I hereby claim:
- I am beaucronin on github.
- I am beaucronin (https://keybase.io/beaucronin) on keybase.
- I have a public key ASA8QFopPai5WRhYagivUf6FMWlePH57Q7CPv5R3NK3Irgo
To claim this, I am signing this object:
| x = initial() | |
| prob = target_dist(x) | |
| for i in range(steps): | |
| x_star = propose(x) | |
| prob_star = target_dist(x) | |
| if prob_star > prob or random() < prob_star / prob: | |
| x = x_star | |
| prob = prob_star |
| from random import random | |
| def crpgen(N = None, alpha = 1.0): | |
| """ | |
| A generator that implements the Chinese Restaurant Process | |
| """ | |
| counts = [] | |
| n = 0 | |
| while N == None or n < N: | |
| # Compute the (unnormalized) probabilities of assigning the new object |
| sepal_length | sepal_width | petal_length | petal_width | class | |
|---|---|---|---|---|---|
| 5.1 | 3.5 | 1.4 | 0.2 | Iris-setosa | |
| 4.9 | 3.0 | 1.4 | 0.2 | Iris-setosa | |
| 4.7 | 3.2 | 1.3 | 0.2 | Iris-setosa | |
| 4.6 | 3.1 | 1.5 | 0.2 | Iris-setosa | |
| 5.0 | 3.6 | 1.4 | 0.2 | Iris-setosa | |
| 5.4 | 3.9 | 1.7 | 0.4 | Iris-setosa | |
| 4.6 | 3.4 | 1.4 | 0.3 | Iris-setosa | |
| 5.0 | 3.4 | 1.5 | 0.2 | Iris-setosa | |
| 4.4 | 2.9 | 1.4 | 0.2 | Iris-setosa |
| pr = analysis.predict({'petal_length': 1.5, 'petal_width': None}) | |
| interval = pr.credible_values('petal_width') | |
| # => (0.06619570898596525, 0.45519138428493605) | |
| interval[1] - interval[0] | |
| # => 0.38899567529897083 | |
| pr = analysis.predict({'petal_length': 5.0, 'petal_width': None}) | |
| interval = pr.credible_values('petal_width') | |
| # => (1.3341578189754613, 2.4761532421771784) | |
| interval[1] - interval[0] |
| # generate some noisy-XOR data | |
| from random import random | |
| N = 1000 | |
| noise = 0.1 | |
| data = [] | |
| for _ in range(N): | |
| x1 = random() < 0.5 |
| #From http://en.wikipedia.org/wiki/File:Correlation_examples2.svg | |
| #Title: An example of the correlation of x and y for various distributions of (x,y) pairs | |
| #Tags: Mathematics; Statistics; Correlation | |
| #Author: Denis Boigelot | |
| #Packets needed : mvtnorm (rmvnorm), RSVGTipsDevice (devSVGTips) | |
| #How to use: output() | |
| # | |
| #This is an translated version in R of an Matematica 6 code by Imagecreator. |
| import csv | |
| import json | |
| rd = csv.reader(open('scotch.csv')) | |
| header = rd.next() | |
| colors = header[1:15] | |
| data = [] | |
| schema = { | |
| 'color': { 'type': 'categorical' }, | |
| 'AGE': { 'type': 'count' }, |
| import veritable | |
| import csv | |
| import matplotlib.pyplot as plt | |
| # Load the csv and read into a Veritable dataset using inches and pounds | |
| print 'Reading data from file' | |
| data_inches_pounds = [] | |
| with open('heights_weights_genders.csv') as fd: | |
| rd = csv.reader(fd) | |
| rd.next() # skip the header |
| import requests | |
| import json | |
| URL_BASE = 'https://rest.developer.yodlee.com/services/srest/restserver/v1.0' | |
| # assumes you've signed up for dev access, and already done the one-time linking of bank accounts | |
| # to user accounts via the Yodlee website | |
| # cobrand login | |
| payload = { 'cobrandLogin': 'sbCob<account>', 'cobrandPassword': '<something>' } |
I hereby claim:
To claim this, I am signing this object: