Skip to content

Instantly share code, notes, and snippets.

View bbrighttaer's full-sized avatar
💭
👨‍🔧 doing what I love!

bbrighttaer bbrighttaer

💭
👨‍🔧 doing what I love!
View GitHub Profile
@bbrighttaer
bbrighttaer / dl4juiservergist.txt
Last active December 1, 2017 10:36
Custom loss function with DL4J UIServer error
18:17:08.937 [application-akka.actor.default-dispatcher-4] ERROR application -
! @766o9k5ib - Internal server error, for (GET) [/train/model/graph] ->
play.api.http.HttpErrorHandlerExceptions$$anon$1: Execution exception[[InvocationTargetException: null]]
at play.api.http.HttpErrorHandlerExceptions$.throwableToUsefulException(HttpErrorHandler.scala:265)
at play.api.http.DefaultHttpErrorHandler.onServerError(HttpErrorHandler.scala:191)
at play.core.server.netty.PlayDefaultUpstreamHandler$$anonfun$9$$anonfun$apply$1.applyOrElse(PlayDefaultUpstreamHandler.scala:151)
at play.core.server.netty.PlayDefaultUpstreamHandler$$anonfun$9$$anonfun$apply$1.applyOrElse(PlayDefaultUpstreamHandler.scala:148)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
@bbrighttaer
bbrighttaer / CurriculumLearning.md
Created July 10, 2018 03:24 — forked from shagunsodhani/CurriculumLearning.md
Notes for Curriculum Learning paper

Curriculum Learning

Introduction

  • Curriculum Learning - When training machine learning models, start with easier subtasks and gradually increase the difficulty level of the tasks.
  • Motivation comes from the observation that humans and animals seem to learn better when trained with a curriculum like a strategy.
  • Link to the paper.

Contributions of the paper

@bbrighttaer
bbrighttaer / controlsystem_modified.py
Last active April 4, 2019 13:48
fast processing of skfuzzy rules
# project: fuzzrl
# Copyright (C) 6/8/18 - 2:54 PM
# Author: bbrighttaer
"""
slight modification of scikit-fuzzy skfuzzext.py : RuleOrderGenerator
"""
from skfuzzy.control.controlsystem import RuleOrderGenerator
@bbrighttaer
bbrighttaer / dc.molnet.load_pdbbind error
Created December 18, 2018 14:36
I tried loading the core subset of the pdbbind dataset using deepchem 2.1.1
/home/bbrighttaer/anaconda3/envs/deepchem/lib/python3.5/site-packages/deepchem/feat/rdkit_grid_featurizer.py:1033: UserWarning: sanitize is set to False, pi_stack feature will be ignored
feature_type)
/home/bbrighttaer/anaconda3/envs/deepchem/lib/python3.5/site-packages/deepchem/feat/rdkit_grid_featurizer.py:1033: UserWarning: sanitize is set to False, cation_pi feature will be ignored
feature_type)
Featurizing Complexes
TIMING: Loading protein coordinates took 68.712 s
TIMING: Loading ligand coordinates took 0.226 s
TIMING: Centroid processing took 0.031 s
TIMING: Loading protein coordinates took 56.752 s
TIMING: Loading ligand coordinates took 0.258 s
# Author: bbrighttaer
# Date: 5/24/19
# Time: 12:27 AM
# File: math.py
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
@bbrighttaer
bbrighttaer / smiles_internal_diversity.py
Created July 15, 2020 12:09
Calculates internal diversity of a given set of SMILES.
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
import rdkit.Chem as Chem
from rdkit import DataStructs
from rdkit.Chem import AllChem
def verify_sequence(smile):
mol = Chem.MolFromSmiles(smile)
def default_hparams_bopt(flags):
"""
protein model types:
--------------------------------------------------------------------------------------------
short name | full name
------------|-------------------------------------------------------------------------------
psc | Protein Sequence Composition
------------|-------------------------------------------------------------------------------
p2v | Protein to Vector / Embeddings using n-gram amino acid 'words'.
------------|-------------------------------------------------------------------------------
@bbrighttaer
bbrighttaer / txt
Created August 4, 2022 01:34
Cmake build trace
(base) MacBook-Pro build % cmake ..
-- Found ZLIB: /opt/local/lib/libz.dylib (found version "1.2.12")
-- Configuring done
-- Generating done
-- Build files have been written to: /Users/bbrighttaer/robocup-soccer/rcssmonitor-17.0.0/build
(base) MacBook-Pro build % make
[ 2%] Automatic MOC for target rcssrcg
[ 2%] Built target rcssrcg_autogen
[ 5%] Building CXX object rcss/rcg/CMakeFiles/rcssrcg.dir/rcssrcg_autogen/mocs_compilation.cpp.o
[ 7%] Building CXX object rcss/rcg/CMakeFiles/rcssrcg.dir/handler.cpp.o
@bbrighttaer
bbrighttaer / steps-for-paper-reading.txt
Created May 8, 2024 16:05
Steps for paper reading
Source: https://github.com/philparadis/paper-notes/issues/1
Step 1:
Read the article diagonally, highlighting all key terminology, concepts, algorithms, etc. I need to be familiar with
Make a first quick summary of what I think the paper is trying to establish
Step 2:
Find the definitions of the previously highlighted key prerequisites (concepts, algorithms, terminology)
Find the most important articles listed in the reference section and go through them