- Use SSHFS (installed with Homebrew) to browse remote files
atom-beautify
autopep8
through Anacondauncrustify
through Homebrew
Linter
linter-clang
linter-cppcheck
from theano import tensor | |
from blocks.bricks import Linear, Rectifier, Softmax | |
from blocks.bricks.cost import CategoricalCrossEntropy | |
from blocks.roles import WEIGHT | |
from blocks.graph import ComputationGraph | |
from blocks.filter import VariableFilter | |
from blocks.initialization import IsotropicGaussian, Constant | |
from blocks.algorithms import GradientDescent, Scale | |
from blocks.log.log import TrainingLog |
import theano | |
from theano import tensor | |
import numpy as np | |
def main(): | |
x = tensor.vector('x') | |
y = tensor.alloc(np.float32(0), *x.shape) | |
def step(x_elem, t, prev_y): | |
new_y = tensor.set_subtensor(prev_y[t], x_elem) |
t = require 'torch' | |
grad = require 'autograd' | |
function loop(p, y, idxs) | |
-- Only works if h is a derivable value as well | |
x = p.x | |
h = p.h | |
for i = 1, x:size(1) do | |
h[idxs[i]] = x[i] | |
end |
import sys | |
import theano | |
from theano import tensor | |
import numpy as np | |
def main(length): | |
# Sequential input | |
x = tensor.vector('x') |
t = require 'torch' | |
grad = require 'autograd' | |
function loop(x, h, y, idxs) | |
for i = 1, x:size(1) do | |
h[idxs[i]] = x[i] | |
if i == 1 then | |
cost = t.pow(y[idxs[i]] - h[idxs[i]], 2) | |
else | |
cost = cost + t.pow(y[idxs[i]] - h[idxs[i]], 2) |
grad = require 'autograd' | |
torch = require 'torch' | |
params={ | |
W=torch.range(0, 8):view(3, 3), | |
storage=torch.zeros(3, 3) | |
} | |
function f(params, x) | |
params.storage[2] = params.W * x |
import numpy | |
import theano | |
from theano import tensor, config | |
# The parameters | |
W = theano.shared(numpy.arange(9, dtype=config.floatX).reshape(3, 3)) | |
storage = theano.shared(numpy.zeros((3, 3), dtype=config.floatX)) | |
# The input | |
x = tensor.vector('x') |
local ffi = require 'ffi' | |
ffi.cdef([[ | |
typedef long time_t; | |
typedef struct timeval { | |
time_t tv_sec; | |
time_t tv_usec; | |
}; |
local function nll(params, probs, out_arcs, out_mask, lengths) | |
local seq_len = probs:size(1) | |
local max_out_arcs = out_arcs:size(2) | |
local state_nll = {0} | |
for i = 1, seq_len do | |
for j = 1, max_out_arcs do | |
if out_mask[{i, j}] ~= 1 then | |
break | |
end | |
local target = i + lengths[out_arcs[{i, j}]] |