Created
December 28, 2018 00:49
-
-
Save bearpelican/33828d56f4471ab034ab33114f2e7517 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import torch\n", | |
| "import torch.nn as nn\n", | |
| "import torch.functional as F\n", | |
| "torch.backends.cudnn.benchmark = True\n", | |
| "from functools import partial\n", | |
| "import functools" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "tensor(1., device='cuda:0')" | |
| ] | |
| }, | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "torch.ones([]).cuda() # warmup cuda" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Results\n", | |
| "\n", | |
| "resnet - 2x performance \n", | |
| "unet (upsample+conv) - 40% slower \n", | |
| "unet (conv-transpose) - 1.5x faster " | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Unet Arch" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "class UnetGenerator(nn.Module):\n", | |
| " def __init__(self, input_nc, output_nc, num_downs, ngf=64, up_layer='upsample'):\n", | |
| " super(UnetGenerator, self).__init__()\n", | |
| "\n", | |
| " # construct unet structure\n", | |
| " unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, innermost=True, up_layer=up_layer)\n", | |
| " for i in range(num_downs - 5): \n", | |
| " unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, up_layer=up_layer)\n", | |
| " unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, up_layer=up_layer)\n", | |
| " unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, up_layer=up_layer)\n", | |
| " unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, up_layer=up_layer)\n", | |
| " unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, up_layer=up_layer)\n", | |
| "\n", | |
| " self.model = unet_block\n", | |
| "\n", | |
| " def forward(self, input):\n", | |
| " return self.model(input)\n", | |
| "\n", | |
| "\n", | |
| "# Defines the submodule with skip connection.\n", | |
| "# X -------------------identity---------------------- X\n", | |
| "# |-- downsampling -- |submodule| -- upsampling --|\n", | |
| "class UnetSkipConnectionBlock(nn.Module):\n", | |
| " def __init__(self, outer_nc, inner_nc, input_nc=None,\n", | |
| " submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, up_layer='upsample'):\n", | |
| " super(UnetSkipConnectionBlock, self).__init__()\n", | |
| " self.outermost = outermost\n", | |
| " if input_nc is None:\n", | |
| " input_nc = outer_nc\n", | |
| " \n", | |
| " downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1)\n", | |
| " downrelu = nn.LeakyReLU(0.2, True)\n", | |
| " downnorm = norm_layer(inner_nc)\n", | |
| "\n", | |
| " up_inner_nc = inner_nc if innermost else inner_nc * 2\n", | |
| " up_conv_layer = nn.Conv2d(up_inner_nc, outer_nc, kernel_size=3, padding=1)\n", | |
| " if up_layer == 'upsample':\n", | |
| " upconv = [nn.UpsamplingNearest2d(scale_factor=2), up_conv_layer]\n", | |
| " elif up_layer == 'transpose':\n", | |
| " upconv = [nn.ConvTranspose2d(up_inner_nc, outer_nc,\n", | |
| " kernel_size=4, stride=2,\n", | |
| " padding=1)]\n", | |
| " uprelu = nn.ReLU(True)\n", | |
| " upnorm = norm_layer(outer_nc)\n", | |
| "\n", | |
| " if outermost:\n", | |
| " down = [downconv]\n", | |
| " up = [uprelu] + upconv + [nn.Tanh()]\n", | |
| " model = down + [submodule] + up\n", | |
| " elif innermost:\n", | |
| " down = [downrelu, downconv]\n", | |
| " up = [uprelu] + upconv + [upnorm]\n", | |
| " model = down + up\n", | |
| " else:\n", | |
| " down = [downrelu, downconv, downnorm]\n", | |
| " up = [uprelu] + upconv + [upnorm]\n", | |
| " model = down + [submodule] + up\n", | |
| "\n", | |
| " self.model = nn.Sequential(*model)\n", | |
| "\n", | |
| " def forward(self, x):\n", | |
| " if self.outermost:\n", | |
| " return self.model(x)\n", | |
| " else:\n", | |
| " return torch.cat([x, self.model(x)], 1)\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Train" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def train(m, it, half, shape):\n", | |
| " x = torch.randn(shape).cuda()\n", | |
| " m = m.cuda()\n", | |
| " \n", | |
| " if half:\n", | |
| " x = x.half()\n", | |
| " m = m.half()\n", | |
| " \n", | |
| " for i in range(it):\n", | |
| " out = m(x)\n", | |
| " loss = out.sum()\n", | |
| " loss.backward()\n", | |
| " if hasattr(m, 'zero_grad'):\n", | |
| " m.zero_grad()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# Model - resnet" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import torchvision" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "shape = [32,3,224,224]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "m = torchvision.models.resnet50()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 9.12 s, sys: 4.59 s, total: 13.7 s\n", | |
| "Wall time: 15.2 s\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%time train(m, it=100, half=False, shape=shape)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Half" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "m = torchvision.models.resnet50()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 4.03 s, sys: 1.71 s, total: 5.74 s\n", | |
| "Wall time: 7.14 s\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%time train(m, it=100, half=True, shape=shape)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# Model - upsample" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "m = UnetGenerator(shape[1],shape[1],7,up_layer='upsample')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stderr", | |
| "output_type": "stream", | |
| "text": [ | |
| "/home/ubuntu/anaconda3/envs/pose/lib/python3.7/site-packages/torch/nn/modules/upsampling.py:129: UserWarning: nn.UpsamplingNearest2d is deprecated. Use nn.functional.interpolate instead.\n", | |
| " warnings.warn(\"nn.{} is deprecated. Use nn.functional.interpolate instead.\".format(self.name))\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 1.07 s, sys: 1.12 s, total: 2.18 s\n", | |
| "Wall time: 5.63 s\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%time train(m, it=20, half=False, shape=shape)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Half" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "m = UnetGenerator(shape[1],shape[1],7,up_layer='upsample')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 1.7 s, sys: 1.85 s, total: 3.55 s\n", | |
| "Wall time: 8.5 s\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%time train(m, it=20, half=True, shape=shape)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# Model - transpose" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "shape = [32,3,256,256]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "m = UnetGenerator(shape[1],shape[1],7,up_layer='transpose')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 3.52 s, sys: 2.62 s, total: 6.14 s\n", | |
| "Wall time: 6.81 s\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%time train(m, it=50, half=False, shape=shape)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Half" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "m = UnetGenerator(shape[1],shape[1],7,up_layer='transpose')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 2.42 s, sys: 1.65 s, total: 4.07 s\n", | |
| "Wall time: 4.81 s\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%time train(m, it=50, half=True, shape=shape)" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.7.1" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment