Created
December 28, 2018 00:48
-
-
Save bearpelican/bbd6f2f027e78c7888f9ff44031eb0ea to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import torch\n", | |
| "import torch.nn as nn\n", | |
| "import torch.functional as F\n", | |
| "torch.backends.cudnn.benchmark = True\n", | |
| "from functools import partial\n", | |
| "import functools\n", | |
| "\n", | |
| "x = torch.randn(1).cuda()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Train" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def train(m, it, half, shape):\n", | |
| " x = torch.randn(shape).cuda()\n", | |
| " m = m.cuda()\n", | |
| " \n", | |
| " if half:\n", | |
| " x = x.half()\n", | |
| " m = m.half()\n", | |
| " \n", | |
| " for i in range(it):\n", | |
| " out = m(x)\n", | |
| " loss = out.sum()\n", | |
| " loss.backward()\n", | |
| " if hasattr(m, 'zero_grad'):\n", | |
| " m.zero_grad()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def upsample(shape, num_blocks=10):\n", | |
| " block = lambda: [nn.Conv2d(shape[1], shape[1], kernel_size=3, stride=1, padding=1)]\n", | |
| " layers = []\n", | |
| " for i in range(num_blocks): layers.extend(block())\n", | |
| " return nn.Sequential(*layers)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### 512 Filters" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "shape = [64,512,64,64]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "m_upsample = upsample(shape)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 7.72 s, sys: 4.97 s, total: 12.7 s\n", | |
| "Wall time: 14.5 s\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%time train(m_upsample, it=20, shape=shape, half=False)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Half" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "m_upsample = upsample(shape)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 7 s, sys: 4.19 s, total: 11.2 s\n", | |
| "Wall time: 13.2 s\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%time train(m_upsample, it=20, shape=shape, half=True)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### 8 Filters" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "shape = [16,8,512,512]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "m_upsample = upsample(shape)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 4.08 s, sys: 3.47 s, total: 7.55 s\n", | |
| "Wall time: 7.67 s\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%time train(m_upsample, it=50, shape=shape, half=False)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Half - slower performance" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "m_upsample = upsample(shape)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 4.99 s, sys: 4.02 s, total: 9.01 s\n", | |
| "Wall time: 9.37 s\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%time train(m_upsample, it=50, shape=shape, half=True)" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.7.1" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment