Created
April 18, 2021 10:57
-
-
Save bcyoungV/b8e3a590297b718a56ea5927469e72b7 to your computer and use it in GitHub Desktop.
Regression Linear Simple --Bruno Casaca
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"source": "#Import required libraries\nimport matplotlib.pyplot as plt\nimport numpy as np\nfrom sklearn import datasets, linear_model\nfrom sklearn.metrics import mean_squared_error, r2_score\n", | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"source": "# Split the data into training/testing sets\nX_train =np.array([1,2,4,3,5,6,7,8,8])\nX_test = np.array([3,9,7,5])\n# Split the targets into training/testing sets\ny_train = np.array([1,3,6,4,5,5,6,7,6])\ny_test = np.array([5,7,5,3])\n#Plot the data to see how it looks\nplt.scatter(X_train, y_train, color='blue')\n", | |
"execution_count": 3, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 3, | |
"data": { | |
"text/plain": "<matplotlib.collections.PathCollection at 0x7f380a2a90d0>" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOjklEQVR4nO3dTYwk9X3G8eeZHRD0GkQUWhFhPdPhghRZCotaJM5KKAHHAhuRHHIAtX2IIvXFiiCJZNnaQ+TD5BRZzslSa4ntyB0sm5cLSSyQDEqQYkjPspiXJQc7O8MC9jZKbIw7yov9y6F6xb70THfvVk39auf7kVrV9e+amker2mdr/lW144gQACCvlboDAAB2R1EDQHIUNQAkR1EDQHIUNQAkt1rFTm+88cbodDpV7BoArkibm5vvRkR71meVFHWn09FoNKpi1wBwRbK9tdNnTH0AQHIUNQAkR1EDQHIUNQAkR1EDQHJzi9r2rbZPnPN6z/bDexEOAJpgOJQ6HWllpVgOh+Xuf+7teRHxb5JukyTbByS9JenJcmMAQDMNh1K/L00mxfrWVrEuSb1eOd9j2amPuyV9PyJ2vN8PAPaTo0c/KOmzJpNivCzLFvUDkh6d9YHtvu2R7dF4PL78ZADQANvby41fioWL2vbVku6X9K1Zn0fEICK6EdFtt2c+BQkAV5y1teXGL8UyZ9T3SjoeET8q79sDQLNtbEit1vljrVYxXpZlivpB7TDtAQD7Va8nDQbS+rpkF8vBoLwLiZLkRX5nou2WpDcl3RIRP5m3fbfbDf5TJgBYnO3NiOjO+myh/z0vIiaSfrnUVACAhfBkIgAkR1EDQHIUNQAkR1EDQHIUNQAkR1EDQHIUNQAkR1EDQHIUNQAkR1EDQHIUNQAkR1EDQHIUNQAkR1EDQHIUNQAkR1EDQHIUNQAkR1EDQHIUNQAkR1EDQHIUNQAkR1EDQHIUNQAkR1EDQHILFbXtG2w/ZvsN2ydtf7TqYNifhkOp05FWVorlcFh3ItSlScdC1VlXF9zuryV9OyL+0PbVklrlxgCKg7vflyaTYn1rq1iXpF6vvlzYe006FvYiqyNi9w3s6yW9LOmWmLfxVLfbjdFoVEI87CedTnGQX2h9XTp1aq/ToE5NOhbKymp7MyK6sz5bZOrjFkljSV+x/ZLtY7YPzvgmfdsj26PxeLx4OmBqe3u5cVy5mnQs7EXWRYp6VdLtkr4cEYcl/UzS5y7cKCIGEdGNiG673S4vIfaNtbXlxnHlatKxsBdZFynq05JOR8QL0/XHVBQ3UKqNDal1wdWPVqsYx/7SpGNhL7LOLeqI+KGkN23fOh26W9Lr5UUACr2eNBgUc3t2sRwM8l08QvWadCzsRda5FxMlyfZtko5JulrSDyT9UUT8507bczERAJaz28XEhW7Pi4gTkmbuAABQLZ5MBIDkKGoASI6iBoDkKGoASI6iBoDkKGoASI6iBoDkKGoASI6iBoDkKGoASI6iBoDkKGoASI6iBoDkKGoASI6iBoDkKGoASI6iBoDkKGoASI6iBoDkKGoASI6iBoDkKGoASI6iBoDkKGoASG6horZ9yvYrtk/YHlUdCmiK4VDqdKSVlWI5HNadaGdNyorzrS6x7e9GxLuVJQEaZjiU+n1pMinWt7aKdUnq9erLNUuTsuJijoj5G9mnJHUXLeputxujESfeuLJ1OkXhXWh9XTp1aq/T7K5JWfcr25sR0Z312aJz1CHpadubtvs7fJO+7ZHt0Xg8vtSsQGNsby83XqcmZcXFFi3qIxFxu6R7JX3G9p0XbhARg4joRkS33W6XGhLIaG1tufE6NSkrLrZQUUfE29PlGUlPSrqjylBAE2xsSK3W+WOtVjGeTZOy4mJzi9r2QdvXnX0v6eOSXq06GJBdrycNBsU8r10sB4OcF+ealBUXm3sx0fYtKs6ipeIukb+LiF3/HeZiIgAsZ7eLiXNvz4uIH0j6jdJTAQAWwpOJAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyS1c1LYP2H7J9lNVBkL5hkOp05FWVorlcFh3IgDLWF1i24cknZR0fUVZUIHhUOr3pcmkWN/aKtYlqderLxeAxS10Rm37kKRPSjpWbRyU7ejRD0r6rMmkGAfQDItOfXxJ0mcl/WKnDWz3bY9sj8bjcSnhcPm2t5cbB5DP3KK2fZ+kMxGxudt2ETGIiG5EdNvtdmkBcXnW1pYbB5DPImfURyTdb/uUpG9Iusv21ytNhdJsbEit1vljrVYxDqAZ5hZ1RHw+Ig5FREfSA5K+ExGfqjwZStHrSYOBtL4u2cVyMOBCItAky9z1gYbq9ShmoMmWKuqIeE7Sc5UkAQDMxJOJAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0AyVHUAJAcRQ0Ayc0tatvX2H7R9su2X7P9hb0IltlwKHU60spKsRwO604E4Eq2usA2/y3proh43/ZVkp63/Y8R8d2Ks6U0HEr9vjSZFOtbW8W6JPV69eUCcOWae0Ydhfenq1dNX1FpqsSOHv2gpM+aTIpxAKjCQnPUtg/YPiHpjKRnIuKFGdv0bY9sj8bjcdk509jeXm4cAC7XQkUdET+PiNskHZJ0h+2PzNhmEBHdiOi22+2yc6axtrbcOABcrqXu+oiIH0t6TtI9laRpgI0NqdU6f6zVKsYBoAqL3PXRtn3D9P21kj4m6Y2qg2XV60mDgbS+LtnFcjDgQiKA6ixy18dNkr5m+4CKYv9mRDxVbazcej2KGcDemVvUEfE9SYf3IAsAYAaeTASA5ChqAEiOogaA5ChqAEiOogaA5ChqAEiOogaA5ChqAEiOogaA5ChqAEiOogaA5ChqAEiOogaA5ChqAEiOogaA5ChqAEiOogaA5ChqAEiOogaA5ChqAEiOogaA5ChqAEiOogaA5ChqAEhublHb/rDtZ22ftP2a7Yf2IhgAoLC6wDb/J+nPI+K47eskbdp+JiJerzgbAEALnFFHxDsRcXz6/qeSTkq6uepgAIDCUnPUtjuSDkt6YcZnfdsj26PxeFxOOgDA4kVt+0OSHpf0cES8d+HnETGIiG5EdNvtdpkZAWBfW6iobV+loqSHEfFEtZEAAOda5K4PS3pE0smI+GL1kQAA51rkjPqIpE9Lusv2ienrExXnAgBMzb09LyKel+Q9yAIAmIEnEwEgOYoaAJKjqAEgOYoaAJKjqAEgOYoaAJKjqAEgOYoaAJKjqAEgOYoaAJKjqAEgOYoaAJKjqAEgOYoaAJKjqAEgOYoaAJKjqAEgOYoaAJKjqAEgOYoaAJKjqAEgOYoaAJKjqAEgOYoaAJKbW9S2/8b2GduvVhlkOJQ6HWllpVgOh1V+NwBojkXOqL8q6Z4qQwyHUr8vbW1JEcWy36esAUBaoKgj4p8k/UeVIY4elSaT88cmk2IcAPa70uaobfdtj2yPxuPxUl+7vb3cOADsJ6UVdUQMIqIbEd12u73U166tLTcOAPtJirs+NjakVuv8sVarGAeA/S5FUfd60mAgra9LdrEcDIpxANjvVudtYPtRSb8j6UbbpyX9RUQ8UnaQXo9iBoBZ5hZ1RDy4F0EAALOlmPoAAOyMogaA5ChqAEiOogaA5BwR5e/UHkvausQvv1HSuyXGqVKTskrNytukrFKz8jYpq9SsvJeTdT0iZj4tWElRXw7bo4jo1p1jEU3KKjUrb5OySs3K26SsUrPyVpWVqQ8ASI6iBoDkMhb1oO4AS2hSVqlZeZuUVWpW3iZllZqVt5Ks6eaoAQDny3hGDQA4B0UNAMmlKeq9+iW6ZbD9YdvP2j5p+zXbD9WdaSe2r7H9ou2Xp1m/UHemeWwfsP2S7afqzjKP7VO2X7F9wvao7jzz2L7B9mO235gevx+tO9Mstm+d/pmefb1n++G6c+3G9p9O/469avtR29eUtu8sc9S275T0vqS/jYiP1J1nN7ZvknRTRBy3fZ2kTUl/EBGv1xztIrYt6WBEvG/7KknPS3ooIr5bc7Qd2f4zSV1J10fEfXXn2Y3tU5K6EdGIBzJsf03SP0fEMdtXS2pFxI/rzrUb2wckvSXpNyPiUh+kq5Ttm1X83fr1iPgv29+U9A8R8dUy9p/mjHovfoluWSLinYg4Pn3/U0knJd1cb6rZovD+dPWq6SvHv84z2D4k6ZOSjtWd5Upj+3pJd0p6RJIi4n+yl/TU3ZK+n7Wkz7Eq6Vrbq5Jakt4ua8dpirqpbHckHZb0Qr1JdjadSjgh6YykZyIibVZJX5L0WUm/qDvIgkLS07Y3bffrDjPHLZLGkr4ynVo6Zvtg3aEW8ICkR+sOsZuIeEvSX0nalvSOpJ9ExNNl7Z+ivgy2PyTpcUkPR8R7defZSUT8PCJuk3RI0h22U04t2b5P0pmI2Kw7yxKORMTtku6V9JnpFF5Wq5Jul/TliDgs6WeSPldvpN1Np2ful/SturPsxvYvSfp9Sb8m6VclHbT9qbL2T1Ffoul87+OShhHxRN15FjH9Mfc5SffUHGUnRyTdP533/Yaku2x/vd5Iu4uIt6fLM5KelHRHvYl2dVrS6XN+onpMRXFndq+k4xHxo7qDzPExSf8eEeOI+F9JT0j67bJ2TlFfgukFukcknYyIL9adZze227ZvmL6/VsUB9Ua9qWaLiM9HxKGI6Kj4cfc7EVHaWUnZbB+cXkzWdArh45LS3rUUET+U9KbtW6dDd0tKdwH8Ag8q+bTH1Lak37LdmvbD3SquXZUiTVFPf4nuv0i61fZp239cd6ZdHJH0aRVnfGdvH/pE3aF2cJOkZ21/T9K/qpijTn/bW0P8iqTnbb8s6UVJfx8R36450zx/Imk4PR5uk/SXNefZke2WpN9TcXaa2vSnlMckHZf0iopuLe1x8jS35wEAZktzRg0AmI2iBoDkKGoASI6iBoDkKGoASI6iBoDkKGoASO7/Aep5AfWfuAyDAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"source": "# Create linear regression object\nregr = linear_model.LinearRegression()\n\n# Train the model using the training sets\nregr.fit(X_train[:, np.newaxis], y_train[:, np.newaxis])\n\n# Make predictions using the testing set\ny_pred = regr.predict(X_test[:, np.newaxis])\n\n# The coefficients\nprint('Coefficients: \\n', regr.coef_)\nprint('Intercept: \\n',regr.intercept_ )\n# The mean squared error\nprint(\"Mean squared error: %.2f\"\n % mean_squared_error(y_test, y_pred))", | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"source": "# Plot outputs\nallXvalues = np.concatenate((X_train,X_test), axis=0)\nallYvalues = np.concatenate((y_train,y_test), axis=0)\nplt.scatter(allXvalues, allYvalues, color='black')\nplt.scatter(X_test,y_pred, color='red')\nplt.plot(X_test, y_pred, color='blue', linewidth=3)\n\nplt.xticks(())\nplt.yticks(())\n\nplt.show()", | |
"execution_count": null, | |
"outputs": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3.7", | |
"language": "python" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.7.10", | |
"mimetype": "text/x-python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"pygments_lexer": "ipython3", | |
"nbconvert_exporter": "python", | |
"file_extension": ".py" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment