk//IxwF3GmNP8y78C\nfMaYBwLZ3yOPPGLmzJnzvfWh/DCixx9/nPnz5/Pkk08ybdo0du7cydy5c9m7dy9Lly7l0UcfZdu2\nbQc8fjYnJ6d53X//+19OPfVUFi5cyGGHHcbvfvc7nnrqKV577TWmTZt2QNuCggIOP/xw9uzZ09zT\nOeecc7jooou4/PLLOeWUUzj11FOZO3cumzZt4vLLL2fw4MEsWbIEsO7zWL16NZmZmUH9jqH8/veV\n/lDzKFv/OIVb7sdr6vElZ9A45iQSorLJTrqcKHeS3eGpDoTDw6C+BMaKSKaIRGFdlrvY5ph61Q03\n3MDtt9/OnXfeSWZmJjNmzCA9PZ033niDqKioNh8F23LdIYccwgMPPMBVV13F+PHjGTBgAIMHDyYq\nKup7bZuW23PPPfewcOFCRo0axU033cT5558f8Laq//LW7WP7v89i2+a78Jp6ANwlBWTUHcy45J9r\n4ugH+rTnISIvAScAKUAxcKcx5jkROR34PeDGuiHw/kD3qY+htYa8Ro8ezerVq0lPT7c7HKB/vf/9\nTVX1Rra/fxZ13v1DpTEMYNTEx4jNvsDGyFQwutvz6NOahzHm0nbWvwO805exON3SpUuZNm0axhju\nvPNOJkyYEDKJQ4UnY3zsqF5BUdVS3EPScO+ykseQ6MMYNu0lXHFDO9mDCiehMGzVLQsXLiQnJ6ff\nzSP0zjvvNF92m5eXxzPPPGN3SKqVcDon672lbCyZT1HVEsCHN30Krvg0RqffzIhTV2jicJDc3Fxy\ncnK6PS9gnxfMe5oTC+b9gb7/4VMwL6lbS175q3hNbfO6AZFZZA/8MdERKTZGprrDUcNWvUHvSVCh\nyumJw1tfys5PrmTnyHhMQqp/rYsRA2YwPP5HiDh+4EJ1g+OTh1Kq59UWvUfBf66l1ltCxJZ4PBPP\nISo6jeyBl5MQlWV3eCoEOP6rQ3vjdm63u/kuatW3ampqcOuzGRxZ8zBeL3s/v4nvvryEWv/VVFJf\nzdBd9UxMuVkTh2oWtj2P1NRUiouLKSsrszuUfsftdpOamtp5QxVSGrzlFH5wHpVV65rXuYkgfeT1\nDDz8N0gb87Gp/isskkdOTg5Tp049YIxZRA6Yz0mpvuakmkdp3Tfklb+Mb3gKEd9Z6wa4hpFx1PNE\nDdXp08NJbm4uubm5zpuepKe1d5OgUqpzXtNAYcViims/bl4Xse1zRtZnM/i4P+OK1AkNw1U4TE/S\nLf3lGebKeUK95lHt2c76vY8ekDiiXEmMOfwFUk/4myYO1aGwGLZSSgXO+HyUfHkb+ZFf0zjskOb1\nyTGTyUy8kAhXvI3RKadwfPLQ+zxUqArFmkdj+Va2f3IZZQ3f4RJBEoYgA4YzKvF8BscerRNhqoA5\nPnkopQJTuXEBBd/diafpTnFjGJi/hfQTHiE2Qq+OU8HRmodSvSSUah7FH17Blm9v2Z84gLSk0xgz\nbbkmDtUl2vNQKsztqfmMwrg83BUR4GskSuLIGHc/Aw76H7tDUw7m+J4H0C9n1VWhLxRqHpUNeWyr\nWAjuSPA1kuRJ5qATP9bE0Y/prLp+ep+HUm1r8Jaxft+jeHyVAMS6hzE+5UbcrmibI1OhQO/z0JqH\nClF29oa9poHvShc0J44Iieeg5Ks0cageozUPpcKM8fnIL3yEmuhiAAQ3YwZdQbQ72ebIVDhxfM9D\n7/NQocqumsfez35BxbqHce36LxgYlTiTxKgxtsSiwpfjk4dSar/KDU9TtPdlMIaI/C8YvieC1Ljj\n7A5LhSHHJw+teahQ1dc1j7qdK9m26f/Afw1MYmQWw8ff06cxqP7D8clDKQXeyu1sWzUbLx4AoiWR\njOMX4YqIsTkyFa7CInnofR4qFPVVzcNnvGzeM586dx1gPcAp64gXiEjI6JPjK2fR+zz89D4P1d9t\nq/gnxTW5UFdF5KZ/kz38JhIn/MLusFSI0/s8tOahQlRf9IaLaz6zEgdAzABSj35CE4fqE45PHkr1\nVxUNW8ivWNi8nBwzmeEJp9kYkepPHH+ToN7noUJVb9Y86ut3sbn8eQxeAOIiRpCVeKk+j0P1Ge15\nKOUw3voSCpafhNn+KRiIcA1g7KCf6NQjqk85PnlozUOFqt6oeRivl6IPZlLt3Y27cA2RWz5mbNKV\nRLsH9fixlOqI45OHUv3J3k9/RkndV83LmXFnkBA12saIVH/l+OShNQ8Vqnq65lGx/gmK9u0vkA9N\nmM6gKXf16DGUCpTjC+Zr165l2bJlTJ06NSQevqNUb6ipy2dbwcPNywMjs0mb9g8bI1JOlZubS25u\nLqmpqUyfPr3L+3F88gCYN2+e3SEo9T25ubk98oXG463ku8q/0jBhBpHfvU9sTSMZxy9CIqJ6IErV\n3zR90V6zZk239hMWyUOpcOUzXjaXvUCDtwSi4vFOOI/MiItwJ4y0OzTVzzk+eWjNQ4Wqnuh1FFQs\notKzxb8kZA+6gpiYCd3er1Ld5fiCuVLhanfNxxTXfty8PHLAGQzSxKFChOOTh97noUJVd+7zqNny\nCkXrbwf/xKXJMYczLL7rxU2leprjh62UCjcNe9eS981NuKgjoraE6IMvIWvgJTr1iAopju95aM1D\nhaqu1Dy8dfvY9tnFeLCezRFdto+xUefiFr2ySoUWxycPpcKF8XrZ/uFMarx7AHDhImvSk0QNGm9z\nZEp9n+OTh9Y8VKgKtuZRvOpGSuu+bl7OSL+RuKxzezospXqE45OHUuGgpG4t+cMbMQmpAKQlziBp\nyh02R6VU+xxfMNeahwpVgdY8qj3b2Vr2EkTF4hk3g+SdpQydvKCXo1OqexyfPHRuK+VkHm8lm0qf\nxUcDADGRaWQenoO4tECueofObdWCzm2lQlFnc1v5TCObyp6jwVcKgFtiGDtoDhGuuL4KUfVDOreV\nUg5mfD62b/gVVckN4HIBQnbS/xAbkWZ3aEoFxPEFc615qFDVUa+j9MtfU7JlARHfrYDGBtITziIp\nWi/JVc7h+OShlNNUb/oHhTv/AoCrfAfD8opJizvJ5qiUCo7jk4fe56FCVVv3eTTsWUPehrkYrDmr\nBriHM+LoBTr1iHIcxycPpZzCW1PMts8uppF6AKIknlE/XIgrKtHmyJQKnuOTh9Y8VKhqWfMwxrC1\n6hWqEqxLcF24yDx0PpGDxtkVnlLd0mnyEJGjRMTdF8EoFa62Vy2h1LeVxoNOwZs2joxRNxOXebbd\nYSnVZYH0PN4HykVkmYjcLiLHi4TOFJ9a81Chqqnmsa92DTur37NWulwMOWQeSYf9ysbIlOq+QO7z\nSAKOAI43wBwAAAAYV0lEQVQHpgH/D4gVkS+AlcBKY8zy3gtRKeeq9hSytfzl5uWBUYeQnnCWjREp\n1TM67XkYYzzGmE+NMQ8aY84CUoCjgaXAT/1/2kZrHipUHTM5nU37/oLBA0CMO5XspMsRcXypUanA\n7zAXkRT29z6mAenA58BHvROaUs7l81STv/JsfLENMPYk3FFJjB30E516RIWNQArm80Xka2AVMAv4\nFrgCSDPGnGOMeah3Q+yY1jxUqDE+Hzs+nMVH32zHVVlM1PolZA+4mNiIVLtDU6rHBNLzmA3kA89j\n9TI+NcbU9WZQSjlZyapb2Vv9efNy+qALSIrX4VUVXoIpmE/FKpYfJSJbsRLJSuBjY0xp74XYMa15\nqFBS9e0LbN/1LACHjYPBcUeTfOTDNkelVM/rNHkYYzzAp/6fh8SaR2EScCbwDDA4kP30Fn2ehwoV\ndY172Fr8lH/iEUhwj2D4Ca8iLi2Qq9DR58/zEJFkrIL5CVgF88lAMfBql4/eQ/R5Hspujb5avit9\nhroxx+DeHk3czjwKI35DdlSC3aEpdYA+e56HiMzHShaHYNU+PgSeBD4yxmzu1tGVCgPG+NhS/nfq\nvMUggi/9aDLGzWffOttGc5XqdYH0PNzA77CSRWEvxxM0rXkou22vepvy+g3Ny6MHXkJ87AR0FFWF\ns0BuErzGGPMikNXW6yIyp8ejUsoh9tasYmf1v5uXh8VPJyV2io0RKdU3gqnk/V1Ejmi5QkSuBe7s\n2ZCCo/d5KLvU5r/N9k9nQ0MNAEnRExg54Izm19t6nodS4SKY5HEZ8LqIjAcQkRuAW4ATeyEupUKa\np+xb8tZdC1W7iFr/FnE1huyBOvWI6j8CvtrKGJMrIlcDS0TkFeB84ES76yBa81B9zddQSX7uBTSY\nagAiGnwcNOBy3K6YA9rppeMqnHWYPERkdKtV3wF/Am4ALgQiRWS0MWZrL8WnVEhpmnqkyrsDAEHI\nHP8QUalHdLKlUuGls55HR5firvT/abCuyLLF2rVrmTJFC5Sqb+zd+DB7a1Y1L49M+wkDxl7eZtvc\n3Fztfaiw1eEArTHGFcCPPmVQ9Qtl9RvIG7QL78jDARgSfxzJR+bYHJVS9rBtWpGeojUP1RdqG3ez\npexvIAbviEOJTziUYVn3djj1iPY6VDhzfPJQqrc1+mrYVLoAr38y6SjXILKzf4nLHW9zZErZx/HX\nFep9Hqo3GeNjS9nfqPPuAcBFFGMHzSHSndjptnqfhwpn2vNQqgO7vrye8tQGiB4AwOikS4mPHGlz\nVErZL5AnCRaKyJ9F5DwRCbl+utY8VG8p+8997N7xElHr30IqdjM8fgbJMYGfb1rzUOEskGGro4Ev\ngP8FtonIeyJyk4gc3LuhKWWfmm2LKSh4zFrw1JOaV8SIAafZG5RSISSQiRF3GGOeMcbMBIYD9wMj\ngUUiskVEHheR00QkpuM99Q6teaie1lC6gW1f/RwfPgDiXIMZOW0h1nPQAqc1DxXOgiqYG2M8xpgV\nxpibjTHjgVOw7jq/3v+jlKP5PFXkf3whDcaa7DBCosk89lXcsUNsjkyp0NKtgrkxJg94wv9jC615\nqJ5ijCGvahHlI0YQUbgTMULWhMeIGty1c0xrHiqc6dVWSvntrP43++rXwLAJeGKTyK45hPjsS+wO\nS6mQ5Pj7PBYuXEhOTo6OL6tuKa1bz/aqt5uXBw+7kEGH39Wtfeo5qUJRbm4uOTk53a4XO77nMWbM\nGObM0YcZqq6rbdzFlvK/Yc3xCQmR2YxKPD/oArlSTjB16lSmTp3KmjVrurWfTpOH/96O24GJwBrg\nd8aY+m4dtQdpzUN1h7eqiE37HsUXbV1ZFeVOZkzSbFzS/e9VWvNQ4SyQYasngLOAjcAFwCO9GpFS\nfcQ0NlCw8jx83/wdKSvCRRQHJc0h0p1gd2hKhbxAksfpwKnGmFv8fz+rd0MKjt7nobpq10eXU+7Z\nAo0eIr9bQTYnEBc5osf2rzUPFc4CSR7xxpgdAP5Hzg7s3ZCU6n2la37L7or3mpeHJ89kUNoZNkak\nlLMEMrDrFpGT/X8XIKLFMgDGmH/3eGQB0pqHClbN1kUUFP6xeTk5ZhJDjn26x4+jNQ8VzgJJHsXA\nghbL+1otA2T1WERK9aJ6bymbql/CiAEDce5URpy4CHHrAzGVCkYgc1tlGmOyWvy0XrY1cWjNQwXK\naxrYVPos9UNG4Bl3KhFRg8g69jXc0cm9cjyteahw5vj7PJQKhDGGvPKXqGncbq1IHE7GSUuJjBlr\nb2BKOZTj7zDXmocKxI7q9yip299LHZV4AYm9nDi05qHCmeOTh1KdKa1aTVHVkubl1LippMYda2NE\nSjmf45OH1jxUR+p2rGT7B+fiKikAICFqDBkJ5/XJsbXmocKZ45OHUu3xVm4n78v/xeutIWLT+8Tt\nLPRPPaJXVinVXY5PHlrzUG3xNdaR/9G51JsKANxEMmboDUS6BvRZDFrzUOHM8clDqbbsWvljKjx5\nzcuZY+8iZvg0GyNSKrw4PnlozUO1tmfnQoqrP2xeHjHkYhLG/6zP49Cahwpnjk8eSrVU0bCFbfIZ\nnkNOh6hYUmIOY/AxT9odllJhx/E3CWrNQzWp95awufQ5DF4YMJjIQ3/K8ME3IC57viNpzUOFM8cn\nD6UAvL56vitdQKOpBiDSlcCYITfidg+yOTKlwpPjh6205qGMMWwtf4naxh0ACG7GJF1JtM2JQ2se\nKpxpz0M53p7Pfk55wk4YbM3RmZk4i4QonehZqd7k+OShNY/+reKbx9lR/AoRxeCtLWXwQTcwJO4Y\nu8MCtOahwpvjh61U/1VX9G/yt9zbvJy8p4aM+LNtjEip/sPxyUNrHv1TY8U28lZfiZdGAGJkIBnT\n3kAiomyObD+teahw5vjkofofn2mk4NOLqTeVgDX1SOaRf8M9YITNkSnVfzg+eWjNo38xxpBf8Tr7\nxo7DRMcDkHnQPcQMC736gtY8VDhzfMFc9S/FtZ+wp/ZTiEvGM+EsMkvTSDjkarvDUqrfcXzPQ2se\n/UdF/SYKKhY1L6ckHMeQSXfaGFHHtOahwpnjk4fqH+oa97G57AVr6hEgPiKdrIGXICI2R6ZU/+T4\n5KE1j/Dnrd3D1o1zW0w9ksjYQXNwSaTNkXVMax4qnGnNQ4U04/Wy/cOZNNSvx109Dl/GsYxNupIo\nd5LdoSnVr4Vsz0NEskTkGRF5raN2WvMIb3s++Sml9esBcO/ayJjy0QyIyrQ3qABpzUOFs5BNHsaY\nPGPMVXbHoexT8fXv2VHyRvNy2sBTGTTuOhsjUko16dPkISLPishuEfm61frTRGSjiGwSkduC2afW\nPMJT3fb3yN96X/NyUuRYhk59wcaIgqc1DxXO+rrn8RxwWssVIuIGnvCvHw9cKiKH9HFcKoR4vBV8\n2/gWjTHWTYCxrkGkn/CvkJp6RKn+rk+ThzHmI6C01eqjgM3GmG3GGA/wMnCuiCSLyNPAYR31RrTm\nEV58ppFNZc9THyN4JpyJa9BoMo/8O+74NLtDC5rWPFQ4C4WrrUYAhS2WtwNHG2NKgGs72/jDDz/k\nyy+/JCMjA4CBAwcyadKk5iGDpv/Auhz6y8YY/rnsfsrqNzD5qDSIiGaH95dUbPYy1Z87QileXdZl\nJy3n5uby4osvApCRkUFqairTp0+nq8QY0+WNu3RAkUzgTWPMJP/yBcBpxpif+pcvx0oe1weyvxUr\nVpgpU6b0UrSqL+2u/oj8ytebl9MTzmFY/Ek2RqRU+FqzZg3Tp0/v8l22odDzKALSWyynY/U+VD9S\nsXcl+Z43wH8qp8QcQVrcibbGpJRqXyhcqvslMFZEMkUkCrgYWBzoxlrzcL6GPasp+PhiIrZ9DD4f\n8ZGjyBp4keOnHtGahwpnfX2p7kvAJ8BBIlIoIlcaYxqBXwDvAhuAV4wx/+3LuJR9vDXF5H12CY3U\n4yreRNymTxmbdGXITz2iVH/Xp8NWxphL21n/DvBOV/ap93k4l/F6KFx5PrW+fQC4cJGdeRdR7oE2\nR9Yz9D4PFc5CoebRLWvXrmXZsmVMnTpV/7M6TPHHV1FWv7+TOWrUrcSOOsPGiJQKf7m5ueTm5nb7\naivHJw+AefPm2R2CCtK+ik/YUf9RU32cYUlnMPCwW22Nqafl5ubqFxoVcpq+aK9Zs6Zb+wmFgrnq\nZ6o9hWyteQPP+DPwDUonKepgUqc+Z3dYSqkgOL7noTUPZ2nwVrCp9FkMHnBHEjHuYkYmXoO4w69A\nrr0OFc4cnzyUc/iMh81lz9HgKwPALbGMTb6KiIgUmyNTSgXL8cNWep+HMxifj23lr1Hl2eZf42JM\n0v8SG5FqZ1i9Su/zUOHM8clj8+bN5OTk6H/UEFey6hbKvnkEfI0AZCScw8DocTZHpVT/k5ubS05O\nTre/ePf53FY9Tee2Cn1V377Alo03YQATn0LSpFvITP2p4+8gV8rJuju3leN7Hiq01e/+nLxvb6Pp\nK0pifSyjkn+siUMph3N88tCaR+hqrClm2xc/xmsaAIiWAYyaughXZLzNkfUNHUpV4czxyUOFJmN8\nFKy+ilpfCQAu3GQe/mciBmbbHJlSqic4PnnofR6hqbDyLfaOHoUvJROAUVm3EZt+WscbhRm9z0OF\nM73PQ/W4vbWr2FXzPrgjaMw+gZFplzFwzFy7w1JK9SDH9zwWLlyol+qGkKqGAvLKX2teToqZyLDs\nm22MyD56TqpQ1FOX6jq+5zFmzBjmzJljdxgKaPCWs6lsgTX1CBAbkUb2QL2ySqlQohMj+mnNIzT4\nGirJ++JyPB7r2RxuiWNs0k9wu2Jsjsw+WvNQ4czxyUPZz/h8FH04i9rij4ncsASpr2ZM0mxiIgbb\nHZpSqpc4PnnofR722/fFTeyrWQWA1JQxes8QBkYfZHNU9tOahwpnjk8eyl6VGxewffffmpeHDPgh\nyVPusTEipVRfcHzy0JqHfeqLvyD/2183LydEZDBs2iuIy/GnVY/QmocKZ/q/XHVJo6+Gb827NAwZ\nBfinHjl+Ea7IOJsjU0r1BccnD73Po+8Z42Nz2V+pMyU0Zv0QM+o4sqY8R0Rilt2hhRQ9J1Uo0vs8\n/PQ+j75XWLmYioZvrQWBUePuJSZGhw+VcgK9z8NPax59a0/tF+yq+bB5eXj8DJI1cbRJax4qnDm+\n56H6Tk3RcraZNyHCDcCg6EmMGNC/JjtUSlkc3/PQ+zz6RkPpBvJWX0nE+sVQW05sxDBG69QjHdKa\nhwpnjk8eqvd5G8rJ//hCPKYGqasgbsO/GZs4G7cr2u7QlFI2cXzy0JpH7zI+Hzs+uIBq704ABGH0\nuAeIiRpqc2ShT2seKpw5Pnmo3rX3sxvYV7v/qoz0ET8jLvtiGyNSSoUCxycPrXn0ntLabyh0739/\nUxOmkXzEvTZG5Cxa81DhTK+2Um2q8exkS8Xf8Y06ElfsQJKLikk7/kW7w1JKhQjH9zwAvcO8hzX6\nqtlU9iw+Uw9A5LBjSZ+xQqceCZLWPFQo6qk7zMUY00Mh2WPFihVmypQpdocRNnzGy3elf6KiYRMA\nLolmfPL1xEWOsDkypVRPWrNmDdOnT+/ytfaO73lozaNnFZa+2pw4AEYPvEwTRxdpb1iFM8cnD9Vz\nStfcRckXtyI1pQCMGHA6yTGH2hyVUioUOT556H0ePaN66+sUFD6B1FcTuWEJKdWJDI//kd1hOZrW\nPFQ4c3zyUN3XULKebd9cj8EHQLxJJnPkjTr1iFKqXY5PHlrz6B5vfQn5H8/CY2oBiJRYMo97DXd0\nss2ROZ/WPFQ4c3zyUF1njKHgu99S7dsNWFOPZE34A5Epk2yOTCkV6hyfPLTm0XU7qt9jzxAXjdnH\ng8tNxsjriMueZXdYYUNrHiqc6R3m/VRJ3VcUVS0BwDd4NMkpZzJo2NU2R6WUcgrH9zy05hG8Gs8O\ntpbvn2okMWosI9N+YmNE4UlrHiqcOT55qOB4fFUHTD0S7R7MmKTZuMRtc2RKKScJi+Shc1sFxtdY\nR8H7Z9FQ/i1gTT0yNmkOEa54myMLT1rzUKFI57by07mtArfj3zMprvwAXC4as6aSPeZeBsVMtDss\npZQNdG4rrXkEpOTL263EAeDzMapimCaOXqa9YRXOHJ88VOdqtrxKYdFTzcspsYcx+JgnbYxIKeV0\njk8eep9Hx+pq8slb/0sM1vBkvHsow094HXE5/p8+5GnNQ4Uz/QQJY15fPZtqXqF2zLHgjiBSYhl1\n3D9xRyfZHZpSyuEcnzy05tE2Ywxby1+ktnEnvuQMGsefRdah84lKHm93aP2G1jxUONM7zMNUUdW7\nlNZ/1bw8Ku1q4uKOsTEipVQ4cXzPQ2se31dSt44d1e82Lw+Nm8YQTRx9TmseKpxpzyPM1BWtIK/6\nBUhMASAx6mAyEs61OSqlVLhxfM9Dax77NVbkkbd6Du6Nb+Mq/s4/9cj/IuL4f2ZH0pqHCmeO/1TZ\nvHmz3SGEBJ+nhvyPZlJvKsEYovO+5ODIc4hwxdkdWr/19ddf2x2CUu3q7hdvxyeP6upqu0OwnfH5\n2LnyEiob85vXZR58HzFJ+lAnO5WXl9sdglLtWrduXbe2d3zyCBfdGeIoXf0b9lTt335k6uUkjLuq\n14/bW/vsyvbBbBNo287a9adhKTt+1/54bgbavqfadIfjk8euXbvsDqFHdPUfurz+O7YmbIWISABS\n4o4g5ejf9/pxe3Of4ZI8CgoKAo4p1Gny6Pr24Zo8HH+1VXZ2NjfeeCOTJ0929GW7qamprFmzpkvb\nurgN37DbANgD7AliLLM7x+2tfXZl+2C2CbRtZ+06e/2II47o8ffWLr1xnthxzFA/NwNt3502a9eu\nZd26dcTHd+9RDI6fkl0ppVTfc/ywlVJKqb6nyUMppVTQNHkopZQKmiYPpZRSQQu75CEi54rIn0Xk\nZRH5kd3xKNVERMaJyFMi8qqI/MTueJRqSUTiRWSViJwZUPtwvdpKRJKAh40xgd0tp1QfEWuysZeN\nMRfZHYtSTUTkt0Al8F9jzNudtXdEz0NEnhWR3SLydav1p4nIRhHZJCK3tdrsduCJvotS9UfBnpsi\ncjbwNvByX8eq+pdgzk3/KM0GrFvFAtu/E3oeInI8UAX81Rgzyb/ODXwLnAIUAauAS4GNQA6wzBiz\nwp6IVX8RzLlpjPlvi+3+ZYzRufJVrwnyc/PHQDwwHqgFzjedJAdH3GFujPlIRDJbrT4K2GyM2QYg\nIi8D52K9KdOBRBEZY4z5Ux+GqvqZYM5NEUkFZgIxwPt9GKbqh4I5N40xt/uXZwN7Oksc4JDk0Y4R\nQGGL5e3A0caY64E/2hOSUkD75+aHwIf2hKQU0M652bRgjHkh0B05oubRjtAfb1P9lZ6bKlT12Lnp\n5ORRBKS3WE7HyqJK2U3PTRWqeuzcdHLy+BIYKyKZIhIFXAwstjkmpUDPTRW6euzcdETyEJGXgE+A\ng0SkUESuNMY0Ar8A3sW6xOyVllezKNUX9NxUoaq3z01HXKqrlFIqtDii56GUUiq0aPJQSikVNE0e\nSimlgqbJQymlVNA0eSillAqaJg+llFJB0+ShlFIqaJo8lFJKBU2Th1IhTEQyRKRSRMTuWJRqSZOH\nUgESkT+JyE/bWD9RRN4VkT0i4mtn2+EiUtjWax0xxhQYYxICeb6CUn1Jk4dSgTsN6xGyrTVgPVb2\nJx1sewbwTm8EpZQdNHmofklEtonIzSKyTkTKRORlEYnuoP2hQJkxZkfr14wx3xljnsOaaK49ZwBL\nWhx7roh85R+SWiAiQ0XkHREpF5HlIpLkb5spIj4RcfmXPxCRu0UkV0Qq/D2elO68F0p1hSYP1V8Z\n4ELgVCALOBS4ooP2ZwBvdeVAIhIJHA8sb3HsmViPSz4YOAurVzIPSMX6f3lDB7u81B9rKhAFzO1K\nXEp1hyYP1Z89bozZZYwpBd4EDuugbXPPoQumAeuMMdUt1v3RGLPH35P5CPjUGLPOGFMPLAIOb2df\nBnjOGLPZGFMHvNpJ3Er1Ck0eqj/b1eLvtcCAthr5h5DGYT0boSvO4Pu1kt2tjt1yua69WPwCilup\n3qTJQylLR1cznQqs6MYVT6fTea9FL8VVjqLJQylLRx/ebfUcDtxYJAar/oCIRDcV30UkC4g2xnzb\nU4GiiUaFAE0eSlkMbfQ+/DfnzQCWtrehiGQCNcA3/n3UAk2P9jyTThJPi+O3F0vruDpqq1Sf0MfQ\nKtUBETkKq7B+TBe3fxurON5u8lHKibTnoVTHDPB/3dj+A/+PUmFFex5KKaWCpj0PpZRSQdPkoZRS\nKmiaPJRSSgVNk4dSSqmgafJQSikVNE0eSimlgvb/AdlPU3pI4zWmAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x107733350>" | |
] | |
} | |
], | |
"prompt_number": 23 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"You see, exactly!" | |
] | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 3, | |
"metadata": {}, | |
"source": [ | |
"Plot it with normal scale axes" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plt.figure(figsize=(10,6))\n", | |
"plt.plot(n, P)\n", | |
"\n", | |
"plt.xlabel('n / 1/min')\n", | |
"plt.ylabel('P / kW')\n", | |
"plt.title('Leistungsdiagramm E2-180')\n", | |
"plt.ylim(0, 200)\n", | |
"plt.savefig('Leistung-E2-180.png', dpi=300, bbox_inches='tight')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAGNCAYAAAB6wPf6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVPXVx/HPmdk+S7GCDbG3oGiwBmxYsASNMSoKxlii\nj0Z9TGKCJUaTPEZNjMZYYhQLYNfYKxJRsBPs2FARUQELyPY2v+ePexmGZWB32Zm589v5vl+veTG/\nO7ec3TO7nP3dc++Ycw4RERER8VMs6gBEREREZNWpmBMRERHxmIo5EREREY+pmBMRERHxmIo5ERER\nEY+pmBMRERHxmIo5kR7EzAaaWdLMdos6llwys1vMbNKKxiIixUTFnEgByUJRMgfoD7zSyeOdb2af\ndON4UUq/SebpwOFRBVKIwvdSMsNjcdo6Z5vZi2b2rZktNLOpZrZ/J/ZdbmY3m9kMM2s2sw9XsN4Q\nM3vKzL4xs+/MbJqZ7dNunVIzu8zMvjCz+jCGHbr/HRApHirmRAqLY9kipWsbO5d0zi1wzrVmMaZC\nZUueOOdqnHPf5fyAZmW5PkaWPUdQ3Kc/Nk57fS/gRmBPYEfgBeCRTszsxoEm4HrgDjK8Z80sATwJ\nfAsMBYYArwMPm9mGaav+BTge+HkYw8fA02bWrwtfp0hRUzEnUliMtCJluRfN+oUzLgvMbHE40zEs\n7fXlTrOa2blm9pGZNYbbPWFmFWZ2HPAHYMO0WZsLwm1mm9l57Y59o5k9kzaeYmY3mNnvzOzLcPbl\n1vA/8SXrmJldbGZfhfFONLMzzawlbZ31zey+cJ2GMNZfp72+upndZWa1ZjbPzP7Y/nuU4bTrDmb2\nuJnNN7MaM3ul/YyTma1hZveE+/3SzC7IsJ8p4df9RzP7EpgdLj/azF42s0Vh3I+Y2WYZ8jDKzJ40\nszozm2lmQ81sQJiDWjN7x8yGpm23Z7jdAeGMWb2ZvWpmW5nZtmb2fLivl81sqxW9T9I0h8V9+uPr\nJS865w50zo1zzr3pnJvlnPstMBM4bGU7dc7VO+dOcc5dD3zSPh+hzYDVgD865951zn0InAOUA9uG\nX29v4GRgrHPuEefcO8DPCArFUzrx9YkIKuZEvGFmlcAzQAIYAQwGHgMmmdmWK9jmMOC3wBnApsC+\n4TYAdwKXAnNZOmvz1/C1Fc0Qtl92ONAX2AM4Cjg4PN4SZxGcAv1fYHvgv8AF7fZzLdALGA5sAZwQ\nxrTEuHDbg4G9gYHAoe320T7eXgQzRnuG2z4JPJRecAE3A4OAg8JjDwQOyfA1HgGsQTCLtW+4rIyg\nEN4e2AdoAx41s9J22/4RuIYgV+8RfM9vBa4Lt50J3G5mJe22+xNB4fN9oCXc7lrg/HBZcxh/R1b4\nh0HGlc1iQB+gtivbrcC7BIXe8eEfD6UEBdo3wIvhOt8nKO6eWLKRcy4JTCKYzRORznDO6aGHHgXy\nAG4BJq3gteOAz4B4u+WTgSvC5wOBJLBbOD4LeB8oWcE+zwc+ybD8E+DcdstuBJ5JG08BXmu3zrXA\nC2njz4GL2q1zB9CSNn4d+P0K4ts0/HqGpy0rJSj2nurM963dcc4Nn28W7nevtNdLCHoOn2r3Nb7X\nibytHu5v13Z5OCNtnSHhsrPSlg0Ol20djvcMxyPT1jk8XPajtGWHhsuqOngvtQA17R4PrmSb8wlO\ni67bhffshcCHK3htk/D91xbG8jmwQ9rrR4dfR0m77f4CvJ3tny899OipD83MifhjR4LZs0XhqcMa\nM6sBhhEUPZncRVD8fGpBw/poM6vOUjwOeKPdsi+BfgBm1gdYB3ip3Trtx1cC55rZS2Z2SfppY2Dr\n8N8XUgd1rgV4dWWBmdlaZnatmb1rQWN/DbANMKDdflOxuKDPcHqG3f03w/4Hm9n9ZvaxBRcUfBq+\ntGG7VdO/P/PDf9/MsGztLG3X3kvAdu0eJ2da0cxOJZgNPNw590W4bEB4OnjJ++3aDo6Xvr8+wOPA\na8CuwM7AwwQ9eRt0dj8i0rH2U/siUrhiBKeuDs3wWn2mDZxzX4SnYPciOEX5O+BSM9vZOTc30zah\nJMufomt/ChGC033LHJLl2zdWekGHc+4WM3uC4NTxXsDjZna/c27MSjbr6PThLcD6wNkEs4yNBKcq\n21/A0D629vt1QN0yK5hVAU8RXFxwHEFhZcA7GfbfkvbcrWRZ++/Zqm7XXqNz7uMO1iHsUbwQ+KFz\n7j9pL31O2N8WWkznjSL44+MY51xbuOwUMxtOcLHD7wiKf8L10t+P/YAvunAskaKmmTmRwrOi4udV\ngisRa5xzH7d7zFvhzpxrds496YLm9kFAFUFvGATFWDzDZguA9dot234lsWU67ncE/yG3vzJyl/b7\ncc7Nc87d4pz7KXAicEw4gzgzXOUHS9a14IrSHTs4/DDgWre0qX4ewSm/JZbsN/1CkRKCHq6ObAWs\nCZznnHvOOfc+wWnWLvWn5UmH+TKzPxAUVge0K+RwzrW1e599nXkvGcUI/ihoH0My7fl/CS52GJEW\nT4ygD3FaF44lUtQ0MydSeHqZ2XYsWxw0ALcR9MA9asGVph8SzGDsDcx0zj3YfkdmdkK4n1eBRQSN\n/r1YWsx8AvQ3s12AWUCdc64BeBo41czuJ+gjO4XgFOU36bun4wLmcuAiM3svjOEggosIUv/Bm9nV\nwKPAB0AFwZWUc5xztcAsM3sIuMbMTiYoMscC1R0c+31gtJk9T/B77g8ExYUBOOc+NLOH0/b7NfAr\noDfLFh+ZvsZPCQqQM8zsbwT9cZfQhUI3j8otuMXHMl/DkuLfzK4kmCUbBXxoZv3DVeqdcyudhTOz\nrQlmIvsDZWnv2XfCU+FPAJcB48zsLwR9cycDGwEPhXEsNrN/AhenXS18NsFFEdd382sXKRoq5kQK\niyPoLXqt3fL3nHNbm9keBFc63gysBXwFvMzSK1SX7GOJb4FfE/ynWg58BJzknFtyi5H7gXsIiqnV\nCE61/YHgKtcNCXruWgiuyLyHZWe3Ml3x2n7ZlWGcfyco1B4mKPDOabfdlcAGBKeLXwQOSHvteIKr\nPx8JX78hjHvdlRz3ZwTFwCsEs3KXAZUrWOdxggsDric4fVqxsq/ROfe1mY0G/hzGNpOgyJ6c4XvR\nXmeWrep2mV4fxtJTmanlZraWc+5bgqucHcH3M90tBF/byjzK0h5BR/CedQTF2hzn3MdmNoLg/TSV\nYAZ4JsGFHOk9j2cTzBDfSHBl9HRgX+fcfESkU8y53P8xGTa7jido1nXAv5xzV5nZ6gT/WWxI8BfZ\nEc65ReE25xD8MmkjuCLsqZwHKiI5Z2Y3AYOccx2dKs0rM4sT3D7kAefc2VHHIyLSWfkq5voD/Z1z\nr4d9MP8laOL+GfC1c+4yM/stsJpzbmw4fX87QV/MegSnfDZ3wf2HRMQTZrYOwWnTZwj+MPshwYzW\nac65f0Uc2zCC09SvEZx6PovgXnk7hH12IiJeyMsFEGFz8+vh81qCK/LWA0YS3ECT8N8lV+kdAtzh\nnGtxzs0m6OXZKR+xikhWtRHcJ20qMAMYDZwSdSEXigPnEdx/7j8EvW97qZATEd/kvWfOzAYSXBX3\nMtAvrS9iPuH9qQh6YdLvRTWX5a+sE5EC55xbQHC7kYLjnJtC8LtIRMRreb01SXiK9T7gTOdcTfpr\nLjjfu7JzvoV4pZiIiIhIpPI2Mxd+Lt99wATn3APh4vlm1t85Ny/srVkQLv+c4Mq2JdYPly1j5MiR\nrrGxkf79g6vpE4kEm266KYMHDwbg9ddfB9C4AMdLnhdKPBorf8U0Vv78HS9ZVijxaNxxvt544w3m\nzQtuBbrJJptw3XXXZf2elPm6AMIIeuK+cc6dlbb8snDZpWY2Fujb7gKInVh6AcSmrl2wxx57rPv7\n3/+e8/gl+y655BLGjh0bdRiyipQ/vyl//lLu/HbmmWcyfvz4rBdz+ZqZ+wFB4/ObZrbk/lnnENxo\n8+7wxqazgSMAnHMzzexugnsStQKnti/kgFSlK/6ZM2dO1CFINyh/flP+/KXcSSZ5Keacc9NYcX/e\nPivY5mLg4pwFJSIiItIDeP3ZrPvvv3/UIcgqOvroo6MOQbpB+fOb8ucv5c5v2223XU72m5eeuVyZ\nPHmy22GHHaIOQ0RERKRDM2bMYPjw4VnvmfN6Zi79ahHxy7Rp06IOQbpB+fOb8ucv5U4y8bqYExER\nESl2Os0qIiIikgc6zSoiIiIiy/G6mFPPnL/U9+E35c9vyp+/lDvJxOtiTkRERKTYqWdOREREJA/U\nMyciIiIiy/G6mFPPnL/U9+E35c9vyp+/lDvJxOtiTkRERKTYqWdOREREJA/UMyciIiIiy/G6mFPP\nnL/U9+E35c9vyp+/lDvJxOtiTkRERKTYqWdOREREJA/UMyciIiIiy/G6mFPPnL/U9+E35c9vyp+/\nlDvJxOtiTkRERKTYqWdOREREJA/UMyciIiIiy/G6mFPPnL/U9+E35c9vyp+/lDvJxOtiTkRERKTY\nqWdOREREJA/UMyciIiIiy/G6mFPPnL/U9+E35c9vyp+/lDvJpCTqAESkSDkHydaooyhOyVZoa4k6\nClkVyp1koJ45Ecm7ko+mkrjjBGJ1X0cdiohI3kz+ydM56ZnTzJyI5FXs649ITDyWWON3UYciItIj\neF3Mvf7662hmzk/Tpk1j6NChUYchq2iV89e4mOoJx6QKOWcGFs9ydNKRKZ8n2XM9r1umi5ZyJ5l4\nXcyJiEeSbSTuOpn4gg8AcCUV1Jz8KG3rbx9xYMWndto0FumPKS8pd56bMSMnu1XPnIjkRcWTf6Jy\nyt9S47ojrqd5+59EGJGISH7pPnMi4q3SN/+9TCHXuPvpKuRERLLE62JO95nzl+6V5Leu5C/++Rsk\n7j09NW7ZfDgN+1+Qi7Ckk/Tz5y/lTjLxupgTkcJmtV9RPWE01tIAQNuam1J31I0Q00UPIiLZop45\nEcmN1maqxx1K6eyXAHDlvVh82tMk19os4sBERKKhnjkR8UrVw2OXFnJm1B51owo5EZEc8LqYU8+c\nv9T34beO8lf28s2Uv3JLatyw/wW0brlvjqOSztLPn7+UO8nE62JORApPyScvUPXQb1Pj5u1+TNPu\nZ0QYkYhIz6aeORHJmtjCz+h1zfDUZ662rrsdNSc/CmVVEUcmIhI99cyJSGFrricxYXSqkEtWr0Xt\nmAkq5EREcszrYk49c/5S34fflsufcyTuO52SL98KhvFSao+5Fdd3/Qiik47o589fyp1k4nUxJyKF\nofzZv1P25v2pcf3IS2kbuEuEEYmIFA/1zIlIt5S89xTV40dh4e+Sxp2Pp+HQv0YclYhI4VHPnIgU\nnNiC96m+86RUIdey0W40HHxxxFGJiBQXr4s59cz5S30ffps2bRrW8B3V40djTTUAtPVdn7qjb4aS\nsoijk47o589fyp1k4nUxJyIRSSZJ3Hki8W8+AsCVVlI3ZiKueq2IAxMRKT5eF3ODBw+OOgRZRUOH\nDo06BOmGfev+Q+kHk1PjusP/Qdu620YYkXSFfv78pdxJJl4XcyKSf6Wv30vFc1elxg17/pKWbQ+L\nMCIRkeLmdTGnnjl/qe/DT/HPXydx3xlM+SIYN2+5P437nhttUNJl+vnzl3InmXhdzIlI/ljNAqon\njMZaGwFoW2sz6o68HmL6NSIiEiWvfwurZ85f6vvwTGsz1bf9lNh3wZTc7hv3pnbMbVDRO+LAZFXo\n589fyp1k4nUxJyJ54BxVD/2Gkk9fDoYWo+6oG0mutWnEgYmICHhezKlnzl/q+/BH2cs3U/7q+NS4\nYcQFTPmqIsKIpLv08+cv5U4y8bqYE5HcKvn4eaoeHpsaN213OE3DTo8wIhERaU+fzSoiGcUWzqHX\nNcOJ1X0DQOu621FzymNQWhlxZCIiftJns4pI/jTXkZgwOlXIJavXonbMBBVyIiIFyOtiTj1z/lLf\nRwFzjsS9v6Dky7eDYbyU2mNuxfVdP7WK8uc35c9fyp1k4nUxJyLZVzHlCsreejA1rh95GW0Dd4kw\nIhERWRn1zIlISum7T5CYcAwW/l5o3OVEGg65LOKoRER6BvXMiUhOxRa8T+Kun6cKuZaNfkDDwf8X\ncVQiItIRr4s59cz5S30fhcUaFlE9fjTWVAtAW98NqDv6ZoiXZlxf+fOb8ucv5U4y8bqYE5EsSLaR\nuONE4t98BIArraJuzERc9ZoRByYiIp2hnjmRIlf5+O+peO4fqXHt0TfRMujQCCMSEemZ1DMnIllX\n9trdyxRyDXv9SoWciIhnvC7m1DPnL/V9RC8+9zWq/n1maty81Qga9zmnU9sqf35T/vyl3EkmXhdz\nIrJqrGY+1RNGY61NALStvTl1R/wTYvqVICLiG/XMiRSb1iZ63XgIJZ++AkCyog81pz1Ncs1NIg5M\nRKRnU8+ciHSfc1Q9eHaqkHMWo27UjSrkREQ85nUxp545f6nvIxrlL42jfPrE1LjhgAtp3Xx4l/ej\n/PlN+fOXcieZeF3MiUjnlXw8jcpHll7g0DT4CJqGnhZhRCIikg3qmRMpArGFc+h19d7E6r8FoHW9\n7ak5+REorYw4MhGR4qGeORFZNc11JMYfkyrkktVrUztmvAo5EZEewutiTj1z/lLfR544R+Ke0yiZ\n904wjJdSO/pWXJ/1urVb5c9vyp+/lDvJJG/FnJndZGbzzeyttGUXmtlcM3stfByQ9to5Zvahmb1n\nZvvlK06RnqTimcspe/uh1Lj+kL/StuHOEUYkIiLZlreeOTMbBtQC451zg8JlvwdqnHN/a7fu1sDt\nwI7AesDTwObOuWT6euqZE1mx0pmPUT1hdGrcuOtJNIy8NMKIRESKm/c9c865qcDCDC9l+qIOAe5w\nzrU452YDs4CdchieSI8Sm/8uibtOSY1bNh5Kw0F/ijAiERHJlULomTvdzN4ws3Fm1jdcti4wN22d\nuQQzdMtQz5y/1PeRO1a/kOrxo7HmWgDaVhtA3dE3Q7w0a8dQ/vym/PlLuZNMoi7mrgM2AgYDXwKX\nr2Rdf++hIpIvba0k7jiB+LefAOBKq6gbcxsusUbEgYmISK6URHlw59yCJc/N7Ebg4XD4ObBB2qrr\nh8uWMWvWLE499VQGDBgAQJ8+fRg0aBBDhw4Flv4Fo3HhjYcOHVpQ8fSUcflLN7HfN1MAmPIFNOxz\nOruss03Wj6f8+T1W/jTWOD/jJc/nzJkDwJAhQxg+vOufutORvN402MwGAg+nXQCxjnPuy/D5WcCO\nzrmj0y6A2ImlF0Bs6toFqwsgRJYqm3EXiXv+JzVu2PvXNO57boQRiYhIOu8vgDCzO4AXgC3M7DMz\nOx641MzeNLM3gD2AswCcczOBu4GZwOPAqe0LOVDPnM/S/2qR7ot/NoOq+/83NW7e6gAah4/N2fGU\nP78pf/5S7iSTknwdyDk3KsPim1ay/sXAxbmLSKRnsMXzqJ44BmttAqBt7S2oO+I6iEXdEisiIvmg\nz2YV8VlrE71uGEnJnFcBSFb0oea0ySTX3DjiwEREpD3vT7OKSJY5R9WDv04Vcs5i1I0ap0JORKTI\neF3MqWfOX+r76L7yF2+gfPptqXHDARfRuvneeTm28uc35c9fyp1k4nUxJ1KsSj56jspHz0uNm7Y/\nkqahp0YYkYiIREU9cyKeiX37Kb2u3ptYQ/DpeK3r70DNzx+G0sqIIxMRkZVRz5yIQFMtiQnHpAq5\nZK9+1I4er0JORKSIeV3MqWfOX+r7WAXJJIl7T6Nk3kwAXLyM2mNuxfVZN++hKH9+U/78pdxJJl4X\ncyLFpOKZyyl7++HUuP7Qy2nbcKcIIxIRkUKgnjkRD5TOfIzqCaNT48bdfk7DDy+JMCIREekq9cyJ\nFKnY/HdJ3HVKatyyye40HPjHCCMSEZFC4nUxp545f6nvo3OsfiHV40djzbUAtK22IXWjboJ4aaRx\nKX9+U/78pdxJJl4XcyI9WlsriTuOJ/7tJwC4sgS1x96GS6wecWAiIlJI1DMnUqAqHzmPiuevS41r\nj7mFlu+NjDAiERHpDvXMiRSRsv/esUwh17D32SrkREQkI6+LOfXM+Ut9HysWnzOdqgd+mRo3b30Q\njcN/G2FEy1P+/Kb8+Uu5k0y8LuZEehpb/CXVE4/FWpsAaOu3JXVHXAsx/aiKiEhm6pkTKRQtjfS6\n4YeUfPZfAJKVfak5bTLJNTaKODAREckG9cyJ9GTOUfXgr1KFnLMYdUffpEJOREQ65HUxp545f6nv\nY1nlL/yL8v/ekRo3HPhHWjfdM7qAOqD8+U3585dyJ5l4XcyJ9AQls56l8rHzU+OmHUbR9INTVrKF\niIjIUuqZE4lQ7NvZ9Lp6OLGGhQC0rr8DNT9/BEorIo5MRESyTT1zIj1NUy2JCaNThVyyVz9qx0xQ\nISciIl3idTGnnjl/FX3fh3Mk7v0FJfNmBsN4GbWjx+N6rxNxYJ1T9PnznPLnL+VOMvG6mBPxVcWU\nv1H29kOpcf2hf6VtwI4RRiQiIr5Sz5xInpW++ySJCUdj4c9e464n0TDy0oijEhGRXFPPnEgPEFvw\nAYm7TkoVci0bD6XhoD9FHJWIiPjM62JOPXP+Ksa+D2v4juoJo7GmWgDa+m5A3aibIF4acWRdV4z5\n60mUP38pd5KJ18WciDeSbSTu+jnxr2cB4EorqRszEVe9ZsSBiYiI79QzJ5IHFU/+kcopV6TGtaNu\npGXbwyKMSERE8k09cyKeKn3z/mUKucY9zlQhJyIiWeN1MaeeOX8VS99H/Mu3Sdx7emrcsvk+NOx3\n/kq28EOx5K+nUv78pdxJJl4XcyKFzOq+ITH+GKylHoC2NTah7qgbIBaPODIREelJ1DMnkgttLVTf\ndDilH08FwJVXs/jUSSTX3iLiwEREJCrqmRPxSOVjv0sVcgB1R1yvQk5ERHLC62JOPXP+6sl9H2XT\nb6PihX+lxg37nEPL1gdEGFH29eT8FQPlz1/KnWTidTEnUmjic6ZT9cCvUuPmbQ6mca9frWQLERGR\n7lHPnEiW2OJ59L5mOLHFXwLQ1m8rFv/Pk1BeHXFkIiJSCNQzJ1LIWpuonnhsqpBLVvaldsxEFXIi\nIpJzXhdz6pnzV4/q+3COqgfPpuSz6cHQYtQdfRPJNTaKOLDc6VH5K0LKn7+UO8nE62JOpBCUvzSO\n8ukTU+OGAy6iddM9owtIRESKinrmRLqh5OPnqR73IyzZCkDT4COoP+I6sKy3RIiIiOfUMydSYGIL\nPyNx+3GpQq51ve2pP+wKFXIiIpJXXhdz6pnzl/d9H831JCaOIVb3DQDJ6rWoHX0rlFZGHFh+eJ+/\nIqf8+Uu5k0y8LuZEIuEcifvOoOSLN4NhvJTaY27F9V0/4sBERKQYqWdOpIvKn72KqicuTI3rDv0b\nzTsfF1k8IiLiB/XMiRSAkvefpvLJi1Ljpp2OUyEnIiKR8rqYU8+cv3zs+4h9/RGJO0/EwtnsloG7\nUP/DSyKOKho+5k+WUv78pdxJJl4XcyJ507iY6gnHEGtcDECyz7rUHX0LlJRFG5eIiBQ99cyJdCSZ\nJDFxDGXvPg6AK6mg5uRHaVt/+4gDExERn6hnTiQiFZMvTRVyAPWHXalCTkRECobXxZx65vzlS99H\n6dsPU/mfv6TGjUNPpXn7IyKMqDD4kj/JTPnzl3InmXhdzInkUmzeTBL3nJoat2y6Jw0jLowuIBER\nkQzUMyeSgdUvpNc1w4l/OxuAttUHUnPaZFzVatEGJiIi3lLPnEi+tLWSuOOEVCHnyhLUjpmoQk5E\nRAqS18Wceub8Vch9H5VPXkTprCmpcd1PriXZf+voAipAhZw/6Zjy5y/lTjLxupgTybay1+6hYuo1\nqXHD3r+m5Xs/jDAiERGRlVPPnEgo/vnr9PrngVhrIwDNWx1A3egJENPfPCIi0n3qmRPJIatZQPWE\n0alCrm3tzak74joVciIiUvC8/p9KPXP+Kqi+j9ZmErcfR+y7LwBIVvSmdvREqOgdcWCFq6DyJ12m\n/PlLuZNMvC7mRLKh6pFzKJ39EgDOjLqjbiS51qYRRyUiItI56pmTolb2yi0k7v9lalw/4vc07XFm\nhBGJiEhPFVnPnJntZGbxbB9YJGrx2S9R9dBvU+PmbQ+jafczIoxIRESk6zpzmvUZ4Dsze8rMzjez\nYWZWluvAOkM9c/6Kuu/Dvvuc6tuOw9paAGhdZxB1P74KLOt/MPVIUedPukf585dyJ5mUdGKdvsAQ\nYBiwO/BLoNLMXgGeA55zzk3KXYgiWdbSQPWEY4nVLgAgmViDujEToawq4sBERES6rss9c2ZmwCDg\nIOBMYC3nXCSnYdUzJ13mHFX3nEr5a3cFw1ic2hPup3XjoREHJiIiPV2ueuY6MzMHgJmtwdLZud2B\nDYCXganZDkokV8qfvy5VyAE0HHSxCjkREfFaZy6AuNbM3gJeBQ4H3geOA/o750Y65/6S2xBXTD1z\n/oqi76Nk1hQqH7sgNW4acgxNu56Y9zh6AvXt+E3585dyJ5l0Zmbup8CnwC0Es3AvOucacxmUSLbF\nvp1N4vYTMJcEoHWDIdQf8ldd8CAiIt7rsGfOzEoJLoAYSnB6dSfgY4LC7jngeefcwhzHmZF65qRT\nmmrpfd3+xOe/C0CyV38W/2Iyrvc6EQcmIiLFJLKeOedcC/Bi+PhLuwsgbgTW7Mx+RCLhHIl7T0sV\nci5eRu3o8SrkRESkx+j0x3mZ2epmdghwOXAT8AegDbg7R7F1SD1z/spX30fFM5dT9vbDqXH9oZfT\nNmBIXo7dk6lvx2/Kn7+UO8mkwxk1M7uW4PTqVgS9c88C1wBTnXOzchueyKorffcJKiddnBo37vpz\nmoccE2FEIiIi2deZnrnrCQq4qc65z/ISVSepZ05WJLbgfXpfuy/WVAtAy8bDqD3+XoiXRhyZiIgU\nq8g+m9U5d7Jz7nZgo0yvm9nx2Q5KpDus4Tuqx49OFXJtfTeg7uibVMiJiEiP1OmeOWCimS3TbGRm\npwAXrGD9nFPPnL9y1veRbCNx50nEv/kIAFdaSd2YibjEGrk5XpFS347flD9/KXeSSVeKuaOBf5vZ\n1gBmdgbLvy0RAAAfmUlEQVRwNrBnZzY2s5vMbH54A+Ily1Y3s0lm9oGZPWVmfdNeO8fMPjSz98xs\nvy7EKUWs4qn/o/SDp1PjusP/Qdu6gyKMSEREJLe69NmsZjYC+CdwF/AjYHhn++jMbBhQC4x3zg0K\nl10GfO2cu8zMfgus5pwbGxaMtwM7AusBTwObOxfe8TWknjlJV/rmv6m+Y+knOjTs8b80johs4lhE\nRGQZkfTMmdnG6Q/gA+B64FjgeKA0XN4h59xUoP3NhUcCt4bPbwUODZ8fAtzhnGtxzs0GZhHcrFgk\no/gXb5G49/TUuGXzfWjc77wIIxIREcmPjk6zzsrw+D+gH8GnP8wCPuzG8fs55+aHz+eH+wVYF5ib\ntt5cghm6Zahnzl/Z7Puwum9ITBiNtTQA0LbmptQddQPE4lk7hixLfTt+U/78pdxJJiu9z5xzris9\ndd3inHNmtrJzvsu99uyzzzJ9+nQGDBgAQJ8+fRg0aBBDhw4Flr7pNe7B42QbI97/G/FFnzHlC3Cl\nFexw1gRcZZ/CiE9jjTXWOIvjJQolHo07zte0adOYM2cOAEOGDGH48OFkW5d65rp9MLOBwMNpPXPv\nAXs65+aZ2TrAM865Lc1sLIBz7pJwvSeA3zvnXk7fn3rmpPKRc6l4/p8AODPqxtxGy1YjIo5KRERk\neZHdZy7HHgJ+Gj7/KfBA2vKjzKzMzDYCNgNeiSA+KWBlM+5MFXIAjcPHqpATEZGik7dizszuAF4A\ntjCzz8zsZ8AlwL5m9gGwdzjGOTeT4DNfZwKPA6e6DFOI6pnzV/tTBl0Vn/saVfeflRo3b3MwjXv9\nqrthSSd1N38SLeXPX8qdZFKSrwM550at4KV9VrD+xcDFmV6T4mY1C6ieOAZrbQKgbe0tqPvJNRCL\neqJZREQk/zrz2ayfEcyOPQZMcs7V5SOwzlDPXBFqa6H6xkMpnf0iAMmKPtScNpnkmp26Q46IiEhk\nouyZ25mgX+1YYLaZPW1mZ5nZFtkORqQjlY+clyrknBl1R92gQk5ERIpah8Wcc+4L59yNzrnDCO7/\n9mdgfeB+M/vIzK4ysxFmVpHrYNtTz5y/VqXvo2z6RCpeujE1btjvd7RukfEsveSY+nb8pvz5S7mT\nTLrUZBR+IsNk59yvnHNbE/S7fQCcHj5EciI+ZzpVD/w6NW4edAhNe5wZYUQiIiKFIa/3mcs29cwV\nB1s8j97XDCe2+EsAWvtvTc3/PAlliYgjExER6byeep85kZVrbab69uNShVyysi91YyaqkBMREQl5\nXcypZ85fne37qHp4LCWfBveLdhajbtQ4kqsPzGFk0hnq2/Gb8ucv5U4y8bqYk56t7OVbKH/lltS4\n4YALad1sr+gCEhERKUCduc9cAjgf+B4wA7jYOdeUh9g6pJ65nis++yV63XgI1tYCQNN2h1N/5PVg\nWW81EBERyYsoe+auBg4G3gN+DFye7SBE0tl3X1B923GpQq51nUHUH3alCjkREZEMOlPMHQDs75w7\nO3x+cG5D6jz1zPlrhX0fLY1UTzyWWO0CAJKJNcILHqryGJ10RH07flP+/KXcSSadKeYSzrkvAJxz\nnwF9chuSFC3nqHrobErmzgiGsTh1o24iudoGEQcmIiJSuEo6sU7czPYOnxtQkjYGwDn3n6xH1gmD\nBw+O4rCSBUOHDl1uWflL4yiffltq3HDgH2ndZFg+w5JOypQ/8Yfy5y/lTjLpTDG3ABiXNv6m3Rhg\no6xFJEWp5JMXqHzk3NS4afujaNrt5AgjEhER8UNnPpt1oHNuo7RH+3FkhZx65vyV3vdhi+aSuO04\nLNkKQOt621P/o8t1wUMBU9+O35Q/fyl3konuMyfRamkILnio+xqAZPVa1I6+FUorIw5MRETED/ps\nVomOc1Tdcyrlr90VDGMl1J74IK0b7RpxYCIiItmnz2aVHqf8hetThRxAw8F/ViEnIiLSRV4Xc+qZ\n89eLd19D5WO/S42bhoymaZfjI4xIukJ9O35T/vyl3EkmXhdz4qfYwjlUPH0ZlmwDoHWDIdQf8hdd\n8CAiIrIKvC7mdJ85DzXXk5gwhr3XqAEg2atfcMFDSXnEgUlX6F5XflP+/KXcSSZeF3PiGedI/PtM\nSr58KxjGS6k95hZc73UiDkxERMRfXhdz6pnzS/nUqyl74z4ApnwB9SMvo23DnSOOSlaF+nb8pvz5\nS7mTTLwu5sQfJR8+Q+UTF6XGzVvuT/NOP40wIhERkZ5B95mTnIt9O5teV+9NrGERAK0b7kzNiQ9C\nSVnEkYmIiOSP7jMnfmqqJTFhdKqQS/Zeh9pjblEhJyIikiVeF3PqmStwzpG49xeUzJsZDONl1I4e\nj+vVT30fnlP+/Kb8+Uu5k0y8LuaksFU8eyVlbz+UGtcfejltG3w/wohERER6HvXMSU6UvD+J6luP\nwsL3V+OuJ9Ew8tKIoxIREYmOeubEG7GvPyJx50mpQq5lo91oOOhPEUclIiLSM3ldzKlnrgA11VA9\nYTSxxsUAJPusR93RN0O8dJnV1PfhN+XPb8qfv5Q7ycTrYk4KTDJJ4u5TiS94HwBXUkHtmAm46rUi\nDkxERKTnUs+cZE3F5L9Q+fSfU+O6n1xH8w5HRhiRiIhI4VDPnBS00pmPL1PINf7gf1TIiYiI5IHX\nxZx65gpDbMEHJO4+OTVu2WR3Gg64aCVbqO/Dd8qf35Q/fyl3konXxZwUgMbFVE8cgzXVAtDWdwPq\nRo2DeEnEgYmIiBQH9czJqksmSUw4hrL3ngTAlVZSc8oTtK07KOLARERECo965qTgVEy+JFXIAdT9\n+CoVciIiInnmdTGnnrnolL7zCJX/+Wtq3Lj76bRs9+NOb6++D78pf35T/vyl3EkmXhdzEo3Y/HdJ\n3H1qatyy2V407H9BhBGJiIgUL/XMSZdYwyJ6XbMP8W8+BqBt9YHUnDYZV7VaxJGJiIgUNvXMSfSS\nbSTuPClVyLmyBLVjJqqQExERiZDXxZx65vKrYtLFlH4wOTWuO/xqkv23XqV9qe/Db8qf35Q/fyl3\nkonXxZzkT+mb91M55YrUuGHPX9Iy6JAIIxIRERFQz5x0QvzLd+h91bDUuGWLfak99naIxSOMSkRE\nxC/qmZPIJMaPWmZcd+S/VMiJiIgUCK+LOfXM5V788zeIL5qbGi8++TFcZZ9u71d9H35T/vym/PlL\nuZNMvC7mJPcqpvwt9bx5m4NpG7hLhNGIiIhIe+qZkxWKLXif3lfuhoXvkcVnTKVtnW0ijkpERMRP\n6pmTvKuYcmWqkGveaoQKORERkQLkdTGnnrnciX37KWVv3JsaN+55Vlb3r74Pvyl/flP+/KXcSSZe\nF3OSOxXPXYUl2wBo2WR32gbsGHFEIiIikol65mQ5tvhL+ly2PdbWDEDNiQ/QusnuEUclIiLiN/XM\nSd5UTL0mVci1bjCE1o2HdbCFiIiIRMXrYk49c9lndd9S/vItqXHjXr8Ey/ofEer78Jzy5zflz1/K\nnWTidTEn2Vf+/HVYSz0Arf23oWXL/SOOSERERFbG62Ju8ODBUYfQo1j9Qipe+Fdq3LjXWTmZlQMY\nOnRoTvYr+aH8+U3585dyJ5l4XcxJdpU/fx3WVANA29qb0/K9QyKOSERERDridTGnnrnssfqFVDx/\nfWrcsPfZEIvn7Hjq+/Cb8uc35c9fyp1k4nUxJ9mz3KzcoEMjjkhEREQ6w+tiTj1z2bHcrNxeuZ2V\nA/V9+E7585vy5y/lTjLxupiT7FhmVm6tzWjZVrNyIiIivvC6mFPPXPdZw6J2vXK/yfmsHKjvw3fK\nn9+UP38pd5KJ18WcdF/5NM3KiYiI+MzrYk49c90TzMr9MzXO16wcqO/Dd8qf35Q/fyl3konXxZx0\nj2blRERE/Od1MaeeuVUX5awcqO/Dd8qf35Q/fyl3konXxZysuvLn/qFZORERkR7A62JOPXOrxmrm\nL3sF6z5j8zorB+r78J3y5zflz1/KnWTidTEnq6bimSuwlnoAWtcZpM9gFRER8ZjXxZx65routvAz\nyl+5OTVu2O88iOX/baC+D78pf35T/vyl3EkmXhdz0nUVky/F2loAaN1wJ1q32DfiiERERKQ7zDkX\ndQyrbPLkyW6HHXaIOgxvxBZ8QO8rd8NcEoCakx6mdeMfRByViIhIcZgxYwbDhw+3bO9XM3NFpPLp\nP6cKuZbN9lIhJyIi0gMURDFnZrPN7E0ze83MXgmXrW5mk8zsAzN7ysz6tt9OPXOdF//iTcreejA1\nbtjv/AijUd+H75Q/vyl//lLuJJOCKOYAB+zpnNveObdTuGwsMMk5tzkwORzLKqp86v9Sz5u3OZi2\n9bePMBoRERHJloLomTOzT4Ahzrlv0pa9B+zhnJtvZv2BKc65LdO3U89c58Rnv0Tv6w8EwJmx+Mzn\nSfbbsoOtREREJJt6es+cA542s+lmdlK4rJ9zbn74fD7QL5rQPOcclU/+ITVsHnykCjkREZEepFCK\nuR8457YHDgBOM7Nh6S+6YPpwuSlE9cx1rPTdxymd/RIALl5K4z6/iTiigPo+/Kb8+U3585dyJ5mU\nRB0AgHPuy/Dfr8zsfmAnYL6Z9XfOzTOzdYAF7bd79tlnmT59OgMGDACgT58+DBo0KPVxJ0ve9EU7\nfu5Zqu79LcMTwfdrUu8RNM2cy9ChAwsjPo011lhjjbs0XqJQ4tG443xNmzaNOXPmADBkyBCGDx9O\ntkXeM2dmVUDcOVdjZgngKeAiYB/gG+fcpWY2FujrnFvmIgj1zK1c2cs3k3jgVwC48l58d/YMXGKN\niKMSEREpTrnqmSvJ9g5XQT/gfjODIJ7bnHNPmdl04G4zOwGYDRwRXYgeaqqh8ulLUsOGPc9SISci\nItIDRd4z55z7xDk3OHx8zzn353D5t865fZxzmzvn9nPOLWq/rXrmVqxi6jXEar8CINlnXZp+cHLE\nES2r/SkD8Yvy5zflz1/KnWQSeTEn2WeL51Ex9ZrUuGHf86C0MsKIREREJFe8LuYGDx4cdQgFqXLy\npVhzHQCt/behefvCO0O9pElU/KT8+U3585dyJ5l4XczJ8mIL3qfs1QmpccMBF0IsHl1AIiIiklNe\nF3PqmVte5eMXYi4JQMume9K6efYvgc4G9X34Tfnzm/LnL+VOMvG6mJNllXzwH8reexIIPrar4YAL\now1IREREcs7rYk49c2naWql69LzUsHmHUbStu22EAa2c+j78pvz5Tfnzl3InmXhdzMlS5S/fTHzB\n+wC4smoa9v9dxBGJiIhIPnhdzKlnLmD1C6lIv0Hw3r/C9eoXYUQdU9+H35Q/vyl//lLuJBOvizkJ\nVDx9KbGGhQC0rT6Qph+cEnFEIiIiki+RfzZrd+izWSE2/z16XzUMS7YBUDt6PC3bHBxxVCIiItJe\nrj6bVTNzPnOOqkfPSxVyLRsPo2XrgyIOSkRERPLJ62Ku2HvmSt97itIPnwHAWYyGgy8Gy3rBnxPq\n+/Cb8uc35c9fyp1k4nUxV9RaGqlMvxXJjsfSts42EQYkIiIiUfC6mCvm+8xVPPcP4t98DECyojcN\n+54bcURdo3sl+U3585vy5y/lTjLxupgrVrFvP6ViyhWpceN+5+Oq14wwIhEREYmK18VcsfbMVT48\nFmttBKB13e1o2vlnEUfUder78Jvy5zflz1/KnWTidTFXjEpnPp76/FWA+kP+ArF4hBGJiIhIlHSf\nOZ8019P7il2JL/oMgKYdx1B/2N8jDkpEREQ6Q/eZEyqmXJEq5JKVq9Gw/wURRyQiIiJR87qYK6ae\nudjXH1Hx3D9S44YRF+ASa0QYUfeo78Nvyp/flD9/KXeSidfFXNFwjqoHz8bamgFoXX8HmoeMiTgo\nERERKQTqmfNA2Yw7SdxzKgDOjJrTJtO2XvHeY09ERMRH6pkrUlb7FZWPLP2kh6Zdf65CTkRERFK8\nLuaKoWeu8pHziDUsBKCt7/o07HdeB1v4QX0fflP+/Kb8+Uu5k0y8LuZ6upL3J1H+xr2pcf2hl0N5\ndYQRiYiISKFRz1yhaqql95W7EV80Nxhudzj1R/0r4qBERERkValnrshUTro4Vcglq1an4eCLI45I\nRERECpHXxVxP7ZmLf/Zfyl+4PjVuOOhPuOo1I4wo+9T34Tflz2/Kn7+UO8nE62KuR2ptInHfGVh4\n+rtl0z1p3v7IiIMSERGRQuV1MTd4cM+7RUfF05cSn/8uAK60kvof/Q0s66fXIzd06NCoQ5BuUP78\npvz5S7mTTLwu5nqa+JxXqXjuqtS4YcSFJFcfGF1AIiIiUvC8LuZ6VM9cSwOJe3+BuWQw3HgYTbuc\nEHFQuaO+D78pf35T/vyl3EkmXhdzPUnlk38i/tWHALiyauoP/wfElB4RERFZOd1nrgCUfPIi1Tcc\nnLrooe5HV9C8008jjkpERESySfeZ66maaqm697SlV69uPpzmHY+NOCgRERHxhdfFXE/omat65Bzi\n384GIFnRh7rD/t4jr15tT30fflP+/Kb8+Uu5k0y8LuZ8V/rWA5RPvy01bhh5Ka7PuhFGJCIiIr5R\nz1xEbNFcev99GLHG74Dws1ePvL4oZuVERESKkXrmepJkG4m7Tk4Vcm2rDaD+0L+qkBMREZEu87qY\n87VnruLZKymd/SIAzmLUHXk9VPSOOKr8Ut+H35Q/vyl//lLuJBOvizkfxedMp+LpS1Ljxr3Ppm3D\nnSOMSERERHymnrk8svqF9PrHnsQXfQZA64Y7U3PSwxAviTgyERERyTX1zPkumaTqnlNThVyyondw\nelWFnIiIiHSD18WcTz1z5c9dRdl7T6bG9YdfQ3K1ARFGFC31ffhN+fOb8ucv5U4y8bqY80XJx9Oo\nfOpPqXHjsF/Qss1BEUYkIiIiPYV65nLMFs+j9z/2JFa7AICWgbtQe+KDEC+NODIRERHJJ/XM+ait\nlcSdJ6UKuWRiTeqOulGFnIiIiGSN18VcoffMVT52PqWfPA+AM6PuqBv0cV0h9X34Tfnzm/LnL+VO\nMvG6mCtkZdMnUvHCv1Ljxn3OoXXTPSKMSERERHoi9czlQPzTl+l1w0isrQWA5u/9kLpRN0NMtbOI\niEixUs+cJ2zRXKon/jRVyLX234a6w69RISciIiI54XWFUXA9c811VE88Nu2ChzWoO/Y2KK+OOLDC\no74Pvyl/flP+/KXcSSZeF3MFJdlG4s6TKPk8KDBdrIS6o28p6hsDi4iISO6pZy4bnKPyod9Q8dK4\n1KK6Q/9G887HRReTiIiIFBT1zBWw8qlXL1PINe5xpgo5ERERyQuvi7lC6JkrfesBqh7/fWrcvO1h\nNOz3uwgj8oP6Pvym/PlN+fOXcieZeF3MRa3kw2dI3HVKatwycFfqDr9aV66KiIhI3qhnbhXFP32Z\nXuN+jLXUA9C21mbUnPIErmq1SOIRERGRwqaeuQIS/+JNqm85MlXIJfusR83x96mQExERkbzzupiL\nomcutuADqm86nFjjYgCS1WtRc8L9uL7r5z0Wn6nvw2/Kn9+UP38pd5KJ18VcvsUWfECvcT8iVvc1\nAMmKPtQefx/JtTaNODIREREpVuqZ66TYvJn0GndY6tMdXFmCmuPvo23DnfJyfBEREfFbrnrmSrK9\nw54o/uXbVI/7EbG6b4CgkKv96R0q5ERERCRyXp9mzUfPXHzua1TfMHJpIVdeTc3P7qF146E5P3ZP\npr4Pvyl/flP+/KXcSSaamVuJkg8mU33bz7DmWgCSFb2p/dm9tA0YEnFkIiIiIgH1zK1A2Yw7qbrv\nDCzZCkCycjVqT/g3bettl5PjiYiISM+mnrl8cY6KKVdQ+dSfUouSfdaj5mf3kOy3ZYSBiYiIiCxP\nPXPpmutJ3PXzZQq51v7bsPh/nlQhl2Xq+/Cb8uc35c9fyp1kopm5kC2aS/WE0ZR88WZqWcvGw6gd\nMwEqekcYmYiIiMiKqWcOKPnwGRJ3nZy6GTBA007HUf/DS6CkrNv7FxEREVHPXC60NlP51J+omHp1\napGLlVA/8jKadz4uurhEREREOqloe+ZiX82i1z9HLFPIJavXpvbEB1XI5YH6Pvym/PlN+fOXcieZ\nFN/MXFsLFVOvpmLyZVhrU2pxy+bDqTv8GlyvtSMMTkRERKRriqpnLj73NaruO4OSee+klrl4KQ0j\nfk/TbqdAzOuJShERESlg6pnrJls8j17/PABra04ta113O+p/fBVt6w6KMDIRERGRVVfQU1FmNsLM\n3jOzD83st+1f70rPnOvdn6bdTgqel1ZSf8BF1Jw6SYVcRNT34Tflz2/Kn7+UO8mkYIs5M4sDVwMj\ngK2BUWa2Vfo6s2bN6tI+G/YZS9MOo1h85jSadj8d4kUzMVlw3nrrrahDkG5Q/vym/PlLufNb1j/s\nIFTI1cxOwCzn3GwAM7sTOAR4d8kKdXV1XdtjWYL6n1yTvQhllX333XdRhyDdoPz5Tfnzl3Lntzfe\neCMn+y3YmTlgPeCztPHccJmIiIiIhAq5mOvwMtt58+blIw7JgTlz5kQdgnSD8uc35c9fyp1kUsin\nWT8HNkgbb0AwO5eyySabcOaZZ6bG2223HYMHD85PdNItQ4YMYcaMGVGHIatI+fOb8ucv5c4vr7/+\n+jKnVhOJRE6OU7D3mTOzEuB9YDjwBfAKMMo59+5KNxQREREpIgU7M+ecazWzXwBPAnFgnAo5ERER\nkWUV7MyciIiIiHSskC+AWKGObiYs+WdmG5jZM2b2jpm9bWZnhMtXN7NJZvaBmT1lZn3TtjknzOF7\nZrZf2vLvm9lb4Wt/j+LrKVZmFjez18zs4XCs/HnCzPqa2b1m9q6ZzTSznZU/P4S5eCf8vt9uZuXK\nXeEys5vMbL6ZvZW2LGv5CvN/V7j8JTPbsMOgnHNePQhOuc4CBgKlwOvAVlHHVewPoD8wOHxeTdDv\nuBVwGfCbcPlvgUvC51uHuSsNczmLpTPFrwA7hc8fA0ZE/fUVywP4JXAb8FA4Vv48eQC3AseHz0uA\nPspf4T/C7//HQHk4vgv4qXJXuA9gGLA98FbasqzlCzgVuDZ8fiRwZ0cx+Tgzl7qZsHOuBVhyM2GJ\nkHNunnPu9fB5LcHNndcDRhL8J0P476Hh80OAO5xzLS64MfQsYGczWwfo5Zx7JVxvfNo2kkNmtj5w\nIHAjsOSDoJU/D5hZH2CYc+4mCHqOnXPfofz5YDHQAlSFF/5VEVz0p9wVKOfcVGBhu8XZzFf6vu4j\nuBB0pXws5nQz4QJnZgMJ/mp5GejnnJsfvjQf6Bc+X5dlbzWzJI/tl3+O8psvVwBnA8m0ZcqfHzYC\nvjKzm81shpndYGYJlL+C55z7FrgcmENQxC1yzk1CufNNNvOVqnOcc63Ad2a2+soO7mMxpys2CpiZ\nVRP8JXGmc64m/TUXzBkrfwXIzA4GFjjnXmPprNwylL+CVgLsQHBqZgegDhibvoLyV5jMbBPgfwlO\nwa0LVJvZ6PR1lDu/RJEvH4u5Dm8mLNEws1KCQm6Cc+6BcPF8M+sfvr4OsCBc3j6P6xPk8fPwefry\nz3MZtwCwGzDSzD4B7gD2NrMJKH++mAvMdc69Go7vJSju5il/BW8I8IJz7ptwFubfwK4od77Jxu/K\nuWnbDAj3VQL0CWdwV8jHYm46sJmZDTSzMoLmwIcijqnomZkB44CZzrkr0156iKCZl/DfB9KWH2Vm\nZWa2EbAZ8Ipzbh6wOLwSz4AxadtIjjjnznXObeCc2wg4CviPc24Myp8Xwu/7Z2a2ebhoH+Ad4GGU\nv0L3HrCLmVWG3/N9gJkod77Jxu/KBzPs63BgcodHj/qqkFW8kuQAgqslZwHnRB2PHg5gKEGv1evA\na+FjBLA68DTwAfAU0Ddtm3PDHL4H7J+2/PvAW+FrV0X9tRXbA9iDpVezKn+ePIDtgFeBNwhmd/oo\nf348gN8QFN9vETS+lyp3hfsgOHvxBdBM0Nv2s2zmCygH7gY+BF4CBnYUk24aLCIiIuIxH0+zioiI\niEhIxZyIiIiIx1TMiYiIiHhMxZyIiIiIx1TMiYiIiHhMxZyIiIiIx1TMiYiIiHhMxZyISJaZ2QAz\nqwnv7C4iklMq5kSkRzOz683spAzLv2dmT5rZV2aWXMG265rZZ109pnNujnOul9Nd2UUkD1TMiUhP\nNwJ4NMPyZuBO4ISVbHsg8HgughIRyRYVcyLiDTObbWa/MrM3zGyRmd1pZuUrWX9bYJFz7ov2rznn\nPnDO3UzwoeYrciDwWNqxf21mb4anUMeZWT8ze9zMvjOzSWbWN1x3oJklzSwWjqeY2R/MbJqZLQ5n\nBNfozvdCRGQJFXMi4hMH/ATYH9gI2BY4biXrHwg8sioHMrNSYBgwKe3YhwHDgS2Agwlm7cYCaxP8\nPj1jJbscFca6NlAG/HpV4hIRaU/FnIj45irn3Dzn3ELgYWDwStZNzaytgt2BN5xzdWnL/uGc+yqc\n6ZsKvOice8M51wTcD2y/gn054Gbn3CznXCNwdwdxi4h0moo5EfHNvLTnDUB1ppXCU55bAi+s4nEO\nZPleu/ntjp0+blxRLKFOxS0i0lUq5kTEZyu7WnR/YHI3rig9gI5n9XTrERGJnIo5EfHZyoqpTDNr\ny25sVkHQv4aZlS+5mMLMNgLKnXPvZytQVPiJSI6omBMRnzkyzM6FN+vdD3hiRRua2UCgHng73EcD\n8G748kF0UAimHX9FsbSPa2XrioisMtM9LUWkpzGznQgulNhlFbd/lOBihxUWgyIihUIzcyLSEzng\n993Yfkr4EBEpeJqZExEREfGYZuZEREREPKZiTkRERMRjKuZEREREPKZiTkRERMRjKuZEREREPKZi\nTkRERMRj/w8/5hGOx9j7TwAAAABJRU5ErkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x10a357a90>" | |
] | |
} | |
], | |
"prompt_number": 24 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now dump it to csv for use with `Excel` or something you guys are using..." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"data = np.array([n, P])\n", | |
"np.savetxt('Leistung-E2-180.csv', data.T, fmt='%.1f', header='n [1/min], P [kW]', delimiter=',')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 25 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Remember:" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"" | |
] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
# <nbformat>3.0</nbformat> | |
# <headingcell level=1> | |
# We have a LogLog diagram and need the values | |
# <markdowncell> | |
#  | |
# <headingcell level=3> | |
# So, let's Un-LogLog it | |
# <codecell> | |
import numpy as np | |
%matplotlib inline | |
import matplotlib.pyplot as plt | |
from scipy.optimize import curve_fit | |
# <markdowncell> | |
# Get some Datapoints, e.g. with [DigitizeIT](http://www.digitizeit.de/) | |
# <codecell> | |
# for the E2-180 curve | |
logx = np.array([250.0, 1650.0, 4320.0, 10000.0]) # rpm | |
logy = np.array([3.0, 70.0, 180.0, 180.0]) # power | |
# <markdowncell> | |
# Because the diagram is [LogLog](http://en.wikipedia.org/wiki/Log-log_plot) and has only straight lines, that means we can fit a function of the form $P(n)=c \cdot n^m$ to find the parameters `c` (constant) and `m` (slope). | |
# <codecell> | |
def loglog(n, c, m): | |
return c * n**m | |
# <markdowncell> | |
# Now lets fit the three parts of the LogLog graph to find the parameters. | |
# <codecell> | |
var={} # Dictionary to save the optimal parameters | |
for p in range(3): | |
# do the curve fitting | |
popt, pcov = curve_fit(loglog, logx[p:p+2], logy[p:p+2]) | |
# Save the optimal parameters | |
var[p] = [popt[0], popt[1]] | |
# Print them | |
print('Constant: %.6f, Slope: %.3f for %i. part of the graph' % (popt[0], popt[1], p+1)) | |
# <markdowncell> | |
# So now we have the variables for the function $P(n)=c \cdot n^m$, we can calc a continuous function | |
# <codecell> | |
n=[] | |
P=[] | |
for p in range(3): | |
x=np.arange(logx[p], logx[p+1]+1, 10) | |
n.extend(x) | |
P.extend(loglog(x, var[p][0], var[p][1])) | |
# <markdowncell> | |
# Let's plot it and see, if the original datapoints and the found curve are fitting | |
# <codecell> | |
plt.loglog(n, P, label='Curve Fit', ls='--') | |
plt.loglog(logx, logy, label='Original', alpha=0.6) | |
plt.xlabel('n / 1/min') | |
plt.ylabel('P / kW') | |
plt.title('Leistungsdiagramm E2-180') | |
plt.ylim(0, 200) | |
plt.legend(loc='best') | |
# <markdowncell> | |
# You see, exactly! | |
# <headingcell level=3> | |
# Plot it with normal scale axes | |
# <codecell> | |
plt.figure(figsize=(10,6)) | |
plt.plot(n, P) | |
plt.xlabel('n / 1/min') | |
plt.ylabel('P / kW') | |
plt.title('Leistungsdiagramm E2-180') | |
plt.ylim(0, 200) | |
plt.savefig('Leistung-E2-180.png', dpi=300, bbox_inches='tight') | |
# <markdowncell> | |
# Now dump it to csv for use with `Excel` or something you guys are using... | |
# <codecell> | |
data = np.array([n, P]) | |
np.savetxt('Leistung-E2-180.csv', data.T, fmt='%.1f', header='n [1/min], P [kW]', delimiter=',') | |
# <markdowncell> | |
# Remember: | |
# <markdowncell> | |
#  | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment