Created
July 24, 2017 04:05
-
-
Save bebound/682ce64d99d645f047131971faf16745 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 96, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>survived</th>\n", | |
" <th>pclass</th>\n", | |
" <th>name</th>\n", | |
" <th>sex</th>\n", | |
" <th>age</th>\n", | |
" <th>sibsp</th>\n", | |
" <th>parch</th>\n", | |
" <th>ticket</th>\n", | |
" <th>fare</th>\n", | |
" <th>cabin</th>\n", | |
" <th>embarked</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>passengerid</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Braund, Mr. Owen Harris</td>\n", | |
" <td>male</td>\n", | |
" <td>22.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>A/5 21171</td>\n", | |
" <td>7.2500</td>\n", | |
" <td>NaN</td>\n", | |
" <td>S</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n", | |
" <td>female</td>\n", | |
" <td>38.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>PC 17599</td>\n", | |
" <td>71.2833</td>\n", | |
" <td>C85</td>\n", | |
" <td>C</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>Heikkinen, Miss. Laina</td>\n", | |
" <td>female</td>\n", | |
" <td>26.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>STON/O2. 3101282</td>\n", | |
" <td>7.9250</td>\n", | |
" <td>NaN</td>\n", | |
" <td>S</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n", | |
" <td>female</td>\n", | |
" <td>35.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>113803</td>\n", | |
" <td>53.1000</td>\n", | |
" <td>C123</td>\n", | |
" <td>S</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Allen, Mr. William Henry</td>\n", | |
" <td>male</td>\n", | |
" <td>35.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>373450</td>\n", | |
" <td>8.0500</td>\n", | |
" <td>NaN</td>\n", | |
" <td>S</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Moran, Mr. James</td>\n", | |
" <td>male</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>330877</td>\n", | |
" <td>8.4583</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Q</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>McCarthy, Mr. Timothy J</td>\n", | |
" <td>male</td>\n", | |
" <td>54.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>17463</td>\n", | |
" <td>51.8625</td>\n", | |
" <td>E46</td>\n", | |
" <td>S</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Palsson, Master. Gosta Leonard</td>\n", | |
" <td>male</td>\n", | |
" <td>2.0</td>\n", | |
" <td>3</td>\n", | |
" <td>1</td>\n", | |
" <td>349909</td>\n", | |
" <td>21.0750</td>\n", | |
" <td>NaN</td>\n", | |
" <td>S</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)</td>\n", | |
" <td>female</td>\n", | |
" <td>27.0</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>347742</td>\n", | |
" <td>11.1333</td>\n", | |
" <td>NaN</td>\n", | |
" <td>S</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>Nasser, Mrs. Nicholas (Adele Achem)</td>\n", | |
" <td>female</td>\n", | |
" <td>14.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>237736</td>\n", | |
" <td>30.0708</td>\n", | |
" <td>NaN</td>\n", | |
" <td>C</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" survived pclass \\\n", | |
"passengerid \n", | |
"1 0 3 \n", | |
"2 1 1 \n", | |
"3 1 3 \n", | |
"4 1 1 \n", | |
"5 0 3 \n", | |
"6 0 3 \n", | |
"7 0 1 \n", | |
"8 0 3 \n", | |
"9 1 3 \n", | |
"10 1 2 \n", | |
"\n", | |
" name sex age \\\n", | |
"passengerid \n", | |
"1 Braund, Mr. Owen Harris male 22.0 \n", | |
"2 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 \n", | |
"3 Heikkinen, Miss. Laina female 26.0 \n", | |
"4 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 \n", | |
"5 Allen, Mr. William Henry male 35.0 \n", | |
"6 Moran, Mr. James male NaN \n", | |
"7 McCarthy, Mr. Timothy J male 54.0 \n", | |
"8 Palsson, Master. Gosta Leonard male 2.0 \n", | |
"9 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 \n", | |
"10 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 \n", | |
"\n", | |
" sibsp parch ticket fare cabin embarked \n", | |
"passengerid \n", | |
"1 1 0 A/5 21171 7.2500 NaN S \n", | |
"2 1 0 PC 17599 71.2833 C85 C \n", | |
"3 0 0 STON/O2. 3101282 7.9250 NaN S \n", | |
"4 1 0 113803 53.1000 C123 S \n", | |
"5 0 0 373450 8.0500 NaN S \n", | |
"6 0 0 330877 8.4583 NaN Q \n", | |
"7 0 0 17463 51.8625 E46 S \n", | |
"8 3 1 349909 21.0750 NaN S \n", | |
"9 0 2 347742 11.1333 NaN S \n", | |
"10 1 0 237736 30.0708 NaN C " | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>survived</th>\n", | |
" <th>pclass</th>\n", | |
" <th>age</th>\n", | |
" <th>sibsp</th>\n", | |
" <th>parch</th>\n", | |
" <th>fare</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>891.000000</td>\n", | |
" <td>891.000000</td>\n", | |
" <td>714.000000</td>\n", | |
" <td>891.000000</td>\n", | |
" <td>891.000000</td>\n", | |
" <td>891.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>0.383838</td>\n", | |
" <td>2.308642</td>\n", | |
" <td>29.699118</td>\n", | |
" <td>0.523008</td>\n", | |
" <td>0.381594</td>\n", | |
" <td>32.204208</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>0.486592</td>\n", | |
" <td>0.836071</td>\n", | |
" <td>14.526497</td>\n", | |
" <td>1.102743</td>\n", | |
" <td>0.806057</td>\n", | |
" <td>49.693429</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>0.000000</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>0.420000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>0.000000</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>20.125000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>7.910400</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>0.000000</td>\n", | |
" <td>3.000000</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>14.454200</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>1.000000</td>\n", | |
" <td>3.000000</td>\n", | |
" <td>38.000000</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>31.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>1.000000</td>\n", | |
" <td>3.000000</td>\n", | |
" <td>80.000000</td>\n", | |
" <td>8.000000</td>\n", | |
" <td>6.000000</td>\n", | |
" <td>512.329200</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" survived pclass age sibsp parch fare\n", | |
"count 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000\n", | |
"mean 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208\n", | |
"std 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429\n", | |
"min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000\n", | |
"25% 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400\n", | |
"50% 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200\n", | |
"75% 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000\n", | |
"max 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 891 entries, 1 to 891\n", | |
"Data columns (total 11 columns):\n", | |
"survived 891 non-null int64\n", | |
"pclass 891 non-null int64\n", | |
"name 891 non-null object\n", | |
"sex 891 non-null object\n", | |
"age 714 non-null float64\n", | |
"sibsp 891 non-null int64\n", | |
"parch 891 non-null int64\n", | |
"ticket 891 non-null object\n", | |
"fare 891 non-null float64\n", | |
"cabin 204 non-null object\n", | |
"embarked 889 non-null object\n", | |
"dtypes: float64(2), int64(4), object(5)\n", | |
"memory usage: 83.5+ KB\n" | |
] | |
} | |
], | |
"source": [ | |
"\"\"\"\n", | |
"data: https://www.kaggle.com/c/titanic\n", | |
"\n", | |
"ref:\n", | |
"\n", | |
"http://ahmedbesbes.com/how-to-score-08134-in-titanic-kaggle-challenge.html\n", | |
"\n", | |
"\"\"\"\n", | |
"\n", | |
"\n", | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"\n", | |
"from IPython.core.display import display\n", | |
"\n", | |
"%matplotlib inline\n", | |
"\n", | |
"data = pd.read_csv('train.csv',header=0)\n", | |
"data.columns = data.columns.str.lower()\n", | |
"data.set_index('passengerid',inplace=True)\n", | |
"\n", | |
"display(data.head(10))\n", | |
"display(data.describe())\n", | |
"\n", | |
"data.info()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 97, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA60AAAVJCAYAAACEoO9xAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8FPW9//H3smsSct9NQmoCWkNIhXARCW0ES2JYwBrK\nobZHkUtLBWlPbBA4taZeAEUkBWk4QCoKR2iLp1b7qKlFqO02ErQ0JSGhVOghIKC1HAjJLjEXELKZ\n3x/8ujUGmgUSdrK8no+HjwczO/Pdz3cz4+ad78x8LYZhGAIAAAAAwIR6BboAAAAAAAAuhtAKAAAA\nADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AKAAAAADAtQivQwyxevFipqalX5b0++9nP6umn\nn74q7wUAgNllZ2dr9uzZgS4DuOYQWoEe5rvf/a7Ky8sDXQYAAABwVdgCXQCA886ePauQkJBOt4uM\njFRkZORVqAgAAAAIPEZagcv0zjvvaPTo0YqKilJUVJSGDRumN998U0ePHpXFYtE777zTbvvU1FQt\nXrzYt2yxWLR69WpNnTpVMTExmjFjhkaPHq05c+Z0eK+BAwfq8ccfl9T+8uCDBw/KYrFo586d7bb/\n05/+JIvFooMHD0qSmpqa9NBDDyk5OVnh4eEaPny4fvnLX7bb589//rNGjRql0NBQDRgwQK+88soV\nf0YAAJhJdna27r//fhUUFCg+Pl7R0dGaM2eOzpw549umuLhYgwYNUmhoqPr06aOvfvWrF23vd7/7\nnbKzs+VwOBQTE6OsrCzt2rWr3TYbNmzQwIEDFRYWJofDoTFjxujDDz+UJH300Uf65je/qc985jMK\nDQ1Vv379tGDBgu7pPNCDMdIKXIbW1lZNmjRJM2fO1KZNmyRJ7777rsLDwy+pnSeffFJPPvmklixZ\nora2Nr311lt65JFHtGbNGoWGhkqSdu3apf/93//V17/+9Q77DxgwQLfddpt++tOfatSoUb71P/7x\nj3XbbbdpwIABMgxDX/7yl2UYhn7+858rKSlJLpdLU6ZM0bZt2zR27FidPn1ad911l4YNG6Zdu3ap\npaVFc+fOVW1t7eV/SAAAmNAvfvEL3XvvvXr77bd16NAhzZo1SxERESoqKtKiRYu0cuVKFRYWavz4\n8WpqatK2bdsu2lZTU5Py8vI0bNgwtba2qqioSHfeeacOHjyouLg47d69W9/+9rf14osvKisrSx99\n9JH+9Kc/+fZ//PHHVVVVpV/96le6/vrr9eGHH2rfvn1X42MAehYDwCVzu92GJOOtt97q8NqRI0cM\nScbbb7/dbn3//v2NRYsW+ZYlGffff3+7bTwejxEWFma88sorvnUPPvigkZmZ6VtetGiR0b9/f9/y\nc889Z9jtduPjjz82DMMwPv74Y8PhcBjr1q0zDMMw3nrrLSM0NNQ4depUu/f65je/afzbv/2bYRiG\nsX79eiMiIsJwu92+1//yl78YkowlS5b485EAAGB6WVlZxo033mi0trb61j3//PNGaGio0dTUZISF\nhRkrVqz4l/vPmjXroq97vV4jNjbW2Lx5s2EYhvHLX/7SiI6ONhoaGi64/aRJk4xvfOMbl9cZ4BrC\n5cHAZbDb7Zo9e7YmTJigL33pSyosLNSBAwcuuZ3Pf/7z7ZZjY2M1adIk/fSnP5UknTt3Ti+//PIF\nR1n/4d5771VLS4u2bNkiSdqyZYuam5t17733SpIqKip09uxZJScn++6HjYyM1ObNm32XD+/fv18D\nBw6U3W73tTt48GDFxMRccp8AADCzz3/+87Jarb7l0aNH6+OPP9bu3bt15swZjR8/3u+2jhw5ohkz\nZig1NVXR0dGKjo5WQ0OD3n//fUnSuHHjlJKSoptuuklTpkzRCy+8oLq6Ot/+eXl5+sUvfqHBgwfr\noYce0rZt29TW1tZ1nQWCBKEVuEzr16/X7t27NW7cOJWVlWnw4MF6/vnn1avX+dPKMIx22587d65D\nGxERER3Wff3rX9dvfvMbnTx5Um+88Yaampo0ZcqUi9Zht9v15S9/WT/5yU8kST/5yU80adIkxcbG\nSpLa2toUExOjPXv2tPtv//79//KSJwAA8K9NnDhRH3zwgYqLi1VeXq49e/aoT58+Onv2rKTzD0+s\nrKzUa6+9prS0NK1bt06pqanavXu3JGnChAn64IMP9Nhjj+nMmTOaPn26cnJy5PV6A9ktwHQIrcAV\nGDx4sBYsWKBt27Zp1qxZeuGFF5SQkCBJOnbsmG+72tpa/f3vf/erzQkTJsjhcOjll1/WT37yE02c\nOLHdCOiFfOMb39DWrVt14MABbd26td3IbEZGhk6dOqUzZ84oNTW13X833HCDJGnQoEH661//qlOn\nTvn227dvnxoaGvz+LAAA6AkqKirahcKdO3cqNDRUw4YNU1hYmH7729/61U59fb3279+vgoICTZgw\nQYMGDVJYWFiH50FYrVaNGTNGTz31lHbv3q3rr79e//M//+N73eFw6L777tPzzz+vN954Q2VlZdq/\nf3/XdBYIEjyICbgMhw4d0vr16/XlL39Z/fr107Fjx/T222/r1ltvVe/evTV69GgtX75cN998s1pb\nW/XYY4/5HqzUGZvNpqlTp+q5557Te++9p1/84hed7nPnnXfKbrdrypQpstvtuvPOO32v5eTkyOl0\n6u6779by5cs1dOhQeTwe7dy5U2FhYXrggQc0depUPfHEE5o+fbqWLl2q06dP66GHHlLv3r0v+zMC\nAMCM6uvr9eCDD+qhhx7S4cOH9cQTT+hb3/qWYmJi9J//+Z9avHixevfurXHjxun06dPaunWrvv/9\n73dox263KyEhQevXr1f//v1VX1+v733ve+2+O3/1q1/p8OHDGjNmjBISErR792797W9/06BBgyRJ\njz32mEaMGKH09HT16tVLL730kiIjI31/VAZwHiOtwGWIiIjQwYMHNWXKFKWlpemrX/2qRo0apbVr\n10qSXnzxRUVGRmrUqFGaMmWK5syZo+uvv97v9r/xjW/or3/9q2JiYvSlL32p0+3/EXT37NmjqVOn\nymb759+jLBaLXn/9dd19992aP3++br75ZuXm5uqNN95Q//79JUnh4eHaunWr6uvr9fnPf17Tpk3T\n/Pnz1adPn0v8ZAAAMLevfe1rioqK0u23364pU6Zo4sSJKiwslCQtWbJES5cu1erVqzV48GCNHz9e\nVVVVF2ynV69eevXVV/Xee+9p6NChmjlzpubNm9fu+95ut+vXv/617rzzTqWlpel73/ueHn/8cc2a\nNUuSFBYWpoULF2rEiBHKyMjQ3r17tW3bNp4pAXyKxfj0jXcAAABAEMrOzlZqaqo2bNgQ6FIAXAJG\nWgEAAAAApkVoBQAAAACYFpcHAwAAAABMi5FWAAAAAIBpEVoBAAAAAKZFaAUAAAAAmJat802ujmPH\njgW6BHxKfHy86urqAl0GYGqcJ+aUlJQU6BKCAt/N/8S5jovh2MDFcGy0dyXfzYy0AgAAAABMyzQj\nrQAAwH8PPvigwsLC1KtXL1mtVhUWFqqpqUlFRUU6efKkEhISNH/+fEVGRsowDG3cuFHV1dUKDQ1V\nXl6eUlJSAt0FAAD8QmgFAKCHWrRokaKjo33LJSUlGjJkiCZPnqySkhKVlJRo+vTpqq6u1vHjx7V6\n9WodPHhQGzZs0DPPPBPAygEA8B+XBwMAECQqKiqUlZUlScrKylJFRYUkqbKyUmPGjJHFYlFaWpqa\nm5vl8XgCWSoAAH5jpBUAgB5q6dKlkqRx48bJ6XSqoaFBdrtdkhQbG6uGhgZJktvtVnx8vG+/uLg4\nud1u37YAAJgZoRUAgB5oyZIlcjgcamho0NNPP93hqYwWi0UWi+WS2nS5XHK5XJKkwsLCdkH3Wmez\n2fg8cEEcG7gYjo2uQ2gFAKAHcjgckqSYmBiNHDlShw4dUkxMjDwej+x2uzwej+9+V4fD0W7ahfr6\net/+n+R0OuV0On3LTNXwT0xdgYvh2MDFcGy0x5Q3AABcQ86cOaPTp0/7/r13717dcMMNysjIUFlZ\nmSSprKxMI0eOlCRlZGRox44dMgxDNTU1Cg8P59JgAECPwUgrAAA9TENDg5599llJktfr1e23365b\nbrlF/fv3V1FRkUpLS31T3kjS8OHDVVVVpblz5yokJER5eXmBLB8AgEtiMQzDCHQRknTs2LFAl9Al\nvA9MCnQJ+BTr+tcDXQKCGJf+mNOVXIKEfwqW7+auwLmOi+HYMB9+H2/PLL8Lc3kwAAAAACAoEVoB\nAAAAAKZFaAUAAAAAmBahFQAAAABgWoRWAAAAAIBpEVoBAAAAAKZFaAUAAAAAmBahFQAAAABgWoRW\nAAAAAIBpEVoBAAAAAKZFaAUAAAAAmBahFQAAAABgWoRWAAAAAIBpEVoBAAAAAKZl82ejBx98UGFh\nYerVq5esVqsKCwvV1NSkoqIinTx5UgkJCZo/f74iIyNlGIY2btyo6upqhYaGKi8vTykpKd3dDwAA\nAABAEPIrtErSokWLFB0d7VsuKSnRkCFDNHnyZJWUlKikpETTp09XdXW1jh8/rtWrV+vgwYPasGGD\nnnnmmW4pHgAAAAAQ3C778uCKigplZWVJkrKyslRRUSFJqqys1JgxY2SxWJSWlqbm5mZ5PJ6uqRYA\nAAAAcE3xe6R16dKlkqRx48bJ6XSqoaFBdrtdkhQbG6uGhgZJktvtVnx8vG+/uLg4ud1u37YAAAAA\nAPjLr9C6ZMkSORwONTQ06Omnn1ZSUlK71y0WiywWyyW9scvlksvlkiQVFha2C7o92YlAF4AOguXY\ngjnZbDaOMQAAgG7kV2h1OBySpJiYGI0cOVKHDh1STEyMPB6P7Ha7PB6P735Xh8Ohuro637719fW+\n/T/J6XTK6XT6lj+5D9CVOLbQneLj4znGTOjTf1wFAAA9V6f3tJ45c0anT5/2/Xvv3r264YYblJGR\nobKyMklSWVmZRo4cKUnKyMjQjh07ZBiGampqFB4ezqXBAAAAAIDL0ulIa0NDg5599llJktfr1e23\n365bbrlF/fv3V1FRkUpLS31T3kjS8OHDVVVVpblz5yokJER5eXnd2wMAAAAAQNDqNLQmJiZqxYoV\nHdZHRUVp4cKFHdZbLBbNnj27a6oDAAAAAFzTLnvKGwAAAAAAuhuhFQAAAABgWoRWAAAAAIBpEVoB\nAAAAAKZFaAUAAAAAmBahFQAAAABgWoRWAAAAAIBpEVoBAAAAAKZFaAUAAAAAmBahFQAAAABgWoRW\nAAAAAIBpEVoBAAAAAKZlC3QBAADg8rS1tamgoEAOh0MFBQWqra3VqlWr1NjYqJSUFOXn58tms+nc\nuXNau3atDh8+rKioKM2bN099+vQJdPkAAPiFkVYAAHqorVu3Kjk52be8efNm5ebmas2aNYqIiFBp\naakkqbS0VBEREVqzZo1yc3P10ksvBapkAAAuGaEVAIAeqL6+XlVVVRo7dqwkyTAM7du3T5mZmZKk\n7OxsVVRUSJIqKyuVnZ0tScrMzNS7774rwzACUjcAAJeK0AoAQA+0adMmTZ8+XRaLRZLU2Nio8PBw\nWa1WSZLD4ZDb7ZYkud1uxcXFSZKsVqvCw8PV2NgYmMIBALhE3NMKAEAPs3v3bsXExCglJUX79u3r\nsnZdLpdcLpckqbCwUPHx8V3Wdk9ns9n4PHBBHBvmcyLQBZhMMByfhFYAAHqYAwcOqLKyUtXV1Tp7\n9qxOnz6tTZs2qaWlRV6vV1arVW63Ww6HQ9L5Udf6+nrFxcXJ6/WqpaVFUVFRHdp1Op1yOp2+5bq6\nuqvWJ7OLj4/n88AFcWzA7MxyfCYlJV32vlweDABADzN16lStW7dOxcXFmjdvngYPHqy5c+cqPT1d\n5eXlkqTt27crIyNDkjRixAht375dklReXq709HTfZcUAAJgdoRUAgCAxbdo0bdmyRfn5+WpqalJO\nTo4kKScnR01NTcrPz9eWLVs0bdq0AFcKAID/uDwYAIAeLD09Xenp6ZKkxMRELVu2rMM2ISEhWrBg\nwdUuDQCALsFIKwAAAADAtAitAAAAAADTIrQCAAAAAEyL0AoAAAAAMC1CKwAAAADAtAitAAAAAADT\nIrQCAAAAAEyL0AoAAAAAMC1CKwAAAADAtGz+btjW1qaCggI5HA4VFBSotrZWq1atUmNjo1JSUpSf\nny+bzaZz585p7dq1Onz4sKKiojRv3jz16dOnO/sAAAAAAAhSfo+0bt26VcnJyb7lzZs3Kzc3V2vW\nrFFERIRKS0slSaWlpYqIiNCaNWuUm5url156qeurBgAAAABcE/wKrfX19aqqqtLYsWMlSYZhaN++\nfcrMzJQkZWdnq6KiQpJUWVmp7OxsSVJmZqbeffddGYbRDaUDAAAAAIKdX6F106ZNmj59uiwWiySp\nsbFR4eHhslqtkiSHwyG32y1JcrvdiouLkyRZrVaFh4ersbGxO2oHAAAAAAS5Tu9p3b17t2JiYpSS\nkqJ9+/Z12Ru7XC65XC5JUmFhoeLj47us7UA6EegC0EGwHFswJ5vNxjEGAADQjToNrQcOHFBlZaWq\nq6t19uxZnT59Wps2bVJLS4u8Xq+sVqvcbrccDoek86Ou9fX1iouLk9frVUtLi6Kiojq063Q65XQ6\nfct1dXVd2C3gnzi20J3i4+M5xkwoKSkp0CUAAIAu0unlwVOnTtW6detUXFysefPmafDgwZo7d67S\n09NVXl4uSdq+fbsyMjIkSSNGjND27dslSeXl5UpPT/ddVgwAAAAAwKW47Hlap02bpi1btig/P19N\nTU3KycmRJOXk5KipqUn5+fnasmWLpk2b1mXFAgAAAACuLX7P0ypJ6enpSk9PlyQlJiZq2bJlHbYJ\nCQnRggULuqY6AAAAAMA17bJHWgEAAAAA6G6EVgAAAACAaRFaAQAAAACmRWgFAAAAAJgWoRUAAAAA\nYFqEVgAAAACAaRFaAQAAAACmRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACmRWgFAAAA\nAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACmRWgFAAAAAJiWLdAFAACAS3P27FktWrRIra2t8nq9\nyszM1D333KPa2lqtWrVKjY2NSklJUX5+vmw2m86dO6e1a9fq8OHDioqK0rx589SnT59AdwMAAL8w\n0goAQA9z3XXXadGiRVqxYoWWL1+uPXv2qKamRps3b1Zubq7WrFmjiIgIlZaWSpJKS0sVERGhNWvW\nKDc3Vy+99FKAewAAgP8YaQUQEN4HJgW6hC5xItAFdCHr+tcDXQL8ZLFYFBYWJknyer3yer2yWCza\nt2+fHnroIUlSdna2Xn31VY0fP16VlZX693//d0lSZmamXnzxRRmGIYvFErA+AADgL0IrAAA9UFtb\nmx555BEdP35cEyZMUGJiosLDw2W1WiVJDodDbrdbkuR2uxUXFydJslqtCg8PV2Njo6KjowNWPwAA\n/iK0AgDQA/Xq1UsrVqxQc3Oznn32WR07duyK23S5XHK5XJKkwsJCxcfHX3GbwcJms/F54II4Nswn\nmK6C6grBcHwSWgEA6MEiIiKUnp6umpoatbS0yOv1ymq1yu12y+FwSDo/6lpfX6+4uDh5vV61tLQo\nKiqqQ1tOp1NOp9O3XFdXd9X6YXbx8fF8Hrggjg2YnVmOz6SkpMvelwcxAQDQw3z00Udqbm6WdP5J\nwnv37lVycrLS09NVXl4uSdq+fbsyMjIkSSNGjND27dslSeXl5UpPT+d+VgBAj8FIKwAAPYzH41Fx\ncbHa2tpkGIZuu+02jRgxQn379tWqVav08ssv66abblJOTo4kKScnR2vXrlV+fr4iIyM1b968APcA\nAAD/EVoBAOhhbrzxRi1fvrzD+sTERC1btqzD+pCQEC1YsOBqlAYAQJfj8mAAAAAAgGkRWgEAAAAA\npkVoBQAAAACYFqEVAAAAAGBahFYAAAAAgGl1+vTgs2fPatGiRWptbZXX61VmZqbuuece1dbWatWq\nVWpsbFRKSory8/Nls9l07tw5rV27VocPH1ZUVJTmzZunPn36XI2+AAAAAACCTKcjrdddd50WLVqk\nFStWaPny5dqzZ49qamq0efNm5ebmas2aNYqIiFBpaakkqbS0VBEREVqzZo1yc3P10ksvdXsnAAAA\nAADBqdPQarFYFBYWJknyer3yer2yWCzat2+fMjMzJUnZ2dmqqKiQJFVWVio7O1uSlJmZqXfffVeG\nYXRT+QAAAACAYNbp5cGS1NbWpkceeUTHjx/XhAkTlJiYqPDwcFmtVkmSw+GQ2+2WJLndbsXFxUmS\nrFarwsPD1djYqOjo6G7qAgAAAAAgWPkVWnv16qUVK1aoublZzz77rI4dO3bFb+xyueRyuSRJhYWF\nio+Pv+I2zeBEoAtAB8FybAUbzhXz4VwBAABm5Fdo/YeIiAilp6erpqZGLS0t8nq9slqtcrvdcjgc\nks6PutbX1ysuLk5er1ctLS2Kiorq0JbT6ZTT6fQt19XVXWFXgAvj2AL8E0znSlJSUqBLAAAAXaTT\ne1o/+ugjNTc3Szr/JOG9e/cqOTlZ6enpKi8vlyRt375dGRkZkqQRI0Zo+/btkqTy8nKlp6fLYrF0\nU/kAAAAAgGDW6Uirx+NRcXGx2traZBiGbrvtNo0YMUJ9+/bVqlWr9PLLL+umm25STk6OJCknJ0dr\n165Vfn6+IiMjNW/evG7vBAAAAAAgOHUaWm+88UYtX768w/rExEQtW7asw/qQkBAtWLCga6oDAAAA\nAFzTOr08GAAAAACAQCG0AgAAAABMi9AKAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AK\nAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AKAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0\nAgAAAABMi9AKAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMyxboAgAAAC7G+8CkQJcgSToR\n6AL+P+v61wNdAgBcdYy0AgAAAABMi9AKAAAAADAtLg8GAKCHqaurU3FxsU6dOiWLxSKn06m77rpL\nTU1NKioq0smTJ5WQkKD58+crMjJShmFo48aNqq6uVmhoqPLy8pSSkhLobgAA4BdGWgEA6GGsVqtm\nzJihoqIiLV26VG+++aY+/PBDlZSUaMiQIVq9erWGDBmikpISSVJ1dbWOHz+u1atXa86cOdqwYUOA\newAAgP8IrQAA9DB2u903Utq7d28lJyfL7XaroqJCWVlZkqSsrCxVVFRIkiorKzVmzBhZLBalpaWp\nublZHo8nYPUDAHApCK0AAPRgtbW1OnLkiFJTU9XQ0CC73S5Jio2NVUNDgyTJ7XYrPj7et09cXJzc\nbndA6gUA4FJxTysAAD3UmTNntHLlSs2cOVPh4eHtXrNYLLJYLJfUnsvlksvlkiQVFha2C7qBYpap\nZszCDD8TtGez2fi5mAz/32gvGI5PQisAAD1Qa2urVq5cqS9+8Yv6whe+IEmKiYmRx+OR3W6Xx+NR\ndHS0JMnhcKiurs63b319vRwOR4c2nU6nnE6nb/mT+8Ac+JmYT3x8PD8XmJpZjs+kpKTL3pfLgwEA\n6GEMw9C6deuUnJysiRMn+tZnZGSorKxMklRWVqaRI0f61u/YsUOGYaimpkbh4eG+y4gBADA7RloB\nAOhhDhw4oB07duiGG27Qww8/LEm67777NHnyZBUVFam0tNQ35Y0kDR8+XFVVVZo7d65CQkKUl5cX\nyPIBALgkhFYAAHqYm2++Wa+88soFX1u4cGGHdRaLRbNnz+7usgAA6BadhlYmMAcAAAAABEqn97Qy\ngTkAAAAAIFA6HWm12+2+hzV8egLzxYsXSzo/gfnixYs1ffr0i05gzgMfAAAA0FW8D0wKdAmSzDO9\ninX964EuAeg2l/T0YCYwBwAAAABcTX4/iOlamMC8K5jlr234p2A5toIN54r5cK4AAAAz8iu0MoE5\nejKOLcA/wXSuXMkE5gAAwFw6vTyYCcwBAAAAAIHS6UgrE5gDAAAAAAKl09DKBOYAAAAAgEC5pKcH\nAwAAAABwNRFaAQAAAACmRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACmRWgFAAAAAJgW\noRUAAAAAYFqEVgAAAACAaRFaAQAAAACmRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACm\nRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACmRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACA\naRFaAQAAAACmRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACmZQt0AQAA4NL86Ec/UlVV\nlWJiYrRy5UpJUlNTk4qKinTy5EklJCRo/vz5ioyMlGEY2rhxo6qrqxUaGqq8vDylpKQEuAcAAPiP\nkVYAAHqY7OxsPfroo+3WlZSUaMiQIVq9erWGDBmikpISSVJ1dbWOHz+u1atXa86cOdqwYUMgSgYA\n4LIRWgEA6GEGDRqkyMjIdusqKiqUlZUlScrKylJFRYUkqbKyUmPGjJHFYlFaWpqam5vl8Xiues0A\nAFwuLg8GACAINDQ0yG63S5JiY2PV0NAgSXK73YqPj/dtFxcXJ7fb7dv2k1wul1wulySpsLCw3X6B\nciLQBZiMGX4mZsGx0R7Hxj9xbLQXDMdGp6GV+2YAAOhZLBaLLBbLJe/ndDrldDp9y3V1dV1ZFroA\nPxNcDMcGLsYsx0ZSUtJl79vp5cHcNwMAgPnFxMT4Lvv1eDyKjo6WJDkcjna/sNTX18vhcASkRgAA\nLkenoZX7ZgAAML+MjAyVlZVJksrKyjRy5Ejf+h07dsgwDNXU1Cg8PPyClwYDAGBWl3VPa1fcNwMA\nAC7PqlWrtH//fjU2Nurb3/627rnnHk2ePFlFRUUqLS313bojScOHD1dVVZXmzp2rkJAQ5eXlBbh6\nAAAuzRU/iOly75sx48MeugI3fptPsBxbwYZzxXw4V3qOefPmXXD9woULO6yzWCyaPXt2d5cEAEC3\nuazQ+o/Rs6Q3AAAgAElEQVT7Zux2+2XfN8PDHnC1cGwB/gmmc+VKHvYAAADM5bLmaeW+GQAAAADA\n1dDpSCv3zQAAAAAAAqXT0Mp9MwAAAACAQLmsy4MBAAAAALgaCK0AAAAAANMitAIAAAAATIvQCgAA\nAAAwLUIrAAAAAMC0CK0AAAAAANMitAIAAAAATIvQCgAAAAAwLUIrAAAAAMC0CK0AAAAAANMitAIA\nAAAATIvQCgAAAAAwLUIrAAAAAMC0CK0AAAAAANMitAIAAAAATIvQCgAAAAAwLUIrAAAAAMC0CK0A\nAAAAANMitAIAAAAATIvQCgAAAAAwLUIrAAAAAMC0CK0AAAAAANMitAIAAAAATIvQCgAAAAAwLUIr\nAAAAAMC0CK0AAAAAANMitAIAAAAATIvQCgAAAAAwLUIrAAAAAMC0CK0AAAAAANOydUeje/bs0caN\nG9XW1qaxY8dq8uTJ3fE2AADAT3w3AwB6qi4faW1ra9N///d/69FHH1VRUZH+8Ic/6MMPP+zqtwEA\nAH7iuxkA0JN1eWg9dOiQPvOZzygxMVE2m02jRo1SRUVFV78NAADwE9/NAICerMtDq9vtVlxcnG85\nLi5Obre7q98GAAD4ie9mAEBP1i33tPrD5XLJ5XJJkgoLC5WUlBSoUrrWG5WBrgDoGThXANMx5Xcz\n/6/AxXBs4GI4NoJOl4+0OhwO1dfX+5br6+vlcDg6bOd0OlVYWKjCwsKuLgFdpKCgINAlAKbHeYKe\ngO/mK8e5jovh2MDFcGx0nS4Prf3799f//d//qba2Vq2trdq5c6cyMjK6+m0AAICf+G4GAPRkXX55\nsNVq1f3336+lS5eqra1Nd9xxh/r169fVbwMAAPzEdzMAoCfrlntab731Vt16663d0TSuIqfTGegS\nANPjPEFPwXfzleFcx8VwbOBiODa6jsUwDCPQRQAAAAAAcCFdfk8rAAAAAABdhdAKAAAAADCtgM3T\nCnP5+9//roqKCt9k8w6HQxkZGerbt2+AKwMAAADM79ChQ5Kk1NRUffjhh9qzZ4+SkpJ4nkAX4J5W\nqKSkRH/4wx80evRo37x9brfbt27y5MkBrhAAAMAc/v73v8vtdmvAgAEKCwvzrd+zZ49uueWWAFaG\nQHr11Ve1Z88eeb1eDR06VAcPHlR6err+8pe/aNiwYbr77rsDXWKPxkgr9NZbb2nlypWy2dofDhMn\nTtSCBQsIrYCf3nrrLd1xxx2BLgNAN+I8v7Zt3bpVb775ppKTk7Vu3TrNnDlTI0eOlCT97Gc/I7Re\nw8rLy7VixQqdO3dOc+bM0XPPPafw8HBNmjRJjz76KKH1ChFaIYvFIo/Ho4SEhHbrPR6PLBZLgKoC\nep5XXnmFX2aBIMd5fm37/e9/rx/84AcKCwtTbW2tfvjDH+rkyZO66667xMWL1zar1apevXopNDRU\niYmJCg8PlySFhITw+3QXILRCM2fO1FNPPaXrr79ecXFxkqS6ujodP35cs2bNCnB1gLl897vfveB6\nwzDU0NBwlasB0B04z3ExhmH4Lgnu06ePFi9erJUrV+rkyZOE1muczWbTxx9/rNDQUBUWFvrWt7S0\nqFcvnn17pQit0C233KL/+q//0qFDh9o9iCk1NZWTDPiUhoYGPfbYY4qIiGi33jAMPfHEEwGqCkBX\n4jzHxcTExOjo0aP67Gc/K0kKCwtTQUGBnnvuOX3wwQeBLQ4B9eSTT+q6666TpHa/P7e2turBBx8M\nVFlBg9AKSedPrrS0tECXAZjerbfeqjNnzvh+YfmkQYMGXf2CAHQ5znNczHe+8x1ZrdZ266xWq77z\nne/I6XQGqCqYwT8C66dFR0crOjr6KlcTfHh6MAAAAADAtLj2EwAAAABgWoRWAAAAAIBpEVoBAAAA\nAKZFaAUAAAAAmBahFQAAAABgWoRWAAAAAIBpEVoBAAAAAKZFaAUAAAAAmBahFQAAAABgWoRWAAAA\nAIBpEVoBAAAAAKZFaAUAAAAAmBahFQAAAABgWoRWAAAAAIBpEVoBAAAAAKZFaAUC7J133tHo0aMV\nFRWlqKgoDRs2TG+++aYk6cSJE5o5c6YSEhIUFRWl0aNHa8eOHb59ly9frtjYWB09etS37qmnnlJC\nQoKOHTt2tbsCAECP97vf/U7Z2dlyOByKiYlRVlaWdu3a5Xv9yJEjGj9+vMLCwtSvXz8VFxcrOztb\ns2fP9m1z7tw5LV68WDfddJPCwsKUnp6u559/PhDdAYKCLdAFANey1tZWTZo0STNnztSmTZskSe++\n+67Cw8N1+vRp3XHHHRo4cKC2bdum2NhY/fznP9e4ceO0Z88eDRw4UA8//LB+//vf67777tPbb7+t\nnTt3asmSJSopKVFSUlJgOwcAQA/U1NSkvLw8DRs2TK2trSoqKtKdd96pgwcPyuFw6Ctf+YpCQ0O1\nY8cOhYSE6NFHH1V1dbVSU1N9bTzwwAOqqqrS888/rwEDBmjXrl361re+JZvNplmzZgWwd0DPZDEM\nwwh0EcC1yuPxyOFw6K233lJ2dna71zZt2qTHH39cR48elc32z78v5eTkaOjQoVq1apWk86Oxw4YN\n0913361f//rX+trXvqaioqKr2Q0AAIJWW1ub4uLitHbtWvXp00fjx4/XwYMHfSHV7Xarb9++mjp1\nqjZs2KAjR46of//+2r9/v26++WZfO0899ZR++ctfas+ePYHqCtBjMdIKBJDdbtfs2bM1YcIE5eTk\nKCsrS1/5ylf0uc99ThUVFTp+/LhiY2Pb7fPxxx+rd+/evuXExERt3LhRd911l4YNG6Yf/OAHV7sb\nAAAEjSNHjmjhwoX64x//qNraWrW1tamlpUXvv/++6urqFB8f325U1eFw6HOf+5xvubKyUoZhKCMj\no127ra2tslqtV60fQDAhtAIBtn79ej300EP67W9/q9/97nd64okntHbtWrW1tWngwIF67bXXOuwT\nHh7ebrmsrExWq1UnTpxQQ0ODEhISrlb5AAAElYkTJyo+Pl7FxcXq16+fQkJCdPvtt+vs2bOKiIiQ\nxWL5l/u3tbVJknbu3Nnh+7qzfQFcGA9iAkxg8ODBWrBggbZt26ZZs2bphRdeUEZGhg4fPqzo6Gil\npqa2+++T96u6XC6tXLlSW7ZsUb9+/TRz5kxx1T8AAJeuvr5e+/fvV0FBgSZMmKBBgwYpLCxMtbW1\nkqRBgwbp5MmTeu+993z7eDwe1dTU+JZHjBghSfrggw86fH/379//6nYICBKEViCADh06pEceeUTv\nvPOO3n//ff3xj3/U22+/rUGDBmnatGm66aablJubq9/+9rc6evSo/vSnP2nZsmUqKSmRJJ08eVIz\nZszQww8/rDvvvFM/+9nP9Pbbb/vudwUAAP6z2+1KSEjQ+vXrVVNToz/+8Y+67777fLflOJ1ODRs2\nTDNmzFBFRYX+/Oc/a8aMGbLZbL5R1NTUVN1///164IEH9NOf/lSHDh3Sn//8Z7344ovcwgNcJkIr\nEEARERE6ePCgpkyZorS0NH31q1/VqFGjtHbtWoWFhamsrEwZGRn65je/qbS0NN19993atWuXbrzx\nRhmGoZkzZ+rGG2/UU089JUnq37+/1q1bp4KCAlVXVwe4dwAA9Cy9evXSq6++qvfee09Dhw7VzJkz\nNW/ePF1//fWSzl/e+9prrykiIkJf/OIXNXHiRH3pS1/S5z73OYWFhfnaeeGFFzR//nwtXbpUgwYN\n0tixY/XjH/9YKSkpgeoa0KPx9GAAAADgMjU2Nqpv3756+umnlZ+fH+hygKDEg5gAAAAAP73++uuy\n2WwaOHCgamtr9eSTT8piseiee+4JdGlA0CK0AgAAAH5qaWnRU089paNHjyoiIkIjRozQO++8o8TE\nxECXBgQtLg8GAAAAAJiWXyOtzc3NWrdunf72t7/JYrHoP/7jP5SUlKSioiKdPHlSCQkJmj9/viIj\nI2UYhjZu3Kjq6mqFhoYqLy+Pm84BAAAAAJfFr5HWtWvXauDAgRo7dqxaW1v18ccf67XXXlNkZKQm\nT56skpISNTU1afr06aqqqtJvfvMbff/739fBgwe1adMmPfPMM1ejLwAAAACAINPplDctLS3661//\nqpycHEmSzWZTRESEKioqlJWVJUnKyspSRUWFJKmyslJjxoyRxWJRWlqampub5fF4urELAAAAAIBg\n1enlwbW1tYqOjtaPfvQjvf/++0pJSdHMmTPV0NAgu90uSYqNjVVDQ4Mkye12Kz4+3rd/XFyc3G63\nb9uLOXbs2JX0A90gPj5edXV1gS4DMDXOE3NKSkoKdAlB4dixYxc8xv1Z11XbmLFtM9bUU9s2Y009\ntW0z1kR/e0bbV6umK/lu7jS0er1eHTlyRPfff78GDBigjRs3qqSkpN02FotFFovlkt7Y5XLJ5XJJ\nkgoLC9sFXZiDzWbj5wJ0gvMEAACge3UaWuPi4hQXF6cBAwZIkjIzM1VSUqKYmBh5PB7Z7XZ5PB5F\nR0dLkhwOR7t0XV9fL4fD0aFdp9Mpp9PpW2akwnwYQQI6x3liToy0AgAQPDq9pzU2NlZxcXG+y3f/\n8pe/qG/fvsrIyFBZWZkkqaysTCNHjpQkZWRkaMeOHTIMQzU1NQoPD+/00mAAAAAAAC7Erylv7r//\nfq1evVqtra3q06eP8vLyZBiGioqKVFpa6pvyRpKGDx+uqqoqzZ07VyEhIcrLy+vWDgAAAAAAgpdf\nofWzn/2sCgsLO6xfuHBhh3UWi0WzZ8++8soAAAAAANc8v0IrAAAwv7Nnz2rRokVqbW2V1+tVZmam\n7rnnHtXW1mrVqlVqbGxUSkqK8vPzZbPxKwAAoGfgGwsAgCBx3XXXadGiRQoLC1Nra6sWLlyoW265\nRVu2bFFubq5Gjx6tF154QaWlpRo/fnygywUAwC+dPogJAAD0DBaLRWFhYZLOT1nn9XplsVi0b98+\nZWZmSpKys7NVUVERyDIBALgkjLQCABBE2tra9Mgjj+j48eOaMGGCEhMTFR4eLqvVKun81HRutzvA\nVQIA4D+LYRhGoIuQ5JtSB+bB/JPoTt4HJgW6BHyKdf3rgS6hyzBPq9Tc3Kxnn31W9957r4qLi7Vm\nzRpJ5+dFX7ZsmVauXNlhH5fLJZfLJUkqLCzU2bNnZbPZ1Nra2m47f9Z11TZmbNuMNZmt7RNfGSVJ\nSnxtp2lqCva2zVgT/e0ZbV+tmkJCQnS5GGkFACAIRUREKD09XTU1NWppaZHX65XVapXb7ZbD4bjg\nPk6nU06n07dcV1d3wT9g+rOuq7YxY9tmrMmMbUsyXU3B3LYZa6K/PaPtq1XTlfxBmXtaAQAIEh99\n9JGam5slnX+S8N69e5WcnKz09HSVl5dLkrZv366MjIxAlgkAwCVhpBUAgCDh8XhUXFystrY2GYah\n2267TSNGjFDfvn21atUqvfzyy7rpppuUk5MT6FIBAPAboRUAgCBx4403avny5R3WJyYmatmyZQGo\nCACAK8flwQAAAAAA0yK0AgAAAABMi9AKAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AK\nAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AKAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0\nAgAAAABMi9AKAAAAADAtQisAAAAAwLRsgS4AAAAA5uR9YJJO/P9/W9e/HtBaAFy7GGkFAAAAAJgW\noRUAAAAAYFp+XR784IMPKiwsTL169ZLValVhYaGamppUVFSkkydPKiEhQfPnz1dkZKQMw9DGjRtV\nXV2t0NBQ5eXlKSUlpbv7AQAAAAAIQn7f07po0SJFR0f7lktKSjRkyBBNnjxZJSUlKikp0fTp01Vd\nXa3jx49r9erVOnjwoDZs2KBnnnmmW4oHAAAAAAS3y748uKKiQllZWZKkrKwsVVRUSJIqKys1ZswY\nWSwWpaWlqbm5WR6Pp2uqBQAAAABcU/weaV26dKkkady4cXI6nWpoaJDdbpckxcbGqqGhQZLkdrsV\nHx/v2y8uLk5ut9u3LQAAAAAA/vIrtC5ZskQOh0MNDQ16+umnlZSU1O51i8Uii8VySW/scrnkcrkk\nSYWFhe2CLszBZrPxc0G3OdH5JrjKON+BnolpaQAEO79Cq8PhkCTFxMRo5MiROnTokGJiYuTxeGS3\n2+XxeHz3uzocDtXV1fn2ra+v9+3/SU6nU06n07f8yX1gDvHx8fxcgGtIMJ3vn/7jKgAA6Lk6vaf1\nzJkzOn36tO/fe/fu1Q033KCMjAyVlZVJksrKyjRy5EhJUkZGhnbs2CHDMFRTU6Pw8HAuDQYAAAAA\nXJZOR1obGhr07LPPSpK8Xq9uv/123XLLLerfv7+KiopUWlrqm/JGkoYPH66qqirNnTtXISEhysvL\n694eAAAAAACCVqehNTExUStWrOiwPioqSgsXLuyw3mKxaPbs2V1THQAA8FtdXZ2Ki4t16tQpWSwW\nOZ1O3XXXXXrllVf0+9//3ncrz3333adbb701wNUCAOAfv58eDAAAzM1qtWrGjBlKSUnR6dOnVVBQ\noKFDh0qScnNzNWnSpABXCADApSO0AgAQJOx2u+85Er1791ZycrLcbneAqwIA4Mp0+iAmAADQ89TW\n1urIkSNKTU2VJL355pv67ne/qx/96EdqamoKcHUAAPjPYhiGEegiJOnYsWOBLgGfwpQ36E7eB7hM\n0WyCaX7Ha33KmzNnzmjRokW6++679YUvfEGnTp3y3c/685//XB6P54IPSvz0HOpnz56VzWZTa2tr\nu+38WddV25ixbbPVdOIro3zrE1/b2W7dP5a7su1L2a+z9zdjTT3xGDBrTfS3Z7R9tWoKCQnR5eLy\nYAAAgkhra6tWrlypL37xi/rCF74gSYqNjfW9PnbsWP3gBz+44L4XmkP9Qn/A9GddV21jxrbNWpPU\ncb7l7mrb3/2uZn+7qqaefAyYrSb62zPavlo1XckflLk8GACAIGEYhtatW6fk5GRNnDjRt97j8fj+\nvWvXLvXr1y8Q5QEAcFkYaQUAIEgcOHBAO3bs0A033KCHH35Y0vnpbf7whz/o6NGjslgsSkhI0Jw5\ncwJcKQAA/iO0AgAQJG6++Wa98sorHdYzJysAoCfj8mAAAAAAgGkRWgEAAAAApkVoBQAAgKTz05F9\nckoZADADQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AKAAAAADAtQisAAAAAwLQIrQAAAAAA07IF\nugAAAABce7wPTJIknZBkXf96YIsBYGqMtAIAAAAATIvQCgAAAAAwLUIrAAAAAMC0CK0AAAAAANMi\ntAIAAAAATIvQCgAAAAAwLUIrAAAAYBLeBybpxFdGBboMwFQIrQAAAAAA0yK0AgAAAABMi9AKAAAA\nADAtQisAAAAAwLRs/m7Y1tamgoICORwOFRQUqLa2VqtWrVJjY6NSUlKUn58vm82mc+fOae3atTp8\n+LCioqI0b9489enTpzv7AAAAAAAIUn6PtG7dulXJycm+5c2bNys3N1dr1qxRRESESktLJUmlpaWK\niIjQmjVrlJubq5deeqnrqwYAAAAAXBP8Cq319fWqqqrS2LFjJUmGYWjfvn3KzMyUJGVnZ6uiokKS\nVFlZqezsbElSZmam3n33XRmG0Q2lAwAAAACCnV+hddOmTZo+fbosFoskqbGxUeHh4bJarZIkh8Mh\nt9stSXK73YqLi5MkWa1WhYeHq7GxsTtqBwAAAAAEuU7vad29e7diYmKUkpKiffv2ddkbu1wuuVwu\nSVJhYaHi4+O7rG10DZvNxs8F3eZEoAtAB5zvAADAjDoNrQcOHFBlZaWqq6t19uxZnT59Wps2bVJL\nS4u8Xq+sVqvcbrccDoek86Ou9fX1iouLk9frVUtLi6Kiojq063Q65XQ6fct1dXVd2C10hfj4eH4u\nwDUkmM73pKSkQJcQEHV1dSouLtapU6dksVjkdDp11113qampSUVFRTp58qQSEhI0f/58RUZGBrpc\nAAD80mlonTp1qqZOnSpJ2rdvn379619r7ty5+uEPf6jy8nKNHj1a27dvV0ZGhiRpxIgR2r59u9LS\n0lReXq709HTfZcUAAKD7WK1WzZgxQykpKTp9+rQKCgo0dOhQbd++XUOGDNHkyZNVUlKikpISTZ8+\nPdDlAgDgl8uep3XatGnasmWL8vPz1dTUpJycHElSTk6OmpqalJ+fry1btmjatGldViwAALg4u92u\nlJQUSVLv3r2VnJwst9utiooKZWVlSZKysrJ8D08EAKAn8HueVklKT09Xenq6pP/H3p3H13jm/x9/\nnSSSyL5JSCxBKFF0KlSpparThSrVKt2YFjU67agiOlNbp51oFR0VbU0N1epeTFdtQ0tRJbbYidhl\nTxzZI8n5/eGX+ysnhxwRcmLez8cjj4dzua7P/bnuc90n58p939cNISEhxMTEVKrj6urK+PHjayY7\nERERqZa0tDSOHDlCREQEZrMZf39/APz8/DCbzbWcnYiIiP0ua9IqIiIijq+wsJDZs2czYsQIPDw8\nKvyfyWS66G07thZJtLUonz1lNVXHEWM7Wk4XLmxnXXa5sa3b2Yp9OTldbt6XE/tS7VIHdTPqhqzY\naHdO9mz/StrZU8dWnrWdkyPGdsSc6mrsa51TdWjSKiIich0pKSlh9uzZ9OjRg1tuuQUAX19fsrOz\n8ff3Jzs7Gx8fH5ttbS2SaGtRPnvKaqqOI8Z21Jyg8oJq1Yltq511mb05VSfv6vb3au6Taz0G7Olb\nXRiX/2vHYV2Nfa1yupJFEqt9T6uIiIg4FovFwjvvvENYWBj9+/c3yqOioli7di0Aa9eupXPnzrWV\nooiIyGXTmVYREZHrxIEDB1i3bh1NmzZl4sSJAAwbNoyBAwcyd+5c1qxZYzzyRkREpK7QpFVEROQ6\n0aZNGz777DOb/zd16tRrnI2IiEjN0OXBIiIiIiIi4rA0aRURERERERGHpUmriIiIiIiIOCxNWkVE\nRERERMRhadIqIiIiIiIiDkuTVhEREREREXFYmrSKiIiIiIiIw9KkVURERERERByWJq0iIiIiIiLi\nsDRpFRERERGHUDpqAKmDulVZdi1dze3Xdt9E6gpNWkVERERERMRhadIqIiIiIiIiDkuTVhERERER\nEXFYmrSKiIiIiIiIw9KkVURERERERByWJq0iIiIiIiLisDRpFREREREREYflUtsJiIiIiIhtpaMG\nkAo4//ur2k7lf0L5/gbtcxFHojOtIiIiIiIi4rA0aRURERERERGHpUmriIiIiIiIOCzd01rDSkcN\nqO0Uakxq1VXqBN2TIiIiIiJSd+lMq4iIiIiIiDisKs+0FhcXM23aNEpKSigtLaVr164MGTKEtLQ0\n3nzzTXJycmjRogXPPvssLi4unDt3jvnz55OUlIS3tzfjxo0jODj4WvRFRERERERErjNVnmmtV68e\n06ZNY9asWbz++uvs2LGDgwcP8uGHH9KvXz/eeustPD09WbNmDQBr1qzB09OTt956i379+rFs2bKr\n3gkRERERERG5PlU5aTWZTLi7uwNQWlpKaWkpJpOJPXv20LVrVwB69+7Nli1bAIiPj6d3794AdO3a\nld27d2OxWK5S+iIiIiIiInI9s2shprKyMqKjo0lJSeGuu+4iJCQEDw8PnJ2dAQgICCArKwuArKws\nAgMDAXB2dsbDw4OcnBx8fHyuUhdERERERETkemXXpNXJyYlZs2aRl5fHG2+8wenTp694w3FxccTF\nxQEwc+ZMgoKCrjimI7heVty9nlwvY+t6o2PF8ehYqfsWLFjAtm3b8PX1Zfbs2QB89tlnrF692vjj\n8bBhw7j55ptrM00REZHLclmPvPH09KRdu3YcPHiQ/Px8SktLcXZ2Jisri4CAAOD8WdfMzEwCAwMp\nLS0lPz8fb2/vSrH69u1L3759jdcZGRlX2BUR2zS2ROxzPR0roaGhtZ1Crejduzd33303sbGxFcr7\n9evHgAHXzyPZRETkf0uV97SePXuWvLw84PxKwgkJCYSFhdGuXTs2bdoEwC+//EJUVBQAnTp14pdf\nfgFg06ZNtGvXDpPJdJXSFxERkXKRkZF4eXnVdhoiIiI1qsozrdnZ2cTGxlJWVobFYuHWW2+lU6dO\nNG7cmDfffJNPPvmE5s2b06dPHwD69OnD/PnzefbZZ/Hy8mLcuHFXvRMiIiJycT/88APr1q2jRYsW\nPPHEE5rYiohInVLlpLVZs2a8/vrrlcpDQkKIiYmpVO7q6sr48eNrJjsRERG5In/84x958MEHAfj0\n009ZunQpY8eOtVnX1noTLi4ule53tqespuo4YuxrmVP5/f/21LmwnnW71EHdjPKQFRsvuv1K7WzF\nHtStUpyrlbe9OVU3do21s7FPbJVVtb8vVuZo49IRYjtiTnU19rXOqTou655WERERqVv8/PyMf99x\nxx289tprF61ra72JoKCgSvc721NWU3UcMfa1zgkq33Nuq46telXVsTeOPbGvZd62yqobuybbXa39\n7YjjsrZjO2JOdTX2tcrpStabqPKeVhEREam7srOzjX9v3ryZJk2a1GI2IiIil09nWkVERK4Tb775\nJnv37iUnJ4cxY8YwZMgQ9uzZw9GjRzGZTDRo0IDRo0fXdpoiIiKXRZNWERGR64StxQ/LF0oUERGp\nq3R5sIiIiIiIiDgsTVpFRERERETEYWnSKiIiIiJynSkdNcB41JFIXadJq4iIiIiIiDgsTVpFRERE\nRETEYWnSKiIiIiIiIg5Lk1YRERERERFxWJq0ioiIiIiIiMPSpFVEREREREQclkttJyAiIiIi9isd\nNYBUwPnfX9V2KlLHVGfslI4aAKAxJ7VKZ1pFRERERETEYWnSKiIiIiIiIg5Lk1YRERERERFxWJq0\nioiIiIiIiMPSpFVEREREREQcliatIiIiIiIi4rD0yBsREREREalR5Y/XAT0qR66czrSKiIiIiIiI\nwzV/YTMAACAASURBVNKkVURERERERByWJq0iIiIiIiLisDRpFREREREREYelSauIiIiIiIg4LE1a\nRURERERExGHpkTciIiIiInVY6agBAKSix8vI9anKSWtGRgaxsbGcOXMGk8lE3759uffee8nNzWXu\n3Lmkp6fToEEDnn/+eby8vLBYLCxevJjt27fj5ubG2LFjadGixbXoi4iIiIiIiFxnqrw82NnZmccf\nf5y5c+fy6quv8sMPP3Dy5ElWrlxJ+/btmTdvHu3bt2flypUAbN++nZSUFObNm8fo0aN57733rnon\nRERERERE5PpU5aTV39/fOFNav359wsLCyMrKYsuWLfTq1QuAXr16sWXLFgDi4+Pp2bMnJpOJ1q1b\nk5eXR3Z29lXsgoiIiIiIiFyvLuue1rS0NI4cOUJERARmsxl/f38A/Pz8MJvNAGRlZREUFGS0CQwM\nJCsry6grIiIiV8+CBQvYtm0bvr6+zJ49G+Cit/SIiIjUBXZPWgsLC5k9ezYjRozAw8Ojwv+ZTCZM\nJtNlbTguLo64uDgAZs6cWWGiW5el1nYCUsn1MrauNzpWHI+OletD7969ufvuu4mNjTXKym/pGThw\nICtXrmTlypU89thjtZiliIiI/eyatJaUlDB79mx69OjBLbfcAoCvry/Z2dn4+/uTnZ2Nj48PAAEB\nAWRkZBhtMzMzCQgIqBSzb9++9O3b13h9YRuRmqSxJWKf6+lYCQ0Nre0Uak1kZCRpaWkVyrZs2cL0\n6dOB87f0TJ8+XZNWERGpM6q8p9VisfDOO+8QFhZG//79jfKoqCjWrl0LwNq1a+ncubNRvm7dOiwW\nCwcPHsTDw0OXBouIiNSii93SIyIiUhdUeab1wIEDrFu3jqZNmzJx4kQAhg0bxsCBA5k7dy5r1qwx\n7o8B+MMf/sC2bdt47rnncHV1ZezYsVe3ByIiImK3S93SY+vWHRcXl0qXjttTVp06qYO6kQqErNh4\n0Xb21LF3+9e6XXVil99KUWE/WZVdeLvFxdrZqmNr+9WJbW/eF6tTVezq9OVK865uu0vlbd3mStpV\nN++ain0129lbp9L2HOCzoa7GvtY5VUeVk9Y2bdrw2Wef2fy/qVOnViozmUyMHDnyipISERGRmnOx\nW3qs2bp1JygoqNKl4/aUVbdO+Xar2l5NbP9at6tubFv9tbesqjr2vgf2xK7O+1TdvG2VVTd2Tba7\nWvvb3nFiT941FftqtqvJY6UuHOO1Hfta5XQlt+5UeXmwiIiI1G0Xu6VHRESkLrisR96IiIiIY3vz\nzTfZu3cvOTk5jBkzhiFDhlz0lh4REZG6QJNWERGR68i4ceNsltu6pUdERKQu0OXBIiIiIiIi4rA0\naRURERERERGHpUmriIiIiIhckdJRA0gd1O2qxKmp2FJ3adIqIiIiIiIiDkuTVhEREREREXFYmrSK\niIiIiIiIw9KkVURERERERByWJq0iIiIiIiLisDRpFREREREREYflUtsJiIiIiDiC0lEDSAWc//1V\nbaciIrWkdNQAAH0WOBidaRURERERERGHpUmriIiIiIiIOCxNWkVERERERMRhadIqIiIiIiIiDkuT\nVhEREREREXFYmrSKiIiIiIiIw9Ijb0REROSaK3+8DOixEiJydegxVtcPnWkVERERERERh6VJq4iI\niIiIiDgsTVpFRERERETEYWnSKiIiIiIiIg5Lk1YRERERERFxWJq0ioiIiIiIiMPSI29ERETEIZWO\nGgBwXTyyQo/4kZp0NR/lUhceE1Pdz4a60DexTWdaRURERERExGFVeaZ1wYIFbNu2DV9fX2bPng1A\nbm4uc+fOJT09nQYNGvD888/j5eWFxWJh8eLFbN++HTc3N8aOHUuLFi2ueidERERERETk+lTlpLV3\n797cfffdxMbGGmUrV66kffv2DBw4kJUrV7Jy5Uoee+wxtm/fTkpKCvPmzePQoUO89957/POf/7yq\nHRAREZGqPfPMM7i7u+Pk5ISzszMzZ86s7ZRERETsUuXlwZGRkXh5eVUo27JlC7169QKgV69ebNmy\nBYD4+Hh69uyJyWSidevW5OXlkZ2dfRXSFhERkcs1bdo0Zs2apQmriIjUKdW6p9VsNuPv7w+An58f\nZrMZgKysLIKCgox6gYGBZGVl1UCaIiIiIiIi8r/oilcPNplMmEymy24XFxdHXFwcADNnzqww2a3L\nUquuItfY9TK2rjc6VhyPjpXr36uvvgrAnXfeSd++fWs5GxEREftUa9Lq6+tLdnY2/v7+ZGdn4+Pj\nA0BAQAAZGRlGvczMTAICAmzG6Nu3b4VfmBe2E6lJGlsi9rmejpXQ0NDaTsHh/OMf/yAgIACz2cwr\nr7xCaGgokZGRFerY+oOyi4tLpT9o2FNWVZ0L/3BlXXY5daq7/UvldK36W6nOoG5G3ZAVGy+aU3X2\nkz3br27sS/X3SsdAdftypXlXt92l8rZuU5Ptqrsvqx17ULcK49Tedra2Z11WU2P+Uu2u9Fi9WFmV\nfbNxjNdU7NpoV93Y1VGtSWtUVBRr165l4MCBrF27ls6dOxvlq1atonv37hw6dAgPDw/jMmIRERGp\nPeV/RPb19aVz584kJiZWmrTa+oNyUFBQpT9o2FNmb7vy7VzqtT11qrt9W2XXsr81uU+q087e7dsT\nu7r7sjp52yqrbuyabHe19ndNvk/XMra926vOvrySnGrqWL2anwM19Zl2Ndtdbuwr+YNylZPWN998\nk71795KTk8OYMWMYMmQIAwcOZO7cuaxZs8Z45A3AH/7wB7Zt28Zzzz2Hq6srY8eOrXZiIiIiUjMK\nCwuxWCzUr1+fwsJCEhISePDBB2s7LREREbtUOWkdN26czfKpU6dWKjOZTIwcOfLKsxIREZEaYzab\neeONNwAoLS3ltttu46abbqrlrEREROxzxQsxiYiIiGMLCQlh1qxZtZ2GiIhItVTrkTciIiIiIiIi\n14ImrSIiIiIiIuKwdHmwiIiI1GmlowaQCjj/+6ur3q501ACAam1PRK5f5Z8ncOWfDfZ8NlX3c6+u\n0plWERERERERcViatIqIiIiIiIjD0qRVREREREREHJYmrSIiIiIiIuKwNGkVERERERERh6VJq4iI\niIiIiDgsTVpFRERERETEYek5rSIiInJdsfW8xP+1ZxqK1BU6Nqt2rZ8B64h0plVEREREREQcliat\nIiIiIiIi4rA0aRURERERERGHpUmriIiIiIiIOCxNWkVERERERMRhadIqIiIiIiIiDkuTVhEREam2\n0lEDzj9CYVC3CmUXvq7LqtuX62kf1AXX+n26Xt7f8n6UjhpwTbdX11zNcVKT+6SmPouvdd720KRV\nREREREREHJYmrSIiIiIiIuKwNGkVERERERERh6VJq4iIiIiIiDgsTVpFRERERETEYWnSKiIiIiIi\nIg7LpbYTEBEREcdUOmoAqf//387//qpCWfnry411ue3qgrq6T2py+/bEqu3+1jZbx9PltPtf3W9X\nW109fmtK+eOOauL4ta5jb2x76EyriIiIiIiIOCxNWkVERERERMRhXZXLg3fs2MHixYspKyvjjjvu\nYODAgVdjMyIiImIn/W4WEZG6qsbPtJaVlbFo0SL+9re/MXfuXDZs2MDJkydrejMiIiJiJ/1uFhGR\nuqzGJ62JiYk0bNiQkJAQXFxc6NatG1u2bKnpzYiIiIid9LtZRETqshqftGZlZREYGGi8DgwMJCsr\nq6Y3IyIiInbS72YREanLTBaLxVKTATdt2sSOHTsYM2YMAOvWrePQoUM89dRTFerFxcURFxcHwMyZ\nM2syBREREbmAfjeLiEhdVuNnWgMCAsjMzDReZ2ZmEhAQUKle3759mTlzpn4pOrDJkyfXdgoiDk/H\nidQFV/K72dYYt6espuo4YmxHzKmuxnbEnOpqbEfMSf2tG7GvdU7VUeOT1pYtW5KcnExaWholJSVs\n3LiRqKiomt6MiIiI2Em/m0VEpC6r8UfeODs78+STT/Lqq69SVlbG7bffTpMmTWp6MyIiImIn/W4W\nEZG6zHn69OnTazpoo0aNuOeee7j33ntp27ZtTYeXa6hFixa1nYKIw9NxInXBlfxutjXG7SmrqTqO\nGNsRc6qrsR0xp7oa2xFzUn/rRuxrndPlqvGFmERERERERERqSo3f0yoiIiIiIiJSUzRpFRERERER\nEYelSauIiIiIiIg4rBpfPVhE5H9BcXExGRkZhIaG1nYqIjWupKQEF5fzXxHi4+Pp0KEDhYWF+Pj4\nVKqblpbGkSNHCA0NJSwsDCcnJ0pKSjh48CDu7u6VFt84duwYzZo1q1B25swZsrKygPPPlPXz8yM3\nNxcALy8vo551mXU7oFIce2LbqnM9yM/PZ8eOHRX61rFjRzw9PYH/e+/q1avH8ePHjXrOzs4AlJaW\nGu3atWtHenq6zVjlcQIDA0lLS7vk9uLj48nIyKCkpMSo06RJE06cOFGhnXWZl5cX9evXx2QyXVbs\nTp06UVhYWCF2RESEEaewsJCkpCRSUlLIz8836rRq1YpDhw5dsr9hYWEUFBRUqNOyZUsOHz5sc3uF\nhYWcPn0ab2/vCrE9PT2xWCwVtm/rfbLev/7+/nh7e1NQUGC0Cw0NZefOnZesU93+d+jQgeTk5Aqx\nAbKzsy+6fXvHifX27OnbxfIMDg5m9+7dlzWebb0H1nECAgKIioqicePGAOzfv5+tW7dy9uxZ3Nzc\nLmvs2optnROcP4bLP6/sjV1T+8TeY8y6XVVjrrq0EJMYTp8+zXvvvYfZbGb27NkcO3aM+Ph4Bg8e\nXNupiTiU+Ph4PvjgA0pKSoiNjeXo0aN8+umnREdH13ZqIldk9+7dzJ8/n3PnztG8eXNGjx7N888/\nj7u7O2VlZTz77LPExcUxadIkALZs2cKSJUsIDg5m3759uLu788wzz7B06VIyMzOxWCz4+fnxwgsv\nEBERAUB0dDQvvvgiWVlZnD59mq+//pri4mICAgIoLi7m2LFjnDt3Dj8/P1xcXMjLy8PNzY2ioiK8\nvLywWCzk5uZiMpnw9PQkODiYgoICjh07BkCzZs2oX78+KSkp5OTk4O3tTcOGDW3Gto4DkJmZibu7\nO7fccgv16tUDavaLcHUnjbYmdpf6knvq1CmOHDlChw4djMcbrVmzBicnJx588EE8PDxYsmQJ3t7e\nHD9+nKioKKKioti6dSv79u0DoG3btnTq1In4+Hji4+MJDw+nU6dOrF+/nrZt27Jr1y5uvvlm4uPj\nCQwM5NChQ7Rp04Ybb7zR5vYWLFgAgJOTE126dKFt27asX7+ePXv2EBkZSY8ePQAqle3fv59NmzYB\n51cgbdu2rV2x9+zZw6+//kqDBg2MFbN37tyJi4sLI0eOxM3Njddff52ioiKjXWhoKLt27eLAgQNG\nX2z1t1GjRuzZs4ewsDBjbB89etT4o0x4eDgHDhwgKCiIlJQU7rrrLr799lvc3d1JTk6mY8eOtG7d\nmiNHjrBr1y4AOnToQHh4uM33yXr/pqSksHnzZkpLS2nZsiWNGjXi0KFDnD59mo4dO9KqVSubdarT\nf4CDBw+SkJBg9DczM7PCOCnP78Lt2ztOrLdnT99stQPYunUrR48evazxbOs9sI4D8NFHH+Ht7U33\n7t3x8vLis88+w2KxUK9ePVq1amUcG1WNXVuxrXPat28fSUlJAHTt2pU2bdrYFbum9om9x691O1vv\nXWZmJikpKYwcOZKOHTtSXbo8WAzvvvsujzzyiPHLslmzZmzcuLGWsxJxPJ9//jkxMTHGF8/w8HDS\n0tJqOSuRK7ds2TL+/ve/s2jRIvr27csrr7xCUFAQ//rXv3B3d+ebb75h27ZtLFy4kL179/Lf//6X\nadOmkZeXx6xZs/Dz82P+/Pk4OzsTGxvLvHnzcHNzY/78+WzevJmjR49y6tQpZsyYwbJly1i4cCE5\nOTl4eHjw6KOPUlZWxpgxY5g2bRpeXl689dZbNGrUiC5dutCwYUPmzZvHW2+9RVBQEP369cPHx4cp\nU6Zw7tw5pk+fzrRp0zh37hxTpkzBw8OD4cOH4+HhwZQpU2zGto4zZcoUBg0aRHZ2Nl9//TVFRUUU\nFRXxzTffMHXqVJKSkoiIiMBsNrNhwwY2bNiA2WwmIiKCpKQkpk2bxjfffENRURH79+9nyZIlvP/+\n+xw4cICioiKWLVvG5MmTWbt2LVu2bGHGjBmsWLGCN95445Kx9+7dy5w5c9izZw8RERE2t7djxw6W\nL1/OqlWrKCkp4cSJE9x9992cOnUKZ2dnBg8ejKenJzExMSxfvtx47woKCpg/fz7Jycn07NmTo0eP\nsmDBAhYsWMCRI0fo2bMnx44d4+233yY3N5fBgwdTr149Ro8eTUxMDHFxcUybNg2z2czcuXONOra2\n5+Hhwb///W/mzp1LYmIiPXv2JDU1lUWLFpGamkrPnj1tlu3Zs4e33nqLhQsXkpaWZnfsgwcPMnv2\nbCwWC2PGjGHMmDHGe71kyRI+/fRT3N3dWbhwIW+88QanTp1i8ODBZGdn869//YusrKyL9jczM5NX\nX30Vk8lkxC4qKmLq1KkUFRUxZswYXF1d+fvf/86UKVP45JNPmDhxImVlZcTExGA2mxk8eDAnTpxg\nwYIFxMbGcvz48Yu+T9b7NzExkVmzZvHOO+9w5swZxowZQ0lJCTExMaSmpl60TnX6P3jwYNLS0oiJ\nieHcuXOMGTOGjIwM5syZw5w5c8jIyLC5fXvHifX27OnbxfLMy8tjwYIFHDt2zO7xbOs9sI7Ts2dP\nfHx8iImJYc2aNaxevRo3Nzfefvtt5syZw8mTJ+0eu7ZiW+eUnp7OwoULmTdvHnv27LE7dk3tE3uP\nMet2tt678mNgyZIlV/T7SZNWMRQXFxt/LSzn5KQhImLNxcUFDw+PCmVXetmLiCMoKSkxzsp17dqV\niRMnkp6ezt69e/Hx8WHq1KmEhYXRuHFjli1bxuHDh40zlE2aNMHV1ZWgoCCcnZ3x9/enQYMGuLm5\nMW3aNL788ktiYmIIDAxk7ty5TJkyBT8/PxYsWMDw4cN5++23ycnJoVu3brRp04bCwkIAcnJy+NOf\n/mRcIgdQVFTE4MGDycnJMV63atWK1q1bG+2Kioq44447KsSxjm0dB2D58uXMmTMHT0/PGv8iXN1J\no62JXVVfcuvXr0///v2NL9lw/nPKyckJi8VCaWkpwcHBmEwmSktLjc8wk8lEdnY22dnZFT7XzGZz\nhTrwf98RyseAj49PhTbW26tXrx7Z2dkV6plMJo4ePVqpna2yC3OyJ3Z5v6w/nwMCAigpKSE/P596\n9ephMpkICQnhwosPy2NfrL+lpaU0a9asQuzS0lJatGhhXDp54fbKysqMS+Wtt3VhXy72Plnv39LS\nUgIDAyu0u7Bv9tSxt/8XxiovK3994fast2/vOLHenj19u1ieJpOJs2fPVtiXVY3ni70HF8YBsFgs\nnDp1CovFgsViwdnZmezsbNzd3Y0TPvaOXevY1jmVt7HOqarYV2ufXOwYs253Oe/d5dI9rWLw9vYm\nJSXFGHibNm0y7lcQkf/TuHFj1q9fT1lZGcnJyXz//fe0bt26ttMSuWLOzs6cOXPGuKezSZMmNGzY\nkM8//5zU1FQATp48yaeffmp8ISm/n624uJiysjL+/Oc/s2TJElJSUggODqakpAR/f3+mT5/OqFGj\nKkwQb7rpJmJiYujVqxdnz54lLCyMV155hcLCQtq0aUNWVhYNGjRg/PjxBAYGGpfBNm/enLFjx+Ln\n58eBAwcIDw83Lllu1qwZBw4coGHDhowcObLCZZrWsa3jABQUFDB37lxuuukmI8+Lfekr/3c5W1/6\nTCbTJScjF5s0Xhjb1pdV6+2Vtyu/JPmBBx4gOjqaVq1akZeXx/Llyzly5Ah/+tOfcHFxIT09nezs\nbEaMGMHLL7+M2Wzm3XffJTg4mOeffx6AyMhI3n33XVxcXIiOjqZDhw4sX76co0ePMmzYMMrKyozt\nDho0iEmTJpGfn8/y5csBKm1v7NixvPzyyzRs2JD09HTeffdd3NzcmDFjBs2aNePdd98FqFTm7+/P\n6NGjcXZ2pkuXLjb7Yis2wPjx4+nRowfr168H4Pjx48YZeLPZzKOPPkp0dDTt27cnKyuL5cuX4+/v\nz7PPPkubNm0u2t/bb7+dyZMnYzabjdghISE89dRTxmXPJ06cYPTo0eTl5QHn78ku30/l70nTpk35\n85//DGDsX1vvk/X+DQ4OZtSoUcD5PzCtX7+eZs2aMWbMGMLDwy9apzr9h/OXuj/99NNERUWxfv16\n49gBjEtXrbdv7zix3p49fbPVDs5PjKOjowkLC7N7PNt6D6zjwPnb6CZPnmzcpvDwww/z8ssvExIS\nQkZGhs3xbGvs2optnVOrVq2YMGECpaWlRERE2B27pvaJvcevdTtb711GRgYbN26kT58+XAnd0yqG\n1NRUFi5cyIEDB4z7e5599lnjL2Micl5RURHLly8nISEBi8VCx44dGTx4MK6urrWdmsgVSUhIwMfH\nh/DwcKNsz549hIeH88MPP/DAAw/YbJeYmEhQUBBpaWm0bt2ao0eP4ubmhrOzM/v376dnz54ALFq0\niP379zNo0CACAwOB8/dyrV+/HicnJ8LCwigsLKSoqMj4q7y/vz9eXl7k5uYak7nAwEBjQnzmzBkA\nysrKgP87qxMQEIC/vz/Z2dlkZWVRVlZWKbatOOWL5XTu3NnIcf/+/ezatYuwsDBatWpFZmYme/fu\nBc5/6QsMDOTgwYOcPn2aDh06cMMNN3DkyBESEhKA81+EmzdvzieffILJZMLFxYWysjLj7O2iRYsw\nm810797dZuykpCSOHz9Os2bNaN68OUCl7SUnJxv3kkVERNCoUSNSUlI4efIkUVFRhIaGGvfUXri4\nFZw/C71582bjlgc/P78Kk+eAgAAaNmzIrl27Ki3ScmGstLQ01q1bV2FRGus6ZWVl7N69m8OHD9Oo\nUSMCAgJo0aIFSUlJFWJbl9WvX5+cnJwKOdkTu379+mzdutWI4+bmRvv27WnUqJExvgoLC9m0aRMH\nDhygadOmxsIxiYmJl+zvoUOH+OWXX4yzbNb3HhcUFODn52dsz9/fHxcXF5KTk/nxxx+NxcPKr9yx\nvvfZ+n2y3r/lbconxQEBAURGRtq8z7m8zpX0v0GDBuzdu/eS915bb9/ecWK9PXv6drE827dvT0pK\nilFmz3i29R5Yxynf3oVXIZaVlbFv3z5OnjyJr6+v3WPXVmzrnGwtaGRP7JraJ/YeY9btbL13Fy5g\nVV2atEolhYWFWCwW6tevX9upiIhILUtKSqqwAnB+fr5xFtX6S/WFzp49i4+PD7m5uTg5ORlfCrdv\n386WLVsqrch58803X92OXIbc3NxKq5TW1Bfh6k4abU3s7PmSa/0lW0SkTrLI/7yvv/76kj8icl5M\nTIxl5syZF/0RqesOHz5c6efRRx+17Nq1y3L48GHL9u3bLUOGDLGMHj3a8tRTT1k2bNhgsVgslm3b\ntlnGjh1reemllyxJSUmW5557zvL4449bhgwZYhkyZIhlzJgxljFjxlg+/fRTy7lz5+zK5aeffqrw\nOj4+vlIdW2XW7axf2xvbVrvrxTvvvGNXWUxMzCVf22pnb2zrMlux7SmrbuxPP/20yjJ7YtuqY09s\nW3Vqal/aE7um+m+rXW337WJlNTWe7RmX1R279uRUU8eFrXb2bN/enOx57y6H8/Tp06fX9sRZatfO\nnTspKSm56E+7du1qO0URhxAQEMANN9xw0Z8GDRrUdooiV2TMmDEcP36c3bt3k5CQQEJCAikpKWRk\nZJCQkMDu3btxdnbm/vvvJz09nR9//JGcnBy+//57Jk+eTGRkJP/85z/x9fXlmWeeYcCAAWzfvp0u\nXbowYcIE9u3bx2+//WY85uFCcXFxFc7oHj58mJYtWxqv169fX+n3ka0y63bWr+2Nbavdu+++Wyn3\nmTNnctttt130ta12tuJUN7Y927OuU37p9IVslbVr167CVVfWr221sze2dZmt2PaUVTd2QUFBpeds\nW5fZE9tWHXti26pTU/vSntg11X9H7NvFympqPNszLqs7du3JqaaOC3vzru4xZs97dzl0ebCIiIgA\n5xfg+/777xk4cCB/+MMfABg2bBiLFi0yHh1TVFTE66+/DsBzzz3HHXfcweeff46fnx/dunXj119/\nxcvLi1mzZgEwceJEnJyceO211wAYN24cb775prHNU6dOkZWVxYkTJ7j33ntJTEwEzl+iGxQUxI4d\nOwgNDa1w+fD8+fP5y1/+Yrz+6aefyMnJoWXLlrRt25aVK1eyadMm2rZty6OPPoqHhwclJSVs2LAB\nf39/OnTowPr16zlw4ADe3t64uroaK3U2atSI2267rdIK4VD5Umk4vxDVhV/MrF/bamcrTnVj27M9\nW3WuBbPZjK+vb5Vl1sqfrytSW+wZp7Y44ti91sdcdfddVTRpFUNxcTFr1qzh5MmTFBcXG+Xlq8OJ\nyHnJycl89NFHnDx5knPnzhnl8+fPr8WsRGpGYWEhn3zyCVlZWTzxxBNMnjyZwMBA7rrrLk6fPk1c\nXBwjRoxgz549eHt788QTTzBjxgwiIyM5cOAAZ86cobi4mHvuuYfS0lJWrVpFeHg4EyZMwGKxMG7c\nOP71r38B8N133/HDDz8QFhbGgQMHaN++Penp6ZSWlpKZmUnjxo3Jzs427o9t1KgRFouF7du3G5PY\nTp06sXjxYgYMGMDu3bspKSnhhhtuYPXq1caiRw8//DC7d+/GycmJoqIiPD09KSwsxN3dnd27d+Pr\n64urqyvh4eF4enqyefNmRo4cWeNXGl3LSVx+fj4rVqxgy5YtxirD3t7eeHp6kpubS05ODiaTCV9f\nX6Kiohg4cCCenp7k5+ezcuVKMjMzOX78OLNmzeLMmTN8/vnn7N+/n+nTp7NixQp+/vlnvLy8KRgJ\nbwAAIABJREFUmDRpEr/99hsbN24kNDSURx55BD8/PywWC5MmTWLatGkAeHl5kZCQwLJly3jttdfI\nz8/nyy+/ZOvWrbRp04aRI0eSmZnJ3LlzycrKwtXVlZEjR3Lbbbdx+PBhPvzwQ/z9/XnkkUd4++23\nOXjwICaTibZt2zJq1Cjmz59vlDk5OeHq6kpISAhhYWGcOXPGuD+4fGGvnJwcY/Gt8vuq+/TpYyyS\ntXr1an766SeefPJJWrduzerVq8nMzDSePVlUVMSqVavYvXs3EydOZOPGjfz++++EhYXx4IMP4u7u\nDsBf//pXY7zD+e9UCxYsAM4/YuqNN96gtLSU5s2bc9ttt7Fo0SISExNp3LgxzzzzDK6urkZ/g4KC\neO6552jVqhWpqal8+eWXBAQEMHDgQJYsWcLBgwdxdXWlfv365ObmGvvCZDIZv6uq0/82bdrY1V/r\nvr3//vtkZGTQpEkT7r//flatWsXGjRu58cYbeeSRR8jOzq5235ycnGjQoAH16tXjyJEjxhivznj+\n73//S3x8vDF+fX19GT9+PHPnzgXOL+72/vvvs3v3blq3bs3w4cNxdXVl6tSplJaWEh4eTq9evXjv\nvffsGruHDh2ifv361KtXj5ycHFxcXGjQoAG+vr6kpqZW2Ze1a9fy+OOPc+ONN/L5559jMpkoLi4m\nKCjI5nFo3RdbeVssFnJzc/Hw8KCwsNDuz4vyR5HNmTOH8ePHU1JSwvjx4wkPD+fMmTM4OTlVGl/V\npUmrGObMmUNoaCgbNmxg8ODBrF+/nrCwMP70pz/VdmoiDmXKlCkMGTKE999/n+joaH7++WcAhgwZ\nUsuZidScI0eOsHTpUk6cOMErr7xCXFwcycnJHDt2jI4dO9K5c2fjsTAZGRksX74ck8nEQw89xKpV\nq/j++++xWCxERkby9NNP4+/vT05ODnv27KFr164AvPDCC7z66qu4u7sbjwYZNmwYd955J0888QSL\nFy9mxowZNGrUiMTERMaOHYvFYuGVV15hypQpAHzwwQfk5eUxb948CgsLeeqpp1i2bBmTJk1i5syZ\nPPfcc7Rr1461a9fSvn17br31Vj766CMWLlzIxIkTef3114mOjubVV18lJiaGSZMm8dFHH7FmzRrc\n3Nxq9Iuw9STO3i+U1l+EgUpfhq0nbSUlJfj5+XHfffdx7733AjB9+nRcXV0pKipixowZwPlbhLZu\n3UpiYiIjR47kgw8+ICgoiKZNm/Lxxx9z8803U1hYSKdOnVi5ciXe3t6cO3eO2267jaSkJPbu3cug\nQYP4+OOP8fT0pLi42JiEp6enG4tABQYGkp2djcViISAggJycHO699142bdpE37592bt3LwUFBTz6\n6KPMnTuXG2+8kXXr1hlffocNG4aTkxPLli1j+PDh/Pe//6VLly78/PPPnDt3Dj8/P+666y7q1avH\nsmXL6NOnD4mJiSQnJ9OqVSuGDRsGwIIFC8jOzsbPz49nnnmGvLw8srKy2LhxI7m5uYwdO5bFixdT\nXFzMrl27CAkJoaSkhKZNmxIREcHHH3/MnXfeSWZmJkFBQaxdu5ZmzZoRFhbGzz//TFlZGRaLhXr1\n6hnPAy7n7u5u/LHEZDJxxx13sGbNGiZNmsTmzZvZtGkTTz75JJ988glPPfUUn3zyCR4eHtxxxx0s\nWrSIhg0bcuDAAbp06cLJkye58847KSoq4tdff6V3794cOnSIc+fOkZmZSWRkJAkJCQQHB2M2m+nU\nqRO33357tfofGRlZqb/79u3DxcWF0tLSCv29sG+//PILEyZMYPPmzezcuZOIiAj27t1L586djYlQ\ndftWv359tm/fTn5+Pr169WLw4MHVHs/Hjx8nMDCQoqIiY/ymp6fToEEDTCYTN954I35+fmzZsoXb\nb7/deG51fHw8MTEx/P7776xYsYIXX3zRrrG7bt06QkNDSUhIoGfPnhQWFpKQkEBRURE33HADTz75\nJElJSeTk5Njsy5YtW2jbti2JiYncf//9lJSU8Pnnn/PQQw9d9Di8sC+28v70009p0qQJCQkJvPHG\nGzY/L2zl9OKLL+Ln54fZbCYwMJCzZ88a23Z2duaVV14hMzOTtWvXkpubazxqpzq0nJwYUlJSGDp0\nKG5ubvTu3ZvJkydz/Pjx2k5LxOEUFxfTvn17LBYLDRo0YMiQIezevbu20xKpUc2bN2fq1KnMmzeP\nhg0b8thjjzFx4kTmz5/PqFGjKjzHNCgoiNGjRzNq1Cj8/PwYOnQo77//PkuXLmXy5MnGpakzZszg\niy++YMKECUyYMIGUlBReeuklXnjhBXJzc2nUqBE7d+7kk08+wcXFBQ8PD2JiYoiIiODs2bN4eHjQ\nrl07TCYTTZs2pUmTJlgsFsLDw/n5559xd3fHzc2Nw4cPYzKZSElJwdvbmz//+c+EhobSt29ftm3b\nxtmzZ40VfQsLCyktLeXcuXMUFhYyd+5cgoKCCA4OZvHixfznP/9hxIgRFBUV8eqrr5KUlMSsWbPI\nzs4mPDycU6dO8cYbbzB//nwaN25Mbm4uM2bM4KuvvqKoqIj9+/czefJkJk+eTGZmJuPGjWPcuHFE\nR0cbz/ks//fSpUs5c+YMf/vb32jZsiVvvfUW48aNw9/fn1tuuYXY2FhefPFFvvnmG9555x0GDBjA\nzTffbFy2PXr0aMaOHYu3tzceHh5MnTqVpKQkPvroI+D8ZcJ/+9vfjDNsAP/85z85ceIEx48f54MP\nPuDw4cNkZGSwbds2TCYTLVq04MCBA9x22234+fmRl5eHm5sbDz30ENHR0RQXFzNw4EAee+wxWrZs\nSWBgILGxscTGxuLp6Un79u15/fXXiY2NpUmTJgQEBBAbG0tISAhDhw7FZDJxzz33kJ6eTnFxMRER\nEXh5eRnv2RNPPEFxcTEffPABq1evprCwkK5du1JaWsqgQYOMM5olJSX07t2b7t274+XlxdatW0lO\nTmbu3LkkJiYSGBhIYGAgGRkZzJkzh8zMTAIDA5k4cSLvvfcee/bsYfv27URHR7Nx40aSkpIoKiri\nn//8J9nZ2Zw7d44//vGPNGrUyJhkDBs2jICAAE6cOMGTTz5Jnz59uPXWW2nYsCFLly7l7rvvxs3N\njYULF/LZZ5+xdOlSXFxcWLp0Ke+//z67du3C19eXyMhIhg8fTm5uLl26dKG0tJR27dpRUFDA2bNn\n6dKlC76+vsyYMYPQ0FCioqLIzMzkiy++4PTp05jNZu677z5Onz5NdHQ0ACNGjCA1NZXJkyfz8ssv\ns2HDhmr331Z/77zzTmNMhoWF2exbYGCg0be0tDSefvppXFxcGD58OEePHr2iviUkJFBQUMDs2bON\n5+RWdzw//vjjNG7cmOnTp9OoUSNiY2NxcXEhNjaW+fPnc/jwYYYOHYqLiwv9+/cnPT2dw4cP4+3t\nTUBAAP3796eoqMjusZuens5jjz0GQP/+/dm6dStms5mYmBjjMVkvvvgiK1eutNmXc+fOER0djclk\n4vfff+eOO+6grKzsosehdV9s5Z2WlsYTTzzBhecyrT8vbOUUHBzMuXPncHJyIjY2loCAAIKCgli4\ncCFvv/02gYGBtG7dmlGjRnH06NEr+p2kSasYyp+35enpyfHjx8nPzyc9Pb2WsxJxPPXq1aOsrIxG\njRqxatUqNm/ejNlsru20RGqcyWQy7u3cunVrpf+3Lquqjtlspk+fPkRHRxMdHU3z5s155JFHiI6O\nNu4tff7558nJyTEuZ3RycqJPnz40aNCA5cuXs2jRIsrKyoyJYG5uLkOHDmXv3r385S9/obi4mJde\neokTJ07w7rvv8vTTTwPQp08fPvjgA5KSknjssceYM2eOcYbX1dWVl156ibvuuou0tDT69OlT4ZLd\nmvoibD2Js/cLpfUX4ZSUFE6cOMFXX31lnM2znrSVlJSwefNmHnnkETZv3gycf5RO+UJZ5Ro1akTz\n5s254YYbmDZtGoGBgUyZMoVp06bh4+PDAw88gJeXF9OmTSMnJ4devXpV+GJb/pie++67jzFjxnDm\nzBnef/99CgoK8PT0ZMyYMXzxxRe8//77nDlzhoKCAr7++msKCgqwWCz88Y9/JCYmhoKCAjp27Mji\nxYspKCjgs88+Izw8nLZt29KwYUPGjh1L69atjX7Vq1ePr776ivz8fOPy1/379xtnbL28vPDy8uL3\n3383nuFbnu+SJUuMcR0SEsLUqVN59NFHad68uTGhjo2Nxc/PD2dnZ3x8fGjWrBkvv/wyRUVFPP30\n09SrV894/Yc//AGTycSTTz5Jv379yMjI4LvvvmPEiBF4eHjwr3/9i++++46ysjLKysr4/fff2bRp\nEyUlJXTt2pXY2FjS0tLw8PDg22+/pUOHDkyZMgVvb286d+7Mt99+S2lpKT///DPBwcH07NmThg0b\nMnnyZHx8fMjLy+Pw4cM4Ozuza9cuysrKSEpKwtnZmd9++834flfd/tvq75NPPsm9997LvHnzyMnJ\nMfpWfsa4pKSEgoICNm/ezO+//47FYsHFxYWuXbuyYMECSkpKquybr6/vRftWfkntd999Zzwntrrj\nuXzsfvHFF8bzdcvKyvjmm28qjFWz2cw333yD2WymoKCAO++8k5iYGHbv3o27u7vdY9fNzY3vv/8e\nJycn4uPj8fLyokGDBnz99dfGM6QbN27M0KFD6dixY6W++Pj4AODr68sdd9zBtGnTjOfE2zoOrfti\nK+/69evzj3/8o8JCSdafF7Zyeuutt5g1a5ZxCbWHhwdFRUUVjrmysjI2btxofFZUl1YPFoPJZCI4\nOJgmTZrw5ptv8u233/LAAw9UWj1R5H9d06ZN8fT0pF27dqxfv57ExESeeOIJAgMDazs1kavGntV7\nq6pz6tQpzpw5Q+/evfH09KRjx47GGbCkpCQmTZqEu7s7Xbp0oX379gQFBQHnV5286aabuPvuu4Hz\nl5pGR0fTr18/7r33Xry9venSpQvdunWjTZs29OvXjx49evDggw/i5+cHQOvWrenatSt9+vThpptu\nIioqCj8/P6KiooiMjOSee+6hQ4cObN26lfz8fIYOHWqcxduwYQORkZG4uLgwdepU1q1bx6uvvsrt\nt99OXFwcEydO5KeffmL9+vUVLlds164dH3/8MceOHeOPf/wjv/zyCxMnTuTjjz/m4MGD3HDDDaxc\nuRJ3d3cOHDjA/v37ufvuu/n8888JCAggPj6ezMxMTpw4QU5ODvXq1aNfv37cfPPNbN++nZtuuokt\nW7YYE7fw8HDS0tL47bffCAsLw9PTk48//pjk5GS+++47Y7J59uxZPvvsM/773/8a+/Ppp5/G1dWV\njIwMTCYTISEhBAcHExYWRl5eHj169DDuZ8zOziYiIoKMjAySk5Pp1q2bETctLY3OnTuzcOFCzp49\ny8MPP8ytt95KSUkJ27dvp7CwkJYtWxIeHk6TJk248cYbcXNzY+fOnWRkZJCamkp+fj5RUVE89NBD\nODk50bJlS5YvX86ZM2eYMGECmzZtYufOnezZs4eQkBBeeOEFkpOT+fDDD/nll18ICAhg7NixdOvW\nja+++orjx4/zyy+/sGrVKrKyskhJScFsNrNmzRry8/P58ccfKSkpYfTo0Xh6enLw4EHc3NwICwuj\nVatWHDx4kJtvvpmQkBDWr1/Pgw8+yOnTp+nQoQMbN240FhkDKCoq4uDBgzRp0oQPP/yQvLw8Xn/9\ndRITE/nwww8xm824uLiQnJxMYGAgDzzwAGVlZSxdupT09HT27dtHbm4ufn5+5ObmsmPHDhISEowr\nEYYPH069evVo2LAh77zzDikpKbzwwgt89dVXnD59mh9//NE4Azd69Gh+++033nvvPQoLC1mzZk2l\n/ufl5fHTTz9dsv+Azf76+/vTunVr4/5Ws9mMs7Oz0TcfHx/S0tI4duwYZrOZHj160LlzZ9LT09m6\ndSuHDx++ZN+Sk5Mv2rdRo0Zx5513Eh8fT2JiIitXrqz2eIbzz1Ru3rw5+/btY926deTm5tKyZUtK\nSkqMsVpWVkZubi5ms5nu3bvTp08fQkND+e6770hLSyMnJ8fusbtz507y8vJISUlh1KhR9OrVi/j4\neI4cOcKKFSvIyclh586dBAcH86c//alCX9q3b09YWBjZ2dn07duXsLAw9u3bxz333GPzOLTui628\nfXx8cHJy4vTp08Zng/Xnha2cyvdd48aNCQkJYffu3WRlZbFq1SpWr17NqlWrWL58OcXFxcb4qi7d\n0yoicpkOHz7M8uXLycjIMP4qajKZjPtAROqyU6dOsWXLFrKysoDzi7Q0adKEEydOGGXlZ27Kz3DY\nWycqKorGjRtf0/5crtzcXFauXEl8fLxxBYWbmxs33XQTjz32GF5eXnz44Yd06NCBDh06sHnzZrp0\n6cKnn35K8+bN+fDDD5k3b54RLyUlhfnz52OxWEhLS+Pf//43APHx8axYsYLjx48zYMAAo/5dd93F\niRMn+Pbbb9m3b59x/+eQIUO4/fbbjf169OhRli1bhslkYvjw4XzxxRf89ttvWCwWmjRpwvjx47FY\nLJw4cYLU1FTuv/9+4Pz7u3nzZu655x5jUm5dVr6ic0FBAV26dKlWHScnJ1JSUnB2dq5QlpCQgJub\n2yVj2yo7efIk2dnZFdqdPHmSLVu2VKiTlZVFYWGhUefQoUMcOnSIHj16cOrUKQ4ePIiTkxNt2rQh\nJCSEU6dOsXHjRkJCQujXrx8nT55kx44dALRp04aIiAhOnjxJXFwcDRo0uGSd8rIbbriBVq1aGROg\nxo0b069fP/bt28eePXtwd3e/aOwTJ06wY8cOTCaTUcdW2cmTJ/npp58IDg422m3fvt1YnOrCnEJD\nQ43J5+LFi3nuueeA8wt8WZdB5dW5qyqzWCycOXOGF154gf/85z+XbGcrzltvvcWzzz57yXYzZ85k\n4sSJ5OXlGWcarevs27ePxMREmjZtSseOHQHYv38/iYmJNGnShI4dO1Z6bavOvn372Lt3LxERERet\nc7F2VW3/YnV+++03IiMjueWWWygqKuI///kPWVlZNGvWjP79+/PDDz+we/duWrRowcMPP4yLiwuL\nFi2qUOfHH39k165dRh1nZ2c+//xz9uzZQ+vWrY2yC2P369ePH3/8kd9//73CautwfqG8Ll26GH88\ntH5tqyw/P5/vv/+eVq1a0bx5c3bs2MGBAwdo3Lgxffv21UJMUjPy8vJYu3atsXJjuSeffLIWsxJx\nPH/96195/PHHadq0KSaTySjXc1qlrlu5ciUbNmyge/fuBAQEAOfPlO7Zs4fIyEh69OjB1q1b2bdv\nHwBt27alU6dOdtXJysoyYg8cOLDW+nglfv75Z26//fZLll2sTvfu3UlJSaFp06ZGneLi4kpl1Ylt\nq6ygoKDCysxjxowhPT2dH374AbPZjKenJyNGjKhU1qFDB/bu3UtYWBg7duzg+eefJyMjg1WrVl2y\nTnVj22pnvb327duzf/9+QkNDK7T78ccfOXPmzEXrHD16lB07dnDs2DHjcUoWi4XDhw9Tv359evXq\nxcaNGykpKSE/P5/mzZsbC0ddWGfDhg2UlpZess6hQ4cqlVnHdnZ2rnL7turYyts6J1vtVq9ejbe3\nd4XVt7dv326sRB0REUFiYmKF1albtmzJjh07KtSxWCyVyqzbRUREVBnbVh2g2u22bdtmrCIeFRVl\njKPg4GA6deqEl5cXS5Ys4f777ychIcFYnffs2bOXrJOWllYhjre3N6tWrarQztvbm8WLF1+y3eXE\nzs7OpmHDhkRFRZGamsrvv//OCy+8wN69e/nll1/o3LkzW7ZsoWfPnpw4cQJvb2+76ri5udnV7sLV\n1ocOHUrXrl159tlncXd3JyQkhNtuu41ly5YZr7t3786tt95aoU737t2NVdqLi4uNS4W7dOnCrl27\nsFgslf5gcTl0T6sYYmJiSE9Pp2nTprRo0cL4EZGKfHx8iIqKIjg4mAYNGhg/InXdzz//TExMDAMH\nDqRnz5707NmT1NRUFi1aRGpqKj179uTo0aMsWLCABQsWcOTIEbvrDBw4kJiYGNasWVPb3ay2zz77\nrMqyi9VxdXWladOmFerYKqtObFtlq1ev5rXXXmPSpEk4Ozvz5ZdfsnLlSl577TWCg4OZNm2azbJ1\n69bRp08fJk2aREhICF9++SUrVqyosk51Y9tqZ729X3/9ldtvv71Su5kzZ16yzk8//cQ//vEPGjZs\nyA8//MCECRM4e/YsCxcuxNPTkx9++AFXV1cWLFhAbGws+/fvZ+LEiZXquLm5VVnHVpl1bHu2b6uO\nrTLrnGzVCQgIoEWLFjz33HOUlJTQv39/YxGzgQMHct9991G/fn2cnZ0ZOHAggwYN4r777qtUx1aZ\ndTt7YtuqcyXtnJycjPzi4uJ46aWX8PX15e9//zu//vorq1evJiQkhIceeoi///3vbN++nSlTplRZ\nxzpOXFxcpXZxcXFVtruc2N7e3rz00kv8+uuvJCUl4evrS7t27XjooYcwm82MGDECV1dXHn74YVJT\nU+2uY2+7Ro0aGfc6Hz58mOeffx6LxcLQoUPp378/hw8fpqioiCZNmhAREcGhQ4cq1UlKSjJuV+jc\nuTM7d+5k/Pjx9OzZk7Fjx17xQkzVP0cr151z584xfPjw2k5DxOENGTKEd955hxtvvJF69eoZ5bfc\nckstZiVy5UwmE9nZ2RX+CGMymTh69KhxVUF5nfJ/21sHzq9GeeFrRzRhwoRKZcnJycD535P/j727\nj6uqzPf//15sEuJGZG+EAivDspKsPGLRnRDupiaqseY8qlE7xzG7wy+O2R2VqU2jktpgqE1NNjiP\ndM40c6Y4U2N12pFYk8wBwaMypphpN6YIm4gbFdms3x/92ifCAjY3e+3N6/l49BjW2td1rc+HGi4+\nrOta64EHHvAen+hcT9r4OnZ3+n311VeaN2+e9/2LBQUFuvPOO/Xyyy/LNE3Fx8dr4cKFnc7Fx8dr\nx44d+vLLLxUaGupzm4Hud6I2d911l1566SXvnsaIiAjZbDaFh4fLZrMpISFB0tcP+4qOjvY+sdqX\nNlYcOy8vTxs2bNBrr70mm82mlJQU2e12jRs3ThUVFUpJSdGKFSs0c+ZMVVRU6Pbbb9fIkSM7tTnR\nue7068+xR44c6S1kTdOUaZoaOnSoTNP0btsxTVMhISFqamqSaZoyDMPnNv099mmnneZ9aNYZZ5yh\n2tpavfvuuzrnnHO8T0Q/7bTT9Oqrryo0NFSnnXZat9p0t993n7be1tamOXPm6H//93+1fft2vfji\ni/r444917bXX6v3339f27dv1/PPPd2pTXV0tp9Op9957z/uU9qioKB0/frzDKk5fULTC68orr5TL\n5dL48eM7/CIeFRXlx6gGB8Mw9NJLL3kfgf7dY1jLu+++qwMHDqitrc27TEyiaEXgmz59un75y1/q\n1FNP9T5YLCwsTE888YTOOOMMPf/884qPj/e+a2/MmDF6/vnnu9WmtrZWBw8e1B133OG3/LqjoaFB\njz32WIcHhuTm5mrWrFl69tlnva+nmTVrliIiIrR8+fIO53rSxtexu9PvlFNO0c0336wRI0bo8ccf\nV3h4uEaNGqUvvvjC+zq7E5375pVFb7zxhj755BOf2wx0vxO1SUpK0pdffqlPPvlE//Ef/yFJCg0N\nVX19vUJCQrRkyRLNmzdPx44dk8fjUVJSks9tutvv888/l2EYuvfee7Vq1ao+Hfu7bUJCQnT99dfr\noosu0rx587xP3r7++ut16aWX6ve//71iYmIUFham7Oxs7/GJ2vjarz/H/uYp4t8UhPX19WppadHD\nDz8st9sth8Mhj8ej3Nxc79ONfW3T32Pfc889WrNmjT777DOFhoZq79692rNnjzwej0455RTNmzdP\nsbGx2rlzp2w2mwzD6Fab7vYzDKPD09a/+UPInDlzdOzYMe/PwtTUVKWmpurYsWMnbPPNU9rb29u9\nT2mPj49XdXW194FtPjOB/98bb7xh/vu//7uZnZ3t/WfWrFn+DmtQ+OKLL8wjR454jyWZL730kh8j\nwg+ZO3euv0MA+o3H4zF37dplbt682dy8ebO5a9cu8/jx4x3O7dy50/zwww973Mbj8fg7vS49++yz\n5s6dO094bsWKFZ3afPdcT9r0Z7/a2lqzvr6+wzjfnPt2ft899+1+3z3XkzYD3e9EbVpbWzscf3Ou\noaHB3L9/f4c23z3X0zbd7ff222+bkszS0tI+H/tE/b7dZsuWLeb69es7fPbdc91p42u//hz7244e\nPWoeOnToB8/1VZu+Hnvfvn3mxx9/bH700UdmfX292dzc3OHYNM1O57rTpqt+H374Yafv4+eff/6D\nx993rq6uzqyrqzNN0zSbmprMzZs3m9XV1Z3a9RQPYoJXTk6OFi1a5H0qG/yHO63W9txzz+n666+3\n/FNQAQADp7W11fsakO+zceNGXXXVVfr000+ZQ4Ae4EFM8BoxYoTCwsL8HUbQev/993X55ZcrOjpa\n0dHRuvDCC/XWW29J+rpIXbduXYf2dXV1+ulPf6rIyEglJSXpmWee6fD5mjVrdN555yk8PFx2u10T\nJ07UZ599Jklau3atQkND5XK5lJKSovDwcF1yySXex/Gjd3bt2qUHH3xQv/jFL/TAAw/o/vvvP+E+\nOACANWVkZGjGjBnKzc1VXFychg4dqrvuuktHjx6VJL399tvKyMiQ3W5XTEyM0tPT9T//8z8dxjAM\nQwUFBZoyZYpiYmJ0++23S5Jqamr085//XAkJCQoPD9c555zT6VUwO3fu1MSJExUREaExY8bojTfe\nGJjEgQDFnlZ4hYSE6KGHHlJKSkqH9yjxypvea2tr04033qjp06dr7dq1kqQdO3Z434V1Ik888YSe\neOIJLVmyRG+88Ybuv/9+jRw5Uj/5yU+0ZcsW3XPPPfrd736n9PR0ffXVV/rHP/7RoX9oHPmeAAAg\nAElEQVR7e7seeughPfvss4qNjdWjjz6qrKws7dmzRyeffHJ/phv0Hn30UX+HAADopf/8z//Urbfe\nqvfee0979uzRHXfcocjISOXn56upqUnZ2dm68MIL1dbWpvz8fF177bWqrq727veW/m+ufvLJJ9Xe\n3q4jR44oPT1dJ598stavX6/k5GTt2bPH+/7ibzzwwAN66qmnNGrUKC1evFi33nqr9u/fr9jY2IH+\nNgABgeXB8Nq4ceMJz2dkZAxoHMGovr5edrtd77777gm/nyd6ENO0adP00ksvedtMmTJFn376qd57\n7z29+uqrmj59uj799NMTLudeu3atfv7zn8vlcmnSpEneGE477TQ988wzln8QCgAA/SkjI0P79u3T\nRx99JJvNJkn67W9/q9mzZ6uurq7Dg7ikr/8Q7HA4tGrVKk2dOlXS13P1jBkz9OKLL3rbvfjii5o1\na5b27NlzwuW/3ywP/stf/qKbb75ZknTo0CGdcsopevPNN3XNNdf0V8pAQONOK7wyMjLU2tqq2tpa\nJSYm+jucoBIbG6uZM2fqmmuuUWZmptLT03XTTTfpnHPO+d4+l156aYfjyy+/XI8//rgk6eqrr1Zy\ncrLOPPNMXX311crMzNTNN9+suLi47x0jNjZW5513nqqqqvowMwAAAtPFF1/sLVilr+fZY8eO6aOP\nPlJ0dLTmz5+vzZs3q6amRu3t7WppadH+/fs7jfFtW7Zs0ZgxY7rcr3rRRRd5v05ISJDNZtOhQ4f6\nICsgOLGnFV7l5eV68MEHtWjRIknSvn379NRTT/k5quDxwgsvaMuWLbr66qtVUlKi888/X88//7xP\nY0VFRam8vFyvvvqqRo8ereeee05nnXWWtmzZ0sdRAwAw+Fx//fX65JNPtHr1apWWlmrr1q2Kj49X\na2trh3bfvSPbXSd6YFN7e7tPYwGDAUUrvP785z9ryZIl3h/AI0eOVE1NjZ+jCi7nn3++5s6dqzfe\neEN33HGHfvvb335v29LS0g7HH3zwgcaMGeM9ttlsmjhxon75y19qy5YtOvXUU/WHP/zhe8f48ssv\ntXPnzg5jAAAwWJWVlcnj8XiPP/jgA4WFhcnhcOif//yncnNzdc0112jMmDEKDw/v1u9E48eP1z//\n+U/vgxEB9A2KVnh985LgbzMMw0/RBJc9e/bo4Ycf1vvvv6/9+/dr8+bNeu+9936wgHz99de1atUq\nVVdXa+XKlXr55Zd1//33S5L+67/+S/n5+dqyZYs++eQTFRUV6dNPP+0wnmEYeuihh7Rp0yZt375d\n//Zv/6bo6GhNmTKl3/MFAMDq6urqNGvWLO3cuVN/+9vf9Pjjj+vuu+/WqaeequHDh+uFF17Q7t27\ntXnzZv3sZz/r1kMMf/azn+mMM87QjTfeKJfLpY8//ljvvPOOXn755QHICAhe7GmF14gRI/T++++r\nvb1dX3zxhd544w2NHj3a32EFhcjISFVXV+u2227T4cOH5XA4lJWVpeXLl39vn/nz58vlcumhhx5S\nTEyMli5dqptuuknS1/tTX3vtNS1evFiNjY067bTTNG/evA4PWAoJCdHixYt19913a+/evbrwwgv1\nt7/97QefWAwAwGDxr//6r4qOjtYVV1yh1tZW3XrrrcrLy1NISIj+/Oc/a/bs2brgggt0xhlnaPHi\nxXr44Ye7HDMiIkIlJSV66KGHdNttt6mpqUkjR45Ubm7uAGQEBC+eHgytXLlSOTk5euWVV3Ts2DFt\n27ZNpmnqwgsv1E9/+tMuX5QN61m7dq1mzpyptrY2f4cCAIDlZGRk6KyzztKaNWv8HQqAbuBOK7R3\n714dPnxYmzdv1oIFC3TDDTd4P2ttbaVoBQAAAOA3FK3Q1VdfrcWLF+vQoUMdlq+YpinDMLRq1So/\nRgcAAABgMGN5MLxeeOEF3Xnnnf4OAwAAAAC8KFoBAAAAAJbFK28AAAAAAJbFnlYAAALMgQMHlJ+f\n7z2uqanRLbfcovT0dOXn5+vw4cMaPny47rvvPkVFRck0TRUWFqqyslJhYWHKzs5WcnKyHzMAAKD7\nLLM8+MCBAwN6vbi4ONXW1g7oNf2BPIMLeQYX8uw/iYmJA3o9f2pvb9fdd9+txYsX66233lJUVJQm\nT56soqIiNTU1adq0aaqoqNCbb76pRx55RNXV1Vq7dq0WL17c5djMzf2DPIMLeQYX8uw/vZmbWR4M\nAEAA2759u0455RQNHz5cZWVlSk9PlySlp6errKxMklReXq6JEyfKMAyNHj1azc3Nqq+v92fYAAB0\nG0UrAAAB7O9//7suv/xySVJDQ4NiY2MlScOGDVNDQ4Mkye12Ky4uztvH4XDI7XYPfLAAAPiAPa0A\nAASotrY2bdmyRVOmTOn0mWEYMgyjR+O5XC65XC5JUl5eXodCdyCEhoYO+DX9gTyDC3kGF/K0JopW\nAAACVGVlpc4880wNGzZMkhQTE6P6+nrFxsaqvr5eQ4cOlSTZ7fYOe5fq6upkt9s7jed0OuV0Or3H\nA73fib1kwYU8gwt5Bhf2tAIAgAHx7aXBkpSamqqSkhJJUklJiSZMmOA9v2nTJpmmqd27dysiIsK7\njBgAAKujaAUAIAAdPXpU27Zt0yWXXOI9N3nyZG3btk2zZ8/W9u3bNXnyZEnSuHHjFB8fr9mzZ+v5\n55/XzJkz/RU2AAA9xvJgAAACUHh4uH73u991OBcdHa358+d3amsYBoUqACBgcacVAAAAAGBZ3brT\n2tzcrOeee06ffvqpDMPQvffeq8TEROXn5+vw4cMaPny47rvvPkVFRck0TRUWFqqyslJhYWHKzs5W\ncnJyf+cBAAAAAAhC3SpaCwsLddFFF+n+++9XW1ubjh07pldffVVjx47V5MmTVVRUpKKiIk2bNk2V\nlZU6ePCgCgoKVF1drTVr1mjx4sX9loDnzht96neoF9e0vfDXXvQGACC4MTcDAPpSl8uDW1patHPn\nTmVmZkr6+p0+kZGRKisrU3p6uiQpPT1dZWVlkqTy8nJNnDhRhmFo9OjRam5uVn19fT+mAAAAAAAI\nVl3eaa2pqdHQoUP17LPPav/+/UpOTtb06dPV0NDgfVz+sGHD1NDQIElyu90dXlTrcDjkdrt5tD4A\nAAAAoMe6LFo9Ho8+/vhjzZgxQ2effbYKCwtVVFTUoY1hGDIMo0cXdrlccrlckqS8vLwOhW5P9GYp\nka98jdUfQkNDAypeX5FncCHP4DJY8gQAAP2jy6LV4XDI4XDo7LPPliSlpaWpqKhIMTExqq+vV2xs\nrOrr6zV06FBJkt1uV21trbd/XV2d7HZ7p3GdTqecTqf3+Nt9rC6QYo2LiwuoeH1FnsGFPIOLP/JM\nTEwc0OsBAID+0+We1mHDhsnhcOjAgQOSpO3bt2vEiBFKTU1VSUmJJKmkpEQTJkyQJKWmpmrTpk0y\nTVO7d+9WREQES4MBAAAAAD7p1tODZ8yYoYKCArW1tSk+Pl7Z2dkyTVP5+fkqLi72vvJGksaNG6eK\nigrNnj1bQ4YMUXZ2dr8mAAAAAAAIXt0qWkeOHKm8vLxO5+fPn9/pnGEYmjlzZu8jAwAAAAAMel0u\nDwYAAAAAwF8oWgEAAAAAlkXRCgAAAACwLIpWAAAAAIBlUbQCAAAAACyLohUAAAAAYFkUrQAAAAAA\ny6JoBQAAAABYFkUrAAAAAMCyKFoBAAAAAJZF0QoAAAAAsCyKVgAAAACAZYX6OwAAANBzzc3Neu65\n5/Tpp5/KMAzde++9SkxMVH5+vg4fPqzhw4frvvvuU1RUlEzTVGFhoSorKxUWFqbs7GwlJyf7OwUA\nALqFO60AAASgwsJCXXTRRVqxYoWWLVumpKQkFRUVaezYsSooKNDYsWNVVFQkSaqsrNTBgwdVUFCg\nu+66S2vWrPFz9AAAdB9FKwAAAaalpUU7d+5UZmamJCk0NFSRkZEqKytTenq6JCk9PV1lZWWSpPLy\nck2cOFGGYWj06NFqbm5WfX293+IHAKAnWB4MAECAqamp0dChQ/Xss89q//79Sk5O1vTp09XQ0KDY\n2FhJ0rBhw9TQ0CBJcrvdiouL8/Z3OBxyu93etgAAWBlFKwAAAcbj8ejjjz/WjBkzdPbZZ6uwsNC7\nFPgbhmHIMIwejetyueRyuSRJeXl5HQrdnjjkU6/e8TVWfwgNDQ2oeH1FnsGFPINLoOVJ0QoAQIBx\nOBxyOBw6++yzJUlpaWkqKipSTEyM6uvrFRsbq/r6eg0dOlSSZLfbVVtb6+1fV1cnu93eaVyn0ymn\n0+k9/nYfqwukWOPi4gIqXl+RZ3Ahz+DijzwTExN97sueVgAAAsywYcPkcDh04MABSdL27ds1YsQI\npaamqqSkRJJUUlKiCRMmSJJSU1O1adMmmaap3bt3KyIigqXBAICAwZ1WAAAC0IwZM1RQUKC2tjbF\nx8crOztbpmkqPz9fxcXF3lfeSNK4ceNUUVGh2bNna8iQIcrOzvZz9AAAdB9FKwAAAWjkyJHKy8vr\ndH7+/PmdzhmGoZkzZw5EWAAA9DmWBwMAAAAALIuiFQAAAABgWRStAAAAAADLomgFAAAAAFgWRSsA\nAAAAwLK69fTgWbNmKTw8XCEhIbLZbMrLy1NTU5Py8/N1+PBh72P1o6KiZJqmCgsLVVlZqbCwMGVn\nZys5Obm/8wAAAAAABKFuv/JmwYIFGjp0qPe4qKhIY8eO1eTJk1VUVKSioiJNmzZNlZWVOnjwoAoK\nClRdXa01a9Zo8eLF/RI8AAAAACC4+bw8uKysTOnp6ZKk9PR0lZWVSZLKy8s1ceJEGYah0aNHq7m5\nWfX19X0TLQAAAABgUOn2ndZFixZJkq6++mo5nU41NDQoNjZWkjRs2DA1NDRIktxut+Li4rz9HA6H\n3G63ty0AAAAAAN3VraL1ySeflN1uV0NDg371q18pMTGxw+eGYcgwjB5d2OVyyeVySZLy8vI6FLo9\nccinXr3ja6z+EBoaGlDx+oo8gwt5BpfBkicAAOgf3Spa7Xa7JCkmJkYTJkzQnj17FBMTo/r6esXG\nxqq+vt6739Vut6u2ttbbt66uztv/25xOp5xOp/f4232sLpBijYuLC6h4fUWewYU8g4s/8vzuH1cB\nAEDg6nJP69GjR3XkyBHv19u2bdPpp5+u1NRUlZSUSJJKSko0YcIESVJqaqo2bdok0zS1e/duRURE\nsDQYAAAAAOCTLu+0NjQ0aPny5ZIkj8ejK664QhdddJFGjRql/Px8FRcXe195I0njxo1TRUWFZs+e\nrSFDhig7O7t/MwAAAAAABK0ui9aEhAQtW7as0/no6GjNnz+/03nDMDRz5sy+iQ4AAAAAMKj5/Mob\nAAAAAAD6G0UrAAAAAMCyKFoBAAAAAJZF0QoAAAAAsCyKVgAAAACAZVG0AgAAAAAsi6IVAAAAAGBZ\nFK0AAAAAAMuiaAUAAAAAWFaovwMAAAA9N2vWLIWHhyskJEQ2m015eXlqampSfn6+Dh8+rOHDh+u+\n++5TVFSUTNNUYWGhKisrFRYWpuzsbCUnJ/s7BQAAuoWiFQCAALVgwQINHTrUe1xUVKSxY8dq8uTJ\nKioqUlFRkaZNm6bKykodPHhQBQUFqq6u1po1a7R48WI/Rg4AQPexPBgAgCBRVlam9PR0SVJ6errK\nysokSeXl5Zo4caIMw9Do0aPV3Nys+vp6f4YKAEC3cacVAIAAtWjRIknS1VdfLafTqYaGBsXGxkqS\nhg0bpoaGBkmS2+1WXFyct5/D4ZDb7fa2BQDAyihaAQAIQE8++aTsdrsaGhr0q1/9SomJiR0+NwxD\nhmH0aEyXyyWXyyVJysvL61Do9sQhn3r1jq+x+kNoaGhAxesr8gwu5BlcAi1PilYAAAKQ3W6XJMXE\nxGjChAnas2ePYmJiVF9fr9jYWNXX13v3u9rtdtXW1nr71tXVeft/m9PplNPp9B5/u4/VBVKscXFx\nARWvr8gzuJBncPFHnt/942pPsKcVAIAAc/ToUR05csT79bZt23T66acrNTVVJSUlkqSSkhJNmDBB\nkpSamqpNmzbJNE3t3r1bERERLA0GAAQM7rQCABBgGhoatHz5ckmSx+PRFVdcoYsuukijRo1Sfn6+\niouLva+8kaRx48apoqJCs2fP1pAhQ5Sdne3P8AEA6BGKVgAAAkxCQoKWLVvW6Xx0dLTmz5/f6bxh\nGJo5c+ZAhAYAQJ9jeTAAAAAAwLIoWgEAAAAAlkXRCgAAAACwLIpWAAAAAIBlUbQCAAAAACyLohUA\nAAAAYFkUrQAAAAAAy6JoBQAAAABYVmh3G7a3tys3N1d2u125ubmqqanRihUr1NjYqOTkZOXk5Cg0\nNFTHjx/XqlWrtHfvXkVHR2vOnDmKj4/vzxwAAAAAAEGq23daN2zYoKSkJO/xunXrlJWVpZUrVyoy\nMlLFxcWSpOLiYkVGRmrlypXKysrS+vXr+z5qAAAAAMCg0K2ita6uThUVFZo0aZIkyTRNVVVVKS0t\nTZKUkZGhsrIySVJ5ebkyMjIkSWlpadqxY4dM0+yH0AEAAAAAwa5bRevatWs1bdo0GYYhSWpsbFRE\nRIRsNpskyW63y+12S5LcbrccDockyWazKSIiQo2Njf0ROwAAAAAgyHW5p3XLli2KiYlRcnKyqqqq\n+uzCLpdLLpdLkpSXl6e4uDifxjnUZxF1n6+x+kNoaGhAxesr8gwu5BlcBkueAACgf3RZtO7atUvl\n5eWqrKxUa2urjhw5orVr16qlpUUej0c2m01ut1t2u13S13dd6+rq5HA45PF41NLSoujo6E7jOp1O\nOZ1O73FtbW0fptW/AinWuLi4gIrXV+QZXMgzuPgjz8TExAG9HgAA6D9dLg+eMmWKnnvuOa1evVpz\n5szR+eefr9mzZyslJUWlpaWSpI0bNyo1NVWSNH78eG3cuFGSVFpaqpSUFO+yYgAAAAAAesLn97RO\nnTpVr7/+unJyctTU1KTMzExJUmZmppqampSTk6PXX39dU6dO7bNgAQAAAACDS7ff0ypJKSkpSklJ\nkSQlJCRoyZIlndoMGTJEc+fO7ZvoAAAAAACDms93WgEAAAAA6G8UrQAAAAAAy6JoBQAAAABYFkUr\nAAAAAMCyKFoBAAAAAJZF0QoAAAAAsKwevfIGAABYR3t7u3Jzc2W325Wbm6uamhqtWLFCjY2NSk5O\nVk5OjkJDQ3X8+HGtWrVKe/fuVXR0tObMmaP4+Hh/hw8AQLdwpxUAgAC1YcMGJSUleY/XrVunrKws\nrVy5UpGRkSouLpYkFRcXKzIyUitXrlRWVpbWr1/vr5ABAOgxilYAAAJQXV2dKioqNGnSJEmSaZqq\nqqpSWlqaJCkjI0NlZWWSpPLycmVkZEiS0tLStGPHDpmm6Ze4AQDoKYpWAAAC0Nq1azVt2jQZhiFJ\namxsVEREhGw2myTJbrfL7XZLktxutxwOhyTJZrMpIiJCjY2N/gkcAIAeYk8rAAABZsuWLYqJiVFy\ncrKqqqr6bFyXyyWXyyVJysvLU1xcnE/jHOqziLrP11j9ITQ0NKDi9RV5BhfyDC6BlidFKwAAAWbX\nrl0qLy9XZWWlWltbdeTIEa1du1YtLS3yeDyy2Wxyu92y2+2Svr7rWldXJ4fDIY/Ho5aWFkVHR3ca\n1+l0yul0eo9ra2sHLKfeCqRY4+LiAipeX5FncCHP4OKPPBMTE33uy/JgAAACzJQpU/Tcc89p9erV\nmjNnjs4//3zNnj1bKSkpKi0tlSRt3LhRqampkqTx48dr48aNkqTS0lKlpKR4lxUDAGB1FK0AAASJ\nqVOn6vXXX1dOTo6ampqUmZkpScrMzFRTU5NycnL0+uuva+rUqX6OFACA7mN5MAAAASwlJUUpKSmS\npISEBC1ZsqRTmyFDhmju3LkDHRoAAH2CO60AAAAAAMuiaAUAAAAAWBZFKwAAAADAsihaAQAAAACW\nRdEKAAAAALAsilYAAAAAgGVRtAIAAAAALIuiFQAAAABgWRStAAAAAADLomgFAAAAAFgWRSsAAAAA\nwLJCu2rQ2tqqBQsWqK2tTR6PR2lpabrllltUU1OjFStWqLGxUcnJycrJyVFoaKiOHz+uVatWae/e\nvYqOjtacOXMUHx8/ELkAAAAAAIJMl3daTzrpJC1YsEDLli3T0qVLtXXrVu3evVvr1q1TVlaWVq5c\nqcjISBUXF0uSiouLFRkZqZUrVyorK0vr16/v9yQAAAAAAMGpy6LVMAyFh4dLkjwejzwejwzDUFVV\nldLS0iRJGRkZKisrkySVl5crIyNDkpSWlqYdO3bINM1+Ch8AAAAAEMy6XB4sSe3t7Xr44Yd18OBB\nXXPNNUpISFBERIRsNpskyW63y+12S5LcbrccDockyWazKSIiQo2NjRo6dGg/pQAAAAAACFbdKlpD\nQkK0bNkyNTc3a/ny5Tpw4ECvL+xyueRyuSRJeXl5iouL82mcQ72OpOd8jdUfQkNDAypeX5FncCHP\n4DJY8gQAAP2jW0XrNyIjI5WSkqLdu3erpaVFHo9HNptNbrdbdrtd0td3Xevq6uRwOOTxeNTS0qLo\n6OhOYzmdTjmdTu9xbW1tL1MZOIEUa1xcXEDF6yvyDC7kGVz8kWdiYuKAXg8AAPSfLve0fvXVV2pu\nbpb09ZOEt23bpqSkJKWkpKi0tFSStHHjRqWmpkqSxo8fr40bN0qSSktLlZKSIsMw+il8AAAAAEAw\n6/JOa319vVavXq329naZpqlLL71U48eP14gRI7RixQr98Y9/1JlnnqnMzExJUmZmplatWqWcnBxF\nRUVpzpw5/Z4EAAAAACA4dVm0nnHGGVq6dGmn8wkJCVqyZEmn80OGDNHcuXP7JjoAAAAAwKDW5fJg\nAAAAAAD8haIVAAAAAGBZPXp6MAAA8L/W1lYtWLBAbW1t8ng8SktL0y233KKamhqtWLFCjY2NSk5O\nVk5OjkJDQ3X8+HGtWrVKe/fuVXR0tObMmaP4+Hh/pwEAQLdwpxUAgABz0kknacGCBVq2bJmWLl2q\nrVu3avfu3Vq3bp2ysrK0cuVKRUZGqri4WJJUXFysyMhIrVy5UllZWVq/fr2fMwAAoPsoWgEACDCG\nYSg8PFyS5PF45PF4ZBiGqqqqlJaWJknKyMhQWVmZJKm8vFwZGRmSpLS0NO3YsUOmafoldgAAeorl\nwQAABKD29nY9/PDDOnjwoK655holJCQoIiJCNptNkmS32+V2uyVJbrdbDodDkmSz2RQREaHGxkYN\nHTrUb/EDANBdFK0AAASgkJAQLVu2TM3NzVq+fLkOHDjQ6zFdLpdcLpckKS8vT3FxcT6Nc6jXkfSc\nr7H6Q2hoaEDF6yvyDC7kGVwCLU+KVgAAAlhkZKRSUlK0e/dutbS0yOPxyGazye12y263S/r6rmtd\nXZ0cDoc8Ho9aWloUHR3daSyn0ymn0+k9rq2tHbA8eiuQYo2LiwuoeH1FnsGFPIOLP/JMTEz0uS97\nWgEACDBfffWVmpubJX39JOFt27YpKSlJKSkpKi0tlSRt3LhRqampkqTx48dr48aNkqTS0lKlpKTI\nMAy/xA4AQE9xpxUAgABTX1+v1atXq729XaZp6tJLL9X48eM1YsQIrVixQn/84x915plnKjMzU5KU\nmZmpVatWKScnR1FRUZozZ46fMwAAoPsoWgEACDBnnHGGli5d2ul8QkKClixZ0un8kCFDNHfu3IEI\nDQCAPsfyYAAAAACAZVG0AgAAAAAsi6IVAAAAAGBZFK0AAAAAAMuiaAUAAAAAWBZFKwAAAADAsiha\nAQAAAACWRdEKAAAAALAsilYAAAAAgGVRtAIAAAAALIuiFQAAAABgWRStAAAAAADLomgFAAAAAFgW\nRSsAAAAAwLIoWgEAAAAAlkXRCgAAAACwrNCuGtTW1mr16tX68ssvZRiGnE6nrrvuOjU1NSk/P1+H\nDx/W8OHDdd999ykqKkqmaaqwsFCVlZUKCwtTdna2kpOTByKXoOa580af+h3qxTVtL/y1F70BAAAA\noPe6vNNqs9l0++23Kz8/X4sWLdJbb72lzz77TEVFRRo7dqwKCgo0duxYFRUVSZIqKyt18OBBFRQU\n6K677tKaNWv6PQkAAAAAQHDqsmiNjY313ik9+eSTlZSUJLfbrbKyMqWnp0uS0tPTVVZWJkkqLy/X\nxIkTZRiGRo8erebmZtXX1/djCgAAAACAYNXl8uBvq6mp0ccff6yzzjpLDQ0Nio2NlSQNGzZMDQ0N\nkiS32624uDhvH4fDIbfb7W37DZfLJZfLJUnKy8vr0KcnerP81Ve+xtobgyVPX4WGhgZUvL4iz+BC\nngAAAF3rdtF69OhRPf3005o+fboiIiI6fGYYhgzD6NGFnU6nnE6n97i2trZH/f0pkGLtjUDKMy4u\nLqDi9RV5Bhfy7D+JiYkDej0AANB/uvX04La2Nj399NO68sordckll0iSYmJivMt+6+vrNXToUEmS\n3W7v8MtJXV2d7HZ7X8cNAAAAABgEuixaTdPUc889p6SkJF1//fXe86mpqSopKZEklZSUaMKECd7z\nmzZtkmma2r17tyIiIjotDQYAAAAAoDu6XB68a9cubdq0SaeffroefPBBSdLPfvYzTZ48Wfn5+Sou\nLva+8kaSxo0bp4qKCs2ePVtDhgxRdnZ2/2YAAMAgw+voAACDSZdF67nnnqs//elPJ/xs/vz5nc4Z\nhqGZM2f2PjIAAHBC37yOLjk5WUeOHFFubq4uuOACbdy4UWPHjtXkyZNVVFSkoqIiTZs2rcPr6Kqr\nq7VmzRotXrzY32kAANAt3drTCgAArIPX0QEABhOKVgAAAlhvXkcHAEAg6NF7WgEAgHX09evoeIf6\nwBgs7y4mz+BCnsEl0PKkaAUAIAD90OvoYmNjfXodHe9QHxi8ozm4kGdwIc/+05t3qLM8GACAAMPr\n6AAAgwl3WgEACDC8jg4AMJhQtAIAEGB4HR0AYDBheTAAAAAAwLIoWgEAAAAAlkB35qcAACAASURB\nVEXRCgAAAACwLIpWAAAAAIBlUbQCAAAAACyLohUAAAAAYFkUrQAAAAAAy6JoBQAAAABYFkUrAAAA\nAMCyKFoBAAAAAJZF0QoAAAAAsCyKVgAAAACAZVG0AgAAAAAsi6IVAAAAAGBZFK0AAAAAAMuiaAUA\nAAAAWBZFKwAAAADAsihaAQAAAACWRdEKAAAAALCs0K4aPPvss6qoqFBMTIyefvppSVJTU5Py8/N1\n+PBhDR8+XPfdd5+ioqJkmqYKCwtVWVmpsLAwZWdnKzk5ud+TAAAAAAAEpy7vtGZkZOjRRx/tcK6o\nqEhjx45VQUGBxo4dq6KiIklSZWWlDh48qIKCAt11111as2ZN/0QNAAAAABgUurzTOmbMGNXU1HQ4\nV1ZWpoULF0qS0tPTtXDhQk2bNk3l5eWaOHGiDMPQ6NGj1dzcrPr6esXGxvZL8AAAAP7iufNGn/od\n6sU1bS/8tRe9ASAwdVm0nkhDQ4O3EB02bJgaGhokSW63W3Fxcd52DodDbrebohUAgD7E1h0AwGDi\nU9H6bYZhyDCMHvdzuVxyuVySpLy8vA7Fbk/05q+VvvI11t4YLHn6KjQ0NKDi9RV5BhfyhK8yMjJ0\n7bXXavXq1d5z32zdmTx5soqKilRUVKRp06Z12LpTXV2tNWvWaPHixX6MHgCAnvGpaI2JifEu+62v\nr9fQoUMlSXa7XbW1td52dXV1stvtJxzD6XTK6XR6j7/dz+oCKdbeCKQ84+LiAipeX5FncCHP/pOY\nmDig1xtobN0BAAwmPr3yJjU1VSUlJZKkkpISTZgwwXt+06ZNMk1Tu3fvVkREBJMiAAADoKdbdwAA\nCBRd3mldsWKF/vnPf6qxsVH33HOPbrnlFk2ePFn5+fkqLi727puRpHHjxqmiokKzZ8/WkCFDlJ2d\n3e8JAACAjti6MzAGS56+GixbA8gzuJCnNXVZtM6ZM+eE5+fPn9/pnGEYmjlzZu+jAgAAPcLWncCJ\ntTcCKU+2QAQX8gwugbZ1x6flwQAAwFrYugMACFa9fnowAAAYWGzdAQAMJhStAAAEGLbuAAAGE5YH\nAwAAAAAsi6IVAAAAAGBZLA8GAADACXnuvNHnvr6+Esj2wl99viaA4MSdVgAAAACAZVG0AgAAAAAs\ni6IVAAAAAGBZFK0AAAAAAMuiaAUAAAAAWBZFKwAAAADAsihaAQAAAACWRdEKAAAAALAsilYAAAAA\ngGVRtAIAAAAALIuiFQAAAABgWRStAAAAAADLomgFAAAAAFgWRSsAAAAAwLJC/R0A8G2eO2/0qd+h\nXlzT9sJfe9EbAAAAQH/iTisAAAAAwLIoWgEAAAAAlkXRCgAAAACwLPa0AgPM1327ku97d/2xb3ew\n5AkAAID+xZ1WAAAAAIBl9cud1q1bt6qwsFDt7e2aNGmSJk+e3B+XAQAA3cTcDAAIVH1etLa3t+vF\nF1/UvHnz5HA49Mgjjyg1NVUjRozo60sBAAYIy70DG3MzACCQ9XnRumfPHp1yyilKSEiQJF122WUq\nKytjYgQQlCjmEAiYm4Efxs/y4MK/z+DT50Wr2+2Ww+HwHjscDlVXV/f1ZQAAQDcxNwOQKOYQuPz2\n9GCXyyWXyyVJysvLU2Jiom8D/a28D6OyMPIMHoMhR4k8g81gyXOQY27uocGQ52DIUSLPYDNY8uwl\nn3/G+0GfPz3Ybrerrq7Oe1xXVye73d6pndPpVF5envLy8vo6hG7Jzc31y3UHGnkGF/IMLuSJgcLc\nbC3kGVzIM7iQpzX1edE6atQoffHFF6qpqVFbW5s++OADpaam9vVlAABANzE3AwACWZ8vD7bZbJox\nY4YWLVqk9vZ2XXXVVTrttNP6+jIAAKCbmJsBAIHMtnDhwoV9Peipp56qH//4x7ruuut03nnn9fXw\nfSY5OdnfIQwI8gwu5BlcyBMDhbnZWsgzuJBncCFP6zFM0zT9HQQAAAAAACfS53taAQAAAADoKxSt\nAAAAAADL6pc9rVb0+eefq7i4WB988IEqKyu1f/9+RUVFaejQof4ODT74/PPPtX//fsXExCg09P+e\nJ7Z161adcsopfoysb+3Zs0dut1t2u12fffaZNm3apKamJp166qn+Dq3frFq1ShdffLG/w+h3H374\noUpLS3XkyJGg+m+2ra1N7733nr766islJCTo/fff19tvv62amhqNHDlSISH8rRT/h7k5uDA3MzcH\numCdm6urq3XyySfrpJNOUmtrq/7yl7/otdde0759+3TWWWfppJNO8neIXRoUe1qLior097//XZdf\nfrn3vXRut9t7bvLkyX6OsP+9++67uuqqq/wdRp/YsGGD3nrrLSUlJWn//v2aPn26JkyYIEl6+OGH\n9dRTT/k5wr7x5z//WVu3bpXH49EFF1yg6upqpaSkaPv27brwwgt18803+zvEXvvuvyvTNFVVVaXz\nzz9f0tf/PoPFI488oiVLlkiSXC6X3nrrLV188cXatm2bxo8fHzQ/hwoKCuTxeHTs2DFFRkbq6NGj\nuuSSS7R9+3aZpqn/9//+n79DhEUwNzM3ByLmZubmQDR37lwtW7ZMNptNzz//vMLCwpSWlqbt27dr\n//79euCBB/wdYpf6/JU3VvTuu+/q6aef7vBXP0m6/vrrNXfu3KD5D/KH/OlPfwqaifGdd97RU089\npfDwcNXU1OjXv/61Dh8+rOuuu07B9DeY0tJSLVu2TMePH9ddd92l3/zmN4qIiNCNN96oRx99NCgm\nRrfbraSkJE2aNEmGYcg0Te3du1c33HCDv0Prcx6Px/v1O++8o8cff1xDhw7VDTfcoMceeyxofg59\n8sknWr58uTwej+655x49//zzCgkJ0ZVXXqkHH3zQ3+HBQpibmZsDEXNzcBksc7NpmrLZbJKkvXv3\nev8wce655wbM3DwoilbDMFRfX6/hw4d3OF9fXy/DMPwUVd/7vr+SmKaphoaGAY6m/5imqfDwcElS\nfHy8Fi5cqKefflqHDx8OqonRZrMpJCREYWFhSkhIUEREhCRpyJAhQfPf7ZIlS7Rhwwa98soruv32\n2zVy5EgNGTJEY8aM8Xdofc40TTU1Nck0TZmm6V3+GB4e7p1IgoFpmmpra9PRo0d17NgxtbS0KCoq\nSsePH+/wywHA3MzcHIiYm4PLYJmbTzvtNO/KjjPOOEMfffSRRo0apQMHDnT6w6FVBUaUvTR9+nT9\n8pe/1KmnniqHwyFJqq2t1cGDB3XHHXf4Obq+09DQoMcee0yRkZEdzpumqccff9xPUfW9mJgY7du3\nTyNHjpT09Q+W3Nxc/eY3v9Enn3zi3+D6UGhoqI4dO6awsDDl5eV5z7e0tATNvsCQkBBdf/31uvTS\nS/X73/9eMTExQVvYtLS0KDc3V6Zpen9Zj42N1dGjR4PqF7qrrrpKc+bMUXt7u2677Tb9+te/Vnx8\nvKqrq3XZZZf5OzxYCHMzc3MgYm4OLoNlbr7nnntUWFioV155RdHR0Zo3b54cDoccDofuvvtuf4fX\nLYNiT6sktbe3ezfOS5LdbtdZZ50VND9gJOk3v/mNrrrqKp177rmdPnvmmWf0i1/8wg9R9b26ujrZ\nbDYNGzas02cffvjhCfMPRMePHz/hxvivvvpKX375pU4//XQ/RNW/Kioq9OGHH2rKlCn+DmXAHDt2\nTA0NDYqPj/d3KH3m2z9nm5ubtX37dsXFxemss87yc2SwGuZm5uZAw9w8OATj3Cx9XaTX1NSovb1d\ndrv9hP9/tapBU7QCAAAAAAJP8PwpEwAAAAAQdChaAQAAAACWRdEKAAAAALAsilYAAAAAgGVRtAIA\nAAAALIuiFQAAAABgWRStAAAAAADLomgFAAAAAFgWRSsAAAAAwLIoWgEAAAAAlkXRCgAAAACwLIpW\nAAAAAIBlUbQCAAAAACyLohXwo0ceeUQJCQkyDENr1671dzgAAKAb9u3bJ8Mw9P777/9gO8MwtG7d\nugGKCgheof4OABis/vGPfygvL09FRUW65JJLFBMT4++QAABAH/riiy80bNgwf4cBBDyKVsBPqqur\nFRISop/85Cc+j9Ha2qohQ4b0YVQAAKCvnHLKKf4OAQgKLA8G/GD69Om6/fbb1d7eLsMwZBiGKioq\n9OMf/1jx8fGKiorShAkT9Oabb3boN3LkSM2bN0/Z2dlyOBy68sorJUlNTU36xS9+oaSkJEVERGjc\nuHF65ZVX/JEaAAABY/Xq1RozZozCwsIUHx+vn/70p5KkP/zhD95VUHFxccrKytLu3bs79d+3b58m\nTZqkk08+WcnJyfrjH//Y4fPvLg82DEPPPvusbr/9dkVHR2vEiBFasmRJ/yYJBAGKVsAPnnnmGa1Y\nsUI2m01ffPGFvvjiC3311Ve69dZb9e6776qiokLXXHONbrzxxk6TZEFBgeLj47V582YVFhbKNE3d\ncMMN+t///V+9/PLL2rFjh+69917ddttteuedd/yUIQAA1rZgwQI9/PDDys7O1vbt2/Xmm2/qX/7l\nXyRJx44d07x581RRUaG3335bNptNWVlZam1t7TDGQw89pBkzZmjr1q2aMmWKpk6dqsrKyh+87hNP\nPKGJEydq69ateuSRR/Too48yXwNdMEzTNP0dBDAYrV27VjNnzlRbW9v3trnwwgt1yy236LHHHpP0\n9Z3WUaNGdZjcNm7cqGuvvVaHDh3qsC92xowZcrvdKioq6r8kAAAIQM3NzYqLi9OTTz6pBx54oMv2\nbrdbDodD77//vi6//HLt27dPZ555pubNm6cnn3zS2+6yyy7TqFGj9NJLL0n6+s7qSy+9pGnTpnmP\nc3JyVFBQ4O1z3nnnafLkydxxBX4Ad1oBizh8+LCys7N17rnnatiwYYqKilJVVZX279/fod3FF1/c\n4bisrEytra1KSkpSVFSU959169apurp6IFMAACAgVFVV6ejRo/rRj350ws+3bt2qm266SWeeeaai\no6N1+umnS1KnOfnSSy/tcHz55ZerqqrqB6990UUXdThOTEzUoUOHepoCMKjwICbAIqZPn65PPvlE\nS5cu1ZlnnqmTTz5Zt912W6elSJGRkR2O29vbFRMTo7Kysk5j8pAmAAB6pqWlRT/60Y90xRVXqLCw\nUAkJCZKklJSUTnOyL747NxuGofb29l6PCwQzilbAIjZt2qSlS5fqxhtvlPT10qW9e/fq/PPP/8F+\nqamp+vLLL3X06NEu2wIAAGnMmDEKDw/Xf//3f+uCCy7o8NnOnTt1+PBhLVq0SOedd54k6YMPPtCJ\ndtSVlpbquuuu8x5/8MEHGjNmTP8GDwxCFK2ARZxzzjlav369rrjiCnk8Hs2fP18ej6fLfpmZmXI6\nnbr55pu1dOlSXXDBBaqvr9cHH3yg8PBw3XnnnQMQPQAAgSMqKkr333+/Fi5cqJNPPllXX321jhw5\nog0bNujOO+9UWFiYVq5cqfvvv1/79u1Tbm6uDMPoNM6LL76oc889V6mpqVq3bp02b96slStX+iEj\nILixpxWwiMLCQrW3t+viiy/W5MmTde2112rChAld9jMMQ3/96191880367777tO5556rrKws/e1v\nf9OoUaMGIHIAAALPk08+qUWLFqmgoEDnn3++fvSjH6miokJxcXFat26d3n77baWkpOiBBx7Q8uXL\nFRLS+dfmvLw8/fa3v9UFF1ygl156SevWrfM+gRhA3+HpwQAAAAAAy+JOKwAAAADAsihaAQAAAACW\nRdEKAAAAALAsilYAAAAAgGVRtAIAAAAALIuiFQAAAABgWbaFCxcu9HcQktTa2qpDhw4pLCxMHo/n\nhF/35hzjMA7jMA7jDJ5xbDabv6e1oPDN3NzY2Oj9vn/f11193hf9grmt1eIhT74n5Mn3pK/bRkdH\n+zwfcacVAAAAAGBZFK0AAAAAAMuiaAUAAAAAWBZFKwAAAADAsihaAQAAAACWFervAAAAQO+1t7cr\nNzdXdrtdubm5HT47fvy4Vq1apb179yo6Olpz5sxRfHy8nyIFAKBnuNMKAEAQ2LBhg5KSkk74WXFx\nsSIjI7Vy5UplZWVp/fr1AxwdAAC+o2gFACDA1dXVqaKiQpMmTTrh5+Xl5crIyJAkpaWlaceOHTJN\ncwAjBADAdxStAAAEuLVr12ratGkyDOOEn7vdbjkcDkmSzWZTRESEGhsbBzJEAAB8xp5Wizt002Wy\nvfBXf4cBALCoLVu2KCYmRsnJyaqqqurVWC6XSy6XS5KUl5en0NBQxcXFSVKXX/ekra/9grmt1eL5\n5n8P3XSZDklKePWDgMnz0E2X/WC8VvteWy0e8uR70hdtD910mUJf+59ObX1F0QoAQADbtWuXysvL\nVVlZqdbWVh05ckQFBQWaPXu2t43dblddXZ0cDoc8Ho9aWloUHR3daSyn0ymn0+k9bmtrU21trSQp\nLi7uB7/u6vO+6BfMba0Wz7fPSQqoPLuK12rfa6vFQ558T/qq7TdzyDfnEhMT5SuKVgAAAtiUKVM0\nZcoUSVJVVZVee+21DgWrJI0fP14bN27U6NGjVVpaqpSUlO9dSgwAgNWwpxUAgCD08ssvq7y8XJKU\nmZmppqYm5eTk6PXXX9fUqVP9HB0AAN3HnVYAAIJESkqKUlJSJEm33nqr9/yQIUM0d+5cf4UFAECv\ncKcVAAAAAGBZFK0AAAAAAMuiaAUAAAAAWBZFKwAAAADAsihaAQAAAACWRdEKAAAAALCsXr/ypr29\nXbm5ubLb7crNzVVNTY1WrFihxsZGJScnKycnR6GhvFkHAAAAANBzvb7TumHDBiUlJXmP161bp6ys\nLK1cuVKRkZEqLi7u7SUAAAAAAINUr4rWuro6VVRUaNKkSZIk0zRVVVWltLQ0SVJGRobKysp6HyUA\nAAAAYFDqVdG6du1aTZs2TYZhSJIaGxsVEREhm80mSbLb7XK73b2PEgAAAAAwKPm82XTLli2KiYlR\ncnKyqqqqetzf5XLJ5XJJkvLy8hQaGqq4uDjv/tcTfd2bc4zDOIzDOIwzeMYBAADBw+c7rbt27VJ5\neblmzZqlFStWaMeOHVq7dq1aWlrk8XgkSW63W3a7/YT9nU6n8vLylJeXJ0lqa2tTbW2t2travvfr\n3pwL1HEkWSoexmEcxmGcQBgHAAAED5//HD1lyhRNmTJFklRVVaXXXntNs2fP1q9//WuVlpbq8ssv\n18aNG5WamtpnwQIAAAAABpc+f0/r1KlT9frrrysnJ0dNTU3KzMzs60sAAAAAAAaJPtn4k5KS8v+x\nd+fxVVT3/8dfN3fJTXKzb2RlF9lRYllaBSFVxKW48lCkWqs+LFZFq0K1X2nrFlkKLlC7WLWKVlsr\ndnPLA0ULRaGACMgm+5KE7Ptyl98fdM4vkYSQBXID7+fjwYObe8+c+5kzZ2bOZ+ZkwuDBgwFITk7m\nySef7IxqRURERERE5AzX6XdaRURERERERDqLklYREREREREJWvq7ACIiIt1YfX09c+bMwev14vP5\nGD16NNddd12TMh9//DGvvPKKeaL/pEmTmDhxYleEKyIi0mZKWkVERLoxp9PJnDlzcLvdeL1eHnnk\nEUaMGMFZZ53VpNzYsWP54Q9/2EVRioiItJ+mB4uIiHRjNpsNt9sNgM/nw+fzYbPZujgqERGRzqM7\nrUEk/8qx2H/3t64OQ0REuhm/38+sWbPIy8vj4osvpn///seU+eyzz/jqq69ISUnhpptuIiEhoQsi\nFRERaTslrSIiIt1cSEgI8+bNo6qqivnz57Nv3z4yMzPN5yNHjuTb3/42TqeTDz/8kMWLFzNnzpxj\n6snNzSU3NxeAnJwcHA6HSW5be92Wsu1d7nQuG2zxWP/n/69vdKf1zG8l3mBr62CLR+upNumMsvkt\nlG0vTQ8WERE5TURERDB48GA2bNjQ5P3IyEicTicAEydOZNeuXc0un52dTU5ODjk5OQB4vV4KCwsp\nLCxs9XVbyrZ3udO5bLDFY/1v6U7r2Vq8wdbWwRaP1lNt0hllG59Dvnk8aQ8lrSIiIt1YeXk5VVVV\nwNEnCW/cuJG0tLQmZUpKSszrtWvXkp6efkpjFBER6QhNDxYREenGSkpKWLx4MX6/n0AgwJgxYxg5\nciRvvPEGffv2JSsri3fffZe1a9dit9vxeDzMmDGjq8MWERE5YUpaRUREurGePXsyd+7cY96fOnWq\neX3DDTdwww03nMqwREREOo2mB4uIiIiIiEjQUtIqIiIiIiIiQUtJq4iIiIiIiAQtJa0iIiIiIiIS\ntJS0ioiIiIiISNBS0ioiIiIiIiJBS0mriIiIiIiIBC0lrSIiIiIiIhK0lLSKiIiIiIhI0FLSKiIi\nIiIiIkFLSauIiIiIiIgELSWtIiIiIiIiErSUtIqIiIiIiEjQUtIqIiIiIiIiQUtJq4iIiIiIiAQt\nJa0iIiIiIiIStJS0ioiIiIiISNBS0ioiIiIiIiJBy9HVAYiIiEj71dfXM2fOHLxeLz6fj9GjR3Pd\nddc1KdPQ0MBzzz3Hrl27iIyMZObMmSQlJXVRxCIiIm2jO60iIiLdmNPpZM6cOcybN4+5c+eyYcMG\ntm/f3qTM8uXLiYiI4Nlnn+XSSy9l6dKlXRStiIhI2ylpFRER6cZsNhtutxsAn8+Hz+fDZrM1KbN2\n7VrGjx8PwOjRo9m0aROBQOBUhyoiItIumh4sIiLSzfn9fmbNmkVeXh4XX3wx/fv3b/J5cXEx8fHx\nANjtdsLDw6moqCAqKqorwhUREWkTJa0iIiLdXEhICPPmzaOqqor58+ezb98+MjMz21xPbm4uubm5\nAOTk5OBwOEhISABo9XVbyrZ3udO5bLDFY/2f/7++EezrmX/lWBx//9zEHCztF8zbPv/KseQDyW+v\nOq3XszP6lNqkmf3syrHH9J0mZVuot700PVhEROQ0ERERweDBg9mwYUOT9+Pi4igqKgKOTiGurq4m\nMjLymOWzs7PJyckhJycHAK/XS2FhIYWFha2+bkvZ9i53OpcNtnis/y3Bvp6N+2tr8QZbW3dVPC1t\n29NtPTujT6lN2r6fNdd+HaGkVUREpBsrLy+nqqoKOPok4Y0bN5KWltakzMiRI/n4448BWL16NYMH\nDz7m915FRESClaYHi4iIdGMlJSUsXrwYv99PIBBgzJgxjBw5kjfeeIO+ffuSlZXFhAkTeO6557jr\nrrvweDzMnDmzq8MWERE5YUpaRUREurGePXsyd+7cY96fOnWqee1yubjvvvtOZVgiIiKdRtODRURE\nREREJGgpaRURAHy3XdHVIYiIiIiIHKPd04Pr6+uZM2cOXq8Xn8/H6NGjue666ygoKGDRokVUVFTQ\np08f7rrrLhwOzUIWERERERGRtmt3Nul0OpkzZw5utxuv18sjjzzCiBEj+Mc//sGll17Kt7/9bX77\n29+yfPlyLrroos6MWURERERERM4Q7Z4ebLPZcLvdwNG/+ebz+bDZbGzevJnRo0cDMH78eNasWdM5\nkYqIiIiIiMgZp0Pzdv1+P7NmzSIvL4+LL76Y5ORkwsPDsdvtwNE/Zl5cXNwpgYqIiIiIiMiZp0NJ\na0hICPPmzaOqqor58+dz6NChE142NzeX3NxcAHJycnA4HCQkJJjff23udUfeUz2qR/Ucvx4gqOJR\nPaqno/1ZRERETg+d8vTgiIgIBg8ezPbt26mursbn8wFQXFxMXFxcs8tkZ2eTk5NDTk4OAF6vl8LC\nQrxeb4uvO/Jed6gHOKH3utt6qZ7uUY+1HwZLPKpH9XS0P4uIiMjpod1Ja3l5OVVVVcDRJwlv3LiR\ntLQ0Bg8ezOrVqwH4+OOPycrK6pxIRURERERE5IzT7jlUJSUlLF68GL/fTyAQYMyYMYwcOZL09HQW\nLVrEn/70J3r37s2ECRM6M14RERERERE5g7Q7ae3Zsydz58495v3k5GSefPLJDgUlIiIiIiIiAp30\nO60iIiIiIiIiJ4OSVhEREREREQlaSlpFREREREQkaClpFRERERERkaClpFVERERERESClpJWERER\nERERCVpKWkVERERERCRotfvvtIqIiEjXKywsZPHixZSWlmKz2cjOzmby5MlNymzevJm5c+eSlJQE\nwKhRo7jmmmu6IlwREZE2U9IqIiLSjdntdqZPn06fPn2oqalh9uzZDBs2jPT09CblBg4cyOzZs7so\nShERkfbT9GAREZFuLDY2lj59+gAQFhZGWloaxcXFXRyViIhI59GdVhERkdNEQUEBu3fvpl+/fsd8\ntn37dh544AFiY2OZPn06GRkZXRChiIhI2ylpFREROQ3U1tayYMECbr75ZsLDw5t81rt3b5YsWYLb\n7WbdunXMmzePZ5555pg6cnNzyc3NBSAnJweHw0FCQgJAq6/bUra9y53OZYMtHuv//P/1jWBfz/xv\nvA6W9gvmbd/Stj3d1rMz+pTapO37WUvt116aHiwiItLNeb1eFixYwPnnn8+oUaOO+Tw8PBy32w3A\nueeei8/no7y8/Jhy2dnZ5OTkkJOTY+otLCyksLCw1ddtKdve5U7nssEWj/W/JdjXs3F/bS3eYGvr\nroqnpW17uq1nZ/QptUnb97Pm2q8jlLSKiIh0Y4FAgOeff560tDQuu+yyZsuUlpYSCAQA2LlzJ36/\nn8jIyFMZpoiISLtperCIiEg3tm3bNj755BMyMzN54IEHALj++uvNVe2LLrqI1atX88EHH2C323G5\nXMycORObzdaVYYuIiJwwJa0iIiLd2Nlnn82bb7553DKTJk1i0qRJpygiERGRzqXpwSIiIiIiIhK0\nlLSKiIiIiIhI0FLSKiIiIiIiIkFLSauIiIiIiIgELSWtIiIiIiIiErSUtIqIiIiIiEjQUtIqIiIi\nIiIiQUtJq4iIiIiIiAQtJa0iIiIiIiIStJS0yknju+2Krg5BRERERES6OSWtIiIiIiIiErSUtIqI\niIiIiEjQUtIqIiIiIiIiQUtJq4iIiIiIiAQtJa0iIiIiIiIStJS0ioiIy2jlyQAAIABJREFUiIiI\nSNBS0ioiIiIiIiJBS0mriIiIiIiIBC1HVwcgIiIi7VdYWMjixYspLS3FZrORnZ3N5MmTm5QJBAK8\n+OKLrF+/ntDQUGbMmEGfPn26KGIREZG2UdIqIiLSjdntdqZPn06fPn2oqalh9uzZDBs2jPT0dFNm\n/fr15OXl8cwzz7Bjxw5+//vf88QTT3Rh1CIiIidO04NFRES6sdjYWHPXNCwsjLS0NIqLi5uUWbt2\nLRdccAE2m42zzjqLqqoqSkpKuiJcERGRNlPSKiIicpooKChg9+7d9OvXr8n7xcXFJCQkmJ/j4+OP\nSWxFRESClaYHi4iInAZqa2tZsGABN998M+Hh4e2qIzc3l9zcXABycnJwOBwm2W3tdVvKtne5tpTN\nv3IsyW+vOua9fCD57VXkXzkWx98/b7HsN5ezynY03pZiaC72b5a1XrflOzra1vn/6xsnY9u3tJ6N\nt8vx2r3Jco3fbyXezuxTLfWTtpRty3e0t381W7aFbduWPtXaftbebd/RftsZZfNbKNvSOh9v259I\nm7Sln5ysftvR/aylso3rbS8lrSIiIt2c1+tlwYIFnH/++YwaNeqYz+Pi4igsLDQ/FxUVERcXd0y5\n7OxssrOzm9RrLZeQkHDc16193hnLtfU7mnuv8fuN16+1uqyynRFvSzE0F3tLr9vyHR1t69bap73b\nvqV1a9wmrbV7S8udyj7VXD9pa9m2fEd7+ldn9JOWYmtL2bZs+5N9jDiRss21X0vr1tq2b61N2tJP\nTla/7Yz9rLmy1uepqam0l6YHi4iIdGOBQIDnn3+etLQ0LrvssmbLZGVl8cknnxAIBNi+fTvh4eHE\nxsae4khFRETap913WgsLm3/EfmVlJQsXLuTIkSMkJiZy77334vF4OjNmERER+Z9t27bxySefkJmZ\nyQMPPADA9ddfb650X3TRRZxzzjmsW7eOu+++G5fLxYwZM7oyZBERkTZpd9La0iP2P/74Y4YOHcqU\nKVNYtmwZy5Yt48Ybb+zMmEVEROR/zj77bN58883jlrHZbNx6662nKCIREZHO1e7pwS09Yn/NmjWM\nGzcOgHHjxrFmzZrOiVRERERERETOOJ3yO62NH7FfVlZmfk8mJiaGsrKyzvgKEREREREROQN1+OnB\nx3vEvs1mw2azNbtcS4/VdziOhtTc6468p3pOfT1AUMWjerS9VM+ZU4+IiIicPjp0p7W5R+xHR0dT\nUlICQElJCVFRUc0um52dTU5ODjk5OaauwsJCvF5vi6878l53qAc4ofe6y3pZ2zVY4lE92l6q58yp\nR0RERE4f7U5aW3rEflZWFitWrABgxYoVnHfeeR2PUkRERERERM5I7Z5D1dIj9qdMmcLChQtZvny5\n+ZM3IiIiIiIiIu3R7qT1eI/Yf+SRR9odkIiIiIiIiIilU54eLCIiIiIiInIyKGkVERERERGRoKWk\nVURERERERIKWklYREREREREJWkpaRUREREREJGgpaRUREREREZGgpaRVREREREREgpaSVhERERER\nEQlaSlpFREREREQkaClpFRERERERkaClpFVERERERESClqOrAxAREZH2W7JkCevWrSM6OpoFCxYc\n8/nmzZuZO3cuSUlJAIwaNYprrrnmVIcpIiLSbkpaRUREurHx48czadIkFi9e3GKZgQMHMnv27FMY\nlYiISOfR9GAREZFubNCgQXg8nq4OQ0RE5KTRnVYREZHT3Pbt23nggQeIjY1l+vTpZGRkdHVIIiIi\nJ0xJayfz3XYFvL2qq8MQEREBoHfv3ixZsgS32826deuYN28ezzzzTLNlc3Nzyc3NBSAnJweHw0FC\nQgJAq6/bUra9y7WlbD40+x7/ez+/lbLfXK6z4m0phuZi/2ZZ63VbvqOjbd1SXZ2x7VtazxNt9/Zu\nz/bG3pZ+0paybfmOtmz7trRfe/tUa/tZe7d9e7dRZ5Ztqf1aWueOtklb+snJ6rcd3c9OpP+1l5JW\nERGR01h4eLh5fe655/LCCy9QXl5OVFTUMWWzs7PJzs42P3u9XgoLC4Gjg5DjvW7t885Yrq3f0dx7\njd9vvH6t1WWV7Yx4W4qhudhbet2W7+hoW7fWPu3d9i2tW+M2aa3dW1ruVPap5vpJW8u25Tva0786\no5+0FFtbyrZl25/sY8SJlG2u/Vpat9a2fWtt0pZ+crL6bWfsZ82VtT5PTU2lvfQ7rSIiIqex0tJS\nAoEAADt37sTv9xMZGdnFUYmIiJw43WkVERHpxhYtWsSWLVuoqKjgjjvu4LrrrsPr9QJw0UUXsXr1\naj744APsdjsul4uZM2dis9m6OGoREZETp6RVRESkG5s5c+ZxP580aRKTJk06RdGIiIh0vjNyerDv\ntiu6OgSRbkf7jYiIiIh0hTMyaRUREREREZHuQUmriIiIiIiIBC0lrSIiIiIiIhK0lLSKiIiIiIhI\n0FLSKiIiIiIiIkFLSauIiIiIiIgELSWtIiIiIiIiErSUtIqIiIiIiEjQUtIqIiIiIiIiQeuMTlrz\nrxx7yr/Td9sVp/w7oWvWVUREREREpKPO6KRVREREREREgpuSVhEREREREQlaSlpFREREREQkaClp\nFRERERERkaClpFVERERERESClpJWERERERERCVqOrg5ARERE2m/JkiWsW7eO6OhoFixYcMzngUCA\nF198kfXr1xMaGsqMGTPo06dPF0QqIiLSPrrTKiIi0o2NHz+ehx56qMXP169fT15eHs888wy33347\nv//9709hdCIiIh2npFVERKQbGzRoEB6Pp8XP165dywUXXIDNZuOss86iqqqKkpKSUxihiIhIxyhp\nFREROY0VFxeTkJBgfo6Pj6e4uLgLIxIREWmbDiWtS5Ys4dZbb+UnP/mJea+yspJHH32Uu+++m0cf\nfZTKysoOBykiIiInX25uLrNnz2b27NkA5F85loSEBBISEsxr321XNHntcDiafH4iZZtbriNlm1sO\nOOZzi/X6eGW/uVx71rO5si3F0Fzs3yzbOM7jtUlbyrYW+zfr6sxt39J6Nv78RNezLduzo33qePG0\np2xr/bYtsbfUJh3tJy2VbW49Wyrblm3f0X7bGWWba7/jHVs62iZt6ScdPRa2tp5t2c9O5Pj2zc/b\no0MPYho/fjyTJk1i8eLF5r1ly5YxdOhQpkyZwrJly1i2bBk33nhjh4IUERGR9omLi6OwsND8XFRU\nRFxcXLNls7Ozyc7ObvJe42Wbe+31es3rtpRtbbm2lO2MeIKhbLDFo20fPG0SzLFr26tNTrRsamoq\n7dWhO63N/R7NmjVrGDduHADjxo1jzZo1HfkKERER6YCsrCw++eQTAoEA27dvJzw8nNjY2K4OS0RE\n5IR1+p+8KSsrMyfDmJgYysrKOvsrRERE5H8WLVrEli1bqKio4I477uC6667D6/UCcNFFF3HOOeew\nbt067r77blwuFzNmzOjiiEVERNrmpP6dVpvNhs1ma/az3NxccnNzAcjJyTFznh2OoyE197oj733z\ndWfU0566O/Ldp6p9ukM7q55Tv72sz7vbeqmeM7OeM8nMmTOP+7nNZuPWW289RdGIiIh0vk5/enB0\ndLR5lH5JSQlRUVHNlsvOziYnJ4ecnBzg/8959nq9Lb7uyHuNX1vfB3SonuPV3VK5433eXDytxXii\nbdFZ9bSnnTtaT2fFo3o6tr1O9X6qelRPR/uziIiInB46PWnNyspixYoVAKxYsYLzzjuvs79CRERE\nREREzhAdmkPV3O/RTJkyhYULF7J8+XISExO59957OytWEREREREROcN0KGlt6fdoHnnkkY5UKyIi\nIiIiIgKchOnBcnry3XZFV4fQLeRfObarQxAREREROa0oaRUREREREZGgpaRVREREREREgpaSVhER\nEREREQlaSlpFREREREQkaClpFTmO0+kBVKfTuoiIiIjImUNJq4iIiIiIiAQtJa0iIiIiIiIStJS0\nioiIiIiISNBS0ioiIiIiIiJB67RMWvXAGWmO+kXwy79ybFeH0G4n2r86ux925zYTERERORGnZdIq\nIiIiIiIipwclrSIiIiIiIhK0lLSKiIiIiIhI0HJ0dQAiIiLSMRs2bODFF1/E7/czceJEpkyZ0uTz\njz/+mFdeeYW4uDgAJk2axMSJE7siVBERkTbTndaTSA/+kc50qh64057vOdFlgu2hQS3Fo31XuhO/\n388LL7zAQw89xMKFC1m5ciUHDhw4ptzYsWOZN28e8+bNU8IqIiLdipJWERGRbmznzp306NGD5ORk\nHA4HY8eOZc2aNV0dloiISKfR9GAREZFurLi4mPj4ePNzfHw8O3bsOKbcZ599xldffUVKSgo33XQT\nCQkJpzJMERGRdtOdVhERkdPcyJEjWbx4MfPnz2fYsGEsXry42XK5ubnMnj2b2bNnm/cSEhJMgts4\n0bVeOxyOJp+faNlvLteRsseL52SV7Yo26Yr1PBltom3fPdbzZLSJtv2Z3SYdoTutIiIi3VhcXBxF\nRUXm56KiIvPAJUtkZKR5PXHiRF599dVm68rOziY7O7vJe4WFhcd97fV6zeu2lG1tubaU7Yx4gqFs\nsMWjbR88bRLMsWvbq01OtGxqairtpTutIi0ItocGBZuOts/p/rCjruw/6rtnlr59+3L48GEKCgrw\ner2sWrWKrKysJmVKSkrM67Vr15Kenn6qwxQREWk33WkVERHpxux2O7fccguPP/44fr+fCy+8kIyM\nDN544w369u1LVlYW7777LmvXrsVut+PxeJgxY0ZXhy0iInLClLSKiIh0c+eeey7nnntuk/emTp1q\nXt9www3ccMMNpzosERGRTqHpwSIiIiIiIhK0lLSKiIiIiIhI0Drtk9b2POzlm8vooSadr7U2PdE2\n784Pu+mMvtkendlmXfkwpea++3jxaD8+vpPZPo3rbq3PnGifaq6ctrGIiMjp6bRPWkVERERERKT7\nUtIqIiIiIiIiQUtJq4iIiIiIiAQtJa0iIiIiIiIStJS0/k9XPlBG/r9TsR264mEt1nq15buDoU92\nVgyd9fCdk+lUrWtXadz32rMPNF6vzn6IWHPxtOXhTSIiInJ6U9IqIiIiIiIiQUtJq4iIiIiIiAQt\nJa0iIiIiIiIStJS0ioiIiIiISNDqVknr8R5mc6LvnYx4TlRXPACoNc2tQ2sPTOnIQ1HOhAeqfHMd\nW9vuzT1wpi0PoTneNuzo9jrR72tOS+vd1vZpj9bqPBUPEmrLMu1p085ah9beO9726kjf7ay+eTL6\nuIiIiASXbpW0ioiIiIiIyJlFSauIiIiIiIgELSWtIiIiIiIiErSUtIqIiIiIiEjQCqqktbmHx7Tl\ngSrteVDK8co1V3d7HgLVXFytfd7cd7fWPq09CKW5ek50HZpzoturtYfUtLat27Nebe0/jZfp6PY6\n3nudpaMPHjvR9ulI3R3V1j7enochNfd5W/aLjj6Uqrlyx+vPrTneftEewfbwOD10SURE5MzkOBmV\nbtiwgRdffBG/38/EiROZMmXKyfgaERERofXzbkNDA8899xy7du0iMjKSmTNnkpSU1EXRioiItE2n\n32n1+/288MILPPTQQyxcuJCVK1dy4MCBzv4aERER4cTOu8uXLyciIoJnn32WSy+9lKVLl3ZRtCIi\nIm3X6Unrzp076dGjB8nJyTgcDsaOHcuaNWs6+2tERESEEzvvrl27lvHjxwMwevRoNm3aRCAQ6IJo\nRURE2q7Tk9bi4mLi4+PNz/Hx8RQXF3f214iIiAgndt5tXMZutxMeHk5FRcUpjVNERKS9bIFOvtS6\nevVqNmzYwB133AHAJ598wo4dO/jhD3/YpFxubi65ubkA5OTkdGYIIiIiZ4wTOe/+5Cc/4aGHHjKJ\n61133cXjjz9OVFRUk7p0bhYRkWDU6Xda4+LiKCoqMj8XFRURFxd3TLns7GxycnLMSXH27Nnm/5Ze\nd+Q91aN6VI/qUT1nVj1nihM57zYu4/P5qK6uJjIy8pi6Wjo3n8jrtpRt73Knc9lgi0frqTbReqpN\nTkbZ9ur0pLVv374cPnyYgoICvF4vq1atIisrq7O/RkRERDix8+7IkSP5+OOPgaN3ZgcPHozNZuuC\naEVERNqu0//kjd1u55ZbbuHxxx/H7/dz4YUXkpGR0dlfIyIiIrR83n3jjTfo27cvWVlZTJgwgeee\ne4677roLj8fDzJkzuzpsERGRE2b/+c9//vPOrjQlJYVLLrmEyZMnM3DgwBNerk+fPub/ll535D3V\no3pUj+pRPWdWPWeK5s67Q4YMITU1FTia2I4ZM4bJkyeTnZ2Nx+M54bobt2Vrr9tStr3Lnc5lgy0e\nrafaROupNjkZZduj0x/EJCIiIiIiItJZQro6ABEREREREenefD7fSatbSauIiIiIiIh0yEMPPXTS\n6u70BzGJiIiISPtUVlbi8Xiorq7mP//5DzU1NcDRP1s0fPhwIiIiOvX73n//fS6++GIAvF4vK1eu\nJDY2lmHDhvHvf/+bbdu2kZaWRnZ2Ng5HcAwbd+zYQVpaGoFAAKfTybJly9i1axfp6elcddVVhIeH\nn7JYnnvuOX784x+fsu8T6WyVlZXs2bMHt9tNv379WLlyJTt27GDYsGEkJSWxYcMGUlNTOffcc1ut\n62T+1mmX/05rZWUlcPRAWVxcDBw9MMfExFBWVkZ0dDQFBQVs27YNh8NBaGgohw4dIiMjg9DQUHbu\n3ElGRgbDhw8H4Ouvv+bAgQP069ePtLS0Jt/l9XrNAXfz5s3s3r2b2NhYBgwYYL6ruLiYysrKJt+x\nceNGBgwYwPDhw6mqqiIiIoLy8nKioqLMyWXr1q3s3LmTqKgoRowYQUhICNXV1WzduhW73c7w4cOP\nefCFz+fDbrcDUFtby8GDB0lOTjblamtrOXToEMnJyQQCgSbL19XV8d5772Gz2Zg0aRIfffQRGzZs\nIC0tjWuuuQa3231MO1vLr1mzhsjISI4cOULfvn3NgzoACgoK2L17N+np6U3az1q+cT2NWe0h7Wf1\nIas/Hzx4kJUrV1JSUkJpaSkOh4Pvfve7xMfHExERQUxMDH/9619JSEigsLCQoqIi4uPj6dGjB/37\n9+dvf/sb69evJy0tjQsuuIARI0aYwc7f//53NmzYAEBycjIOh4OwsDB8Ph833ngj5eXlfPjhh9TU\n1ODxeNi7dy9HjhwhKiqKs846i8rKSrZu3YrD4aBnz56kpaURGxvL+++/z4EDB0hPT2fIkCEMGTKE\nAwcOEAgECA8PJy4ujsrKSioqKoiIiGDbtm3s27ePmJgYevXqxYABA0hJSWHTpk1UVFRQVVVFaWkp\nsbGx9OzZk7CwMGJiYigqKiImJoadO3ea44Z1sM3Pzyc9PZ3Y2Fg+//xztm7dSnx8PGlpaQwbNoxn\nn32W5ORkbDYb4eHhnHfeeaSmprJhwwYKCwv59NNPuf766xk2bBh+v5+DBw/yl7/8xRx/wsLCGDhw\nIHl5eYSFhbF582a2b99ORkYGAwcOpLa2FqfTyddff014eDgHDx7Ebrdjs9lISkoiKiqK9evXEwgE\n6N+/P3V1dUydOhWbzcaCBQu4+uqrOXDgAN/61rdwOBwsXbqU2NhYtm7dSv/+/XG5XOzfv5+Ghgbi\n4uKIiIggNDSU8PBwtm7dysiRI0lKSqKyshKbzcaQIUMoLy9n1apVDBgwgPfee4+UlBR69+5Njx49\nyM/PZ+/evYSFhdG7d2/27NlDfHw8/fv3x+fzUVFRwZ49ewgNDeWCCy6goqKCHTt2sH//fqqrq0lI\nSCAyMpIxY8ZQVVXF8uXLOf/88485/naEdXzJz8/nrbfeorKykqioKDZv3kxpaSkAoaGhJCQkMGHC\nBCZMmBA0g+vuxOfzsXz5cj7//HNKSkqAo+fjrKws/vGPf/DMM88cU3b16tXs378fgMzMTGJiYqis\nrCQ9PZ1rrrmGWbNm8fTTT5vlNmzYQHFxMUOGDCEpKYm//OUvZGZmUlhYyJo1a7j33nv54x//yI4d\nO8jMzOSyyy5j7dq1uFwuKioqSE9PZ+LEiebcabH6RlxcHFOmTOGll15ix44dpKam0rt3b7766iuz\nThEREfh8PgYNGsRVV13Fb37zG3bv3k1mZiYDBw5k3bp11NTUmPPkuHHjiI6OZsuWLZSVlTFy5Egm\nTpzI888/z6ZNmwgJCSEtLY2MjAwmTpxIjx49eO211xg0aJBZ17/85S+EhoZSVFREUVERw4YNY/z4\n8fzhD3+goqKCuro6ysvLaWhowOVy4fP5qKurIzQ0FJvNxqhRo7Db7Xz55Zdcc801jBs37phxwKpV\nq/jss8+IiYmhvr6exMTEJm0RERFBXV0dDQ0NAISHhxMaGsru3bu56qqrqK2t5aOPPqKyshK32011\ndTXDhg1j1KhRfPnllwQCgRaTs127dtGnTx8OHz7Mzp07iYuLIy0tjZiYmCZjndLSUoqKisxYp/GY\nYu3atWRlZZn3Dh48yP79+0lPTychIYGDBw8SFRWFz+cjJyeHBQsWMG3aNKKjo4mPj+faa69l586d\nfPHFF/Ts2ZPdu3fT0NBAjx49mDhxIiNGjODzzz/ns88+IyIigr179+J0OikpKSEyMpLExEQqKysp\nKiqiuroah8OBw+Ew+8CECRNYsGCBWedNmzYxePBgNm/eTP/+/Tl8+DDjxo0jMzOT9evXs2vXLtP/\nNmzYwP79+7Hb7fTs2ZOSkhKqqqrIzMxk5MiRREdHM2jQIN555x0OHjzI4MGDiY6O5m9/+xuBQACb\nzUZaWhp9+vRh8+bNx+yfEyZMwOfzNdsfmhsX7tu3jyVLllBSUsK5557LtGnT8Hg8lJeX8+STT/Lk\nk0/y8ssvm/0iMzOT5ORkPv/8c3bt2kVZWRkhISEkJCSQkpJCVFQUl156KR6Ph0OHDjFnzhxCQkIY\nMGAAYWFhbNu2DYC0tDT69+9Peno6eXl5AKSnp3PgwAEOHjxIaGgoeXl55uLDwYMHqaqqOubz1NRU\nUlJSSE5OJjk5mTfeeIN9+/Zhs9kICwujtraW6OhokpKSGDBgAF988QXbt2+nT58+jBo1iqKiItLT\n04mKiqKoqIiQkBA8Hg8ul8u0a0xMTJM+vnHjRvr27dvkotFHH33EhRdeaH7+Zh8+Hmufqa6uJi8v\nj6SkJPx+PyEhRyfBNl6+cdldu3aRnJyM0+mkuLgYn89HYmIiMTEx1NbWsnPnTnr16mX2r7CwMOx2\nO1VVVdjtdg4ePIjNZjN97ciRI+bCmM1mM/W43W5CQkKw2+2MHz+ejRs3kpGRwYUXXkivXr34+9//\nzqFDhxgzZgzV1dV89dVXpKen884779CvXz+TU8XExDQZD1x22WXHbZfj6ZKktbCwkAULFlBQUIDL\n5aKsrAyv1wscHXj6fD58Ph9+vx/ANJp1oO3duzeHDx+mtrbWfO52u6mtrTXLOBwOBgwYYAauDQ0N\n5qAZFRVlkoD6+npTh7UsHH3ClZUsWAcMOHoFITo62uyw1gnaOklYA6hvCgkJYciQIVRVVbFr1y4i\nIiKoqqoiKirKHJzh6BMeXS4XcXFxVFdXU1NTY9YTMDtj45hCQkLw+XykpaWRl5eH3+8nPT2dGTNm\nsGTJEoqKiqitrW2yvo3XOTU1lSuuuIJ///vfbNmyxewwVpJhDUgCgYD5XqutMjIyqKqqwmazEQgE\n6NevHzExMURERNCzZ0/WrFnDxIkTyczM5KuvvsJut7N+/Xr279+Px+PhrLPOYujQoezdu5fS0lL6\n9u1rLkAUFhZSXl5OZGQk7733nhmY7927l8svvxy3282uXbvMYKG8vJx33nmHoqIiEhIS6NOnD4MH\nDyYvL4///Oc/3HzzzXi9XtauXctHH31EbW0tCQkJuN1uc6A655xzzNXlDz74ADj69w179epl4srP\nz+ezzz4ziVxJSQn9+/cnMzOTESNGsHfvXvbt28fVV1/NQw89RGRkJNHR0YwaNcocDJYvX86ePXvI\nysqipKSEhIQEVq5cSVpaGgUFBdTU1FBdXW2uWIWEhBAeHm4u8gCmDzXeni6Xi9DQUMrKynA6nfj9\nfgKBAH6/3yQwNpuNTZs2mW1ot9sZNGgQmzdvNgdMp9MJHB2Yer1enE4nXq8Xm82Gw+HA6/Xicrmo\nq6szfba6utr0A6uctd/5fD5cLhdut5vy8vIm+4bH48Hv91NdXW3es5YBzL7duM82/p7k5GRGjRrF\nu+++S319PSEhIQQCAex2u1n3QCCAy+XC6/USCASIiYkxJ33AJJTl5eXU1NQQFxdHSUkJdrvdHJsa\nHwMA4uPjKSkpIRAImO+Mjo42ywHExsZSVFRkylj7oNW+VjzWtrLWufF6Wvui1R8cDgdOp5OGhgYT\nW2JiIjU1NaZ/NG4fu91uTh5W/FZbuN1uMzAOBAJNTlyNTw0ej4eGhgbq6uqatJm17f1+P6Ghofj9\nfhoaGvD7/YSHh5ORkUFcXBylpaUUFBRQVVWF2+0mJSXF7Mtut5v+/fuzefNmKisrSU1N5fLLL6eh\noYGsrCxef/11/vWvf5l+FxUVRUVFhTnupaSkcOTIEQKBAJGRkcTGxpKYmMi9997L73//e2699Vbk\nxCxatIiIiAhWrFhhzgMNDQ1mP2p8HICj5yOHw0Hfvn3xeDx8+umnQNP+Z/Vvr9dr9oHzzjuP//zn\nP0RGRlJeXo7NZjNlre0YFhbG0KFD+eijj8x+0qNHDxITE4mLi+POO+8Ejp4nXn31VdavX8+gQYPY\nsWMHUVFRZGRksGnTJurq6kyCOmHCBI4cOcI///lPYmJiCAQCVFRUUF9fj9/vJzY2lry8PM4++2y2\nbdvGZZddxgcffIDX68Xn8zW5QGT15VGjRvH+++/j9/vp06cP+/bto2/fvmzatInIyEiioqI4cuQI\ndXV1/OhHP2Lp0qX4/X6mTp3Kyy+/TF1dHeeccw4HDx6kuLiYG25rV1Q9AAAgAElEQVS4gcOHD5Ob\nm0taWhq/+tWvOHToEE8//TQXX3wxq1atYsuWLeac179/f6Kioli9ejV2u50f/ehHPP/888TGxvKt\nb32L9957j/DwcEpLS6mvr6ehoYFevXrRu3dvqqurWbt2rdmePp+PQCBAaGioOfaHhoYSEhLC448/\nzkMPPcTAgQPJzs7m2WefBY4eq77//e/z2muvmaQ8LCyM+vp6kwRUVFQQHR1NdnY2r7zyiqnTOqc5\nnU4uv/xy3nzzTTweD4FAgPr6eurq6nC73TidTioqKsxxz9r3o6KiTF3WRbrw8HBKSkoYOnQoRUVF\npKSk8Pnnn5OamsrQoUNZuXIlDQ0N/OAHP+DXv/41oaGhwNFjrNVPPR4PI0aMYO3atfTq1Qun08kn\nn3xixj5We1n7RENDA5mZmbjdbqqqqjh48CAul4sRI0awf/9+amtriYqKYsyYMdTW1vLBBx/g9/uJ\njIyktLTUjA+3bt1q2t/j8VBTU0NxcTEOh8MkY36/nwcffJD4+HgAjhw5wuuvv055eTkxMTH07t2b\n9evXExYWBsD06dP57LPP+Oyzz8y+HBISYsYITqcTn89HaGgojz32GAsXLiQQCDB37lymT59OfX09\nERERBAIBIiIiSElJYc+ePfTt25f09HQ+//xzzj33XJYvX86FF17ID37wA26//XYqKysZM2YMGzZs\noLq6mp49e5Kfn2+2XyAQ4KyzzuKrr74iIiKCiy66iD//+c/Y7XbsdjuDBw8GYM+ePURGRjJq1Cjz\neVpaGhUVFeZmTmVlJREREZSUlODz+fB4PJSWlvL973+fqKgonn32Wfr27cvOnTsJDQ3F6/Vy7rnn\n8uWXX+LxeMz5xBrrpKenU1xcTEVFBaGhoWRlZTFt2jQeeOABSkpKCA0N5aabbsJut/Pyyy8zfPhw\nRo8eTSAQ4Le//a1pU7vdTkJCAh6Pp9l95tVXXwWgpqaG9PR09u3bZ47F1rjI6XRy44038uqrrxIf\nH8/XX39tyoSEhBAREWHGTta4xu/3Y7fbiYqKwuv1UllZSVxcnOlLiYmJFBQU4PF4GDlyJNu3b6e4\nuJhvfetbZGZm8vLLL3PBBRdw2223cdttt5lYKisraWhoID09nUAgQHl5OdXV1djtdtOuiYmJHDhw\nADh6ITkqKgq/309cXBxDhw4F4Nprr233OapLktaHH36Y0tJSnn32WWbNmoXH4yEvL8+c0PLz87Hb\n7URERFBZWWl2KOtgUlpaSmJiohkcut1uysrKzA5tt9upr683A2trJ0lMTKShoYGioiJ69+7NoUOH\nqKurw+Fw4PP5SE5OJj8/n+nTp/PHP/4Rp9Np7ur06dOHnTt3msFtfn4+NpvNTOEJCwvDZrOZQXxN\nTQ0Oh8PsgHV1deZuk3W3tnGyFxUVRW1tLTabzSSY/fv3Z9u2bdjtdhwOhxm4W4mr2+2mpqbGnPCt\nga6101pXVb7zne/w8ccfm8FreXm5WQc4OsDw+XxER0eTkJDAnj17cDqd1NTUEBERgdfrxe/3k5yc\nzKFDh5oMhhsaGrDZbPTp04fy8nKOHDlyzOAewOl0moFzSEgIoaGhREZG4nA4zFUf64QTEhJCVVWV\nSaoaX0ywEpHGybN1wLeSLut7Gyc7cDTBPnLkiBmgWNvH6XSaCwF+v5+0tDTcbje7d+/G5/PhcDjM\nhZHY2FhKS0tNv4yOjjYHTyvRCg0Npba21mwPK8mw2+3NJhWAucoXCARM0hwVFUV9fT3R0dE4nU4O\nHTpEbGws5eXlZnBh3cGz+m7jbe1yubDZbFxwwQUm6bfaw2638/DDD/Piiy9SUFBAQ0ODmU5VWVlJ\nbGwstbW1eL1e4uPjyc/PZ/LkyWYAN3z4cL744gsiIyOpra017eT3++nRoweBQIADBw4wZMgQNm3a\nRGhoqDmpZGZmcuDAAdOnrD5h7e91dXUmqUtKSqKgoIDMzEz27NmD3+8nKiqK8vJyhgwZwpdffmnu\n/v73v/81AxCbzWb2QafTidvtNtvJOkb06NGDQ4cONUm+U1JS2L9/Py6Xi+joaI4cOUJqaiqHDh0i\nMTERl8vFwYMHeeyxx/jZz36G3W4nMTGRsrIyevfuzZYtW3A6ndhsNjNos06oVkJolbcSx5qaGtxu\nN6GhoZSWljJ16lTeeust83l9fT0pKSm4XC4OHTpkBv/WVVCrXivx9Xg8FBcX069fP3bs2GGOq9YJ\n2bqAUFNTY4491h0ll8tltnuvXr3Ys2ePucJfVlZGZWWl2X+tAdCiRYu46667iI+Pp6qqyiSt1gkX\naJKwWH3VSoCt9UxOTqaiooLKykoTb0pKCjU1NVRVVZGcnGyuzFvJf0ZGBvv27ePiiy/mv//9L+np\n6WzdupXo6GieeeYZZs2axVNPPdWh89WZ5J577uHpp5/mD3/4A9XV1dx444388pe/5Fe/+hXXX389\n0dHRDBgwgEsuuYQnnniCiIgIHA4HSUlJjBw5ktdee41Ro0axbds2XC6X6Z9FRUXmIpZ1voX/f2xP\nSkoyx+Hy8nIWLVpk6q+srKSwsJCnnnqKRx99lNTUVDZv3szQoUM5++yzWb16tdn/e/bsycaNG3E4\nHOZCbHl5OU6nk7vuuovFixebY7g1i6u2tpaXXnqJhx9+mP3795tE8f777zfnJTh6t9/v9xMREWEu\nDi9cuJDU1FTuuOMOSktLzcUq6wK7lWxYSffkyZPZvHkzeXl5vPLKK0ybNo1AIMBrr71GeXk5t956\nK6+//jp2u53rrruOzMxM5s+fD8DNN9/M5MmTycjI4Pnnnyc7O5vVq1eTkJDAiBEj+NOf/oTD4cDl\ncpmxxqBBg1izZg0//elPycnJ4ZJLLmHFihXU19eTmZnJrFmzePDBBykoKOC73/2uOe/Mnz+f2tpa\nbrnlFu68807cbrdJjC644AL+9a9/YbPZGDhwIDt27MDlclFVVUVoaCiZmZkmOfvwww/NhcsJEyaw\nbNkyXC4X//d//8fPfvYzXC4XLpeLAQMGsGPHDsrLyxk6dCjx8fH8+9//Jj09nfvvv98cXxwOB2Vl\nZURFRZGYmMjevXupqanhO9/5Dtu2bWPevHnMmDEDn89HTU0No0ePZubMmdx///3ExcWxfft2Ghoa\nSElJYf78+dx4440kJyfj9Xo5//zzefvtt/H7/cTExPB///d/vPXWW/z3v//l2muv5e2336a6uprn\nnnuOVatW8eabb9LQ0MDrr7/Oj3/8Y2praznnnHO48MIL+cUvfsHo0aMZOnQoL730El6vl/DwcO6/\n/34GDRrE9ddfz6uvvsp9991HSEgIxcXFjBs3jg8++ICMjAzq6+vNmLegoICXXnqJ++67z5wfExMT\nOe+888xFifr6ejZv3kxdXR3jx49n7dq1lJWVkZmZydy5c7nvvvvIz8/nxhtvZNmyZWZsl5qaai4M\nWmNUq783Hl8uXLiQRx55xFw4nTJlCuvWrSMvL49AINDkYqa1XEhICK+//jrXX3+9SXLmzZvHAw88\nwIEDB/jd737Hz372M4qKikhKSmLhwoVMmzaN5ORkGhoaGDRoECtWrCAQCHDzzTczfvx4br31VpKT\nk7nppptYtGgRNTU15obDr3/9a37605+a2Vy1tbWEh4czd+5cpk2bRnx8PG63G6/XS1lZGTU1NSQn\nJ5tZBXFxcfziF7/g4YcfNvt3bGwshYWF5qKVtU9bF2mtZNHtdnPeeedht9tZsWIFGRkZREZGUlBQ\ngNfrZcyYMcfdZxITEzl06BCXX365uanjcrno27cv27dvN8dGp9NJz549KS0tpVevXuTl5VFWVsbw\n4cOZOnUqd911FwkJCYSEhJgbaA0NDfTt25fS0lIKCwu57bbb2LJlC6tWrSIQCHD33Xfz6quvEhkZ\nic1m46mnnmLq1KmkpKSwaNEiHnzwQQ4dOsSTTz7JokWLzAyEgoICXnzxRebMmWNmajmdTi666CL+\n+te/AjBlyhTsdjtXXXUVs2bNMseyjuiSBzFVVFTg8XgICQmhrq7OTPWyBu1W0mFdQbOSqpCQECIj\nIwGIjIw0V2vi4uIASE1NJRAIkJycTHR0NABPPPGESR7y8/OpqanB6XSyf/9+cyXEOjFZA6zx48eb\nEywcTb6eeOIJnE5nk7tW6enp5i6DlcQEAgGSkpJMjH6/n6SkJOLi4sxg2bojY00FsNlsxMXFmSvJ\n1t2dsrIy0xbW+1aiaLfbzfSA5ORkM0jMyMjA6XRy6623EggE8Hq95s6WzWYjKirK3Emz2+1kZmaS\nlJRkrjjv37/fJPhwdIBtxWi3281ANDMzk0WLFpn2aZywPv300+bKiyU0NJSqqioCgQA+n4+wsDB+\n+ctfcvDgQVJTUwkJCTEXHazBwfDhw02cdrudmJgYEhMTmySsbrcbt9vNxo0biY6OJiUlhejoaJPY\nR0ZGmp3RWjdr4Gzdwa+rqzPtFwgEOHjwIF9//TU+n8/0vUAgQGVlJfv27TM7bUREBGVlZWb7WAMT\nKzG0kt2EhAQefPBBqqurCQkJISoqyqyDNbXS5/OZpODKK68EMNOgrClK1kDEusLamPX51q1bzT4T\nGRlJfX09W7ZsMVfXEhISgKODxQULFuBwOOjRowcAVVVVJnGNjY1tcpAOBAJMmzbNfJ91srKuojW+\n+27FC3D77bfjcDiIjo4+5qRolYWjV/jdbre5CGGVs05I1r5js9lwu90EAgF+8pOf4HA4qK6uZu/e\nvaae6OhoYmJizL5mJWhWfdb+biVjDofDnMysfh8bG2vu5EyfPp2QkBBKSkrMyTkiIsLsD9bUviuu\nuMIMWq1+ds8995jt0biPWQNNa+aD3+83/ebqq68mNTUVn89njklFRUXmgoj1HXV1dSQlJZmpiVY/\ntQatjz/+OE6nk6SkJHOcspb1eDwkJycDmBki1gUo61jYePtbJ01rEB4TE0NCQgJer5c9e/bgcDio\nqqoyFzAWLVpk7lpYd9qsY0mPHj3MFMjo6Gjq6+vNnXmrDaw7PHl5edTX1zeZlujxeEw56xg5efJk\nwsLCmDVrFjabjdLSUioqKo7ZT+T4PB6PmZUyefJknn76acrLy1m5ciU2m43Kykruvfdezj77bDIy\nMigrK8PtdjN79mw+/PBDxo4dS3p6OhUVFU3OOyEhITz33HOkpqaydOlS0tPT+dOf/sR9991nLvaW\nl5eb88Du3btJSEigqKiI6Ohok4xFRkZy7733EggEqKqq4t1332X//v14vV7Tp6wLRr169SIsLIzE\nxESqqqoYMmQIHo+Huro6oqOj+c53vgMcPWbs2bPnmBld1gWj+vp6amtriYiIICoqikcffZT4+HgC\ngQC//OUvAZg5c6ZZ18cff5z09HTsdjuvvfYaS5cuNdOma2pqKCgoaDKDxufz8dRTT7FkyRJsNhuP\nPfYYb7zxBuHh4ezfv5+5c+fyi1/8goaGBkpLS1m4cCFOp5N3332X4uJiCgsLefPNN4Gjx5HFixeb\nX2H69NNPaWhoMO25cuVKwsPD+fWvf82hQ4d47LHHCA8Px+/3c+ONNzJixAiqq6u5/fbbuffeewFY\nunQpS5cu5fDhwyQkJFBdXW2OS9/73vdITk4mISEBu91Or169ePTRR3n99dfNQN8az1jHervdzlln\nnUViYiI2m43Q0FBmzZplzmt33nknM2bMMMmBdYyz7rhaU5rvv/9+hgwZgtfrZdOmTRw+fJj77ruP\nuro6brnlFpKTkxkxYoTZlmPHjjXH35KSEurr682FbZfLRc+ePenXrx/JycnU1tbyxBNPsHfvXuLi\n4rjkkku4+eabCQ0N5YEHHiAQCBAfH4/f7+eFF17A5/NRW1vLFVdcYfrgrl27yM7OJiUlhZiYGFwu\nFy+++CK33XYbgUCAv/3tb2aaaUJCgjm31NTUkJGRQUlJiTnfrVu3jtDQUDNuvOeee3jnnXd45JFH\nWLVqFV999ZWZafjpp59SUlLS5Hd68/Pzzd9xjo6ONjc27r77bj744AMiIiKYP3++GYu53W7mzJlj\nZv2lpqYSGxtrZjocOHCAAwcOEB4ezjPPPENaWhpZWVlERkbyu9/9zsyUsGYZWdvduhnhcDjMLCXr\nQilg7vC73W6++93vkpGRgcvl4pNPPuHHP/6x+Xz48OFERkbSs2dPM+X9rrvuwuFwUFpais/nY9iw\nYRQXF5vtbI0BQkNDSUlJITU1ldtvvx2fz8eRI0fYtWsXgLmQ7fF4uPXWWwkLCyM0NJRLL70UODo2\nSElJYd68ecycOdPkF+vXrzcXcnv37m1mPzU0NLS4zzgcDnr16mWSuWnTpuH3+82+973vfY8ePXqY\nfKd37948+uij2O12CgsLCQQCxMbG8vXXX5v9xJrBkJCQQHJyMunp6Vx66aVm/L1582buvvtuMjMz\nsdvt/PnPf6aoqIiDBw8SFxdHXl6e2fcAHnnkEeDoTR8rh3jwwQcJBAJ88cUXZmaAtY2HDh1qbrRd\ndtllXHvttWZs0hnsP//5z3/eKTW1wbZt29i6dSv79u2joqKCw4cPU1FRQXFxsZnKY00XtFbWGvBZ\nJ0JrmovX6zVXFKypvNb0u+rqalatWmUGRSEhIWYABDSp20q8AD788EPq6urM76UGAgEuu+wy/vrX\nv5rBmZXEWHcrAHPHxrqjY+2M1dXV5o6vNXCvqqoydQcCAcrKyvD5fCZhA5oMuiIiIpoM6KyksKqq\nit/97ne89dZbZh2rq6upr683dyWsk6Tf7zffY13lKSkpMd9j3emsqamhrq4Or9dLRUWFma5tDUit\nAXh4eDgbN27Ebrdzzz338Omnn2Kz2fjBD37A22+/TWJiojkQ2+12amtrSUtLo7q6Gr/fzwcffEB9\nfT2xsbFUVFSYAa01bcVut5uBTEhICElJSdjtdqqrq0lNTTVTOqyYratLv/nNb3j//ffNFUlrMGxN\n/7CShvLycnPHxmazERsbS319vRmY2+12cycxMzPTTEu07jxbiUBISAhPPPEE69atA2gyJTcQCJCY\nmMg111zDW2+9hcPhMMmkz+czU6AaT4378MMPzfa32t3q2xUVFebuZONEyNpXrLa1pk5Zd2Vra2sp\nKyszd5StqSMFBQVNLrhY042tA7+VlAH885//NFeArWTd6q+N/5WXl5t98sMPPyQ6OpqioiKTFJWW\nlpqryNY6Nr7wY7Whz+cz6239CkEgEDADDWs/bTy12LoCarWFlQhbfdeqw1qvO++8k/DwcHbs2IHP\n56OwsNDUt2rVKnw+H9u2bTPLWXfK33//fZO0WhdiKioqKCwspKGhwcRoncjq6upwuVyMGTOGrVu3\nUlVVxZEjR8zFFav9A4EAffr0YcuWLdxyyy2sWLECwLSBdRfTuhMZFxdHYWEhlZWVZpA4bNgwDhw4\nwIABA/j000+pqamhvr4eu93OhRdeyPbt2826+P1+zj77bKqqqsyxqfF2sr6ntLTUbF/r1yusY8Sq\nVavw+/1mZovP52P69Om8/fbbZl+ypsJZcdbU1OD3+0lMTDTH3cZtERcXZ47v1kBg+/btTdYTMMfE\nd999l5CQEN555x0CgQBXX301L730EtXV1WawIa0bOnQo7777Li+88ALr16+nurqa0tJS1qxZYy4Q\nVlZW0qNHDwoLC9m1axeVlZV88sknFBQUUFRUhOv/sffe4VFXef/3a9J7L5OekGJIQgsIIXQBpQji\nKlWqgrAivSogWHCDKIqAgqxIWUFFpQkCSi8BJPSQEAjpyWQySSZ10vP7g+d8NlH33nLv/dvreZ77\nXBcX55pMZr75lnM+5V2srJg3bx4pKSlkZWVJsKUKELm5uTQ0NNCzZ0/8/f2pqqrCZDKh0+moqamh\npqaGixcvSpFZoRV++uknKioquHbtGjY2NsyZM4eJEydy7tw5li5dSnh4OKdPn6aqqgpXV1cJ3hWK\n4vDhw6JZUVNTQ3JyMk5OTmg0Gs6fP09JSQlWVlbY2tpy/PhxysrKpPjR2NjI9OnTadOmDQkJCZSV\nlTFkyBBSUlI4fPgwx48f56mnnsLX11fWhqqqKiIjI/H09MTBwYHLly9jY2NDXl4ejY2NHDp0iPr6\neuzt7QU6X1dXR3l5OXl5edjb20tArLpHXbp0oaCggJdffpmioiJiYmJYsmQJly9fxt3dHY1Gw7PP\nPouDgwNJSUloNBp69erFzz//TG1trXS8b926RUFBgcBEra2tOX78OAaDQSCWKtl8/fXXCQ8PJyMj\ng3Xr1vH444/j4OAgiKzy8nKys7MFTn7+/HlZz7VaLSUlJXIOFNWobdu2lJaW4uTkRF5eHkeOHJHv\nvX79OmVlZeh0OgoLC0lKSqK0tBRbW1tBclhaWtKjRw/MzMxIT0/H1dWVsrIy1q1bR1xcHN988w2F\nhYXo9XouXbpEdnY2N2/eFP0Oo9HImTNnBNlRXV3NlStXBF7p5+dHSUmJxKRHjhyhvr6e+fPnY2lp\nyYkTJyQhU0F6dXU1ly9f5urVq9jZ2VFRUcGJEycoKytDq9VSXFwsyTI8gr02NDRgMBiYNGkSf/jD\nHzh58iRFRUU4OztTXV0t+8nFixcpKysjPDwce3t79u/fL+tkdXU1nTp1YvHixZhMJlasWMHRo0dl\nr/D09BSe88CBAzl48CC1tbVShL569So9evTA29ubpKQkidsyMjIwGo10796d2NhYzM3NOXfuHF5e\nXqSkpODs7Iy5uTmXL1+mqKgIS0tLoqKipLNcVVXF4cOHhbtqNBo5cuQIWq2W0tJSfvrpJ6E0mUwm\nTpw4QVVVFWVlZVRUVEiX1cbGhsDAQNG4KCsrk5+pWFU9K+Xl5RKTaDQa9Ho9+/bto76+HpPJJHua\nitvPnDlDfHy8QMvd3d3Jz8+X2DI3N5fIyEi0Wi09e/YkMzOTwsJCGhoaGDduHAEBAcK1VblBZWUl\n06dP56mnnuLcuXPY2NiwfPny331mmpub8fHx4eDBg5hMJo4cOUJQUJCgpYqLi8nNzcVkMtHY2Ii/\nvz/nz5+nqqoKnU5HmzZtaG5uRqfTcffuXQoLC3F3d6empoaQkBCJYZubm8nIyJCk08vLSxLV2tpa\noUpUVVXx008/MWnSJGJjY/H396empoZffvmFbt26ceHCBaZNm0ZISAhNTU3s3LmT0tJSxowZw927\nd9Fqtezbtw9nZ2caGho4f/48mZmZ7Nu3j+HDhxMUFPTf3qP+I/DghoYGNm/eTEZGhizUgFRBFJfJ\nxcVFkoKrV6/i6OiInZ2dQImMRiMPHjygsbFRKoQXLlyQVn1GRgYBAQHcunWL9u3bU1dXx6BBgzAY\nDHz77beEhoZSXFyMg4OD8Ai1Wq1A8dQimp2dzYIFC8jOzub69esiImBubk5mZiYeHh4UFRXxzDPP\nyEZdWFjIgAED+PHHH6mpqWklmFJXV0dMTAw///yzQNwMBoMkokOGDOH+/fukpKTIxhcbG0t9fT0p\nKSmkpaXRsWNHamtr0ev1zJ49my1btuDk5MTly5dZsWIFJSUl7Nmzh6eeegorKyt++uknBg8ezJ07\nd9DpdBQXFwOPqkYqWPT19SUvL08qr4qndPjwYZycnCRR6d+/PykpKfj5+XHz5s3f8HgVTLZ79+5y\n3crKygTq1ZIT0hJqrLhS6pZUHT7VZW/ZhQeEd6iKBfAouR86dChHjx6V4kFcXByXLl1qxbNUw93d\nXc6FCtBVkKRea2xslKplQ0MDtbW1tGvXTgQ4mpub6dmzpwQJZmZmVFRU/Oa71FCdItVZVxwUtSgp\n7qyPjw/ffvstsbGxZGVl0dzcTJ8+ffDw8ECn02EwGOjSpQvffPMNeXl5WFpaYm1tTVhYmBSBsrOz\nRYgpKiqKxsZGPv/8c2bOnImnpydbt26VQC4oKIjBgwcTEhKC0Whk9erVtGvXjpKSEpqbmwkMDOTG\njRt4enpy//59nJ2d6du3LwMGDMBoNLJr1y66du3KgwcPqK+vx8/Pj7CwMK5evcqlS5eoqanh8ccf\np7q6mvz8fOzs7LC3tyctLU14iEFBQXTv3p2jR4+Sm5tLcXExfn5+UtgKDg6mtraWgoICoqKiaNu2\nLT/99BMGg0E6jpMmTcLCwoK7d+/y008/0bVrV65du0ZgYCA6nY6Kigo6duyIl5cXffr0QaPRcPjw\nYRERKCgoYPjw4Tg6OuLv709tbS03b97k6tWrVFZWYmdnxzPPPMOdO3ewsrLCw8ODrKwsQT7Y2tpi\nY2PD7du35XkPCQnBx8dHgpcTJ05gZWWFVqulqqoKPz8/0tPTSU9PZ+rUqQIFv3//PhUVFdja2lJe\nXs61a9doaGggNDSUxsZGgeXb2tpy4MAB4uLiaGhooLS0lBEjRlBbW4urqytff/01f/jDH/D19ZVA\nTK/X88svvwhlQKlxqu5SZWUlHTt2RK/X8/DhQxwcHOjfv788N7t27SIiIgJnZ2e+/vpr0SOor68n\nLCyM9PR0KfS05CGrYWtri729vVy7ljSAmJgYKioqyM/PR6PREBQUJM+hgjMNHTqUXbt2odVqadeu\nHTExMaKRoNQOt23b1ko86H/HPz5UscrR0VESM6PRiMlkkr1qwYIFtGvXjvz8fI4ePcqLL77Y6jN+\n+OEHfvrpJ+FCubm50blzZ5577rnfqLveunULnU5Hz549aWxsFFRVbm4uly9fprm5matXrzJx4kQO\nHz7MlClTMBgMfPnll4wdO5aoqCjgkRijyWRi/fr1VFdX4+Liwty5cwkPDxeo+JIlS+R7DQYD165d\nY9u2bezevVuKnxkZGej1ejp06CBoFPhrB9bOzo6ysjJu3LjRSvixubmZY8eOkZKSwsyZMwUtUllZ\nSWFhIVqtltraWkGIqVFYWEhBQYF0B389rl69ypYtWwSBsXDhQsLDwykvL+fgwYPcv3+fuLg4Bg8e\nLMeRnJzMpk2bBPUwZ84cvL29yc7O5uzZs4wfPx4XFxcROnBEQ54AACAASURBVFPFT0dHR7Kzszlx\n4gSdOnUiMjKSc+fO0atXLxHzSU9PJzQ0lF9++YXPPvsMk8kkAkMNDQ24uroSGhpKu3bt0Ol0rXQD\nbty4gYeHB8899xwFBQVkZWVJUTQhIYGrV69y//597t69i6+vL4MHD+bw4cNkZ2cTHBxMRESEQKMn\nTJhAeXk5KSkpPPfcc3K+9Ho9paWlWFpa/kZUp6SkRAp+8KjT2fL6qA6oSoLj4+NbXYsTJ06wdetW\noqOjhZdrZ2fHtGnTcHFx4eDBg1y4cIFly5YJqhAgKSkJFxcXAgICgEdFt5Y/b3lsNTU10sRRNLiW\n6LUDBw4QHh7Ozz//LEKLavz444+i/tqnTx9KS0vJzs7G2tqaoqIigoKCSEhIkHtn/Pjx8ly0pFMo\nGho8KggrnReFlvm1eKoa1dXV1NfX4+DgIOiFM2fOoNFosLe3x83NjbCwMEk0jUYjHh4e3LhxAysr\nK9FGaTmqq6t/83P1/VVVVaSnp1NdXU1ERAQeHh6tjk01jQ4dOoSbmxuNjY24uLiI1kJQUBCurq4k\nJSVJgR0eaZwMGzas1XHs2bOHsrIyZsyYIa/dvXuX8vJyjh49SnZ2Nm+99ZYIEpmZmcln/PqZUetT\nc3MzkZGRGAwGMjMzgUf8VG9vb4KDg7lz5w7Z2dnCc3ZxcaFr164i4JSXl4e7uzvR0dEEBgby/fff\nEx0dzXPPPYe1tTXffvutJOC+vr6cPn1anj9XV1f5O8rLy+U7lACj4vc6OTnh5+cnHWOAvLw8Tp8+\nzbBhwygoKKC0tBR7e3uOHTtGVlYWTz75JO7u7nTs2PHfpub9H1cP/ntD8T+VIhc8OrFK7cvb2xsb\nGxuMRuPffID+laGUv3Q6nVw4f3//3xzX/9RQSdN/pT724MEDAMLCwsjNzf2nJKmhteJvRUWFBAn/\niOpZy5GWlgZAREQEt27dIjMzEysrK7p160ZKSooo4UZERGAwGDh58iQuLi7SpVFctqqqKvz9/UUg\nJyMjg6ioKElcg4KCuHLlClqtlhkzZqDT6QgMDKS+vl5gxseOHcNkMlFYWIiNjQ0RERHU1taSkpJC\nt27dRP30o48+QqfT4e7uLp3OuLg4evbsiYWFBa+//jr+/v64u7tTUFAgCbsSfBg1ahRarZZvv/2W\n4uJixo0bJwuxSuJTU1OFG21hYYGDgwMzZswQwaxPP/2UF154Aa1Wi16vlwrY3xrp6emSYPv5+eHn\n5/e7qtMtx+7duxk3bpzcry3vZ1V5NzMzEwhTy3v61/dBc3NzK7Ve9fe2hPv+O8Y/cu+3HEpV7/eG\nUgX/W+P31pK/9z1/73da2kf8eqhrqLj05ubmcv79/Pzks5UwmxItUj/7ewrdv75md+7cobq6Wng7\n8fHx6PV6zp49i7OzM46OjtTX11NaWoq/v3+rtcNoNJKTkyNBhoK2txy3bt0S6JI6F6WlpZSUlEig\nn5eXR35+vlS6HR0diYmJITg4GKPRyLfffiswX8VVfPHFF6VYef78eYEoNTQ0UFhYyIULF+Q+sbe3\np2fPnq3UCY1G4397D/jf0Xqo4u/NmzcJCQmRJEfdl+Xl5Wi1WlGR7Ny5M1lZWVJdv337tgTrLQsS\nlZWVhIeHA49sTMLDw3F2diYlJYWmpiYePHjAuXPnhMrh5eWFnZ0dhYWFeHl50bVrV0nUWg6FTHFy\ncuKXX34hICCgVfLZ8jhbjtu3b+Pi4iKKpvfv3xeI3j9yzL6+viKS5OjoyJ49exg3bhzw1/W45Twr\nKwtXV1ccHR25dOkSFy9epLKyEqPRSPv27SksLMTKyoq0tDTh10+aNEmKwu3bt5fEWI2rV68Kvabl\nebh79y75+fns27cPW1tbYmJiuHLliqBdZsyYwc2bN7lw4YIUaENCQqioqKBt27ZMmTLld4NP1fX6\nn7aZSUhIYOzYsQQFBZGVlcVnn31GcXExjo6OmEwmXn31VSIjI1m0aBHLli3jhx9+oE+fPuTn54uA\npro+v3ctWs7V/792VHjzzTeZN28eNTU1HD58mKtXr9KuXTtSUlIYMGAAw4YNIyEhgbCwMEE6TZgw\nQYS59u3bx9KlS7l79y4uLi74+vpy9OhRioqKiI6ORq/XU1RUhKOjoyRfKp6Jjo7G3Nycs2fPCk3L\n19eX9u3bS+JbU1MjSvhmZmbyc41GQ0VFBdOmTfvdfU6hbPbs2cOWLVuYPn068Gj9Vmtry3l2djaB\ngYGt5uXl5djZ2WFhYdFqbjQaZe8oKSkR0Si1T1hZWZGdnf2buY2NDdnZ2Xh5eXHhwgXZV1vusb83\nV/+3dOAwNzcnPz9fiqVqqLVLzdX4d+cUv3e+/9Fn5n/i+Tpw4AA+Pj5ERUVx+/Ztjhw5gpubG7m5\nueTk5GBpaUloaCgVFRXEx8eLeJIqLivkanZ2NpaWlvj5+fHjjz/S1NTEM888A8Brr70mQnvjx48n\nLi7uv33c/9GktaX0/c6dO6mrqyMiIkIqOUpBz9/fX3DmqspYVVUlGb+VlRVOTk4igFRbW4uTkxO1\ntbUsX74cnU7H5cuXOX/+vHTz7Ozs6NevHxqNhh9++KEVPBP+KpSjBG2U2ImXlxdeXl7cuXMHe3t7\nhg0bRlpaGj169OD06dOsWLECeLQpr127VsRjVHe4Xbt2HD58GGdnZ+Fgtm/fnsTERLKzswUD39z8\nV7VRJycnOnXqxAsvvMDixYtF7VNJ0iuBgaeffprExEQAgfs1NjaKVP6tW7doaGgQSJZaUFWX0tHR\nEXd3d+nEhISE8Nhjj1FZWUleXh4DBw6kpqaGrl27ysOdlZVFVlaWiEtMnDgRd3d3ecBbJkkuLi4S\nUCuRqP8qSfivRkuJ8JZBelFRkfAS1WgZ7D98+BAPD49/yJ7nv0reW1Yg/5lhMBiEI3Hr1i22b9+O\nyWQiODgYX19frl27JpCTjz/+mLfeeouIiAhOnjyJv78/KSkpUnm1s7OTIM5gMBAcHExwcDB3794l\nKiqKO3fukJ+fT9++fTl16hQ+Pj5i01JTUyNV76CgIB4+fCjcnvr6epydnamvr8fa2pr58+djMpn4\n9NNPaWhowM/PDx8fH65evSp80NraWjp27IhOpyM8PJxLly7R1NTExo0bWb16NcHBwWKhY29vL0qI\nFhYW5Ofny+adm5tLfX09Tk5OmEwmYmJiePbZZzl//jxHjhwRDpiVlRWPP/44ffv25YMPPuC1116j\ntraW4OBgtm/fzuTJk9m+fTspKSlSOZ4+fTq9evUiKyuLzp07c+zYMekqhoSEUFhYSGxsLFOmTEGn\n0/Hdd98BjzimmzdvFg6OCgLV8PPzo1evXlhZWUm3wMnJif79+/P000+zdOlSJk6cyHvvvSddGkD4\noy1VlRUqQa0/FhYW+Pj4oNfrhSM/c+ZMDh8+zIgRI3jnnXeEj5aUlER+fj5Go5EXXniB8+fP8/Dh\nQ/keJXylEAjK0qOmpoaYmBiKi4vJz88XiLVa8xQnVyFhxo4di6OjI4cOHeLBgweYm5vj6+srnNc/\n/elP2NjYsGnTJmbNmkVDQ4MEHi2fJ6PRyP3798nLy0On01FaWoqvry9arZYnnniiVUX30KFDInwC\nCJUgKiqKpKQk7O3t8fb2RqvVYmZmxq1bt3j77bf/r3o1/n99/PGPf+TTTz+V/y9evMif//xnbGxs\nxNYAEDi8l5eXwEtv377NF198IWumyWTC3d0dvV4vHPi6ujqsrKyEd63oEwqt0K5dO27fvk1YWBhx\ncXF8++23hIWFCVJE8SYdHBxwd3cXG5ArV66wfv16AgMDaWxsFM2KAwcOUFVVhbOzMw4ODtjb2xMe\nHs6+ffsE/aOQQIoW4+Hh8bvHbGZm1sqhQCUAgKx18GjfcHd3x2g00tDQgLOzsxRyFHfW09NTNC20\nWi3Tp09n/fr1eHl5sWzZMi5dusSBAwd4+umn2bJlC5aWljz++ON4e3vzzDPPYGNjwwsvvICNjQ0B\nAQEMGTKELl26sHPnTh48eEBmZia9e/fm3r17FBYWYmtrKxQcVXBVKvQq+QgJCREqiY2NjegLKKqS\nmv/e+bewsJAkqKmpiZUrVxIdHU379u3Zs2cPUVFRNDQ0kJ6ezqhRo8TqbfTo0Rw8eJCgoCA6duxI\ncnIyFy9e5IMPPuC7777j+++/Z9GiRZw7d46cnByys7Px9fXFxcWF1NRUiY+UyGF5ebkIJ6pERd2P\nLZsQVVVVBAQEkJ+fT7t27UhNTaVbt24kJiYycuRIfvzxR5555hkOHTpEdXU19vb2PP/88xw4cIDq\n6mq6devGqVOn6NChA127duWTTz4RJImyL4qKiqKsrEwSAIVwU1QOhfBSuhFKuE/R3gIDA6W75uzs\nTEFBAREREZKkKcSQej50Oh09evQQrqa5uTmurq5ER0e36vKqe3fRokVs3ry51XOv5jNnzmTjxo2U\nlpYSEhJCSUmJCBFmZWVhZ2cnIlktHSjUuVY2aSqptrKyEtX/lg4XymJOrReAFJ1axnkFBQX4+PgA\nj/ionTp14s6dOwKBDQkJITs7W+JhRS0BBCmnVJTNzMyIi4sjMzNTYuvc3FwsLCxaKQnX19fz6quv\n0tTUxKuvvkqvXr1oaGjg9u3bjB8/noyMDO7cucPs2bNZtWoVTU1NglrLy8uTeU5ODs7Ozjg5OUnc\nr9FoCAgI+I1dmBLJA8QZZM6cOcyZM4fr16/z4MED6urqCAoKksJiYWEh6enprbR7lEir0v/YuHEj\nS5YsQafTMXLkSLp3784f//hH/P39CQ4O5saNG1RVVTF79mw0Gg0bN27EwcGBvn37cujQoVaxRVlZ\nGXV1dcyfP58uXbqwaNEi3njjDWpra/nkk0+k+PzfGf+xpHX37t3cu3ePkJAQkpKSRHZePahmZmb4\n+/tTXFyMjY2NdJhaKrTW19dja2uLlZUVRqOxlQz5r0dL7iP8VdlWQUsjIiLIysqSAFav11NRUSEX\n2sfHR3gmKuFS39Pc3IytrS0mk4muXbvSu3dv/vKXv+Di4kJ6evrvQkTVCP5/FDrVItVyc1OfrxaZ\npqYmTCaTcARVdbWljc2vIXgth/LhrKurIy4ujrS0NIHPqM8wNzcnLCyMzMxM4ZuWl5e3sjmws7Pj\njTfeICQkhBdffFE4Zi1Vmi0tLUVYKDY2luvXr2Nvby9qgTqdToLdSZMmiXJcamqq8AtHjRpFhw4d\nOHr0KIcOHaJv376MHTuWtLQ0tmzZQm1traivKdEjxYFVAjtqQTU3N2fYsGEcOHAAOzs74eGamZnx\n3nvvCYd50KBBREVFsWvXLgkcBg4cSHh4ODt27GDw4MGMGDGCF198kR49erQyXE9ISGDp0qUkJCQA\nsHTpUpYuXSpVUnUfKqsEVb2+f/++wIXhr1Y2Pj4+8rsmkwkPDw/KysrkmphMJnx9fcVnT10bKysr\nxo0bR1FREXv37uWVV17hq6++oqqqCkdHRwwGA46OjtTW1jJo0CDhFsNf7aCUjL9KsFWAVVhYSHPz\nI/GzAQMGSFfg/fff58SJE3z77bf07NlToM3t2rWjvLyc2NhYscP44IMPOH36tARc6tw3NTURHBxM\nVFQUw4YNw8XFhcTERLZu3cqIESP47rvvhBuqlOqUsqxaF5ydnVup5ZaXl+Pm5oZGo6G+vp6AgADu\n3bsngUG3bt0YMmQIR48eJScnh4EDB3Lz5k2uXLlCQECA+Nfev39fIM8FBQV07dqVyspK7t69K0Wp\n3r17S2KuoKrx8fFs27YNCwsLBg8eLJ6rWq2WcePGsX79evR6vQgSmUwmnnjiCS5evMiCBQv485//\njMFgYPz48Vy7do3S0lIsLCxYunQpy5cvx8zMjLCwMC5dukRoaCi5ubmyHrZr104ExVRhSgXj/v7+\nzJkzh3nz5rFlyxZWr15NSUmJcLWV/VR2drYEo4pLpjZAPz8/MjMzhd7Qrl078eKrr6+nvLxcINme\nnp4UFBSwcOFCIiIiSEhIID09XUQrqqurKS0txczMTFTUPTw8aN++PampqRgMBp599ln2799PVFQU\n165dw8XFBa1Wy71793BwcBBF1JCQEOzt7bly5QpTp04V64T/HX9/qAKPQvG0HApWn5yczK5du1i0\naJEUBMeOHct7772Hs7OzcP379+/PV199JUr/SqynqKgIDw8PCgoKSEhIYMOGDeTl5eHj48Pbb7/N\nSy+9JMWz8PBw8U1v27YthYWFbN68mY8++ojr16+zbNky9u/fj62trWhkKBskg8HQSovhL3/5C99/\n/z1fffUV5ubmgmpRCseKY+/l5cW7777L1KlT8fHxQaPRUFRUhLu7Ozqd7nePeerUqcIlUzzchoYG\nPDw8yM7OxsrKSrznLS0tadOmDffu3ZMC+9atW1m8eDGZmZns3r2b6upqpk6dir+/P+vWrWPFihU8\nfPiQbdu28eKLL1JfX4+7uzv19fXExMRgMBi4f/8+8Mh3u7a2lrVr10q3TIlMLVq0iJ07d2IwGNi8\neTNz587FxsZG4hzlsb1y5UrWr19Penq6CEV6e3uTnJzMxIkT+f7774U7ruZDhw7l3r17VFdX079/\nf65cuUJVVRWjRo0iISGBd955h927d5OUlMRzzz3HDz/8QHV1NaGhoaKKbmlpKU4KKol/4YUX2Llz\npwT01tbWwr9XBdOvv/6a6dOnY2VlJV0zV1dX8vPzWbduHfPnz6dz585kZmZSU1PTynbFxcWFwsJC\nvL29cXNzIzU1lX79+om66siRIxk+fDivvPKKcGtramoYM2YMe/fu5b333mPdunUilvfSSy+xadMm\nevfuzcyZM1m8eLHw+L28vEhNTRWBpW7dunH69Gl27NiBRqNh4sSJcs+pQpBOp+Pzzz9nxYoV5Ofn\no9VqWb9+PcePH+fzzz8nKipKBBiVjVlkZKQkXj169ODy5cuYTCY8PT3FI/jatWuibdHSZUHF4YGB\ngZSUlEgSr+YKbq3U5lUh18XFBYPBwJtvvsmGDRtkvn79eoE8K+sjvV7PvHnz2Lt3L7m5uWi1WpYt\nW8asWbOEB63gxdXV1Xh6egrEXMFXlZiUWoMU9FnZXjU3N9O3b19efvllXnnlFSoqKhgyZAh3796l\nurqaLl26iHhcXl4eMTExdOrUiVWrVtGzZ0+GDx9Oc3MzK1euxMPDg86dO3Pu3Dkef/xxDh06xOrV\nqzly5AhJSUlotVp0Op1YNKlGgnIx6NixIzdv3hTer5qrhlhLF4CWopb/6DA3N2fFihWsXr1aRF/h\nkZDqw4cPGT58ODdv3uTBgweyh6uYfdeuXbz++uvk5+fz8ccf4+bmxujRowkICBAV8SlTptC5c2eu\nXr2KtbU1a9euZdasWbz55pu4ubkxa9Ys/Pz85Nm0srIiISGBzz//nJdeegl45BqzevXqf+rv+r3x\nH1EPBrh8+TIdOnSgqamJmJgYqai+9tprsukp8/qamhpRup01axbwV76jEhdSAibe3t4SmAECv1OQ\nHtWlUsp1LRXblArvokWLpKoSEBAgFg9AqwAZ/pr8qqD/ypUrbNy4EZ1Oh1arpUOHDmIL4ObmJgGU\ng4MDXl5eAoVVia+rq6tU0lTQrCwyKioqxC9LJbkt1V9VJxfgm2++kZtTdRs2bdokCn63b98WfzCl\nMKYUw1Qi0dzcTGhoKLa2tqLYp8jaS5YsYfTo0SLB3jJRVup0qqt2584dunTpgrm5OXFxcQJ3amho\noKCggHfeeYfKykq2bdvGmTNnKCwspLCwkK1btzJjxgzOnz8vC9gnn3zC1q1b6d27N2ZmZqK6XFNT\nI5X+mTNn0tDQQEZGBtXV1fj7+6PVatm/f7906ry8vNi4cSNr164lJCQENzc3evfuzS+//MKGDRuo\nrKxk8ODB9OzZk8OHD/PRRx9RXl7O119/zbRp0zCZTISHh5Oeni4VSRUgTJ8+XebqHnZwcBAhnejo\naEpLS/H29mb58uVi96GCOlWNd3V1FREhOzs7EZMqKiqSxEwZSzs5OWFpaUl0dDRlZWUcPnxY1PCU\nGI/y19JoNLz44os0NTVx8OBB4foqfqWZmRlffPEFFhYWRERESPFBKWh+/vnnwKMuek5ODhUVFfzy\nyy8MHDgQZ2dn7ty5w2OPPYZWq6VNmzakp6fTv3//VqrCffv2xczMDFdXVwIDA3FwcMDGxgadTsf1\n69dZsGABb7/9tiAnRowYgY+PD/PmzUOr1RIUFCRCQGZmZmzYsIG4uDhZiDt06MCcOXNwc3Nj06ZN\nbNy4UUQ2tm/fjq+vLyNGjCApKYm3335bVPAGDBhAbm4u8+bNw97entGjR7Ny5Ur8/PwwMzNj3bp1\nmJmZMW/ePCorK9mwYQNWVlbo9Xratm2Lq6srtbW1ODg4YG1tTVJSkqgHZmdni4BZVVUVYWFhooTs\n7OzM9u3bJbg0mUx8//33Un0dMmQIJSUlUrxS1g+rV69mzpw5eHl5kZGRQVNTE6NGjcLc3Fw2eaV0\nrNaxxsZGcnJy+OqrrwBEtVsVqVQnRXXVXV1dpSpfX18v3NIVK1bg6urKmjVrxKJgyZIlkqAoixoF\ny4qOjmb79u1s3boVg8GAh4cHkydPJiMjg2eeeUZUIAGxwzpz5owI16Smpornq9ogVdfrueeeo7m5\nmZycHBITExk7dizLli1jx44d//Ie9f/HkZqaysCBA6mtrWXo0KE8++yzYomk0Wik4DNt2jRycnIo\nKyujsLCQ48ePY2FhQWVlJX369KGsrIxjx47h6+uLg4MDdnZ2whVTmhGWlpYiFqI6HY6OjiKep+zt\ndDqd2EgZjUY2b95Mamqq+Hzn5eUxa9YsDAYDL7/8sjwjSrxIQV/XrFnDgQMHpKMSGxuLwWCgrq6O\nP/3pT1IssbOzw9HRUYJKKysrfHx8sLa2lmNWitpK0Vgd76ZNm0SJfPXq1bLfr1mzhs6dO8uzvmzZ\nMpycnKSbdOXKFVE3PXfunAThOp2OkydP4ufnR0NDA4mJieJ9+Ic//EGsThQEct26dbRp0waj0ci0\nadOwtbVl4cKFjBkzhoaGBt59913pOh0+fFh0JpSXIzxKen/88UeKioowmUw8/vjjwCNusYuLi6zl\nlpaWreY7d+7k4cOHJCcn8+GHH5KYmMiNGzd4/fXXKS8vZ+7cuVy6dIn6+npOnjwpYji5ubl8+umn\nolj+2GOPUVNTI2uRgt0qFfoXXniBoKAgzM3N2bx5Mz4+Ppw4cYLIyEgWLlwoa5QSnfL39ycgIEBU\ngVevXi2xjLouVlZWREdHCw1ixowZovI/fPhw4FHRRqvVsmDBAjQaDYcOHcLCwoJNmzZRVlZGdXU1\n8fHx9O7dG1dXV27evAn8VfneycmJ3r17Exsbi5OTE97e3ly6dInm5mbmzp3bimajtDHUUPFuy6EE\nvyoqKvj444+lCaCQdOpvnDFjBi4uLlhaWrJhwwaWL19OamoqWq2WJUuWiCPDhAkTmDJlinQ/w8LC\nhL/ecm5lZUVUVJQoOY8YMUJsBLVaLZs2bWo112g0Ir5kb28vkOG4uDiJCVSip+YffvihdKXXrl0r\nFIMPPvhAvlvNbWxseOyxx+jevTsWFhasWrUKV1dXzMzMePnll4FHaDtvb2+uX7/OokWLsLCw4Pr1\n67z99tukpaVx9+5dvvvuOz744APq6uo4ffo0s2fPZt68ecJvP3nyJIWFhRw4cICmpiaWL1/OhQsX\nqKurk66yEisMDg6WZ8rX15eFCxeKcGLLuXrO3dzcsLS0lIL/oEGDxCli0KBB9O7dGxsbG3r37s1n\nn32GhYUF33zzjTSIdu3aJVQ6KysrEfxU69/zzz8v18/Ly4tNmzYJHXDy5MkUFRURGhrKsmXL+Prr\nrwGk6bF27VqcnJxYuHAh/v7+2Nvby7WKjIyUuaWlpXguq3tVJazqGvw7xn8kad2/f78E3teuXaNt\n27Y4OjpSXV3N2rVrRdo8MDBQKhWKOH3nzh3gkcqhpaUlbdu2FYXK5uZmCgoKsLGxkdcUJMna2lqw\n+Er9VVm9qIVT8VWU3LStra3A5ZSipgrulVS14j1GRkZKsqwCL5Vo2tnZCbxo2rRpwF9J7UqwRwWG\nShiguLi4lYqwSpqV2p1K7Gtra+XvampqEk5aQkKC/G2RkZFYWVkxZ84c4dIp6XGNRkNeXh7V1dXE\nxsa2grHAo+RW3YhKoEEZhvfq1QtApP3d3d0xNzcnPj5e/g51rIGBgRKwK7iUnZ0drq6uAtNWnRwl\nua7gHB06dBBxi+TkZIqKigCksqiCiW7duqHRaATepSBPEyZMYNWqVZibm+Pm5oaPjw/vvvsuFRUV\neHh4sGrVKhwdHZkxYwa2trZ4eXlhMpnYs2ePJMKOjo7Ex8eLX6VanKZMmSLEeQUhcXV1leTMz8+P\ngIAAnnrqKSl2KGGjgoICduzYIZY+VlZWYkNSWlpK165dMTd/5FesunAKWaDOVUNDAzk5OVJFVebk\nWVlZYkGUn58vHl/KX3jz5s3ExsbKZ9TV1aHX60X0as+ePWg0GtlolLhQbW0tixYtoqqqShR1HR0d\nuXjxIpMnT6awsBCdTsfy5cvJyMhg79691NfX89JLL5GRkUFmZqZsji3hcwqmNHfuXIHc1dXVsWPH\nDiwsLHj//ffJzs5m9+7dcj+7uLjg7Owsm35dXZ1wlM+fP8+GDRsoKipizJgxjB49moyMDHJycpg6\ndapYNCnpdtXN2b9/P4WFhWzcuJH79++zfv16xo0bJ569Y8aMob6+nsWLF+Pt7c3x48fl2r3zzjtk\nZWVhbm5Oeno6t2/fJjk5WRQvVeU+Ly+PqqoqTpw4IdzVnJwcxo8fT1NTk6hPFhQUiALkF198QUFB\nAZmZmWRlZfHSSy9RV1fHoUOHMBqNeHl50djYSHBwMHv37hVVY3XfqOdBBUaWlpZcvnwZgIkTJ5KX\nl0ddXR0FBQVSCMnLy6OoqIjq6mpRlW7Tpg0NDQ0UapIbdQAAIABJREFUFxczadIkOb+KW33u3DlZ\nV4qLi2Vd8/T0JCoqCqPRyJUrV+R+VAHxsWPHSEhIkCBGrU++vr7SfUlOTqasrIycnBwMBoOYpdfX\n1/P999/j4eFBYGAgVVVVXL16FQ8Pj1ZQsP8df3+Eh4djZWVFZGQkYWFhUiwZP3682Cp5eHjw7LPP\n4u7ujrW1NR4eHvTo0QNbW1uCgoK4ceOGqHfr9XpWrlwp3Ruj0UiXLl3QaB55SyvVb7UXAyxfvhxP\nT082bdrE888/L90cvV6PmZmZKO2Wlpby2WefodFoSExMFF9iNzc38vLyaNu2rdB5PD09GTZsmIg5\nBgUFkZaWJkXvxMREfHx8aG5uJjs7G0DWYngEzWtubpZjbm5uFss69V5VeFY2Zlu3bpUkSM1tbW0x\nGAwcPHhQIMTFxcV8+OGH6PV6bGxsuHHjhkAPGxoa2LlzJ1euXMHOzo7Lly9jb29PZGQkHTt2RKvV\nsnLlSiwtLSktLeWdd95h7ty5BAUFsXr1aqysrPj+++85cuQIQ4YMES6ymZkZ33zzDZ06dRIv0IqK\nClxcXMjJyRE1X8VrU3t3nz59ZN1vbm5uNffy8uLpp58mJCQErVbL5MmTCQsLQ6vV4uLiwldffYWv\nry/u7u5s3LhROpsWFhasXr0aBwcHoYuYmZlRWFiIg4MDwcHBZGdni/XRjh07yMvLk/NaWVnJoUOH\nmDJlCkFBQfj4+BAfHy9WcgCvv/4648aNw9HRkS1btmBubo6tra1cF8WRVjZzL7zwgni6q8ZCbW0t\n+fn5rFmzRuI5W1tbCf4jIiLIzs5m5cqVaLVajEYjkydPJjc3Fx8fH/Lz8zl58iTTp0+nd+/e4s8Z\nGhpKTU0Ns2fPxsbGBr1ej8FgoLa2lqKiIlxdXZkyZYqgDg0GA2+//Ta5ubkEBQUJMrGxsZFOnTqR\nk5NDYWEhpaWlgvBSuiDwSAOlvr6eIUOGiA1TaGgoAQEB9O3bl4iICAYMGMCMGTOIjIwULQ419/Ly\nYsyYMTg6OuLs7MwTTzwh6s0Gg4E33nij1by0tBSDwSBxs7JOamhoEDSCigXU3MPDg2XLlmFpacnm\nzZuJi4uTuCU+Pl5ej4+Px9raWhKihoYGXnnlFYqLiwWmumDBAilkqO6sQgeqNc3b21vWnCeffBIL\nCwtcXFyYN28eTk5OYnMzYMAAuZ8TEhKkY+7t7c0nn3yCm5sb1tbW5Ofnt7KmU/eK2oPVHB6JPam4\neejQoXKuWuoEDBo0SJoT69evp7GxkUuXLol7wrVr17h06ZJQNdq1a0dTUxNGo5GgoCBmzpwpiMSm\npiaqqqrEKaGxsZGqqipSUlIoLi7mu+++o7m5ma5du2JpacmLL76I0Whk0qRJ5OTkyN7f0NDAhAkT\nZJ6ZmUlRURGZmZlkZmYyadIkJk6cyKRJk/jpp58IDQ39t+xR/xHLm08//ZTQ0FB69OhBcnIyU6dO\nFTNkxVeNj4/nwYMH+Pj4iJBNbW0tDx8+lBtO8RqV9Lanp6fYyyjIoRLfOXXqFKWlpVhbW2Nra0tp\naSlRUVHC74JHNzw86oI6ODjg6+srCsIuLi64ubnh6upKVlYWsbGxlJWVyXtXrVrF/fv3MZlMPP30\n01KVVhusv78/MTExbN26VRSRY2JiqKysFPiUr6+vWNIo6XtbW1uBLNna2lJZWYm7uzuNjY1MnjyZ\nGzduUFBQQHNzM08++SSHDx+WDqYKHseMGcO4ceNEtn3NmjWcPXtWEhRXV1dKSkoYOnQodXV1wm9U\nD/GRI0dwcnISCKOHh4ckSCp5Uup7SolRVbcBEeyIj4+nvr5equQqOF29ejVHjx5txb9VEFQrKyuS\nk5OlclReXi5FBiWrb2lpibOzM8HBwaSkpKDVakVt18XFhQcPHrBr1y7hHSkrksLCQqqrq/n5558p\nLCwkNTWVhw8fChxawamLioqwsLBgwYIFeHt7c/nyZSwsLMjIyOCrr76irKyMffv2sX//fg4ePMje\nvXs5ceIEe/fupbq6WgIVlTCqhK+pqUmg0AoyXFxczIQJE4BHAh/FxcViraCEj3Q6HaGhoYwdO5as\nrCz5PCcnJ9q1a0dmZibm5ubCT7Kzs6O6uhqNRiMdaY1GI9A7W1tbNBoNw4YN47nnniMpKQk3Nzcy\nMjIEbqdUlZUlRWNjI1lZWdjb2wuPtl+/fqLIrXhEFhYWAsNTi7e6N6ysrIiIiCA/P5+XX36ZzMxM\neU6VFYDiPefn5wtX7sGDB6KymZ6eLubdZmZmpKWl4eXlJb6PqtOoOGNK1t7Ozo709HQuXLhAfX09\nkZGR6HQ67t27J5uYgtWqKq9S2FYdFsWhsrOzo6SkBHd3d0FiqIQxMDBQUArKbsvd3R2DwcCNGzdw\ndnYmMDCQAQMGYDKZcHV1paqqSnhMCob84MEDOXeqIGJtbc2DBw84c+YMUVFRci4qKysZOnQo1tbW\nFBcX4+vri8FgYNasWbzwwguYTCYJAnv37k1eXh5NTU3iYQnIs642RR8fHymyubu707VrVwnq2rVr\nR1VVFXl5eWRkZFBfXy9BQmVlpfxTfprOzs5yzx47dkzsEa5cuSJKw7NmzeLSpUvU1dUJ9FfRJ159\n9VUuXbokCAVXV1f0ej3R0dEUFRUxfPhwjh07RteuXUlKSqJfv37/l3a2//ePXr164eXlJf/DI2VM\nhRxobGyUhCQ6Opq0tDRmzpyJl5cX9+7dY+rUqXh5efHw4UOB6j/77LNotVoePHjAqlWr+Pnnn3n4\n8CHvvvsuOTk5XLt2jZEjR3Lnzh0GDRpEbm4uV69eZejQoZhMJlJTU1m3bp10Dnr27InRaCQ4OFgU\nvRWf++HDh8I512g0zJ8/n9jYWPr27UubNm24ePEitra2TJ8+na5duwr//tatW0IxMjMz4+DBg1RW\nVlJaWsrq1asxNzenTZs2DBkyhLq6Otq0aUN8fDyPPfYYPj4+bNu2jerqavbv3y82O0ajkVu3btHU\n1MSGDRtkXc7IyCAlJUXWZOW9rFRW33//fbp27UpgYCDPPfcczz77LKNHj6Znz54kJiaSn5+Ph4cH\nX331Ffb29ly+fJlp06bx8OFDli9fjr29Pb6+vkRGRnL27FkSEhLo1q0b3bt3JyAggB49ejBt2jSi\noqKoqqqiV69eDB48mH79+tG+fXsJwocOHcro0aM5efKk7Le3bt3im2++Eeju3r17ZV5WVkZycjLw\nqKtSW1vLzJkzJdFp3749aWlpBAYG0rlzZ5m7u7uj1Wq5ffs2Xbp0Ech/cHAwubm5vPHGGzQ3N3Px\n4kU+//xzcnNzycrKwsrKiri4OIYOHcrEiRMlQXNzc6NNmzbExcXRr18/sdVKTEwkOjqa8PBwjEYj\nAQEBEmfa29tLJ1xxgZWuyvHjx8ViZvTo0SxcuJCBAwdy5coVVqxYwc8//ywJQVZWFg4ODpSWljJ4\n8GC6dOkiEPDIyEiGDBmCv7+/dMhiY2MJCwujTZs2ODs7ExISQlxcHLa2toSEhNCnTx88PT1xcXEh\nMDCQiIgI8YRXXUlra2u++uorgoKC0Ov1eHh4UFFRQVRUFPn5+QAkJycLkmXPnj3U1tYyf/58LCws\nOHXqFMuWLcPd3R0LCwu6dOlChw4dZP7000+3mvv6+tLc/Mi3XRWbxo8fj7+/P3Z2dvTo0aPVPCIi\nAnd3d4YPH87TTz+NtbU1w4cPF957586dCQ4OJiQkBA8PD5mrtWbs2LEcP36cmpoa3nrrLfEefv31\n11vNk5OTaWhokAbS3LlzeeKJJ+jduzfXr19n1KhRorDt7e3NvXv3GDhwICdPnuTJJ58kPT2dQYMG\n0alTJ06ePImHhwf379/HzMxMfNXHjBkjKti9evUiIyMDZ2dntFqtNMbs7Oxo3749V69elULG888/\nz8OHD6mrq6N///4yDw4OZsiQIdy6dYslS5ZQW1tLWlqaNOhsbW2JjIwUrYzY2Fiys7MpLS0lOTmZ\nmpoaib3VtVdF5tzcXLEsM5lMlJeXi4ZHUlISTzzxBEuXLmXs2LGMHDmSoUOHMmzYMMaPH8/IkSPp\n2rUrkZGRODk5MXLkSJ599lk6derElClTeP755+nUqRMTJ07k+eefp0+fPrRp04apU6dy+/Zt7Ozs\niI+PF4HMhw8fMnPmzH9Zw6bl+I9wWufOncuiRYvw9PRk2bJlrFy5UrDjjY2NrFy5Ejc3NxYvXsx7\n7733m9/Pz8/H19dX5JlbwiiKi4ula5eSkkLHjh2lW5aamkpkZORv5r83iouLMTc3/13FMPW7+fn5\nwj9Qo6VkeHPzIxPr06dPk52dze3bt1m7di03btzgiSeeaPU9FhYWreTWa2pqyMzMJDIykgULFrBm\nzRrKy8uZM2cOa9asQavVUldXx9KlS4XvNmDAAAmIlZx+RkaGdF8XLFhAQkKCdPvWrVvH8uXLcXFx\nYebMmWzatEneN2XKFEmqV6xYwYwZM9Bqtbz11lt88MEHAAJXunv3LkajkbS0NKmMqq6gIsTX19fj\n6OiIvb099+/fx9LSEldXVx48eMD27duZOnUqTz75JB06dCAsLIzZs2dLAUJh/QGBfSjepZOTE1ZW\nVuTk5Aj/4e/xAVRg0rILo9RZKysrZQNSXpIajYaYmBhSU1Ol2qWsAWxtbamurhaBh5bJur29vfwN\nM2fO5PHHH2fevHlUV1fz7rvv8s0333D//n2B/vr4+DBz5kyBpbZt25aysrLf3INpaWl8+eWXACxe\nvJhXXnkFGxsb3nzzTT799FMOHTrErVu3KCwsZOTIkfTq1avV9QWYN28e77//Pkajkffee6+VzP2C\nBQv44IMPSE1N5YsvvpCfpaSkcPz4cRITEwkNDaWkpITZs2dz4cIFjh8/TnR0ND169ODYsWMUFBTg\n7u7Ohx9+yIQJE/Dw8ODDDz9k/vz5fPTRR4waNUo2PMV3Ud05QJS6Q0NDOXv2LPb29tjb2/Phhx+y\ncOFCdDodX375JYsXL6aqqor169fz2muvyXMHj8QtlACa4sBrNBpycnLYsWMHixYtQq/X4+npyfr1\n65k/f774wU6aNIkdO3aIWNGsWbMICQlh1apVfPjhhwCiMKmuQ1xcHPv27cPe3h5nZ2fy8vL4y1/+\nwqJFi+TcmpmZsWbNGhYtWkRNTQ0dOnTg8uXL+Pv7o9frBVo1f/58rK2tWbNmDfPmzUOv1/Pll18K\nL2TUqFFER0eL+EJkZCQmk4nc3Fw0Go3cH4sWLWLt2rW/We/U6/Coi2RjY8Mf//hHGhoaWL9+PRs2\nbAAeQe0tLCxEAOK1116jurqa9evXS7Dy5Zdf8sMPP7B//36qq6tZsmQJHh4ezJs3j8WLF7N+/XqW\nL1/OmjVrpMikroVaO5UycZs2bcjMzMTT05PCwkJRb3RwcCAwMFCKmGfOnMHb21v2h9mzZ4tvnp+f\n32+sG/53/PMjIyOD8+fPt1LuDQoKolu3bgwaNIjU1FTOnz/P1KlTOXXqFEeOHBH9gNraWpydnbGz\nsxMkgFL5PXnyJDt37hTRpV8rAqtu6N9TB1ajpTVPyzkg4mbqPsvMzMTa2loKWer1hoYGTp48ycCB\nA3+jht7yM9Rcqe23fO3X8//q9389LyoqEtjv9evXycnJkQDUZDLRu3dvTp8+TUpKCvX19dKpc3d3\nJzQ0FDMzM5KTk4mOjm71ueq1lsehUB8ODg6Eh4dz6tQpUlNT8fb2FsuYgwcP4ubmRpcuXThw4ACp\nqam4u7szevRoURT9vXP+6/P/PzVKS0v55JNPGDBggBTaevfuDTxai7VaLfn5+fTs2ZMRI0aQkJBA\nz549xeNSo9Hw1ltvsWLFCoGEq58DMu/Xrx+HDh3inXfekff6+fmJvYirqyvJycmcPXuW4uJinJ2d\nmTx5stg7abXaVt+hlI//1eNp+d7Lly+ze/duHn/8cXJyctDr9dja2jJgwADCw8PJzMwkLS0NT09P\nTCYTFy9epH///mg0Gjp27EhAQABXr14lLS1NEA/+/v60b98eBweH36jq/t5cjX/kvf/q7/073jt6\n9Gisra1bcXd/b9ja2rZSUf53D8XL/kfmJSUlZGZmEhsbS2lpqcTyah4SEtIqvv9XxtmzZ+W5OXbs\nGDY2NvTp04fU1FQ+/vhjQZuoRltdXR1jx44VHr2Hh8fvfu6dO3fEkzkgIICYmJh/+Rh/PSz+bZ/0\nT4zJkyeTkJAgQjOvvPKKQGGefvppgTaUlJTw/vvvo9VqcXNzw9fXl6KiIgYOHIher2fv3r2imnf3\n7l0GDx7MsWPHRKZcSdG7uLjw3nvv0b9/f1F9DQ4O5tKlSyQmJopRuOpohoeHS0Xm22+/xdzcnIiI\nCG7evEnXrl0pKSlhy5Yt+Pr6otFo+OWXXwQioao+ysctJiZGqkuKt1JWVsbevXtp27atiLkoyMST\nTz6Jj48PNjY2aLVacnJy6NevHzNmzKCpqYmoqCjWrVsnXRYzMzPOnj1Lbm6u+DX169ePQYMGSdf0\n5MmTuLm54ejoyMyZMwkKCqKoqIjY2FhcXFw4d+6c3HynTp0iOjqarVu3ysYaEBBARUUFqamplJeX\nc+jQIfz9/SkvL6dNmzbk5OSIHYAKbluO0aNHY2lpiV6vJzQ0VDDwRUVF0lX29fWVDiM88kfT6XSi\nOObm5sYf//jHVop2Dg4OEnhPnz6dwMBAJkyYwM2bN7l16xbZ2dls2bIFgClTphAWFoZer5djHDt2\nLF9++SXz5s1j9OjR7Ny5E5PJJNzC+fPnY25uzrx58/D19WXevHk0NTVJ4qDX61m8eDFvvfWW8Kcs\nLS3x8vISH9FffvlFqpsqIVb8jVdffZXXXnuNP/3pTzQ1NTF37lxRMLSzs+P5558nPz+fvXv3otVq\nRfkV4OOPP8bOzg6dTseOHTtkg7x58ybDhg0jPj6e+fPnc/LkSR577DHKysp4/fXX0el0ArcfO3Ys\nNjY2xMXF8dFHH4kvoaOjo0Bo1bmzs7MTWXN3d3dGjhzJxo0bqaurQ6fTYWFhgYeHB2lpacKNqqqq\nYvfu3SKctm3bNhobG/n666+FS11ZWYnJZBLI4MWLFzGZTOh0OqytrRk/fjw3b94UgRO9Xi9UgIsX\nL5KXl4dGo2Hbtm0CpVWq2I2NjaK6qAoNSuBs3bp1GAwGERj74IMPqK+vZ+jQoRw4cIAffvhBYFdV\nVVW8//77WFpaUlNTw5w5c4BHm8u+ffu4ceMGWVlZoqBZWloqPHsF31XBfHNzM+PGjZOOb8+ePcXq\npaqqikWLFhEXF0dtbS01NTV89NFH4p+8YsUKHB0dBZbk6OiIjY0NdXV1zJo1i08//VRgYDNnzpSO\n9dixY2nTpg2dOnXixo0bItgyceJEQR94eHjg4uLC119/jdFo5NixYyLG5ufnxxtvvCGqpkVFRYwb\nN07U3I8fP0737t1JSkoiPT1dfIbNzc3p0qULrq6ueHl54ebmxuuvv86uXbvo3LkzQ4YMkWdq0aJF\nNDY2CoQoNzeXJUuW0L9/f3Q6Hb6+voSHh2MwGDh16hQmk4nMzExmzpzJa6+9RlRUFBs3biQ2Nlbg\nSv87/vmRn5/PhQsXOHPmjCAsqqqqmDBhAocOHWLixImcP39e4GZ1dXWMGTOmVadQqfz6+fkRHx/P\noUOHGDx4MAcPHmxFh6ioqJD3Kp0GVcBSYicrV678u8esEqS0tDRZb1588UU2btwoVAwPDw9Jut5/\n/31KSkqoqakhNDSUMWPGsG3bNioqKti9ezceHh5otVq6dOnC559/LhBYZVGluGGKWgEIgstkMsnn\nDhgwgM8//1zQEb9+r0IkqHVFFV0VnF/pPtjY2LB7927atm3L8OHDSU1NJTExkaVLl3L9+nXeeust\nrK2tGT16NAsWLKC8vFyeaXd3d2xtbdm0aZP8zTY2NoSHhws/GR51J7Ozszl9+jS1tbVyLXfs2IGV\nlRWTJk0CYNeuXUKnURZIf2sOf7VJ+r3X/pH53/q5ogh069aNWbNmtWpuNDY2kpubS3NzM4mJiYwY\nMYKioiJ69uzJvn37Wt07Klmrqqpq9XM1P3XqlNjdqfempqby6quvsnfvXuBRHHHkyBFRXFdaF9u3\nb2fp0qWtvkOhdv7V42k5Tp06RVNTE7m5uYwbN46PP/5YCktffvmlJLgvvfQSCQkJNDU1MXz4cNLT\n0/nyyy8ZP368cImHDRvGjRs3OHnypHRxW6J61Gtq3rLo31KBV0HGW87V7ynxq5aWKeq5+vV3/K33\n/p5q9T/yuUrfxdHRkcGDB/P888+3OpcHDhwQm5bExES6d+8ur+3evZuQkBC6d+/Oli1bRPtDnXNr\na2u0Wq3oShgMBmbPns3u3bslsVPv/fVc8UNb/t6ePXt+9/dUp1y9NzY2lh9//JHz58//Q5/76+NJ\nTExk165dkrRu375d4ulvvvkGo9HIwoULqampISEhgVWrVvHRRx9x4MABYmJiWLhwIdu3bwfg/fff\nZ+HChXI+Y2Ji/q2JasvxH0laO3bsyPr161t5Pt64cUO8gg4ePCgQsuvXr9PQ0ICdnR2dOnXi7t27\n6PV6jhw5QmNjI2fOnBE1t2PHjlFaWsrJkyclQfj555+BRwFmUlISlpaWPPXUUxw/fpzAwEDu378v\nHZzGxsZWPlk+Pj4YjUbB25uZmXH48GF5WBXBvrGxUdRbLS0tJbHIzc3l3r17fP/99yJu9Gt1X2Vw\nrMaJEyeEpF9aWkpxcTEvvfSSPJzXr1/H19eX7OxsEXG4dOkSbm5uFBYWYm1tzb59+1opwioYQklJ\niUBXIiIiOHfuHPfu3SM3N5ewsDDOnDnDn//8Z5H1V8lGVlaWbArm5ubs2rULaK1UrMj7r732Gp6e\nnmRnZ9PY2EhAQIDARI1Go4hLjBo1ih9++OH/sHfeYVFd2/v/DAwMvYlIExEUiSZBsbfYjSkaYxKj\nMTGaBI0FFTWCvUfsosTeUuyxJDGW2GPDjg07WKjSOwww8/uD314BY26L9+bmfrOex8fNOXufc+bM\nmX32Wutd74upqSnjx48XnLwSgq9evTorVqwgJydHNP1MTU3Zt28f7du3p0aNGly/fp0hQ4ZQXFws\nkc3x48dLBjQ3N5f+/fvj4+ODiYkJAQEBfP311/Tr10+K1hUZ18qVK2Xi27FjB1CeqVMSGsoRS0lJ\n4fjx47i6upKSksK6deuEfl4tQFQtkE6nw9/fn/j4eHJycti5cyfm5uZkZGTw0UcfSURvypQpJCcn\nk5GRQZ8+fQgJCaGsrIz58+dL/ZSCiJaVleHk5MTp06dxcXHBwsKCBw8ecPfuXdGNjYuLo1mzZrz4\n4otER0cTEREhzpSFhYXIFigH5+jRo7IgMzMzIycnRzLhBQUFmJqakp+fj5+fH8nJyZSWlrJ06VLC\nwsLYsGED9+7dY+DAgSxfvlxedI6OjqSmpnL48GEMBgMPHjyQ2t+dO3diZmbGtWvXJOu9d+9eLCws\npMbCxMQEBwcHlixZIi+gzMxMgoODhVBo6dKlkrE7c+aMkK/o9XpZFBYUFAhEBsp1T728vLh06RJW\nVlbi6CombQWvj4+PBxBY17Vr16SuMykpSSB4mzdv5vXXXxfGQlWaoOYItYgGKmX2tVotaWlpTJs2\nTT7v888/z5UrVygqKhLmyHPnzuHj44OtrS1xcXEiDWBhYcHt27f54IMP+P7775kwYQL29vY0aNBA\nMiw1a9YkNjYWU1NTYmNjuXv3LvXq1cPOzk4yWQrqlJOTI4Qder1eyLYcHBy4ffs2paWl3L17t5Iz\nqJjeV69ezVdffUXnzp0xMzNj4cKFUiIwbtw40tPT+fTTT9FoNJw9e5aOHTuyceNGvvnmG1lgzJo1\nS+pt3nrrLdatWyf36fr161y/fp0TJ06INFJ6ejo+Pj48fPiQ0NBQqUXLyMhgyZIllXTiZs2a9Y+9\nmP4yQkJC8Pf3JzU1FX9/fwYNGsSUKVMEKrt8+XLs7e2l7lmRF9apU4dBgwYxbNgwybIOGjSIkydP\nkpmZybx58/5mX4Uqsre3Z/r06QD8+OOP/9S1r127lt69exMRESF1hSUlJTg6OpKQkEBaWhphYWFS\nf9q9e3d27drFtGnTsLKyYsSIEXz11VcUFxfTsmVLIiIi+OCDD9i7dy9ZWVlYWVmRk5ND9+7dOXny\nJGlpaTg4ONCvXz+WL1+OVqulWrVqdOrUiR07drB8+XI++OADnJycWLRo0a/6Ll26lJEjR5KUlMSQ\nIUNYvXo1RUVFzJkzh6SkJBYuXIibmxsLFixg4MCBPH78mF27dgHl7M4ffvihkCCam5vLZ6tTpw4P\nHjwgISGBlJQUwsLC8PLywsHBQVi6o6OjZe5Q2VdFaKjkzgYNGsQXX3xBeHg4ERERzJkzh/3798v9\nXrZsmUih/L32P9P3Hx2noIZKRk6ZYoZXjo3aVvH/in1/62+9Xi/8GRX3abVafH19ZV+NGjUq7QMq\n7X/yHL/neiqaOn5qamqla6h47if7Vty/ZcsWPv74Y6lhNBgMLFq0iG3btnHp0iVCQkJYtWoVRqOR\nAQMGSPuFF17g1KlTdOrUCUAYeK9du/arvv/quGfdd9euXQQEBNC4cWNWr17N7t27ef311+WenDp1\nSt4Z27dv54UXXuD48eN06NCBixcvcu7cOby9vblw4YLIJXbr1o0zZ85Iba8yxVNx+fJl0bV97733\nOHv27K/aFe3vjXvWfXft2lUJxWgwGAThVlhYiLm5ucB7tVotPj4+WFhYSLa64lrg8ePH/KfsD2MP\nXr9+PSdOnCAmJoaYmBjJQiqvPycnh0WLFjFmzBgsLS2FmKNu3bp89913NGjQQJj9iouLcXJyws/P\nj+LiYvLy8rC3t0en04m3rxysatWqsXv3bmHQVHIeanK7f/++6BHl5ORQv359wckrZtJGjRphMBhw\ndHQU3UFV+1VSUsKSJUuwt7fH19dXWINVFEn1s59JAAAgAElEQVRpuim5mqysLKpUqUKdOnWYNGkS\npqam5OTkEBcXR35+PkajkTVr1uDl5YVer5eMpZmZGW5ubri4uODp6SnZMzVxqWtVmaT79+8LJfnj\nx485evQo2dnZJCUlYWdnx9WrV/niiy8oKSnB2tpaiJiaNGkCIJkxtfA2NzenZcuWAmlQNXFJSUmi\n2ZqWlsb58+fJzc0V5ysmJob09HSWLVtGUlIS5ubmkpVSkIhp06bxySefCMHQrFmz2LFjBwEBAezc\nuZNRo0bh4uIiJF3FxcVYW1tz/PhxkShR90HVLxcUFLBlyxYh/Dp//jwGg4G+ffsKLDgnJweDwcDu\n3btlIk9KShI4e1paGkajkW+//Zbbt2/TunVrUlJSuH//viwelOPq5eUlUDQXFxfJbicnJ2Nubk5e\nXp480yqDrZzmBQsWSO2ptbU1np6eAkN3dXXF29sbo9FIcnIyb7/9Ng4ODlhYWFBWVsb48eM5fvw4\nZWVl+Pj4YGNjIwu43NxcPvnkEyGwMBgMhIWFCWGFi4uL6J3Z2NgQHh4uNduK1MDU1JQVK1YQGBjI\nggULiImJoaSkhC1btmBjYyO/M0XEZWlpiampKa6urkJUZm5uTvXq1dHpdDg4OODh4YGTk5OwI48b\nN04kr+7du0dWVhbdu3fHzs4OS0tL+T3Z29tTrVo1Ro0aJbJAL7/8Mp06daJHjx5MmzaN3r178/LL\nL2NhYSHwU0UpX6dOHTp06CA1TwANGzbE398fCwsLVq9eTf369SWC6O3tzdSpUyUL4uzsjNFoFObK\nx48fo9PpCAwMJCAgQJguHRwcMDExYdq0afTt2xdTU1N69OhBzZo1ZbFVVlZGTEwM8Eu0PTMzk5KS\nEm7fvo29vT3PPfccAQEBUk6QnZ1NbGwsrVu3lu8yNTWVzz77jJKSEqnF8/Dw4LXXXsNoNJKdnS2O\nvWKanD9/vpCCzJ07lypVqmBiYsIbb7xBfn6+yE8YjUZatWoFIPNPhw4d8Pf3R6/Xs3v3bqKjozl9\n+rS80O7evSvSSR4eHhw+fJg7d+6IFrenp6fUkan653Xr1lFWVoajoyP79++XgIqPjw9JSUnExMRg\nb2/PiBEjCAsLkwy5h4cHAQEB3LlzBz8/P7mvf9k/bqNGjZL3Wnp6OhMmTCAjI4MzZ86Ic6kczdGj\nR+Pr6yuw/gkTJlRi+R0xYoSM+3t9n3/++UrswCr7+ls2e/Zs+RcUFERQUBD3798nMjKSgoICIRw0\nGAyi6bh+/XpxKqytrdm3bx9Vq1bFw8ODmTNnsnHjRiHoad68Oaamprz22mtYWlpKXaGpqSnvvfee\nKALY29vTvHlznJycZA7u0KGDMHa/9tprwmr6ZF9Ass6tWrXC0dERMzMzvL29ad68OYAweStt1zff\nfJO0tDRKSkpkkT1s2DDc3Nzks7Vs2VI+s4eHB/b29hQWFpKUlMSoUaMwNzfHxcWF48eP4+TkJJ9Z\n6WY7Ojri4OBAq1atMBgMfPPNN6SkpBAUFER8fDxBQUG89957pKenV2q/9957v9l+su/vGRcUFCRo\nlokTJwrDvjK1TvH29pYsqa+vL5GRkfJOVIgm1a64v2I7OztbFu6qr52dnZRl6PV6Dh06JMoVFecb\ntQapeA6VRPlXr6diX3VtFa9BnUNdm7qGip9DXdvDhw9p0aIFer2en3/+WVjoHzx4gKWlJfXq1ZN3\nTcX27du3mT59OpcuXarEwPu0vv/quGfdNzg4mJ9//plq1apJu6JVnGsePnxIWFgYiYmJhIaGkpiY\nSEJCgjAJJyYmkpiYKO8etX5V/5485tO2qfY/M+5Z931yfq34d35+fiUiOvXMqTn6SXuypOLfaX9I\nphXg6NGj9O3bVyba8+fPA+Dv78/hw4dlARMWFiY35Ny5czg6OgLlkSNbW1vRFszMzMTX15ejR49K\n0fr169dxdXXl+vXrAh1QIseK/c3Ozk5YVlVGSUV6lTNkZmZGx44duXfvnhBDAEIcZWJigqurK0VF\nRWRmZjJo0CCh/AZEnzQpKUlgCmqCS0xMJDc3l6ysLA4dOiTXqbIYysFVEicKl6+ghgBBQUHCjqvk\nNCpmkdQY9aKsCP+oUqUKmZmZtGrVirNnzwocUGXFPv74Y+7fv098fLxkv5TmmIIRKQa4Xr16ERkZ\nKd9XReIk9XL+6quv6NmzJ15eXsybN4/vvvuOzZs3y7UpkqC0tDRsbGwICQlh/vz5JCQkkJ6eLnXC\nx44dE4kC4/9nsPXw8CA+Pl40BBX7YKdOndizZw8pKSn07NmTR48eSZ3k0qVLOXLkCF999RVOTk4M\nHz4cLy8vMjMzGTlyZKVtR44c4dtvv2XGjBnyHCpmQUdHR44cOUK7du04cuQIgLT37t1LmzZtePz4\nMUajkZ49e7Jq1Srs7e1lsaDX60VHVWX6Hj9+jKmpqdSHQjlsRkkPZGZmcujQIZEVyc3NZf78+Tx+\n/Jjw8HDRjRs8eLAwL6paxWnTplFaWsrWrVsFjqaeT7UI+PnnnwVqazQaGT58OBqNhr1793Ljxg0y\nMzPlGSwsLBSKfRVIUkEIlflWmV1bW1sePXokEFgVnFGEUfPmzaO0tJQzZ87IImDDhg1SX6wCTap+\nfc2aNTKRrlu3TtiVVbRdnbeoqIiYmBiZc27cuIG5uXklTeSff/5Z2p988glQHqEsKCggISFBGDmz\ns7OJi4sTeK7K5pmamvLo0SPy8/PJy8tjw4YNck/nz58vkCkTExOSk5MFlaFesIBIEJibm5Ofny8R\nf0WIVFZWJkQzP/30k9yjadOmUVJSIjCyc+fOSUZX3R9V+62QA2ZmZnz44YeSsZ4zZ47se/ToEX5+\nfty8eROtVits78rMzc05ceKEzGkGg0F0bBWJiaOjI8uWLaOsrIzVq1dz6tQpPvjgAw4fPix6byEh\nIZiYmNC/f38+//xzSktLhchDOdrW1taCtrC2tqa0tJTRo0eLFNGPP/5IRkaGZLmnTJnCyJEj/6Mv\n0/8Fa9KkCU2aNKGoqIjz589z7Ngxrl69SnJyMnq9HicnJ/Lz88nKyuLixYt06NCB27dv06tXL44d\nO8b169eF5dfT05OMjAzy8vLYtGkTbdq0+c2+irhMq9Xy+PFjNm3aRE5ODqtWraJJkyYCOVd28+ZN\ngoODsbCwIDw8nB49erBv3z66du3Kt99+S3FxMX369GHRokVChgflwVdFPKeC3oBkJyryY1Sst1b9\n1DZVj63+/q39FY/1ZF91bIPBwJkzZ+R9fezYMZlXk5OTWbFihZQyXLhwQebrHj16sH37dlq2bMl3\n330nn6158+ZERkYKkaCShcvKysLPz4/S0lIpt3jy91FWVkZKSgrwiwKBYsvPzc3F1NSUN998k40b\nN6LT6Sq1jUYjrVu35uTJkxgMhkrtJ/v+nnEqcKx0Uk1MTJg8eTKdO3cmPT2dhIQEdDqdBD5UaVVu\nbq5ILWk0Gvr16ycqE0lJSej1epG5UX1LS0vJyspi8uTJ8v4pKipi8uTJQky2efNmWrduze3bt7G2\ntmbKlCkyX1Ycl5aWxrZt2/j222//5eup2LekpERIdnbu3MmMGTMAmDhxYqXvVl1DrVq1AMTBTU5O\nlnZ8fLxkEJWk2W9ZRdZd9dv5R4KD/8y4Z91XIXGebCur+DtQsjlz585l9uzZhIaG8ujRIxYvXszE\niRPlPs2ePZv333//VzXsTx7zyXngae1/Ztyz6qvQm6NHj5b5ZsiQIVhaWpKVlSWJhwsXLuDu7g6U\nJ/U0mnI9Yb1eT8+ePeX4PXv2lHWeRqP5t8nN/WFOq6LYrlOnDgA//fQTpaWltGrVihUrVtCuXTs+\n//xzCgsLMTMzA8oX7ArmkJ6ejqWlpeC8i4uLWbt2LVCevXzjjTdITU2Vha1yuKysrETGpqysXEtU\nZXsU1biSizA3N+fIkSPC7urm5sbIkSNZvHgxOTk5ko3UaDRC066ilTk5OaJL9+jRI1kIqwclKytL\nXgIlJSW4u7sTFRUlsGCV2VDjrly5gkajEQZU+CXtP23aNMH5q8WsYnBVkyyUL0KbNWvG8ePHCQwM\n5Nq1a5KxGjZsGIWFhfTv379SFGrAgAHi4Kenp4sWVYMGDYT5FsqzQ82aNWPt2rW8/fbb7N69Gzs7\nO9zd3alRowaHDx/GzMxM4Ag6nY7Lly/z3XffiQNmZmYmLKwajUYY9FQReEREBFZWVvTv35/Zs2cz\nYsQInnvuOWJiYsjIyKBZs2bEx8dz7tw5qXNQdZUquLBz506WLVvG5cuXyczMFDi6tbU1ubm5fPvt\nt1SpUoWePXv+atvp06clEq2sYnvr1q20a9eOrVu3Akjbzs6OTZs2SX2lkmFSQZKGDRsKs7OaKNTz\n3r9/f9avX09qaqowAlesJYmLi0Oj0VCrVi3u3r3LgwcPKC4uFmHroUOHsmbNGpKSkiT7ZWpqyp07\nd0ReoE+fPmzatEmYu6E80qbIfNSLUjno69at49NPP2XNmjU0bdqUM2fOiA5dXl4eVlZWEhiZPXs2\nw4YNIzY2liZNmnDv3j35TWq1Wnr27CkZDrXAUiUDAPXq1eP69evyLNeqVUsYQlVQREkXqeCTesYU\ngqKsrIzRo0czb948oDyi6OXlRWpqqjhzNWrU4NGjR3h7e8s9tbe3r+SYl5SUCBNw48aNOXDggEhB\nGY1G0bJTi9KCggLefPNNgfTl5uZiYmJC3bp1OX78OMXFxTRs2JCYmBjJLHp7e/Ppp58SFBSEXq+v\nBONetGgRI0eOlHtjZmYmkXQFS1dSTQARERFSJxcTEyMMyeozq3pWNT8aDAZu3bqFRqMRzTUl4aO0\nOpUcCCDzrrm5OREREcTFxTF//nysra0FtZCZmcknn3wi2VuNRsPgwYOlnm/MmDEUFxeTn5+Pk5MT\nVapUEU4Da2trXnvtNTZs2EDHjh3Zv38/5ubmBAYGcvXqVezt7enevbtAVmvWrEnfvn1ZvXo16enp\nREZGigP+l/1zZmFhQatWrWjVqhV5eXlERUVx7NgxPDw8JBiinMvc3Fxu3LjB66+/zvDhw4mKiuL4\n8eO0bt2aU6dOMWTIELZt28YPP/yAXq9/at8WLVpw6tQpli9fTlRUFKdOnWLZsmVERUXx3Xff/cpp\nVdI8devWFXmezMxMtm7dKqinOXPmSDsuLk4WWopZXpmJiQkffvghRUVFsv1pizJlFbfFxcX9qs+T\nC7nf6vvhhx/KXLVo0SKZ1ysS5pWWlnL27Fn528fHh/Pnz8vao6SkpNK1P3jwQIJQah5TgV0VMAVE\nNUGRolU0hfRQAar79+9jMBjw8fGhZcuWvPrqq0RHR5ORkVGp7eTkRMuWLUlMTESn01VqP9n394wD\nOHv2LJ07d6Zp06aMHTsWo9EoJQXqfdW2bVuqVatGUlISAG5ubr+qzXyy/WTfkpISDh06hJWVFS+8\n8AJQvhazs7PD1dWV4uJikpOTiYqKIjAwEJ1Ox5UrVygsLKRDhw74+fkJ2k+R0/ye66m4X12bnZ0d\n+fn5hIWFAeWoN1tbW1n3FRQU0Lx5c0GQmZubC3nT9u3badeuHbdu3WL37t0AUgsLv8Cdn2z/J/Y9\ny75/b7+SaFHv2pCQEIqLi+X3otFohH9BkUWqOSI9PV22Kfut3/2T7Sftb437d/QFJEil5gp3d3fq\n1avH8ePHCQ4OprCwkI4dO/LFF1+Itq9yYv8I+0PYgwEhrak4+WZnZ+Po6EhERAQNGjTA3t6exYsX\n4+PjQ/fu3fniiy8wGo3MmTNH9J8UWcu+ffto0aKFTGYXL17k4sWLjB49mpiYGA4ePMi8efMEIrts\n2TKsra1Fn1WJIIeHh/P5558zd+5cTExMuHHjBl27duXRo0dcuXJFHOPhw4fTqlUrbG1tSU5OpkGD\nBmRkZHD69Glu3rxJ586dqVWrFs2aNaOgoID9+/fz+PFj+vTpw7Zt27hz5w7FxcXUr1+fmJgYcnNz\nyc3NZdGiRWg0GoKDgxk0aBDJycm8/vrrhIaGsnDhQtLS0iQDdvfuXUxNTUUHsWrVqrRv316c5hMn\nTohsxeHDhxk/fjxnzpxh165dLFu2jCtXrrB582a0Wi2LFi0iLy+PGTNm0LlzZ7Zs2UJOTg5Tpkzh\n7NmzJCYm4uXlhYeHBxkZGcImeOHCBYkAqmCAeqQsLS2ltvHJYnmVmTEajVhbW4uzBAisSzmrdnZ2\nIkegojhPe2wrHv9vWcUX9dPGPHl8Z2dnsrOzZYwi3HgWprKC6nwDBgygbdu2jBo1inbt2nHt2jWG\nDx/O4cOHOXToEG5ubrIw0Wg0fPPNN7i5uREYGMiuXbuEnEnVSWq1Wuzs7GRS1Wg02NjYYGlpyZIl\nS4QpuKioiEGDBlG/fn3i4+MJCQnhs88+E8H6iRMn0rdvXxYuXEhmZqbcsw8++IDAwEBCQ0Np27Yt\nx44dq1TT2qFDBy5cuEBKSgqvvvoq165dw2AwkJSUxMSJE3F0dGTUqFGsWbMGo/EXBvHc3FxxnIcP\nHy4Z/Xnz5jF+/HgSExPZsGEDw4YNIy0tjYEDB7J7924eP36MlZUV5ubmkqkG+Oabb+jTp4+gH+bP\nn89nn31GaWkp7dq149ChQ6J/uG/fPszMzKhVqxYxMTEsXLhQyEcUi7a1tTV9+vRhxYoVGI1GIQlT\nEH+DwUBKSgrLly9n/PjxIvGjou+TJ0+W/UajkZkzZ8pCG35hwGzQoAGXLl3i2rVrvPzyyxw9ehRz\nc3NSU1N57bXXhJSoadOmXLx4kfr163PlyhVq1qxJZmYmmZmZvPXWW8TExDBmzBg5tkajYfbs2fTp\n0wdbW1smTpzI9u3bOXHiBFZWVjRq1Ah7e3suXryIRqNh+vTpFBUVMXToUExNTVm8eDFGo5Hg4GCq\nV68uzMAff/wxzz//PA8ePCAnJ4dhw4axfft2Hj9+LEETFWxQv7PRo0dz/vx5zp49S4MGDThz5gw6\nnQ5PT0+RMFIZ1apVq9KmTRvCw8OxtrZm3rx5nD59mh07drBgwQL5XY0aNYqxY8fy7bff8umnnz6T\n3+pf9ospR/bUqVOMHDlS2pMmTfqHx/29vr/H3n33XQn46PV6WWeoeVshJNR2Vdrx72AMfVamPtPf\ne/dU/GwV+youAPjHP29SUhLZ2dn4+/tXap84cQITExNatGgh7Zo1a3LlyhXRVVdtRRhZse/vGXfj\nxg0cHR1xdXWt1IZfvt+KNa7Pwv4eG+q/ky31H722ig5uxWuoeG0VHd/Y2FiRtdq2bVslh/h/1f7d\n7MB/dispKeH48ePEx8dLUk+VeHl6etKqVatKSJE/wv4wp7WiqWi4qg8tKChg3bp1AsNVjKEajUYW\n4+bm5pJ19PHx4ZVXXsHd3b0SS5/SBwNEPqciTFbZyJEjee+992jUqJFkZJKTk7l58yZeXl5Uq1YN\na2trMjIyhC6/ohxPfn6+OF4q86ugIyrTU1JSQkJCgkDznJ2d0Wq1ojP7+PFjTp48KdHNrl27cv78\neVxcXITJ+J133pFrjo2NrfQZ4uPj2bhxI6GhocTHx9O6dWvRsbW1tWXPnj1ERUVRVlbGK6+8wtWr\nV3FxceHixYsYjUYaNmzIzZs3eeONN2jXrh05OTnMnz+fqVOncv78eRo1alTpIS4qKqp07WVlZURE\nREh9ofouAYkAQjnLb2pqKi4uLtja2jJt2jTatWvHqVOnRLZD1QNFR0dTWlqKn58fr732GkuWLMHS\n0pKQkBCMRqPAN9TiecqUKVhYWDBjxgwGDhyIVqvFaDQKq+qQIUOYPXs2Y8aMQavVsmbNGgYPHszk\nyZOpUaMGSUlJaLVamjZtysmTJ/nkk0/4+uuv5ZlT37WCe6pnLCcnh969e/PNN9/Is1VUVMT777/P\nxo0beeONN9izZ48sJMzMzOjVqxedO3dm4cKF3Lp1i6lTpzJx4kRhOx47diwDBw5k4cKFDB06FA8P\nD3Q6HZGRkZw8eZI6depQp04drl27RlpaGoMHDxaG4mrVqnHo0CFOnjxJcHCwyLkoXc3WrVsTGxsr\n5D7t2rXDw8ODffv2YWlpyZ07d5g8eTIzZsygTp06ohP2ySefsGfPHlasWIG3tzd+fn6VyJmcnZ1F\n/zM7OxtfX19cXV05deoUPj4+WFtbc+XKFQYPHsyqVatYs2YN169fZ+XKlbz//vt4eXmxZMkSDAaD\n6HKOHj2amjVrkp+fz4QJE+jevTvbtm0jOzubNWvWEBYWRm5uLkOHDiUgIIC+fftiZ2cnQY+8vDw8\nPT0ZO3Ys06dPZ+LEiYSHhzNp0iRGjx5NSUkJPXv2pHr16qxfv14ytwDNmzcXorfi4mJsbW0JCQnB\nz8+Po0ePsmrVKnQ6Hebm5uTm5gq8GX6B4Dg6OpKVlSVi5Xl5eRgMhkqLZ1WaYGFhwciRIzE3N2fq\n1Kk4OzsLEZzBYJBjK1MIFDs7O+bPn09QUBAbNmwgLi6OKVOmMGvWLJHAmjFjBs8//zxmZmacPXsW\no9FImzZt2Lt3L61bt+bKlSsSLKhZsyY1atTg2LFj1KtXD2dnZwk2BAYGcvHiRZGDUnX2SsNXZXof\nPnxIRESEBAdUDa6ZmRnp6elUq1ZNtIkVSuP48eO4uLiQnZ1NYWGh3CNHR0dsbW0le6BIqN577z32\n7dsnbKw1atSgRYsWHD9+XBiV/7L/O/b3pGf+sn/ewsPDK8m0qLaSZvlnZVqexbh79+6xbds2wsLC\nKrX/sr/sWdg/yiSsbOPGjbz33nt/1OX+n7M/DB6clpbGN998w9WrV7G2tkav15OVlYWJiQm+vr7U\nrFmTBg0acPToUaytralevTo3btzA1taWZs2acf78eZydnUlMTCQtLY09e/aQkJAgDqOHhwcFBQUC\nMTMajfTv3x+9Xo+1tTUlJSX4+vpy8+ZNzM3NmTNnjhQbf/zxx8Lyqurz6taty40bNzAajTg4ONC+\nfXtxUj/++GPq1avHtWvXeO6553jppZe4evUqly9fFh26kpISHBwcBLZbkZ5b1Tyo+IGtrS07duzA\n0dGRpk2b0rFjR2rVqkVCQgJjx46VxWJFCIdy1BcuXEhKSgpbt26VtD/8olvl7u7O3r17MTc35/79\n+0Kjn5mZSdeuXQkPD8fKyoorV67g5OREVFQUy5YtIzAwkFOnTgG/FGxXZOhT13L16lWBfD7//PO4\nurri6upKQUEBvr6+AmVp3LgxBw8eRKvV8sEHH1BQUMDw4cPZsWMH27dvZ/ny5cyYMQNvb28Re2/U\nqBH37t0jLy+PgIAAHBwcBALu6OjIw4cPpWYvKSlJJp4XXngBc3NzEhMTsbS05NSpU/To0YPi4mJO\nnTqFhYUFaWlp+Pj4oNPpaN68ubw0/fz8iI6Opnr16ri7uxMdHU1RUREvvfQS2dnZJCQkYGFhgZ+f\nn5BilZSUkJKSgp+fH5aWltSuXZvAwEAuXLhAQEAAKSkptG7dGihnqvP09GTEiBFUqVKFgoICrKys\nKCws5PTp0zg7O7Ns2TJq166NiYkJiYmJ2NjYkJuby6FDh4DyrHVkZCQ1atQgICCA2NhYevfuzenT\np0lJSWHQoEFkZWVhampK7dq1OXHiBEajEUtLS0pLS6WGqrCwUCCc06ZNw9TUlOTkZGGPXbp0qXzP\nVatWZdSoUSxevFjE2DUaDVOmTKFatWrExsZSv359zMzM8PX1Zd++faSmpmJpacnFixfx9vZm8ODB\n2Nra4ubmJigKS0tLdDodubm5aLVa0bM7e/YsTk5OfPnll9SqVQtHR0cGDx6MnZ0dnp6eLFy4EB8f\nH7RaLdbW1tSuXZvk5GSSkpIoKCiQmrHS0lKGDBlCaGgo1apVIyAggKioKL755hthN61evTr5+fk0\nb95cdIG///57iouLmT59usBpjf+fbdNgMFCjRg3Mzc1JSEiQTKKSetHr9eTl5ZGWliYoAigPeCh4\neG5uLrGxsYSHh2Nubi6MywaDARcXFzIyMvD19eX+/fvUr1+fxo0bc+3aNc6dO4ebm5tkjefOncut\nW7coLCxk5MiR2NraUlxcLGQbGo1GGAB3796Nq6srhYWFZGZmSo2fwWCQBaO/vz83btwgICCAt956\nS7LGderUISYmhi5dumBnZ8fOnTvp0KEDhw4dYvLkyTg6OtK4cWOKiopISUlBr9djY2MjhE/u7u5c\nuXIFExMTsrOziY6OJj8/n4SEBGrUqIFWqxXmY1WP5+TkRE5ODrNmzWLQoEGkp6fj6upKXFwcSUlJ\n3Lt3j6SkJBITE7GysmLBggX079+/EoT/L/vfMCVvY2NjI9I0iu1eMYcbjUaGDh1K/fr1/+jL/dOa\nYqZ9sl0xgPbPyLQ8i3EV2XGfxpT7l/1lv8cqMgnv2rWL5s2by7bLly9z+fLlSk7r5cuX/3Ja/4P2\nh7EHL1y4kCZNmrBq1SoWL15M1apVAXB3d+f+/fvs27ePqKgoSkpKKCoq4s6dO+h0OurWrcvhw4eZ\nOnUqpqamjBkzRijbJ0yYwMcff0zbtm1JT08XZ2/JkiXUqlULf39/Kay3sLDgypUroiUI5bUAjRs3\nxs7ODgcHBzw9PRkyZAgajYbY2FjJthUWFrJr1y4++eQTwsLCcHBwoHPnzlhaWhIbG8vWrVs5efKk\nMJUajUZhYRw7dqw4BhXrvOzt7Vm+fLlk1Nq0aYPBYGDTpk3s2LGDOXPmMHHiREpKSsRhVXUqFduK\n+Eg53Ip5MDc3Fzs7O3JzcyULumTJEurUqSOZMw8PD1JSUjhy5AgPHjzg8uXLXLx4kdLSUqKiovD3\n9xcWWFdXVyGP0el0Ina+c+dO1q5dy08//cTs2bMJCQkhPj6etLQ0Ll26RG5uLlu3bmXPnj1SgzJy\n5EhatGgBlC9GDAYDkyZNIjc3l0GDBpGZmUliYiLR0dFkZmYyZ84c+vXrR0JCAjNmzGDp0qUYjeWa\nmRcuXKCsrIz9+/cTGhrK6NGjefTokSxeT8UAACAASURBVGiT6fV6Tp48yZgxYwSSHRgYiF6v586d\nO6SlpbFy5UpKS0vZsGED169fF2KkvLw8cdo+/fRTwsLCRODd39+fyMhIwsLCmDhxIpGRkfj7++Pu\n7s6CBQu4dOkSZWVlXL9+HWdnZwYMGACU61l5e3sD5YiC/v3707dvX9GwVVllxYobHx/P6tWrmT17\nttSAdurUiSlTppCbm0u7du1o27atZOEsLCyEBc7MzIzevXtjMBgYOXIkY8aMYdmyZbLAU+QR5ubm\n2NvbY2trK3W4qtZBBSwyMjI4ePAg9vb2zJ49mzZt2qDValm4cCHbt28XAjMoJ36YNGkSc+fOxdnZ\nmZEjRzJz5kwcHR3RaDTk5ubi7u6Oq6srpaWlFBQUEBoaytKlS7G1tWX//v1MnjyZ6dOnU6VKFSZM\nmCDjAaZOnUrbtm2JiYnBxMSElJQUbty4Qa1atZg/fz7h4eHs3bsXrVZL1apV8fLyIisri0mTJvHm\nm28Kwcy7777L3LlzRRsxMDCQ9957j2vXrmFjY4OpqSne3t4YDAZeeeUVyap36dKFfv36UVpaioOD\nA5aWltSvXx+9Xs8bb7yBtbU1RmO5Pmvv3r2FTXj06NEMHjyYq1evUlBQwMKFCyksLCQvLw9HR0dW\nrlxJzZo1SU1NZfr06ZSVlTFp0iSuXr3K119/zdmzZ5k2bRqTJk0ShMPVq1fp0KEDpqamzJgxg/z8\n/EpIgYrn1mq1Uv8M5cGoWbNm4eDgwNmzZ9HpdBw5coTk5GQOHz7MsGHDSE9PJzs7m+vXr+Pu7k5y\ncjK3bt3CaDTy4YcfsnjxYm7dusX169f54YcfRJZDp9PRo0cP9Ho9b731FpcvX8bOzk6IR6ysrHB2\ndub111/n7t27JCUlodFoKCgoIDs7GwsLC5Hn2r17N++88w5Xr17l/fffp2rVqrz77rtYW1uTnZ3N\nyy+/zBtvvMFzzz3HqlWrnu2L6y/7r7C1a9fy5ptv0rJlS5YvX06vXr0IDg7GYDCg1WpZtWoVU6dO\nZePGjX/0pf6p7bckVyoy0z7JVPvv3ve3rusv+8t+r/09xt2/xbr7Z7OKHCp/FvvDnNbc3FxatGgh\ni6mioiJmzJiBnZ0dOp2Ojz/+mIKCApHH8PDwwM7OjlGjRmFlZYWdnR3FxcU8//zzZGVlkZyczJkz\nZygoKODAgQPo9XqJ5BuNRpycnITy++OPPxZSFFdXVwYPHgyU1y4OHjwYBwcHIYNp0qQJWq2W1atX\n4+TkJKxqSpcpKSmJjIwMIiIi0Gg0rF69mr59+2JpacmtW7fIzc2luLiYH3/8ERMTE9FRNDExkYW9\nYjFW9PNpaWns3r0bvV5PQUEB165d4/r16yKRou6ZVqulQYMGUqdiamrK0qVLgXJiGRcXF7RaLTY2\nNpiZmfH5559jYmLC48ePSU9P57vvvqNp06b4+/sTFhZGeHg4Op2O+/fvY25ujk6no1+/frLQbdiw\noUC5lRamIr6Jjo4WSOfNmzcpKCigpKREGIqdnZ0pLCxk0aJFwnrr5uZG586d6dWrF9u3b2fPnj0M\nHDgQa2trXnrpJamxUFDfGjVqoNPpcHJy4oMPPpBnSdXwFhQU4OXlhaenJ3l5ecTFxREfH096erow\n1CrIcMuWLWnQoAHu7u64u7tjYWEhrLUhISFotVq0Wi2vvfYaZmZmxMXFMXv2bL788kv27NnDuHHj\nSEtLw93dnXXr1jFx4kQGDRqEg4MDLi4uREZGUlxcTHx8PNu3b2fXrl08ePAAc3Nzzp8/T3FxMYBI\n3mzdupXDhw+TkpKClZUVnp6evP/++0ybNo2tW7dSr149WrRowenTp6Xmr0qVKiQlJdGrVy+OHj3K\n119/TY0aNVi4cCGbN2/GaDTSrVs36tevT0lJCXfv3qVnz54UFhYSGBiIl5cXY8eOZefOnWzatImD\nBw+Sl5eHm5sbixcvFiKiPXv28O2337J7924KCgqwtbXFz8+Pdu3aUVhYSGhoKB07dqRbt27MnTsX\nT09PNmzYwKBBgwDkGXB0dMTS0lLIfBwdHYXlVwVA3NzccHV1JSAgQPR9AWFPftp4QCQqIiMjmTlz\nJu3bt8ff3x8rKyuZAxTMVT0zqs5XyRQ1atQIOzu7XzF/Kuj7Sy+9JKRLTZs2leBPp06dqF69ury8\nZs2aRa1atQQyvGjRImHerVu3rgQB6tatS8OGDUXvWZUyVKtWTYjDFGGVr6+vaOC6urqybt06qlat\nyrlz5wgPD+fUqVN07dpVUBimpqbUqlWLatWqYWpqSvv27aV+LC8vj4iICExMTMjKyqJu3bp4e3tT\nrVo1PDw8xAl96aWXaNmyJS1atJBaIDUv2NjY0K1bN7p27UrXrl3FgVe166tWrWLDhg04OTmxZcsW\ngoODJQuu5D0sLS1p3749dnZ2xMXFkZ2dzc6dOyWzqohE1O9V6S1fvnyZdevWER8fz4wZM0hMTBSS\npvz8fNq3b8+PP/7IK6+88lcW5n/UysrKCAgIqCRN86SczJN6hf/NdvfuXe7evQuUS2788MMPHD58\nmC+++IJly5aRlpbG8uXLGTVqFAsWLPjduojR0dEcPnz4V8c5fPgw+/btEwkwDw8Phg0bRr9+/cjP\nzxeSwX9VpuVZjFOMtwaDgSVLlqDVaqWUDMqDvxEREUJU+azNYDBw4MABNm/eXOm8UI6c+sv+3PY0\nJt7fYgV/sv+fzebOnSvtmTNnSvu/2Zn9w+DBPj4+rF69mjZt2lClShWRUXFzcyM3N5eoqCgGDBjA\nF198wcOHD6lduzapqamsWbMGvV7P1q1bqVGjBkFBQbKoO3HihLB9mpmZcfXqVVmkWlhY0KZNG3bs\n2MHLL7+Mn58foaGhxMXFCSFEUlISW7ZswdPTk+vXr5OVlcVHH32EmZkZRUVFWFtbC6X52bNnWbdu\nHRqNRrQZb926hbm5udRVubq68vPPP5OXl8eFCxeEqlwRECUkJAhj4KNHjxg1apTUedna2uLj40Ne\nXh5Tp07Fy8uL0aNHC2HRa6+9xtatW9HpdAwYMID58+dTVlbG0KFDgXIoj6r7ffjwIc7OzkyZMgVv\nb2/u3r1LkyZNuH//PqtWreK5555Dp9MRHR0NlAcUsrOzycjIYMCAAZSWlmIwGDh37pxQqWdkZAi0\nWTkGUE4s1K9fP9GzdHFxYezYsUD5Yj4kJITQ0FAyMzOpUqUK77//PlAeHJg/fz6pqak4Ojry5ptv\n4uDgAJQ7J4sWLWLLli3CWNqlSxe+/PJL3NzcCAsLY8SIEej1eqKjo/nss8948OABVlZW+Pj4EBcX\nh7Ozszja6enpvPPOO5Ldh/LaBRVAqFWrFn379mXDhg0UFhYSFxdHQkICa9euxczMjA0bNsjLsn37\n9piZmbFkyRImTZrE+fPn2bx5M8HBwezZs4eOHTui0+moWbMm48aNY/Xq1bi7uwspzvr162nXrh2d\nOnXC1NRUWIQ9PDzo2bMnd+7c4fnnn8fDw4PMzEyOHz9Ot27d6NatG4WFheI4BQcH8+KLL1KjRg08\nPDzIzc3lyJEjbN++HQsLC44dO4aJiQnt27enrKyMUaNGsWPHDvR6Pc2aNaNKlSrcv3+fH3/8UfRW\nMzIy+Pnnn7G3t6dDhw706NFDCNBu3rzJhg0bsLa2Zv78+QBs2rSJqVOnkpubS2FhIfn5+QK1Dw4O\npnPnzjRq1Ej0Xyuy/er1eoKCgoQ8YsWKFfTv31/0f8eOHUuLFi1+Nb6goIAxY8aQlJSElZUVgwcP\nxsLCAnd3d/bt28e2bdvIy8vjrbfe4vnnnycyMpKVK1dSUFDAkCFD5Ptv3769QOwNBgOPHj0SNkGF\n9ujfvz+3b99m8uTJTJw4UVi1lX5tSUkJr7zyCiYmJnTs2JFDhw6xY8cO7O3tsbCwICsri3nz5pGV\nlYXBYGD58uXExMRIfXtqaqrIU6SlpTF+/HgJrOXk5GBjY8PSpUuFXErVrHfv3p2rV6+yfft2NBoN\nR48eRa/Xk5OTg4ODAw0aNBAW9EePHuHk5CTsgAA//PADAJ6enoSFhWE0GrGzs+PevXu8+OKLnDhx\nAldXV6ysrARxULt2bTZu3Ii7u7uwfc+cOZPk5GScnZ25cuUKsbGxFBYWcufOHRo1akRQUBCWlpbk\n5eXRrFkz9u7dy65du2jQoAHnzp3DaDTi6OhIYWEhLi4uPHz4EGtrawwGAzt37sTU1FSQAIrfQBH6\n9evXjyVLluDn58fMmTN/U4vuL/vfsKdJ0wC/Ign5Mywot23bRnR0NGVlZTg7O3PhwgXhTdBqtdja\n2hIcHEzr1q0ZO3YsV65cYdmyZUyePPlfOt/GjRu5desWNWvWZOfOnbz66qu88sorAOzfv5+SkhK6\ndOkClAenTUxM8Pb2xsLCgp07d7Jnzx5BSPyzMi3PYpxivx04cCBlZWXY2dmxbt066tatS926dVm/\nfj2FhYXExsby5ptv0rZt22f1VQGwcuVKiouLqVWrlpz3ww8/BMpZjd96661ner5/p0VHR3Pu3DlJ\n0jg5OdG4ceP/05D6ikzCer1eWL4V465iG4dfCM3+rFbx/Xjjxg1pjx49mvXr1wMwb9480ar/b7A/\nzGkdOnQohw8fZuvWrWRkZFBYWMjmzZt56aWX6NevH7m5uaxfvx4nJyf8/f1F97FKlSqy7ejRowA0\naNBAIHUZGRl4enpiZmbGo0ePhD31559/ZteuXbi7u3PgwAFatWrFiBEjOHjwIAaDATs7O9q3by/E\nKTqdjueee46mTZty8OBBQkJCsLGxwdvbW+jU9+zZQ3h4OKtWrZI6sJkzZ9KyZUuCgoI4duwYXbp0\n4cCBA9SrV4+EhARSUlIoKyvDwsICS0tLcnNzqV27No8ePSI+Pl4cbqXJ2LFjR8nuvvzyywIf9vX1\n5bnnnpOshqmpKd26dePUqVMUFhbi4eFBenp6pZe4ygJ6e3vTuHFjVqxYISzJJ0+epEqVKnh5edGt\nWzdCQ0MJCQnhhx9+4M6dO4SGhhIbG0vdunXlvisNSBsbGwwGAy+88AIXL16URaPRaMTe3p78/Hw8\nPT0xMTGhevXqBAYGcvnyZR48eMCJEydExNzd3Z39+/dTWlrKoUOH+PLLL7l27RpZWVm4ubnxySef\nEBQURF5eHt9//71kVlT2XafTkZWVxapVq9BoNAQGBjJgwABiY2NZuXKl1B/a2Ngwbdo03NzcJIOX\nlZXFxIkThWl0586duLi4kJ6eztmzZ9m9e7e8yPft2yekU2lpaeTn59OhQweRIxk3bhxz5szB1NRU\nYLihoaFMmzaNbdu2MXnyZLp3786qVauoW7cu9vb2GI1GAgICuHXrFrdv36ZHjx6MGjWKoUOHUq9e\nPa5cuYK9vT29e/cmMjJSkAJKCuKFF14gICCASZMmMXLkSNHVLSoq4siRI1haWtK5c2cGDx4skOCU\nlBQ+/PBD2rZty/379wkLC+PDDz8kNjZWdO5MTEzYtWsX6enpHDlyROqNbGxsmDx5MjNnzuTQoUO8\n+uqrGI1GFi9eTJMmTRg/fjynT5+mqKiIli1b8vXXXxMdHY2XlxcNGzaUOnGFAqhVqxaenp5Sw3jp\n0iXeeecdunfvLiiEMWPGyHOVkZEhsPj79++j0+lYunQpQUFB9OzZU2Cx+/fvZ+7cueLcOzg44ODg\nQIcOHbCyshKSn59//pklS5YwYMAABgwYgJ+f31PnLQ8PD6ZMmcL169e5cOEC9erV44033uDq1as4\nOzuLFp5Go2Hs2LFCdmZpaUnr1q1JSEggNzeXe/fuUb9+fbp27UpxcbHIVYWEhJCSkkJcXBze3t6s\nXbuWSZMmYWdnx9SpUxk2bBj9+/cHyrMPffv2xcHBAX9/f3bt2sWiRYu4ffs2Bw4cICQkBE9PT5yd\nnRk3bhzHjh2jUaNGbNq0ieDgYDp16sTatWuZMmUKS5cuFT3mWrVq8dJLL+Hj48PKlSvFMU1KSqJx\n48a0aNGC8+fPo9Vq6dKlCxkZGdy6dYtXX32VDRs2kJWVJZqBAOPHj5d2dnY2H330UaUa/pMnT1ba\nb2lpKXPhp59+yqlTp4iNjSUtLU0y7cXFxdjY2BAeHs7XX3/Nl19+yWeffcb3338vNe7Jycm4ubn9\nU++lv+zPYU8uLJ+UnakYcPpvt6ioKObOnUtJSYkwtGu1WoKDg6lSpQoREREMHDhQgs/t27dn3759\n//L5Lly4IO+nd955h8WLF5OSkkK/fv1E8kOZQkcpBtq4uDhef/31f1mm5VmOu3z5MpGRkYwZM4bP\nP/+c1atXs2zZMqZPn05ERAQTJkxg+vTpz9xpvXv3rsindenShdWrVzNv3jyGDx/+pwqSrV+/nqSk\nJF566SVZB6Wnp7N3714uXbok75n/a7Zly5Y/+hL+Y/ZbQb2KDNK/F9XxrO0Pc1q1Wi2dO3emc+fO\nT93v5ORUSZOwoqkIflhYGEuXLuXll1/G19eXxMRExowZI9IHoaGhzJw5k+joaE6cOEF6ejq9e/fm\nxIkTbN68mTVr1kgt5dPOMW7cOAA6dOhAaWmpHEdpXyqY78CBAwEICgqSPl9//TVr1qwB4Pz58wwf\nPlyOXfFYUVFRTJ069an7Dhw4QK9evWRfp06dKl2jr68vUJ7WLywsxMrKil69enH69Onf/FxPmqp3\nUy+rTz/9VBhOmzVrRrNmzejTpw8vvviiwIMvX75MeHg4gEimKDMajezfv5/bt29LDZwio1J1nABt\n2rTBysqKVatWSd2ZghMDwqKrNFivXbtGTEwM+fn5ODs7Y25uTsOGDenSpQsPHz7Ey8sLOzs7Dh06\nREZGBoGBgVIs7+Pjw6xZs9i3bx/Hjh3D3d2doUOHMnz4cOLj44HyTLxOp+Obb77h66+/Fof/4sWL\nlJWV8frrr1e6b6tWraKsrIzExERxOJUpaY4XX3yR0aNHU1RUxJgxY7CwsGDv3r2ikQfQsWNHioqK\nGDJkCMuWLZNgQ1FRkTjt+/btk2i0mmRUFi0qKgood6by8vJITU3Fzc2N2NhYDAYDP/30E7Vr18bX\n15eSkhKuXr0qNYtlZWV89dVXbN68Gb1eT3h4OHq9HkdHR7788kuys7MlcAPl2UiVLTMajbi4uDB7\n9mzJkBuNRlJTU2WR8PrrrzN27FjefvttRo8ezciRI5kyZYrcp3fffZeqVatiNBr56aefgF/khrKz\ns3FycqJVq1bSv2PHjhQUFPD+++9LFn7IkCFYW1sLk7erqyvt27eXMSdPnqzEZB0XF0dERMSvfgd1\n6tRh+PDhWFtb/6bDCmBtbS3MzT169JDtzZo1q9RPp9MJ3DcwMJDAwECgXA4BKv+W3333XerWrfur\nc925c4fCwkK8vLxkm7e3t8CafX19SU9Px8HBgcTERDQajUhftWzZstJcsn37dpmPVJ2fv7+/1JOq\nSGp+fj43btzgxIkTbNu2DScnJ8m+DhgwQFg8/f39+eyzz+Rebdu2jQYNGrB06VLs7OwYP348S5Ys\nISgoSL5zlTlRRHgDBgwgMjISjUbDvHnzmDhxIl5eXty4cUNQHKtXr0an05GamkpwcDBHjx7F09OT\n/fv3o9PpGDdunGjHzZkzhz59+rBy5UoePnyIq6sro0aN+s3v8i/789r/0sJSIQgUs7zSQFTZxbt3\n71JaWipw+eTk5H9I2u23TJUjQPl8FhoayooVK1iwYAGlpaU0a9aML774grfffpvGjRvz448/0qRJ\nE1JTU6lZsyZdu3b9/R/6Gdj+/fsBhH194MCBXLp0ieXLl1NUVCSlHs/aKi7o1Xm//fZbpk2bJt/R\nn8EuXbr01HdhixYtGD58+P9Zp/X/kj0tqwxI+8svv/yvQ6v8YU7r37ILFy7QsGFD+fvgwYNA+aIV\nyhdbMTEx7NixA1tbW8aNG0fVqlWldlKNUTWMWVlZjBgxguLiYo4fPy5t1U8dt+J5VE1HxT6NGjWi\nUaNGFBcXy/HVvopjVZ+K11HxPEePHqVjx45kZWVJ3YXar7KY6hqfvBcXLlwAoGHDhrJPo9Fw48YN\nGjZsyMWLF8URU/ufNubChQv4+fkxduxYqb/TarVMmjSJrKwsuY85OTk4OTkxduxYrKysyMnJ4Y03\n3uDgwYM0adIEGxubX92DLl26SFZSRfAAWeCmpKTIIvnIkSM0a9aMI0eOULVqVUxNTcnOzpbMtWIc\nzcvLw9zcHGtra6ysrCqdo6KT0adPn6c+UxqNhldeeUVgUFBeRz1+/HiplVGmJHRCQkIEBtu2bVv6\n9euHTqdjy5YtBAUFAeWLJ41GI6RDFc9nZmbG48eP5RzfffcdLVq0IDQ0FKPRyIIFC4Rox8LCQuDK\nimlVZaJbtGghxD4KZmtjY4ODgwOZmZkAote7cuVKSkpKcHFxEXh2fHw8U6ZMYc+ePdy4cYMHDx5Q\nUlKCTqcjKChIJFjGjh3L8uXLGTJkCD/++KPUR6oARVhYGGZmZuJUQrmzb2JiQm5ursD4b968ib+/\nPzNmzBCHUQVGKlq1atUIDAykX79+AGzdulUyJqoeVgUvBg4cyEcffURsbCwRERE0btyYLl26UFBQ\ngL29PcXFxXz33XdyrVAOn1UwwhUrVjBw4EBsbGw4ffo0TZs2lX0Gg4EZM2bIc6D6/pY9uX/FihVk\nZmZKXbiSX6jYVvbkNlVHPmDAANzc3H61f9CgQbItPDycYcOGMXbsWJn7JkyYQJUqVSrNfRXPU3HO\nUtsUciM8PJzk5ORKn8na2rrSmAkTJgDlkLgGDRqwcuVKHB0d6dmzZ6WXWWZmpgSLoqKi8PDwQKvV\nUqdOHSwtLdHr9TRu3BhAstJNmzYlKiqKc+fO4eLiQt26dYmPjycyMpKsrCwiIyMpKSlh+vTpzJgx\ng5YtW+Li4iJojDFjxghRWPXq1XF2dmb79u2UlpZKIDA2Nla4DP6yv+y/0RQhmk6nw93dXXgr3n33\nXbZs2cIXX3zBqFGjmD17NsHBwRQWFv7N+envWbVq1YiJiZFAmYmJCYMGDWLz5s2cOXOGBQsWcPTo\nUSIiIkhJSaGkpISDBw/SuHFjhg0b9qw+9u82Hx8foqOjKy28S0pKePXVV9m0aZOUNf27zlsRQvv2\n22/j6OjI6tWrn/n5/l1mZmbG3bt3BR2k7N69e79az/xl/5tWMfj37rvvAr9AhitConv27CnJCo1G\nw5dffvmfv9j/b/+VTuu9e/cqOWpPLnbNzMwYMmQIBQUFPH78mFOnTvHqq69KxkGNGTFiRKXxOp2u\nUvvJY1dsV8zWPHl+dZwRI0Zw/fr13+xT8TpUv4p9jUYjISEhv9pW8RhP3ot79+4BEBAQwOHDhzEz\nM+PFF1/kyJEjREdHk5KSIvWSaqwao9rqf0dHR4YPH05CQoKQuCgyJEViYWdnx5IlS3j06FGlfQcO\nHBDI4oEDB556Dyo6HOrvgQMHSqR4zpw5BAYG0rJlS86cOUNqair29vZSs+bq6kpGRobIh3Tp0oV1\n69aJjmbF8zx5jifP/bR+VlZWFBUVCXsv/LLYr1q1KkVFRbRq1QpTU1OsrKxo1KgR/v7+JCYmcunS\nJcLCwrh58ya7du3itywwMFDOoY5TsZb2q6++4scff2Tp0qWEhISwe/dukeV59OgRZWVleHl50aFD\nB4xGowQg6tSpQ/369bGwsGDr1q2YmZkxadIkHjx4wNq1a+nYsSO7d+9m9+7dLF26lI8++ojQ0FC8\nvb1Fk/b06dP07NkTe3t7jh07Rq1atRg/fjyOjo4MHTqUxMREFi9eTK9evYR4rGfPnqxbt67S7+PT\nTz/F0dGRjh07YmFhwYoVK6S2UT3fOTk5vPzyy5XuzauvvlppUVHRuejWrRvwa3SBj48PEydOZN++\nfZLBmzp1KmZmZkLUo0zJ21Q8zvDhw9mwYQOrV6/GxsYGo9FIQUEB3t7eMl88ec4n7cn9nTp1Eibj\nis/b0xaWT24bOHAgFy5ckN/Ok/v79+9P7dq1ZZ+VlRXDhw/H1dWVx48fYzAYcHJyqjT3Pe04Op1O\ntinUx8CBA0UW62mfWZUhFBUV0alTJ3x8fIiNjSUjI4Pk5ORKete9e/dmxowZNG3alKZNmzJt2jSB\nCffo0YODBw8yfPhwZs2aRYcOHTh//rxcS+/evfl/7N13fJRV3v//12QmhVSSTAiEBDABpAhCCIhl\naUZd0XXRXXWlrKyLKFGKssKCInDTguLCUhQRDCoouDeaVUTQgMBNkyC9hl7TJz0hbeb3h9+5fkRQ\nkAQzwPv5ePBgrmvONXOuk2uS+VznnM9Zvnw5kZGRHD582FhaadSoUUycOBG73c4jjzxCbm4uq1ev\n5sUXX+SWW27BZDKxZcsWY0j/2LFjKSoqYtWqVbRo0QKAb775xnhexBU5f38BRg4JDw8PunXrRrt2\n7WjUqBEZGRn8/e9/p127dvj6+lb5Pfdr/dwINufa4QDdunWr8WG1Nc0ZQF+q1/2RRx6hqKioyuiu\nmn7fn7r33nu59957a/z9rpW4uDjmz59PSUlJleHB3t7eVfI9yM3hehm9YnK4yCD8w4cPs2TJEoYP\nH26krD9w4AAmk4l27dpRXFxMfn4+jRs35uGHH+abb75hy5YttGzZkj59+rB27Vo6deqE1WplxYoV\nxmOgyvaKFSsoKiqie/fubN269WePufA4Z7mtW7cax/5SuQtf7+f2Xfg6FRUVbNy4kcDAQNq2bcu6\ndev47rvvcHNzo2fPnuzYsYMjR44YwXKdOnU4e/Ys7u7ulJWVGfN969evb2T9cgZdpaWlWCwW6tWr\nh5+fH9nZ2VRWVtKqVSs8PT3JycnBzc2NBg0acM899+Dt7U16ejrff/+9MUy1qKiIgIAAKioqKCoq\nwt3dndTUVIqKivD09MTf35/o6Gh69Ohh9OLAj70c8P8HI85ej/nz59OpUyciIiKML/uLFi0iJSWF\n9PR04uPj+eqrr2jbti12u513yVvXRwAAIABJREFU3nkHT09PZs6cyc6dO3n//feZOXNmlff56Xv8\n9L0vVe6nz8OPPUY/Xddx9OjRzJ49mylTphAbG0tFRQWbN2/m8OHDTJ06lSZNmjBgwACjVwqgadOm\n9O3bt8pw2BYtWvDnP//ZmO/nXOpo4sSJdO7cmc2bNxuJqh599FEjS+0//vEPIiMjKSgo4N133+Xo\n0aOsWrUKNzc3Tp06xd///ne+/vpro+d5x44d7Nq1iwEDBhhDmYYPH05CQgKLFi0iIiKCpk2b8sgj\nj3Dy5EneeOMNI3Ovc93aZ599lvT0dG6//XZiYmIYPXo0bm5uDB06lD179jB69Ogq53uhM2fOYLPZ\naN68eZXA5qd3pwEjY2bTpk05c+YMO3fuJCwszBhO+1MXlj9w4AD79u0jMjLyZ8v/EufNj4SEhN+8\nB8H53n5+fhw+fJiGDRvi7e1NWVkZn3/+OcePHyc8PJzHHnusymfqat/Lz8/P+P/XKC8vZ9OmTcbv\npg0bNnDo0CEaNmxIbGysMb8MfuzZ3rBhA+fOnTOSzd177700adKEpUuX8sc//hEvLy8yMjI4ePAg\nXbp0IS0tjalTp1aZzvDAAw/g7+9Pbm4uixYtoqCggFGjRjFlyhSGDBly0ciIn56nyPWusLDQGKXi\nvK4zMjI4fvy4sWZ4dezfv5+6desSFhbGwYMHSUlJITw83Pg9ev78eXbu3ElWVhZubm6EhYXRtm3b\nagXL14Lze2H9+vWr7D958qSxpmxNy8rKwt/fHw8PDxwOB2vXrjV+XzuXG7ue5ObmVknE5Jx6I+KK\nai1onTp1apXtffv2UVpaSvv27Tl16hS5ubl06NABb29vvv/+e2Oo2v79+1m7di0dO3Zk9erVxpIQ\npaWleHt706BBA44ePWo8vvvuu/n444+N9SqPHj1qLLPhTIgUHh7OiRMnqhxz5513MnjwYLy8vIx1\nAp2JfMxmM1arldjYWLp3735RuYYNGxqvV1BQcMl9F75OnTp1sFqt2O12fHx82Ldvn7EumTPxgMVi\noaysDLvdjslkMjILenl5UVBQYCSwcf67cDjmT9fg9Pb2Jjc3l7CwMDw8PGjSpAk+Pj5s3bqVNm3a\ncO7cOVq2bMmaNWuw2+3Uq1ePlJQUfHx8qFOnDunp6Xh6euLm5kZpaSmhoaHGeb7wwgu0bt36qq+L\n7777ju7du1+0DzD2X6rML8nLyzN6Cp3DWp3bV2r+/PnMnj2bgwcPUqdOHZo3b07//v0ZNGhQtYLW\nvn37smnTJk6ePIm7uzstWrSgRYsWuLm5GZlWv/rqK0pKSggMDCQmJoaVK1fSo0cPQkJCKCgoYMWK\nFTz99NPcc889DBgwgJEjR9KyZUsGDBjAtm3baNeuHTt37mTixIl88cUXdO/encDAQHx9fTl27Bi7\ndu0y1i7u2LEjbdu2NdYLzc7OZvv27eTk5ODt7c3w4cNZuHChcb5Hjx5l0aJFBAYG0rt3byZMmEBa\nWhp16tTB09OTAQMGEB0dzZo1a1i0aBFWq5XCwkIqKiooLy83PgfO7OB169aluLiYO++8k8cee4x3\n330Xq9XKn/70pypZNtPT07nlllto1aoViYmJPPbYYxw7doxOnTrRqVOnKsGyk91uNzJXl5eXG5m/\nCwsLadu2LYAxv+vZZ59l7dq1fP/998YfdOe8svPnzxs3HJxzmTdv3ky/fv1Yv349PXv2pF27dsyf\nP5/evXvz+uuvY7PZaNWqFbGxsUydOtXoYXZ++Zk5cyZms5l3330XT09PWrduzbJlyygsLKRevXq0\naNGC5cuX065dO/72t79ddGPFafHixfzhD39g9OjRDBw4kPj4eGOZHh8fH8rKymjRogWDBg3inXfe\n4ciRI4SFhTFw4EBuueUWo51WrVpFcnIyWVlZNG7cmH379uHu7k5xcTGhoaFkZ2djMplo27Yt9913\nX5XP/OTJkxk1ahRHjhyp8mWoadOml5wf4/w8Hz16lMzMTMLDwwkPD6/yXHFxMYmJiSQmJhIREUFw\ncDDPPPMMlZWVLFmyhOPHjxt1f/HFF42hj/n5+fj7+//iZ1ukNi1btszIODt37lz27duH3W4nJycH\nPz8/PDw8KC4uxmw2065dOw4dOlStrLgLFy7kyJEjxrJBe/fupV27dhw4cIAmTZoQFRXFl19+aXzu\nmzdvjsPh4NSpUwwZMqTKHPvatGnTJj744AO8vb2x2WzUq1ePO++8k0ceeYRXX32VqVOn8sYbbxgj\nz2rK8OHDmTx5spEDIz09nY4dOxorVTiXULyenT179rpaMkpuHrU2PNhms9GwYUPuvfdeTCYTJ0+e\npKysjEceeYS5c+diMpmMJBobN27EZDLRunVrWrduzX//+1/69+/P/v37jXle8GNSIWeKdufjjRs3\nUlpaSrNmzWjUqJEx5DIiIoIzZ85QXl5uDJ91fiHduHEjn376KQ6Hw1hDtFWrVqxbtw6z2YzJZKKo\nqIglS5awZMkS3Nzc+NOf/sQXX3xBq1at+P7777Hb7Zw/fx6LxUJERASnTp2qss+53lNxcTHp6emc\nPn2aBg0akJ2dTXBwsJEZs3fv3tSpU4e3336bfv36ERYWRnp6upEIJzU1FS8vLyoqKnA4HISFhXH2\n7Fl8fX0pKSmhsrKSsLAwzp07h7e3txGs1atXD7vdzpgxY5gyZQrjxo3jvvvuY+jQoXz00UdGRmE/\nPz/Gjx/P0KFDyc7OJiAgwBi2O2/ePMaMGcOpU6fw8vIiKyvLmEvmvJng4eFB3bp1iYmJoVevXvj4\n+DB58mSGDRvGiBEjuPXWW2nfvr2RcOfTTz/l6NGjDBgwwLhWPv30U+x2O0eOHMFkMvH999+zatUq\nY4iiM5j39/enoKCAyspKbr31Vv785z9jNpt58803jT9c06ZNo6ysjMmTJ+Pj44Obm5uR8Kh58+Y8\n/fTTeHh4XLSvd+/exrUSERHB008/bdyRPHHixEXXt7NHEDACu+eee466devSr18/SktLefzxxykv\nL6dz585069aN0tJSI8vvnj17KCoqoqioyOhhzsjIwN3dnVGjRpGRkUF+fj5+fn6cPXuWESNGsG3b\nNgYMGIDD4aB///7079+fkSNH0q5dOz755BP8/Px4//33Wb16NeHh4Zw6dYoWLVrQpk0bMjMz8fX1\npWnTpuzZs4ewsDBGjhzJ+++/T/PmzbHZbPzud79j/fr1PPXUU7Rr1w6bzcb8+fONbL1jxowB4IMP\nPuDw4cN89NFHLFu2jP/93/+ladOmBAQEEBoaSpMmTWjVqhUfffQRLVu2JDY2ljfffJPAwEBuv/12\nNm3axJdffsl9993Hjh07yMnJ4YsvvuD8+fNVhqDv3buXvXv3YjKZWLp0qTHfIiEhgTZt2nDPPfcQ\nHR1t9AbOnTuXvLw8mjRpgru7Ox4eHoSHh/PZZ59Rt25dOnToQEFBgZHMw2q18uijj7Jlyxa2bdtG\n48aNyczMpFWrVrRr146ioiISExMpLy+nvLycb7/9liNHjpCbm0u7du04fPgwH374Ibm5ufj7+9Oi\nRQtmzZqFyWTi7rvvZu/evRQVFVFQUMCePXvw9/dn165dPPXUUyxdupQmTZqwbds2srKyCA8Px8PD\ng5YtW/Lee+8xYsQIY7TAhbZs2cKdd95JVlYWn3/+OX5+fuTl5WGxWCgqKsLHx4ejR4/y6quv8re/\n/Y0xY8awZ88e5s+fbyxNlZCQwL59+wgJCSEjI8O4gXb+/Hnc3NyoW7cu4eHh7Nq1i5YtW7J48WKa\nNm1KSUkJ+/fvJzMzk7/85S94eHgQGhpK48aNyc/PJy0tjQEDBnD77bczZMgQgoODeemll/j444/5\n+OOPKSgowN3dnbp16/LAAw/QqlUrI0nYnj17aNCggXHjzdnbX1paatzsc/7+W7BggZEcbtKkSRfd\nIBVxJRcuk7Jp0yZeeukl2rdvT9++ffHz82PatGmMGDGCyspK4uLiyM/Pr1ZW3N27d/PWW29RVlbG\n888/z9y5c/H09KSiooKRI0eya9cuJk2ahKenJ/n5+cyaNYtXX32VkydPMm/evCqZwWvT559/Tnx8\nPLNnzyYmJoZNmzZx6NAhxo0bZ4wwuhbrTdrtdmP61549e5gyZQpubm506dKFV155pcbfrzZMnDiR\nd955p7arIXKRWgtap0yZwooVK/jss8/o168fTZs2Zdu2baSnp9OiRQt27tzJ0qVL+d3vfofFYsFu\nt/Pdd99x6623GnM9TSYTaWlp+Pn54ePjY2QKnjNnDvDj5PgNGzYAPyYH2rBhg5GN8/HHH2fOnDmY\nTCaee+45Zs+eTUVFBenp6bRv354zZ84YXyKzsrKIi4vjxIkTFBcXExkZya5du+jYsSM7d+7E4XCw\ncOFC7HY7cXFxDBw4kGHDhhEZGcn3339PcHAwZ8+eJTg42Njn7e2NyWRi0KBBzJo1C7vdTp06dSgp\nKeHcuXOEhYUZSXZKSkqw2WxGogHnl3Pn3NCHHnqIzz77DIfDYcxrc/YKO7OCORwOY2kNs9ls9L44\n16AEjCHPF2YUdj7nzOZ54ePy8nKjDr///e/ZsmULNpuNnj17kpaWxqFDh4wg7MCBA4wZM4ZHH32U\n3bt389xzzxlfOLdt28asWbOMgOSbb74xssleaNu2bdjtdvLy8mjatCmFhYVkZWUZa7rl5eUZWZT3\n7t3Lrl27jGOdX8idhg4ditVq5bbbbiMwMBAvLy+ioqKYN28e/v7+P7tv5MiRfP/998ybN++K7+A6\nA7slS5awe/du/vrXv/L111+Tnp5OvXr18PT0xMPDg9zcXPLz8ykvLycvL4+pU6fy7LPP8vXXX2M2\nm42fZ2pqKufPnzfW4R0/fjxWq5WcnBw++OCDn027X1ZWRt++fVm5ciUTJkxg+PDhZGZmGvOpvL29\njXmSZrPZ6Bnz9PQ0rtUjR47w17/+lY0bNzJy5EhKS0vJzs4mNjaWxYsXU6dOHby8vGjTpg0A48aN\nY8CAAcZw9LNnzxoZC503HpzLB+Tn57N69WpjnumgQYOoqKjA19eX9u3bc/z4cVq3bk1xcTEbN27k\nk08+AX7MIOz8PA0fPpzi4mK2bdvG6tWreffdd+nQoQN33303x44dY+7cuaxYsYIPP/wQs9nMkSNH\njCFee/bsMZJMHTt2zLhj3qJFC7799lsyMzNp2bIl//d//8f27dtxOByUlJQY7eu8WZaammoM/z16\n9Ch+fn44HA4efPBBlixZgtlsNm60vfjii2RnZxs3UYqKinjvvfcoLS0lMzPT+IycPn2akpISHnzw\nQdasWWNc0z/NOpyTk8OHH36I3W6ntLTU6Ln+6KOP6N27N61atSI5OZni4mI++eQTCgsLiY2N5aOP\nPuLvf/87ISEhRnZi5w06Z2+pcwpCbm4ue/bsAX4Mkt3d3Vm1ahUhISEEBgaSmZnJrFmzSE1N5Ycf\nfuDIkSNGRvL4+HhCQkJIS0sjOzub8ePHk5eXZww7LCsrIz09nQ8//NDIJP3+++/j5uaGn58fdrud\nZs2acerUKeOYyspKysvLiY6O5o477mDmzJmkpKQYPUQi14vKykpj1IdzdQLA+JsNVDsrrvOGufM1\nnP87/647bwwBxggygMaNG1f5fVfb7HY7gYGB5Ofn06dPH3r27El8fDzh4eFs2bKFtLS0a5L51Gq1\nsnfvXm677Tbj96Vz1NP15P333//Z54qLi3/DmohcuVqboODm5sbDDz9MXFwcn332Gd7e3ri5uZGQ\nkMCGDRvIzc1l2bJlDBs2jMrKSkpLS0lISOCVV16hbt26vPbaa5w+fdpIruMcAhsTE0NISAjvvPMO\nMTExDBs2jIiIiCqPgSrl7rjjDho0aMDChQuZN28ew4YN45133sHb27vKMfDjF/uXX36ZefPm8fLL\nL/Pee+/RoEEDEhISjHIWi8Uo16hRoyqv59x3YR0ff/xx/P39ycnJoW/fvsaXuhdeeMH4Ijx06FDc\n3NyMdV4dDoeRhGXZsmVG/ZxDg8vKyoxymZmZuLm5UVFRQU5ODhkZGaSnp+Ph4cFrr71mJMi5MFPw\n3LlzKSgoIC8vj7lz5xrZlL28vEhLS6OyspIXX3yRsrIyzGYzPXv2xMfHB7vdbiy7U1BQwJkzZ1i6\ndCm7du3i7NmzLFiwwAi+LBYL48ePZ9q0abi7u+Pm5oa3tzf169fHx8eHQYMG8fLLLxuJJyZOnMik\nSZOAH4dxOgOV0NBQY9hzYGAgzZo1o169egQGBtKgQQMsFgvTpk3j008/JSQkBIvFwpIlS5g9ezZH\njx7lL3/5CxaLhYcffpjMzMxf3BcSEmLsu1KVlZW0b98eu92Ol5cX9913H2azGYvFQnFxMSNGjODo\n0aMEBwcTEhLCN998g9VqNYJmLy8v42cZEBDAvHnz8PX1paysjKCgIEJCQoyedGcWX6e8vDyWL19O\neno6drudhQsXUlFRwZdffklBQQH+/v5UVFQYd6ZTU1Np1KgRZ8+e5fXXX6esrIycnBzMZjOffvop\nTZo0MYYev/vuuwQHB7NlyxY2b95sfBE6ceIE+/fvx83NDS8vLxo1asSxY8c4efKkkb23oqKCkpIS\n6tSpQ2hoKAEBAdxyyy3MmTOHadOm0aRJE/74xz/i5uaGj48PPXv2JCsrC6vVyu9//3vc3NxYsWJF\nlRspzi8o3t7edOnShVGjRjFjxgyaNm1KYmIiZrOZjIwMHn74YeOmRHR0NIGBgdSvX5/Zs2czZ84c\n6tati9lsNjLrHjt2DA8PD/z9/XnqqaewWCxMnjyZGTNm4OfnR+vWrQkKCmLs2LEEBgZisVh4+eWX\nSU9Pp6SkxEhy9Oqrrxq9vm+99RZz5szBy8uLTp06Gb//nJ9ds9lMkyZNiI+Pp06dOowdO9YY5uoM\nxMLDwxk4cCBjx441/vXp08eYNpCfn096ejru7u6MHj0ad3d3PD09adGiBf7+/ri7u5OSkmL8rEJD\nQxk3bhyhoaGEh4czZ84c+vTpg5eXl7GsRHp6OjabzehxHTt2LOPHj8dsNjN79mwmTpyIm5sbwcHB\nTJ48mdOnT3Pq1CkyMzPx8/PDZDIZ805DQ0ON5FAWi4Vx48YZN1A8PDxo06YNFovFuElXt25dTCYT\nkZGR3HHHHZjNZioqKjCZTNxzzz1YrVZOnTpF27ZtmTNnDlu3bnW5dP3Xyttvv82AAQN+dokfZ/A/\nePBg/vGPf1yyl15qR3p6OlOnTiU+Ph43NzcmTZrE3r17KS0t5cSJE/Tt25djx44Z81irmxW3ffv2\nvP7664wdO5YePXrwr3/9i88++4zJkyfTsmVL2rdvz+TJk/nss8+MfAvw4zxbV7oJVKdOHeO7iHOp\ntnHjxpGTk0NlZSWTJk0ybvzXpOeee45ly5YxduxYI4v5+PHjmTBhAv369avx97tW1q5dS6NGjYiM\njLzo34W5CkRcicskYtq+fTsHDx6kV69enDp1iqysLPz8/KhXr57R2xAUFISHh4fRG1ReXs6tt94K\nYPRO/vTxpZ4DjCGzP3fMhfsu/N957C+Vu5J9P32dC+d+FRUVsXnzZtzd3WnTpg3FxcXs2rWLsrIy\nQkNDKS4uJigoyFjOxG63G/s8PT1JTU3F29ubnJwccnNzCQkJMb6UZmdnk5OTQ7169TCbzURERFw0\nd+H06dOcPXuWiIgI7Hb7RY8tFotxF3Pz5s3k5+dz11138fvf/57Zs2fTtGlTvvnmG2O+7WuvvcaB\nAwfYs2cPY8aMoV+/fkavydy5cwF45513OHbsGKmpqfj7+9OmTRu6d+9OixYt+Pe//82OHTtYuHAh\n8OOyNosXL+aVV14xhl46l9NITk5m9OjRvPzyy5jNZiZMmMDIkSMJCgri9ttv54cffsBms9G3b19j\nTdlZs2YxaNAgHn74Yb744gs8PDx+dp/zS/A//vEPo4fwcl599VWeeOIJ3n//fYqLi3n22Wf5+OOP\njaVmzGYzNpuNOnXq4OvrS2FhIXPmzMHX15fs7Gx27txprOG3Z88eOnXqRMOGDTl27BgOh4NOnTrx\n5Zdf8u233zJz5kxjyRn4cf1M+HHOeHl5ObfccgtnzpwhPDycQ4cO0bZtWzIzM+nZsyd5eXnMnz+f\n8vJySktLcTgcmM1mI8vuE088Qbdu3ar8QTtx4gSLFy/GZDLx9NNP89///tcYXfDcc89x6623kpGR\nweLFi9m9e7cRWJeWlhqBoHM+dO/evenWrRv5+fnk5ubSqFEj/v3vf7NlyxY++eQTSktLWb16tXEX\nvVevXmzZsoXU1FTGjBnDggULqqx5/FN79+5lzpw5uLu7U1hYSP/+/fH19WX37t1YLBb69u0LwNdf\nf01ERARz5swxRnkMHDiQVatWceLECXJycvDw8CAoKAgvLy969eqFyWQykqydPHmStLQ0duzYwYMP\nPsgDDzzA6dOn+eSTTzh69KgxvCwkJIT777/fyKYbEhLCvn37CA0N5eDBgzz55JN4eXlVSQTXqFEj\nFi9ezPDhw9myZQuNGjW66PfR3r17Wbp0Kbm5ucbwOH9/f0JCQiguLiY4OJj+/fvzzTffsG7dOoKC\ngnjuuec4fvw4LVq04IsvvqCgoIDhw4fj5eWFzWbju+++o6ioiOXLl2M2m41kXXfddRf5+fmMGjWK\n+++/n65du/LRRx9x+vRpbDYbUVFRZGVlGfNhu3fvzqOPPsqTTz5p9JieP3+eOnXqEBERQbNmzfjq\nq69o0qQJEyZMYO7cuWzatIm7776bbt26MX36dBISEoxrevLkyZSXlxMWFkZoaCgdO3akW7du5OXl\nER8fb/Ta3uj279+Pl5cXc+bMqbJuttP27dtZuXIlo0aN4vDhwyxcuJDJkyfXQk3lp/bv319l+/z5\n86xbt44zZ85QWFhI48aN6dixI927dzeG+Z89e/YX15O+nJSUFODH5eLS0tLYunUrVquVzp074+bm\nZiyd16RJE6Pn1263U1lZ6TLLoZw4cQIvLy+2bdtGZGSkMerEmSgxPDycRYsWGdNWatqZM2dITU2l\nsrKS4OBgoqKiXC5R1S8ZP348f/nLX4zv0Bd64YUXjBGLIq7EZYJWuT4VFhby6aefsmHDBoqKiqrc\nibVYLJjNZgICAujcuTO9evXC19eXrVu3kpKSgqenJ48//niV17tUdmCgSvZR5+P//ve/5OXlkZub\ny4gRI0hLS2Px4sX06dOHBQsWUFJSgsPhICMjg+eee46PPvqIjIwMLBaLsaQK/JitdNWqVZw/f57d\nu3fTqVOnn913YVbTF1988YrayBnYnT9/3hj+XVlZaSwqb7Va6dChA/369SM/P58NGzYQFhZWJdPu\n2bNnsdlsNGvWjOzsbOPxwYMHjXI7duygffv2F72/81jn8FPna2zdupUHH3zQeI2zZ8+SlJRkDJl2\nlj148CDwY0Zq5zEXJjpKSkoiNDSUZs2a/Wy24MOHDxu94lu2bOH06dPceuutBAcHk5KSYvSoRkRE\n4OXlxdq1ayksLKRTp05ER0dXyRr87bffcvz4cWJiYqhTp06VDMKXy0bsfK9LPT979uwqP1OHw2H0\nRgNVnj9w4ACbNm0y5owDRERE4OnpyZEjR4iIiDCSNB08eLDKvgMHDrBx40YqKyvp3Lkznp6ebN68\nmdatWxMYGEhISAiffPIJWVlZxvqNzvnOjRs3NjIK/9qM5xdmMr8UZ6ZgPz8/cnNz2bp1q/Fzyc7O\npqKiguDgYDp06MA999zDV199xebNm7FYLISFhZGRkUFGRoaRaA5+vAnXokULQkNDiYmJMRIsLVu2\njJYtW3L+/Hn27NnD+vXrueuuu/Dx8TESm3z99dc8+OCDzJw5kw8++ICsrCzjuvfy8jKu6x07dtCl\nSxdj6SrndVdcXMzKlSt57LHHLnm+N5qMjAymTp16yaB13rx5tGrVysgdMHToUMaNG/ezCb3ENTnz\nGNT0CILLve61et/qSEtLIzc317hB63TgwAFj9MyN9L41rbCw0Bh9I3K9UNAq18zPZf396f+XOu7X\nZAe+sPyFrw1w9913k5aWRqNGjfj222+JjIzE3d3dSL51qUzFV7vv11qxYgWff/45zZo149ChQzz/\n/PN07NiR7777jpUrVxoJZFasWMGqVato2LAhBw8exN3dnaioKE6ePInJZGL27NnAj0Omf5p05uuv\nv2blypVYLBbOnTvHLbfcQlpaGu7u7pSWluLj44PJZKJnz5589tlnFBQUGPOZIyMjycvLw2QyUVFR\ngaenJ3l5efj4+NC/f386duzIihUrWLx4MbfffjsnT5409l9Ynwuz/np4eHDy5Em8vLxwc3PDbDYT\nEhLCoUOHcDgc+Pn5GZmunZmyQ0NDKS0t/dnju3Xrxp49ezCbzUa5tm3bcvjwYVq3bs2ePXu4/fbb\nqaysNOpRXFxMUVERfn5+RobZ7Oxsbrvttkv+rA4cOEBJSQnR0dHs2bMHPz8/KioqKCgowGQy0apV\nKzIyMozlp+rVq0eHDh3w8/MjISEBHx8f6tWrR0BAAD/88AN+fn5GfZ29ufXr1yc9PZ3o6GiSk5Np\n3rw5BQUFZGZmGsPab7vtNk6ePMk//vEPnn76aSMr+pVkPHcOTw8PD6dLly7ceeedVTLrzpw5k8rK\nSg4ePEhxcTF2ux0PDw/Ky8vx8PAwsoX7+PhQt25dsrKyaNmyJQcOHMDX15c77riDrVu3MmDAgCrZ\nhK/k83PkyBEaNWpESUmJkSzu/PnzfPDBBxw4cIAHHniAlStXEhoayunTp2nVqhUpKSk0aNCAnTt3\nMnjwYNq3b4+vr+8lPwc3g18KWuPj4+nVq5fxRft//ud/6NOnD1FRUb91NeUn8vPzWbVqFT4+PvTo\n0YN///vfnDlzhsDAQHJycnA4HHTs2JFdu3ZRUFCAw+HgxRdfvGj5sCuVkpLCxx9/jK+vL3/605+Y\nPXs2+fn5xut6e3v/4vMb53iLAAAgAElEQVRX+741LT4+nqeeeor169dTv359YxrG0aNH+c9//sNt\nt91GXl4effr0uSbv+9MldZzv+89//rNG3++34Jz+pUzr4uoUtIqIyA1p8uTJjB49urar8ZuoqaA1\nKSmJpKQk4zgRERFX4DKzrZ3zPOXH7HTXIlW7XP90bcjP0bVRVVhY2CWXo7oZBQUFVbk2srOzCQoK\numTZ2NhYYmNjjW39ba4efS6rT21YM9SO1ac2rL6f5uH4Na6fWeMiIiK/QlFRUW1XwSXExMSwfv16\nHA4HKSkpRqZ1ERGR64XL9LSKiIjUpJtljtaMGTPYv38/BQUFPP/88zzxxBPGMlb3338/7du3Z/v2\n7QwZMgQPDw9jDWIREZHrhYJWERG5If3tb3+r7Sr8JoYNG/aLz5tMJgYMGPAb1UZERKTmaXiwiIjc\nkDp16lTbVRAREZEaoKBVRERuSImJibVdBREREakBClpFROSG9H//93+1XQURERGpAQpaRUTkhmQ2\nm2u7CiIiIlIDFLSKiMgNyeFw1HYVREREpAYoaBURkRvSK6+8UttVEBERkRqgJW9ERKqh8tlHarsK\nAKTXdgX+H/N7X9R2FQz16tWr7SqIiIhIDVBPq4iIiIiIiLgsBa0iIiIiIiLishS0ioiIiIiIiMtS\n0CoiIiIiIiIuS0GriIiIiIiIuCwFrSIiIiIiIuKyFLSKiIiIiIiIy1LQKiIiIiIiIi5LQauIiIiI\niIi4LMuVFCoqKmLu3LmcPn0ak8nEoEGDCAsLY/r06WRmZhISEsJLL72Er68vDoeDhIQEduzYgaen\nJ3FxcURGRl7r8xAREREREZEb0BX1tCYkJNCuXTtmzJjBm2++ScOGDUlMTKRNmzbMnDmTNm3akJiY\nCMCOHTtIS0tj5syZDBw4kPnz51/TExAREREREZEb12WD1uLiYg4cOECPHj0AsFgs+Pj4kJycTNeu\nXQHo2rUrycnJAGzbto0uXbpgMplo3rw5RUVF5OTkXMNTEBERERERkRvVZYcHZ2Rk4O/vz9tvv83J\nkyeJjIykf//+5OXlERgYCEDdunXJy8sDwGazYbVajeODg4Ox2WxGWREREREREZErddmgtbKykuPH\nj/PMM8/QrFkzEhISjKHATiaTCZPJ9KveOCkpiaSkJADi4+OrBLo3O4vFovaQS9K14XrSa7sCLkbX\np4iIiNS0ywatwcHBBAcH06xZMwA6d+5MYmIiAQEB5OTkEBgYSE5ODv7+/gAEBQWRlZVlHJ+dnU1Q\nUNBFrxsbG0tsbKyxfeExNzur1ar2kEvStSGuzlWuz7CwsNqugoiIiNSQy85prVu3LsHBwZw7dw6A\nPXv2EB4eTkxMDOvWrQNg3bp1dOzYEYCYmBjWr1+Pw+EgJSUFb29vDQ0WERERERGRq3JFS94888wz\nzJw5k4qKCurVq0dcXBwOh4Pp06ezZs0aY8kbgPbt27N9+3aGDBmCh4cHcXFx1/QERERERERE5MZ1\nRUFrkyZNiI+Pv2j/66+/ftE+k8nEgAEDql8zERERERERueld0TqtIiIiIiIiIrVBQauIiIiIiIi4\nLAWtIiIiIiIi4rIUtIqIiIiIiIjLUtAqIiIiIiIiLktBq4iIiIiIiLgsBa0iIiIiIiLishS0ioiI\niIiIiMtS0CoiIiIiIiIuS0GriIiIiIiIuCwFrSIiIiIiIuKyLLVdAREREamenTt3kpCQgN1u5957\n76VXr15Vns/KymLOnDkUFRVht9vp3bs30dHRtVRbERGRX0dBq4iIyHXMbrezYMECXnvtNYKDgxk1\nahQxMTGEh4cbZZYtW8add97J/fffz5kzZ5gyZYqCVhERuW5oeLCIiMh17MiRI9SvX5/Q0FAsFgt3\n3XUXycnJVcqYTCaKi4sBKC4uJjAwsDaqKiIiclXU0yoiInIds9lsBAcHG9vBwcEcPny4SpnHH3+c\niRMnsnLlSkpLSxkzZsxvXU0REZGrpqBVRETkBrdx40a6devGH/7wB1JSUpg1axZvvfUWbm5VB1wl\nJSWRlJQEQHx8PFartTaqe8OwWCxqw2pSG9YMtWP1qQ1rl4JWERGR61hQUBDZ2dnGdnZ2NkFBQVXK\nrFmzhtGjRwPQvHlzysvLKSgoICAgoEq52NhYYmNjje2srKxrWPMbn9VqVRtWk9qwZqgdq09tWH1h\nYWFXfazmtIqIiFzHoqKiSE1NJSMjg4qKCjZt2kRMTEyVMlarlb179wJw5swZysvL8ff3r43qioiI\n/GrqaRUREbmOmc1mnnnmGSZNmoTdbqd79+5ERESwdOlSoqKiiImJ4a9//SvvvvsuX331FQBxcXGY\nTKZarrmIiMiVUdAqIiJynYuOjr5oCZsnn3zSeBweHs6ECRN+62qJiIjUCA0PFhEREREREZeloFVE\nRERERERcloJWERERERERcVkKWkVERERERMRlKWgVERERERERl3VF2YNfeOEFvLy8cHNzw2w2Ex8f\nT2FhIdOnTyczM5OQkBBeeuklfH19cTgcJCQksGPHDjw9PYmLiyMyMvJan4eIiIiIiIjcgK54yZux\nY8dWWYg8MTGRNm3a0KtXLxITE0lMTKRv377s2LGDtLQ0Zs6cyeHDh5k/fz6TJ0++JpUXERERERGR\nG9tVDw9OTk6ma9euAHTt2pXk5GQAtm3bRpcuXTCZTDRv3pyioiJycnJqprYiIiIiIiJyU7nintZJ\nkyYBcN999xEbG0teXh6BgYEA1K1bl7y8PABsNhtWq9U4Ljg4GJvNZpR1SkpKIikpCYD4+Pgqx9zs\nLBaL2kMuSdeG60mv7Qq4GF2fIiIiUtOuKGidMGECQUFB5OXlMXHiRMLCwqo8bzKZMJlMv+qNY2Nj\niY2NNbazsrJ+1fE3MqvVqvaQS9K1Ia7OVa7Pn/6dEhERkevXFQ0PDgoKAiAgIICOHTty5MgRAgIC\njGG/OTk5xnzXoKCgKl9asrOzjeNFREREREREfo3LBq3nz5+npKTEeLx7924aNWpETEwM69atA2Dd\nunV07NgRgJiYGNavX4/D4SAlJQVvb++LhgaLiIiIiIiIXInLDg/Oy8tj2rRpAFRWVnLPPffQrl07\noqKimD59OmvWrDGWvAFo374927dvZ8iQIXh4eBAXF3dtz0BERERERERuWJcNWkNDQ3nzzTcv2u/n\n58frr79+0X6TycSAAQNqpnYiIiIiIiJyU7vqJW9ERERERERErjUFrSIiIiIiIuKyFLSKiIiIiIiI\ny1LQKiIiIiIiIi5LQauIiIiIiIi4LAWtIiIiIiIi4rIUtIqIiIiIiIjLUtAqIiIiIiIiLktBq4iI\niIiIiLgsBa0iIiIiIiLishS0ioiIiIiIiMtS0CoiIiIiIiIuS0GriIiIiIiIuCwFrSIiIiIiIuKy\nFLSKiIiIiIiIy1LQKiIiIiIiIi5LQauIiIiIiIi4LAWtIiIiIiIi4rIUtIqIiIiIiIjLUtAqIiIi\nIiIiLktBq4iIiIiIiLgsBa0iIiIiIiLisiy1XQERERGpnp07d5KQkIDdbufee++lV69eF5XZtGkT\n//nPfzCZTDRu3JihQ4fWQk1FRER+PQWtIiIi1zG73c6CBQt47bXXCA4OZtSoUcTExBAeHm6USU1N\nJTExkQkTJuDr60teXl4t1lhEROTXueKg1W63889//pOgoCD++c9/kpGRwYwZMygoKCAyMpLBgwdj\nsVgoLy9n9uzZHDt2DD8/P4YNG0a9evWu5TmIiIjctI4cOUL9+vUJDQ0F4K677iI5OblK0Lp69Woe\neOABfH19AQgICKiVuoqIiFyNK57TumLFCho2bGhsL1q0iIceeohZs2bh4+PDmjVrAFizZg0+Pj7M\nmjWLhx56iMWLF9d8rUVERAQAm81GcHCwsR0cHIzNZqtS5ty5c6SmpjJmzBheffVVdu7c+VtXU0RE\n5KpdUU9rdnY227dv57HHHmP58uU4HA727dtnzIfp1q0b//nPf7j//vvZtm0bjz/+OACdO3fm/fff\nx+FwYDKZrt1ZiIiIyM+y2+2kpqYyduxYbDYbY8eOZdq0afj4+FQpl5SURFJSEgDx8fFYrdbaqO4N\nw2KxqA2rSW1YM9SO1ac2rF1XFLQuXLiQvn37UlJSAkBBQQHe3t6YzWYAgoKCjLu6F97xNZvNeHt7\nU1BQgL+//7Wov4iIyE0tKCiI7OxsYzs7O5ugoKCLyjRr1gyLxUK9evVo0KABqampNG3atEq52NhY\nYmNjje2srKxrW/kbnNVqVRtWk9qwZqgdq09tWH1hYWFXfexlg9YffviBgIAAIiMj2bdv31W/0U/p\nbu7P050c+Tm6NlxPem1XwMXo+vztRUVFkZqaSkZGBkFBQWzatIkhQ4ZUKdOpUyc2bNhA9+7dyc/P\nJzU11ZgDKyIi4uouG7QeOnSIbdu2sWPHDsrKyigpKWHhwoUUFxdTWVmJ2WzGZrMZd3Wdd3yDg4Op\nrKykuLgYPz+/i15Xd3N/nu7kyM/RtSGuzlWuz+rczb3emM1mnnnmGSZNmoTdbqd79+5ERESwdOlS\noqKiiImJ4fbbb2fXrl289NJLuLm50bdv30v+bRYREXFFlw1ae/fuTe/evQHYt28fX375JUOGDOFf\n//oXW7Zs4e6772bt2rXExMQA0KFDB9auXUvz5s3ZsmULrVu31nxWERGRayg6Opro6Ogq+5588knj\nsclk4umnn+bpp5/+rasmIiJSbVecPfin+vTpw/Llyxk8eDCFhYX06NEDgB49elBYWMjgwYNZvnw5\nffr0qbHKioiIiIiIyM3litdpBWjdujWtW7cGIDQ0lClTplxUxsPDg5dffrlmaiciIiIiIiI3tavu\naRURERERERG51hS0ioiIiIiIiMtS0CoiIiIiIiIuS0GriIiIiIiIuCwFrSIiIiIiIuKyFLSKiIiI\niIiIy1LQKiIiIiIiIi5LQauIiIiIiIi4LAWtIiIiIiIi4rIUtIqIiIiIiIjLUtAqIiIiIiIiLktB\nq4iIiIiIiLgsBa0iIiIiIiLishS0ioiIiIiIiMtS0CoiIiIiIiIuS0GriIiIiIiIuCwFrSIiIiIi\nIuKyFLSKiIiIiIiIy1LQKiIiIiIiIi5LQauIiIiIiIi4LAWtIiIiIiIi4rIUtIqIiIiIiIjLUtAq\nIiIiIiIiLktBq4iIiIiIiLgsy+UKlJWVMXbsWCoqKqisrKRz58488cQTZGRkMGPGDAoKCoiMjGTw\n4MFYLBbKy8uZPXs2x44dw8/Pj2HDhlGvXr3f4lxERERERETkBnPZnlZ3d3fGjh3Lm2++yRtvvMHO\nnTtJSUlh0aJFPPTQQ8yaNQsfHx/WrFkDwJo1a/Dx8WHWrFk89NBDLF68+JqfhIiIiIiIiNyYLhu0\nmkwmvLy8AKisrKSyshKTycS+ffvo3LkzAN26dSM5ORmAbdu20a1bNwA6d+7M3r17cTgc16j6IiIi\nIiIiciO77PBgALvdzsiRI0lLS+OBBx4gNDQUb29vzGYzAEFBQdhsNgBsNhvBwcEAmM1mvL29KSgo\nwN/f/xqdgoiIiIiIiNyorihodXNz480336SoqIhp06Zx7ty5ar9xUlISSUlJAMTHx2O1Wqv9mjcK\ni8Wi9pBL0rXhetJruwIuRteniIiI1LQrClqdfHx8aN26NSkpKRQXF1NZWYnZbMZmsxEUFAT82Oua\nnZ1NcHAwlZWVFBcX4+fnd9FrxcbGEhsba2xnZWVV81RuHFarVe0hl6RrQ1ydq1yfYWFhtV0FERER\nqSGXndOan59PUVER8GMm4d27d9OwYUNat27Nli1bAFi7di0xMTEAdOjQgbVr1wKwZcsWWrdujclk\nukbVFxERERERkRvZZXtac3JymDNnDna7HYfDwZ133kmHDh0IDw9nxowZLFmyhFtuuYUePXoA0KNH\nD2bPns3gwYPx9fVl2LBh1/wkRERERERE5MZ02aC1cePGvPHGGxftDw0NZcqUKRft9/Dw4OWXX66Z\n2omIiIiIiMhN7bLDg0VERERERERqi4JWERGR69zOnTsZOnQogwcPJjEx8WfLbdmyhSeeeIKjR4/+\nhrUTERGpHgWtIiIi1zG73c6CBQsYPXo006dPZ+PGjZw5c+aiciUlJXz99dc0a9asFmopIiJy9RS0\nioiIXMeOHDlC/fr1CQ0NxWKxcNddd5GcnHxRuaVLl/LHP/4Rd3f3WqiliIjI1VPQKiIich2z2WwE\nBwcb28HBwdhstipljh07RlZWFtHR0b919URERKrtstmDRURE5Pplt9v58MMPiYuLu2zZpKQkkpKS\nAIiPj8dqtV7r6t3QLBaL2rCa1IY1Q+1YfWrD2qWgVURE5DoWFBREdna2sZ2dnU1QUJCxff78eU6f\nPs348eMByM3N5Y033mDEiBFERUVVea3Y2FhiY2ON7aysrGtc+xub1WpVG1aT2rBmqB2rT21YfWFh\nYVd9rIJWERGR61hUVBSpqalkZGQQFBTEpk2bGDJkiPG8t7c3CxYsMLbHjRtHv379LgpYRUREXJWC\nVhERkeuY2WzmmWeeYdKkSdjtdrp3705ERARLly4lKiqKmJiY2q6iiIhItShoFRERuc5FR0dflGTp\nySefvGTZcePG/QY1EhERqTnKHiwiIiIiIiIuS0GriIiIiIiIuCwFrSIiIiIiIuKyFLSKiIiIiIiI\ny1LQKiIiIiIiIi5LQauIiIiIiIi4LAWtIiIiIiIi4rIUtIqIiIiIiIjLUtAqIiIiIiIiLktBq4iI\niIiIiLgsBa0iIiIiIiLishS0ioiIiIiIiMtS0CoiIiIiIiIuS0GriIiIiIiIuCzL5QpkZWUxZ84c\ncnNzMZlMxMbG0rNnTwoLC5k+fTqZmZmEhITw0ksv4evri8PhICEhgR07duDp6UlcXByRkZG/xbmI\niIiIiIjIDeayPa1ms5l+/foxffp0Jk2axKpVqzhz5gyJiYm0adOGmTNn0qZNGxITEwHYsWMHaWlp\nzJw5k4EDBzJ//vxrfhIiIiIiIiJyY7ps0BoYGGj0lNapU4eGDRtis9lITk6ma9euAHTt2pXk5GQA\ntm3bRpcuXTCZTDRv3pyioiJycnKu4SmIiIiIiIjIjepXzWnNyMjg+PHjNG3alLy8PAIDAwGoW7cu\neXl5ANhsNqxWq3FMcHAwNputBqssIiIiIiIiN4vLzml1On/+PG+99Rb9+/fH29u7ynMmkwmTyfSr\n3jgpKYmkpCQA4uPjqwS6NzuLxaL2kEvSteF60mu7Ai5G16eIiIjUtCsKWisqKnjrrbf43e9+xx13\n3AFAQEAAOTk5BAYGkpOTg7+/PwBBQUFkZWUZx2ZnZxMUFHTRa8bGxhIbG2tsX3jMzc5qtao95JJ0\nbYirc5XrMywsrLarICIiIjXkssODHQ4Hc+fOpWHDhjz88MPG/piYGNatWwfAunXr6Nixo7F//fr1\nOBwOUlJS8Pb2NoYRi4iIiIiIiPwal+1pPXToEOvXr6dRo0a88sorADz11FP06tWL6dOns2bNGmPJ\nG4D27duzfft2hgwZgoeHB3Fxcdf2DEREREREROSGddmgtUWLFnz66aeXfO7111+/aJ/JZGLAgAHV\nr5mIiIiIiIjc9H5V9mARERERERGR35KCVhEREREREXFZClpFRERERETEZSloFREREREREZeloFVE\nRERERERcloJWERERERERcVmXXfLmZlL57CO1XQUA0mu7Av+P+b0varsKIiIiIiJyk1NPq4iIiIiI\niLgsBa0iIiIiIiLishS0ioiIiIiIiMtS0CoiIiIiIiIuS0GriIiIiIiIuCwFrSIiIiIiIuKytOSN\niIjIdW7nzp0kJCRgt9u599576dWrV5Xnly9fzurVqzGbzfj7+zNo0CBCQkJqqbYiIiK/jnpaRURE\nrmN2u50FCxYwevRopk+fzsaNGzlz5kyVMk2aNCE+Pp5p06bRuXNnFi1aVEu1FRER+fUUtIqIiFzH\njhw5Qv369QkNDcVisXDXXXeRnJxcpcxtt92Gp6cnAM2aNcNms9VGVUVERK6KglYREZHrmM1mIzg4\n2NgODg7+xaB0zZo1tGvX7reomoiISI3QnFYREZGbxPr16zl27Bjjxo275PNJSUkkJSUBEB8fj9Vq\n/Q1rd+OxWCxqw2pSG9YMtWP1qQ1rl4JWERGR61hQUBDZ2dnGdnZ2NkFBQReV2717N59//jnjxo3D\n3d39kq8VGxtLbGyssZ2VlVXzFb6JWK1WtWE1qQ1rhtqx+tSG1RcWFnbVx2p4sIiIyHUsKiqK1NRU\nMjIyqKioYNOmTcTExFQpc/z4cd577z1GjBhBQEBALdVURETk6qinVURE5DpmNpt55plnmDRpEna7\nne7duxMREcHSpUuJiooiJiaGRYsWcf78ef71r38BP/YYjBw5spZrLiIicmUUtIqIiFznoqOjiY6O\nrrLvySefNB6PGTPmt66SiIhIjdHwYBEREREREXFZClpFRERERETEZSloFREREREREZd12Tmtb7/9\nNtu3bycgIIC33noLgMLCQqZPn05mZiYhISG89NJL+Pr64nA4SEhIYMeOHXh6ehIXF0dkZOQ1PwkR\nERERERG5MV22p7Vbt26MHj26yr7ExETatGnDzJkzadOmDYmJiQDs2LGDtLQ0Zs6cycCBA5k/f/61\nqbWIiIiIiIjcFC4btLZq1QpfX98q+5KTk+natSsAXbt2JTk5GYBt27bRpUsXTCYTzZs3p6ioiJyc\nnGtQbREREREREbkZXNWc1ry8PAIDAwGoW7cueXl5ANhsNqxWq1EuODgYm81WA9UUERERERGRm1G1\n12k1mUyYTKZffVxSUhJJSUkAxMfHVwl2a0t6bVfAxbjCz0Sqslgs+rm4GP3eqErXp4iIiNS0qwpa\nAwICyMnJITAwkJycHPz9/QEICgoiKyvLKJednU1QUNAlXyM2NpbY2Fhj+8LjxDXoZ+J6rFarfi7i\n0lzl+gwLC6vtKoiIiEgNuarhwTExMaxbtw6AdevW0bFjR2P/+vXrcTgcpKSk4O3tbQwjFhERERER\nEfm1LtvTOmPGDPbv309BQQHPP/88TzzxBL169WL69OmsWbPGWPIGoH379mzfvp0hQ4bg4eFBXFzc\nNT8BERERERERuXFdNmgdNmzYJfe//vrrF+0zmUwMGDCg+rUSERERERER4SqHB4uIiIiIiIj8FhS0\nioiIiIiIiMuq9pI3IjeDymcfqe0qAK6zvIr5vS9quwoiIiIicpNQT6uIiIiIiIi4LAWtIiIiIiIi\n4rIUtIqIiIiIiIjLUtAqIiIiIiIiLktBq4iIiIiIiLgsBa0iIiIiIiLishS0ioiIiIiIiMtS0Coi\nIiIiIiIuS0GriIiIiIiIuCwFrSIiIiIiIuKyFLSKiIiIiIiIy1LQKiIiIiIiIi5LQavI/9fe3Ya2\nVfZxHP9lrRlmfdBkttM5JoYWdBOlC5JtMDI79MVAR2EK4mQKPk1lQVjVwlh1iqXMTewDlhpboxOK\niEO80Rdt6AoNg5W1Spzius65YsrWRrE2bk17cr8Yd23XlZ7ezXpO3ffzaufkcM6PP1d79X/OuTIA\nAAAAtkXTCgAAAACwLZpWAAAAAIBt0bQCAAAAAGyLphUAAAAAYFs0rQAAAAAA26JpBQAAAADYFk0r\nAAAAAMC2aFoBAAAAALaVfS1O2tPTo6amJhmGodLSUm3btu1aXAYAAGj2eTeVSqm2tlZ9fX3Kzc1V\nMBhUQUGBRWkBAJibjD9pNQxDoVBIFRUVOnTokDo7O9Xf35/pywAAAJmbdyORiJYtW6aamhpt3bpV\nhw8ftigtAABzl/Gmtbe3VytWrFBhYaGys7O1YcMGHT9+PNOXAQAAMjfvdnV1KRAISJL8fr9isZjS\n6bQFaQEAmLuMN62JREIej2di2+PxKJFIZPoyAABA5ubdycdkZWXJ5XJpeHh4QXMCAPD/uiZrWs1o\nbW1Va2urJKmqqkq33XabVVH+8Z8uqxPArhgbmAljA/8itpybFzlqOH/UMDOo4/xRQ+tk/Emr2+3W\n0NDQxPbQ0JDcbve047Zs2aKqqipVVVVlOsKi99prr1kdATbF2MBMGBvXLzPz7uRjxsfHlUwmlZub\nO+1ck+dmxtT8UcP5o4aZQR3njxrO33xqmPGm1ev1Kh6P6/z58xobG1M0GpXP58v0ZQAAgMzNu+vW\nrVN7e7sk6dixY1qzZo0cDocFaQEAmLuMvx6clZWlp59+Wm+//bYMw9DmzZu1atWqTF8GAABo5nm3\npaVFXq9XPp9PDzzwgGpra/Xyyy8rJydHwWDQ6tgAAJh2Tda0lpSUqKSk5Fqc+rqwZcsWqyPAphgb\nmAlj4/p2tXn3sccem/i30+nUK6+8MqdzMqbmjxrOHzXMDOo4f9Rw/uZTQ0ea77wHAAAAANhUxte0\nAgAAAACQKZb9lzcAAMB6PT09ampqkmEYKi0t1bZt26Z8nkqlVFtbq76+PuXm5ioYDKqgoMCitPY0\nWw2//vprtbW1KSsrS3l5eXrhhRd0yy23WJTWnmar4f8cO3ZMBw8e1DvvvCOv17vAKe3NTA2j0ag+\n//xzORwOrV69Wrt377YgqX3NVsPBwUHV1dVpZGREhmHo8ccfZ0nkFerr63XixAnl5+fr3XffnfZ5\nOp1WU1OTuru7tXTpUu3atUt33nnnrOflSauFBgYG9NNPP03b/+OPP2pgYMCCRLCbS5cu6ezZszp7\n9qxSqZTVcWATvb29+uOPPya2jx49qurqan300Uf666+/LEyGxcYwDIVCIVVUVOjQoUPq7OxUf3//\nlGMikYiWLVummpoabd26VYcPH7YorT2ZqeEdd9yhqqoqHThwQH6/X59++qlFae3JTA0l6e+//9Y3\n33yjoqIiC1Lam5kaxuNxHTlyRPv379fBgwe1c+dOa8LalJkafvHFF1q/fr2qq6sVDAYVCoUsSmtf\ngUBAFRUVM37e3fvoznAAAAVoSURBVN2tgYEBvf/++3r22Wf14YcfmjovTauFmpubdeONN07b73Q6\n1dzcvPCBYBtjY2Nqbm7W888/r/r6etXX1+ull17SkSNHJEm//PKLtQFhqcbGRmVnX35R5uTJk/rs\ns8+0adMmuVwuNTQ0WJwOi0lvb69WrFihwsJCZWdna8OGDTp+/PiUY7q6uhQIBCRJfr9fsVhMfB3G\nP8zUcO3atVq6dKkkqaioSIlEwoqotmWmhpLU0tKiRx55RDfccIMFKe3NTA3b2tr00EMPKScnR5KU\nn59vRVTbMlNDh8OhZDIpSUomk7r55putiGprd99998QYu5quri5t2rRJDodDxcXFGhkZ0e+//z7r\neXk92EIXLlzQ6tWrp+33er26cOGCBYlgF+FwWKOjo6qvr5+4sZFMJvXJJ5+osbFRPT09qqurszgl\nrGIYxsSEEI1GVVpaKr/fL7/frz179licDotJIpGQx+OZ2PZ4PDp16tSMx2RlZcnlcml4eFh5eXkL\nmtWuzNRwskgkovvuu28hoi0aZmrY19enwcFBlZSU6KuvvlroiLZnpoa//fabJGnv3r0yDEPbt29n\nLE5ipobbt2/XW2+9pW+//VaXLl3S3r17FzrmopdIJLR8+fKJbY/Ho0QiMesNAJ60Wmh0dPT/+gz/\nft3d3XruueemPIl3uVx65plnFI1GWYNynTMMQ+Pj45KkWCymtWvXTvkMgD11dHSor69PDz/8sNVR\nFhXDMBQOh/Xkk09aHWVRMwxD8Xhc+/bt0+7du9XQ0KCRkRGrYy0qnZ2dCgQC+uCDD/T666+rpqaG\neXeB0LRayOv1qrW1ddr+trY2UwuS8e+1ZMkSORyOq+7Py8tTcXGxBalgFxs3blRlZaWqq6vldDp1\n1113Sbq8Tt7lclmcDouJ2+3W0NDQxPbQ0JDcbveMx4yPjyuZTCo3N3dBc9qZmRpK0vfff68vv/xS\n5eXlvN56hdlqePHiRZ07d05vvPGGXnzxRZ06dUrV1dU6ffq0FXFtyezPss/nU3Z2tgoKCnTrrbcq\nHo8vdFTbMlPDSCSi9evXS5KKi4uVSqU0PDy8oDkXO7fbrcHBwYntmX5nXomm1UI7d+5Ue3u7Kisr\nFQ6HFQ6HtW/fPkUiET311FNWx4OFVq5cqaNHj07b39HRoZUrV1qQCHZSVlamHTt2KBAI6M0335y4\nwWEYBr87MCder1fxeFznz5/X2NiYotGofD7flGPWrVun9vZ2SZe/uXXNmjVXval2vTJTwzNnzqix\nsVHl5eWsI7yK2WrocrkUCoVUV1enuro6FRUVqby8nG8PnsTMOLz//vv1ww8/SJL+/PNPxeNxFRYW\nWhHXlszUcPny5YrFYpKk/v5+pVIplkrMkc/nU0dHh9LptH7++We5XC5Ta4Mdab5NwXKxWEznzp2T\nJK1atWrKq364PiUSCR04cEBOp3Piqfvp06c1OjqqPXv2mLojBQBmnDhxQh9//LEMw9DmzZtVVlam\nlpYWeb1e+Xw+jY6Oqra2VmfOnFFOTo6CwSB/6F5hthru379fv/76q2666SZJl//wffXVVy1ObS+z\n1XCyyspK7dixg6b1CrPVMJ1OKxwOq6enR0uWLFFZWZk2btxodWxbma2G/f39amho0MWLFyVJTzzx\nhO69916LU9vLe++9p5MnT2p4eFj5+fl69NFHNTY2Jkl68MEHlU6nFQqF9N1338npdGrXrl2mfpZp\nWgEbm3xD4/bbb9c999xjcSIAAABgYdG0AgAAAABsizWtAAAAAADbomkFAAAAANgWTSsAAAAAwLZo\nWgEAAAAAtkXTCgAAAACwLZpWAAAAAIBt0bQCAAAAAGzrvxh9CEETqa6YAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0xb07abe0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%matplotlib inline\n", | |
"import math\n", | |
"\n", | |
"\n", | |
"import matplotlib\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"matplotlib.style.use('ggplot')\n", | |
"\n", | |
"ncols=2\n", | |
"plot_columns=list(data.columns)\n", | |
"plot_columns.remove('name')\n", | |
"plot_columns.remove('ticket')\n", | |
"fig, axes = plt.subplots(nrows=math.ceil(len(plot_columns)/ncols), ncols=ncols,figsize=(16,24))\n", | |
"\n", | |
"\n", | |
"for i,column in enumerate(plot_columns):\n", | |
" a=data[column].value_counts().sort_index().plot.bar(ax=axes[i//2][i%2],title=column)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 98, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA60AAAVJCAYAAACEoO9xAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8FPW9//H3smsSc99NQmoCWkOgQkBEQhvBkjQsYA3l\nUNujyKWlcmlPbDBwas3xQlBEUpATDpCKwhHa4qnVPmpqEWq7jQQtTUlIKBV6CAhoLQdCsmvMBYRs\n5veHP7emgWYDCTtZXs/Hw8eDmcx89zOb77h57/c7MxbDMAwBAAAAAGBC/QJdAAAAAAAAF0NoBQAA\nAACYFqEVAAAAAGBahFYAAAAAgGkRWgEAAAAApkVoBQAAAACYFqEV6GOWLl2q1NTUK/Jan/3sZ/Xk\nk09ekdcCAMDssrKyNG/evECXAVx1CK1AH/O9731PFRUVgS4DAAAAuCJsgS4AwMfOnTunkJCQLreL\njIxUZGTkFagIAAAACDxGWoFL9NZbb2ncuHGKiopSVFSURo4cqddff13Hjx+XxWLRW2+91WH71NRU\nLV261LdssVi0du1azZgxQzExMZo9e7bGjRunBQsWdHqtoUOH6tFHH5XUcXrw4cOHZbFYtHv37g7b\n//GPf5TFYtHhw4clSc3NzXrggQeUnJys8PBwjRo1Sr/4xS867POnP/1JY8eOVWhoqAYPHqyXXnrp\nst8jAADMJCsrS/fdd58KCgoUHx+v6OhoLViwQGfPnvVtU1JSomHDhik0NFT9+/fX1772tYu299vf\n/lZZWVlyOByKiYlRZmam9uzZ02GbTZs2aejQoQoLC5PD4dD48eP1/vvvS5I+/PBDfetb39JnPvMZ\nhYaGauDAgVq8eHHvHDzQhzHSClyCtrY2TZ06VXPmzNGWLVskSW+//bbCw8O71c7jjz+uxx9/XMuW\nLVN7e7veeOMNPfTQQ1q3bp1CQ0MlSXv27NH//u//6hvf+Ean/QcPHqzbbrtNP/nJTzR27Fjf+h/9\n6Ee67bbbNHjwYBmGoa985SsyDEM/+9nPlJSUJJfLpenTp2vHjh2aMGGCzpw5ozvvvFMjR47Unj17\n1NraqoULF6quru7S3yQAAEzo5z//ue655x69+eabOnLkiObOnauIiAgVFxersLBQq1evVlFRkSZN\nmqTm5mbt2LHjom01NzcrNzdXI0eOVFtbm4qLi3XHHXfo8OHDiouL0969e/Wd73xHzz//vDIzM/Xh\nhx/qj3/8o2//Rx99VNXV1frlL3+p6667Tu+//74OHDhwJd4GoG8xAHSb2+02JBlvvPFGp58dO3bM\nkGS8+eabHdYPGjTIKCws9C1LMu67774O23g8HiMsLMx46aWXfOvuv/9+IyMjw7dcWFhoDBo0yLf8\nzDPPGHa73fjoo48MwzCMjz76yHA4HMaGDRsMwzCMN954wwgNDTU++OCDDq/1rW99y/iXf/kXwzAM\nY+PGjUZERIThdrt9P//zn/9sSDKWLVvmz1sCAIDpZWZmGjfccIPR1tbmW/fss88aoaGhRnNzsxEW\nFmasWrXqn+4/d+7ci/7c6/UasbGxxtatWw3DMIxf/OIXRnR0tNHY2HjB7adOnWp885vfvLSDAa4i\nTA8GLoHdbte8efM0efJkffnLX1ZRUZEOHTrU7XY+//nPd1iOjY3V1KlT9ZOf/ESSdP78eb344osX\nHGX9xD333KPW1lZt27ZNkrRt2za1tLTonnvukSRVVlbq3LlzSk5O9l0PGxkZqa1bt/qmDx88eFBD\nhw6V3W73tTt8+HDFxMR0+5gAADCzz3/+87Jarb7lcePG6aOPPtLevXt19uxZTZo0ye+2jh07ptmz\nZys1NVXR0dGKjo5WY2Oj3n33XUnSxIkTlZKSohtvvFHTp0/Xc889p/r6et/+ubm5+vnPf67hw4fr\ngQce0I4dO9Te3t5zBwsECUIrcIk2btyovXv3auLEiSovL9fw4cP17LPPql+/j08rwzA6bH/+/PlO\nbURERHRa941vfEO//vWvdfr0ab322mtqbm7W9OnTL1qH3W7XV77yFf34xz+WJP34xz/W1KlTFRsb\nK0lqb29XTEyM9u3b1+G/gwcP/tMpTwAA4J+bMmWK3nvvPZWUlKiiokL79u1T//79de7cOUkf3zyx\nqqpKr7zyioYMGaINGzYoNTVVe/fulSRNnjxZ7733nh555BGdPXtWs2bNUnZ2trxebyAPCzAdQitw\nGYYPH67Fixdrx44dmjt3rp577jklJCRIkk6cOOHbrq6uTn/729/8anPy5MlyOBx68cUX9eMf/1hT\npkzpMAJ6Id/85je1fft2HTp0SNu3b+8wMpuenq4PPvhAZ8+eVWpqaof/rr/+eknSsGHD9Je//EUf\nfPCBb78DBw6osbHR7/cCAIC+oLKyskMo3L17t0JDQzVy5EiFhYXpN7/5jV/tNDQ06ODBgyooKNDk\nyZM1bNgwhYWFdbofhNVq1fjx4/XEE09o7969uu666/Q///M/vp87HA7de++9evbZZ/Xaa6+pvLxc\nBw8e7JmDBYIEN2ICLsGRI0e0ceNGfeUrX9HAgQN14sQJvfnmm7r11lt17bXXaty4cVq5cqVuuukm\ntbW16ZFHHvHdWKkrNptNM2bM0DPPPKN33nlHP//5z7vc54477pDdbtf06dNlt9t1xx13+H6WnZ0t\np9Opu+66SytXrtTNN98sj8ej3bt3KywsTPPnz9eMGTP02GOPadasWVq+fLnOnDmjBx54QNdee+0l\nv0cAAJhRQ0OD7r//fj3wwAM6evSoHnvsMX37299WTEyM/v3f/11Lly7Vtddeq4kTJ+rMmTPavn27\n/uM//qNTO3a7XQkJCdq4caMGDRqkhoYGff/73+/w2fnLX/5SR48e1fjx45WQkKC9e/fqr3/9q4YN\nGyZJeuSRRzR69GilpaWpX79+euGFFxQZGen7UhnAxxhpBS5BRESEDh8+rOnTp2vIkCH62te+prFj\nx2r9+vWSpOeff16RkZEaO3aspk+frgULFui6667zu/1vfvOb+stf/qKYmBh9+ctf7nL7T4Luvn37\nNGPGDNlsf/8+ymKx6NVXX9Vdd92lRYsW6aabblJOTo5ee+01DRo0SJIUHh6u7du3q6GhQZ///Oc1\nc+ZMLVq0SP379+/mOwMAgLl9/etfV1RUlG6//XZNnz5dU6ZMUVFRkSRp2bJlWr58udauXavhw4dr\n0qRJqq6uvmA7/fr108svv6x33nlHN998s+bMmaP8/PwOn/d2u12/+tWvdMcdd2jIkCH6/ve/r0cf\nfVRz586VJIWFhWnJkiUaPXq00tPTtX//fu3YsYN7SgD/wGL844V3AAAAQBDKyspSamqqNm3aFOhS\nAHQDI60AAAAAANMitAIAAAAATIvpwQAAAAAA02KkFQAAAABgWoRWAAAAAIBpEVoBAAAAAKZl63qT\nK+PEiROBLgH/ID4+XvX19YEuAzA9zhXzSUpKCnQJQYHP5r/jPMfF0DdwMfSNji7ns5mRVgAAAACA\naZlmpBUAAPjv/vvvV1hYmPr16yer1aqioiI1NzeruLhYp0+fVkJCghYtWqTIyEgZhqHNmzerpqZG\noaGhys3NVUpKSqAPAQAAvxBaAQDoowoLCxUdHe1bLi0t1YgRIzRt2jSVlpaqtLRUs2bNUk1NjU6e\nPKm1a9fq8OHD2rRpk5566qkAVg4AgP+YHgwAQJCorKxUZmamJCkzM1OVlZWSpKqqKo0fP14Wi0VD\nhgxRS0uLPB5PIEsFAMBvjLQCANBHLV++XJI0ceJEOZ1ONTY2ym63S5JiY2PV2NgoSXK73YqPj/ft\nFxcXJ7fb7dsWAAAzI7QCANAHLVu2TA6HQ42NjXryySc73ZXRYrHIYrF0q02XyyWXyyVJKioq6hB0\nr3Y2m433AxdE38DF0Dd6DqEVAIA+yOFwSJJiYmI0ZswYHTlyRDExMfJ4PLLb7fJ4PL7rXR0OR4fH\nLjQ0NPj2/zSn0ymn0+lb5lENf8ejK3Ax9A1cDH2jIx55AwDAVeTs2bM6c+aM79/79+/X9ddfr/T0\ndJWXl0uSysvLNWbMGElSenq6du3aJcMwVFtbq/DwcKYGAwD6DEZaAQDoYxobG/X0009Lkrxer26/\n/XbdcsstGjRokIqLi1VWVuZ75I0kjRo1StXV1Vq4cKFCQkKUm5sbyPIBAOgWi2EYRqCLkKQTJ04E\nuoQe4Z0/NdAl4AKsG18NdAkIYkz/MZ/LmYKEvwuWz+aewHmOi6FvmBN/k/+dWf4OZnowAAAAACAo\nEVoBAAAAAKZFaAUAAAAAmBahFQAAAABgWoRWAAAAAIBpEVoBAAAAAKZFaAUAAAAAmBahFQAAAABg\nWoRWAAAAAIBpEVoBAAAAAKZFaAUAAAAAmBahFQAAAABgWoRWAAAAAIBpEVoBAAAAAKZl82ej+++/\nX2FhYerXr5+sVquKiorU3Nys4uJinT59WgkJCVq0aJEiIyNlGIY2b96smpoahYaGKjc3VykpKb19\nHAAAAACAIORXaJWkwsJCRUdH+5ZLS0s1YsQITZs2TaWlpSotLdWsWbNUU1OjkydPau3atTp8+LA2\nbdqkp556qleKBwAAAAAEt0ueHlxZWanMzExJUmZmpiorKyVJVVVVGj9+vCwWi4YMGaKWlhZ5PJ6e\nqRYAAAAAcFXxe6R1+fLlkqSJEyfK6XSqsbFRdrtdkhQbG6vGxkZJktvtVnx8vG+/uLg4ud1u37YA\nAAAAAPjLr9C6bNkyORwONTY26sknn1RSUlKHn1ssFlkslm69sMvlksvlkiQVFRV1CLp92alAF4AL\nCpb+BXOy2Wz0MQAAgF7iV2h1OBySpJiYGI0ZM0ZHjhxRTEyMPB6P7Ha7PB6P73pXh8Oh+vp6374N\nDQ2+/T/N6XTK6XT6lj+9D9DT6F/oTfHx8fQxk/nHL1cBAEDf1eU1rWfPntWZM2d8/96/f7+uv/56\npaenq7y8XJJUXl6uMWPGSJLS09O1a9cuGYah2tpahYeHMzUYAAAAAHBJuhxpbWxs1NNPPy1J8nq9\nuv3223XLLbdo0KBBKi4uVllZme+RN5I0atQoVVdXa+HChQoJCVFubm7vHgEAAAAAIGh1GVoTExO1\natWqTuujoqK0ZMmSTustFovmzZvXM9UBAAAAAK5ql/zIGwAAAAAAehuhFQAAAABgWoRWAAAAAIBp\nEVoBAAAAAKZFaAUAAAAAmBahFQAAAABgWoRWAAAAAIBpEVoBAAAAAKZFaAUAAAAAmBahFQAAAABg\nWoRWAAAAAIBpEVoBAAAAAKZlC3QBAADg0rS3t6ugoEAOh0MFBQWqq6vTmjVr1NTUpJSUFOXl5clm\ns+n8+fNav369jh49qqioKOXn56t///6BLh8AAL8w0goAQB+1fft2JScn+5a3bt2qnJwcrVu3ThER\nESorK5MklZWVKSIiQuvWrVNOTo5eeOGFQJUMAEC3EVoBAOiDGhoaVF1drQkTJkiSDMPQgQMHlJGR\nIUnKyspSZWWlJKmqqkpZWVmSpIyMDL399tsyDCMgdQMA0F2EVgAA+qAtW7Zo1qxZslgskqSmpiaF\nh4fLarVKkhwOh9xutyTJ7XYrLi5OkmS1WhUeHq6mpqbAFA4AQDdxTSsAAH3M3r17FRMTo5SUFB04\ncKDH2nW5XHK5XJKkoqIixcfH91jbfZ3NZuP9wAXRN8zpVKALMJFg6J+EVgAA+phDhw6pqqpKNTU1\nOnfunM6cOaMtW7aotbVVXq9XVqtVbrdbDodD0sejrg0NDYqLi5PX61Vra6uioqI6tet0OuV0On3L\n9fX1V+yYzC4+Pp73AxdE34DZmaV/JiUlXfK+TA8GAKCPmTFjhjZs2KCSkhLl5+dr+PDhWrhwodLS\n0lRRUSFJ2rlzp9LT0yVJo0eP1s6dOyVJFRUVSktL800rBgDA7AitAAAEiZkzZ2rbtm3Ky8tTc3Oz\nsrOzJUnZ2dlqbm5WXl6etm3bppkzZwa4UgAA/Mf0YAAA+rC0tDSlpaVJkhITE7VixYpO24SEhGjx\n4sVXujQAAHoEI60AAAAAANMitAIAAAAATIvQCgAAAAAwLUIrAAAAAMC0CK0AAAAAANMitAIAAAAA\nTIvQCgAAAAAwLUIrAAAAAMC0CK0AAAAAANOy+bthe3u7CgoK5HA4VFBQoLq6Oq1Zs0ZNTU1KSUlR\nXl6ebDabzp8/r/Xr1+vo0aOKiopSfn6++vfv35vHAAAAAAAIUn6PtG7fvl3Jycm+5a1btyonJ0fr\n1q1TRESEysrKJEllZWWKiIjQunXrlJOToxdeeKHnqwYAAAAAXBX8Cq0NDQ2qrq7WhAkTJEmGYejA\ngQPKyMiQJGVlZamyslKSVFVVpaysLElSRkaG3n77bRmG0QulAwAAAACCnV+hdcuWLZo1a5YsFosk\nqampSeHh4bJarZIkh8Mht9stSXK73YqLi5MkWa1WhYeHq6mpqTdqBwAAAAAEuS6vad27d69iYmKU\nkpKiAwcO9NgLu1wuuVwuSVJRUZHi4+N7rO1AOhXoAnBBwdK/YE42m40+BgAA0Eu6DK2HDh1SVVWV\nampqdO7cOZ05c0ZbtmxRa2urvF6vrFar3G63HA6HpI9HXRsaGhQXFyev16vW1lZFRUV1atfpdMrp\ndPqW6+vre/CwgI7oX+hN8fHx9DGTSUpKCnQJAACgh3Q5PXjGjBnasGGDSkpKlJ+fr+HDh2vhwoVK\nS0tTRUWFJGnnzp1KT0+XJI0ePVo7d+6UJFVUVCgtLc03rRgAAAAAgO645Oe0zpw5U9u2bVNeXp6a\nm5uVnZ0tScrOzlZzc7Py8vK0bds2zZw5s8eKBQAAAABcXfx+TqskpaWlKS0tTZKUmJioFStWdNom\nJCREixcv7pnqAAAAAABXtUseaQUAAAAAoLcRWgEAAAAApkVoBQAAAACYFqEVAAAAAGBahFYAAAAA\ngGkRWgEAAAAApkVoBQAAAACYFqEVAAAAAGBahFYAAAAAgGkRWgEAAAAApkVoBQAAAACYFqEVAAAA\nAGBahFYAAAAAgGkRWgEAAAAApkVoBQAAAACYFqEVAAAAAGBatkAXAAAAuufcuXMqLCxUW1ubvF6v\nMjIydPfdd6uurk5r1qxRU1OTUlJSlJeXJ5vNpvPnz2v9+vU6evSooqKilJ+fr/79+wf6MAAA8Asj\nrQAA9DHXXHONCgsLtWrVKq1cuVL79u1TbW2ttm7dqpycHK1bt04REREqKyuTJJWVlSkiIkLr1q1T\nTk6OXnjhhQAfAQAA/mOkFUBAeOdPDXQJPeZUoAvoIdaNrwa6BPjJYrEoLCxMkuT1euX1emWxWHTg\nwAE98MADkqSsrCy9/PLLmjRpkqqqqvSv//qvkqSMjAw9//zzMgxDFoslYMcAAIC/CK0AAPRB7e3t\neuihh3Ty5ElNnjxZiYmJCg8Pl9VqlSQ5HA653W5JktvtVlxcnCTJarUqPDxcTU1Nio6ODlj9AAD4\ni9AKAEAf1K9fP61atUotLS16+umndeLEictu0+VyyeVySZKKiooUHx9/2W0GC5vNxvuBC6JvmFOw\nzILqCcHQPwmtAAD0YREREUpLS1Ntba1aW1vl9XpltVrldrvlcDgkfTzq2tDQoLi4OHm9XrW2tioq\nKqpTW06nU06n07dcX19/xY7D7OLj43k/cEH0DZidWfpnUlLSJe/LjZgAAOhjPvzwQ7W0tEj6+E7C\n+/fvV3JystLS0lRRUSFJ2rlzp9LT0yVJo0eP1s6dOyVJFRUVSktL43pWAECfwUgrAAB9jMfjUUlJ\nidrb22UYhm677TaNHj1aAwYM0Jo1a/Tiiy/qxhtvVHZ2tiQpOztb69evV15eniIjI5Wfnx/gIwAA\nwH+EVgAA+pgbbrhBK1eu7LQ+MTFRK1as6LQ+JCREixcvvhKlAQDQ45geDAAAAAAwLUIrAAAAAMC0\nCK0AAAAAANMitAIAAAAATIvQCgAAAAAwrS7vHnzu3DkVFhaqra1NXq9XGRkZuvvuu1VXV6c1a9ao\nqalJKSkpysvLk81m0/nz57V+/XodPXpUUVFRys/PV//+/a/EsQAAAAAAgkyXI63XXHONCgsLtWrV\nKq1cuVL79u1TbW2ttm7dqpycHK1bt04REREqKyuTJJWVlSkiIkLr1q1TTk6OXnjhhV4/CAAAAABA\ncOoytFosFoWFhUmSvF6vvF6vLBaLDhw4oIyMDElSVlaWKisrJUlVVVXKysqSJGVkZOjtt9+WYRi9\nVD4AAAAAIJh1OT1Yktrb2/XQQw/p5MmTmjx5shITExUeHi6r1SpJcjgccrvdkiS32624uDhJktVq\nVXh4uJqamhQdHd1LhwAAAAAACFZ+hdZ+/fpp1apVamlp0dNPP60TJ05c9gu7XC65XC5JUlFRkeLj\n4y+7TTM4FegCcEHB0r+CCeeK+XCeAAAAM/IrtH4iIiJCaWlpqq2tVWtrq7xer6xWq9xutxwOh6SP\nR10bGhoUFxcnr9er1tZWRUVFdWrL6XTK6XT6luvr6y/zUICLo38BXQum8yQpKSnQJQAAgB7S5TWt\nH374oVpaWiR9fCfh/fv3Kzk5WWlpaaqoqJAk7dy5U+np6ZKk0aNHa+fOnZKkiooKpaWlyWKx9FL5\nAAAAAIBg1uVIq8fjUUlJidrb22UYhm677TaNHj1aAwYM0Jo1a/Tiiy/qxhtvVHZ2tiQpOztb69ev\nV15eniIjI5Wfn9/rBwEAAAAACE5dhtYbbrhBK1eu7LQ+MTFRK1as6LQ+JCREixcv7pnqAAAAAABX\ntS6nBwMAAAAAECiEVgAAAACAaRFaAQAAAACmRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAA\nAACmRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACmRWgFAAAAAJgWoRUAAAAAYFqEVgAA\nAACAaRFaAQAAAACmRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAadkCXQAAAMDFeOdPDXQJkqRTgS7g\n/7NufDXQJQDAFcdIKwAAAADAtAitAAAAAADTYnowAAB9TH19vUpKSvTBBx/IYrHI6XTqzjvvVHNz\ns4qLi3X69GklJCRo0aJFioyMlGEY2rx5s2pqahQaGqrc3FylpKQE+jAAAPALI60AAPQxVqtVs2fP\nVnFxsZYvX67XX39d77//vkpLSzVixAitXbtWI0aMUGlpqSSppqZGJ0+e1Nq1a7VgwQJt2rQpwEcA\nAID/CK0AAPQxdrvdN1J67bXXKjk5WW63W5WVlcrMzJQkZWZmqrKyUpJUVVWl8ePHy2KxaMiQIWpp\naZHH4wlY/QAAdAehFQCAPqyurk7Hjh1TamqqGhsbZbfbJUmxsbFqbGyUJLndbsXHx/v2iYuLk9vt\nDki9AAB0F9e0AgDQR509e1arV6/WnDlzFB4e3uFnFotFFoulW+25XC65XC5JUlFRUYegGyhmedSM\nWZjhd4KObDYbvxcT4v8dfxcM/ZPQCgBAH9TW1qbVq1fri1/8or7whS9IkmJiYuTxeGS32+XxeBQd\nHS1Jcjgcqq+v9+3b0NAgh8PRqU2n0ymn0+lb/vQ+MAd+J+YTHx/P7wWmZpb+mZSUdMn7Mj0YAIA+\nxjAMbdiwQcnJyZoyZYpvfXp6usrLyyVJ5eXlGjNmjG/9rl27ZBiGamtrFR4e7ptGDACA2THSCgBA\nH3Po0CHt2rVL119/vR588EFJ0r333qtp06apuLhYZWVlvkfeSNKoUaNUXV2thQsXKiQkRLm5uYEs\nHwCAbiG0AgDQx9x000166aWXLvizJUuWdFpnsVg0b9683i4LAIBe0WVo5QHmAAAAAIBA6fKaVh5g\nDgAAAAAIlC5HWu12u+9mDf/4APOlS5dK+vgB5kuXLtWsWbMu+gBzbvgAAACAnuKdPzXQJUgyz6NV\nrBtfDXQJQK/p1t2DeYA5AAAAAOBK8vtGTFfDA8x7glm+bUNHwdK/ggnnivlwngAAADPyK7TyAHP0\ndfQvoGvBdJ5czgPMAQCAuXQ5PZgHmAMAAAAAAqXLkVYeYA4AAAAACJQuQysPMAcAAAAABEq37h4M\nAAAAAMCVRGgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACmRWgFAAAAAJgWoRUAAAAAYFqE\nVgAAAACAaRFaAQAAAACmRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACmRWgFAAAAAJgW\noRUAAAAAYFqEVgAAAACAaRFaAQAAAACmRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACm\nRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACmRWgFAAAAAJiWLdAFAACA7vvhD3+o6upq\nxcTEaPXq1ZKk5uZmFRcX6/Tp00pISNCiRYsUGRkpwzC0efNm1dTUKDQ0VLm5uUpJSQnwEQAA4B9G\nWgEA6IOysrL08MMPd1hXWlqqESNGaO3atRoxYoRKS0slSTU1NTp58qTWrl2rBQsWaNOmTYEoGQCA\nS0JoBQCgDxo2bJgiIyM7rKusrFRmZqYkKTMzU5WVlZKkqqoqjR8/XhaLRUOGDFFLS4s8Hs8VrxkA\ngEvB9GAAAIJEY2Oj7Ha7JCk2NlaNjY2SJLfbrfj4eN92cXFxcrvdvm0/4XK55HK5JElFRUUd9gmU\nU4EuwGTM8DsxC/pGR/SNjugffxcMfcOv0Mp1MwAA9C0Wi0UWi6Vb+zidTjmdTt9yfX19T5eFy8Tv\nBBdD38DFmKVvJCUlXfK+fk0P5roZAADMLyYmxjft1+PxKDo6WpLkcDg6/NHS0NAgh8MRkBoBAOgu\nv0Ir180AAGB+6enpKi8vlySVl5drzJgxvvW7du2SYRiqra1VeHh4p6nBAACY1SVf03q5180AAIBL\nt2bNGh08eFBNTU36zne+o7vvvlvTpk1TcXGxysrKfJfuSNKoUaNUXV2thQsXKiQkRLm5uQGuHgAA\n//XIjZgu5boZM97soSdw0bc5BUv/CiacK+bDedK35OfnX3D9kiVLOq2zWCyaN29eb5cEAECvuOTQ\n+sl1M3aWVER/AAAgAElEQVS7/ZKum+FmD7iS6F9A14LpPLmcmz0AAABzueTntHLdDAAAAACgt/k1\n0sp1MwAAAACAQPArtHLdDAAAAAAgEC55ejAAAAAAAL2N0AoAAAAAMC1CKwAAAADAtAitAAAAAADT\nIrQCAAAAAEyL0AoAAAAAMC1CKwAAAADAtAitAAAAAADTIrQCAAAAAEyL0AoAAAAAMC1CKwAAAADA\ntAitAAAAAADTIrQCAAAAAEyL0AoAAAAAMC1CKwAAAADAtAitAAAAAADTIrQCAAAAAEyL0AoAAAAA\nMC1CKwAAAADAtAitAAAAAADTIrQCAAAAAEyL0AoAAAAAMC1CKwAAAADAtAitAAAAAADTIrQCAAAA\nAEyL0AoAAAAAMC1CKwAAAADAtAitAAAAAADTIrQCAAAAAEyL0AoAAAAAMC1bbzW8b98+bd68We3t\n7ZowYYKmTZvWWy8FAAD8wGczAKAv6pWR1vb2dv33f/+3Hn74YRUXF+v3v/+93n///d54KQAA4Ac+\nmwEAfVWvhNYjR47oM5/5jBITE2Wz2TR27FhVVlb2xksBAAA/8NkMAOireiW0ut1uxcXF+Zbj4uLk\ndrt746UAAIAf+GwGAPRVvXZNa1dcLpdcLpckqaioSElJSYEqpWe9VhXoCoC+gXMFMB1Tfjbz/wpc\nDH0D/wz9I6j0ykirw+FQQ0ODb7mhoUEOh6PDNk6nU0VFRSoqKuqNEtADCgoKAl0C0CdwrqAv4LP5\n8nCe42LoG7gY+kbP6ZXQOmjQIP3f//2f6urq1NbWpt27dys9Pb03XgoAAPiBz2YAQF/VK9ODrVar\n7rvvPi1fvlzt7e360pe+pIEDB/bGSwEAAD/w2QwA6Kt67ZrWW2+9VbfeemtvNY8rwOl0BroEoE/g\nXEFfwWfzpeM8x8XQN3Ax9I2eYzEMwwh0EQAAAAAAXEivXNMKAAAAAEBPILQCAAAAAEwrYM9phbn8\n7W9/U2Vlpe9B8w6HQ+np6RowYECAKwMAAADM78iRI5Kk1NRUvf/++9q3b5+SkpK4l0AP4JpWqLS0\nVL///e81btw43zP73G63b920adMCXCEAAIA5/O1vf5Pb7dbgwYMVFhbmW79v3z7dcsstAawMgfTy\nyy9r37598nq9uvnmm3X48GGlpaXpz3/+s0aOHKm77ror0CX2aYy0Qm+88YZWr14tm61jd5gyZYoW\nL15MaAX89MYbb+hLX/pSoMsA0Is4z69u27dv1+uvv67k5GRt2LBBc+bM0ZgxYyRJP/3pTwmtV7GK\nigqtWrVK58+f14IFC/TMM88oPDxcU6dO1cMPP0xovUyEVshiscjj8SghIaHDeo/HI4vFEqCqgL7n\npZde4o9ZIMhxnl/dfve73+kHP/iBwsLCVFdXp//8z//U6dOndeedd4rJi1c3q9Wqfv36KTQ0VImJ\niQoPD5ckhYSE8Pd0DyC0QnPmzNETTzyh6667TnFxcZKk+vp6nTx5UnPnzg1wdYC5fO9737vgesMw\n1NjYeIWrAdAbOM9xMYZh+KYE9+/fX0uXLtXq1at1+vRpQutVzmaz6aOPPlJoaKiKiop861tbW9Wv\nH/e+vVyEVuiWW27Rf/3Xf+nIkSMdbsSUmprKSQb8g8bGRj3yyCOKiIjosN4wDD322GMBqgpAT+I8\nx8XExMTo+PHj+uxnPytJCgsLU0FBgZ555hm99957gS0OAfX444/rmmuukaQOfz+3tbXp/vvvD1RZ\nQYPQCkkfn1xDhgwJdBmA6d166606e/as7w+WTxs2bNiVLwhAj+M8x8V897vfldVq7bDOarXqu9/9\nrpxOZ4Cqghl8Elj/UXR0tKKjo69wNcGHuwcDAAAAAEyLuZ8AAAAAANMitAIAAAAATIvQCgAAAAAw\nLUIrAAAAAMC0CK0AAAAAANMitAIAAAAATIvQCgAAAAAwLUIrAAAAAMC0CK0AAAAAANMitAIAAAAA\nTIvQCgAAAAAwLUIrAAAAAMC0CK0AAAAAANMitAIAAAAATIvQCgAAAAAwLUIrYAJvvfWWxo0bp6io\nKEVFRWnkyJF6/fXXJUmnTp3SnDlzlJCQoKioKI0bN067du3y7bty5UrFxsbq+PHjvnVPPPGEEhIS\ndOLEiSt9KAAA9Hm//e1vlZWVJYfDoZiYGGVmZmrPnj2+nx87dkyTJk1SWFiYBg4cqJKSEmVlZWne\nvHm+bc6fP6+lS5fqxhtvVFhYmNLS0vTss88G4nCAPs8W6AKAq11bW5umTp2qOXPmaMuWLZKkt99+\nW+Hh4Tpz5oy+9KUvaejQodqxY4diY2P1s5/9TBMnTtS+ffs0dOhQPfjgg/rd736ne++9V2+++aZ2\n796tZcuWqbS0VElJSYE9OAAA+qDm5mbl5uZq5MiRamtrU3Fxse644w4dPnxYDodDX/3qVxUaGqpd\nu3YpJCREDz/8sGpqapSamuprY/78+aqurtazzz6rwYMHa8+ePfr2t78tm82muXPnBvDogL7HYhiG\nEegigKuZx+ORw+HQG2+8oaysrA4/27Jlix599FEdP35cNtvfv2PKzs7WzTffrDVr1kj6eDR25MiR\nuuuuu/SrX/1KX//611VcXHwlDwMAgKDV3t6uuLg4rV+/Xv3799ekSZN0+PBhX0h1u90aMGCAZsyY\noU2bNunYsWMaNGiQDh48qJtuusnXzhNPPKFf/OIX2rdvX6AOBeiTGGkFAsxut2vevHmaPHmysrOz\nlZmZqa9+9av63Oc+p8rKSp08eVKxsbEd9vnoo4907bXX+pYTExO1efNm3XnnnRo5cqR+8IMfXOnD\nAAAgaBw7dkxLlizRH/7wB9XV1am9vV2tra169913VV9fr/j4+A6jqg6HQ5/73Od8y1VVVTIMQ+np\n6R3abWtrk9VqvWLHAQQLQitgAhs3btQDDzyg3/zmN/rtb3+rxx57TOvXr1d7e7uGDh2qV155pdM+\n4eHhHZbLy8tltVp16tQpNTY2KiEh4UqVDwBAUJkyZYri4+NVUlKigQMHKiQkRLfffrvOnTuniIgI\nWSyWf7p/e3u7JGn37t2dPq+72hdAZ9yICTCJ4cOHa/HixdqxY4fmzp2r5557Tunp6Tp69Kiio6OV\nmpra4b9PX6/qcrm0evVqbdu2TQMHDtScOXPEzH8AALqvoaFBBw8eVEFBgSZPnqxhw4YpLCxMdXV1\nkqRhw4bp9OnTeuedd3z7eDwe1dbW+pZHjx4tSXrvvfc6fX4PGjToyh4QEAQIrUCAHTlyRA899JDe\neustvfvuu/rDH/6gN998U8OGDdPMmTN14403KicnR7/5zW90/Phx/fGPf9SKFStUWloqSTp9+rRm\nz56tBx98UHfccYd++tOf6s033/Rd7woAAPxnt9uVkJCgjRs3qra2Vn/4wx907733+i7LcTqdGjly\npGbPnq3Kykr96U9/0uzZs2Wz2XyjqKmpqbrvvvs0f/58/eQnP9GRI0f0pz/9Sc8//zyX8ACXgNAK\nBFhERIQOHz6s6dOna8iQIfra176msWPHav369QoLC1N5ebnS09P1rW99S0OGDNFdd92lPXv26IYb\nbpBhGJozZ45uuOEGPfHEE5KkQYMGacOGDSooKFBNTU2Ajw4AgL6lX79+evnll/XOO+/o5ptv1pw5\nc5Sfn6/rrrtO0sfTe1955RVFREToi1/8oqZMmaIvf/nL+tznPqewsDBfO88995wWLVqk5cuXa9iw\nYZowYYJ+9KMfKSUlJVCHBvRZ3D0YAAAAuAxNTU0aMGCAnnzySeXl5QW6HCDocCMmAAAAoBteffVV\n2Ww2DR06VHV1dXr88cdlsVh09913B7o0ICgRWgEAAIBuaG1t1RNPPKHjx48rIiJCo0eP1ltvvaXE\nxMRAlwYEJaYHAwAAAABMy6+R1paWFm3YsEF//etfZbFY9G//9m9KSkpScXGxTp8+rYSEBC1atEiR\nkZEyDEObN29WTU2NQkNDlZubywXnAAAAAIBL4tdI6/r16zV06FBNmDBBbW1t+uijj/TKK68oMjJS\n06ZNU2lpqZqbmzVr1ixVV1fr17/+tf7jP/5Dhw8f1pYtW/TUU09diWMBAAAAAASZLh9509raqr/8\n5S/Kzs6WJNlsNkVERKiyslKZmZmSpMzMTFVWVkqSqqqqNH78eFksFg0ZMkQtLS3yeDy9eAgAAAAA\ngGDV5fTguro6RUdH64c//KHeffddpaSkaM6cOWpsbJTdbpckxcbGqrGxUZLkdrsVHx/v2z8uLk5u\nt9u37cWcOHHico4DvSA+Pl719fWBLgMwPc4V80lKSgp0CUHhk8/mi/Xx7qw3SxvUR31mbJv6At8G\n9fV+fZfz2dxlaPV6vTp27Jjuu+8+DR48WJs3b1ZpaWmHbSwWiywWS7de2OVyyeVySZKKioo6BF2Y\ng81m4/cC+IFzBQAAoPd0GVrj4uIUFxenwYMHS5IyMjJUWlqqmJgYeTwe2e12eTweRUdHS5IcDkeH\nhN3Q0CCHw9GpXafTKafT6VtmlMJ8GD0C/MO5Yj6MtAIAEDy6vKY1NjZWcXFxvilCf/7znzVgwACl\np6ervLxcklReXq4xY8ZIktLT07Vr1y4ZhqHa2lqFh4d3OTUYAAAAAIAL8euRN/fdd5/Wrl2rtrY2\n9e/fX7m5uTIMQ8XFxSorK/M98kaSRo0aperqai1cuFAhISHKzc3t1QMAAAAAAAQvv0LrZz/7WRUV\nFXVav2TJkk7rLBaL5s2bd/mVAQAAAACuel1ODwYAAAAAIFAIrQAAAAAA0yK0AgAAAABMi9AKAAAA\nADAtv27EBP95508NdAk95lSgC+hB1o2vBroEAACCknf+VN/fDHzeAugNjLQCAAAAAEyL0AoAAAAA\nMC1CKwAAAADAtAitAAAAAADTIrQCAAAAAEyL0AoAAAAAMC1CKwAAAADAtAitAAAAAADTsgW6AAAA\n0HPOnTunwsJCtbW1yev1KiMjQ3fffbfq6uq0Zs0aNTU1KSUlRXl5ebLZ+DMAAGB+fFoBABBErrnm\nGhUWFiosLExtbW1asmSJbrnlFm3btk05OTkaN26cnnvuOZWVlWnSpEmBLhcAgC4xPRgAgCBisVgU\nFhYmSfJ6vfJ6vbJYLDpw4IAyMjIkSVlZWaqsrAxkmQAA+I2RVgAAgkx7e7seeughnTx5UpMnT1Zi\nYqLCw8NltVolSQ6HQ263O8BVAgDgH4thGEagi5CkEydOBLqEHuGdPzXQJeACrBtfDXQJCGLx8fGq\nr68PdBn4lKSkpECXYAotLS16+umndc8996ikpETr1q2TJNXX12vFihVavXp1h+1dLpdcLpckqaio\nSOfOnZMk2Ww2tbW1dWq/O+vN0gb19Xx9p7461vfvxFd2m66+vtA29QW+Derr/fpCQkI67eMvRloB\nAAhSERERSktLU21trVpbW+X1emW1WuV2u+VwODpt73Q65XQ6fcuffBlzsS9murPeLG1QX+/U94nL\neU2zv3+92Tb1Bb4N6uv9+i7nC2WuaQUAIIh8+OGHamlpkfTxnYT379+v5ORkpaWlqaKiQpK0c+dO\npaenB7JMAAD8xkgrAABBxOPxqKSkRO3t7TIMQ7fddptGjx6tAQMGaM2aNXrxxRd14403Kjs7O9Cl\nAgDgF0IrAABB5IYbbtDKlSs7rU9MTNSKFSsCUBEAAJeH6cEAAAAAANMitAIAAAAATIvQCgAAAAAw\nLUIrAAAAAMC0CK0AAAAAANMitAIAAAAATMuvR97cf//9CgsLU79+/WS1WlVUVKTm5mYVFxfr9OnT\nSkhI0KJFixQZGSnDMLR582bV1NQoNDRUubm5SklJ6e3jAAAAAAAEIb+f01pYWKjo6GjfcmlpqUaM\nGKFp06aptLRUpaWlmjVrlmpqanTy5EmtXbtWhw8f1qZNm/TUU0/1SvEAAAAAgOB2ydODKysrlZmZ\nKUnKzMxUZWWlJKmqqkrjx4+XxWLRkCFD1NLSIo/H0zPVAgAAAACuKn6PtC5fvlySNHHiRDmdTjU2\nNsput0uSYmNj1djYKElyu92Kj4/37RcXFye32+3bFgAAAAAAf/kVWpctWyaHw6HGxkY9+eSTSkpK\n6vBzi8Uii8XSrRd2uVxyuVySpKKiog5Bty87FegCcEHB0r9gTjabjT4GAADQS/wKrQ6HQ5IUExOj\nMWPG6MiRI4qJiZHH45HdbpfH4/Fd7+pwOFRfX+/bt6Ghwbf/pzmdTjmdTt/yp/cBehr9C70pPj6e\nPmYy//jlKgAA6Lu6vKb17NmzOnPmjO/f+/fv1/XXX6/09HSVl5dLksrLyzVmzBhJUnp6unbt2iXD\nMFRbW6vw8HCmBgMAAAAALkmXI62NjY16+umnJUler1e33367brnlFg0aNEjFxcUqKyvzPfJGkkaN\nGqXq6motXLhQISEhys3N7d0jAAAAAAAErS5Da2JiolatWtVpfVRUlJYsWdJpvcVi0bx583qmOgAA\nAADAVc3vuwcDAAAg+HnnT5X08c0lrRtfDXgtn9zksqtazFQ3gJ51yc9pBQAAAACgtxFaAQAAAACm\nRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACmRWgFAADog7zzp+rUV8cGugwA6HWEVgAA\nAACAaRFaAQAAAACmZQt0AQAAoGfU19erpKREH3zwgSwWi5xOp+6880699NJL+t3vfqfo6GhJ0r33\n3qtbb701wNUCAOAfQisAAEHCarVq9uzZSklJ0ZkzZ1RQUKCbb75ZkpSTk6OpU6cGuEIAALqP0AoA\nQJCw2+2y2+2SpGuvvVbJyclyu90BrgoAgMvDNa0AAAShuro6HTt2TKmpqZKk119/Xd/73vf0wx/+\nUM3NzQGuDgAA/1kMwzACXYQknThxItAl9AjvfKZemZF146uBLgFBLD4+XvX19YEuA5+SlJQU6BIC\n6uzZsyosLNRdd92lL3zhC/rggw9817P+7Gc/k8fjUW5ubqf9XC6XXC6XJKmoqEjnzp2TJNlsNrW1\ntXXavjvrzdJGMNX3yeNuEl/Z3WndP67vzuv9sza6u31PHaM/bfdUHT1RdyDaoD7qM3t9ISEhnfbx\nF9ODAQAIIm1tbVq9erW++MUv6gtf+IIkKTY21vfzCRMm6Ac/+MEF93U6nXI6nb7lT76MudgXM91Z\nb5Y2gq0+SX6v724dF2u7O9v31DF2p+3LraOn6jZ736E+6rvS9V3OF8pMDwYAIEgYhqENGzYoOTlZ\nU6ZM8a33eDy+f+/Zs0cDBw4MRHkAAFwSRloBAAgShw4d0q5du3T99dfrwQcflPTx421+//vf6/jx\n47JYLEpISNCCBQsCXCkAAP4jtAIAECRuuukmvfTSS53W80xWAEBfxvRgAAAAAIBpMdIKAABwlfLO\nn6pT///f3GkfgFkx0goAAAAAMC1CKwAAAADAtAitAAAAAADTIrQCAAAAAEyL0AoAAAAAMC1CKwAA\nAADAtAitAAAA6HHe+VN16qtjA11GQFzNxw70BkIrAAAAAMC0bP5u2N7eroKCAjkcDhUUFKiurk5r\n1qxRU1OTUlJSlJeXJ5vNpvPnz2v9+vU6evSooqKilJ+fr/79+/fmMQAAAAAAgpTfI63bt29XcnKy\nb3nr1q3KycnRunXrFBERobKyMklSWVmZIiIitG7dOuXk5OiFF17o+aoBAAAAAFcFv0JrQ0ODqqur\nNWHCBEmSYRg6cOCAMjIyJElZWVmqrKyUJFVVVSkrK0uSlJGRobfffluGYfRC6QAAAACAYOdXaN2y\nZYtmzZoli8UiSWpqalJ4eLisVqskyeFwyO12S5Lcbrfi4uIkSVarVeHh4WpqauqN2gEAAAAAQa7L\na1r37t2rmJgYpaSk6MCBAz32wi6XSy6XS5JUVFSk+Pj4Hms7kE4FugBcULD0L5iTzWajjwEAAPSS\nLkProUOHVFVVpZqaGp07d05nzpzRli1b1NraKq/XK6vVKrfbLYfDIenjUdeGhgbFxcXJ6/WqtbVV\nUVFRndp1Op1yOp2+5fr6+h48LKAj+hd6U3x8PH3MZJKSkgJdAgAA6CFdTg+eMWOGNmzYoJKSEuXn\n52v48OFauHCh0tLSVFFRIUnauXOn0tPTJUmjR4/Wzp07JUkVFRVKS0vzTSsGAAAAAKA7Lvk5rTNn\nztS2bduUl5en5uZmZWdnS5Kys7PV3NysvLw8bdu2TTNnzuyxYgEAAAAAVxe/n9MqSWlpaUpLS5Mk\nJSYmasWKFZ22CQkJ0eLFi3umOgAAAADAVe2SR1oBAAD+H3t3Hldlmf9//HWAANlXUdzJzCW3cktN\nzGiZcvpSzWg6VmamZuOeS2Ou48JkhrllaWOL/iZrSupbloUa5pbgvqW4ZiUqcEABUYHz+8Mv98MT\n5wBHWQ74fv6jfLjO574uzn3D/Tn3fV+XiIhIeVPRKiIiIiIiIk5LRauIiIiIiIg4LRWtIiIiIiIi\n4rRUtIqIiIiIiIjTcmj2YBEREXFeqampLFq0iIyMDEwmE1FRUTz66KNkZWURGxvL+fPnCQ0NZdSo\nUfj4+FR2d0VEREpFRauIiEg14erqyjPPPENERASXLl1iwoQJtGrVih9++IGWLVsSHR1NXFwccXFx\n9OvXr7K7KyIiUiq6PVhERKSaCAwMJCIiAoAaNWpQp04d0tPTSUxMJDIyEoDIyEgSExMrs5siIiIO\nUdEqIiJSDZ07d44TJ07QuHFjMjMzCQwMBCAgIIDMzMxK7p2IiEjp6fZgERGRaiY3N5e5c+fSv39/\nvLy8rL5nMpkwmUw2XxcfH098fDwAMTExhISEAODm5mb8/3qOxJ0lR3Xq39n/+/f6+Nnrvu9Ijuvb\nF5fDVh577W31r7i+lLp/T3Q2vhe2ekuJ/bCb+4nORXIU1/5G+u2s+05l5FD/1L+boaJVRESkGsnL\ny2Pu3Lncd999dOzYEQB/f3/MZjOBgYGYzWb8/PxsvjYqKoqoqCjj69TUVODaiXfh/6/nSNxZclS3\n/gGljheXw14eR/p9sznKqn+24o72uTzfG2fZd5x931b/ql//wsPDi7ymtHR7sIiISDVhsVhYsmQJ\nderUoWfPnka8Xbt2JCQkAJCQkED79u0rq4siIiIO05VWERGRauLw4cNs3LiR+vXrM3bsWAD69OlD\ndHQ0sbGxrF+/3ljyRkREpKpQ0SoiIlJNNG3alE8++cTm9yZPnlzBvRERESkbuj1YREREREREnJaK\nVhEREREREXFaKlpFRERERETEaaloFREREREREaelolVERERERESclopWERERERERcVoqWkVERERE\nRMRpqWgVERERERERp6WiVURERERERJyWW2V3QERERERuDfkvPg7AWcB16ZdW8bP/9//r486uqvZb\npKrRlVYRERERERFxWipaRURERERExGnp9mARqRSFt4hVB2dLblIl6NY2ERERcUa60ioiIiIiIiJO\nq8QrrVeuXGHKlCnk5eWRn59Pp06d6NWrF+fOnWPevHlcvHiRiIgIhg0bhpubG1evXmXhwoUcP34c\nX19fRo4cSc2aNStiLCIiIiIiIlLNlFi03nbbbUyZMgVPT0/y8vKYPHkybdq04auvvuKxxx6jS5cu\nvPvuu6xfv56HHnqI9evX4+3tzYIFC9i8eTMrV65k1KhRFTEWERERkSrL3sy6cnM0w69I1Vfi7cEm\nkwlPT08A8vPzyc/Px2QyceDAATp16gRA9+7dSUxMBCApKYnu3bsD0KlTJ/bv34/FYimn7ouIiIiI\niEh1VqqJmAoKChg/fjwpKSk8/PDDhIWF4eXlhaurKwBBQUGkp6cDkJ6eTnBwMACurq54eXlx8eJF\n/Pz8ymkIIiIiIiIiUl2Vqmh1cXFhzpw5ZGdn88Ybb/D777/f9Ibj4+OJj48HICYmhpCQkJvO6Qyq\nyyyi1U112b+qEx0rzkfHiYiIiDgjh5a88fb2pkWLFhw5coScnBzy8/NxdXUlPT2doKAg4NpV17S0\nNIKDg8nPzycnJwdfX98iuaKiooiKijK+Tk1NvcmhiNin/UukZNXpOAkPD6/sLoiIiEgZKfGZ1gsX\nLpCdnQ1cm0l479691KlThxYtWrBt2zYAfvjhB9q1awfAPffcww8//ADAtm3baNGiBSaTqZy6LyIi\nIiIiItVZiVdazWYzixYtoqCgAIvFwr333ss999xD3bp1mTdvHh9//DGNGjWiR48eAPTo0YOFCxcy\nbNgwfHx8GDlyZLkPQkRERERERKqnEovWBg0a8PrrrxeJh4WFMXv27CJxd3d3Ro8eXTa9ExEREZGb\npmVfbo6WIxKpXCXeHiwiIiIiIiJSWVS0ioiIiIiIiNNyaPZgERERcW6LFy9m586d+Pv7M3fuXAA+\n+eQT1q1bZ6yZ3qdPH+6+++7K7KaIiEipqWgVERGpRrp3784jjzzCokWLrOKPPfYYjz/+eCX1SkRE\n5Mbp9mAREZFqpHnz5vj4+FR2N0RERMqMrrSKiIjcAtauXcvGjRuJiIjg2WefVWErIiJVhopWERGR\nau6hhx7iL3/5CwCrVq3iww8/ZOjQoUXaxcfHEx8fD0BMTAwhISEAuLm5Gf+/niNxZ8nhzP07e933\nSpP7rI229nI4Erfb9onOxvfDVm8pde4K698NxstijKXJXehm9h17/SuL3OWdQ/1T/26GilYREZFq\nLiAgwPj/Aw88wL/+9S+b7aKiooiKijK+Tk1NBa6deBf+/3qOxJ0lR1XoH1Dq3LbalmXcWXJUp/6V\nxb5Tnrlv5WNP/Svf/oWHhxd5TWnpmVYREZFqzmw2G//fvn079erVq8TeiIiIOEZXWkVERKqRefPm\ncfDgQS5evMiQIUPo1asXBw4c4OTJk5hMJkJDQxk0aFBld1NERKTUVLSKiIhUIyNHjiwS69GjRyX0\nREREpGzo9mARERERERFxWrrSKiIiIiLiZPJffNyYhdh16ZeV2heRyqYrrSIiIiIiIuK0VLSKiIiI\niC4vQzUAACAASURBVIiI01LRKiIiIiIiIk5LRauIiIiIiIg4LRWtIiIiIiIi4rRUtIqIiIiIiIjT\n0pI3IiIi4pD8Fx8H4CxaiqMiaOkTuVHad6S60JVWERERERERcVoqWkVERERERMRpqWgVERERERER\np6WiVURERERERJyWilYRERERERFxWipaRURERERExGlpyRsREREREbFJy+aIM9CVVhEREREREXFa\nJV5pTU1NZdGiRWRkZGAymYiKiuLRRx8lKyuL2NhYzp8/T2hoKKNGjcLHxweLxcLy5cvZtWsXHh4e\nDB06lIiIiIoYi4iIiIiIiFQzJV5pdXV15ZlnniE2NpaZM2eydu1afv31V+Li4mjZsiXz58+nZcuW\nxMXFAbBr1y5SUlKYP38+gwYNYtmyZeU+CBEREREREameSixaAwMDjSulNWrUoE6dOqSnp5OYmEhk\nZCQAkZGRJCYmApCUlES3bt0wmUw0adKE7OxszGZzOQ5BREREREREqiuHnmk9d+4cJ06coHHjxmRm\nZhIYGAhAQEAAmZmZAKSnpxMSEmK8Jjg4mPT09DLssoiIiIiIiNwqSj17cG5uLnPnzqV///54eXlZ\nfc9kMmEymRzacHx8PPHx8QDExMRYFbpV2dmSm0glqC77V3WiY8X56DgREal4mp1XpGSlKlrz8vKY\nO3cu9913Hx07dgTA398fs9lMYGAgZrMZPz8/AIKCgkhNTTVem5aWRlBQUJGcUVFRREVFGV9f/xqR\nsqb9S6Rk1ek4CQ8Pr+wuiIiISBkp8fZgi8XCkiVLqFOnDj179jTi7dq1IyEhAYCEhATat29vxDdu\n3IjFYuHIkSN4eXkZtxGLiIiIiIiIOKLEK62HDx9m48aN1K9fn7FjxwLQp08foqOjiY2NZf369caS\nNwBt27Zl586dDB8+HHd3d4YOHVq+IxARERHD4sWL2blzJ/7+/sydOxfA7jJ1IiIiVUGJRWvTpk35\n5JNPbH5v8uTJRWImk4mBAwfefM9ERETEYd27d+eRRx5h0aJFRqxwmbro6Gji4uKIi4ujX79+ldhL\nERGR0nNo9mARERFxbs2bNy9yFdXeMnUiIiJVgYpWERGRas7eMnUiIiJVQamXvBEREZGqr7hl6uwt\nR+fm5ma1JNL1S1ZZxZ/obHw/bPUWq9x/zFHY3lZbe+1txcoq7gw57P5cS4iXRY7r42WR41bun73c\nhW7mfbfX1tHcttqWZ47i4vrdUPm5K6N/jlLRKiIiUs3ZW6buj+wtRxcSEmJ3SaTSxh3NYau9vRxl\nEXeWHIUciZdFjvLMrf5ZK8/33ZHcZbFfludxY2t7juZwluNa/bsWu5nl6HR7sIiISDVnb5k6ERGR\nqkBXWkVERKqRefPmcfDgQS5evMiQIUPo1auX3WXqREREqgIVrSIiItXIyJEjbcZtLVMnIiJSFej2\nYBEREREREXFaKlpFRERERETEaen2YBERERGRW1z+i48D15a4cV36ZZnmKIvccmvTlVYRERERERFx\nWipaRURERERExGmpaBURERERERGnpaJVREREREREnJaKVhEREREREXFamj1YREREbgmawVTk1qbf\nAVWXrrSKiIiIiIiI01LRKiIiIiIiIk5LRauIiIiIiIg4LRWtIiIiIiIi4rRUtIqIiIiIiIjTUtEq\nIiIiIiIiTktL3oiIiIiUk/wXH+fs//1fS2yI3DgtV3Nr05VWERERERERcVoqWkVERERERMRpqWgV\nERERERERp6WiVURERERERJyWilYRERERERFxWqWaPXjx4sXs3LkTf39/5s6dC0BWVhaxsbGcP3+e\n0NBQRo0ahY+PDxaLheXLl7Nr1y48PDwYOnQoERER5ToIERERERERqZ5KVbR2796dRx55hEWLFhmx\nuLg4WrZsSXR0NHFxccTFxdGvXz927dpFSkoK8+fPJzk5mWXLljFr1qxyG4CIiIg4Ny37IlK+S7ZU\n1eVgyuJ3g36/3BpKdXtw8+bN8fHxsYolJiYSGRkJQGRkJImJiQAkJSXRrVs3TCYTTZo0ITs7G7PZ\nXMbdFhERERERkVvBDT/TmpmZSWBgIAABAQFkZmYCkJ6eTkhIiNEuODiY9PT0m+ymiIiIiIiI3IpK\ndXtwSUwmEyaTyaHXxMfHEx8fD0BMTIxVoVuVnS25iVSC6rJ/VSc6VpyPjpPq7+WXX8bT0xMXFxdc\nXV2JiYmp7C6JiIiU6IaLVn9/f8xmM4GBgZjNZvz8/AAICgoiNTXVaJeWlkZQUFCR10dFRREVFWV8\nff1rRMqa9i+RklWn4yQ8PLyyu+C0pkyZYvzNFhERqQpu+Pbgdu3akZCQAEBCQgLt27c34hs3bsRi\nsXDkyBG8vLyM24hFREREREREHFGqK63z5s3j4MGDXLx4kSFDhtCrVy+io6OJjY1l/fr1xpI3AG3b\ntmXnzp0MHz4cd3d3hg4dWq4DEBERkdKbOXMmAA8++KDVHU8iIiLOqlRF68iRI23GJ0+eXCRmMpkY\nOHDgzfVKREREytw///lPgoKCyMzMZMaMGYSHh9O8eXPj+/bmm3Bzc7N65vn6Z9LLIm7reeo/btNe\nzJG4vX6URW57MVvbPPtEZ+N7Yau3lNg/R35+ZfHelOf7eyv0rzxzl1n/nuh88/vf/+XgujzO9PMD\nx34H2GxvY4zFtS3cRkltyzLuLDkcze2oMpmISURERJxf4RwT/v7+tG/fnqNHj1oVrfbmmwgJCbH7\nzHNZxG3FbG3TXj8cjdvaZlnkLm57trZpL+ZovKLfG/Wv+uSu7v1z9HdXWfzOcKRtef7eqegcpcl9\nM/NN3PAzrSIiIlJ15ObmcunSJeP/e/fupX79+pXcKxERkZLpSquIiMgtIDMzkzfeeAOA/Px8unbt\nSps2bSq5VyIiIiVT0SoiInILCAsLY86cOZXdDREREYfp9mARERERERFxWrrSKiIiIk4j/8XHgWsz\ncLou/bLSchTmudkcIiK2FP5+gZJ/x5TV77SqTFdaRURERERExGmpaBURERERERGnpaJVRERERERE\nnJaKVhEREREREXFaKlpFRERERETEaaloFREREREREaelJW9ERETE6dlbHsKRZSNERJxZeS5t42hu\nZ/vdqiutIiIiIiIi4rRUtIqIiIiIiIjTUtEqIiIiIiIiTktFq4iIiIiIiDgtFa0iIiIiIiLitFS0\nioiIiIiIiNPSkjciIiJySyuLpR2cbXkIESm9G10OprKXjilpKbDKXjanLOlKq4iIiIiIiDgtFa0i\nIiIiIiLitFS0ioiIiIiIiNNS0SoiIiIiIiJOS0WriIiIiIiIOC3NHiwiIiJ2aVZca5U5e6aIlJ5+\nd5VOWc2eDkV/L5ble6ArrSIiIiIiIuK0VLSKiIiIiIiI0yq324N3797N8uXLKSgo4IEHHiA6Orq8\nNiUiIiKloL/NIiJSFZXLldaCggLee+89/vGPfxAbG8vmzZv59ddfy2NTIiIiUgr62ywiIlVVuRSt\nR48epVatWoSFheHm5kbnzp1JTEwsj02JiIhIKehvs4iIVFXlUrSmp6cTHBxsfB0cHEx6enp5bEpE\nRERKQX+bRUSkqjJZLBZLWSfdtm0bu3fvZsiQIQBs3LiR5ORkXnjhBaNNfHw88fHxAMTExJR1F0RE\nROQ6+tssIiJVVblcaQ0KCiItLc34Oi0tjaCgIKs2UVFRxMTE6I+iE5swYUJld0GkStCxIlXBzfxt\ntrePOxJ3lhzqn/rnjLnVv8rPof5VbP8cVS5F6+23386ZM2c4d+4ceXl5bNmyhXbt2pXHpkRERKQU\n9LdZRESqqnJZ8sbV1ZUBAwYwc+ZMCgoKuP/++6lXr155bEpERERKQX+bRUSkqnKdOnXq1PJIXLt2\nbf70pz/x6KOP0qxZs/LYhFSAiIiIyu6CSJWgY0Wqgpv522xvH3ck7iw51D/1zxlzq3+Vn0P9q9j+\nOaJcJmISERERERERKQvl8kyriIiIiIiISFlQ0SoiIiIiIiJOq1wmYpKq57fffiMxMdFYaD4oKIh2\n7dpRt27dSu6ZiIiIiIjcyvRMqxAXF8fmzZvp0qWLsWZfenq6EYuOjq7kHopUDRs2bOD++++v7G6I\nlJmsrCwAfHx8im2XkZFh9aFnQEBAsTns5bWVx15uR7ZZXNvqLCcnh927d1uNvXXr1mRkZNj8oNpk\nMhWJt2jRgvPnzxfJYTKZbjp3vXr1OH36dJG2QUFBpc59zz33kJubaxVr3Lgxly5dspnDXr+9vLw4\nevSoVfz222/n2LFjN5X7jjvuIDk5uVTbs5e7VatWnDlz5qb6YS8HUOp+lOcY7eWuWbMm+/fvL9X+\nVNy+Uxa5HTk+7B0Hjuzbjh4f5fnzs9U/e2O3976bTCZuhopWYcSIEcydOxc3N+sL73l5eYwePZr5\n8+dXUs9EqpaXXnqJt99+u7K7IXJTUlNTWbFiBfv27cPb2xuLxcKlS5e466676Nu3L+7u7sbJSHZ2\nNh9//DE5OTnGh55paWm4u7vj5+fHiRMnjBzZ2dl4eHhw+fJlfHx8rPJ269aNzz77zCpPSkoKFy9e\nxNfXl1q1ahm53dzcsFgsFBQUlLjNrKwsTCYT3t7e1KxZ02jr7e3N3/72tyLFrKNFl72TPHsn8RVZ\n0GVkZJCcnMzdd99t9XPatm0bHh4ePPzww1YfVK9ZswaARx991IgnJSWRlJREw4YNueeee4wc27dv\nB6Bjx443nHvTpk0cOHCA5s2bc9999xlt165dy+XLl7n33ntLzH3gwAF+/PFHQkNDjdmw09LSOHHi\nBC4uLrRv394qh71+JyUlUVBQQEREhBE/efIkp06dokGDBjRs2PCGcu/bt4/Dhw/TtGlT7rrrrmK3\nZy/3kSNH2Lt3L3Xq1DGKTEf7YS/HqVOnMJlMNGjQoMR+lOcY7eXesWMHJ0+epF27dsaa0vb2p+L2\nnbLI7cjxYe84cGTfdvT4KM+fn63+2Ru7vfc9JSWFgQMH0rp1a26Ubg8WTCYTZrOZ0NBQq7jZbL7p\nT0VEqptXXnnFZtxisZCZmVnBvREpe7GxsTz22GMMHz4cF5drU18UFBTw5Zdf8sorrxAcHGycjBw6\ndIjatWszbNgwqyUNxowZw++//87SpUuNHBMnTqRx48YkJycza9YsI+/WrVt58803mTJlCnfccYeR\nY+zYsTz55JN8++23TJo0yYgPHz4coMgHqra2OXbsWDp16sTOnTutcqxatYoZM2Zw//33G2PZv38/\ny5YtM07OCk/u09PTmT59OnDtJO/6+MyZM4uc5H333XcsWLDA6iTe0dybNm3i008/LXLCamt79nJ/\n8MEHBAQEEBoaanXH1L59+zCZTEXuolq/fj0Wi8Uq/tlnn/H2228zadIknnrqKascAC+++KJVDkdz\nv/fee4wbN45u3boZ8Q0bNuDq6lqq3KtXr2bu3LnMnj2bIUOGGPG///3vdnPY6veBAwfIy8vjH//4\nhxEbNWoUkydP5t13373h3Bs3buStt95i5syZVj8/W9uzl3vUqFHMnj2b2NjYG+6HvRzDhg0DKFU/\nynOMxeVevHgxU6ZMYfTo0Ubc1v4Exe87N5vb0ePD1nHgyL59I8dHef78bPXP1tjtve/nzp0z9sEb\npaJV6N+/P9OnT6d27doEBwcD1z5pT0lJ4YUXXqjk3ok4l8zMTCZOnIi3t7dV3GKxWJ0Ui1RVFy9e\npHPnzlYxFxcXNm/ejJeXl9VJx/Dhwxk8eDBvv/02c+bMMeJXr17F1dXVKB4L8z7//PNG0VmYt0uX\nLixcuNCqYAW4fPkyDzzwAHFxcUX6aOsmMVvbvHz5Mk899RQJCQlWbbds2UJgYOBNFV1g+yTP3kl8\nRRd0n332GVOmTOG1116ziptMJvLz8/mjwqvXf5SZmWnzA2xb74EjuU0mEydPniySOz8/3+b2bOUu\nbPvH9i4uLuTl5RXJYa/fBQUFVvtNYe6IiIgieRzN7eLiUiRua3v2cufn5xMcHFwkhyP9sJejuD5X\n5Bjt5TaZTFy4cKFI3N6+am/fKYvcjhwf9o4DR/ZtR4+Pwj7+MUdZ/PzsjcfW2O2970FBQXbf99JS\n0Sq0adOGt956y+b957Z2PJFb2d13301ubq5xu9j1mjdvXvEdEiljERERLFu2jMjISOODzLS0NM6f\nP0+rVq2s2rZp04bPPvuMjIwMDh8+bLTNzc3F19eX5ORkI0doaCijR48mODjY+FuTlpZGQkICoaGh\nzJ4922qbtWrVYuDAgTRs2NAqd35+PhaLhS1btlj1z9Y2GzVqxNChQwkICLDKkZ6eTpcuXYqM3dGC\nzt5Jnq2T+Iou6J544gkmTJhATk4On3/+OXDtA+nc3FwKCgqYNWuW1QfVly9fxmQyWcXd3NwYP348\nrVq1sspx6dIlAJYuXWqVw5HcHh4eTJs2jQYNGvDOO+9Y5XBxcSlVboDRo0dz3333sWnTJqNtXl4e\nubm5RXLY63d2djaenp7ExcUREhICQFhYGC+88ALNmjW74dyBgYEMGzaMpk2bWv38bG3PXm5vb28G\nDx5Mu3btbrgf9nJcvnwZoFT9KM8x2stds2ZNxo8fT506daz2EVv7U3H7TlnkduT4sHccOLJvO3p8\nlOfPz1b/7I3d3vu+ZcsWevTowc3QM60iIiJiyMvLY/369VbPRwYHB3PlyhXc3d3p3r27VbH45Zdf\ncuXKFeOZ0aCgINq2bYvZbLbKERgYiI+PD1lZWZjNZiPvPffcQ48ePdi/f3+R5zoDAwMxm82legbU\n1jaDg4OpWbMmeXl5ZGRkGG09PDxISkqiVatWVidn1z+PdX38+mf/ro9f/3xeYXzv3r3GM34tW7a8\nodzHjx/nl19+oUGDBjRq1KjY7RWX+/fff6dz5874+fkZYy9uohQoOilPrVq12LdvX5FnaAH27NlT\n6klYbOWOiIjg+PHjRdrm5OSUOneNGjXYsWNHkX0kICDAZg57/c7IyCApKalUzxU7krtx48ZF+mxv\ne/Zyh4aGcvDgwZvqh70cQKn7UZ5jtJe7ZcuWpKSklHoCKXv7TlnkthW3d3zYOw4c2bcdPT7K8+dn\nq3/2xm7vfb/ZFUlUtIqIiEip7Nq1y+ZEQnfffXcl98xxWVlZN1102TvJs3cSX9EFne6YEpFqwyIi\nIiJSCklJSaVu+/3335c6R3F5beWxl9uRbdpreytYsmSJzfjs2bNLHbeXoyxy22vrSO5Vq1Y5lMNe\n3FaessjtyPbstS+LftjL4SxjtBd3ZH8q79yOHB9lsW9Xxhgd6Z+j73tpqWgVERGRUrF30mGrAPzu\nu+9KnaO4kxlbeezldmSb9tqWRdFlL4+zFHTHjh2z2TY9Pb3UcXs5yiK3vbaO5E5MTHQoh724rTxl\nkduR7dlrXxb9sJfDWcZoL+7I/lTeuR05Pspi366MMTrSP0ff99LS7cEiIiJi5bfffrN5G7CtZ5J+\n++03vv/+e55++mk8PT2N+Jo1a2jSpAmNGzfm119/Zffu3YSHh1vdSrxw4UL+/ve/F8n5888/s3Xr\nVlq0aEGHDh24cuUKcXFxHD9+nCtXrvD8889Tr149q9fk5eWxefNmAgMDadWqFZs2beLw4cP4+vri\n7u6O2WzGxcWF2rVr07VrV7y8vGyO/fjx41bL9xQym80EBgaWOm4rT1nkdmR7xbUva5mZmfj7+5e6\nfeEavCKVwZH9taruqxU9Rkd/BzhKRauIiIgY4uLi2Lx5M126dLFaeL4wdv3yKWvWrGHt2rV4eHiQ\nnZ1N//79ad++PZ9++ilffvklderUoVWrViQnJ2M2m7lw4QJ+fn7Url0bi8XCgQMHuOuuuzh06BDv\nv/8+APHx8axduxaz2UytWrVo164dZ8+excPDg06dOjF9+nRMJhO33347Xbp04d5778XPz4/58+eT\nn5/P5cuX8fb2Jjc3F09PT/bv34+/vz/u7u40bNgQb29vtm/fzsCBA2nRokWF/Ewro6DLyclh9erV\nJCYmGktT+Pv7065dO6Kjo4ss25WTk8O4ceO48847adu2LV27diUjI4NPP/2Un3/+malTp/LNN9/w\n008/ERYWRt++fQkICACuzYA8YcIE+vXrR8uWLfHx8SEnJ4cPPviAY8eOkZ+fz+jRo6lXrx7Hjh0j\nNjaW9PR03N3dGThwIF27djX6cezYMVasWEFgYCB9+/bl7bff5ujRo9SqVYuIiAgOHz5MWloabm5u\nhIWFUadOHTIyMozJvQo/YOnRowdubtaLZBQUFDBlyhRatGhBmzZtaNq0KXBtaaQ5c+bQqlUrHnnk\nEbZs2cJPP/1EnTp1+Mtf/mJ8GDNixAhGjx5NgwYNgGsflHzxxRccPXqUq1evMmTIEEJCQkhJSeHt\nt9/myJEjhISEMHz4cKslnc6ePctnn31GUFAQ0dHRvP/++yQnJxMeHk7jxo2NCZNcXFyoVasWQUFB\n/Prrrzc8xsuXL/Ptt9+yf/9+xo4da3d8lTXG2rVrc9999/Hzzz+Xan+1ta8CZGRkMH36dJo3b07v\n3r2L3V9Hjx5tLN/l4uJS7L5qMplITU2lW7duPPHEE9SqVcvhfbVWrVp069aN1NTUUo8xLi6OhIQE\nnnnmmQoZ49WrV2nWrBknTpwosX9ZWVkAvPnmm4wePdr4HTBr1ix+/PFH9uzZU6r91REqWkVERMQw\nYsQI5s6dW+TkIi8vj9GjRzN//nwjNmbMGGbOnMmoUaOYNm0ab775Jt26dWPdunW4uLgwY8YMBg0a\nxNtvv820adOoXbs2R48eZejQoVgsFt566y1GjhzJkiVLjLyvvvoqr776KlOmTGH27NlMnDgRNzc3\n/vWvfwEwbtw4CgoKeOaZZ9iyZQtJSUlERERw+vRpYmNjcXd3Z8iQIbzzzjuMHTuW119/nfHjxzNz\n5kxmz57N1KlTOX36NNOmTcPHx+eGCzqwfQK5ZcsWwsPDjRPIyiro8vPzadWqFQMGDDBOZDMyMvj8\n8885evQoAwcOtBrjRx99xNGjRxk2bJixHmxubi733HMPcXFx+Pr60rVrV7p27crQoUNxd3e3KsTT\n09MxmUwEBQWxcOFClixZQkBAAA888AATJ06kcePGjBs3jmnTpvG3v/2N2NhY7rrrLjZu3EjDhg3p\n0qULnTt3Zs6cOfTq1Yvs7GxWrlzJc889R6dOnXjttdfIzMxk6tSpbN26ldzcXI4ePcqZM2e44447\n6NOnD3BtRuv4+HiysrIYOnSo1RiXL1/OTz/9RJ8+fdi4cSPNmzfnueee48033+TgwYN06tSJ33//\nnTp16rBhwwYKCgqwWCzcdtttAMYSMZ6ennzwwQd8+OGHXLx4kfvvv5833niDu+++m7///e/Mnj2b\nBx54gPfee49atWpx+PBhOnToQNeuXbn77rv55z//SZcuXcjJyeHHH3+ke/fu3Hvvvbz11lukp6cz\nbNgwtm3bRo0aNTh06BApKSnce++99OzZ84bGmJaWRkhICAkJCTRo0IA6derQuXNnpk+fDoC7u7ux\nRFNljLFZs2bMmzePO++8k8GDBxv76549e9ixY0eR/dXWvjpixAhef/11Tp8+zSOPPMKmTZuK3V/P\nnz9PaGgoJpOJu+66q9h9tXHjxgwZMoT8/Hzc3NwICAigS5cuJCQk0Ldv31Ltq126dGHq1KnUrl2b\nkSNHlnhMfvTRR4SEhJCYmEizZs0qZIyTJk3i/PnzxMTElNi/V199lYCAADIzM40Zy9PT03Fzc8PF\nxYWJEydazTKfkJBAVlYWo0aN4kZpnVYRERExmEwmzGYzoaGhVvFXXnmF1NRUXnnlFSOWkpLCxIkT\nyczMpGbNmkydOpW5c+eSmZlJYGAgHh4ehIWF4eXlxezZs1mzZg07d+7Ey8uLhg0b4u7uTvPmzfHw\n8CArKwvLtbk28PPzo169emzduhVXV1caNGjAsWPHuP3228nLy8PDw4PWrVvTunVr8vLy2L17NwsW\nLODll19m/vz5XL58mZycHAByc3PJz8/n6tWr5ObmAvDhhx9iMpmYOnVqkZOzmTNn2izoMjMz6dix\nIxs2bGDbtm2MGDGCRYsWkZOTQ0hICNOmTaNr166cOXOGCxcuMGHCBOMEMj09nQULFhgF3Ycffkhg\nYCDjx49n4sSJ/Oc//2HcuHGsWLGCkSNHGgXdokWL+Prrr42CbtmyZUZBN2nSJJ577jkmTZrEa6+9\nxv79+61Okn/44Qfc3d1Zs2YNffv2BSAgIIC1a9dy22238dFHH1mN8dixYxQUFNChQwc6dOjA559/\nzurVqxkxYgQ//PADFy5cMK6yP/PMM3z66aeMHz+e+vXrA/Dyyy/j4+NjfLhw7Ngx5syZA1xbJ/Tc\nuXMAXLlyhcaNG+Pj48NLL73E0aNHefbZZ9m8eTPjx4/n8uXLpKWlERUVxcqVK+nUqRNwrZiqUaMG\nwcHB9OzZk1dffZWcnBxiY2ON9X/h2jJHkyZNwsXFhfHjx1vt12lpaQA89thjPPLIIyxbtow33niD\nlJQUgoKCeOGFFxg0aBCTJk3CZDKRnZ3N8ePHjatVL7/8Mt7e3rz++usA7Nu3j9mzZ+Pm5oavry8n\nT54E4MKFC3To0IH//ve/TJs2jdGjR9OuXTvWrVvHO++8g8ViISwsjNatW7N27Vr+/Oc/A3Dp0iW8\nvb1p2rQpTZs2ZeLEiWRlZbFgwQLGjRvHc889d0Nj3Lt3L0uXLmXfvn2cPn3aGN+DDz7Ixo0bmTdv\nnnEcVMYYe/fuja+vLykpKUY/AGbNmkXz5s355ZdfrPZXW/vq9OnTycnJwd/fn+joaNauXVvs/tq3\nb18WLVoEwNixY4vdVwH8/f3Jy8tj7ty5HDp0iM2bN3P69Gm+/PJLY83n4vbVwivaGRkZVmO0d0we\nO3YMgKtXrzJ+/PgKGeOFCxfw9vYuVf9q1qxJdnY2Li4uxjZefvll3NzceOutt7hecHAwTZo09QLk\nuQAAIABJREFUYcSIEdwMFa0iIiJi6N+/P9OnT6d27dpWa36mpKTw/PPPWz2T+tZbb/Hkk08aC9d7\nenoyYcIEBg0axKlTpwCIiYkBrt2e1qNHDzZs2MDnn3+Ov78/+fn5wLUrmRMmTMBisRhF85AhQ1i2\nbBm//vorbm5uvPbaawQHB5OZmck///lPow9ubm60a9eOv/71r3zzzTeMGzeOp59+mjfffBNPT08G\nDRpE3bp1ee211/if//kf4FqxHR4eXqqTM3DsJNnV1ZW9e/dy7tw54+StMgq6WrVqUbduXdatW2cU\nrRkZGfj5+REWFsaUKVOsxjhq1CguXbpkfP3kk0/y/fffM2XKFHJzc4mMjDS+9+c//5n4+Hj++9//\nEhwcTK9evTCZTGRmZvLVV19hsVi4dOmS8X4+9NBD/Oc//2H//v20bt2a5cuXc+nSJT755BMaNmxI\ns2bNaNasGQMGDGDMmDFs27YNb29vTCYT27dvp0OHDuTn51NQUABcW1fUx8cHFxcXfvrpJyMO126P\n9ff3x9/f3/gZFxo5cqRxJdHV1ZXBgwfz6aefsmfPHgIDAzGZTLRt2xaTycSAAQM4fvw4U6ZMYc2a\nNTzyyCOYTCZycnL46aefsFgs5OXlGXckdOrUie+++46zZ8/Svn17vv76a/Lz89mwYQM1a9akW7du\ndOvWjYsXLzJu3DhWrVqFt7c3V65cMT6QKSgo4OrVq8C1Z5Td3Nzw8fEhKSmJ62+MdHSMSUlJTJ8+\nncuXLxvjAxgwYAC7d+/mrbfeon379lZj3L59OwUFBRUyRoDQ0FBOnjxpVdTVrl2bRo0a4eLiwqRJ\nk4rdV4OCgli6dKnxQdEf99d169ZZ7a8FBQWl3lc7duyI2Ww21l0u3F9PnDhBy5Yt2bRpU4n7auEY\nT5w4YTVGe8fkqFGjmDRpEi+//HKFjTE/Px8PD49S9Q+uXUEdMWIEH3zwgfE7wMfHh61bt9KxY0dj\nua2CggLjmL4Zuj1YRERErBQUFBRZ8zM+Pp4ePXoYzwHCtZMWV1dXPvjgA6tP0a9evcqxY8es2sK1\nT/IzMjKoX78+O3fu5OeffzYKKlsuX75MSkoKFouFgoICgoKCyMnJITw83Gb76/ubnZ3Nvn37yM/P\nx9XVlXr16lGnTh0AZsyYQcuWLYmMjLQ6ORs7dixhYWHMmDHDKm/hSfKSJUuM2A8//GCcQC5evJiP\nP/6Yp59+2vi5jB49mh49etCrVy/Gjh1LXl4ePXv2xGKxsHbtWhYsWIDJZOKbb74xrrQePHiQ7Oxs\ndu3aRdeuXTl79izDhg0z3pMxY8YQHBzMAw88wEcffUT//v3p0KEDo0ePpqCggHnz5pGUlMTatWsZ\nMWIEcXFxfP3118YziwEBAdSuXZsnnnjC6vlDgBUrVuDh4cFf//pXI7Zq1SoaNWrEihUrrG4LT0lJ\nYeXKlYwZM4akpCRWr17NuXPneOihh6xyPvzww/j5+ZGRkcHChQvx9vbmzJkz5Ofnc/HiRXr16kX3\n7t2tbkU/efIkK1euxGQy8dxzz/Hdd9+RkJCAj48Pt912GxkZGdStW5eXXnoJNzc33n//ffbv329M\nNpWdnU1wcDC9e/cusn7w/PnzqVGjBi+++KJVfPLkyRw5coSPP/7YKp6SksLChQvp3Lkz27Zt4+zZ\ns7Ru3dqqTeFt4BkZGUybNo0aNWpw9uxZrl69SkFBAY8++ijR0dFWE3/t27ePZcuW4eLiwuDBg/nq\nq6/45ZdfuHDhAq6urnh7e5Ofn8/IkSPx9/fn/fffZ+/evQQHB2OxWMjJyXFojEuWLKFhw4Z88MEH\n/Oc//7Ea36JFi5g2bRrffvutMcZWrVoZhW15jdHLy4uCggJGjBhBkyZNOHPmDAsWLCAnJ4fMzEwA\nPDw8aNOmDf369TMKP7C9r8K1D9GSk5NZuHBhkffxj/vrL7/8wuOPP260KW5fDQkJITMzkxkzZpS4\nr27cuBFvb+8i+2p4eDhnzpxh6dKlpKenG2O0d0yuWLGCVq1akZubS4cOHSpkjK1atSI9PZ0dO3aU\n2L9C27dvx8XFxfgdMHPmTFauXMmBAweMIjU7O5sWLVrwt7/9jZo1axbJUVoqWkVEROSWkpWVRVxc\nHElJSaU6ObvRk+TIyMibKujuv/9+XF1djdc4UtCFh4dz+PBhfvzxR/r162c12U58fDxhYWHccccd\nJcZ/++03tm/fzp/+9Ce7bV1cXEhJSaF+/fplnvuP8Zo1a9KkSRMjnpycTHJyMvfddx+//fYbR44c\noW7duvj5+QEUmb3akTjAnXfeyR133MGhQ4c4cOAAERER+Pr6YjKZis1x+vRpdu/ejclkomnTpkXa\nXp/j9OnT7Nq1i7p16xpXkG3Nun3x4kXg2nOrw4cP54/szcZtK14YK7z6Btdmmh4zZgz//ve/S517\nwYIFxgcrJbWNiYlh3LhxmEwmLl68aPy8bLU/dOgQR48epX79+sYHBT///DNHjx6lXr16Vh8eOBo/\ndOgQBw8epHHjxiXmttUPe+1Lauvi4kL37t3x8vLi8uXLxMXFceLECby9venbty/BwcFcuXKF1atX\ns3//fiIiIujduzdubm6sXr3aZtvCWdWvj1++fJlPP/2UAwcO0KRJE3r37o2rq6vN7V3fD3szs69Z\ns4YOHToQEhJiN3blyhXjDpZNmzYRFBREo0aN2L17N4cPH6Zu3bpERUVpIiYRERGRsrBhwwbuv//+\nMosXnszVr1+/THKXtq29mZ3XrFnDypUrad26NadOnTLi33zzDStWrLCKp6am8u2335KZmYm3t/cN\n5bDX3tHctuInT55k9+7dnDp1ikcffZSjR4/SvHlz1q9fj8Viwd/f35i9ukWLFg7F4dpt3DVq1CAy\nMtJu7uLiFovFKoe97RWXIz093WrWbYD9+/cbRXvh84iFs3Hbiu/evduYjbpx48Z229rLXVx8165d\nZZLb1dWVZs2aMX78eNatW8fatWuNZ+XvuecefHx8WLt2LR06dOB///d/efLJJ4mOjjZmG3ck/t13\n31nl9vX15dtvvy3StrAf7du3t5n7woULVv377rvvirRdt26dkfuLL77gySefNB6pKJwR/Y033uDO\nO+9k7NixRjwxMZFu3bpx+vRpfH19i21bVjmun5m9a9eudOrUCT8/P5577jk8PT0JCwszZmwfNmxY\nkdj1s7hfuXLFKM47dOjAvn37sFgsNj/MKC090yoiIiLyfz755BObReGNxt3d3Y2JUcoid2nbrlu3\njn/9619WMzufP3+edevWUbt2bcaNG8e5c+eKjaenpzN//nwmT57MK6+8ckM5yjN3eno6S5YsYdy4\ncaxdu5a3334bLy8vtmzZgslkYtq0acbs1Y7GJ02axLvvvss//vGPG85dFjmmTZtmFLB//vOfjULY\n09OT0NBQevbsiclkwmKxcPz4cZvxPXv2UL9+fe6++24aNWpUbFt7ue3Fd+/eXWa5Cydrio+P57XX\nXmPGjBlMnDiRiRMn4u7uzqRJk/Dz8+Onn37ixx9/NIpCR+OlzV3YD3u5/5jDVtv4+Hgj96ZNm9i8\neTNPPvkkx48fN55x9/X1NZ5rL4zv2bOH3r17M3bsWM6fP19s27LKUbduXQoKCnjqqafYsmULq1at\nIiIiAm9vb+bMmcPRo0fZsmULn3zyCRaLhaeffhpvb2927NjBJ598YncWdxcXF+677z7Gjh1b5PeW\nI1S0ioiIyC3l+hmQr3fmzBmuXr1a5PuOxM+cOQNgM16ROezN7Gw2m40JtkqKv/jii6xatQqLxXLD\nOcoz96BBg/joo48wmUzGLNVwbXIui8ViNXu1o3FXV1c8PT1xdXWt1Bz2Zt2eN28ea9as4fPPP+eZ\nZ54pNh4UFETbtm3ZuXMnLVq0uKEc5Z3bw8OD+vXrc/HiRWMG8cLJrgAjBhjF7vVtHY2XRW5HczRo\n0MC4in/9jOghISH8/vvvVvF69eqxevVq3NzcjOWw7LUtqxz2ZmZftGgRw4cP57333jPiI0eOZM+e\nPezbt4/33nuv2FncfXx8uHr1qjHx3o1S0SriBEwmEx999BH9+vWz+bWIiJSdzMxMJk6cWGQ2ywkT\nJuDp6Wm1jIij8QkTJvDyyy+zePHiIvGKzGFvZuchQ4YYMzuXFL/99ts5c+YMv/zyyw3nKM/cderU\nISMjg19++cVqgiEXFxfjBLlw9mpH425ubpjNZlxcXJg9e3aZ5fjhhx+YM2cOgwcPLlUOe7Nuu7i4\n0LNnT+69914++OCDYuMFBQWlbltZuW3NIJ6Tk8P48eNJT08nODgYs9lMYGAg2dnZZGRkMGHCBKOt\no/GyyO1ojv79+zNmzBiGDRuGr6+vMSN6QEAA9evXt4oHBgZy6NAhXF1dMZlMxbYtqxz2ZmYPDQ0t\nEvfy8rKaqbq4Wdxr1qxJcnIynTt35qZYRKTSnTlzxnLp0iXja8Dy0UcfVWKPRESqr8WLF1sOHTpk\nMz59+vSbihfmnjdvXqXmSE1NtZjN5iI5UlNTLdu3by+Sw1a8MMcff1aO5CjP3FeuXLFYLBabOU6d\nOmUzR2njV65csWRmZhaJ32yODRs2WADLtm3bSt2/63Ps2LHDsnLlyiJtHImXRY7yzl0oNzfXcvbs\n2RJjZRWviBzZ2dmWEydOWI4dO2Yxm83G923FHWl7szl+++23In22WCw24/baWiwWS1pamiUtLc1i\nsVgsWVlZlq1bt1qSk5Ptti8tTcQk4oR0pVVERKRquXLlCu7u7sW2+eGHH7j//vs5ffo0devWraCe\niVR9LpXdAZFbxaZNm+jSpQu+vr74+vrSunVr1q5dC1wrUlesWGHVPi0tjaeeegpvb2/q1KljLFJf\naNmyZTRr1gxPT0+CgoLo1q0bv/76KwDvv/8+bm5uxMfH06JFCzw9PenYsaMxhb+IiMitrHv37gwY\nMIAJEyYQEhKCn58fgwYNIjc3F4Dvv/+e7t27ExQUhL+/P5GRkWzfvt0qh8lkYv78+fTt2xd/f3+e\neeYZAM6dO8fzzz9PWFgYnp6e3HnnnUWWkTl06BDdunXDy8uL5s2b880331TMwEWqKBWtIhUgLy+P\nxx9/nI4dO7Jz50527tzJ1KlTrRbi/qNp06bRvXt3du3axbhx4xgzZgxffPEFADt27GDIkCG8+uqr\nHD58mISEBJ599lmr1xcUFDBu3DgWL17M9u3bCQ0N5bHHHuPSpUvlOlYREZGq4L///S9paWn8+OOP\nrFy5kri4OF599VXg2lq+Q4cOZevWrWzZsoU77riDRx55hLS0NKsc06ZNo3PnzuzcuZMZM2Zw6dIl\nIiMj2bNnDytXruTgwYMsWLCgyN/7V155hX/84x/s2bOHjh070rt3b8xmc4WNXaTKuekbjEWkROnp\n6RbAsmHDBpvf5w/PsAKWfv36WbXp06ePpWvXrhaLxWL5/PPPLX5+fpbMzEyb+ZYvX24BLPHx8VZ9\n8Pb2tixbtuwmRyMiIlK1RUZGWho0aGDJy8szYu+8847Fw8PDkpWVVaR9fn6+JSAgwLJixQojBlgG\nDBhg1W7ZsmUWDw8Py+nTp21ut/CZ1s8++8yIpaSkWADLt99+e7PDEqm2dKVVpAIEBgYycOBAHn74\nYf70pz8RExPD4cOHi33Nvffea/V1ly5dOHDgAAAPPvggERERNGrUiKeffpp3332X1NTUYnMEBgbS\nrFkzI4eIiMitrEOHDri6uhpfd+nShcuXL3Ps2DFOnDjBM888Q+PGjfHz88PPz4/MzEyrGYwLc1xv\nx44dNG/evMTnVdu0aWP8PywsDFdXV86ePVsGoxKpnlS0ilSQpUuXsmPHDh588EESEhK46667jKUI\nHOXj40NSUhKrV6+mSZMmLFmyhMaNG7Njx44y7rWIiMitp2fPnvzyyy8sWrSIbdu2sXv3bmrWrMmV\nK1es2v1x2aTSsjVhU0FBwQ3lErkVqGgVqUB33XUXo0eP5ptvvuGFF17g3Xfftdt227ZtVl9v2bKF\n5s2bG1+7urrSrVs3pk+fzo4dO6hduzb/7//9P7s5MjIyOHTokFUOERGRW1ViYqKxLipc+zvr4eFB\ncHAwBw8eZMKECTz88MM0b94cT09Pzp07V2LOe+65h4MHDxoTI4pI2VDRKlIBjh49yvjx49m0aROn\nTp1i69at/Pjjj8UWkF999RULFy4kOTmZBQsWsGrVKsaMGQPAF198QWxsLDt27OCXX34hLi6O06dP\nW+UzmUyMGzeOjRs3sm/fPp599ll8fX3p27dvuY9XRETE2aWlpfHyyy9z6NAhvv76ayZNmsTgwYOp\nXbs2oaGhLF26lCNHjrB161b69OlDjRo1SszZp08fGjRowOOPP058fDwnTpxg3bp1rFq1qgJGJFJ9\nuVV2B0RuBd7e3iQnJ/P0009z/vx5goODeeyxx3jjjTfsvmby5MnEx8czbtw4/P39ef3113niiSeA\na8+n/u///i+zZs3i4sWL1KtXj9dee40XXnjBeL2LiwuzZs1i8ODBHD9+nNatW/P1118XO2OxiIjI\nreIvf/kLvr6+dO3alStXrtC7d29iYmJwcXHh008/Zfjw4bRq1YoGDRowa9Ysxo8fX2JOLy8vEhIS\nGDduHE8//TRZWVk0bNiQCRMmVMCIRKovk8VisVR2J0SkbL3//vsMHDiQvLy8yu6KiIiI0+nevTuN\nGzdm2bJlld0VESkF3R4sIiIiIiIiTktFq4iIiIiIiDgt3R4sIiIiIiIiTktXWkVERERERMRpqWgV\nERERERERp6Ulb0RERKqY33//ndjYWOPrc+fO0atXLyIjI4mNjeX8+fOEhoYyatQofHx8sFgsLF++\nnF27duHh4cHQoUOJiIioxBGIiIiUntM80/r7779X6PZCQkJITU2t0G1WBo2zetE4qxeNs/yEh4dX\n6PYqU0FBAYMHD2bWrFmsXbsWHx8foqOjiYuLIysri379+rFz506+/fZbXn31VZKTk3n//feZNWtW\nibn1t7l8aJzVi8ZZvWic5edm/jbr9mAREZEqbN++fdSqVYvQ0FASExOJjIwEIDIyksTERACSkpLo\n1q0bJpOJJk2akJ2djdlsrsxui4iIlJqKVhERkSps8+bNdOnSBYDMzEwCAwMBCAgIIDMzE4D09HRC\nQkKM1wQHB5Oenl7xnRUREbkBeqZVRESkisrLy2PHjh307du3yPdMJhMmk8mhfPHx8cTHxwMQExNj\nVehWBDc3twrfZmXQOKsXjbN60Tidk4pWERGRKmrXrl00atSIgIAAAPz9/TGbzQQGBmI2m/Hz8wMg\nKCjI6tmltLQ0goKCiuSLiooiKirK+Lqin3fSs2TVi8ZZvWic1YueaRUREZEKcf2twQDt2rUjISEB\ngISEBNq3b2/EN27ciMVi4ciRI3h5eRm3EYuIiDg7Fa0iIiJVUG5uLnv37qVjx45GLDo6mr179zJ8\n+HD27dtHdHQ0AG3btqVmzZoMHz6cd955h4EDB1ZWt0VERBym24NFRESqIE9PT/79739bxXx9fZk8\neXKRtiaTSYWqiIhUWbrSKiIiIiIiIk6rVFdas7OzWbJkCadPn8ZkMvHSSy8RHh5ObGws58+fJzQ0\nlFGjRuHj44PFYmH58uXs2rULDw8Phg4dSkRERHmPQ0RERERERKqhUhWty5cvp02bNowZM4a8vDwu\nX77M6tWradmyJdHR0cTFxREXF0e/fv3YtWsXKSkpzJ8/n+TkZJYtW8asWbPKbQD5Lz5+Q687exPb\ndF365U28WkREpHrT32YRESlLJd4enJOTw6FDh+jRowdwbU0fb29vEhMTiYyMBCAyMpLExEQAkpKS\n6NatGyaTiSZNmpCdnY3ZbC7HIYiIiIiIiEh1VeKV1nPnzuHn58fixYs5deoUERER9O/fn8zMTGO6\n/ICAADIzMwFIT0+3Wqg2ODiY9PR0Ta0vIiIiIiIiDiuxaM3Pz+fEiRMMGDCAO+64g+XLlxMXF2fV\nxmQyYTKZHNpwfHw88fHxAMTExFgVuo64mVuJbtSN9rUyuLm5Van+3iiNs3rROKuXW2WcIiIiUj5K\nLFqDg4MJDg7mjjvuAKBTp07ExcXh7++P2WwmMDAQs9mMn58fAEFBQaSmphqvT0tLIygoqEjeqKgo\noqKijK+vf42zq0p9DQkJqVL9vVEaZ/WicVYvlTHO8PDwCt2eiIiIlJ8Sn2kNCAggODiY33//HYB9\n+/ZRt25d2rVrR0JCAgAJCQm0b98egHbt2rFx40YsFgtHjhzBy8tLtwaLiIiIiIjIDSnV7MEDBgxg\n/vz55OXlUbNmTYYOHYrFYiE2Npb169cbS94AtG3blp07dzJ8+HDc3d0ZOnRouQ5AREREREREqq9S\nFa0NGzYkJiamSHzy5MlFYiaTiYEDB958z0REREREROSWV+LtwSIiIiIiIiKVRUWriIiIiIiIOC0V\nrSIiIiIiIuK0VLSKiIiIiIiI01LRKiIiIiIiIk5LRauIiIiIiIg4LRWtIiIiIiIi4rRUtIqIiIiI\niIjTUtEqIiIiIiIiTktFq4iIiIiIiDgtFa0iIiIiIiLitFS0ioiIiIiIiNNyq+wOiIiIiOOys7NZ\nsmQJp0+fxmQy8dJLLxEeHk5sbCznz58nNDSUUaNG4ePjg8ViYfny5ezatQsPDw+GDh1KREREZQ9B\nRESkVHSlVUREpApavnw5bdq0Yd68ecyZM4c6deoQFxdHy5YtmT9/Pi1btiQuLg6AXbt2kZKSwvz5\n8xk0aBDLli2r5N6LiIiUnopWERGRKiYnJ4dDhw7Ro0cPANzc3PD29iYxMZHIyEgAIiMjSUxMBOD/\ns3f/0VHVd/7HXzcTEsjvzAwJJkg1CIvEWCmJxl8kxtFaY93UPctawD2UImvjhgb6Q7QW3FJkJNDQ\n8EO7pQ274p7WntXZLuup2zElbEvZJiYsiK3gIvRr+RGSGUN+gJDJfP+gzpKGmmSSMPdOno9zeph7\n8773vj9Iubzmfu69jY2NmjNnjgzD0PTp09XV1SW/3x+x/gEAGAqmBwMAYDEtLS1KSUnR1q1bdezY\nMeXk5GjhwoVqb29Xenq6JCktLU3t7e2SJJ/PJ6fTGdre4XDI5/OFagEAMDNCKwAAFhMIBPTee+9p\n0aJFmjZtmmpra0NTgT9iGIYMwxjSfr1er7xeryTJ7Xb3CbpDcSqsrYYn3F4jITY21lL9hotxRhfG\nGV2sNk5CKwAAFuNwOORwODRt2jRJUmFhoTwej1JTU+X3+5Weni6/36+UlBRJkt1uV2tra2j7trY2\n2e32fvt1uVxyuVyh5Uu3MTsr9ep0Oi3Vb7gYZ3RhnNElEuPMysoKe1vuaQUAwGLS0tLkcDh0/Phx\nSdKBAwc0efJk5efnq76+XpJUX1+vgoICSVJ+fr52796tYDCoQ4cOKSEhganBAADL4EorAAAWtGjR\nItXU1Kinp0cZGRkqLy9XMBhUdXW16urqQq+8kaRZs2apqalJS5cuVVxcnMrLyyPcPQAAg0doBQDA\ngq655hq53e5+61euXNlvnWEYWrx48ZVoCwCAEcf0YAAAAACAaRFaAQAAAACmRWgFAAAAAJgWoRUA\nAAAAYFqEVgAAAACAaQ3q6cGPP/64xo8fr5iYGNlsNrndbnV2dqq6ulqnT58OPVY/KSlJwWBQtbW1\nam5uVnx8vMrLy5WTkzPa4wAAAAAARKFBv/Jm1apVSklJCS17PB7l5eWprKxMHo9HHo9HCxYsUHNz\ns06ePKmamhodPnxY27Zt07PPPjsqzQMAAAAAolvY04MbGhpUVFQkSSoqKlJDQ4MkqbGxUXPmzJFh\nGJo+fbq6urrk9/tHplsAAAAAwJgy6Cuta9askSTdc889crlcam9vV3p6uiQpLS1N7e3tkiSfzyen\n0xnazuFwyOfzhWoBAAAAABisQYXW1atXy263q729Xd/+9reVlZXV5+eGYcgwjCEd2Ov1yuv1SpLc\nbnefoDsUp8LaanjC7TUSYmNjLdVvuBhndGGc0WWsjBMAAIyOQYVWu90uSUpNTVVBQYHeffddpaam\nyu/3Kz09XX6/P3S/q91uV2tra2jbtra20PaXcrlccrlcoeVLtzE7K/XqdDot1W+4GGd0YZzRJRLj\n/NMvVwEAgHUNeE/ruXPndPbs2dDn/fv3a8qUKcrPz1d9fb0kqb6+XgUFBZKk/Px87d69W8FgUIcO\nHVJCQgJTgwEAAAAAYRnwSmt7e7vWr18vSQoEArrjjjt00003aerUqaqurlZdXV3olTeSNGvWLDU1\nNWnp0qWKi4tTeXn56I4AAAAAABC1BgytmZmZqqqq6rc+OTlZK1eu7LfeMAwtXrx4ZLoDAAAAAIxp\nYb/yBgAAAACA0UZoBQAAAACYFqEVAAAAAGBahFYAAAAAgGkRWgEAAAAApkVoBQAAAACYFqEVAAAA\nAGBahFYAAAAAgGkRWgEAAAAAphUb6QYAAMDQPf744xo/frxiYmJks9nkdrvV2dmp6upqnT59WhMn\nTtSyZcuUlJSkYDCo2tpaNTc3Kz4+XuXl5crJyYn0EAAAGBRCKwAAFrVq1SqlpKSElj0ej/Ly8lRW\nViaPxyOPx6MFCxaoublZJ0+eVE1NjQ4fPqxt27bp2WefjWDnAAAMHtODAQCIEg0NDSoqKpIkFRUV\nqaGhQZLU2NioOXPmyDAMTZ8+XV1dXfL7/ZFsFQCAQeNKKwAAFrVmzRpJ0j333COXy6X29nalp6dL\nktLS0tTe3i5J8vl8cjqdoe0cDod8Pl+oFgAAMyO0AgBgQatXr5bdbld7e7u+/e1vKysrq8/PDcOQ\nYRhD2qfX65XX65Ukud3uPkF3KE6FtdXwhNtrJMTGxlqq33AxzujCOKOL1cZJaAUAwILsdrskKTU1\nVQUFBXr33XeVmpoqv9+v9PR0+f3+0P2udrtdra2toW3b2tpC21/K5XLJ5XKFli/dxuz9yAZBAAAg\nAElEQVSs1KvT6bRUv+FinNGFcUaXSIzzT79cHQruaQUAwGLOnTuns2fPhj7v379fU6ZMUX5+vurr\n6yVJ9fX1KigokCTl5+dr9+7dCgaDOnTokBISEpgaDACwDK60AgBgMe3t7Vq/fr0kKRAI6I477tBN\nN92kqVOnqrq6WnV1daFX3kjSrFmz1NTUpKVLlyouLk7l5eWRbB8AgCEhtAIAYDGZmZmqqqrqtz45\nOVkrV67st94wDC1evPhKtAYAwIhjejAAAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AKAAAAADAtQisA\nAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AKAAAAADCt2MEW9vb2asWKFbLb7VqxYoVaWlq0ceNGdXR0\nKCcnRxUVFYqNjdWFCxe0efNmHTlyRMnJyaqsrFRGRsZojgEAAAAAEKUGfaX1tddeU3Z2dmh5x44d\nKi0t1aZNm5SYmKi6ujpJUl1dnRITE7Vp0yaVlpbqpZdeGvmuAQAAAABjwqBCa1tbm5qamnT33XdL\nkoLBoA4ePKjCwkJJUnFxsRoaGiRJjY2NKi4uliQVFhbqrbfeUjAYHIXWAQAAAADRblChdfv27Vqw\nYIEMw5AkdXR0KCEhQTabTZJkt9vl8/kkST6fTw6HQ5Jks9mUkJCgjo6O0egdAAAAABDlBryn9c03\n31RqaqpycnJ08ODBETuw1+uV1+uVJLndbjmdzrD2c2rEOhq8cHuNhNjYWEv1Gy7GGV0YZ3QZK+ME\nAACjY8DQ+s4776ixsVHNzc06f/68zp49q+3bt6u7u1uBQEA2m00+n092u13SxauubW1tcjgcCgQC\n6u7uVnJycr/9ulwuuVyu0HJra+sIDmt0WalXp9NpqX7DxTijC+OMLpEYZ1ZW1hU9HgAAGD0DTg+e\nN2+eXnjhBW3ZskWVlZW64YYbtHTpUuXm5mrv3r2SpF27dik/P1+SNHv2bO3atUuStHfvXuXm5oam\nFQMAAAAAMBRhv6d1/vz52rlzpyoqKtTZ2amSkhJJUklJiTo7O1VRUaGdO3dq/vz5I9YsAAAAAGBs\nGfR7WiUpNzdXubm5kqTMzEytXbu2X01cXJyWL18+Mt0BAAAAAMa0sK+0AgAAAAAw2gitAAAAAADT\nIrQCAAAAAEyL0AoAAAAAMC1CKwAAAADAtAitAAAAAADTGtIrbwAAgHn09vZqxYoVstvtWrFihVpa\nWrRx40Z1dHQoJydHFRUVio2N1YULF7R582YdOXJEycnJqqysVEZGRqTbBwBgULjSCgCARb322mvK\nzs4OLe/YsUOlpaXatGmTEhMTVVdXJ0mqq6tTYmKiNm3apNLSUr300kuRahkAgCEjtAIAYEFtbW1q\namrS3XffLUkKBoM6ePCgCgsLJUnFxcVqaGiQJDU2Nqq4uFiSVFhYqLfeekvBYDAifQMAMFSEVgAA\nLGj79u1asGCBDMOQJHV0dCghIUE2m02SZLfb5fP5JEk+n08Oh0OSZLPZlJCQoI6Ojsg0DgDAEHFP\nKwAAFvPmm28qNTVVOTk5Onjw4Ijt1+v1yuv1SpLcbrecTmdY+zk1Yh0NXri9RkJsbKyl+g0X44wu\njDO6WG2chFYAACzmnXfeUWNjo5qbm3X+/HmdPXtW27dvV3d3twKBgGw2m3w+n+x2u6SLV13b2trk\ncDgUCATU3d2t5OTkfvt1uVxyuVyh5dbW1is2puGyUq9Op9NS/YaLcUYXxhldIjHOrKyssLdlejAA\nABYzb948vfDCC9qyZYsqKyt1ww03aOnSpcrNzdXevXslSbt27VJ+fr4kafbs2dq1a5ckae/evcrN\nzQ1NKwYAwOwIrQAARIn58+dr586dqqioUGdnp0pKSiRJJSUl6uzsVEVFhXbu3Kn58+dHuFMAAAaP\n6cEAAFhYbm6ucnNzJUmZmZlau3Ztv5q4uDgtX778SrcGAMCI4EorAAAAAMC0CK0AAAAAANMitAIA\nAAAATIvQCgAAAAAwLUIrAAAAAMC0CK0AAAAAANMitAIAAAAATIvQCgAAAAAwLUIrAAAAAMC0CK0A\nAAAAANMitAIAAAAATCt2oILz589r1apV6unpUSAQUGFhoebOnauWlhZt3LhRHR0dysnJUUVFhWJj\nY3XhwgVt3rxZR44cUXJysiorK5WRkXElxgIAAAAAiDIDXmkdN26cVq1apaqqKq1bt0779u3ToUOH\ntGPHDpWWlmrTpk1KTExUXV2dJKmurk6JiYnatGmTSktL9dJLL436IAAAAAAA0WnA0GoYhsaPHy9J\nCgQCCgQCMgxDBw8eVGFhoSSpuLhYDQ0NkqTGxkYVFxdLkgoLC/XWW28pGAyOUvsAAAAAgGg24PRg\nSert7dUTTzyhkydP6tOf/rQyMzOVkJAgm80mSbLb7fL5fJIkn88nh8MhSbLZbEpISFBHR4dSUlJG\naQgAAAAAgGg1qNAaExOjqqoqdXV1af369Tp+/PiwD+z1euX1eiVJbrdbTqczrP2cGnYnQxdur5EQ\nGxtrqX7DxTijC+OMLmNlnAAAYHQMKrR+JDExUbm5uTp06JC6u7sVCARks9nk8/lkt9slXbzq2tbW\nJofDoUAgoO7ubiUnJ/fbl8vlksvlCi23trYOcyhXjpV6dTqdluo3XIwzujDO6BKJcWZlZV3R4wEA\ngNEz4D2tZ86cUVdXl6SLTxLev3+/srOzlZubq71790qSdu3apfz8fEnS7NmztWvXLknS3r17lZub\nK8MwRql9AAAAAEA0G/BKq9/v15YtW9Tb26tgMKhbb71Vs2fP1uTJk7Vx40b96Ec/0rXXXquSkhJJ\nUklJiTZv3qyKigolJSWpsrJy1AcBAAAAAIhOA4bWT3ziE1q3bl2/9ZmZmVq7dm2/9XFxcVq+fPnI\ndAcAAAAAGNMGnB4MAAAAAECkEFoBAAAAAKY1pKcHAwCAyDt//rxWrVqlnp4eBQIBFRYWau7cuWpp\nadHGjRvV0dGhnJwcVVRUKDY2VhcuXNDmzZt15MgRJScnq7KyUhkZGZEeBgAAg8KVVgAALGbcuHFa\ntWqVqqqqtG7dOu3bt0+HDh3Sjh07VFpaqk2bNikxMVF1dXWSpLq6OiUmJmrTpk0qLS3VSy+9FOER\nAAAweIRWAAAsxjAMjR8/XpIUCAQUCARkGIYOHjyowsJCSVJxcbEaGhokSY2NjSouLpYkFRYW6q23\n3lIwGIxI7wAADBXTgwEAsKDe3l498cQTOnnypD796U8rMzNTCQkJstlskiS73S6fzydJ8vl8cjgc\nkiSbzaaEhAR1dHQoJSUlYv0DADBYhFYAACwoJiZGVVVV6urq0vr163X8+PFh79Pr9crr9UqS3G63\nnE5nWPs5NexOhi7cXiMhNjbWUv2Gi3FGF8YZXaw2TkIrAAAWlpiYqNzcXB06dEjd3d0KBAKy2Wzy\n+Xyy2+2SLl51bWtrk8PhUCAQUHd3t5KTk/vty+VyyeVyhZZbW1uv2DiGy0q9Op1OS/UbLsYZXRhn\ndInEOLOyssLelntaAQCwmDNnzqirq0vSxScJ79+/X9nZ2crNzdXevXslSbt27VJ+fr4kafbs2dq1\na5ckae/evcrNzZVhGBHpHQCAoeJKKwAAFuP3+7Vlyxb19vYqGAzq1ltv1ezZszV58mRt3LhRP/rR\nj3TttdeqpKREklRSUqLNmzeroqJCSUlJqqysjPAIAAAYPEIrAAAW84lPfELr1q3rtz4zM1Nr167t\ntz4uLk7Lly+/Eq0BADDimB4MAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AKAAAAADAt\nQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AKAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABM\ni9AKAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMK3aggtbWVm3ZskUffPCBDMOQy+XS/fff\nr87OTlVXV+v06dOaOHGili1bpqSkJAWDQdXW1qq5uVnx8fEqLy9XTk7OlRhLVAs8+mBY250axjFt\n3//pMLYGAAAAgOEb8EqrzWbTI488ourqaq1Zs0avv/663n//fXk8HuXl5ammpkZ5eXnyeDySpObm\nZp08eVI1NTVasmSJtm3bNuqDAAAAAABEpwFDa3p6euhK6YQJE5SdnS2fz6eGhgYVFRVJkoqKitTQ\n0CBJamxs1Jw5c2QYhqZPn66uri75/f5RHAIAAAAAIFoNOD34Ui0tLXrvvfd03XXXqb29Xenp6ZKk\ntLQ0tbe3S5J8Pp+cTmdoG4fDIZ/PF6r9iNfrldfrlSS53e4+2wzFcKa/hivcXodjrIwzXLGxsZbq\nN1yMM7owTgAAgIENOrSeO3dOGzZs0MKFC5WQkNDnZ4ZhyDCMIR3Y5XLJ5XKFlltbW4e0fSRZqdfh\nsNI4nU6npfoNF+OMLoxz9GRlZV3R4wEAgNEzqKcH9/T0aMOGDbrzzjt1yy23SJJSU1ND0379fr9S\nUlIkSXa7vc8/Ttra2mS320e6bwAAAADAGDBgaA0Gg3rhhReUnZ2tBx54ILQ+Pz9f9fX1kqT6+noV\nFBSE1u/evVvBYFCHDh1SQkJCv6nBAAAAAAAMxoDTg9955x3t3r1bU6ZM0de+9jVJ0uc//3mVlZWp\nurpadXV1oVfeSNKsWbPU1NSkpUuXKi4uTuXl5aM7AgAAxhheRwcAGEsGDK0zZszQyy+/fNmfrVy5\nst86wzC0ePHi4XcGAAAu66PX0eXk5Ojs2bNasWKFbrzxRu3atUt5eXkqKyuTx+ORx+PRggUL+ryO\n7vDhw9q2bZueffbZSA8DAIBBGdQ9rQAAwDx4HR0AYCwhtAIAYGHDeR0dAABWMKT3tAIAAPMY6dfR\n8Q71K2OsvLuYcUYXxhldrDZOQisAABb0ca+jS09PD+t1dLxD/crgHc3RhXFGF8Y5eobzDnWmBwMA\nYDG8jg4AMJZwpRUAAIvhdXQAgLGE0AoAgMXwOjoAwFjC9GAAAAAAgGkRWgEAAAAApkVoBQAAAACY\nFqEVAAAAAGBahFYAAAAAgGkRWgEAAAAApkVoBQAAAACYFqEVAAAAAGBahFYAAAAAgGkRWgEAAAAA\npkVoBQAAAACYFqEVAAAAAGBahFYAAAAAgGkRWgEAAAAApkVoBQAAAACYFqEVAAAAAGBahFYAAAAA\ngGkRWgEAAAAApkVoBQAAAACYVuxgirZu3aqmpialpqZqw4YNkqTOzk5VV1fr9OnTmjhxopYtW6ak\npCQFg0HV1taqublZ8fHxKi8vV05OzqgOAgAAAAAQnQZ1pbW4uFhPPfVUn3Uej0d5eXmqqalRXl6e\nPB6PJKm5uVknT55UTU2NlixZom3bto181wAAAACAMWFQV1pnzpyplpaWPusaGhr0zDPPSJKKior0\nzDPPaMGCBWpsbNScOXNkGIamT5+urq4u+f1+paenj3jzAAAAkRJ49MGwtjs1jGPavv/TYWwNANY0\nqNB6Oe3t7aEgmpaWpvb2dkmSz+eT0+kM1TkcDvl8PkIrAAAjiFt3AABjRdih9VKGYcgwjCFt4/V6\n5fV6JUlut7tP0B2K4XxbGa5wex2OsTLOcMXGxlqq33AxzujCODEcxcXFuu+++7Rly5bQuo9u3Skr\nK5PH45HH49GCBQv63Lpz+PBhbdu2Tc8++2wEuwcAYPDCDq2pqamhab9+v18pKSmSJLvdrtbW1lBd\nW1ub7HZ7v+1dLpdcLldo+dJtzM5KvQ6HlcbpdDot1W+4GGd0YZyjJysr64oeLxK4dQcAMFaE/cqb\n/Px81dfXS5Lq6+tVUFAQWr97924Fg0EdOnRICQkJnBQBALgChnrrDgAAVjCoK60bN27U22+/rY6O\nDj322GOaO3euysrKVF1drbq6utB9M5I0a9YsNTU1aenSpYqLi1N5efmoDgAAAPTHrTujb6yMM1xj\n5dYAxhldGKc5DSq0VlZWXnb9ypUr+60zDEOLFy8eXlcAAGDIuHUn+llpnNwCEV0YZ3Sx2q07YU8P\nBgAA5sKtOwCAaDQiTw8GAABXFrfuAADGCkIrAAAWxK07AICxgunBAAAAAADTIrQCAAAAAEyL6cEA\nAAD4swKPPhjWdsN5JZDt+z8dxtYAog1XWgEAAAAApkVoBQAAAACYFqEVAAAAAGBahFYAAAAAgGkR\nWgEAAAAApkVoBQAAAACYFqEVAAAAAGBahFYAAAAAgGkRWgEAAAAApkVoBQAAAACYFqEVAAAAAGBa\nhFYAAAAAgGkRWgEAAAAApkVoBQAAAACYVmykGwAuFXj0wbC2OzWMY9q+/9NhbA0AAABgNHGlFQAA\nAABgWoRWAAAAAIBpEVoBAAAAAKbFPa1ABIyVe3fHyjgBAAAwerjSCgAAAAAwrVG70rpv3z7V1taq\nt7dXd999t8rKykbrUAAAYBA4NwMArGhUQmtvb69+8IMf6Omnn5bD4dCTTz6p/Px8TZ48eTQOBwC4\nApjubW2cmwEAVjUqofXdd9/VpEmTlJmZKUm67bbb1NDQwIkRQFQizMEKODcDH4+/y6ML/z2jy6iE\nVp/PJ4fDEVp2OBw6fPjwaBwKAAAMAudmABJhDtYUsacHe71eeb1eSZLb7VZWVlZ4O/qPxhHsysQY\nZ3RhnNGFcSJKcG4eIsYZXRhndBkr4xyGsP+Oj4BReXqw3W5XW1tbaLmtrU12u71Pjcvlktvtltvt\nHo0WBrRixYqIHPdKY5zRhXFGF8aJK4lzs3kwzujCOKML4zSnUQmtU6dO1YkTJ9TS0qKenh7t2bNH\n+fn5o3EoAAAwCJybAQBWNSrTg202mxYtWqQ1a9aot7dXd911l66++urROBQAABgEzs0AAKuyPfPM\nM8+Mxo6vuuoqfeYzn9H999+v66+/fjQOMWw5OTmRbuGKYJzRhXFGF8aJK4lzs3kwzujCOKML4zQf\nIxgMBiPdBAAAAAAAlzMq97QCAAAAADASCK0AAAAAANMatXtazeYPf/iD6urqtGfPHjU3N+vYsWNK\nSkpSSkpKpFtDGP7whz/o2LFjSk1NVWzs/z1PbN++fZo0aVIEOxtZ7777rnw+n+x2u95//33t3r1b\nnZ2duuqqqyLd2qjavHmzbr755ki3Map+97vfae/evTp79mxU/Znt6enRf/3Xf+nMmTPKzMzUL3/5\nS/385z9XS0uLrrnmGsXE8F0p/g/n5ujCuZlzs9VF67n58OHDmjBhgsaNG6fz58/rX//1X/Xv//7v\nOnr0qK677jqNGzcu0i0OaEzc0+rxePSrX/1Kt99+e+iddD6fL7SurKwswh2Ovl/84he66667It3G\niHjttdf0+uuvKzs7W8eOHdPChQtVUFAgSXriiSf03HPPRbjDkfGTn/xE+/btUyAQ0I033qjDhw8r\nNzdXBw4c0Cc/+Uk99NBDkW5xRPzpf69gMKiDBw/qhhtukHTxv2k0ePLJJ7V27VpJktfr1euvv66b\nb75Z+/fv1+zZs6Pm76GamhoFAgF9+OGHSkxM1Llz53TLLbfowIEDCgaD+vu///tItwiT4NzMudmK\nODdzbrai5cuXq6qqSjabTd/73vcUHx+vwsJCHThwQMeOHdNXv/rVSLc4oFF55Y3Z/OIXv9CGDRv6\nfOsnSQ888ICWL18eNX8gP87LL78cNSfGN954Q88995zGjx+vlpYWfec739Hp06d1//33K5q+g9m7\nd6+qqqp04cIFLVmyRM8//7wSEhL04IMP6qmnnoqaE6PP51N2drbuvvtuGYahYDCoI0eO6LOf/Wyk\nWxtRgUAg9PmNN97QN7/5TaWkpOizn/2svvGNb0TN30O///3vtX79egUCAT322GP63ve+p5iYGN15\n55362te+Fun2YCKcmzk3WxHnZs7NVhQMBmWz2SRJR44cCX0pMWPGDMucm8dEaDUMQ36/XxMnTuyz\n3u/3yzCMCHU18v7ctyTBYFDt7e1XuJvREwwGNX78eElSRkaGnnnmGW3YsEGnT5+OqhOjzWZTTEyM\n4uPjlZmZqYSEBElSXFxcVP25Xbt2rV577TW98soreuSRR3TNNdcoLi5OM2fOjHRrIyoYDKqzs1PB\nYFDBYDA0/XH8+PGhE0k0CAaD6unp0blz5/Thhx+qu7tbSUlJunDhQp9/HACcmzk3WxHnZs7NVnT1\n1VeHZnZ84hOf0P/+7/9q6tSpOn78eL8vDs3KGl0O08KFC/Wtb31LV111lRwOhySptbVVJ0+e1Be/\n+MUIdzdy2tvb9Y1vfEOJiYl91geDQX3zm9+MUFcjLzU1VUePHtU111wj6eJfLCtWrNDzzz+v3//+\n95FtbgTFxsbqww8/VHx8vNxud2h9d3d3VN0XGBMTowceeEC33nqr/umf/kmpqalRGW66u7u1YsUK\nBYPB0D/W09PTde7cuaj6B91dd92lyspK9fb26uGHH9Z3vvMdZWRk6PDhw7rtttsi3R5MhHMz52Yr\n4twcXcbKufmxxx5TbW2tXnnlFSUnJ+vpp5+Ww+GQw+HQ3/3d30W6vUEZE/e0SlJvb2/oxnlJstvt\nuu6666LqL5jnn39ed911l2bMmNHvZ9/97nf15S9/OQJdjby2tjbZbDalpaX1+9nvfve7y47fii5c\nuHDZG+PPnDmjDz74QFOmTIlAV6OvqalJv/vd7zRv3rxIt3JFfPjhh2pvb1dGRkakWxkxl/4929XV\npQMHDsjpdOq6666LcGcwG87NnJuthnMz52Yr6+7uVktLi3p7e2W32y/7/1ezGjOhFQAAAABgPdHz\nVSYAAAAAIOoQWgEAAAAApkVoBQAAAACYFqEVAAAAAGBahFYAAAAAgGkRWgEAAAAApkVoBQAAAACY\nFqEVAAAAAGBahFYAAAAAgGkRWgEAAAAApkVoBQAAAACYFqEVAAAAAGBahFYAAAAAgGkRWoEIevLJ\nJ5WZmSnDMLR9+/ZItwMAAAbp6NGjMgxDv/zlLz+2zjAM7dix4wp1BUSn2Eg3AIxV//3f/y232y2P\nx6NbbrlFqampkW4JAACMsBMnTigtLS3SbQCWRmgFIuTw4cOKiYnRX/7lX4a9j/PnzysuLm4EuwIA\nACNp0qRJkW4BsDymBwMRsHDhQj3yyCPq7e2VYRgyDENNTU36zGc+o4yMDCUlJamgoEA/+9nP+mx3\nzTXX6Omnn1Z5ebkcDofuvPNOSVJnZ6e+/OUvKzs7WwkJCZo1a5ZeeeWVSAwNAABL2bJli2bOnKn4\n+HhlZGTor/7qryRJ//Iv/xKaCeV0OlVaWqpDhw712/7o0aO6++67NWHCBOXk5OhHP/pRn5//6fRg\nwzC0detWPfLII0pOTtbkyZO1du3a0R0kYHGEViACvvvd72rjxo2y2Ww6ceKETpw4oTNnzuhv/uZv\n9Itf/EJNTU369Kc/rQcffLDfCbKmpkYZGRn69a9/rdraWgWDQX32s5/V//zP/+jHP/6x3nrrLX3p\nS1/Sww8/rDfeeCNCIwQAwPxWrVqlJ554QuXl5Tpw4IB+9rOf6VOf+pQk6cMPP9TTTz+tpqYm/fzn\nP5fNZlNpaanOnz/fZx9f//rXtWjRIu3bt0/z5s3T/Pnz1dzc/LHH/Yd/+AfNmTNH+/bt05NPPqmn\nnnqKczbwMYxgMBiMdBPAWLR9+3YtXrxYPT09f7bmk5/8pObOnatvfOMbki5eaZ06dWqfE9uuXbt0\n33336dSpU33ui120aJF8Pp88Hs/oDQIAAIvq6uqS0+nU6tWr9dWvfnXAep/PJ4fDoV/+8pe6/fbb\ndfToUV177bV6+umntXr16lDdbbfdpqlTp+rFF1+UdPHK6osvvqgFCxaElisqKlRTUxPa5vrrr1dZ\nWRlXXIE/gyutgEmcPn1a5eXlmjFjhtLS0pSUlKSDBw/q2LFjfepuvvnmPssNDQ06f/68srOzlZSU\nFPrfjh07dPjw4Ss5BAAALOPgwYM6d+6c7r333sv+fN++ffrc5z6na6+9VsnJyZoyZYok9Tsv33rr\nrX2Wb7/9dh08ePBjj33TTTf1Wc7KytKpU6eGOgRgzOBBTIBJLFy4UL///e+1bt06XXvttZowYYIe\nfvjhftOQEhMT+yz39vYqNTVVDQ0N/fbJQ5oAABi67u5u3XvvvbrjjjtUW1urzMxMSVJubm6/83I4\n/vT8bBiGent7h71fIFoRWgGT2L17t9atW6cHH3xQ0sVpS0eOHNENN9zwsdvl5+frgw8+0Llz5was\nBQAAF82cOVPjx4/Xf/7nf+rGG2/s87Pf/va3On36tNasWaPrr79ekrRnzx5d7q66vXv36v777w8t\n79mzRzNnzhzd5oExhtAKmMRf/MVf6KWXXtIdd9yhQCCglStXKhAIDLhdSUmJXC6XHnroIa1bt043\n3nij/H6/9uzZo/Hjx+vRRx+9At0DAGAtSUlJ+spXvqJnnnlGEyZM0D333KOzZ8/qtdde06OPPqr4\n+Hht2rRJX/nKV3T06FGtWLFChmH0288PfvADzZgxQ/n5+dqxY4d+/etfa9OmTREYERC9uKcVMIna\n2lr19vbq5ptvVllZme677z4VFBQMuJ1hGPrpT3+qhx56SMuWLdOMGTNUWlqq//iP/9DUqVOvQOcA\nAFjT6tWrtWbNGtXU1OiGG27Qvffeq6amJjmdTu3YsUM///nPlZubq69+9atav369YmL6/9PZ7Xbr\nH//xH3XjjTfqxRdf1I4dO0JPIAYwMnh6MAAAAADAtLjSCgAAAAAwLUIrAAAAAMC0CK0AAAAAANMi\ntAIAAAAATIvQCgAAAAAwLUIrAAAAAMC0YiPdwEeOHz8uSXI6nWptbQ2t/9NlaqihZnA1kT4+NdRE\nsiYrK0sYvuPHj4d+Ty/9/R7oc7TVWqFHq9VaoUer1VqhR6vVWqFHK9XGxcUpXFxpBQAAAACYlmmu\ntAIAgME5fvy4qqurQ8stLS2aO3euioqKVF1drdOnT2vixIlatmyZkpKSFAwGVQZHRj4AACAASURB\nVFtbq+bmZsXHx6u8vFw5OTkRHAEAAIPHlVYAACwmKytLVVVVqqqq0nPPPae4uDjdfPPN8ng8ysvL\nU01NjfLy8uTxeCRJzc3NOnnypGpqarRkyRJt27YtwiMAAGDwCK0AAFjYgQMHNGnSJE2cOFENDQ0q\nKiqSJBUVFamhoUGS1NjYqDlz5sgwDE2fPl1dXV3y+/2RbBsAgEEjtAIAYGG/+tWvdPvtt0uS2tvb\nlZ6eLklKS0tTe3u7JMnn88npdIa2cTgc8vl8V75ZAADCwD2tAABYVE9Pj958803Nmzev388Mw5Bh\nGEPan9frldfrlSS53W45nU7Fxsb2+VXSgJ+jrdYKPVqt1go9Wq3WCj1ardYKPVqpdji40goAgEU1\nNzfr2muvVVpamiQpNTU1NO3X7/crJSVFkmS320OvHZCktrY22e32fvtzuVxyu91yu92SpNbWVvX0\n9PT5dTCfo63WCj1ardYKPVqt1go9Wq3WCj1aqXY4CK0AAFjUpVODJSk/P1/19fWSpPr6ehUUFITW\n7969W8FgUIcOHVJCQkJoGjEAAGZHaAUAwILOnTun/fv365ZbbgmtKysr0/79+7V06VIdOHBAZWVl\nkqRZs2YpIyNDS5cu1fe+9z0tXrw4Um0DADBkY+Ke1sCjD+qUJNv3fxrpVgAAGBHjx4/XD3/4wz7r\nkpOTtXLlyn61hmEQVAEAERF49EHp1T3D2gdXWgEAAAAApjXgldbW1lZt2bJFH3zwgQzDkMvl0v33\n36/Ozk5VV1fr9OnTmjhxopYtW6akpCQFg0HV1taqublZ8fHxKi8vV05OzpUYCwAAAAAgygx4pdVm\ns+mRRx5RdXW11qxZo9dff13vv/++PB6P8vLyVFNTo7y8PHk8HkkXn2R48uRJ1dTUaMmSJdq2bduo\nDwIAAAAAEJ0GDK3p6emhK6UTJkxQdna2fD6fGhoaVFRUJEkqKipSQ0ODJKmxsVFz5syRYRiaPn26\nurq6Qo/fBwAAAABgKIZ0T2tLS4vee+89XXfddWpvbw89Lj8tLU3t7e2SJJ/PF3qJrCQ5HA75fL4R\nbBkAAAAAMFYM+unB586d04YNG7Rw4UIlJCT0+ZlhGDIMY0gH9nq98nq9kiS32x0KurGxsX1C758u\nh1Nz6o/rhrsfaqixUk2kj08NNWaoAQAA1jeo0NrT06MNGzbozjvvDL0PLjU1VX6/X+np6fL7/UpJ\nSZEk2e12tba2hrZta2uT3W7vt0+XyyWXyxVa/mgbp9PZZ/s/XQ635tJjDGc/1FBjlZpIH58aaiJZ\nk5WVJQAAEB0GnB4cDAb1wgsvKDs7Ww888EBofX5+vurr6yVJ9fX1KigoCK3fvXu3gsGgDh06pISE\nhNA0YgAAAAAAhmLAK63vvPOOdu/erSlTpuhrX/uaJOnzn/+8ysrKVF1drbq6utArbyRp1qxZampq\n0tKlSxUXF6fy8vLRHQEAAAAAIGoNGFpnzJihl19++bI/W7lyZb91hmFo8eLFw+8MAAAAADDmDenp\nwQAAAAAAXEmEVgAAAACAaRFaAQAAAACmRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACm\nRWgFAAAAAJgWoRUAAAAAYFqEVgAAAACAaRFaAQAAAACmRWgFAAAAAJhWbKQbAAAAQ9fV1aUXXnhB\n/+///T8ZhqEvfelLysrKUnV1tU6fPq2JEydq2bJlSkpKUjAYVG1trZqbmxUfH6/y8nLl5OREeggA\nAAwKV1oBALCg2tpa3XTTTdq4caOqqqqUnZ0tj8ejvLw81dTUKC8vTx6PR5LU3NyskydPqqamRkuW\nLNG2bdsi3D0AAINHaAUAwGK6u7v129/+ViUlJZKk2NhYJSYmqqGhQUVFRZKkoqIiNTQ0SJIaGxs1\nZ84cGYah6dOnq6urS36/P2L9AwAwFEwPBgDAYlpaWpSSkqKtW7fq2LFjysnJ0cKFC9Xe3q709HRJ\nUlpamtrb2yVJPp9PTqcztL3D4ZDP5wvVAgBgZoRWAAAsJhAI6L333tOiRYs0bdo01dbWhqYCf8Qw\nDBmGMaT9er1eeb1eSZLb7ZbT6VRsbGyfXyUN+Dnaaq3Qo9VqrdCj1Wqt0KPVaq3QoxVqT/3x83AM\nuPXWrVvV1NSk1NRUbdiwQZJUXV2t48ePS7o4RSkhIUFVVVVqaWnRsmXLlJWVJUmaNm2alixZMqwG\nAQBAXw6HQw6HQ9OmTZMkFRYWyuPxKDU1VX6/X+np6fL7/UpJSZEk2e12tba2hrZva2uT3W7vt1+X\nyyWXyxVabm1tldPp7POrpAE/R1utFXq0Wq0VerRarRV6tFqtFXq0Sm1PT4/i4uIUrgFDa3Fxse67\n7z5t2bIltG7ZsmWhz//8z/+shISE0PKkSZNUVVUVdkMAAODjpaWlyeFw6Pjx48rKytKBAwc0efJk\nTZ48WfX19SorK1N9fb0KCgokSfn5+frZz36m22+/XYcPH1ZCQgJTgwEAljFgaJ05c6ZaWlou+7Ng\nMKhf//rXWrly5Yg3BgAA/rxFixappqZGPT09ysjIUHl5uYLBoKqrq1VXVxd65Y0kzZo1S01NTVq6\ndKni4uJUXl4e4e4BABi8YU0u/u1vf6vU1FRdddVVoXUtLS36+te/rgkTJujhhx/W9ddfP+wmAQBA\nX9dcc43cbne/9Zf7ItkwDC1evPhKtAUAwIgbVmj91a9+pdtvvz20nJ6erq1btyo5OVlHjhxRVVWV\nNmzY0Gf68Ecu97AHqe8NvZdbDqfm1B/XDXc/1FBjpZpIH58aasxQAwAArC/s0BoIBPSb3/ymz7e8\n48aN07hx4yRJOTk5yszM1IkTJzR16tR+21/uYQ9S3xt2L7ccbs2lxxjOfqihxio1kT4+NdREsuaj\nBwICAADriwl3wwMHDigrK0sOhyO07syZM+rt7ZUknTp1SidOnFBmZubwuwQAAAAAjEkDXmnduHGj\n3n77bXV0dOixxx7T3LlzVVJS0m9qsCS9/fbbevnll2Wz2RQTE6NHH31USUlJo9Y8AAAAACC6DRha\nKysrL7v+8ccf77eusLBQhYWFw+8KAAAAAAANY3owAAAAAACjjdAKAAAAADAtQisAAAAAwLQIrQAA\nAAAA0yK0AgAAAABMi9AKAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AKAAAAADAtQisA\nAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AKAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMK3ag\ngq1bt6qpqUmpqanasGGDJOnll1/WG2+8oZSUFEnS5z//eX3qU5+SJL366quqq6tTTEyMvvCFL+im\nm24axfYBABibHn/8cY0fP14xMTGy2Wxyu93q7OxUdXW1Tp8+rYkTJ2rZsmVKSkpSMBhUbW2tmpub\nFR8fr/LycuXk5ER6CAAADMqAobW4uFj33XeftmzZ0md9aWmpHnzwwT7r3n//fe3Zs0ff+c535Pf7\ntXr1an33u99VTAwXdAEAGGmrVq0KfYEsSR6PR3l5eSorK5PH45HH49GCBQvU3NyskydPqqamRocP\nH9a2bdv07LPPRrBzAAAGb8A0OXPmTCUlJQ1qZw0NDbrttts0btw4ZWRkaNKkSXr33XeH3SQAABhY\nQ0ODioqKJElFRUVqaGiQJDU2NmrOnDkyDEPTp09XV1eX/H5/JFsFAGDQBrzS+ue8/vrr2r17t3Jy\ncvS3f/u3SkpKks/n07Rp00I1drtdPp9vRBoFAAB9rVmzRpJ0zz33yOVyqb29Xenp6ZKktLQ0tbe3\nS5J8Pp+cTmdoO4fDIZ/PF6oFAMDMjGAwGByoqKWlRc8991zontYPPvggNB3pxz/+sfx+v8rLy/WD\nH/xA06ZN05w5cyRJzz//vGbNmqXCwsJ++/R6vfJ6vZIkt9ut8+fPS5JiY2PV09MTqvvT5XBqTn3u\nNklS5qt7hrUfaqixUk2kj08NNZGsiYuLU7Tz+Xyy2+1qb2/Xt7/9bX3hC1/QunXrtH379lDNF77w\nBdXW1srtdqusrEwzZsyQJH3rW9/S/PnzNXXq1D77vNy5+aPf00t/vwf6HG21VujRarVW6NFqtVbo\n0Wq1VujRCrWnPnebsv/9N8O6ZTSsK61paWmhz3fffbeee+45SRevrLa1tYV+9tEJ9XJcLpdcLldo\nubW1VZLkdDpDny+3HG7NpccYzn6oocYqNZE+PjXURLImKytL0e6j82tqaqoKCgr07rvvKjU1VX6/\nX+np6fL7/aEvmO12e5/fq7a2tsueny93bv7o9/TS3++BPkdbrRV6tFqtFXq0Wq0VerRarRV6tEpt\nT8/wvlAOK+5eeh/Mb37zG1199dWSpPz8fO3Zs0cXLlxQS0uLTpw4oeuuuy7s5gAAQH/nzp3T2bNn\nQ5/379+vKVOmKD8/X/X19ZKk+vp6FRQUSLp4ft69e7eCwaAOHTqkhIQEpgYDACxjwCutGzdu1Ntv\nv62Ojg499thjmjt3rg4ePKijR4/KMAxNnDhRS5YskSRdffXVuvXWW7V8+XLFxMToi1/8Ik8OBgBg\nhLW3t2v9+vWSpEAgoDvuuEM33XSTpk6dqurqatXV1YVeeSNJs2bNUlNTk5YuXaq4uDiVl5dHsn0A\nAIZkwNBaWVnZb11JScmfrX/ooYf00EMPDa8rAADwZ2VmZqqqqqrf+uTkZK1cubLfesMwtHjx4ivR\nGgAAI47LoAAAAAAA0yK0AgAAAABMi9AKAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AK\nAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0AgAAAABMi9AKAAAAADAtQisAAAAAwLQIrQAAAAAA0yK0\nAgAAAABMi9AKAAAAADAtQisAAAAAwLQIrQAAAAAA04odqGDr1q1qampSamqqNmzYIEl68cUX9eab\nbyo2NlaZmZkqLy9XYmKiWlpatGzZMmVlZUmSpk2bpiVLlozuCAAAAAAAUWvA0FpcXKz77rtPW7Zs\nCa278cYbNW/ePNlsNu3YsUOvvvqqFixYIEmaNGmSqqqqRq9jAAAAAMCYMeD04JkzZyopKanPuk9+\n8pOy2WySpOnTp8vn841OdwAAAACAMW3AK60Dqaur02233RZabmlp0de//nVNmDBBDz/8sK6//vrh\nHgIAAAAAMEYNK7S+8sorstlsuvPOOyVJ6enp2rp1q5KTk3XkyBFVVVVpw4YNSkhI6Let1+uV1+uV\nJLndbjmdzosNxcaGPl9uOZyaU39cN9z9UEONlWoifXxqqDFDDQAAsL6wQ+uuXbv05ptvauXKlTIM\nQ5I0btw4jRs3TpKUk5OjzMxMnThxQlOnTu23vcvlksvlCi23trZKuhgsP/p8ueVway49xnD2Qw01\nVqmJ9PGpoSaSNR89EDDa9fb2asWKFbLb7VqxYoVaWlq0ceNGdXR0KCcnRxUVFYqNjdWFCxe0efNm\nHTlyRMnJyaqsrFRGRkak2wcAYFDCeuXNvn379G//9m964oknFB8fH1p/5swZ9fb2SpJOnTqlEydO\nKDMzc2Q6BQAAfbz22mvKzs4OLe/YsUOlpaXatGmTEhMTVVdXJ+nirTyJiYnatGmTSktL9dJLL0Wq\nZQAAhmzAK60bN27U22+/rY6ODj322GOaO3euXn31VfX09Gj16tWS/u/VNm+//bZefvll2Ww2xcTE\n6NFHH+33ECcAADB8bW1tampq0kMPPaSdO3cqGAzq4MGD+vKXvyzp4tP/f/KTn+jee+9VY2Oj/vqv\n/1qSVFhYqB/+8IcKBoOhmVIAAJjZgKG1srKy37qSkpLL1hYWFqqwsHD4XQEAgI+1fft2LViwQGfP\nnpUkdXR0KCEhIfR0f7vdHnq6v8/nk8PhkCTZbDYlJCSoo6NDKSkpkWkeAIAhGPbTgwEAwJX15ptv\nKjU1VTk5OTp48OCI7fdyD0n86OFWlz7kaqDP0VZrhR6tVmuFHq1Wa4UerVZrhR6tUHvqj5+Hg9AK\nAIDFvPPOO2psbFRzc7POnz+vs2fPavv27eru7lYgEJDNZpPP55Pdbpd08aprW1ubHA6HAoGAuru7\nlZyc3G+/l3tIotPp7POrpAE/R1utFXq0Wq0VerRarRV6tFqtFXq0Sm1PT4/i4uIUrrAexAQAACJn\n3rx5euGFF7RlyxZVVlbqhhtu0NKlS5Wbm6u9e/dKuviU//z8fEnS7NmztWvXLknS3r17lZuby/2s\nAADLILQCABAl5s+fr507d6qiokKdnZ2hZ1CUlJSos7NTFRUV2rlzp+bPnx/hTgEAGDymBwMAYGG5\nubnKzc2VJGVmZmrt2rX9auLi4rR8+fIr3RoAACOCK60AAAAAANMitAIAAAAATIvQCgAAAAAwLUIr\nAAAAAMC0CK0AAAAAANMitAIAAAAATIvQCgAAAAAwLUIrAAAAAMC0CK0AAAAAANMitAIAAAAATIvQ\nCgAAAAAwLUIrAAAAAMC0YgdTtHXrVjU1NSk1NVUbNmyQJHV2dqq6ulqnT5/WxIkTtWzZMiUlJSkY\nDKq2tlbNzc2Kj49XeXm5cnJyRnUQAAAAAIDoNKgrrcXFxXrqqaf6rPN4PMrLy1NNTY3y8vLk8Xgk\nSc3NzTp58qRqamq0ZMkSbdu2beS7BgAAAACMCYMKrTNnzlRSUlKfdQ3/n707D4yqOh8+/p0122Tf\nM1kgBEEgqBAUUVlTBUWkxdqquINF2lrwrWt/inWpUYQoKm4VCuJaW5aCggRkiyAJ+xLWJITs2ySZ\nyWSS2d4/6NwSiBpIMBl8Pv9k5ua55565y9z73HPumZwcRowYAcCIESPIyckBIDc3l+HDh6NSqbjk\nkktobGzEZDJ1crWFEEIIIYQQQvwcnPczrfX19YSGhgIQEhJCfX09ALW1tURERChx4eHh1NbWdrCa\nQgghhBBCCCF+jtr1TOuPUalUqFSqc5onKyuLrKwsADIyMpREV6vVtkp6z3x/PjEV/53W0XIkRmK8\nKaarly8xEtMdYoQQQgjh/c47aQ0ODsZkMhEaGorJZCIoKAiAsLAwqqurlbiamhrCwsLOmj89PZ30\n9HTlvWeeiIiIVvOf+f58Y05fRkfKkRiJ8ZaYrl6+xEhMV8bExcUhhBBCiIvDeXcPTktLY+PGjQBs\n3LiRIUOGKNM3bdqE2+3myJEj+Pv7K92IhRBCCCGEEEKIc9GultbXXnuNgwcPYjabmTZtGrfddhsT\nJ04kMzOT9evXKz95A3DFFVewc+dOHn74YfR6PdOnT7+gH0AIIYQQQgghxMWrXUnrjBkz2pz+zDPP\nnDVNpVIxZcqUjtVKCCGEEEIIIYSgA92DhRBCCCGEEEKIC61TRg8WQgghxE+npaWFWbNm4XA4cDqd\nDB06lNtuu43Kykpee+01zGYzycnJ/PGPf0Sr1WK323nzzTfJz88nMDCQGTNmEBUV1dUfQwghhGgX\naWkVQgghvIxOp2PWrFnMnj2bV155hd27d3PkyBGWLFnCTTfdxBtvvEFAQADr168HYP369QQEBPDG\nG29w00038dFHH3XxJxBCCCHaT5JWIYQQwsuoVCp8fX0BcDqdOJ1OVCoVBw4cYOjQoQCMHDmSnJwc\nAHJzcxk5ciQAQ4cOZf/+/bjd7i6puxBCCHGupHuwEEII4YVcLhePP/445eXl3HDDDURHR+Pv749G\nowFO/W56bW0tALW1tYSHhwOg0Wjw9/fHbDYrv7EuhBBCdGeStAohhBBeSK1WM3v2bBobG3n11Vcp\nLS3tcJlZWVlkZWUBkJGRQUREBFqtttVf4EdfX2yx3lBHb4v1hjp6W6w31NHbYr2hjt4QW/Hf1x0h\n3YOFEEIILxYQEED//v05cuQIVqsVp9MJnGpdDQsLA061utbU1ACnuhNbrVYCAwPPKis9PZ2MjAwy\nMjIAqK6uxuFwtPrbntcXW6w31NHbYr2hjt4W6w119LZYb6ijN8QCOByODp3rJGkVQgghvExDQwON\njY3AqZGE9+7di9FopH///mzbtg2ADRs2kJaWBsDgwYPZsGEDANu2baN///6oVKouqbsQQghxrqR7\nsBBCCOFlTCYTb731Fi6XC7fbzdVXX83gwYOJj4/ntdde49NPP6Vnz56MHj0agNGjR/Pmm2/yxz/+\nEYPBwIwZM7r4EwghhBDtJ0mrEEII4WWSkpJ45ZVXzpoeHR3NSy+9dNZ0vV7PI4888lNUTQghhOh0\n0j1YCCGEEEIIIUS3JUmrEEIIIYQQQohuS5JWIYQQQgghhBDdliStQgghhBBCCCG6LUlahRBCCCGE\nEEJ0W5K0CiGEEEIIIYTotiRpFUIIIYQQQgjRbZ3377SWlpaSmZmpvK+srOS2226jsbGRdevWERQU\nBMDtt9/OoEGDOl5TIYQQQgghhBA/O+edtMbFxTF79mwAXC4Xv/vd77jyyiv55ptvuOmmm5gwYUKn\nVVIIIYQQQgghxM9Tp3QP3rdvHzExMURGRnZGcUIIIYQQQgghBNCBltbTZWdnc8011yjv16xZw6ZN\nm0hOTubuu+/GYDB0xmKEEEIIIYQQQvzMdDhpdTgc7NixgzvuuAOA66+/nltvvRWAzz77jMWLFzN9\n+vSz5svKyiIrKwuAjIwMIiIiTlVIq1Vet/X+fGIq/juto+VIjMR4U0xXL19iJKY7xAghhBDC+3U4\nad21axc9e/YkJCQEQPkLMGbMGF5++eU250tPTyc9PV15X11dDZxKLD2v23p/vjGnL6Mj5UiMxHhL\nTFcvX2Ikpitj4uLiEEIIIcTFocPPtJ7ZNdhkMimvt2/fTkJCQkcXIYQQQgghhBDiZ6pDLa02m429\ne/fy4IMPKtOWLFlCYWEhKpWKyMjIVv8TQgghhBBCCCHORYeSVl9fXxYsWNBq2h//+McOVUgIIYQQ\nQgghhPDolJ+8EUIIIYQQQgghLgRJWoUQQgghhBBCdFuStAohhBBCCCGE6LYkaRVCCCGEEEII0W1J\n0iqEEEIIIYQQotvq0OjB3ZFz6gQAKgDN+yu6tjJCCCGEEEIIITpEWlqFEEIIIYQQQnRbF11LqxBC\nCHGxq66u5q233qKurg6VSkV6ejo33ngjFouFzMxMqqqqiIyMZObMmRgMBtxuNwsXLmTXrl34+Pgw\nffp0kpOTu/pjCCGEEO0iLa1CCCGEl9FoNNx1111kZmby4osvsmbNGoqLi1m2bBmpqanMmzeP1NRU\nli1bBsCuXbsoLy9n3rx5PPjgg/z973/v4k8ghBBCtJ8krUIIIYSXCQ0NVVpK/fz8MBqN1NbWkpOT\nw4gRIwAYMWIEOTk5AOTm5jJ8+HBUKhWXXHIJjY2NmEymLqu/EEIIcS4kaRVCCCG8WGVlJQUFBaSk\npFBfX09oaCgAISEh1NfXA1BbW0tERIQyT3h4OLW1tV1SXyGEEOJcyTOtQgghhJey2WzMmTOHe++9\nF39//1b/U6lUqFSqcyovKyuLrKwsADIyMoiIiECr1bb6C/zo64st1hvq6G2x3lBHb4v1hjp6W6w3\n1NEbYiv++7ojpKVVCCGE8EIOh4M5c+Zw3XXXcdVVVwEQHBysdPs1mUwEBQUBEBYWRnV1tTJvTU0N\nYWFhZ5WZnp5ORkYGGRkZwKkBnxwOR6u/7Xl9scV6Qx29LdYb6uhtsd5QR2+L9YY6ekOs55zVEZK0\nCiGEEF7G7XbzzjvvYDQaGT9+vDI9LS2NjRs3ArBx40aGDBmiTN+0aRNut5sjR47g7++vdCMWQggh\nujvpHiyEEEJ4mcOHD7Np0yYSExN59NFHAbj99tuZOHEimZmZrF+/XvnJG4ArrriCnTt38vDDD6PX\n65k+fXpXVl8IIYQ4J5K0CiGEEF6mb9++fP75523+75lnnjlrmkqlYsqUKRe6WkIIIcQFId2DhRBC\nCCGEEEJ0Wx1uaf3973+Pr68varUajUZDRkYGFouFzMxMqqqqlO5JBoOhM+orhBBCCCGEEOJnpFO6\nB8+aNUsZoRBg2bJlpKamMnHiRJYtW8ayZcuYPHlyZyxKCCGEEEIIIcTPyAXpHpyTk8OIESMAGDFi\nBDk5ORdiMUIIIYQQQgghLnKd0tL64osvAvCLX/yC9PR06uvrlaH0Q0JCqK+v74zFCCGEEEIIIYT4\nmelw0vr8888TFhZGfX09L7zwAnFxca3+r1KpUKlUZ82XlZVFVlYWABkZGURERJyqkFarvG7r/Y/F\nVJwWd+a0cylHYiTG22O6evkSIzHdIUYIIYQQ3q/DSWtYWBgAwcHBDBkyhGPHjhEcHIzJZCI0NBST\nydTqeVeP9PR00tPTlffV1dXAqcTS87qt9+2NOb3M73vfWcuSGInpjjFdvXyJkZiujDnzBqoQQggh\nvFeHnmm12Ww0NTUpr/fu3UtiYiJpaWls3LgRgI0bNzJkyJCO11QIIYQQQgghxM9Oh1pa6+vrefXV\nVwFwOp1ce+21XH755fTq1YvMzEzWr1+v/OSNEEIIIYQQQghxrjqUtEZHRzN79uyzpgcGBvLMM890\npGiv4Zw6gQpA8/6Krq7KBfVz+ZxCCCGEEEKI7uWC/OSNEEIIIYQQQgjRGSRpFUIIIYQQQgjRbUnS\n+l/OqROo+OWwrq6GEEIIIYQQQojTSNIqhBBCCCGEEKLbkqRVCCGEEEIIIUS3JUmrEEIIIYQQQohu\nS5JWIYQQQgghhBDdliStQgghhBBCCCG6LUlahRBCCCGEEEJ0W5K0CiGEEEIIIYTotiRpFUIIIYQQ\nQgjRbUnSKoQQQgghhBCi29J2dQWEEEIIce7mz5/Pzp07CQ4OZs6cOQBYLBYyMzOpqqoiMjKSmTNn\nYjAYcLvdLFy4kF27duHj48P06dNJTk7u4k8ghBBCtI+0tAohhBBeaOTIkTz11FOtpi1btozU1FTm\nzZtHamoqy5YtA2DXrl2Ul5czb948HnzwQf7+9793RZWFEEKI8yJJqxBCoKzOHgAAIABJREFUCOGF\n+vXrh8FgaDUtJyeHESNGADBixAhycnIAyM3NZfjw4ahUKi655BIaGxsxmUw/eZ2FEEKI8yFJqxBC\nCHGRqK+vJzQ0FICQkBDq6+sBqK2tJSIiQokLDw+ntra2S+oohBBCnCt5plUIIYS4CKlUKlQq1TnN\nk5WVRVZWFgAZGRlERESg1Wpb/QV+9PXFFusNdfS2WG+oo7fFekMdvS3WG+roDbEV/33dEec9d3V1\nNW+99RZ1dXWoVCrS09O58cYb+fzzz1m3bh1BQUEA3H777QwaNKhDlRRCCCHEjwsODsZkMhEaGorJ\nZFLOxWFhYVRXVytxNTU1hIWFnTV/eno66enpyvvq6moiIiJa/QV+9PXFFusNdfS2WG+oo7fFekMd\nvS3WG+roLbEOhwO9Xs/5Ou+kVaPRcNddd5GcnExTUxNPPPEEAwcOBOCmm25iwoQJ510pb+acOoEK\nQPP+ig7FCCGEEOcqLS2NjRs3MnHiRDZu3MiQIUOU6atXr+aaa67h6NGj+Pv7K92IhRBCiO7uvJPW\n0NBQ5YTn5+eH0Wj0qudjJHEUQgjhzV577TUOHjyI2Wxm2rRp3HbbbUycOJHMzEzWr1+v/OQNwBVX\nXMHOnTt5+OGH0ev1TJ8+vYtrL4QQQrRfpzzTWllZSUFBASkpKRw6dIg1a9awadMmkpOTufvuu88a\n3VAIIYQQHTNjxow2pz/zzDNnTVOpVEyZMuVCV0kIIYS4IDqctNpsNubMmcO9996Lv78/119/Pbfe\neisAn332GYsXL27zjm5bgz1A6wd623r/YzEVp8WdOe30ec6c1lZMe+pzPuWc77K6MsYb6/xzj+nq\n5UuMxHSHGCGEEEJ4vw4lrQ6Hgzlz5nDddddx1VVXAaeG2PcYM2YML7/8cpvztjXYA7R+YLet9+2N\nOb3M73vfnpjOWlZb853Psroyxhvr/HOO6erlS4zEdGVMXFwcQgghhLg4nPfvtLrdbt555x2MRiPj\nx49Xpp/+Y+Xbt28nISGhYzUUQgghhBBCCPGzdd4trYcPH2bTpk0kJiby6KOPAqd+3iY7O5vCwkJU\nKhWRkZE8+OCDnVZZIYQQQgghhBA/L+edtPbt25fPP//8rOnym6xCCCGEEEIIITrLeXcPFkIIIYQQ\nQgghLjRJWoUQQgghhBBCdFuStAohhBBCCCGE6LYkaRXnzTl1AhW/HNbV1RBCCCGEEEJcxCRpFZ2m\nPUlsWzGS/AohhBBCCCG+z3mPHtzZnFMnAFABaN5f0bWV8WLOqRNkHQohhBBCCCEuGtLSeg6kRVAI\nIYQQQgghflqStAohhBBCCCGE6LYkaRVCCCGEEEII0W1J0iqEEEIIIYQQotuSpFXIs7pCCCGEEEKI\nbkuSViGEEEIIIYQQ3Va3+cmbi1ln/QxNdyvn58KzvqDz19n5bIsLWR8hhBBCCCG6G0lavZg3JJ/e\nUMfuRBJSIYQQQgghWpOkVYhOIMnmD3NOnQAgNzCEEEIIIcQ5k2daf4AMUNR9ybYR50L2FyGEEEII\n7+X1SevFejF6sX4ub9BZ61624blxTp1wXuusrXnaU05nxQghhBBCiAvrgnUP3r17NwsXLsTlcjFm\nzBgmTpx4oRYlfsD5PlN6MTyL2laX3Yt1MKvuVp+fswu5LdpT9pkx3vAdIAOS/XTk3CyEEMIbXZCW\nVpfLxQcffMBTTz1FZmYm2dnZFBcXX4hFXTSkReeH/ZzXz8X62bvb5/LGltfzrU9ntWh3Vn06S1cv\nv7uTc7MQQghvdUGS1mPHjhETE0N0dDRarZZhw4aRk5NzIRYlLkI/5YX4xao9XW07qztuW+X8nLbF\n+SRz7enS/FOuw+52zJ1vl2/xw+TcLIQQwltdkKS1traW8PBw5X14eDi1tbXnXE57Lo6F6AjP/uQZ\n3fZiWdYPLf9cYrr6mOtu9RHn7ud8Q6O76axzs7doaz87/fv39Nc/tk925j77Y8s9/Rg5lzqe7kLV\ntzOdXsfTP29bn/376tXR9XQu2nP+PJ/Y06d1tO5trdP2xJ5LuR7fV9/zWU/d7bzwffvej32nnMt6\nOt86nMv8Hd0HzmVb/RTHoMrtdrs7u9Bt27axe/dupk2bBsCmTZs4evQoDzzwgBKTlZVFVlYWABkZ\nGZ1dBSGEEEKcRs7NQgghvNUFaWkNCwujpqZGeV9TU0NYWFirmPT0dDIyMs46KT7xxBM/+F5iJEZi\n2hfT1cuXGInpDjHif8733OxZp6ev2x97fbHFekMdvS3WG+robbHeUEdvi/WGOnpj7Pm4IElrr169\nKCsro7KyEofDwbfffktaWtqFWJQQQggh2kHOzUIIIbzVBfnJG41Gw/3338+LL76Iy+Vi1KhRJCQk\nXIhFCSGEEKId5NwshBDCW2meffbZZy9EwbGxsYwbN44bb7yRSy+99JzmTU5O/sH3EiMxEtO+mK5e\nvsRITHeIEf9zvudmzzo9fd3+2OuLLdYb6uhtsd5QR2+L9YY6elusN9TRG2PP1QUZiEkIIYQQQggh\nhOgM6q6ugBBCCCGEEEII7+R0Oi/4MiRpFUIIIYQQQghxXp566qkLvowLMhCTEEIIIYQ4dxaLBbVa\nze7duyktLcXX15ewsDAuu+wyAgICOnVZa9as4YYbblDeOxwOsrOzCQ0NZeDAgWzZsoXDhw9jNBpJ\nT09Hq+36y8ajR49iNBpxu93odDqWLVtGfn4+8fHx/OpXv8Lf3/8nq8ubb77JH/7wh59seUJ0JovF\nQmFhIb6+vqSkpJCdnc3Ro0cZOHAgUVFR7N69m7i4OAYNGvSjZf0UT5t2i2daLRYLAAaDoc1pdXV1\n1NbWAqd+Zy4kJOSsacBZMe0px9tYrVZ2796tfA7PNM/nDAsLIyEhgZMnT7b6rP3796eqqkqZFhAQ\ngNvtxmq1KjFRUVHs379fidFoNMD/mvzbKttgMODn54dKpfreckJDQ4mKilJOdmFhYcTFxbFnz54f\nrM/AgQMpKytrVQ6AyWQ6p3J69+7N0aNHW5UTGBhIU1PT95ZzZoy/vz8NDQ2tln1muW1Na8/2ac86\n7Kxt0d3K+SmX1Z79sD37Rnv2sba2+5nH4IW6CPUGTqeT9evXs337duWY0mq16PV6/P39UalUhIWF\nMWTIEC6//PLvnScsLIy0tDRGjx7dLS6mvd0PreOVK1cyb968s2K3bdvGyZMnAUhMTCQkJASLxUJ8\nfDy33norjz/+OK+//royn+f8NWDAAKKiovjiiy9ITEykurqanJwcZs6cyeLFizl69CiJiYmMHz+e\n3Nxc9Ho9ZrOZ+Ph4xowZo3wveFRUVPCvf/2LsLAwJk6cyD/+8Q+OHj1KXFwcPXv2JC8vT/lMAQEB\nOJ1O+vXrx69+9SveffddCgoKSExM5NJLL2X79u243W78/PyoqqoiISGBwMBAoqKiaGpqIiwsjNGj\nR/POO++wf/9+1Go1RqORhIQExowZw/r167njjjtafdYvvvgCHx8fampqqKmpYcCAAbhcLrKzs/Hz\n80On02GxWGhpaUGlUtHY2IhWq0Wn0+F2u7n00kspLi7m1ltvZcSIEQA0NzezevVqVCoVY8eO5dtv\nv2XTpk3U19dzxRVXcOuttyrrwWg0olarqa6uVr67nE4nJpOJ2267DZvNRnl5Obm5ufj5+REXF8ex\nY8cYMGAAV111Ffv27cPtdreZoOXn55OcnIzVauXo0aNotVr8/PwICwsjMDBQ2VY2m438/HwSExMx\nGAxYLBblui83N5e0tDRlWklJCSdPniQ+Pp6IiAhKSkoICgrC6XSSkZHBnDlzuPPOOwkODiY8PJxf\n//rXHDt2jD179pCUlERBQQF2u52YmBjGjBnD5Zdfzvbt2/nuu+8ICAjgxIkT6HQ6TCYTgYGBREZG\nYrFYqKmpwWq1otVq0Wq1rb5j5syZo3zm/fv3079/fw4cOEDv3r0pKytjxIgRJCYmsmvXLo4fP45O\np8PX15f6+nrq6+sxGAyMHTuWXbt2cfLkSRITExk8eDB6vZ5Ro0bx4YcfUlJSgp+fH0FBQa3qaDQa\nSU5O5sCBA21+/zmdzrP2he+++w6j0citt96Kr68vAEVFRcyfPx+TycSgQYO48847lW3w2GOP8cor\nr7Bo0SKuuuoqVq1aRWhoKFqtFrvdTk1NDQ0NDbS0tGAwGPDx8cHhcDB69GiuvvpqSktLyczMpLKy\nkssuuww/Pz8OHz6Mj48P4eHhhIeHKzdI1q5dS2BgIL6+vpSUlODj40N5ebly46GkpASj0UhRURHL\nly9HrVbjdDqJi4sjNjaW6OhoBg4cyKpVq9i6dSs2mw23201TUxMxMTHExsbSp08f9uzZQ2FhIaGh\noYwePZqamhri4+MJCgqipqYGtVqNwWBAr9cr6/TM3GDv3r306tWr1bn6m2++YdSoUcr7M/ffH5Kf\nn09MTAzl5eVERUVhMBhoaGhArT7V+fX0+U+PDQgIIDAwkJaWFmpra3E6nURGRhISEoLNZuPYsWP0\n6NFDKcPpdKLRaGhsbESj0bBv3z62bt1KYGAgDQ0NbNu2DafTiUqlQq1WExISgtVqxdfXF7VajUaj\nYfjw4Rw4cID4+HhGjRpFjx49+OKLL2hoaCAtLQ2r1UpeXh7x8fEsX76clJQUgoODqa2tJSQkBKPR\nqHyW8ePH/+B6aY8uS1qrq6tZsmQJ+/btUy4CGxsb8fHxobm5GYPBQEtLC/X19ej1ehITE9Hr9ZSX\nl2M2mwkMDCQmJoampiZOnDgBQFJSEn5+flRUVGC1WnG73coGPrOcmpoafH19ueqqq9DpdED7L5i7\nKgEsKSmhoKCAgQMHkpCQQF5eHvn5+QAMHTqUvn37smXLFg4cOEC/fv247rrrgFMHU25uLj169GDw\n4MEUFBSwb98+AAYOHEiPHj3YsWMHhYWFpKWlkZaWxo4dO8jLywPg0ksvZfDgwWeVfejQIbZt2wac\nGg3s0ksvPaucoqIi1q9fj8PhwGg0kpSUxNGjRyktLeWyyy6jd+/ebdbnyJEj7N27F6PRSEpKCjU1\nNa3qEx4e3q5y9u3bx+HDh+nbty8DBgygvLyc7du343Q66dWrF7GxsWeVc2YMwPHjx9FoNFx55ZXE\nxMScVS5w1rT2bJ/2rMPO2hbdrZyfclnt2Q/bs2+0Zx9ra7ufeQwCVFVVkZOTo9yMcbvdyp1KlUql\nJG6nJ2VtJRWhoaEYDAbMZjN1dXXA2QlgSEgIOp2OsrIyTCbTeS/rzBir1crSpUvJycmhvr4elUpF\nYGAgAQEBWCwWzGazsgzPZ1SpVDidTqKjo5k8eTJGo5HPP/9cuXBxuVz85je/obS0lH//+980NjYC\npy7QfXx8GDRoEBMnTsTf35+SkhKWLFlCeXk5Go0GlUpFcHAwaWlpTJw48Wd5Q6AjXnvtNQICAti4\ncaNyAWW323G73bhcLnQ6HQ6HQ9mefn5+aLVaevXqhcFgYPPmzcCp7e3Z1p7WMIfDgVqtRqvVMmTI\nkFYXT5590LNfBgYG4ufnR2pqKt988w0OhwO3201MTAyRkZGEhYXx+9//HvjftcSuXbvo168fR48e\nJSgoiISEBPbv309zc7OSoI4ePZqqqipWrVpFSEgIbrcbs9lMS0sLLpeL0NBQysvL0ev1BAQEcO21\n17Jq1SpcLhcajQa1Wk1ERAT9+vVj586d+Pr64uvrS3l5OS6Xi+TkZIqKimhpacFoNGIymbj66qvZ\nsGEDzc3NJCYmEhUVxaFDh5RrFZ1OR0hICGPHjuXTTz+lf//+5OXlERUVBcCrr75KcXExf/vb34iL\ni+PgwYMkJCQQGxtLXV0dycnJbN++Hb1er2yjoKAgzGYzDoeDhIQEGhoaOH78ODabDYPBQO/evQkJ\nCWHr1q3Y7XZ69uzJ8ePH0Wq1OBwO5a/b7cbHxwe1Ws2LL77IU089RVJSEhMmTOCNN96gpaWF6Oho\nrFYrI0eOZOXKlWi1WlwuFzExMZjNZhoaGggLC2PcuHF8/PHHOJ1O/Pz88Pf3x2KxoNPpuPnmm/n8\n888xGAy43W5aWlpobm7G19cXnU6H2WxGp9Nht9uV5CUoKEipm8ViQaVS4e/vj8lkIjU1lZqaGmJj\nY9m+fTtxcXGkpqaSnZ2N3W7nvvvu4+2338bHxwc4dVPas48aDAYuv/xy5ftap9OxadMmVCoVLpdL\n2fc969put5OYmIivry+NjY2UlJSg1+sxGAwEBASg0WjQarWkpaVRU1PDhg0bUKvVDBs2jC1btqBW\nq1Gr1QwePJidO3ficrnw9fVV9l8fHx/8/f1xuVy4XC4ee+wxwsPDgVPnkE8++YSGhgZCQkIwm80Y\njUbMZjM2m43bb7+d999/X7neVavV1NfXo9Pp0Ol0OJ1OfHx8eOGFF4iJiWHy5MksWbKEBx54AK1W\ni8lkIioqSvmMFRUVuFwuBgwYwMGDBxk+fDhZWVkkJSURExPD1q1bMRqNHD16FB8fH6xWK6NGjeLg\nwYPU1NTgcDgICAjAz8+P+vp6XC4Xl1xyCfv370ej0WA0GqmurqZPnz5UVVUxduxY1q5dS1FREQDB\nwcHK90RycjJ1dXVUV1fj7+9PdXU1BoOB5uZmAgICGDFiBEuXLqVXr1488sgjPPTQQ6hUKhITEykv\nL1eOEbVajcPhQKfTER8fT21tLWazGR8fH9LS0rjzzjt59NFHMZlM+Pj4cM8996DRaFi0aBGXXXYZ\nQ4cOxe1289577ynrVKPREBERgcFgID09vdWx8tvf/pa3335bOZ/p9XpsNht2ux04lQdYrVb69OnD\n+PHjefPNN7Hb7TidTlwuF2q1WtnXPXmOWq3G7XYrCajnuHC73YSEhFBeXo5Wq0WlUik3Y3x8fBg7\ndiwrV67EaDRit9s5fPgww4cPZ+rUqdx///24XC78/f3x8/PDZDKRkJBAS0sLpaWlREdHU1tbq9y4\niIyMpLi4GAAfHx+CgoJwuVyEhYURGhrKvn37lPzHc25YtGjROZ+juuyZ1szMTK688kref/995s2b\nxxtvvEFsbKySFMybN4/AwECeffZZHnzwQVwuF08//TT+/v7cc889+Pv78/TTT2O323n22WeZNWsW\ndrudp59+muDgYG666SbCw8O/t5xf/vKXmEwm/vOf/9Dc3ExzczMrV67kmWeeIT8/n5SUFOrr68nO\nziY7O5v6+npSUlLIz89n1qxZrFy5kubmZg4dOsQ//vEPFi1axOHDh9tdzsGDB5k7dy4HDhwgJSUF\nh8PB6tWrWbp0Kbt3726znJMnTzJ27FhKSkrQaDRUVVXx3nvvMW/ePA4cOMDw4cOpqKjggw8+oKKi\nguHDhzN8+HBOnDjB22+/jcViYdKkSZw8eZL58+fz1ltvUVRUxKRJk2hsbGT+/PmcOHGC4cOHU1hY\nyPz585k/fz4FBQVtln3gwAHeeOMN3nvvPSorK9ssZ8eOHWRkZLBgwQIaGxuZNm0aDoeDl156iYqK\niu+tT2VlJS+99BJ2u51p06ZRXV3N3LlzmTt3LtXV1e0ux2Qy8frrr1NbW8ukSZM4duwYs2fP5p13\n3qGurq7Ncs6Mqaur491332X27NkcO3aszXLbmtae7dOeddhZ26K7lfNTLqs9+2F79o327GNtbfcz\nj8FJkyZhs9kYPHgwjY2NPPnkk0RHRyt3kSMjI3nyyScZP348WVlZ3H///dx3333cddddfPzxxwQF\nBfGnP/2JJ598EpfLxYkTJ3C5XDz55JP06tVLaaFpbm7mlltu4eTJk0oLSkeWdWbMAw88wDfffENq\naipvvvkmCxYsUJLo0NBQFi5cSEpKCtdffz2/+MUv6NWrFwsWLCAwMJBhw4axYsUKwsPDOXToEC+8\n8AJPP/00tbW19O3bl61bt5Keno6/vz8LFy4kMjKSzMxMEhISWLRoEeHh4fznP/9h2LBhBAUFsXDh\nQhYsWMCsWbMICAggMzOzq05vXqugoICpU6cyevRorrzySubNm0dsbCyffvopGo2GwMBAhg4dyrPP\nPoter1eSNrvdTnJyMjqdjmuvvZaIiAiMRqPSSuZJhJxOJ06nk+zsbFwuFyaTCafTqdygDQ4OVhIk\ntVpNYWEhkZGR6HQ6MjMzaWlpwe12s2nTJl544QW++OILMjIy8Pf3x9fXF6fTicViobKyEqPRSEBA\nAFqtFoPBwC233MLixYvZtm2bkoB6Wo7eeecdIiMjKSsrIy4ujpiYGGbPns3u3btRq9UsXLiQ4OBg\nfH19qaioUG4kP/roo9TV1XH55Zdjt9s5cuQINpuN5uZm8vPzMZvNfPPNNzQ1NeF0OqmpqWHGjBnY\nbDZqamrIyMjA7Xbzt7/9jY0bN+J2u3nsscew2+1otVrlxsGKFStoaWlh/Pjx6HQ6BgwYwNVXX83x\n48cJCgqipaWF8vJyysrKqKqq4vrrr8fpdFJVVYXRaOQ3v/kNarWawMBA5WZ5fHw8oaGhhIeHY7FY\nCAwM5OqrryY2NpZFixYpLSRTpkxh+vTpvPrqq2i1Wg4fPsycOXNoaWlBp9Oh1WppaGhgxYoVxMXF\n8eGHH/LLX/5S6WUyatQoWlpaWLJkCcOHD8fX15empiYlEe3Tpw+rVq3C6XSSmJjIoEGDcDgcJCUl\nMXv2bMxmM+Hh4YSFheHr60tERAQDBgzA7XZjMpm49NJLCQoK4p133sFms6HX69m9ezdGo5FHHnlE\n2Qc3btxIU1MTkZGRjBw5Ep1OR2RkJKGhoaSnp1NbW0tdXR0Wi4VRo0aRnJzMrl27SEpKwmAwoFKp\nePvtt5k8eTJ6vR6NRsNHH31EVFQUdXV1xMbGMnXqVFQqFYMHD8bpdBIcHExRURHl5eX07duXqVOn\nKjdHHnroIaKiopQbObt37yYyMhKn00lmZqaSXEZGRvLMM8/gcDhoamrizTffZPXq1dTW1rJ27VqC\ngoKor6/nyJEjVFRUUFZWxsmTJ3E4HCxcuBAfHx/lOGhubiY8PJy+ffvym9/8hldffRWz2czDDz/M\nXXfdRUtLC/fccw8Wi0W5Adrc3Iy/vz8HDhzAYrEQEBDAtGnTqKur45///Ccmk4lDhw6xevVq6urq\nOH78OHa7ncbGRoxGIw8++CAajYbo6Gji4+OVm2BOp5PXXnuNhoYGdDodsbGx3HXXXajVavbs2UNV\nVRXLly/nz3/+MzqdjoULF6LT6WhpaaGhoQGHw0FBQQGZmZmoVCoWLFhAU1MTISEhPPfcc+zYsQON\nRqPsP3q9XtlWQUFB1NXVodfriYuLY8mSJcTFxVFaWorVaiUiIoLm5mY2btzIAw88QG1tLRqNhpaW\nFhYvXsxbb72FxWJhx44dbN++nZ07d9LY2KgcX1qtlurqamJjY5k9ezbNzc3KsfLee+9hs9lITEwk\nNjYWi8WCn58fn3zyCQAtLS3KMfXGG29gtVqJiopSGmt8fX1ZuHAhKpWKYcOGkZCQgEqlIjQ0FLVa\nzS9/+UvUajVNTU2o1WqlZfu+++5Dp9OhUqkwm800NTVxww03EBwcTGNjI83Nzej1eo4dO4aPjw8q\nlYqoqCg++OADJWGePHkyJSUlxMfHM3fuXJqbm5XvqiFDhig3HceOHct1113H66+/jtVqJT8/n+ee\ne45FixaxaNEiFi9efF4JK3Rh0mo2mxk2bJjypeyZdt999ylfds3NzfTp04drrrlGuWPf3NzMmDFj\nsNlsyvvevXtzySWXKNPMZjOTJk2iubn5e8v597//zdy5cwkICFAuIttzwdyVCaCfnx/jx4/npZde\nYv369ahUKkwmk3JHBU7d4S4sLFTuBnp4WkE8PN0BTp+voaGh1XuTyYTJZFLma6tsT9zpMaeX43Q6\nCQ8PbxUDp1psHA7H99bHM9+Z78+c78fKAdos98yY08tpK8bTEnX6ss4s48xp7d0+P7YOO2tbdLdy\nfspltWc/bM++4Sn7h/axtrY7nH0MFhQUcO+996LT6QgPD6ekpIQ///nPPProo5SVlbWZlLWVuHlu\n6NTU1HxvAmg2m3nrrbcoLCzs0LLOjImKiuLVV18lPDxcSRJNJhNPPfWUctFTWVnJb3/7W26//Xaq\nqqqAU3fMo6OjqaysBECn03H06FG+/fZbpXW0srKSAQMGKN3aDAYDeXl5TJgwQSmnsrKSqKgogoKC\nlPUaEhLCxIkTlRjRfgaDga1bt3Lvvfdy44038vrrr9PQ0EB2djYqlQqLxcLMmTPp27cvCQkJ1NfX\n4+vryxNPPMHatWsZNmwY8fHxSgsb/O94efPNN4mLi+Ojjz4iPj6eTz/9lEceeQSVSkVzc7PSPc7P\nz4+CggIiIiKoqakhODhY6TkQGBjIzJkzlZ5ZX331lXKBbrfb0ev1qFQqWlpa6NGjB35+fkRGRtLY\n2MiAAQOUlpjg4GCuvfZa4NRxX1hYqHSHs9vttLS0UFVVRUtLC4DSZTM4OJiYmBjuu+8+3G43zz33\nHHPnzlV6DxgMBt566y2l1ejjjz9m0aJFSrdpl8vFK6+8orSOlJeX43A4ePvtt6msrEStVvPYY48R\nGBhIRUUFxcXFvPPOO2zduhV/f38++OADbDYbX331FYsXL8bhcPDZZ59hsViUlpSAgAC+/PJLiouL\naW5uJjAwkL59+xISEkJTUxN//etfueuuu/jss8+IiIigoaFB6QaYmJiI0+nkgQceoLy8HICPPvqI\njz76iLKyMiIiIujfvz9utxuNRkNkZCTPP/+80po4e/ZsAJYuXaq01IaFhSktLBEREajVaiIjI5UW\noccff1xpOfz973/P9OnTldZaT1LnaXH19/fHx8eHP//5zwwYMACHw8H+/fspKyvjkUceobm5mfvv\nv5/o6GjlsQKHw8GwYcNwuVxKotvS0oKvr6+S5CYlJZGSkkJ0dDQ2m42//e1vnDhxQmkhvvfee/Hx\n8eHRRx/F7XYTHh6Oy+VSLuhtNhsTJkxQ9r/8/HyioqIYMmQIMTH1dNaFAAAgAElEQVQx+Pj4sHDh\nQqZMmYLL5Wr1KENERISyfpqamvDx8WHlypW43W6ljnFxcQQHBxMVFUVFRQVr167l6aef5ttvvyUv\nLw+bzYbL5aKlpYXKykrls1dUVPDSSy8RHBxMcHCwso8+/PDDfP3110RHRxMaGqr8ValUPPvss8TG\nxpKYmEh4eDghISE8//zzREZGAiitngEBAUrX66FDhxIXF0dgYCBTpkwhODj4rGsjz2f0LEev17Nv\n3z5lP3A6nVx22WVKLwnP98tTTz2FXq+nrKxM6R6blJTEyJEjcbvdPPzww+h0OvLy8nC5XPTv3591\n69Zht9uVGyQenvWQmZlJaGiokvj+3//9H6WlpUoL+ZQpU/Dz88PHx4ebbrpJqbcnCZ0xYwZqtRqX\ny8WuXbuURLxnz55ERkbS1NSE3W7HarUqPTkDAwN5/vnnlR4UL7/8Mi+//LLyP7VazcyZM5X3L7zw\nAsHBwQDMmTOHWbNmKS37vr6+hIaGcvz4cVQqFQaDAY1Gg0aj4be//S0REREkJCTg7+/PwYMHcbvd\nHDhwgKioKJ599lnUajVWq5UpU6ZQVlaGwWDA5XKRkJCAy+UCICoqSjn3erb1+++/r/QM8OyrcKon\naWpqqvI9MH78eH7961/jdDqV1t74+Ph2noV+mObZZ599tlNKOkeHDx9m//79BAYGolKpaGpq4sCB\nAyxfvlwZAKCiooLly5fz7bff4uvrS2xsLCdPnmTRokXEx8cTHR1NVVUVS5cuZe3atRiNRsLDwzl8\n+DBffPEFycnJ9O3bt81yNm3aRF5eHr1791YeMF6zZg2DBg3i22+/Zdy4caxZs4YhQ4Zgs9nYvHkz\n48aNY/Xq1QwaNIitW7cq79PT01GpVGRlZSnz/Vg5a9asISUlhdzc3FblNDQ0tIo5vRw/Pz/mzZtH\nfn4+J0+eZMCAASxcuJAVK1ZgNBo5fPgwZrOZFStWEBERwfHjx9mxYwcmk0npJlFVVYXb7WbBggWs\nWrWKPn36UF5eTlNTEx999BGhoaEUFBSgVqtZsmQJa9asoWfPnhw8ePCssh0OB4sWLSIrK4uBAwdS\nXFx8VjlWq5UPP/yQ9evXc91119HQ0EBjYyPvvfce0dHR1NfXt1mfqqoqlixZQr9+/XA6nVitVhYt\nWsSXX35J7969cTqd7SqnoaGBDz/8kMTERGpra7FarSxevJgvv/ySQYMG0dTUdFY5Z8ZER0fz3nvv\nsXLlSuLj46murj6r3Ly8vLOm6fX6H90+7VmHnbUtuls5P+Wy2rMftmffaM8+1tZ2P/MYzMvL4+DB\ng6xevZrbbruNnj17smXLFvz8/CgqKqKwsJAxY8bwr3/9i6uuuooTJ04wZswYtmzZQlhYGGPGjOHf\n//4348aNY/PmzZw8eZKGhgbS09NZt24dPXv25PDhw0o5W7ZsoaGhgeLiYm644YbzXtaZMTt27KCp\nqYmRI0eyatUqxo0bx7Zt29i6dStarZZRo0axY8cOSktL2bdvHzabjREjRpCUlMSHH35IeXk5mzdv\nprm5mS+//JLdu3cTFhZGdnY2xcXF7NixgwceeICYmBhSU1NZsWIF7777LlarlY0bN1JZWUlJSQlT\np05Vxjaoq6tj9erVWCwW5dk/0T6pqal89dVXfPDBB+zatQur1UpdXR05OTlKq6rFYiEmJobq6mry\n8/OxWCxs2rSJyspKampq0Ov1zJw5k7y8PE6cOIFaraZnz56Ul5fT0tJCcXExDoeDa6+9lvj4eBob\nG2lqaqK8vBybzYbNZuPbb7+loqKCpqYm5dnHtWvXYjablW65f/rTn7j77rvZvHkzTzzxBL1792bD\nhg00NjYSGhrK5s2bMZlMNDc3o9FoWLVqFbW1tVgsFmw2GwcOHCAoKAiVSsWWLVuUY9fPz4+amhq2\nbNlCXV0dTqeT/Px8HnroIcLDw9m0aRN79uwhPT2dvLw81qxZw/Hjxxk6dCgmk4nq6mqKi4vp2bMn\nYWFhREZGYjAY+O6777BarZSXlysXc1arlaqqKpqampQL3MjISKKionA6nTgcDuU51/HjxzNlyhS2\nbNlCbGys0uuoqamJ8PBw5s+fz7p163jooYfYvHkzLS0tBAYGsm/fPtatW0ddXR1ut5stW7ZQXl6u\nnMc8iXlpaSnbt2/HbrcTGRlJcHAwFouFp556Snk0Yu7cuYwcORI/Pz/y8vIIDw9n7dq11NfXk5iY\nyD//+U8qKiooKSlRenwcO3YMg8GgtC6dPHlSaR0tKSnhyy+/VFrcd+3aRX19PeXl5VRUVCjXL35+\nfjQ2NmK329HpdFxzzTWo1WqOHz9OaGgo9fX1zJ07l6FDh/L5559TUVFBZWUl27Zto6ioiD179hAX\nFwec+n7YuHEjZrMZi8WC1Wpl+/bthISEKM+O1tbWUltbq3wv2e12HnnkEXQ6HevWraOmpga3261c\nqFutVr777jtyc3Px9/fHbDbjdDrZvn270nJWVVWldF0NDg5m+fLlVFZWcs899yj7aVVVFSkpKej1\nevbv309LSwsWi4X//Oc/JCcnExAQQHl5udKbpbGxkSuuuILHHnuMpqYm6uvrlWsjs9mM3W6nb9++\nHD58GIvFQnNzM3feeSdw6rGxsWPHYrFYKCoqYtasWWRnZ1NQUEBpaSkxMTH06dOH4cOHM3v2bKUr\nd0hICF9//bVyXdbQ0EBJSQnNzc24XC62bNmCzWYjPj6e8vJyVq1aRU1NDTExMZw8eRKz2YxGo8HH\nx4empiaOHDmCy+Wivr6ejRs3UlNTA5x6/tnhcCjdYNetW4fZbFYS0f379zNgwADKyspQq9V8/fXX\n6PV6fHx82L9/PxUVFTidTpqamvjXv/4F/O8RnKVLlzJkyBDq6uqUxwQ9j7Oo1WqKi4vp27cvMTEx\nXHvttRQWFlJRUYHD4eCOO+4gISGB4uJiSkpK0Gq1NDY2YrFY+N3vfscNN9zA5s2b8fX15f/+7/8w\nGAwUFhaSmJjIhx9+qLRO5uTksH//fkpLS1Gr1cTFxSmPHRoMBhYtWqR0+d6xYwc2m439+/fjdDqJ\niYmhsLCQ8vJypZHP0x3XZrNhtVqVG1+XXHIJxcXFBAUFcdVVV/H222/jdrvp06ePctxZLBbuuece\nbr75ZuLi4oiPjycrK4u7776bqKgo1q1bx7Rp0xg7diybN2+moqKC7OxsJkyYwMGDB4mJiWHp0qUE\nBwfjcDjYsmULhYWFLF26lAkTJuB2u9mwYQNOp5OysjJKSkqUFttz1WXPtDocDtavX09OTk6rQVA8\nJyjPM1Q6nU45kXhau0JDQzGZTMp8njsDnlbbkJAQtFotFRUVSsyZ5dhsNkpLSxkyZIhyl+/QoUPs\n27cPo9FI7969qamp4eDBgwD069eP8PBwjhw5QmlpKQMHDqRPnz4UFBSwd+9e4NQzbj179mxXOfn5\n+RQVFZGUlETPnj0pKyvj2LFjynOTsbGxZ5UDUF5eTnFxMWlpacTFxbU5cExycjL5+fmtBnzxPIfp\nmeYZXe/053BTU1MpLy9XYkJCQpRWo+8r28/PD7PZ3CrmzHIcDgdVVVWtYvr169fqueC26hMZGcnB\ngwd/8Lng9pSTkpLCsWPHzhokx/OsXFvlnBnjed7Yo61y25rWnu3TnnXYWduiu5XzUy6rPfthe/aN\n9uxjbW33M49BrVbL/v37OXToEAaDAYfD0eo5Va1Wq3RznDZtGikpKVRWVvKPf/xDGRQlPDxcef7G\n06pit9uVZ02SkpLQ6/VUVFTQ2NiI2+0mKCjovJd1ZozFYuGzzz5j69atNDY24uvrS1BQUKtnWj2t\nSvC/0QVDQkIYPHgwEydOVKYFBga2GizPx8eHb775htzcXOrr61vNl56eTkBAACqVimXLlrUZM3Hi\nxB8dEEN8P0+vpMDAQFatWsXXX39NXV0dTU1NykXn//t//4/U1FRKS0tZvXo1999/f6syVq5cydq1\na7FYLNjtdsLCwhg8eDCTJk06a4TXvXv3Ul5ezrXXXovT6SQwMBCA4uJivvvuO9xuN7m5udx9992s\nWrWK++67j+rqaj766CNuv/12+vXrB5waf6CpqUnpmhYSEsKMGTPo3bu30rLx+OOPK8utrq5m586d\nLFiwgI8//hi1Wk1dXR0FBQXKgDIxMTHAqWsNTzc6jUZDfX09u3fvJiUlRRnNds2aNRw5coRp06YB\nKAO8WCwWKioqiImJobm5WbnJAijdOj0tZGfKzc3l3XffVZ4TvPfeexk+fLjSLffo0aP89a9/5auv\nvmLcuHEASuuKp+XX7XYzY8YMIiMjKSoqYtOmTUyePBm1Wk1QUBBWq7XVei8qKmLdunVcccUV9O3b\nl82bN3PdddcprS+eVp758+dTXFzM4MGDqa2txWazodFoCAkJISwsDLfbjdFoVBLxDRs2EBsby6RJ\nkygrK+PEiROsWrWKlpYWMjIyyM3N5ejRoxw8eJC4uDjGjRvHqlWrKCoqokePHlxyySVs27aNiIgI\n7rrrLhoaGsjLy2PSpEnK+qqsrMRkMqHT6c4aWKe2tpawsDCqq6uBUy2dp28bT08PTxI8bNiwVtti\n3bp1vP/++/Tv3195Ltff35+pU6cSEhLCihUryM7O5i9/+QsGgwG1Wo3ZbObIkSMYjUZlu3ueLz69\nt6Gnbp4u5p7nHCMiIpSY1atXk5iYSEJCAgsXLmT48OHKfvPVV18pSadnBNiioiJ8fHyoqqoiKSmJ\njIwMZb+ZPHmycjx4jg1P3TzbGVAS08TERAICAr53UFOr1Yrdblda/ux2O1u2bMFutxMUFKScKz2f\nuaGhQbmBotfrSUlJOWsQJKvVyoEDBwgMDESr1ZKSktJq2UeOHGHbtm2kpKTQr1+/Vv/T6/XY7Xby\n8/PJzs4mKSlJGci1srKSpKQkQkND2bFjBzU1Ncr6vuKKK7j55ptb1eOTTz6hvr5eOa4BDh48SEND\nA6tXr6aoqIjnnntOGZBIrVYrZRw/fpxevXrx9ddfs2TJEux2O6Ghofj6+nLLLbeQm5vLnj17gFPn\nr+joaCIiIti9ezd1dXXKeb1Hjx6MHj2avLw8ysvLKSkpwdfXl1tvvRWdTsdnn31G//79mTRpEnV1\ndXz88cf0798fl8tFXFwcGzZsICIigkmTJiljaTQ0NCj7oedmR2FhIVarleTkZHr06KHcLPJsj6VL\nlzJu3Di0Wq0yTkZAQABr1qzhxIkTXH/99YSHh3P55Zfj7+/P/Pnzacv06dPbnP5DusXowV3FYrG0\nGhW0vRfMXZkAnnnQCyG83+kJwunvfygp8yRunnnOLOf7Liw6sqyfIkmsq6s755Hdz2cecW727t3L\nwIED2bNnDz179lQSnYaGBoKCgmhoaCAmJkYZTXLw4MGcOHGCpKQk4NRAdQkJCcCpfa60tFTpcuy5\nKXv06FF69+5NcHCw0t3v2LFjbN68GY1GQ3NzM1FRUfj7+1NRUUFUVBRXXnmlkqidzjPIUlBQEDk5\nOSQkJCjJJ9Cqnqfbt28fISEhyg10T0uI2Ww+q55t1dnTldPTi+zjjz/mjjvuAGjztWdQuaqqKjZv\n3kxNTQ07d+4kLS0Nf39/9u/fT0lJCT169KCiooJ77rmHq6++GjiVzA4cOFBJjD3TLrvsMuUi8/T1\nsHz5cr766isiIyMZPXq0MjCSRqPh4YcfxuVyKYmPw+GgsbGRnj17YjabufTSS7nvvvvOutngGbH1\nQv/MTEZGBrfffjtJSUmcOHGC9957j5qaGuXm4B/+8Af69u3Lo48+yl/+8hdWrlzJiBEjKC0tJTg4\nmPr6euLi4khISPjRbeL5W1lZSUFBAfHx8RiNRv76178yc+ZMbDYbq1atIjc3l9TUVPLy8khPT+fm\nm28mIyNDuYl52WWXcf3117Nr1y4CAwNZunQpTzzxBAcPHiQkJIS4uDhWr15NVVUVgYGBREREUFtb\nS0VFBb6+vvTv35/Kykqqqqro378/Go2GTZs2odPpSExMJC4ujoEDByrXgzabjd27d1NdXa203qWm\nptLY2MjUqVNbJaKnbz+73c4nn3zCu+++y+9+9zvlf54RfE9/XVJSQnR0NFqtttVrT8IN/0u+Pc+P\nekatrqurU7qdFhcXExISQm1tLTExMej1eoqKioiJicHX15eioiJlZF3PzzKd/vNMP/Tas92jo6PR\naDSUlpbi5+dHQECA8l11utMfL7nQvzJyLsdLZx9by5cv55ZbbmH79u00NjYyatQonn76acLCwjhw\n4IDyfHGvXr0wmUzceOONynfr6Y2DLS0tFBUVodPpMBqNfPXVV7hcLm655RYAnnzySWWAvcmTJzN0\n6NBOqT9006R1x44dZ51IzpyWlZVFenp6q5gzp7UV055yvNGZXzYZGRk88cQTrWLamnbmfGe+b2u+\n9pTdnnI+//xzbrvttnOuz5nznW85Z05rTzlnxrSn3LamddY6vFjL6W77YWftY+05Bv8/e+cdVdW1\ntf3f4QAHkN5BEQQ7erFFUYxo1LyJFY2F2DVq7IqCvfeCDXsJYuxi4xqNNXZAURRBxYrSe6+HA3x/\nMPZ6AdEYb+7NHd+bOQaDtdeee+212zprrjnn88D7RtinGGXV6XzOcZ97rqoi0WB8rK46nVWrVjFn\nzhyxXdULUN1xVY/5UNt/y+fL+PHj2bFjh/gfGBjI3r170dLSEvQGUI42LBmXKpWKuXPnEh4ezr59\n+8SkWQppTU5OFmiWSqVSeDChPKJGqVSiUChQKpU0bdqU8PBw6tati7OzMydOnBBel9zcXAH2pKur\ni4mJiUC5vnfvHps3bxb5mh07dkRdXZ2AgADy8vIwMDAQSK/16tXj9OnTwP/m4n6on/C/oCklJSWo\nq6tjYGBASkqKyGeX8ugrXrcEsCQB3EgRCpqampVobqQcWDU1NerWrUtOTg7jxo1j9uzZ9OnTh5iY\nGC5fvoy2tja1a9emW7dutGrViqFDh6KlpUWzZs0wNzfHzc0NhUKBn58fV69exdzcHHt7e27dukXN\nmjVJS0tDLpcLkCxA5JNKOfJ16tQhOTmZ3NxcgfAt5YhKuXTV3Xspd3PXrl2MGTOGq1evcvnyZUaM\nGMGRI0do3LgxKpWK169fM2DAAOLi4rhz5w4DBw7kn//8J7a2tjRr1ownT54QGBjI+vXrOXnyJKdO\nncLLy0ukRkRHR2NtbY2hoSGRkZFoaWmRn58v6Eyys7MxMDAQxnt2drZ4Jnl5ecK7mpeXh42NDfHx\n8TRt2pTIyEjatGlDUFAQ/fv359dff6V3796cPXuW/Px8atSoQb9+/QgICCA/P582bdpw7do1nJyc\nePDgATKZDBMTE9LS0tDW1hYo1hJyLpQbgxIwkRQJI7FdSPnZBgYGIkeydu3axMbGoqenh4GBARkZ\nGbRs2RKlUsmzZ8+EYSmBCUnUNjVr1kQul2NkZISjo+N7jo+ysjK8vLzYuXPne9+8VJ44cSLLly+n\nRo0amJmZERUVhZaWFiqVipKSEuzs7EhPTyc7O1sAfunr69OxY0fOnDkjvgspalIyrjU1NVEqlSJf\nUsqVLCgowNbWlrdv32JlZUVCQgJWVlZAOXKylGcbHx9PixYtKCsr49GjRygUCvT09MjPzxfo4dK3\nJC3SSO+6REvk7OwsPIzGxsbExsairq5eCUm4uLiYSZMmUVpayqRJk/jyyy9RqVSEh4czZMgQoqKi\niIiIYMqUKSxevJjS0lKaNm1Keno6MTExGBgYoK+vT1FREcnJychkMpo3b461tTWhoaGCnqgiTdjU\nqVPZvHkzU6dOZfr06dja2jJ16lSmTp3Kw4cPCQwMpHHjxujq6nLnzh0BLCvdg9TUVMrKytDV1SU1\nNRUHBweys7OpUaMGa9asYfjw4fTv359r164RHx+PlZUVdnZ2BAYGolAoGDt2LOfOnSMlJQWZTEbH\njh05e/asQNOWUqeUSiXTp0+nVatWeHl5sXDhQoqKiti+fTuzZ8/mt99+IzY2VqQjwOd5Wv+ynNaP\nye3bt3F0dPxoneRuryhV66rT+ZR2du3aRatWrSrVrV69WgA3VLdd3XGf207Vuk9pRwqblsTR0bFS\nOOuH6qoeV3W7uuM+pe1PaaegoEDkmfyR/lQ97nPbqVr3Ke1U1fmUdqur+7Pu4f+v7fy3vYd/1jv2\nKd8glKOrS5RV1W1DuVFW8bjqdKrWzZo1i65du/5bzlVV59ixY++NW1XrqtOp2m7V/lZ3XNVjPtT2\n3/JxWbNmDXfu3GH//v2cPXu20l9WVhavXr0iLi6Ovn374uPjg0qlQk9Pj3HjxnH16lUUCgVaWloo\nFAo6duxIcHAw9+/fJygoCFNTUxFNJAHKrFmzhqdPn5KRkYGVlRXe3t6cOHFCTNbr1auHXC4nOztb\nAKds2LCB8+fPk5CQwLhx44iNjaVmzZoolUqUSiWFhYVoa2sTGhrKL7/8wt27d5HJZOzcuZO8vDwO\nHz5MeHg4BgYG6OjooK6uLlKSHj9+jIWFhQAtMjMzIzk5udp+nj59GisrK5H7qaurS1paGo6OjgK4\nTQqVlShacnNzcXR0xNDQkKSkJHr06EFKSgrGxsYiN87Hx4ezZ88KcBYdHR0SExPJy8ujV69e7N+/\nn8ePHwsU0GbNmhEWFkZwcDBnzpxBXV2dCRMmoKenx6FDhzh9+jS3bt3izZs3mJmZsWLFCnbv3o2u\nri4aGhr4+Phw8+ZN0tPT2bVrF6GhoaxcuZLTp09ja2tLSkoK6urq2NjYCBoZNTU1Ad4jAa3Y2tqi\nrq5O9+7duX//PtevX8fa2pr09HSOHz/O69eviY2NJSoqiuDgYJEj+PjxY9LS0rh79y7R0dFkZmZy\n69Yt4uLiaNWqFZs3byYiIoKcnBzOnj3L48ePKSkpISQkhKioKHbv3s3ly5eRyWSC+srQ0JDs7Gy8\nvb0JCAigRYsWIjKkumdiZGQk8rRbtmxJXFwcKSkp9OvXjyFDhnDlyhVCQkKQyWQ8ePAANzc3IiIi\nWLZsGT///DMZGRkUFxfTpUsXEapaVlaGt7c3Fy5cEIsaRUVFJCUlUVRURKNGjXj48CG+vr4EBQWh\nVCoFsN5PP/1EcHAwGRkZWFpasn79eo4dO4aFhQXfffed6F9JSQnFxcVERUURFRUlAEkr5odL+yWq\nttOnT3Pu3Dlu3LjBb7/9xpkzZzh//jznz58nJyeHu3fvcvToUQICAsjOzubXX38V5aCgIEpLS+nU\nqRMREREUFxdjYWFBr169iIiIEKkgEqJ1YWEh48ePx8/PD0tLSwwMDCgqKsLU1JSUlBSmT59OTEyM\nuM6VK1dy9uxZEVUhfX9S2K5SqRQpJ8XFxQJssbCwEENDQ1QqFcnJybi6utKwYUNiYmJQKpVs3LgR\nhUJBVFQUX331FYmJiXTv3p0RI0YQFxeHk5MT169f5x//+Ac//PADLVq04Nq1axgbG9OpUycSEhKo\nU6cOV65coXnz5hw+fJjo6Gjy8vJE1OX9+/cFNeXFixfJzMykXr16BAcHixzo1NRUkaIkAZU9fvyY\n0NBQUlNTefr0KadPnyY3Nxd/f3/8/f1FWcrr9/f3Jy8vjytXrhAZGSkooV6/fk1GRgYNGjTAzs5O\nLCjs3LmT48ePo1KphJEZExODnp4eX3/9NSdPnmTs2LEEBgYKDIEFCxYQHBws8u7Dw8P5xz/+wfTp\n09m4cSOLFy+mT58+nD9/HgMDAwwNDQUnb5cuXYiJicHZ2RkdHR0uXbpEREQEGhoahISE4OrqyvPn\nzzE2NqZ58+Z/+DfqL40xjYuL48yZM/j6+uLr68uZM2eIjY2t5NHYunUrAAMGDCAyMpJ9+/Zx7949\nunbtilKpZMWKFSxdupSDBw/i4uIClOeu3bhxAwsLC6DcUN2yZYuAT9+/fz+XLl0iPz+/2glRdXVV\nPSFVt6s77nPbqVr3Ke1U9ShUnQR/qE46ThrQq/NMSMdJYYSf0vbH2pGkugll1eOqa6fqcZ/bTtW6\nT2mnqs6ntFtd3b96D//sZ/Hf0s5/63v4Z71jFc/9sWut6jWsug1w6dKl39WpWlfVY/lnnquqTsXc\nn+rqUlNTGTp0KFCegxYYGCiQKQsLC3n9+rUAmZBE8vBIdEQSEFB1Ut35/5aPS2RkJF27dqWoqIju\n3bvTp08f9PX1Rajr8+fPUSqVjBkzhpiYGLKyskhKSuLSpUvC+HN1dSUrK4uLFy9ibW2Nrq4uOjo6\nImfMysoKTU1NNDQ0qFOnDnK5XPBG6unpYWZmJrx2mZmZJCYmCqqGzMxMdu7cKfLA69evT1xcHJMn\nTyY1NVXQa0j8gLm5ucLLsmbNGgICAtDQ0EBNTY0WLVqQmpqKUqlk1apVFBYWCv5DiQpDoVCIfkoe\nUAnFWCoDWFtbo6+vj6WlJbVr1xYItJqampSVlbFmzRoR4TV+/HgWLlwIgLu7u0DilLy2YWFhImwy\nMzNTcFYWFhaybds21NTU2LlzpwAZCw4ORltbG09PT9zd3SkuLmbDhg3s378fCwsLNmzYgL29PdnZ\n2bx9+5Zly5YJQKDc3FyysrLEN6RQKLCwsODSpUsUFxcTFhbGF198ASDCOfPz8/Hx8SE7O5usrCx8\nfHwoKCjg7t27PHnyhD179nDnzh0ePXrEnDlzmDt3LtnZ2QQHB/Po0SMKCwspKCigrKyM2NhYduzY\nIfgtGzRoQGFhocj3k8JuJS/24MGDsbW1RS6Xs3PnTqysrLh69SoNGzbE09NT8FmmpaWhrq5OrVq1\nsLGxEajAK1asQKFQVHommpqaODo6YmxsjJqaGuPGjUNfX5+ysjJ69eoFlP/mWFpaMmPGDGQyGWfP\nnkVdXZ1t27YJEL927drRoUMHjIyMCAsLE3yienp6WFlZ0bt3b2rWrIlMJhPo0lKeseTVl0RdXf09\nlH1JTp06xfz584UX2cHBAUtLS8zNzXn+/DkFBQXMmzePoimpBscAACAASURBVKKiSvvnz59PZGQk\nlpaWzJo1CzMzM7Zt20ZZWRlDhw5l5MiRANSpU4eCggJq1qyJurp6pbKmpiaamprY29ujo6NTKUzf\nwsKC7OxsevbsSVpaGjKZDEtLS44cOSJQwdXV1TE3NxdlZ2dnEcGgpaWFubk5VlZWwqNXq1YtFAqF\nwJbQ0tJi/fr1NG7cGA0NDVGWyWTMmTMHyQc3duxY+vfvT3Z2NhYWFpibm/Pw4UPMzMx48eIFy5Yt\n4+HDh8yZM4ekpCQuXryIUqnk+vXrTJkyBQ8PD5HX/ttvvwkw19LSUubPn8+dO3dQKpW8e/euEoeu\nnZ2dAE+ztrbG09MTlUqFsbGx4BU2NjamoKCA3bt3C35gbW1ttm7dyjfffCPouzp06MDu3bvR1tam\nQ4cOmJiYYGdnx/HjxzE1NUVDQ4MDBw4IpG1prJk1axZv376lrKxMRDrI5XLMzc2xsbHhq6++AuDd\nu3ds2bIFBwcH5s2bR2ZmJmpqaqSkpODv709ycjLdunUTlENffPEF5ubmqKur07BhQ1HW0NAQIF3S\nO/vDDz+I91XKW3Z3dxeLmbNnzxa/9X9U1H9f5d8jZ86c4c6dO7i4uFC3bl2gfAXo9OnTIm/02bNn\nAglNck1nZGTw+vVr4uPjSUpK4smTJ2hra5OYmEhYWBgLFizAz8+PkpISwbP07t07Ecby/PlznJ2d\nSUtLY968eYwePfo9r+7nTs4rGoAGBga/O/HW09P7QxNvKQE6JCRE0GcYGBjQqlUr3NzcqFGjBvn5\n+Zw5c4YbN24wdOhQ2rdvL/i0IiMjWbx4MQEBAdy/fx9ra2sGDRqEgYEBnp6egrJCTU2NhQsXinAP\nV1dX9u7dK9AVR48eTfv27Xn9+jUHDx7EyMiIQYMGsWPHDl6+fIm2trZY/ZHL5QKmXhp4jY2NK4UP\nlZaWCkS+d+/eMWvWLIqKirhw4QIRERF4eXkRGBjI3bt3RfiElpYWEyZMEAneKpUKb29vSkpKqFOn\nDu3bt+enn37ixYsXmJqaMmXKFOrVq0dSUhInT57E2NgYNzc3/Pz8ePHihQDpkkjKJQJnCcq8rKwM\nU1NTevfujaOjI97e3rRu3Zr4+Hjc3d0/+/k0adIEf39/4VkwNTXl+vXr1K1bl5EjR6JQKP60Z6Gu\nro6lpSVdu3alY8eOos9/tD+TJk1CLpfj4ODAuHHjMDQ0pLCwkICAAO7evSvCzaRBrLi4uNp7UdHY\n2LBhAx4eHv/R91ACfjMzM6NFixbUqVOHCxcuCKA2c3Nzzp49S+PGjRk8eDCZmZls376dN2/eiEmU\nlpaW4JGMior64HOXrnXDhg1Mnz6dsrIy5s6dK4xIXV1dEhMTefv2LYaGhoIc3MLC4r08JCmsTDLc\noqOjMTMzqzb3XbrW+/fvVzK837x5Q3JyMrVq1foogl9155LyjKpKVSMxOjqa2rVri22VSkV+fj76\n+vqcOXOGy5cvI5fL6d27t6DtAHB1dSU8PBxzc3MSEhJwd3fH1dWVe/fusWfPHmQyGYMHD+bixYto\naWkRHx/PyJEjadOmTaXzS7mWf8unS7169dDU1KRhw4bUrVtXjAeTJ0/m8OHDJCcnY2pqSvfu3Tl3\n7hy5ubmYmJjg4uLC69evMTMz49GjRwJZNCcnh7179zJu3DhKSkrIzMzkyy+/JDQ0FAsLC4EDYW5u\nLiY88+fPZ8OGDSxbtozg4GB8fX2FB0VNTY3k5GTy8vIoKSlh9+7dyGQygoKCqFu3Li9fvsTY2Ji4\nuDi6dOlCXl6eoKPp2bMnMTExwoNTEbU0KCgIKysroqOjxXvr5eXF+vXrRT/LysowNzevRAlRWlqK\nXC5n2rRpbNiwAS0tLQYNGkRoaCh79uxBQ0MDuVzOnj17aN68OWpqamzZskV4GIYPH45SqaS0tBRt\nbW1atWrFw4cPycjIwMLCgri4OOGpMzU1xcXFhZCQEIqKiujSpQu//vqr8IacOnWK9PR0atWqxdy5\nc7l06RJnz55l+fLl7NixA1NTUx48eCAQnRMSEjA2NmbixImoqalhY2PDhAkTsLGx4Z///CcKhQJN\nTU0cHBx4+fIlOjo6tG7dmvv37+Pn54eOjg4ymQw/Pz9BB2RgYMCaNWsYN26c8KotXLiQBQsWoFAo\n2LRpE+PHjxfAcZLjQULClfKHk5KSMDY2xs7OjrCwMAwMDJDJZOzfv1/8Pu/Zs0cg6y5evBhDQ0Os\nrKxwcHAgIiJCoNDOnTsXPT09QkND2bVrF3K5HG1tbfFMJMNLCh8fPHiw8IJlZGRgZGREUVER8fHx\nrFmzhpKSEmQyGdra2ujp6ZGcnEz9+vUFAq+lpSVPnz4lKysLDw8PGjduzMOHDwkODmbu3Ln88ssv\nPHnyhKCgIBwcHEhISCA/P18ABRoZGTFy5EhhyCUnJzNlyhS0tLREOO2UKVOwtbWlsLBQoEK3bt2a\nc+fOkZWVxZEjR9DS0hILPWVlZdStW5fi4mK6desmIgkAHBwcsLGxoUGDBpw6dYouXbqQmpqKu7s7\nPj4+mJubi7Kenh5ZWVl07NiRCxcuAOUgUUePHiUtLQ1ra2uuXLmCmpqaoH3btGkTkydPFqGnY8aM\nYc+ePYK/WaVSYWpqKrypEydOZNeuXTRv3lwYitKiwLNnz9i5cyfdu3evVA4ODuaHH34QOA0SlZa0\niAHlvz/SWFCzZk1KSkqwsLBg4cKFrFq1CkdHR65fv46uri4//PADe/bsQVNTEysrK1q0aEFYWBiF\nhYXMmzeP2bNnC9BB6Z0uKSkhPj5epDcUFRWJ90RakGjevDlRUVGiTk1NjXbt2hEZGcnmzZv54osv\n0NfXJy0tDX19fTZv3oxcLuebb74hKCiIoqIigoODBVJzaGgoNjY2REREYGhoSL169Zg7d67wZqem\npvLs2TMxz46Li2PXrl1iDLt161al8V9PT48WLVoIjveTJ09y4sQJiouL8fX1Zd++fahUKoYNGyYo\ntyT6QWn8Hj58uAgBHzJkCA4ODiQlJQHl1DnR0dEYGhp+NiXdX5bTOnXqVNavX1+Jr2rWrFlYW1vz\n9OlTpk6dKsiip02bxu7du1m6dCmLFi1i1apVzJs3T6xGrV69mvDwcDZt2oSamhrFxcWMGjWKVq1a\n4eHhgb6+PuvWrUMmkzFjxgz09fWZOXMmhw8f5rfffhMT2Q8ZGGlpaURHR7Nu3bpPMgAlFzr8uRNv\npVKJoaEhPXv2pFu3boK8/MGDB7x69YrRo0dz4MABTE1NCQkJoVGjRsjlcgoLC2nZsiVnzpxBT0+P\n6OhoTExMxI+GlIcjcac1adKE+/fvs2rVKu7evcvp06eZM2cOGzdupEmTJty8eRM7OzsyMzP5/vvv\nUVNT49ChQwwfPpybN29ibW3N48eP6dChA9euXaN27drk5eVhYWGBm5sbMTExBAYGkpuby4QJE9i3\nbx9KpZI6derg7+/PN998Q1pamiAEt7W1FR+elPehoaEhEO5kMhmdO3fmt99+Y+bMmdy7d4/g4GBG\njRrFTz/9hKWlJc+fP6d169bExsYKT8KtW7fo2LEjL1++pLi4mLS0NBo3bszjx48xNzcnKyuLli1b\nEhsbK2gS4uLi6NixI4GBgdSvX5+QkBBat25N+/btuXjxIk2bNqVjx44YGhp+0vN59eoVvXv3RqVS\n4e/vT//+/bl16xZdunQhPDwcfX39P+1ZJCQk4OTkxNWrVzEwMOCbb775rP4EBwfTtm1bgoKCAOjX\nrx+PHj2iffv2NG3alKCgIC5evEjr1q1JSUnB0tKSQYMGERYWVulezJkzR+TBZWVlYWJi8h99D/fu\n3SvQ9yRDVcoNunnzJq6uroSGhuLs7CxI55VKJY0aNUJPT48zZ87w1VdfCWoQV1dXvvvuu2qfu3St\n0nVCeU6OiYkJcrmcAQMGcPToUUpKSsjJyaG0tBR7e3uysrJo3LixAECpaLj17duXmzdvUlxcTExM\njEAiT05OJicnh8zMTLp06YKtrS2bN29m7Nix6OjoUFRUxNatW8Xi2Lfffoubm5sYh6XcwI8ZiaNH\nj6ZVq1YChd3CwkLkhUVERLB161YyMjLE9yAhJhYXF+Pt7c3q1atZvXo1c+fOJTk5GRMTE5YsWUJW\nVhaenp5s3ryZ1NRU4dFp0qQJ6enpLFy4EKVSyeTJk9m4cSPp6emVdMaOHSt48KrLhf1b/risXLmS\nZs2aER8fz5s3bzA0NGTmzJm8fftW5GMrFAp27tzJyJEjiY2N5ejRoygUCvLy8gTP6MGDB5k9ezb7\n9u0jMjISHx8fEhMT8fX1pX///hw/fpyNGzfy7Nkz9uzZw4YNG0R56dKlBAcHCwTb69evY2BgQHh4\nuMhRq5jHlZ6eToMGDZgwYQL5+fkoFAqsrKyYP38+JSUl/Pjjj8jlct6+fcvWrVtFfpbkBZMmniqV\nii1btlBWVkZCQoKgM2nevDmvXr0iJyeH1atXizxPlUqFpqamaEupVOLi4sLkyZO5ePEivr6+aGtr\nU1xcjEqlEqkCFcFw8vLyeP36taCwkHiit23bRmlpqeCUtbOzE97lAwcOsHbtWlJSUkhOThYL8TNn\nzsTLy0vk/r148QKA+vXr8/TpU169eiXyhRs0aMDVq1cJCQnB1taWgQMHkpqaysGDB3ny5AlaWlrk\n5ORQWFj4Hi+1xD2qp6cn+K4HDhxIcnIyDRs25NmzZ7x8+VL8Dklzm4KCAvT09Lh06RJt27YV5Tp1\n6vDmzRuOHj3K1atX2bt3L4cOHcLHx0dQF/bp04d69erRpEkT8a6GhISgUCgEZ22jRo1ITEzk0aNH\nwrt/48YN9PX1ad68OeHh4eTk5ODk5ER2djZv3rxBU1MTlUrFgwcPRF5pUVERAwcOpEePHuTm5rJy\n5Upmz54tOHe1tLR4+/YtNjY2ZGdni+uUDKTCwkLatGlDw4YNuX37NlC+6JGcnExmZiZv3rxBQ0MD\nOzs70tLSSE5ORkNDQyyqJiUlCW7NyMhIlEol7dq1E7/Bbdq04enTpyQmJgpU94yMDDG/btOmDa9e\nvSIpKYm9e/eSm5vLwoUL2bBhg/CSKRQKUZbQYivWKRQKHj9+jL6+PnZ2dqIsgfc8e/aMunXrinK9\nevWIjIykf//+hIeHExkZSfPmzdHW1ub169dYW1uLspQ28NVXX5GcnExkZCQdOnQgJiaGgwcPkp+f\nT/369Xn16hVz5szB39+/UvnZs2dMmDCBc+fO8erVK6ZPn466ujorVqxgwIABtGvXDk9PT/r378+p\nU6dYs2YNs2bNolOnTjRs2JAdO3awZs0aJk+eLEBTpXx3CUn4woULpKWlMXjwYNatWycopaRn/e7d\nO+zs7Ni/fz/16tXjxYsXHD16VHCo29jY8O2337J3715q1qwpyhMnTmTbtm0sWbIEf39/zp8/j0Kh\nwM3NjaCgIMEykpiYKMKqCwoKBJirpqYmsbGxxMbGoqGhQUFBASUlJWhoaIhxSKVSoVAoMDEx4Ysv\nvsDNza0SgGxF1PDq5NWrV9SuXRtNTc1KZelZOTk5sXLlSpRKpViQe/PmDcXFxXh5efHgwQPatGlD\ndHQ027dvp7CwkIEDB1YbRfp78pcZrdOmTWPevHliMIXyVX1/f3+xOrht2zby8vJYs2YNK1asYPXq\n1WzYsIHmzZvz66+/Ymdnx4sXL9i0aRPx8fFs2bKFZcuWMWXKFOrWrUtERAQqlQoTExMxuHh5eYkV\nMmllZdOmTQDvTaqlCX3t2rU5cuQILVq0+EsNwNOnT7N8+XLhKQwICBAw/xKCoZSj++LFCw4dOsSp\nU6c4ffo027dvZ/ny5WRnZ9OtWzceP37M0KFDRdi0hJgH4OXlJTyXcrmcIUOGcPDgQTEJnDFjBqNH\nj8bb2xs1NTVq1arF27dv2bdvH15eXqxbt46ZM2eydu1aBg8ezKFDhygtLWX69Ols2rSJgQMHYmZm\nRlpaGsbGxqSnp2NiYkJZWRlpaWl06tSJoKAg9uzZw9y5c8nMzKRt27bk5+czePBgVqxYgbe393t9\nViqVbN68WYS7HDx4UPRj+vTpuLm58dNPP6Gurk7Lli0JDQ1l7969eHp64u3t/V6fi4uLmTlzJnK5\nHG9vbwCmTJmCo6Oj6N+cOXPo1auXCIdydXXFxcUFJycnBg4c+LvPZ+zYsVhYWDBz5kzGjh3LkSNH\nxH328vIC+NOexYABAwQx/KtXrz67P2pqasIYmDx5Mk5OTly5coVGjRrh4uJCly5dPvjcGzduLO5F\namqqMCKjo6M5dOjQf/Q9lJ771KlT2bBhA2PGjKFx48ZMmTKFYcOGceTIEaZNm8amTZvw8vISP+bS\nu+Dp6Sl+1KX3Z+PGjdU+d+laCwsLxfV9//33HDlyBCgPt5WI0k1MTPD09KRBgwZMmjSJK1euEBYW\nxowZM5g5cyZz586tZLitW7eOH3/8ET8/P4Gw6eTkhKamJo8fP6Z169bcuHFDhBPGxMRQWFjIkCFD\nuHnzJnfv3qVFixbUrl2ba9euoVKpqFOnTrVG4vnz5+nduzfr169nxIgRrFy5UvDoOTo6YmZmRmBg\nIE2bNiU0NJTx48fj4+PD+PHj+fLLL5k4caKg39iyZQteXl7Cm7Fu3TqgPGTy6NGjzJkzhwkTJrB5\n82b69euHj48Pixcvpn79+uJ5Sjpbt26lT58+HD58mEmTJlG/fn3x7P+Wz5OoqChu375dCbnX1taW\nNm3a8M033xAZGcnt27cZPXo0165d4/z582RlZQldKWdUQgyVUH5/++03fv75ZwG6VBURWE9P75PQ\ngSWpiIZdFRk7OztbhDYDvH37FoVCIVC3pXqJgq9r166VQjErtiFFR8lkskrtfqhc9fiP6aakpAjw\nmYSEBJE/26hRI8zMzHjw4AFRUVHUqFEDExMT7O3tMTExwcHBATU1NZ48eSIM1YrtSvVSXXFxMYGB\ngejq6tKyZUuOHz9OVFSUyJWUuFPv3LmDrq4urVq1IiAggMjISGGIOjg4iPssSXX3/t8lGRkZbN++\nnS5dulBUVARAhw4dgHIj3dLSkvj4eNq3b4+bm5vA/7h9+7bwvC9dupQFCxaIcHBpPyDKnTp1EnNR\nSbdmzZqYmJjg6OiIkZERT5484ebNm6SlpWFgYMCIESMEtZOfn1+ldiXkY6mtT+lDdf0dP348Z8+e\n5dmzZ/Tu3ZsXL17w7NkzoHzsrF27NqdPn0ZXV5fatWuL/V999RXNmjXDxsaG+/fv8+LFCxHpUKtW\nLVxcXMRCxIcQdqW6D5X/23QHDhwonFKSZ/lDoqWlJRaO/myRPI8fKlesS09P5+3bt7Ro0YKMjAyi\noqKoU6cOUVFRlepatGjx2f25efOm+GakxWhXV1exmCilVkrgVUqlku+//54mTZqQmppaiYKpokRE\nRBATEwOAjY2NWFAqLi7m7t27JCcnC8+3TCajX79+f7jvf1l48IgRI1i6dClWVlbC85CamkpiYiJj\nx47l1KlTJCUloVQqmT17tggNHjduHHv37hXIXvHx8UyaNAkTExN+/PFH1NXV6datGxcuXEChUNCv\nXz8uXLjA2LFjgfIJt5ubG2fOnGHy5Mk8fPhQ9GnlypU0btyY6OhoDhw4wOvXr0W/ZDIZ9vb2nD59\nmqlTp3L9+nWys7MZOnRotQbgtm3bgPKJt56eHsbGxvTo0YOjR49St25ddHV1GT9+PK9evWLYsGF4\ne3tz4MABatWqRWFhIc7Ozpw8eZKZM2cyc+ZMevTogb+/P/fu3WPQoEGCD8rd3Z1nz56hpqbGggUL\n8PDwYMGCBUycOBGAvn37cvnyZRYtWkRhYSGurq707NmTdu3asX//ftLS0igoKKC0tJRffvlFQGx3\n69aNVatW4ebmhpaWFvv27aOgoIDjx49jZ2dHo0aNsLS0pF+/fkRGRvLq1Svu3buHQqHg119/RU1N\njfv376OhoUFQUBBt2rQRA6KFhQXdunXj5s2brFy5UhgGUJ7v8+OPP3L//n2WLl1KUVERzZs3Z9So\nUbx58wYfHx/hiSotLRX8fSqVCmdnZ7Zt20a/fv3Q0dHh3LlzlJSUcO3aNczNzenQoQPnzp1j9OjR\n3L17V6xoy+VywsPDKS0t5c2bN8jlctFnQCSwBwcHo6ury48//siDBw9YunQpSqWSDh060KFDBxYv\nXkxeXh4nTpzAycnpk56PgYEBnTt3ZtGiRSI/Kisri19++UUgCP5Zz0JLS4uxY8diZWXF1KlTWbRo\n0Wf1pyL8ukKhYPTo0WIQffHihQhvDQgIwNXVVTx3Kysr6tSpI+4FQFpaGvv37ycuLu4//h6qVCoC\nAwOpUaMGcrkcExMTbG1tWbZsmfihc3Z2Zvv27ahUKtq1a8elS5d4+vQpSUlJIjzOzMyM8+fPi8G4\nuucuXevUqVPx8/Nj4MCByGQyQQ0geTGsra0pLS1FQ0ODmJgYfH19gfIfA19fX9LS0jh16pS4/9bW\n1pSUlFCvXj1xXcuWLePw4cM4OTkRFRXFhAkTuH37Nu7u7hgbG7NkyRJUKhUtW7akefPmzJgxg/bt\n27Nnzx5KS0tp0aIFbdq0wcfHR4S+qaurY21tzcuXLzEzM6OsrIxjx45RWlpKv379yM/P5+LFi7Rp\n04aQkBCcnJx4/Pgxzs7OHDlyhBMnTqBQKNDV1WXSpEnMnz+fhQsXkpKSQrNmzYiMjGTNmjUkJiai\nq6vLzz//TG5uLsHBwRgZGeHs7MzRo0fZunUrQ4YMEYudKpWKmjVriu+/Zs2aeHt7M3jw4PeMj7/l\n9yU+Pp47d+5w48YNSkpKBO3J0KFDOXv2LMOGDeP27dtMnDhRoPq6u7sL72RxcbFA+a1Zsybt2rXj\n7NmzfPvtt/zzn/9k//79QjcnJ0foSvlX0vfwxRdfcPbsWRYtWvS7fZaMpBcvXggKl1GjRrF161bS\n09NFaodkdHl7ews+UQcHB9zd3fH19SUnJ4fDhw9jamqKrq4uhYWFJCQkAAhuWg0NDQGypK6uLsoK\nhUJ4DqV2u3Tpwk8//SRAeD6ka2hoSFlZmZh0q1QqwYN76dIlFAoFJSUlfP3112hqavL27VsGDRpE\ndnY2L1++5MiRI6LNbdu2iWuzs7NjzJgxzJgxg+zsbBF+KXmdN2/eLPJ9DQ0NhadOyq2Vy+X8/PPP\naGhoMHz4cAAOHDjA4sWL0dPTExRI8L90SNXVfaj8uftjYmJITU2lTZs2TJ48udLCVElJCbGxsZSV\nlREUFISbmxspKSm0b99eoEJLIhlseXl5lfZL5WvXrgncAUk3MjKSSZMm4e/vD5QbopJnrKCgQCwE\n+/n5vXdeifpJautT+lBdf/fv38/333/P8+fPCQ4OFmWlUsm1a9fE8bdv3yY+Pl7sb9y4MYcOHWLI\nkCEij7hXr16UlpZy5coVge6tUqkoLi5GTU2tEs2JFOEmzbcqliVU3oq6kpdXitwBPtjuH9GVy+XC\neyiVP9ZfuVyOmpoaAwYMeM9IkihgAIKCgmjbtq2oO3z4MHXq1KFt27bs2rULS0tL8vLyGDRoED4+\nPigUCpFLHBUVRWpqKlOmTOHw4cPCsJN0TU1NqVGjxnu6R44c+aBuUVGR0G3RogW//vort2/f/qR2\nP9SHQYMGERQUxIEDB4TR6ufnJxaMjx8/TmZmJp6enhQWFrJ69WoWL17Mpk2bCAgIoEmTJnh6euLn\n5weAt7c3np6e4n42adKkUuSDJGvXrkVHRwd7e3tBxfW58pcBMTVr1kysoDs5OeHk5ET//v3ZvHkz\nHTp0YPr06UybNo1evXqxbds2Ec6mo6PDjz/+yKpVqxg7diwzZsxg+fLlLFmyBDs7OwB69OjB0qVL\nWbFihZj0fvfdd/Tq1YulS5fSqVMnzMzMuHbtGh4eHqJP0qS6QYMGLFq0CBMTExYsWMCiRYvQ19en\nb9++6OrqsmjRInJycoQBOG7cOE6cOPGeAXj27FkKCgro2rUrq1atIiIi4qMT7wkTJlC/fn1UKlW1\nE297e3tycnJYunQpCQkJJCcns2XLFnJzc8V1tGzZkoiICJFUD9CxY0fc3d1RV1cX+ZcmJiYMGjQI\na2trli9fLsIKJMO2ffv2Ah2spKSEiIgICgsLMTY2Zvz48QCMGTOG8+fPExUVxerVq3ny5AnR0dEc\nPHiQ+Ph4AgICmDFjBsHBwYwZM4a8vDymTp1KZmYm9+/fZ9q0aUB5zu6jR48ABPBBy5YtcXFxISUl\nRcBi29vbM2bMGDQ0NFi8eDHq6uo8ePCA0NBQ6tWrx7fffoujoyPr168nJyeHY8eOCdL2KVOmADBk\nyBC2bt3KgwcPWLRoEadPnyYzM1N4odevX8+kSZMIDg5m9OjRgrNr1KhR3L17V/TZysqKjh07VorL\n9/T0xMrKipycHEaOHPlJz6dVq1Y4OzszbNgwDAwMAOjcuTMpKSnUqFHjT30W7u7uYnIkcZp9Tn8k\ngyEzM1N8cxL6XEhICAEBAcydO5ecnBwWLlxIWloaI0eOpLCwkPz8/ErfnImJCdOnT+ebb7754Hvo\n5ub2b3kPU1JSuHDhgnimDg4O9OzZk44dOwpY9u+//55atWqRnp7OuXPnyMnJEYiRqampDBkyhGnT\nppGWlkZubu4Hn7t0rVOmTKFJkyYsX74chULB8uXLOXbsmDjHkiVLRA6Wra0t169fFyAY9vb2KBQK\n6tSpg729vQgt7NSpE3PmzCE9PZ3bt2+TmJhI06ZNCQgIEF51XV3dSudKTEzE39+fFStW0KlTJ9q1\na4epqSk7duzAyckJZ2dnzM3N2bp1K/fu3XsvIkbKT61Xrx42Njb06tULXV1dOnbsiIGBAc2aNRO5\nuNra2kydOhV/f38SEhKwsbFh3bp1pKamUlxczOTJkxk/fjzZ2dmYmZnh7e1N/fr1ycnJITk5WXz/\nkyZNYu7cufj7+4vcXblczps3b8TEw8bGhoULF4pzbFQ7gwAAIABJREFU/S1/TDw8PIiIiCAlJQVz\nc3OWLVsmEFYzMjLYuXMnMTExpKenExsbK0JD69aty9q1awWWhIGBAePHjxfHeXt7C5qP6nTfvn0r\nysuWLePbb7/9w1zkvr6+9OnTh7i4OBYtWiSMaD09PeLi4nj+/DmzZ89GqVRSVlaGm5sbr1+/ZunS\npaSnpzNx4kSMjY0pKioiNTWVuLg4evfuTVFREW5ubmKfnp4ekydPrlSWwmMtLCwYPXq0uFfu7u6/\nq5uZmUlhYSGzZs2ipKQET09PkXtnbm6OpqYm06dP5/Lly8TGxvLu3TuGDh3KuHHjWLRoEbGxsTx9\n+lQs7hsaGqKvr8+bN2/E9TZo0KASBcjTp0+RyWTUrl2bMWPGIJfLeffuHe7u7piYmIicfSMjI1av\nXs2lS5dEjrAkEhVKxXJ1dZ+r+yltpaamVkJjl56tRMEi1Un/pb+PbUvlir/tFfc5ODiQkpJCSkoK\ntra2Yp+0aCjtr67d6s7zsT5Ut13xvBXLgOhX+/bt3+uj1K9jx47xww8/UKNGDbp16waUL1aPGjUK\nU1NTGjZsyNdff42Ojg59+vShT58+6Ojo0LVrV0xNTTE1NWXhwoWi3LVrV7S1td/TNTMzE7pS+UPt\n/hFdc3NzoSuVP6TbqFEjvvvuO1auXMnz58/55ZdfqCiBgYGifPLkSXJzc7l16xa5ubmEhoZy/Phx\nEhISePDgAbdu3SI0NJTc3Fzu3r0r6GbOnDlDWFgY9+7dAxDlsLAwAFH+b9CFcjyhil7n0tJSgWtR\nUFAggLYaN24s5h1aWloUFhYCiMU3KAdQ/BRJT0/Hw8OD3r1707NnT/H3OfKXeVqhfDWkfv36H9zf\nokWLal3gCoVCrFpJk+aqIpEcQ3nyb48ePSrtnzZtGmfOnGHx4sViNU2hUFSaVEsT+n/84x9iUt+x\nY0fq1KnDwYMH3zMAt27dWmniDYiJt62trfD8VZx4f/fdd0D5xPvQoUPIZDLxIxEdHU1UVBRyuZyA\ngADGjx8vEuqTkpLo3bs3cXFxpKen8/TpU1q3bs2QIUOIi4vj3r17Iudz4MCBxMXF0alTJ1EnHder\nVy+aNWsmoOLv3bvHt99+i5aWFoaGhnz77bd07NiR1q1bA+WIz9LKuZ2dHcOHDycjI4O4uDhGjhwp\ncppCQkJEO1paWvTs2ZPk5GSMjY158eIFampqZGdnY25uTt++fbly5QpxcXF0796d2NhYatWqhUql\nYtmyZUA5cuGVK1cwMzNjy5YtREZGijwbCTQkNjaWt2/f4urqSvfu3YmJieHRo0fIZDLi4+OpW7cu\nRkZGgr+uYcOG1KhRg4cPH4r8F6mdevXq4erqKgjk9+3bJwxfADMzMzp37kznzp1FnZ+fH5MmTWLI\nkCEAPHv2TMT/6+rqEhkZKVbVpfsphdba2Njg4+NDZGQk2tra1K9fX7xzkZGRREVF8T//8z/MnDlT\ntCuhbEI52qqTkxM2NjbUrFkTZ2dnEdru5OQEwOXLlwkODhZegGPHjvH8+XOKi4sZOHAgSqWS9PR0\n1q9fj62tLUuXLuX48eOEh4djb2/PihUrkMvl+Pr6smLFCmxtbRkyZAjHjh0jIiKC+vXrs2DBAhFO\nXVJSQuvWrenbty86OjqcP3+e1q1bCxAfaVtaAVQqlfj7+9OpUycRfiLpzJw5U9zn8+fP06xZM3Ht\nT58+5ccffxTHjBw5EgsLC9E2lA+0aWlpdO7cmTp16vDo0SOePXtGUVERcXFx4n1Yu3YtNWvW5MCB\nA9y+fZtnz55RWFiIh4cHzZs35/r169y4cQNzc3PGjBlDcHAwN2/eRE9Pj549ewrwCV1dXWQyGf7+\n/qipqWFlZUX9+vVJTEwkLS0NW1tb2rdvzxdffEFoaCgFBQW0adOG+Ph4tLS0aNCggfASWFpa4uXl\nRf369alVq5bIJ5FW+/v06YO9vT2//fabyFkzNjZm/vz56Ojo4Ofnh6amJsuXL+f27dsUFBRgZ2eH\nhoYGo0aNEuTxcrkcpVIpQLomTZqErq4u69evF0ZiXFwc06dPFwsQa9euxcjISBiyAIMGDSIzM1NE\nmwwaNAg1NTWWLFkiwDvMzc0FHYRcLhcLl5I4OztTVlaGlZWVyL2VAPsWL17MxYsXxbWrq6uLVWNp\nPK54rr/l02XGjBkifDQtLY358+eTnZ3N3bt3hXHZsGFDMckNDAwkOTlZ6FZE+Z02bRq1a9f+JN0m\nTZoIoKadO3dWClWsTirmKr969QooDxPeunWrAE2SwEckA9zHx4dBgwYB5XOCCxcuYGZmhlwuF3nU\nEt+o5KXp27cvJ0+eZNCgQTx69IjMzEwMDAxo27YtW7duFeXjx48LBNzOnTsLyovu3bsDfFR33759\nGBkZ4eTkhIaGBq1bt0ZNTU2gc2pra3P8+HEMDQ1xcXHh3r17DB8+HGNjYzZt2oSOjg6mpqZi0Twt\nLY2lS5eKiDQAFxcX7t+/j7q6uvidyszMrNTflJQUunfvzs2bNwVqcnJyMgcPHiQpKYkxY8aQm5sr\n7qFKpXqvrFKpxMJgdfur6v6RtsaMGSOes46ODgsWLKC0tFTMaaA8iis5ORk7OzsiIyOBciNy69at\n2Nvbk5ycLN4rXV1dysrKsLS0FPtlMpkoVwy5lnQVCoXIAwa4evUq9vb25OXlVZrAS0ZixXavXLlC\nly5dRFuf0ofq+puXlyfO++bNG1GWyWSEh4eLSKiqfZTqoqOjmTFjhgiDvXnzJvPnz0dfX5/9+/ez\naNEili9fzrJlywRXqFSWcr0dHR1FWULj/W/UnT9/PsuXL6dHjx5MnjxZlCWpOMZER0cze/Zs0tPT\nmTVrlqCl8fDwoLS0VAAFzp49m+LiYrKysqoF+pParNj2h8ayv0K36jEVt6V0LUkknAppnK4qnxrN\nJAGVVQRm/Fz5S43Wv1J0dXUZMmSIMDAqyrVr1+jUqVOlfdIK48CBAyttS2JpaUnnzp1xcXEhMTFR\n5Id16tQJKP/AHB0dK9VVPJednR3z5s0TdZIBWFHn/PnzXLx4kZo1a/L8+XMSEhIEmfSjR4/w8PAg\nNTWVCxcukJWVxZUrVxgxYsR7dU2bNv3d4z5VJzIyEmtra6GTkpLCpUuXyMzM5MqVK9SrV0/wiUnJ\n6GVlZSL53tXVlTt37gi0yXv37okV9o/pSHlxFXUCAwOFB+hDOp/SztWrV9HT0xPoo3l5eeTk5Aie\nMwcHBx49eiRWriROtocPH4r3olWrVuzbt4/evXtz4sQJLl++TFJSkjDUo6Ki0NXVxc/P76M6enp6\n77WTnJxMVlbWR9upqqOnp4efnx+9evXixIkTqFQqGjRoQHp6Ok2aNGH79u3o6ekREhLCjBkzePr0\nKfPmzeOLL774LJ3qUL2PHTtGQEAAFhYWuLi4vLfdtm1bLl26xM2bN6vVad++Pc7Ozp/UTtXjwsPD\nRW6GBEaUmZlJRkaGmJw8efIEY2NjQkJCePjwIba2tmRlZVXSefr0qaA0mDZtGra2tmhpaXHv3j0M\nDAwEcEdGRgYFBQUYGBjQuHFj7t27x4EDB2jXrh1xcXEij33FihWMHj2ar7/+utpxasaMGQIEQ3rX\nJJGMQuA9o6+iTJ8+XZQ/dB6A3r17k5mZKcCxqjMSJYA5SYyMjFBXVyc7O1tQlUlhfJJU3O7bty9A\nJZC727dv06xZM6Fz4MABkZO+Zs0awYF56NAhOnXqhLW1NU5OTkyaNEl4pCZNmiTyiAF0dHTEuf6W\nT5fWrVvTunVrCgsLuX//Pjdu3CA8PFyEjRobG5OXl0dmZiahoaF07tyZFy9e4O7uzo0bN3jy5IlA\n+ZWiB3Jzczly5Aiurq4f1C0rKxNhqcnJyRw5coTs7Gz27NlD69at33u3IyMjmTx5MlpaWqxevZq+\nffty4cIFevbsyYkTJygqKmLw4MFs2rSJ/Px84Y2TqDdkMpmg7wDEwo302yPtl8rSf+mv4jbwQV1J\nPqZbWlpKcXExwcHBlJaWcuPGDYqLi4WnTwrDlMlkInexojGspaVFSUkJxsbGlJWVkZmZSf369QXK\nrra2tjCyS0pK8PX1pbCwEJVKRUZGBr6+vmJRChBIn1KKhuQhl1DYZTIZX375JXfu3KG0tLRSWaFQ\niNxyiVrmY7q/t79iW3369KGsrIwTJ07g7u4uFgQXLVrE119/TVpaGnFxcSgUChFyPm7cONF3CYhJ\nJpMxYsQIAdaUkJCAUqkUNDeSrkqlIjMzk0WLFglAm8LCQhYtWiRCto8ePcqXX37JixcvqFGjhogA\nk6hDYmJiqF27Nra2tvj7+3Pw4EFx3k/pQ3X9zc3N5eeff6Z9+/YUFBQIrJNbt27x+PFjCgoK8PDw\nQE1Njby8PLFfMl4TExMrGbISX630Turr61dC2JW+D6lcVf6bdaVrASqVJan4jaqrq7N48WLWrVsn\ngJpiYmLw8fFhwYIF4h6tWbOGIUOGvJe7XrXNqt9/dfJX6Erh1J6ensJgnThxItra2mRmZpKamgrA\ngwcPBDe9hBA8bNgwlEplJVrSAQMGoK2tLcao/fv3v9efyMhIrl+/jrm5eaXxTMIH+SPyf9Zo/Zgc\nP368kmFZXd3HdKTVhH+1narbV69eZc2aNSI38datWwwYMIDevXvj4eHByZMnBZrmwoUL8fT0ZMOG\nDe/VeXh4/O5xf6bO999/T9euXRk2bBienp4sWLCA3bt3M3fuXC5evIiJiQne3t7k5eUxevRo9u3b\n99k6Pj4+/3I7Ep9Vhw4d2Lt3L9ra2uTn5+Pm5oZMJsPW1pawsDBq164tqFLKysoICwsTIQ8HDhzA\nwsKC/v3707NnT3744Qd27NjB8uXLmTdvHvPmzUNTU/M/qiPldPXu3ZsffviBVatWERYWxsCBA/Hy\n8iIlJQUDAwOxwBIQEMCIESM+S6dWrVqVUL09PDwoKyvD3d2dGjVq8ODBA4qKiqhXrx61a9fm5cuX\nHD9+/KM6L1684NixY5/VTkhICE2bNqVt27YcPnyY3bt3M3PmTLZu3YqnpyePHz/GwMCAlStXolKp\nGDJkCD4+Pp+k4+Xlxfbt25k1axYLFixg9OjR7N+/n/T0dFavXk1sbCw5OTmsX78eb29vli1bxqpV\nq5g5cyZ5eXmCOxD+94dFGtSrIppXJ59CWxQUFERxcTGNGjVi2LBhBAQE8ODBA6ysrATqeVUj8dGj\nRzRr1owaNWrwP//zP+zYsYPXr19jY2PD8OHDhXGbk5ODvr7+e5QzK1euZO7cudWisG/fvl2E0t+5\ncwcfHx8RgpyRkUFERASpqal4eXkhl8vx8PDgl19+ITg4mJKSEnR1dZk2bRp169YlPj4eHx8fVq9e\nXe35/5Y/LlpaWrRv35727duL3OIbN25Qs2ZNQkJCKhmXOTk5PHv2jB49ejB16tRKKL+BgYFMnDhR\nACwqlcpqddu1a0dgYCA7d+4kODiYwMBAduzYQXBwMAEBAe8ZrRI1T+PGjUWkTUZGBsePHxd0EGvX\nrhXlqKgoMeGSKPAkUVNTY/jw4RQWFr7nhZAmZxUnaVFRUWK7YrnqMR87rur+5ORkkWMqLUZJE2wN\nDQ3y8/OpUaMG9vb2wrsE5Xl/7969AxCALmVlZZXO8+7dO4YPHy5yWq9evSooXbKzsytFJFTtn0wm\n4+3btwLN3MXFhbCwMFxcXIiPj0ehUFQqp6en061bNx49eiTykz+m+3v7K7YlhbLeu3ePr7/+mjZt\n2ggAu3379ol7JZOVc3xaWFiIFAErK6tK+ZLVlavqFhcXc/XqVXR0dGjatCmAQMy1tLSkqKiIxMRE\ngoODadGihUDXLSgooHPnztSvX58mTZoIcBopeuyP9KE63ZycHLGYVLduXaKiopg2bRqampq0bdtW\nYC4YGRm9t/+LL74gJiaGkydP0qlTJ3755Rfy8vIEjoSUEyqdqyK7R8Xy723/N+l+7Pi3b98KipaS\nkhI8PDwoKioS34FMJhOeVolCSRpH0tLSRJ0kHxsnqspfoVtxn7Q4JS2oWVtb4+joyK1bt5g8eTIF\nBQV06dKFbdu2CW5fyYj9o/Jn/g7/nzVaKyYPSyINGNIqRMWcqKp1f4VOYmIi8+fPp6ysjNzcXCws\nLIiIiCAzM1OsEo0ZM0ZM7M3NzautMzc3/93j/iwdKysrwsLCBNm3jo4OcrkcLS0t5HK5CEVQU1ND\nT0/vv0Jn9erVnD9/nrNnzyKXy9m4cSOjR48mNDSUoUOHYmdnh7GxMc2bNyc0NBRHR0fs7OxEjpA0\ncVBTUyM3N1cYINIqqhRG+Z/WsbOzE157hUIhDJDTp0+jrq6OjY0NqampXLt2jQYNGvxLOlIIuJmZ\nGZaWlixbtoxp06YRFhZGeHg4P/30E1FRUXzzzTfcvn2b8PBwdu3a9W/TefnyJV26dOHWrVtkZ2eL\nEMKCggJUKhVFRUUCeCYnJ0dwH36KDpSHZ5eUlFBcXExpaangVSwpKRG5IEZGRkKnsLCQjRs34ujo\niLm5OZs2bWLFihU4ODgIz//8+fPJzMzk+vXrbNy4kfnz5/PmzRsxTvj6+jJq1CiBcl5UVMSdO3fY\nv3//e7RFBgYG6Onp8erVK5YsWSJQzyMjI5k9ezYGBgakpaUxa9YsZDIZa9euxcfHB2NjY2xsbJDJ\nZJibm9OgQQOMjIzYvXs33333HWvXrhV5jQMGDMDe3p64uDigPGzzzZs3on92dnYEBQXh7e1NYmIi\nnp6eAgl65cqVvHjxglmzZuHn58eaNWv4/vvvRf7akiVLRDhkUlISs2bNom7duuJ+5OXlVbo3UD4h\n+Vv+ddHV1aVLly506dIFKOfjlQzZqsblwoULK+lWPKbicR/TrVonlStKxUmQVD527JiokyKiNDU1\nUSqVYlEIEBQlFeulMfTfgRz6Z8jAgQNRqVT4+vpSUlJSafJZNexPTU1NXFdBQUGl3yOpXsr3/b3r\nTUhIICsri4YNG4pyixYtePz4sUhXksqvXr0SnuoOHTqgpqZGnTp1Pqr7e/srtgXlKTcSlkF8fDwL\nFy7E0tJSXCtQKcf1X5W+fftWQkQdMWLEe0Azv7f/Q+A0/4oMGDBAnNfJyamSUdu2bdtKxnLV/S4u\nLoIWrKCggPT0dIFoX/Hd+tDiy+9t/zfpSv8lw1RauJGk4pjxf1mKi4u5desWsbGxfPnllxQUFKCt\nrS0o/saMGSMiRD5HKmJi/Kvyf9ZozcrKYt68eZW8F7Nnz2bixInCayJt6+jo4O3tXanur9DZvHkz\nffv2pVatWixYsABDQ0Pc3d359ddfiY6ORktLS5BVR0dHA1Rb9ynH/Vk6mpqaeHh44OvrKwYMdXV1\nkfu3atUq5s+fLwwCKUzrr9RRU1OjR48eNGvWjPnz57Nv3z4UCgUTJkxg//79GBgYUFr6/9q78/Co\nyvv//69hsmAIWWbC0oCCRNCKrAY/Af3KFpeKC8WiVUEptS5RNikgKLuRGJYgIYgFDCioSK1cLVbs\nZ0yBfkixoSQoi2KEImACJBNCSAJZZn5/8MtpNkwgCXOSPB/X5eWcM/ec856bAzPvOfd9v126//77\n1b9//wr7Xn75ZSNxLC0t1csvv2ysdJyTk6OCggJNmzbNKPOTkJCgtLQ0de3a9ZJtanOc6trs2bPH\nWPa9bBGgTz75RB9//LGKior06quvKjg4WAcPHjSGfR0+fFjp6ekqLS1V+/btL9kmNjbWmBtbXZvq\nVvX28/PTxIkTjTIF0sVh1OHh4bpw4UKDthkyZIjee+89uVwujRo1SkuWLJGvr69++9vfytfXV7/+\n9a+1detWjR07VsXFxerVq1et25SNfOjYsaNeffVV3XbbbZo+fbo6deqk06dP67e//a0KCwuNO6uv\nvvqqHnrooSormJ86dcqYIjBhwgRJFxcw6Nmzp/72t7/p8OHDmj59uq6//npJqrLKeXFxsaZNm6Zn\nnnlGX375paZOnaqNGzdq+PDhSk5O1pw5czRlyhSdO3euxlXPV65cKavVqmnTpunLL7/Upk2btG7d\nOk2ePFmLFy/WlClTtH79ep05c0Y333yzLly4oHfffVdhYWHav3+/Uef6Uquwp6WlGWsJSBcTjy1b\ntigmJsb4oUCSUYOzqKhI999/v7GStK+vrxITE7V161aFhISoqKhI7733XoV/4ytP4UD9qZzIXiq5\nrOl19al8qZdVq1ZdcvheY+SpL9dlK9WWf7xu3TrdcccdxgqiZY/LyrMMGDBAn3/+eYVSLpdqW9Pz\n5Y81YMAA+fj4aO3atXr55ZcrPJbqN1ktr6aksyGS0tqor7hGjhxZn2E1WrVdSbjM+++/b8zDbuy8\nvb01ZMgQT4dRK802aS2ruVp+Iafw8HBjKEibNm2M7ZtuuqnKPk+0mTRpkqxWq4KCgnTzzTdr1KhR\nslqtevHFF40vAePGjZPValVmZqbxvirve/HFF2t8XX21mTt3rry9vSu0mTt3rgoLC/XCCy8YC7R4\ne3vr7NmzevHFFz3epkxAQIDmzZtnrFBYttLtnj17jA/Iyvuq+0fswoULys3NVXBwsBISEozttm3b\nKiEhQU899ZRGjhx5yTa1OU51bUaPHq3t27frzTffNNq88MILRjHzoKAg2Ww2BQUFqaCgQKdOnTKK\n2ZcVji7brtwmOTlZw4cP129+85tq25w8eVI33nijMYRUkrFKb9mv/WXb1e2r7zb333+/BgwYIOni\nIkVDhw7V119/LR8fH+PO+cCBA/XPf/5TNptNffv2VX5+fq3blCVXZQthHTt2TCdOnNCIESOMH0d6\n9OihEydOGG127txZYQXzNm3a6MMPPzRKdEgX67e2bdtWhYWFeu+99+Tj42PcMbFYLLUuW1R2F8bl\ncl2y7FV5ZaWgykpKFRcXG8PHSktLjTmIHTt2NMooTZ48WbNnz9bkyZP1+9//XvPmzasQX4sWLfT8\n889rxIgR+uabbzR9+vQK57z//vvVsWNHo6a0t7e3kaT26tVLmZmZ6tOnj3G3ad++ffL19dWQIUP0\n0EMPVRn6VXZHBk1PWXmbslqiZaVlykq/lF2vL774YoX50rg8ZavPln9cuZTLlZSTKXM5pV6k/67M\nW/kxUFfJyclG0rp582b179/f2Ld3717t3bu3QtK6d+/eJpO0NibNNmmt7gtN2b6bbrqpSpuyOx+e\nbFNWz7Z8mzKV25RPFirvK3+cS72uvtqUr8lU1sbb21ve3t7GxPayNgEBARX2eapNmbI2ZXNXy1S3\nqvWlVrqWLiZO5RPLytsN0ab8MJjKbYKCgqrE6ufnV2Ul7srb5du0aNFC3t7el2xT3areledDVDc/\noqHaSFVXFI+IiKjwfKtWrSrcAbrSNtLF0ivXXnvtT+6rvIK52+02hri63W795je/kdVqVffu3TVq\n1Cj5+/tr165duu666xQaGmr8+3CpskVBQUFGndfw8HAdPXpUoaGhl1z1vLS0tEKN3CFDhhjJbKtW\nrZSXl6e7775b8+bNU2BgoG688Ualp6fru+++0z/+8Q/jz3zkyJFG/OXjK78K+4wZM+RwOLRp06YK\nK5pbrVb99re/VZ8+fZSZmam8vDx99NFHKiwsNOay9urVSw8//HCF/ti3b1+V5KR82S80Le+8844e\ne+wxFRQU6M0339To0aNls9m0cuVKeXl5acWKFTpx4oTefPNNktY6qFyqpbr/V35c03bl5+r7WMCV\n+KmVdqtbpfenVjc3u7Iaro2Rx+q0Ao1NfHy8brrpJrVs2VJdu3ZVdHS0MWe0c+fOmjlzpp5//nkF\nBQUZNS4vXLigcePGKTg4WB06dNDy5curHDc7O1sPP/ywWrVqpQ4dOhjLtpcp++Ll7++v9u3b69e/\n/nWFOdDbtm2TxWLRp59+qjvuuEMtW7bU6tWrq5zn/PnzGjFihHHHT5LOnTunCRMmqEOHDvLz81Of\nPn30pz/9qcLr9u7dqwEDBsjX11ddu3bVRx99VOe+xH9XMF+6dKkSExO1du1avfPOO3rnnXf05JNP\nGmWWHnzwQaWkpEi6WAqmLCEvS8pGjRqlnj17VljhvGXLlurdu7d++ctfGvs6depU5ceKslXPZ8+e\nrbvuukuFhYU6ePCgBg4cqHvvvVcjR47UXXfdpV69eikgIEC/+MUv9Mgjj6igoEC7d+9Wdna2vvji\nCxUWFmrs2LFGjG63WydOnND58+c1atQo2e12Y/VtSfrss8/0l7/8RSEhIZo8ebJWrlyp2NhYffbZ\nZ3rzzTeNhc6CgoKUk5OjefPmaejQoTpz5oxOnjypSZMmKSUlxeiPsrl533zzjbZs2aK9e/caZaXQ\n9JSWlqpXr17q37+/rFarhg0bpv79+8tmsxnlT8pGODQG6enpRumeH374Qe+//77mz5+v999/XwcP\nHtTy5cs1efJkLVmypNa1ES8lLS1NSUlJVY6TlJQkSdq6davOnj0r6WIfjh8/XmPGjFF+fr4++uij\nCqVcyj/29/c3pluVPa6p7eUcS/pv+RaXy6X4+Hh5eXkZpW2k/y5oVfb5Vt9cLpf+93//Vx9++GGF\n80oX63yi8brUSrtl/6881aAxTz1YuHCh8Tg6Otp4XLZysJk12zutwOWYM2eOEhMTtXTpUvXu3VsH\nDx7Uc889p/Pnzxu1ZOPj4zVr1izt3r1bH374ocaNG6e//vWvioyMVEpKijZt2qTx48dryJAhFcpz\nzJ07V3PnztWCBQv02WefafLkyercubMxVEWSFi1apLCwMGVmZmry5MlG2YjyJk+erIULF+qWW26R\nt7e3HA6H8VxOTo4eeOABWa1W/eMf/zDqxT7wwANyu93auHGjQkND5XA4jHnKQ4cOVWFhoe677z71\n6tVL//rXv1RQUKDx48fX+YsTflrZiuFld3Hnz59fZZXxynM267pa+dNPPy3p4giP8nVxg4KCjHqF\n0sXyXWfOnNFbb71llOE6efKkxo8fr+eee05VNswbAAAgAElEQVSnT5/W559/bpTG6tmzpw4cOFCh\nfJbD4dAbb7yh2bNnG0OIK69Evn37dh07dky5ubmaPHmy3G63MYf4pZde0scff6zExEStWLFCbrdb\nDodDn3/+uW677Tb98Y9/1JEjRzR8+PA6/CnArMpP4yj/5bHyYiGN4Yvlpk2blJaWZize9u9//1su\nl0uBgYFKT0/XZ599ZqxwLElvvfWWZs+efUXnev/99/Xtt9/q+uuv1yeffKL77rtPv/jFLyRJn3/+\nuYYMGaK//e1vuvfeeyVdvJPZokULde7cWS1bttQnn3xiLG5Vm/IsNZVyuZxSL2PGjDFWwH322WeN\nkiaJiYm6+eabdfPNN2vt2rUqLCzU4cOH9ctf/tKoOV1f/vCHP+jChQu64YYbjPOW/bn861//0sMP\nP1yv52soaWlpSklJMUod2Ww29evXr1mPSii/knBRUZGeeuopFRYWGos5lf87WN2iTo1J+bvEZWW0\npIsL1JbNL1+0aFG1C9Z6GkkrUIOCggLFxsbqT3/6k/Fhfv311+u1117T+PHjjaR10KBBRk3MGTNm\nKDY2Vlar1dg3bdo0xcbGKikpqULSOmzYMI0bN07SxSLMX375pRYtWmQkreWHgl9//fVKSEhQ3759\ndeLEiQp3E1555RWj5E55x44d07333qsbb7xR77//vnEnYvv27frnP/+pkydPKjAwUJL0zDPPaNeu\nXYqPj9fQoUO1YcMG5ebmasOGDQoODpYkJSYmGiUAcOUqfyBUt4K4dPEDpmzRovKvOXHihD799NN6\nW628Nueq3KZyGa7alsbKy8tTy5Ytf3Il8meeeUYDBw7UN998oylTpmjSpElKSkrSfffdV6HNunXr\n5Ha79cUXXxj19B544AG98sorJK1NVOUvmJVXEr3UaqFmtGvXLi1cuFDFxcV68sknFRcXp0WLFikr\nK0vBwcEqKirSvHnztHjxYsXExFQoUXO5/v3vfxufSyNHjtSyZct08uRJjRkzxvgiW76WZWFhoZYu\nXWqsRHvkyBHdf//9tS7PUttSLpdzLOni6J/ly5dr6tSpev3117V69Wq99dZbmj9/vt588029+uqr\nmj9/fr0nrenp6UZtyXvvvVerV6/WokWLNGHChEYzXHTt2rXKyMjQnXfeaUznys7O1meffabU1NRm\nO62iOa0kfKkf88pGDkoy7Y0JklagBvv371dhYaEefvjhCn/Zy8qZlC0GUb6WYFm5l549e1bY17Zt\n2yr/GJSf3C9dXJJ+5syZxva2bdu0YMECHThwQGfOnDFqqR09erRC0lrdcEiXy6X+/fvr9ttv1wcf\nfFDhDkVKSoqKioqqDKMrKipS165dJUkHDhzQz3/+cyNhlS6uSliW5OLKVV7BvLoVxMuG7rjdbv3+\n97/X8ePH1bZtW+M6rM/VymtzrsptKpfhWrZsWa1KY0VFRWnZsmXGF73qViK32+0qLCzUDz/8oLZt\n2+qGG25QcnKyTp8+bZQtadu2rZxOp44ePaouXboY89LLSlihaWpKXzCtVquxuJq3t7dCQ0Pl7e1t\njIYpKirS2bNn5Xa7lZmZafz7fyVcLpfx96JVq1aaNm2a3n77bS1ZssT4whoREaGEhAT96le/Ur9+\n/fTpp5/qtttu0+nTp3X99ddX+8Po1fb5559Luvjl22q16tlnn1VqaqpWrlyp8+fPKyAgoEHuspf/\nUl923j/+8Y+aN2+eUdrM7FJTU6tMQZKkAQMGaMKECc02aW1OqrurLMl4vG7dOtOOUiFpBWpQ9iVh\n06ZN6tatW5Xnyxb4Kb/olHTxA7W6fZfzpeOHH37Qfffdp9GjR2vWrFkKCQnR8ePHFRkZWWURivLl\nm8qUle/505/+pP3791e4Q1o2BK1svmR5danJhdqpvIJ5dSuI5+fn65VXXtHGjRs1duxYrV+/XhER\nEQoLC9PMmTPrdbXy2pyrcpvKZbhqWxorJiZG69evN9pUtxJ5UFCQ7r//fmN7/PjxkqQPPvjAeF1h\nYaG+//57BQUF6dy5c8rJyVFwcLDOnz/faO58oHnz8vLShQsX5Ovrq9DQUKMs14oVK3T27FnNnDlT\nn3zyiY4dO6ZXX31Vzz777BWfq127djpw4IAx0qdsRe8PP/xQX375pSTpscce07Zt2/Tmm2/q5MmT\nKi4ulsPhUL9+/Yy/g55WVjar/Jfv4uJi3Xffffrggw9UUlJSp+S+pvOWH0b7q1/9SsHBwdWuI2FG\n3t7eSk9P1w033FBh//fff1/l+wqapupqWpd9XpYfEv3II4/ommuuMco4rlu37uoHW5kbwE/Ky8tz\nt2zZ0h0fH3/JNp06dXLPnz+/wr6wsDD37NmzK+y78cYb3a+88oqxLck9evToCm0ef/xx9+233+52\nu93uP/7xj25J7oKCAuP5DRs2uCW5//73v7vdbrf773//u1uS+9ixYxWOk5iY6LZarW6Xy+V+8cUX\n3Xa73Z2ammo873A43JLcX3/99SXf16pVq9ytWrVy5+TkGPv27dvnllTl/aL+rVixwn3w4MFqn1u6\ndOlVP1flNllZWca1UdambF9Zu/JtKh//Uuer/LrKfup1brfbff78effJkyd/sg1gBkVFRcbj7777\nzn3hwgW32+125+bmuo8ePep2u93ukydPurdu3eouLS2t07kuXLhgHL+y7OzsOh3bTM6dO+f+9ttv\nPR2GKX3//ffu6dOnuydOnOieP3++e/78+e6JEye6Z8yY4f7+++89HR7wk7jTCtTA399fM2bM0IwZ\nM2SxWBQZGamSkhJ9/fXXSk1N1RtvvFGn42/ZskXLly/XPffco61bt2rjxo3atGmTJKlr166yWCxa\nvHixnnjiCe3du1fz5s27rONbLBbFx8fLx8fHWGgjPDxcQ4YMUWRkpEaMGKHY2Fj17NlTOTk5Sk5O\nVsuWLfW73/1Ojz/+uGbOnKlRo0YpOjpahYWFmjBhQoMVckdFP1VrtHLZq6txrsptqivDVZvSWJfa\nvtSxK/up10nVl4MCzKj83a2yu1/nzp0zSq7l5eVJuvj3KTMzs9pyXrXl4+OjAwcOKCgoSKGhofrm\nm2906NAhdezYscLK4ufPn1daWpqysrLUokULhYaGqmfPnhWml3haQUGBzp49q/bt21fYf/ToUXXq\n1KnaUVF1lZWVpYCAAPn4+Mjtdmvbtm06cuSIOnbsqKFDhzaKKQldunTR66+/rjNnzlRYiKl8mUTA\nrEhagVqYOXOmfvaznxmlB6655hp169ZNY8aMqfOxZ82aJYfDoalTpyowMFCxsbFGqZKePXsqPj5e\nMTExio6O1q233qqlS5caKz5ejsWLF8vHx0eRkZHaunWrIiIi9Oc//1lz587VpEmTdOLECdlsNvXu\n3dtYPdbPz09//etfFRUVpdtuu00dO3ZUdHS0Xn755Tq/bwBo7j7++GNj1dmVK1dq//79ysnJkZ+f\nnzGdJC8vTz179tTJkyfrtCru2rVrlZ6ebpQMKqtv/Omnn2r//v0aPXq0kpOT9Ze//EWdOnXS/v37\n1a1bN6Wnp2v9+vUaP368rrvuunp891cmOTlZ69atk5+fn5xOp9q2bav+/fvrwQcf1IoVK/TGG28o\nNja2wiro9WHBggV6/fXXJUkbNmzQyZMn1a9fP+3bt0/p6emKioqq1/M1pKCgoCqJauXFHQGzsbjd\nTPwBAAC42qZNm2aM1nnyySc1adIkffDBB7JYLCotLVXLli316KOPasOGDZoxY4bmz59foc7i5Xjp\npZe0ePFiFRUV6bnnntPKlSvl6+urkpISTZs2TYsXL9bvf/97RUdHy9fXV2fPnlV8fLxeeeUVHT16\nVKtWrdJrr71Wn2//ikyZMkUzZsww6romJyerY8eOys/PV2FhoRYvXqypU6cqNja2Xs87adIkxcXF\nSbr457ZgwQLj7vOUKVOu+M/FLJ5//nm99dZbng4DuCTutAIAAHhYaWmpevbsqQ8//FBeXl5yu90q\nLS1Vjx49VFxcXOdVcS0Wi/Ff2bZ0cUGmsoWL3G63sRBfy5YtjfJWnTp1UmFhYV3eXr1xuVwKDg7W\n2bNn9cQTT+i+++5TTEyMOnbsqF27dikzM7NBVj8NCQnRvn37dMstt6hNmzbKzs5WmzZtjCHcjcE7\n77xzyecKCgquYiTA5SNpBQCgkVuxYoX27NmjwMBALV68uMrzbrdbiYmJSk1Nla+vr6KiotSlSxcP\nRIryTp48qTfeeENut1stWrRQdHS0/vOf/8hqtaqkpEQtWrTQunXr1Llz5zqvitunTx/NmjVLxcXF\nGjJkiJYsWaJu3boZpc3K2rz++uv6+c9/rrS0NEVEREi6OM/WLAPzrrnmGmVmZqq0tFRFRUUKDg7W\nnDlztHDhQpWWlio6OloXLlyo9/M+++yzSkhI0KZNm3TNNddo6tSp6ty5s/Lz8zV69Oh6P19D2LZt\nm5588kmj5m15O3fu9EBEQO0xPBgAgEbuwIEDatmypRISEqpNWvfs2aOtW7dq+vTp+u6777R27Vpj\nfh4858CBAxW2z58/r+3bt+v48eM6d+6cOnXqpH79+mnw4MG6cOGCTpw4UadFhg4dOiRJ6tatmzIz\nM/Wvf/1LISEhioiIMIa67tmzR8ePH1fnzp2NWuMul0ulpaWmKIvyn//8Ry1bttTu3bvVpUsXo4RP\nSUmJ/vnPf6pjx45av359hXrn9en48ePKyMhQaWmp7Ha7wsLCTLVI1U+ZO3eufv3rX+vGG2+s8twL\nL7yghIQED0QF1A5JKwAATcCpU6f0xhtvVJu0/uEPf9DNN9+sO+64Q9LF1Z7nzJmj4ODgqx0mrsDZ\ns2fVunXreh/2WpvjNtS5r1RmZqbOnDlTZRXxgwcPKjg4uMqKwo39vPXp3Llz8vb2lq+vr6dDAS4b\nw4MBAGjinE6nQkJCjG273S6n00nS6mFnz57V559/rlatWmnIkCF68803dfjwYRUXF8tms6lDhw46\nePCg3G633G63XnzxRfXu3fuKznXo0CG9//778vf318MPP6zly5fr7NmzFY5bmzaetnbtWj322GN6\n77331L59e911112SLpb0Wbt2rW655Rbl5ubqiSeeaJDzVlZ23sawqr6/v7/x+OzZs5KkgIAAT4UD\nXBbutAIA0AT81J3WmJgYDR8+3LhLNG/ePD3xxBMKCwur0M7hcMjhcBivAQDADExzp/XHH3/0dAim\nERISoqysLE+HARPi2sBP4fr4r9DQUE+HYCo2m63CtZGdnS2bzValXWRkpCIjI41tPpvrhr+T9YN+\nrDv6sO7ow7qry2dz45g5DgAArlh4eLh27Nght9utQ4cOyc/Pj6HBAIBGwzR3WgEAwJVZunSpDhw4\noLy8PD333HN65JFHVFJSIkm6++671adPH+3Zs0fjx4+Xj4+PoqKiPBwxAAC1R9IKAEAjN3HixJ98\n3mKx6Omnn75K0QAAUL8YHgwAAAAAMC2SVgAAAACAaZG0AgAAAABMi6QVAAAAAGBaJK0AAAAAANMi\naQUAAAAAmBYlbwCgjkp/96CnQ5AknfR0AJKsq/7s6RAAAEATw51WAAAAAIBpkbQCAAAAAEyLpBUA\nAAAAYFokrQAAAAAA0yJpBQAAAACYFkkrAAAAAMC0SFoBAAAAAKZF0goAAAAAMC2SVgAAAACAaXnV\nplF+fr5WrlypY8eOyWKx6Pnnn1doaKji4uJ0+vRptWnTRpMmTZK/v7/cbrcSExOVmpoqX19fRUVF\nqUuXLg39PgAAAAAATVCt7rQmJiaqd+/eWrp0qRYuXKgOHTpo8+bN6tGjh5YtW6YePXpo8+bNkqTU\n1FRlZmZq2bJleuaZZ7R69eoGfQMAAAAAgKarxqS1oKBABw8e1JAhQyRJXl5eatWqlVJSUjRw4EBJ\n0sCBA5WSkiJJ2r17t+68805ZLBZ169ZN+fn5ysnJacC3AAAAAABoqmocHnzq1CkFBARoxYoVOnr0\nqLp06aIxY8YoNzdXwcHBkqSgoCDl5uZKkpxOp0JCQozX2+12OZ1Ooy0AAAAAALVVY9JaWlqqI0eO\naOzYseratasSExONocBlLBaLLBbLZZ3Y4XDI4XBIkmJiYiokus2dl5cX/YFqcW2Y00lPB2AiXJ8A\nAKC+1Zi02u122e12de3aVZIUERGhzZs3KzAwUDk5OQoODlZOTo4CAgIkSTabTVlZWcbrs7OzZbPZ\nqhw3MjJSkZGRxnb51zR3ISEh9AeqxbUBszPL9RkaGurpEAAAQD2pcU5rUFCQ7Ha7fvzxR0nS119/\nrY4dOyo8PFzbt2+XJG3fvl39+vWTJIWHh2vHjh1yu906dOiQ/Pz8GBoMAAAAALgitSp5M3bsWC1b\ntkwlJSVq27atoqKi5Ha7FRcXp6SkJKPkjST16dNHe/bs0fjx4+Xj46OoqKgGfQMAAAAAgKarVklr\n586dFRMTU2X/rFmzquyzWCx6+umn6x4ZAAAAAKDZq1WdVgAAAAAAPIGkFQAAAABgWiStAAAAAADT\nImkFAAAAAJgWSSsAAAAAwLRIWgEAAAAApkXSCgAAAAAwLZJWAAAAAIBpkbQCAAAAAEyLpBUAAAAA\nYFokrQAAAAAA0/LydAAAAKBu0tLSlJiYKJfLpaFDh2r48OEVns/KylJCQoLy8/Plcrn0+OOPq2/f\nvh6KFgCAy0PSCgBAI+ZyubRmzRq9+uqrstvtmj59usLDw9WxY0ejzccff6z+/fvr7rvv1vHjx7Vg\nwQKSVgBAo8HwYAAAGrH09HS1b99e7dq1k5eXlwYMGKCUlJQKbSwWiwoKCiRJBQUFCg4O9kSoAABc\nEe60AgDQiDmdTtntdmPbbrfru+++q9Bm5MiReu2117R161ZduHBBM2fOvNphAgBwxUhaAQBo4nbu\n3KlBgwbpgQce0KFDhxQfH6/FixerRYuKA64cDoccDockKSYmRiEhIZ4It8nw8vKiD+sB/Vh39GHd\n0YeeRdIKAEAjZrPZlJ2dbWxnZ2fLZrNVaJOUlKQZM2ZIkrp166bi4mLl5eUpMDCwQrvIyEhFRkYa\n21lZWQ0YedMXEhJCH9YD+rHu6MO6ow/rLjQ09Ipfy5xWAAAasbCwMGVkZOjUqVMqKSlRcnKywsPD\nK7QJCQnRvn37JEnHjx9XcXGxAgICPBEuAACXjTutAAA0YlarVWPHjlV0dLRcLpcGDx6sa6+9Vhs3\nblRYWJjCw8P15JNP6u2339ann34qSYqKipLFYvFw5AAA1A5JKwAAjVzfvn2rlLB59NFHjccdO3bU\n/Pnzr3ZYAADUC4YHAwAAAABMi6QVAAAAAGBaJK0AAAAAANMiaQUAAAAAmBZJKwAAAADAtGq1evAL\nL7ygli1bqkWLFrJarYqJidG5c+cUFxen06dPq02bNpo0aZL8/f3ldruVmJio1NRU+fr6KioqSl26\ndGno9wEAAAAAaIJqXfJm9uzZFQqRb968WT169NDw4cO1efNmbd68WaNGjVJqaqoyMzO1bNkyfffd\nd1q9erVef/31BgkeAAAAANC0XfHw4JSUFA0cOFCSNHDgQKWkpEiSdu/erTvvvFMWi0XdunVTfn6+\ncnJy6idaAAAAAECzUus7rdHR0ZKku+66S5GRkcrNzVVwcLAkKSgoSLm5uZIkp9OpkJAQ43V2u11O\np9NoW8bhcMjhcEiSYmJiKrymufPy8qI/UC2uDXM66ekATITrEwAA1LdaJa3z58+XzWZTbm6uXnvt\nNYWGhlZ43mKxyGKxXNaJIyMjFRkZaWxnZWVd1uubspCQEPoD1eLagNmZ5fqs/DkFAAAar1oND7bZ\nbJKkwMBA9evXT+np6QoMDDSG/ebk5BjzXW02W4UvLdnZ2cbrAQAAAAC4HDUmrefPn1dhYaHx+Kuv\nvtJ1112n8PBwbd++XZK0fft29evXT5IUHh6uHTt2yO1269ChQ/Lz86syNBgAAAAAgNqocXhwbm6u\nFi1aJEkqLS3VHXfcod69eyssLExxcXFKSkoySt5IUp8+fbRnzx6NHz9ePj4+ioqKath3AAAAAABo\nsmpMWtu1a6eFCxdW2d+6dWvNmjWryn6LxaKnn366fqIDAAAAADRrV1zyBgAAAACAhkbSCgAAAAAw\nLZJWAAAAAIBpkbQCAAAAAEyLpBUAAAAAYFokrQAAAAAA0yJpBQAAAACYFkkrAAAAAMC0SFoBAAAA\nAKZF0goAAAAAMC2SVgAAAACAaZG0AgAAAABMi6QVAAAAAGBaJK0AAAAAANMiaQUAAAAAmBZJKwAA\nAADAtEhaAQAAAACmRdIKAAAAADAtklYAAAAAgGmRtAIAAAAATIukFQAAAABgWiStAAAAAADT8vJ0\nAAAAoG7S0tKUmJgol8uloUOHavjw4VXaJCcna9OmTbJYLOrUqZMmTJjggUgBALh8JK0AADRiLpdL\na9as0auvviq73a7p06crPDxcHTt2NNpkZGRo8+bNmj9/vvz9/ZWbm+vBiAEAuDy1TlpdLpdefvll\n2Ww2vfzyyzp16pSWLl2qvLw8denSRePGjZOXl5eKi4u1fPlyHT58WK1bt9bEiRPVtm3bhnwPAAA0\nW+np6Wrfvr3atWsnSRowYIBSUlIqJK1ffPGF7rnnHvn7+0uSAgMDPRIrAABXotZzWv/617+qQ4cO\nxvb69es1bNgwxcfHq1WrVkpKSpIkJSUlqVWrVoqPj9ewYcO0YcOG+o8aAABIkpxOp+x2u7Ftt9vl\ndDortPnxxx+VkZGhmTNn6pVXXlFaWtrVDhMAgCtWqzut2dnZ2rNnj0aMGKEtW7bI7XZr//79xnyY\nQYMGadOmTbr77ru1e/dujRw5UpIUERGhd955R263WxaLpeHeBQAAuCSXy6WMjAzNnj1bTqdTs2fP\n1qJFi9SqVasK7RwOhxwOhyQpJiZGISEhngi3yfDy8qIP6wH9WHf0Yd3Rh55Vq6R17dq1GjVqlAoL\nCyVJeXl58vPzk9VqlSTZbDbjV93yv/harVb5+fkpLy9PAQEBDRE/AADNms1mU3Z2trGdnZ0tm81W\npU3Xrl3l5eWltm3b6mc/+5kyMjJ0ww03VGgXGRmpyMhIYzsrK6thg2/iQkJC6MN6QD/WHX1Yd/Rh\n3YWGhl7xa2tMWv/9738rMDBQXbp00f79+6/4RJXxa+6l8UsOLoVrw5xOejoAE+H6vPrCwsKUkZGh\nU6dOyWazKTk5WePHj6/Q5rbbbtP//d//afDgwTp79qwyMjKMObAAAJhdjUnrt99+q927dys1NVVF\nRUUqLCzU2rVrVVBQoNLSUlmtVjmdTuNX3bJffO12u0pLS1VQUKDWrVtXOS6/5l4av+TgUrg2YHZm\nuT7r8mtuY2O1WjV27FhFR0fL5XJp8ODBuvbaa7Vx40aFhYUpPDxcvXr10t69ezVp0iS1aNFCo0aN\nqvazGQAAM6oxaX388cf1+OOPS5L279+vv/zlLxo/fryWLFmiXbt26fbbb9e2bdsUHh4uSbr11lu1\nbds2devWTbt27VL37t2ZzwoAQAPq27ev+vbtW2Hfo48+ajy2WCx66qmn9NRTT13t0AAAqLNarx5c\n2RNPPKEtW7Zo3LhxOnfunIYMGSJJGjJkiM6dO6dx48Zpy5YteuKJJ+otWAAAAABA81LrOq2S1L17\nd3Xv3l2S1K5dOy1YsKBKGx8fH7300kv1Ex0AAAAAoFm74jutAAAAAAA0NJJWAAAAAIBpkbQCAAAA\nAEyLpBUAAAAAYFokrQAAAAAA0yJpBQAAAACYFkkrAAAAAMC0SFoBAAAAAKZF0goAAAAAMC2SVgAA\nAACAaZG0AgAAAABMi6QVAAAAAGBaJK0AAAAAANMiaQUAAAAAmBZJKwAAAADAtEhaAQAAAACmRdIK\nAAAAADAtklYAAAAAgGmRtAIAAAAATIukFQAAAABgWiStAAAAAADTImkFAAAAAJgWSSsAAAAAwLRI\nWgEAAAAApuVVU4OioiLNnj1bJSUlKi0tVUREhB555BGdOnVKS5cuVV5enrp06aJx48bJy8tLxcXF\nWr58uQ4fPqzWrVtr4sSJatu27dV4LwAAAACAJqbGO63e3t6aPXu2Fi5cqNjYWKWlpenQoUNav369\nhg0bpvj4eLVq1UpJSUmSpKSkJLVq1Urx8fEaNmyYNmzY0OBvAgAAAADQNNWYtFosFrVs2VKSVFpa\nqtLSUlksFu3fv18RERGSpEGDBiklJUWStHv3bg0aNEiSFBERoX379sntdjdQ+AAAAACApqzG4cGS\n5HK5NG3aNGVmZuqee+5Ru3bt5OfnJ6vVKkmy2WxyOp2SJKfTKbvdLkmyWq3y8/NTXl6eAgICGugt\nAAAAAACaqlolrS1atNDChQuVn5+vRYsW6ccff6zziR0OhxwOhyQpJiZGISEhdT5mU+Hl5UV/oFpc\nG+Z00tMBmAjXJwAAqG+1SlrLtGrVSt27d9ehQ4dUUFCg0tJSWa1WOZ1O2Ww2SRfvumZnZ8tut6u0\ntFQFBQVq3bp1lWNFRkYqMjLS2M7KyqrjW2k6QkJC6A9Ui2sDZmeW6zM0NNTTIQAAgHpS45zWs2fP\nKj8/X9LFlYS/+uordejQQd27d9euXbskSdu2bVN4eLgk6dZbb9W2bdskSbt27VL37t1lsVgaKHwA\nAAAAQFNW453WnJwcJSQkyOVyye12q3///rr11lvVsWNHLV26VB9++KGuv/56DRkyRJI0ZMgQLV++\nXOPGjZO/v78mTpzY4G8CAAAAANA01Zi0durUSbGxsVX2t2vXTgsWLKiy38fHRy+99FL9RAcAAAAA\naNZqHB4MAAAAAICnkLQCANDIpaWlacKECRo3bpw2b958yXa7du3SI488ou+///4qRgcAQN2QtAIA\n0Ii5XC6tWbNGM2bMUFxcnHbu3Knjx49XaVdYWKjPPvtMXbt29UCUAABcOZJWAAAasfT0dLVv317t\n2rWTl5eXBgwYoJSUlCrtNm7cqIceetH4ZRgAABLSSURBVEje3t4eiBIAgCtH0goAQCPmdDplt9uN\nbbvdLqfTWaHN4cOHlZWVpb59+17t8AAAqLMaVw8GAACNl8vl0rvvvquoqKga2zocDjkcDklSTEyM\nQkJCGjq8Js3Ly4s+rAf0Y93Rh3VHH3oWSSsAAI2YzWZTdna2sZ2dnS2bzWZsnz9/XseOHdPcuXMl\nSWfOnFFsbKymTp2qsLCwCseKjIxUZGSksZ2VldXA0TdtISEh9GE9oB/rjj6sO/qw7kJDQ6/4tSSt\nAAA0YmFhYcrIyNCpU6dks9mUnJys8ePHG8/7+flpzZo1xvacOXM0evToKgkrAABmRdIKAEAjZrVa\nNXbsWEVHR8vlcmnw4MG69tprtXHjRoWFhSk8PNzTIQIAUCckrQAANHJ9+/atssjSo48+Wm3bOXPm\nXIWIAACoP6weDAAAAAAwLZJWAAAAAIBpkbQCAAAAAEyLpBUAAAAAYFokrQAAAAAA0yJpBQAAAACY\nFkkrAAAAAMC0SFoBAAAAAKZF0goAAAAAMC2SVgAAAACAaZG0AgAAAABMi6QVAAAAAGBaJK0AAAAA\nANMiaQUAAAAAmJZXTQ2ysrKUkJCgM2fOyGKxKDIyUvfdd5/OnTunuLg4nT59Wm3atNGkSZPk7+8v\nt9utxMREpaamytfXV1FRUerSpcvVeC8AAAAAgCamxjutVqtVo0ePVlxcnKKjo/X555/r+PHj2rx5\ns3r06KFly5apR48e2rx5syQpNTVVmZmZWrZsmZ555hmtXr26wd8EAAAAAKBpqjFpDQ4ONu6UXnPN\nNerQoYOcTqdSUlI0cOBASdLAgQOVkpIiSdq9e7fuvPNOWSwWdevWTfn5+crJyWnAtwAAAAAAaKou\na07rqVOndOTIEd1www3Kzc1VcHCwJCkoKEi5ubmSJKfTqZCQEOM1drtdTqezHkMGAAAAADQXNc5p\nLXP+/HktXrxYY8aMkZ+fX4XnLBaLLBbLZZ3Y4XDI4XBIkmJiYiokus2dl5cX/YFqcW2Y00lPB2Ai\nXJ8AAKC+1SppLSkp0eLFi/X//t//0//8z/9IkgIDA5WTk6Pg4GDl5OQoICBAkmSz2ZSVlWW8Njs7\nWzabrcoxIyMjFRkZaWyXf01zFxISQn+gWlwbMDuzXJ+hoaGeDgEAANSTGocHu91urVy5Uh06dND9\n999v7A8PD9f27dslSdu3b1e/fv2M/Tt27JDb7dahQ4fk5+dnDCMGAAAAAOBy1Hin9dtvv9WOHTt0\n3XXXacqUKZKkxx57TMOHD1dcXJySkpKMkjeS1KdPH+3Zs0fjx4+Xj4+PoqKiGvYdAAAAAACarBqT\n1ptuukkfffRRtc/NmjWryj6LxaKnn3667pEBAAAAAJq9y1o9GAAAAACAq4mkFQAAAABgWiStAAAA\nAADTImkFAAAAAJgWSSsAAAAAwLRIWgEAAAAAplVjyZvmpPR3D3o6BEnSSU8H8P+zrvqzp0MAAAAA\n0MxxpxUAAAAAYFokrQAAAAAA0yJpBQAAAACYFkkrAAAAAMC0SFoBAAAAAKZF0goAAAAAMC1K3gAA\n0MilpaUpMTFRLpdLQ4cO1fDhwys8v2XLFn3xxReyWq0KCAjQ888/rzZt2ngoWgAALg93WgEAaMRc\nLpfWrFmjGTNmKC4uTjt37tTx48crtOncubNiYmK0aNEiRUREaP369R6KFgCAy0fSCgBAI5aenq72\n7durXbt28vLy0oABA5SSklKhzS233CJfX19JUteuXeV0Oj0RKgAAV4SkFQCARszpdMputxvbdrv9\nJ5PSpKQk9e7d+2qEBgBAvWBOKwAAzcSOHTt0+PBhzZkzp9rnHQ6HHA6HJCkmJkYhISFXMbqmx8vL\niz6sB/Rj3dGHdUcfehZJKwAAjZjNZlN2draxnZ2dLZvNVqXdV199pU8++URz5syRt7d3tceKjIxU\nZGSksZ2VlVX/ATcjISEh9GE9oB/rjj6sO/qw7kJDQ6/4tQwPBgCgEQsLC1NGRoZOnTqlkpISJScn\nKzw8vEKbI0eOaNWqVZo6daoCAwM9FCkAAFeGO60AADRiVqtVY8eOVXR0tFwulwYPHqxrr71WGzdu\nVFhYmMLDw7V+/XqdP39eS5YskXTxjsG0adM8HDkAALVD0goAQCPXt29f9e3bt8K+Rx991Hg8c+bM\nqx0SAAD1huHBAAAAAADTImkFAAAAAJgWSSsAAAAAwLRqNad1xYoV2rNnjwIDA7V48WJJ0rlz5xQX\nF6fTp0+rTZs2mjRpkvz9/eV2u5WYmKjU1FT5+voqKipKXbp0adA3AQAAAABommp1p3XQoEGaMWNG\nhX2bN29Wjx49tGzZMvXo0UObN2+WJKWmpiozM1PLli3TM888o9WrV9d/1AAAAACAZqFWSevNN98s\nf3//CvtSUlI0cOBASdLAgQOVkpIiSdq9e7fuvPNOWSwWdevWTfn5+crJyannsAEAAAAAzcEVz2nN\nzc1VcHCwJCkoKEi5ubmSJKfTqZCQEKOd3W6X0+msY5gAAAAAgOaoXuq0WiwWWSyWy3qNw+GQw+GQ\nJMXExFRIdD3lpKcDMBkz/JmgIi8vL/5cTIh/O/6L6xMAANS3K05aAwMDlZOTo+DgYOXk5CggIECS\nZLPZlJWVZbTLzs6WzWar8vrIyEhFRkYa2+VfA3Pgz8R8QkJC+HOBqZnl+gwNDfV0CAAAoJ5c8fDg\n8PBwbd++XZK0fft29evXz9i/Y8cOud1uHTp0SH5+fsYwYgAAAAAALket7rQuXbpUBw4cUF5enp57\n7jk98sgjGj58uOLi4pSUlGSUvJGkPn36aM+ePRo/frx8fHwUFRXVoG8AAAAAANB01SppnThxYrX7\nZ82aVWWfxWLR008/XbeoAAAAAABQHYYHAwAAAADQ0EhaAQAAAACmVS8lb4CmrvR3D3o6BEnmKa1i\nXfVnT4cAAACAZoI7rQAAAAAA0yJpBQAAAACYFkkrAAAAAMC0SFoBAAAAAKZF0goAAAAAMC2SVgAA\nAACAaZG0AgAAAABMi6QVAAAAAGBaJK0AAAAAANMiaQUAAAAAmBZJKwAAAADAtEhaAQAAAACmRdIK\nAAAAADAtklYAAAAAgGmRtAIAAAAATIukFQAAAABgWiStAAAAAADTImkFAAAAAJgWSSsAAAAAwLRI\nWgEAAAAApkXSCgAAAAAwLa+GOnBaWpoSExPlcrk0dOhQDR8+vKFOBQBAs1bTZ25xcbGWL1+uw4cP\nq3Xr1po4caLatm3roWgBALg8DXKn1eVyac2aNZoxY4bi4uK0c+dOHT9+vCFOBQBAs1abz9ykpCS1\natVK8fHxGjZsmDZs2OChaAEAuHwNkrSmp6erffv2ateunby8vDRgwAClpKQ0xKkAAGjWavOZu3v3\nbg0aNEiSFBERoX379sntdnsgWgAALl+DJK1Op1N2u93YttvtcjqdDXEqAACatdp85pZvY7Va5efn\np7y8vKsaJwAAV6rB5rTWxOFwyOFwSJJiYmIUGhrqqVD+69Pdno4AZsW1gZ/C9YEmwpSfzY0cfVg/\n6Me6ow/rjj70nAa502qz2ZSdnW1sZ2dny2azVWgTGRmpmJgYxcTENEQIjdrLL7/s6RBgUlwb+Clc\nH81TbT5zy7cpLS1VQUGBWrduXeVY5T+buZ7qjj6sH/Rj3dGHdUcf1l1d+rBBktawsDBlZGTo1KlT\nKikpUXJyssLDwxviVAAANGu1+cy99dZbtW3bNknSrl271L17d1ksFg9ECwDA5WuQ4cFWq1Vjx45V\ndHS0XC6XBg8erGuvvbYhTgUAQLN2qc/cjRs3KiwsTOHh4RoyZIiWL1+ucePGyd/fXxMnTvR02AAA\n1FqDzWnt27ev+vbt21CHb9IiIyM9HQJMimsDP4Xro/mq7jP30UcfNR77+PjopZdeuqxjcj3VHX1Y\nP+jHuqMP644+rLu69KHFzZr3AAAAAACTapA5rQAAAAAA1AePlbwBAACel5aWpsTERLlcLg0dOlTD\nhw+v8HxxcbGWL1+uw4cPq3Xr1po4caLatm3roWjNqaY+3LJli7744gtZrVYFBATo+eefV5s2bTwU\nrTnV1Idldu3apSVLlmjBggUKCwu7ylGaW236MDk5WZs2bZLFYlGnTp00YcIED0RqbjX1Y1ZWlhIS\nEpSfny+Xy6XHH3+cKZHlrFixQnv27FFgYKAWL15c5Xm3263ExESlpqbK19dXUVFR6tKlS43H5U6r\nB2VmZuqbb76psv/gwYPKzMz0QEQwowsXLujo0aM6evSoiouLPR0OTCA9PV1nzpwxtrdv367Y2Fi9\n8847OnfunAcjQ2Pjcrm0Zs0azZgxQ3Fxcdq5c6eOHz9eoU1SUpJatWql+Ph4DRs2TBs2bPBQtOZU\nmz7s3LmzYmJitGjRIkVERGj9+vUeitacatOHklRYWKjPPvtMXbt29UCU5labPszIyNDmzZs1f/58\nLVmyRGPGjPFMsCZWm378+OOP1b9/f8XGxmrixIlas2aNh6I1p0GDBmnGjBmXfD41NVWZmZlatmyZ\nnnnmGa1evbpWxyVp9aC1a9fqmmuuqbLfx8dHa9euvfoBwVRKSkq0du1aPffcc1qxYoVWrFihF198\nUZs3b5Yk/ec///FsgPCYVatWycvr4kCZAwcO6P3339edd94pPz8/vf322x6ODo1Jenq62rdvr3bt\n2snLy0sDBgxQSkpKhTa7d+/WoEGDJEkRERHat2+fWA7jv2rTh7fccot8fX0lSV27dpXT6fREqKZV\nmz6UpI0bN+qhhx6St7e3B6I0t9r04RdffKF77rlH/v7+kqTAwEBPhGpqtelHi8WigoICSVJBQYGC\ng4M9Eapp3XzzzcY1Vp3du3frzjvvlMViUbdu3ZSfn6+cnJwaj8vwYA86ffq0OnXqVGV/WFiYTp8+\n7YGIYCbvvvuuioqKtGLFCuPHjYKCAr333ntatWqV0tLSlJCQ4OEo4Qkul8v4QEhOTtbQoUMVERGh\niIgITZkyxcPRoTFxOp2y2+3Gtt1u13fffXfJNlarVX5+fsrLy1NAQMBVjdWsatOH5SUlJal3795X\nI7RGozZ9ePjwYWVlZalv377685//fLVDNL3a9OGPP/4oSZo5c6ZcLpdGjhzJtVhJbfpx5MiReu21\n17R161ZduHBBM2fOvNphNmpOp1MhISHGtt1ul9PprDH5506rBxUVFV3Rc2geUlNT9eyzz1a4G+/n\n56ff/e53Sk5OZh5KM+ZyuVRaWipJ2rdvn2655ZYKzwEwpx07dujw4cN68MEHPR1Ko+JyufTuu+/q\nySef9HQojZrL5VJGRoZmz56tCRMm6O2331Z+fr6nw2p0du7cqUGDBmnlypWaPn264uPj+ey9Ckha\nPSgsLEwOh6PK/i+++KJWE5LRtLVo0UIWi6Xa/QEBAerWrZsHooIZ3H777ZozZ45iY2Pl4+Ojn//8\n55IuzpP38/PzcHRoTGw2m7Kzs43t7Oxs2Wy2S7YpLS1VQUGBWrdufVXjNLPa9KEkffXVV/rkk080\ndepUhrdWUlMfnj9/XseOHdPcuXP1wgsv6LvvvlNsbKy+//57T4RrSrX9uxweHi4vLy+1bdtWP/vZ\nz5SRkXG1QzW12vRjUlKS+vfvL0nq1q2biouLlZeXd1XjbMxsNpuysrKM7Uv9m1kZSasHjRkzRtu2\nbdOcOXP07rvv6t1339Xs2bOVlJSk3/zmN54ODx7WoUMHbd++vcr+HTt2qEOHDh6ICGYxYsQIjR49\nWoMGDdK8efOMHzdcLhf/duCyhIWFKSMjQ6dOnVJJSYmSk5MVHh5eoc2tt96qbdu2Sbq4cmv37t2r\n/UGtuapNHx45ckSrVq3S1KlTmUdYjZr60M/PT2vWrFFCQoISEhLUtWtXTZ06ldWDy6nNdXjbbbdp\n//79kqSzZ88qIyND7dq180S4plWbfgwJCdG+ffskScePH1dxcTHTJS5DeHi4duzYIbfbrUOHDsnP\nz69W84ItblZT8Lh9+/bp2LFjkqRrr722wlA/NF9Op1OLFi2Sj4+Pcef9+++/V1FRkaZMmVKrX6UA\noCZ79uzRunXr5HK5NHjwYI0YMUIbN25UWFiYwsPDVVRUpOXLl+vIkSPy9/fXxIkT+aJbSU19OH/+\nfP3www8KCgqSdPFL77Rp0zwctbnU1IflzZkzR6NHjyZpraSmPnS73Xr33XeVlpamFi1aaMSIEbr9\n9ts9Hbbp1NSPx48f19tvv63z589LkkaNGqVevXp5OGrzWLp0qQ4cOKC8vDwFBgbqkUceUUlJiSTp\n7rvvltvt1po1a7R37175+PgoKiqqVn+XSVoBkyv/o0bHjh3Vo0cPD0cEAAAAXD0krQAAAAAA02JO\nKwAAAADAtEhaAQAAAACmRdIKAAAAADAtklYAAAAAgGmRtAIAAAAATIukFQAAAABgWiStAAAAAADT\n+v8A7A1qnoZXPPwAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x108e8b70>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig, axes = plt.subplots(nrows=math.ceil(len(plot_columns)/ncols), ncols=ncols,figsize=(16,24))\n", | |
"\n", | |
"\n", | |
"def round_data(df):\n", | |
" round_columns=['age','fare']\n", | |
" for col in round_columns:\n", | |
" df[col]=df[col].round()\n", | |
" return df\n", | |
"\n", | |
"def convert_to_str(df):\n", | |
" str_col=['cabin']\n", | |
" for col in str_col:\n", | |
" df[col]=[str(i) for i in df[col]]\n", | |
" return df\n", | |
"\n", | |
"def convert_sex_to_int(df):\n", | |
" df['sex']=[0 if i=='male' else 1 for i in df['sex']]\n", | |
" return df\n", | |
"\n", | |
"data.pipe(round_data).pipe(convert_to_str).pipe(convert_sex_to_int)\n", | |
"\n", | |
" \n", | |
"for i,column in enumerate(plot_columns):\n", | |
" data[column].value_counts().sort_index().plot.bar(ax=axes[i//2][i%2],title=column)\n", | |
" " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 99, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEqCAYAAAAbLptnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGbRJREFUeJzt3XtQVOfhxvFnWURdQWABL9CaSDImaK1acSTaCsWNSTUT\nTRvtqDFjM0nGYDTaJtWaNk6ttpjE4njJJMaMdhonybRJMfHXqekOEbWoAwGbi/UWb3UIIiwiiIiw\n5/eHk22pRlZdOMvL9/OXZ/fs7nN2D88c3333HIdlWZYAAMaKsDsAAKB9UfQAYDiKHgAMR9EDgOEo\negAwHEUPAIaj6AHAcBQ9ABiOogcAw1H06JJ2796tsWPHKiYmRjExMRo2bJi2b98uSTpz5oxmz56t\npKQkxcTEaOzYsdq5c2fgsS+++KLi4uJ04sSJwG3Lli1TUlKSysvLO3pTgDY5OAUCuprm5mb16dNH\ns2fP1lNPPSVJ+uyzz5SYmKj09HSNHDlSaWlp+sUvfqG4uDi98847WrZsmfbv36+0tDRZlqX7779f\n58+f165du1RUVKTx48crPz9fkyZNsnnrgKtR9Ohyampq5Ha79dFHHykrK6vVfZs3b9Yvf/lLnThx\nQpGRkYHbs7Oz9e1vf1urV6+WdOWof9iwYfrhD3+oDz74QA8//LDy8vI6cjOAoEW2vQpglvj4eD3+\n+OO67777lJ2drczMTD300EO66667VFxcrIqKCsXFxbV6zKVLl9SzZ8/Act++fbVp0yZNnDhRw4YN\n08qVKzt6M4CgUfTokl5//XU988wz+vDDD/X3v/9dv/rVr7Ru3Tr5/X6lpaXpL3/5y1WPcblcrZYL\nCwvldDp15swZ1dbWKikpqaPiAzeEoRtA0pw5c1RcXKycnBzNnz9fx48fV58+fb52fa/Xqx/84Af6\n4IMP9MILLygpKUnbtm2Tw+HowNRAcJh1gy7n6NGjWrRokXbv3q2TJ09qz5492rVrlwYPHqyZM2dq\n4MCBmjRpkj788EOdOHFC+/bt0+9+9zvl5+dLks6ePatZs2bpueee0/3336+33npLu3btCozfA2HH\nArqY8vJy66GHHrJSUlKsqKgoq3///tbjjz9unTt3zrIsy6qqqrLmzJljJScnW926dbOSk5OtKVOm\nWKWlpZbf77cmTpxojR492rp8+XLgObds2WJFRUVZpaWldm0W8LUYugEAwzF0AwCGo+gBwHAUPQAY\njqIHAMNR9ABguLD5ZSxn/QudxMREVVVV2R0DuAr7ZmglJycHtR5H9ABgOIoeAAxH0QOA4cJmjP5/\nWZalxsZG+f3+sDxRlGVZioiIUI8ePcIyHwB8JWyLvrGxUd26dWt18Ydw09zcrMbGxlbnKQeAcBO2\nQzd+vz+sS16SIiMj5ff77Y4BANcVtkXfWYZDOktOAF1X2BY9ACA0wnts5L+0PPFgSJ/P+fr7Qa33\n0Ucf6YUXXpDf79f06dP19NNPhzQHALS3TlP0dmhpadHzzz+vt956S/3799fEiRM1YcIEDRo0yO5o\nQCuTtxy0O4JRts682+4IIcXQzXWUlZXp9ttv12233aaoqChNnjxZ27dvtzsWANwQiv46KioqWp1L\non///qqoqLAxEQDcOIoeAAxH0V9Hv379Wp1V88svv1S/fv1sTAQAN46iv47hw4fr+PHjOnXqlJqa\nmrR161ZNmDDB7lgAcEM6zaybYKdDhlJkZKSWL1+uGTNmyO/368c//rHuuuuuDs8BALei0xS9XcaP\nH6/x48fbHQMAbhpDNwBgOIoeAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwnWZ6ZajPzhfM2el++tOfyuv1\nKjExUQUFBSF9fQDoKEEV/dy5c9WjRw9FRETI6XQqNzdX9fX1ysvL09mzZ5WUlKSFCxcqOjpalmVp\n06ZNKisrU/fu3ZWTk6PU1NT23o52MW3aNP3kJz/RM888Y3cUALhpQR/RL126VL179w4s5+fna+jQ\noZoyZYry8/OVn5+vRx55RGVlZaqoqNCaNWt05MgRbdy4Ub/97W/bJXx7y8jI0L///W+7YwDALbnp\nMfri4mJlZmZKkjIzM1VcXCxJKikp0bhx4+RwODRo0CBduHBBNTU1oUkLALhhQR/Rr1ixQpJ07733\nyuPxqLa2VvHx8ZKkuLg41dbWSpJ8Pp8SExMDj0tISJDP5wus+xWv1yuv1ytJys3NbfUYSTpz5owi\nI9vvK4Rgn9vpdF53/e7du1+V3W6RkZFhlwnoTEz7+wmq7X7zm9/I7XartrZWy5cvb3UxDklyOBxy\nOBw39MIej0cejyewXFVV1er+S5cuBUq2PTQ3Nwe1XktLy3XXv3Tp0lXZ7ZaYmBh2mYDOpLP8/fxv\nF3+doIZu3G63JCk2NlajRo3S0aNHFRsbGxiSqampCYzfu93uVm9SdXV14PEAgI7X5hF9Y2OjLMtS\nz5491djYqE8++UQPP/yw0tPTVVhYqClTpqiwsFCjRo2SJKWnp+tvf/ubxo4dqyNHjsjlcl01bHMz\n7LhYb05Ojvbs2SOfz6eRI0fq2Wef1fTp0zs8BwDcijaLvra2Vi+//LKkK8MY3/3udzV8+HDdcccd\nysvLU0FBQWB6pSSNGDFCpaWlmj9/vqKiopSTk9O+W9COXnnlFbsjAMAtc1iWZdkdQlKrS/ZJUkND\ng1wul01pgheOORmj73pC/YPCrs6OEYSbEdIxegBA5xW2RR8m/9FoU2fJCaDrCtuij4iICHoKpF2a\nm5sVERG2byEASArjk5r16NFDjY2NunTp0g3P0e8IlmUpIiJCPXr0sDsKAFxX2Ba9w+FQz5497Y4B\nAJ0e4w4AYLiwPaIHELz3dvzc7ghmmfm+3QlCiiN6ADAcRQ8AhqPoAcBwFD0AGI6iBwDDUfQAYDiK\nHgAMR9EDgOEoegAwHEUPAIaj6AHAcBQ9ABiOogcAw1H0AGA4ih4ADEfRA4DhKHoAMBxFDwCGo+gB\nwHAUPQAYjqIHAMNR9ABguMhgV/T7/Vq8eLHcbrcWL16syspKrV69WnV1dUpNTdW8efMUGRmpy5cv\na926dTp27JhiYmK0YMEC9enTpz23AQBwHUEf0f/1r39VSkpKYPnNN9/UpEmTtHbtWvXq1UsFBQWS\npIKCAvXq1Utr167VpEmTtGXLltCnBgAELaiir66uVmlpqcaPHy9JsixLn3/+uTIyMiRJWVlZKi4u\nliSVlJQoKytLkpSRkaHPPvtMlmW1Q3QAQDCCGrrZvHmzHnnkEV28eFGSVFdXJ5fLJafTKUlyu93y\n+XySJJ/Pp4SEBEmS0+mUy+VSXV2devfu3eo5vV6vvF6vJCk3N1eJiYmh2SIoMjKS97OLOWN3AMOY\n9vfTZtF//PHHio2NVWpqqj7//POQvbDH45HH4wksV1VVhey5u7rExETeT+AWdJa/n+Tk5KDWa7Po\nDx06pJKSEpWVlampqUkXL17U5s2b1dDQoJaWFjmdTvl8PrndbklXju6rq6uVkJCglpYWNTQ0KCYm\n5ta2BgBw09oco58xY4ZeffVVrV+/XgsWLNC3vvUtzZ8/X0OGDNHevXslSTt27FB6erokaeTIkdqx\nY4ckae/evRoyZIgcDkf7bQEA4Lpueh79zJkztW3bNs2bN0/19fXKzs6WJGVnZ6u+vl7z5s3Ttm3b\nNHPmzJCFBQDcOIcVJlNiysvL7Y5gDMbou56WJx60O4JRnK+/b3eEoAQ7Rs8vYwHAcBQ9ABiOogcA\nw1H0AGA4ih4ADEfRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAxH0QOA4Sh6ADAc\nRQ8AhmvzmrH4j8lbDtodwShbZ95tdwSgS+CIHgAMR9EDgOEoegAwHEUPAIaj6AHAcBQ9ABiOogcA\nw1H0AGA4ih4ADEfRA4DhKHoAMFyb57ppamrS0qVL1dzcrJaWFmVkZGjatGmqrKzU6tWrVVdXp9TU\nVM2bN0+RkZG6fPmy1q1bp2PHjikmJkYLFixQnz59OmJbAADX0OYRfbdu3bR06VK99NJLevHFF7V/\n/34dPnxYb775piZNmqS1a9eqV69eKigokCQVFBSoV69eWrt2rSZNmqQtW7a0+0YAAL5em0XvcDjU\no0cPSVJLS4taWlrkcDj0+eefKyMjQ5KUlZWl4uJiSVJJSYmysrIkSRkZGfrss89kWVY7xQcAtCWo\n0xT7/X4tWrRIFRUVuu+++9S3b1+5XC45nU5Jktvtls/nkyT5fD4lJCRIkpxOp1wul+rq6tS7d+92\n2gQAwPUEVfQRERF66aWXdOHCBb388ssqLy+/5Rf2er3yer2SpNzcXCUmJt7yc6Jz4TMPnTN2BzCM\nafvmDV14pFevXhoyZIgOHz6shoYGtbS0yOl0yufzye12S7pydF9dXa2EhAS1tLSooaFBMTExVz2X\nx+ORx+MJLFdVVd3ipqCz4TNHuOos+2ZycnJQ67U5Rn/+/HlduHBB0pUZOJ988olSUlI0ZMgQ7d27\nV5K0Y8cOpaenS5JGjhypHTt2SJL27t2rIUOGyOFw3Mw2AABCoM0j+pqaGq1fv15+v1+WZemee+7R\nyJEj9Y1vfEOrV6/W22+/rYEDByo7O1uSlJ2drXXr1mnevHmKjo7WggUL2n0jAABfz2GFyZSYUIz7\ntzeuGRtaXDM2dFqeeNDuCEZxvv6+3RGCErKhGwBA50bRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIH\nAMNR9ABgOIoeAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwFD0AGI6iBwDDUfQAYDiKHgAMR9EDgOEoegAw\nHEUPAIaj6AHAcBQ9ABiOogcAw1H0AGA4ih4ADEfRA4DhKHoAMBxFDwCGo+gBwHCRba1QVVWl9evX\n69y5c3I4HPJ4PJo4caLq6+uVl5ens2fPKikpSQsXLlR0dLQsy9KmTZtUVlam7t27KycnR6mpqR2x\nLQCAa2jziN7pdGrWrFnKy8vTihUrtH37dp0+fVr5+fkaOnSo1qxZo6FDhyo/P1+SVFZWpoqKCq1Z\ns0ZPPvmkNm7c2O4bAQD4em0WfXx8fOCIvGfPnkpJSZHP51NxcbEyMzMlSZmZmSouLpYklZSUaNy4\ncXI4HBo0aJAuXLigmpqadtwEAMD1tDl0898qKyt1/Phx3XnnnaqtrVV8fLwkKS4uTrW1tZIkn8+n\nxMTEwGMSEhLk8/kC637F6/XK6/VKknJzc1s9Bl0Dn3nonLE7gGFM2zeDLvrGxkatWrVKs2fPlsvl\nanWfw+GQw+G4oRf2eDzyeDyB5aqqqht6PDo/PnOEq86ybyYnJwe1XlCzbpqbm7Vq1Sp973vf0+jR\noyVJsbGxgSGZmpoa9e7dW5LkdrtbvUnV1dVyu903FB4AEDptFr1lWXr11VeVkpKiBx54IHB7enq6\nCgsLJUmFhYUaNWpU4PadO3fKsiwdPnxYLpfrqmEbAEDHaXPo5tChQ9q5c6cGDBig5557TpI0ffp0\nTZkyRXl5eSooKAhMr5SkESNGqLS0VPPnz1dUVJRycnLadwsAANflsCzLsjuEJJWXl9sdoU2Ttxy0\nO4JRts682+4Ixmh54kG7IxjF+fr7dkcISkjH6AEAnRdFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoe\nAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwFD0AGI6iBwDDUfQAYDiKHgAMR9EDgOEoegAwHEUPAIaj6AHA\ncBQ9ABiOogcAw1H0AGA4ih4ADEfRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNFtrXCK6+8otLS\nUsXGxmrVqlWSpPr6euXl5ens2bNKSkrSwoULFR0dLcuytGnTJpWVlal79+7KyclRampqu29ER3lv\nx8/tjmCWme/bnQDoEto8os/KytKSJUta3Zafn6+hQ4dqzZo1Gjp0qPLz8yVJZWVlqqio0Jo1a/Tk\nk09q48aN7ZMaABC0Not+8ODBio6ObnVbcXGxMjMzJUmZmZkqLi6WJJWUlGjcuHFyOBwaNGiQLly4\noJqamnaIDQAIVptDN9dSW1ur+Ph4SVJcXJxqa2slST6fT4mJiYH1EhIS5PP5Auv+N6/XK6/XK0nK\nzc1t9bhwdcbuAIbpDJ95Z8G+GVqm7Zs3VfT/zeFwyOFw3PDjPB6PPB5PYLmqqupWo6CT4TNHuOos\n+2ZycnJQ693UrJvY2NjAkExNTY169+4tSXK73a3eoOrqarnd7pt5CQBAiNxU0aenp6uwsFCSVFhY\nqFGjRgVu37lzpyzL0uHDh+Vyua45bAMA6DhtDt2sXr1aBw4cUF1dnebMmaNp06ZpypQpysvLU0FB\nQWB6pSSNGDFCpaWlmj9/vqKiopSTk9PuGwAAuD6HZVmW3SEkqby83O4IbWp54kG7IxjF+Trz6EOF\nfTO0Osu+2a5j9ACAzoOiBwDDUfQAYDiKHgAMR9EDgOEoegAwHEUPAIaj6AHAcBQ9ABiOogcAw1H0\nAGA4ih4ADEfRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAxH0QOA4Sh6ADAcRQ8A\nhqPoAcBwFD0AGI6iBwDDUfQAYDiKHgAMR9EDgOEi2+NJ9+/fr02bNsnv92v8+PGaMmVKe7wMACAI\nIT+i9/v9euONN7RkyRLl5eXpH//4h06fPh3qlwEABCnkRX/06FH169dPffv2VWRkpMaMGaPi4uJQ\nvwwAIEghH7rx+XxKSEgILCckJOjIkSNXref1euX1eiVJubm5Sk5ODnWU0Pu/ErsTANfGvonrsO3L\nWI/Ho9zcXOXm5toVwViLFy+2OwJwTeyb9gh50bvdblVXVweWq6ur5Xa7Q/0yAIAghbzo77jjDn35\n5ZeqrKxUc3OzioqKlJ6eHuqXAQAEKeRj9E6nU4899phWrFghv9+v73//+/rmN78Z6pfBdXg8Hrsj\nANfEvmkPh2VZlt0hAADth1/GAoDhKHoAMBxFDwCGo+gBwHDtclIzAKivr7/u/dHR0R2UBMy66cQe\nffRRORyOr73/D3/4QwemAVqbO3euHA6HLMtSVVWVoqOjZVmWLly4oMTERK1fv97uiF0GRW+Ad955\nR3FxcRo3bpwsy9Lu3bt18eJFTZ482e5ogDZs2KD09HR95zvfkSSVlZXp008/1aOPPmpzsq6DMXoD\n/POf/9R9992nnj17yuVyacKECdq3b5/dsQBJ0hdffBEoeUkaMWKEDhw4YGOiroeiN0BERIR27dol\nv98vv9+vXbt2KSKCjxbhoXfv3nr33XdVWVmpyspKvffee4qJibE7VpfC0I0BKisrtXnzZh06dEiS\ndNddd2n27Nnq06ePzcmAK1/K/ulPf9K//vUvSVJaWpqmTp3Kl7EdiKIHAMMxvdIA5eXl2rhxo2pr\na7Vq1SqdPHlSJSUl+tGPfmR3NEDnz5/X1q1bdfr0aTU1NQVuX7p0qY2puhYGcg3w2muvacaMGXI6\nnZKk2267TUVFRTanAq5Ys2aNUlJSVFlZqalTpyopKUl33HGH3bG6FIreAE1NTbrzzjtb3caXsQgX\ndXV1ys7OltPp1ODBg5WTk3PNy4ui/TB0Y4CYmBhVVFQEfjy1d+9excfH25wKuCIy8krNxMfHq7S0\nVPHx8fL5fDan6lr4MtYAZ86c0YYNG3To0CH16tVLffr00fz585WUlGR3NEAff/yx0tLSVFVVpU2b\nNqmhoUFTp07lynMdiKI3gN/vV0REhBobG2VZlnr27Gl3JABhhIFcA8ydO1evvfaajhw5oh49etgd\nB2ilvLxcy5Yt089+9jNJ0smTJ/Xuu+/anKproegNsHr1ag0dOlTbt2/X008/rTfeeEMHDx60OxYg\niVlh4YCiN0D37t01ZswYPfvss1q5cqUuXrzIHGWEDWaF2Y9ZN4Y4cOCAioqKtH//fqWmpmrhwoV2\nRwIkMSssHPBlrAHmzp2r22+/Xffcc4/S09MZp0dYYVaY/Sh6AzQ0NMjlctkdA2hl27ZtrZabmprk\n9/sDByIPPPCAHbG6JIZuOrGtW7dq8uTJevvtt695/2OPPdbBiYD/uHjxoqQrs26++OKLwLz5Xbt2\nKS0tzc5oXQ5F34mlpKRIklJTU21OAlxt6tSpkqTly5dr5cqVgd93TJ06Vb///e/tjNblUPSd2FdH\nSAMGDKDsEbaqqqoCp0GQrpwS4ezZszYm6nooegP88Y9/1Llz5zR69GiNGTNGAwYMsDsSEDBu3Dgt\nWbJEo0aNkiQVFxcrMzPT5lRdC1/GGuLcuXMqKirSnj171NDQoDFjxnA+eoSNY8eOBX7El5aWpoED\nB9qcqGuh6A1z6tQpbd26VUVFRXrrrbfsjgMgDFD0Bjh9+rSKioq0b98+xcTEaMyYMRo9erRiY2Pt\njgYgDFD0Bnj++ec1duxYZWRkyO122x0HQJjhy9hOzu/3q2/fvpo4caLdUQCEKc4s1MlFRESorq5O\nzc3NdkcBEKYYujHAhg0bdPz4cY0cObLVeW74iTkAiaEbI8THxys+Pl6WZQV+dg4AX+GIHgAMxxG9\nAX79619f83YuPgJAouiNMGvWrMC/m5qatG/fvsBl2wCAojfA/57Q7O677+ZoHkAARW+A+vr6wL/9\nfr+OHTumc+fO2ZgIQDih6A2waNEiORwOWZalyMhIJSUl6amnnrI7FoAwQdEbYObMmRo+fLhcLpf+\n/Oc/6/jx44qKirI7FoAwwS9jDfDee+/J5XLp4MGD+vTTT5WVlaWNGzfaHQtAmKDoDRARceVjLC0t\n1b333qtRo0ZxSgQAARS9AdxutzZs2KCioiKNGDFCly9fFr+DA/AVfhlrgEuXLmn//v0aMGCA+vfv\nr5qaGp06dUrDhg2zOxqAMEDRA4DhGLoBAMNR9ABgOIoeAAxH0QOA4f4fTjUQCFX9IhgAAAAASUVO\nRK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1236c160>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEqCAYAAAAbLptnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG+lJREFUeJzt3Xl0VPXBxvFnMpHs2yQBDRVroFTAqJigEWwScRCPuNCj\nSBW1bi/aUDa1laotrduJVRpOEI9gLPZUWq1KQ7VaNSeHQBuh2agKZVGoiCmEZELISkjmvn/wOm9T\nlgww4c788v38lZm5c+e5M5Pn3PO7v7nXYVmWJQCAscLsDgAA6F8UPQAYjqIHAMNR9ABgOIoeAAxH\n0QOA4Sh64P/k5eXp3nvvtTsGEHAUPQAYjqIHAMNR9DBGXl6e7r77bi1YsEApKSmKj4/XzJkz1dnZ\n6Vtm6dKlGj16tCIiIjR48GDdeOONx1zfhx9+qLy8PLlcLiUkJCg3N1d///vfey1TXFysUaNGKTIy\nUi6XSzk5Odq9e7ck6cCBA7rrrrt05plnKiIiQmeffbYeeOCB/tl44DjC7Q4ABNKbb76p6dOna926\ndfrss890zz33KCYmRoWFhVq4cKEWLVqkgoICXXXVVWptbdV77713zHW1trYqPz9fF154obq7u1VY\nWKirr75a27dvV3Jysqqrq3X//ffr17/+tXJzc3XgwAFt2LDB9/zHHntMNTU1Wr16tc466yzt3r1b\nmzZtOh1vA9CbBRgiNzfXOuecc6zu7m7ffcuWLbMiIiKs1tZWKzIy0nr22WeP+/x77rnnmI/39PRY\niYmJ1quvvmpZlmWtWrXKio+Pt5qbm4+6/PXXX299//vfP7mNAQKIoRsY5ZJLLpHT6fTdnjBhgg4e\nPKjq6mp1dnbqqquu8ntdO3fu1O23364RI0YoPj5e8fHxam5u1hdffCFJmjRpktLT03Xuuefqe9/7\nnpYvX66Ghgbf8/Pz8/Xmm2/q/PPP19y5c/Xee+/J6/UGbmMBP1H0wDFce+212rVrl5YuXar169dr\n48aNGjx4sLq6uiRJsbGxqqqq0h//+EeNHDlSL774okaMGKHq6mpJ0uTJk7Vr1y49+uij6uzs1G23\n3aaJEyeqp6fHzs3CAETRwyiVlZW9irSiokIRERG68MILFRkZqQ8++MCv9TQ2Nmrz5s1asGCBJk+e\nrNGjRysyMlL19fW9lnM6ncrJydHjjz+u6upqnXXWWfrd737ne9zlcumWW27RsmXL9Oc//1nl5eXa\nvHlzYDYW8BMHY2GUxsZGzZo1S3PnztWOHTv005/+VPfdd58SEhL04IMP6uc//7mioqI0adIkdXR0\n6N1339VPfvKTI9aTlJSk1NRUvfTSSxo+fLgaGxv14x//WFFRUb5lVq9erR07dignJ0epqamqrq7W\nl19+qdGjR0uSHn30UWVmZmrMmDEKCwvTypUrFRsbq2HDhp229wOQKHoY5qabblJcXJwuv/xydXV1\nafr06SooKJAkPfHEE0pNTVVRUZHmz5+vpKQk5eTkHHU9YWFheuONNzRnzhxdcMEFOuecc/T000/r\n4Ycf9i2TlJSkt99+W08//bRaWlp09tln67HHHtM999wjSYqMjNTPfvYz/etf/5LT6dRFF12k9957\nTwkJCf3/RgD/wWFZXGEKZsjLy9OIESNUXFxsdxQgqDBGDwCGo+gBwHAM3QCA4dijBwDDUfQAYLig\nmV5ZV1dndwRjpKSk9PopPhAs+G4GVlpaml/LsUcPAIaj6AHAcBQ9ABguaMbo/5tlWers7JTX65XD\n4bA7zhEsy1JYWJgiIyODMh8AfC1oi76zs1NnnHGGwsODNqK6u7vV2dnZ60RXABBsgnboxuv1BnXJ\nS1J4eDgXkgAQ9IK26ENlOCRUcgIYuIK26AEAgRHcYyP/oed/rg/o+pwv/anPZR544AGVlpYqJSVF\nZWVlAX19ADhdQqbo7XDzzTfrrrvu0ty5c+2OAhzX26/vtzuCn0Ij53XTE+2OEFAM3RxHdna2EhPN\n+sABDDwUPQAYjqIHAMNR9ABgOIoeAAwXMrNu/JkOGWj5+fn66KOP5PF4lJmZqYceeki33HLLac8B\nAKciZIreDi+88ILdEQDglDF0AwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAwXMtMrb1i5JaDrWz3j\nvD6X+eqrrzR37lw1NDTI4XBoxowZuvfeewOaAwD6m19FP2vWLEVGRiosLExOp1MFBQVqbW1VYWGh\n9u3bp9TUVM2fP1+xsbGyLEsrVqxQbW2tIiIilJ+fr/T09P7ejn4RHh6uhQsXKiMjQ62trbr66quV\nk5OjkSNH2h0NAPzm9x79woULFR8f77tdUlKijIwMTZ06VSUlJSopKdFtt92m2tpa7dmzR0VFRdq+\nfbuKi4v19NNP90v4/jZkyBANGTJEkhQbG6tvfetb2rNnD0UPIKSc9Bh9ZWWlcnNzJUm5ubmqrKyU\nJFVVVSknJ0cOh0MjR45UW1ubmpqaApPWRl9++aU+/fRTjR071u4oAHBC/N6jf+qppyRJkyZNktvt\nVnNzs5KSkiRJiYmJam5uliR5PB6lpKT4npecnCyPx+Nb9mulpaUqLS2VJBUUFPR6jiTt3btX4eH9\ndwjhRNbd1tammTNn6sknnzxiOyIiIo7Ibrfw8PCgy4T+FhpXbgoVpv3/+NV2TzzxhFwul5qbm/Xk\nk08qLS2t1+MOh0MOh+OEXtjtdsvtdvtuNzQ09Hr84MGDcjqdJ7TOE9Hd3e3XcocOHdJdd92lqVOn\navLkyUc87+DBg0dkt1tKSkrQZQJCSaj8//x3Fx+LX0M3LpdLkpSQkKBx48bps88+U0JCgm9Ipqmp\nyTd+73K5er1JjY2NvueHGsuy9OCDD2rEiBG677777I4DACelzz36zs5OWZalqKgodXZ26uOPP9ZN\nN92krKwslZeXa+rUqSovL9e4ceMkSVlZWfrLX/6iCRMmaPv27YqOjj5iuONk+DMdMtAqKyv11ltv\nadSoUZo0aZIkacGCBbryyitPexYAOFl9Fn1zc7Oee+45SVJPT48uv/xyXXTRRRo+fLgKCwtVVlbm\nm14pSWPHjlVNTY3mzJmjQYMGKT8/v3+3oB9dcskl+uqrr+yOAQCnxGFZlmV3CEmqq6vrdbu9vV3R\n0dE2pfFfMOZkjH7geft1DsYG0nXTE+2O4JeAjtEDAEIXRQ8AhqPoAcBwFD0AGI6iBwDDhcxpigM9\nq8Cfo+qdnZ268cYbdfDgQfX09GjKlCl66KGHApoDAPpbyBS9HSIiIvSHP/xBMTExOnTokL773e/q\niiuuUGZmpt3RAMBvDN0ch8PhUExMjKTD58Y5dOjQCZ/TBwDsRtH3oaenR5MmTdIFF1ygnJwcXXzx\nxXZHAoATQtH3wel06sMPP1RVVZVqa2u1ZUtgL2kIAP2NovdTQkKCJkyYoDVr1tgdBQBOCEV/HI2N\njb4LqnR0dGjt2rUaPny4zakA4MSEzKwbO04ytHfvXs2bN09er1der1fXXXed73TFABAqQqbo7TB6\n9Gh98MEHdscAgFPC0A0AGI6iBwDDBW3RB8n1UPoUKjkBDFxBW/RhYWHq7u62O8ZxdXd3KywsaN9C\nAJAUxAdjIyMj1dnZqYMHDwblaQcsy1JYWJgiIyPtjgIAxxW0Re9wOBQVFWV3DAAIeYw7AIDhKHoA\nMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAxH0QOA4fz+ZazX69WCBQvkcrm0YMEC1dfXa/Hi\nxWppaVF6erpmz56t8PBwHTp0SM8//7x27NihuLg4zZs3T4MHD+7PbQAAHIffe/Tvvvuuhg4d6rv9\n6quvasqUKVqyZIliYmJUVlYmSSorK1NMTIyWLFmiKVOmaOXKlYFPDQDwm19F39jYqJqaGl155ZWS\nDp/Qa9OmTcrOzpYk5eXlqbKyUpJUVVWlvLw8SVJ2drY+/fRTTuULADbya+jmlVde0W233aaOjg5J\nUktLi6Kjo+V0OiVJLpdLHo9HkuTxeJScnCxJcjqdio6OVktLi+Lj43uts7S0VKWlpZKkgoICpaSk\nBGaLoPDwcN7PAWe/3QGMYtr/T59FX11drYSEBKWnp2vTpk0Be2G32y232+273dDQELB1D3QpKSm8\nn8ApCJX/n7S0NL+W67Pot27dqqqqKtXW1qqrq0sdHR165ZVX1N7erp6eHjmdTnk8HrlcLkmH9+4b\nGxuVnJysnp4etbe3Ky4u7tS2BgBw0voco7/11lv14osvaunSpZo3b57OP/98zZkzR2PGjNH69esl\nSWvWrFFWVpYkKTMzU2vWrJEkrV+/XmPGjAnKC4cAwEBx0vPoZ8yYoXfeeUezZ89Wa2urJk6cKEma\nOHGiWltbNXv2bL3zzjuaMWNGwMICAE6cwwqSKTF1dXV2RzAGY/QDz9uvczA2kK6bnmh3BL/4O0bP\nL2MBwHAUPQAYjqIHAMNR9ABgOIoeAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwFD0AGI6iBwDDUfQAYDiK\nHgAMR9EDgOEoegAwHEUPAIbr85qx+H+hc3GH0MgZKhd3AEIde/QAYDiKHgAMR9EDgOEoegAwHEUP\nAIaj6AHAcBQ9ABiOogcAw1H0AGA4ih4ADEfRA4Dh+jzXTVdXlxYuXKju7m719PQoOztbN998s+rr\n67V48WK1tLQoPT1ds2fPVnh4uA4dOqTnn39eO3bsUFxcnObNm6fBgwefjm0BABxFn3v0Z5xxhhYu\nXKhnn31Wv/zlL7Vx40Zt27ZNr776qqZMmaIlS5YoJiZGZWVlkqSysjLFxMRoyZIlmjJlilauXNnv\nGwEAOLY+i97hcCgyMlKS1NPTo56eHjkcDm3atEnZ2dmSpLy8PFVWVkqSqqqqlJeXJ0nKzs7Wp59+\nKsuy+ik+AKAvfp2m2Ov16uGHH9aePXs0efJkDRkyRNHR0XI6nZIkl8slj8cjSfJ4PEpOTpYkOZ1O\nRUdHq6WlRfHx8f20CQCA4/Gr6MPCwvTss8+qra1Nzz33nOrq6k75hUtLS1VaWipJKigoUEpKyimv\ns/+FxnneQ0VofOahgu9mIJn23TyhC4/ExMRozJgx2rZtm9rb29XT0yOn0ymPxyOXyyXp8N59Y2Oj\nkpOT1dPTo/b2dsXFxR2xLrfbLbfb7bvd0NBwipuCUMNnjmAVKt/NtLQ0v5brc4z+wIEDamtrk3R4\nBs7HH3+soUOHasyYMVq/fr0kac2aNcrKypIkZWZmas2aNZKk9evXa8yYMXI4HCezDQCAAOhzj76p\nqUlLly6V1+uVZVm67LLLlJmZqW984xtavHixXnvtNZ177rmaOHGiJGnixIl6/vnnNXv2bMXGxmre\nvHn9vhEAgGNzWEEyJSYQ4/79LXSuGRsauGZs4PDdDKxQ+W4GbOgGABDaKHoAMBxFDwCGo+gBwHAU\nPQAYjqIHAMNR9ABgOIoeAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwFD0AGI6iBwDDUfQAYDiKHgAMR9ED\ngOEoegAwHEUPAIaj6AHAcBQ9ABiOogcAw1H0AGA4ih4ADBdud4BQUty9x+4IRrlOiXZHAAYE9ugB\nwHAUPQAYjqIHAMNR9ABguD4PxjY0NGjp0qXav3+/HA6H3G63rrnmGrW2tqqwsFD79u1Tamqq5s+f\nr9jYWFmWpRUrVqi2tlYRERHKz89Xenr66dgWAMBR9LlH73Q6dfvtt6uwsFBPPfWU3n//fe3evVsl\nJSXKyMhQUVGRMjIyVFJSIkmqra3Vnj17VFRUpJkzZ6q4uLjfNwIAcGx9Fn1SUpJvjzwqKkpDhw6V\nx+NRZWWlcnNzJUm5ubmqrKyUJFVVVSknJ0cOh0MjR45UW1ubmpqa+nETAADHc0Lz6Ovr67Vz506N\nGDFCzc3NSkpKkiQlJiaqublZkuTxeJSSkuJ7TnJysjwej2/Zr5WWlqq0tFSSVFBQ0Os5GBj4zANp\nv90BjGLad9Pvou/s7NSiRYt05513Kjo6utdjDodDDofjhF7Y7XbL7Xb7bjc0NJzQ8xH6+MwRrELl\nu5mWlubXcn7Nuunu7taiRYv0ne98R5deeqkkKSEhwTck09TUpPj4eEmSy+Xq9SY1NjbK5XKdUHgA\nQOD0WfSWZenFF1/U0KFDde211/ruz8rKUnl5uSSpvLxc48aN892/du1aWZalbdu2KTo6+ohhGwDA\n6dPn0M3WrVu1du1aDRs2TD/60Y8kSbfccoumTp2qwsJClZWV+aZXStLYsWNVU1OjOXPmaNCgQcrP\nz+/fLQAAHJfDsizL7hCSVFdXZ3eEPt2wcovdEYyyesZ5dkcwxtuvczA2kK6bHhon3AvoGD0AIHRR\n9ABgOIoeAAzHhUcAA3BRnMAy7aI47NEDgOEoegAwHEUPAIaj6AHAcBQ9ABiOogcAw1H0AGA4ih4A\nDEfRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOM5HfwJWrfmx3RHMMuNPdicABgT26AHA\ncBQ9ABiOogcAw1H0AGA4ih4ADEfRA4DhKHoAMBxFDwCGo+gBwHB9/jL2hRdeUE1NjRISErRo0SJJ\nUmtrqwoLC7Vv3z6lpqZq/vz5io2NlWVZWrFihWpraxUREaH8/Hylp6f3+0YAAI6tzz36vLw8PfLI\nI73uKykpUUZGhoqKipSRkaGSkhJJUm1trfbs2aOioiLNnDlTxcXF/ZMaAOC3Pot+9OjRio2N7XVf\nZWWlcnNzJUm5ubmqrKyUJFVVVSknJ0cOh0MjR45UW1ubmpqa+iE2AMBfJ3VSs+bmZiUlJUmSEhMT\n1dzcLEnyeDxKSUnxLZecnCyPx+Nb9j+VlpaqtLRUklRQUNDrecFqr90BDBMKnzkGJtO+m6d89kqH\nwyGHw3HCz3O73XK73b7bDQ0NpxoFIYbPHMEqVL6baWlpfi13UrNuEhISfEMyTU1Nio+PlyS5XK5e\nb1BjY6NcLtfJvAQAIEBOquizsrJUXl4uSSovL9e4ceN8969du1aWZWnbtm2Kjo4+6rANAOD06XPo\nZvHixdq8ebNaWlp0//336+abb9bUqVNVWFiosrIy3/RKSRo7dqxqamo0Z84cDRo0SPn5+f2+AQCA\n43NYlmXZHUKS6urq7I7Qp57/ud7uCEZxvsQVpgLlhpVb7I5glNUzzrM7gl/6dYweABA6KHoAMBwX\nBwcMwIXrA8ywC9ezRw8AhqPoAcBwFD0AGI6iBwDDUfQAYDiKHgAMR9EDgOEoegAwHEUPAIaj6AHA\ncBQ9ABiOogcAw1H0AGA4ih4ADEfRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAxH\n0QOA4Sh6ADAcRQ8AhqPoAcBw4f2x0o0bN2rFihXyer268sorNXXq1P54GQCAHwK+R+/1evXyyy/r\nkUceUWFhof72t79p9+7dgX4ZAICfAl70n332mc4880wNGTJE4eHhGj9+vCorKwP9MgAAPwV86Mbj\n8Sg5Odl3Ozk5Wdu3bz9iudLSUpWWlkqSCgoKlJaWFugogffnKrsTAEfHdxPHYdvBWLfbrYKCAhUU\nFNgVwVgLFiywOwJwVHw37RHwone5XGpsbPTdbmxslMvlCvTLAAD8FPCiHz58uP7973+rvr5e3d3d\nqqioUFZWVqBfBgDgp4CP0TudTt1999166qmn5PV6dcUVV+jss88O9MvgONxut90RgKPiu2kPh2VZ\nlt0hAAD9h1/GAoDhKHoAMBxFDwCGo+gBwHD9clIzAGhtbT3u47GxsacpCZh1E8LuuOMOORyOYz7+\nm9/85jSmAXqbNWuWHA6HLMtSQ0ODYmNjZVmW2tralJKSoqVLl9odccCg6A3w+uuvKzExUTk5ObIs\nS3/961/V0dGhG264we5ogJYvX66srCxdfPHFkqTa2lp98sknuuOOO2xONnAwRm+Af/zjH5o8ebKi\noqIUHR2tq666Shs2bLA7FiBJ+vzzz30lL0ljx47V5s2bbUw08FD0BggLC9O6devk9Xrl9Xq1bt06\nhYXx0SI4xMfH66233lJ9fb3q6+u1atUqxcXF2R1rQGHoxgD19fV65ZVXtHXrVknSt7/9bd15550a\nPHiwzcmAwwdl33jjDf3zn/+UJI0aNUrTpk3jYOxpRNEDgOGYXmmAuro6FRcXq7m5WYsWLdIXX3yh\nqqoq3XjjjXZHA3TgwAGtXr1au3fvVldXl+/+hQsX2phqYGEg1wDLli3TrbfeKqfTKUk655xzVFFR\nYXMq4LCioiINHTpU9fX1mjZtmlJTUzV8+HC7Yw0oFL0Burq6NGLEiF73cTAWwaKlpUUTJ06U0+nU\n6NGjlZ+ff9TLi6L/MHRjgLi4OO3Zs8f346n169crKSnJ5lTAYeHhh2smKSlJNTU1SkpKksfjsTnV\nwMLBWAPs3btXy5cv19atWxUTE6PBgwdrzpw5Sk1NtTsaoOrqao0aNUoNDQ1asWKF2tvbNW3aNK48\ndxpR9Abwer0KCwtTZ2enLMtSVFSU3ZEABBEGcg0wa9YsLVu2TNu3b1dkZKTdcYBe6urq9Pjjj+vB\nBx+UJH3xxRd66623bE41sFD0Bli8eLEyMjL0/vvv64c//KFefvllbdmyxe5YgCRmhQUDit4AERER\nGj9+vB566CE988wz6ujoYI4yggazwuzHrBtDbN68WRUVFdq4caPS09M1f/58uyMBkpgVFgw4GGuA\nWbNm6Zvf/KYuu+wyZWVlMU6PoMKsMPtR9AZob29XdHS03TGAXt55551et7u6uuT1en07Itdee60d\nsQYkhm5C2OrVq3XDDTfotddeO+rjd99992lOBPy/jo4OSYdn3Xz++ee+efPr1q3TqFGj7Iw24FD0\nIWzo0KGSpPT0dJuTAEeaNm2aJOnJJ5/UM8884/t9x7Rp0/SrX/3KzmgDDkUfwr7eQxo2bBhlj6DV\n0NDgOw2CdPiUCPv27bMx0cBD0Rvgt7/9rfbv369LL71U48eP17Bhw+yOBPjk5OTokUce0bhx4yRJ\nlZWVys3NtTnVwMLBWEPs379fFRUV+uijj9Te3q7x48dzPnoEjR07dvh+xDdq1Cide+65NicaWCh6\nw+zatUurV69WRUWFfv/739sdB0AQoOgNsHv3blVUVGjDhg2Ki4vT+PHjdemllyohIcHuaACCAEVv\ngEcffVQTJkxQdna2XC6X3XEABBkOxoY4r9erIUOG6JprrrE7CoAgxZmFQlxYWJhaWlrU3d1tdxQA\nQYqhGwMsX75cO3fuVGZmZq/z3PATcwASQzdGSEpKUlJSkizL8v3sHAC+xh49ABiOPXoD/OIXvzjq\n/Vx8BIBE0Rvh9ttv9/3d1dWlDRs2+C7bBgAUvQH++4Rm5513HnvzAHwoegO0trb6/vZ6vdqxY4f2\n799vYyIAwYSiN8DDDz8sh8Mhy7IUHh6u1NRU/eAHP7A7FoAgQdEbYMaMGbrooosUHR2tN998Uzt3\n7tSgQYPsjgUgSPDLWAOsWrVK0dHR2rJliz755BPl5eWpuLjY7lgAggRFb4CwsMMfY01NjSZNmqRx\n48ZxSgQAPhS9AVwul5YvX66KigqNHTtWhw4dEr+DA/A1fhlrgIMHD2rjxo0aNmyYzjrrLDU1NWnX\nrl268MIL7Y4GIAhQ9ABgOIZuAMBwFD0AGI6iBwDDUfQAYLj/BXG+wVx36TlnAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0xa098908>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEqCAYAAAAbLptnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHm9JREFUeJzt3Xl0VOXBx/HvZCJLVjJJEEhFDYgCggJBItgEIUgxLnA8\nqCx6PC7VBqGgFHE5Uvsqb1wQynYUY6EVq9aqSaVadBoJ2Ahmoyoqi3BUDBCSCTEhIZDMff/gdF5T\ngUzwhps8+X3+YpI7d343M/M7D888947LsiwLERExVojTAUREpHWp6EVEDKeiFxExnIpeRMRwKnoR\nEcOp6EVEDKeilw7L5XKxdu3ak94WMUWo0wFEnLJv3z66devmdAyRVqeilw6rR48eTkcQOSM0dSNG\n+/DDDxk1ahSRkZFERkZyySWXsH79euDEUzUVFRXccMMNhIeHk5CQwO9///smv8/KyqJ///506dIF\nj8dDSkoKe/fuBWDNmjWEhobi9XoZOHAgXbp0YcSIEWzduvXMHKzISajoxVgNDQ1cd911jBgxguLi\nYoqLi/ntb39LWFjYSe/z2GOPMXr0aEpKSpg3bx73338/OTk5ABQVFXHPPffw4IMPsn37dvLy8rj1\n1lub3N/v9zNv3jxWrlzJxx9/THx8POnp6dTV1bXqsYqckiViKJ/PZwHWBx98cMLfA9ZLL73U5Pb0\n6dObbDNlyhTriiuusCzLst58800rKirKqqqqOuH+Vq9ebQGW1+ttkiE8PNzKysr6iUcjcvo0ohdj\nxcTEcOeddzJ+/HgmTJhAZmYm27dvP+V9Lr/88ia3R40axbZt2wAYN24ciYmJnH/++dx8882sWrWK\n8vLyU+4jJiaG/v37B/Yh4gQVvRjthRdeoKioiHHjxpGXl8fFF1/M888/f1r7ioiIoLCwkLfeeot+\n/frx3HPP0bdvX4qKimxOLWIvFb0Y7+KLL+a+++7j3Xff5Y477mDVqlUn3Xbz5s1Nbufn5zNgwIDA\nbbfbTUpKCr/73e8oKiqiZ8+e/PnPfz7pPg4dOsQXX3zRZB8iZ5qWV4qxdu3axQsvvMC1117LOeec\nQ2lpKZs2bWLo0KEnvc+6detYvnw548eP5x//+AevvfYar7/+OgA5OTns3r2blJQU4uPjKSoq4ttv\nv21S4i6Xi3nz5vHss88SExPDww8/TGRkJFOnTm314xU5GRW9GCs8PJydO3dy8803c/DgQWJjY0lP\nT+eZZ5456X0effRRvF4v8+bNIzo6mqeeeopJkyYBx+fb3377bRYuXEh1dTXnnHMOjzzyCHfccUfg\n/iEhISxcuJC7776b3bt3c8kll/D3v//9lCt9RFqby7L0DVMidlizZg133nknDQ0NTkcRaUJz9CIi\nhlPRi4gYTlM3IiKG04heRMRwKnoREcO1meWVpaWlTkcwRlxc3AlPzRdxml6b9urVq1dQ22lELyJi\nOBW9iIjhVPQiIoZT0YuIGE5FLyJiOBW9iIjhVPQiIoZT0YuIGE5FLyJiuDZzZqyInL5eWz91OkLQ\ngjuX01mllw5yOoKtNKIXETGcRvQiBlh81lNORzDKTbzkdARbaUQvImI4jehFDDCz88+cjmCUMqcD\n2EwjehERw6noRUQMp6IXETGcil5ExHAqehERw2nVjYgBHnmnp9MRjDJrltMJ7KURvYiI4VT0IiKG\nU9GLiBhORS8iYrigPoydMWMGXbp0ISQkBLfbTWZmJjU1NSxevJiDBw8SHx/PnDlziIiIwLIsVq9e\nTUlJCZ07dyYjI4PExMTWPg6RDu38s291OoK0YUGvulmwYAFRUVGB29nZ2QwaNIiJEyeSnZ1NdnY2\n06dPp6SkhP3797N06VJ27txJVlYWCxcubJXwIiLSvNOeuikoKCA1NRWA1NRUCgoKACgsLCQlJQWX\ny0W/fv04fPgwlZWV9qQVEZEWC3pE/8QTTwAwbtw40tLSqKqqIiYmBoBu3bpRVVUFgM/nIy4uLnC/\n2NhYfD5fYNv/8Hq9eL1eADIzM5vcR36a0NBQ/T07nENOBzCKae+foIr+f/7nf/B4PFRVVfH444/T\nq1fTLwNzuVy4XK4WPXBaWhppaWmB2+Xl5S26v5xcXFyc/p4iP0F7ef/8dxefTFBF7/F4AIiOjmb4\n8OHs2rWL6OhoKisriYmJobKyMjB/7/F4mvyRKioqAvcXkdaR1bDf6QhGuZZuTkewVbNz9EeOHKGu\nri7w708++YTevXuTlJREXl4eAHl5eQwfPhyApKQkNm7ciGVZ7Nixg7CwsB9N24iIyJnT7Ii+qqqK\nZ555BoDGxkauuOIKLr30Uvr06cPixYvJzc0NLK8EGDJkCMXFxcyaNYtOnTqRkZHRukcgIiKn5LIs\ny3I6BEBpaanTEYyhOfqO5/qXv3Q6glFypl3kdISgBDtHrzNjRUQMp6IXETGcil5ExHAqehERw6no\nRUQMp6IXETGcil5ExHAqehERw6noRUQMp6IXETGcil5ExHAqehERw6noRUQMp6IXETGcil5ExHAq\nehERw6noRUQMp6IXETGcil5ExHAqehERw6noRUQMp6IXETGcil5ExHAqehERw6noRUQMp6IXETGc\nil5ExHAqehERw6noRUQMFxrshn6/n/nz5+PxeJg/fz5lZWUsWbKE6upqEhMTmTlzJqGhoRw7dozl\ny5eze/duIiMjmT17Nt27d2/NYxARkVMIekT/zjvvkJCQELi9du1a0tPTWbZsGeHh4eTm5gKQm5tL\neHg4y5YtIz09nZdfftn+1CIiErSgir6iooLi4mLGjh0LgGVZbNu2jeTkZABGjx5NQUEBAIWFhYwe\nPRqA5ORkPvvsMyzLaoXoIiISjKCmbtasWcP06dOpq6sDoLq6mrCwMNxuNwAejwefzweAz+cjNjYW\nALfbTVhYGNXV1URFRTXZp9frxev1ApCZmUlcXJw9RySEhobq7ynyE5j2/mm26IuKioiOjiYxMZFt\n27bZ9sBpaWmkpaUFbpeXl9u2744uLi5Of88O5s0N85yOYJTyaX9zOkJQevXqFdR2zRb99u3bKSws\npKSkhKNHj1JXV8eaNWuora2lsbERt9uNz+fD4/EAx0f3FRUVxMbG0tjYSG1tLZGRkT/taERE5LQ1\nO0c/depUnnvuOVasWMHs2bO5+OKLmTVrFgMHDmTz5s0AbNiwgaSkJACGDRvGhg0bANi8eTMDBw7E\n5XK13hGIiMgpnfY6+mnTprFu3TpmzpxJTU0NY8aMAWDMmDHU1NQwc+ZM1q1bx7Rp02wLKyIiLeey\n2siSmNLSUqcjGENz9B1P413XOR3BKO4XzJqj15mxIiKGU9GLiBhORS8iYjgVvYiI4VT0IiKGU9GL\niBhORS8iYjgVvYiI4VT0IiKGU9GLiBhORS8iYjgVvYiI4VT0IiKGU9GLiBhORS8iYjgVvYiI4Zr9\nzlj5f913Peh0hODsgu5OZwhCWd//dTqCSIegom+BR97p6XQEo8ya5XQCkY5BUzciIobTiL4Fzj/7\nVqcjiIi0mEb0IiKGU9GLiBhORS8iYjjN0bdAVsN+pyMY5Vq6OR1BpEPQiF5ExHAqehERw6noRUQM\np6IXETFcsx/GHj16lAULFtDQ0EBjYyPJycnceOONlJWVsWTJEqqrq0lMTGTmzJmEhoZy7Ngxli9f\nzu7du4mMjGT27Nl0794errwiImKmZkf0Z511FgsWLODpp5/mqaeeYuvWrezYsYO1a9eSnp7OsmXL\nCA8PJzc3F4Dc3FzCw8NZtmwZ6enpvPzyy61+ECIicnLNFr3L5aJLly4ANDY20tjYiMvlYtu2bSQn\nJwMwevRoCgoKACgsLGT06NEAJCcn89lnn2FZVivFFxGR5gS1jt7v9/PAAw+wf/9+xo8fz9lnn01Y\nWBhutxsAj8eDz+cDwOfzERsbC4Db7SYsLIzq6mqioqJa6RBERORUgir6kJAQnn76aQ4fPswzzzxD\naWnpT35gr9eL1+sFIDMzk7i4uJ+8T2lf7H7OLcvC5/PR0NBg637tFhoaisfjweVy2bbPA7btScD+\n16bTWnRmbHh4OAMHDmTHjh3U1tbS2NiI2+3G5/Ph8XiA46P7iooKYmNjaWxspLa2lsjIyB/tKy0t\njbS0tMDt8vLyn3go0t7Y/ZzX1dVx1llnERratk/4PnbsGHv37qVr165OR5GTaC991KtXr6C2a3aO\n/vvvv+fw4cPA8RU4n3zyCQkJCQwcOJDNmzcDsGHDBpKSkgAYNmwYGzZsAGDz5s0MHDjQ1pGLyMn4\n/f42X/JwfETv9/udjiEdSLPvisrKSlasWIHf78eyLC6//HKGDRvGz372M5YsWcKrr77K+eefz5gx\nYwAYM2YMy5cvZ+bMmURERDB79uxWPwgRoF0NKNpTVmn/XFYbWRJjx7x/a7v+5S+djmCUnGkX2bq/\n2tpawsLCbN1na7E7a+Nd19m2LwH3C39zOkJQgp26afv/zxU5TXaXX7Bv/g8++IBHH30Uv9/PlClT\nuPfee23NIdJSugSCiI0aGxt5+OGHWbt2LR988AHZ2dns2LHD6VjSwanoRWxUUlLCeeedx7nnnkun\nTp24/vrrWb9+vdOxpINT0YvYaP/+/U3mTXv27Mn+/frCGnGWil5ExHAqehEb9ejRo8kKsn379tGj\nRw8HE4mo6EVsdemll7Jnzx6++eYbjh49Sk5ODldddZXTsaSD0/JKMZYTa6FDQ0N5/PHHmTp1Kn6/\nn5tuuokLL7zwjOcQ+SEVvYjNxo4dy9ixY52OIRKgqRsREcOp6EVEDKeiFxExnIpeRMRwKnoREcOp\n6EVEDKfllWIsu78/IJjr59933314vV7i4uLIzc219fFFTpdG9CI2uvHGG3n55ZedjiHShIpexEbJ\nycl069bN6RgiTajoRUQMp6IXETGcil5ExHAqehERw2l5pRgrmOWQdsvIyOCjjz7C5/MxbNgw5s6d\ny5QpU854DpEfUtGL2GjlypVORxD5EU3diIgYTkUvImI4Fb2IiOFU9CIihlPRi4gYrtlVN+Xl5axY\nsYJDhw7hcrlIS0vj6quvpqamhsWLF3Pw4EHi4+OZM2cOERERWJbF6tWrKSkpoXPnzmRkZJCYmHgm\njqXVvblhntMRzDLtb04nEOkQmi16t9vNLbfcQmJiInV1dcyfP5/BgwezYcMGBg0axMSJE8nOziY7\nO5vp06dTUlLC/v37Wbp0KTt37iQrK4uFCxeeiWMRaeLt1w7Zur9rb2r+YmXfffcdv/71rykvL8fl\ncjFt2jTuvPNOW3OItFSzUzcxMTGBEXnXrl1JSEjA5/NRUFBAamoqAKmpqRQUFABQWFhISkoKLpeL\nfv36cfjwYSorK1vxEETajtDQUBYsWMCGDRt4++23WbNmDTt27HA6lnRwLTphqqysjD179tC3b1+q\nqqqIiYkBoFu3blRVVQHg8/mIi4sL3Cc2NhafzxfY9j+8Xi9erxeAzMzMJvdpqw44HcAwdj/nBw4c\nIDS09c4BDGbfCQkJJCQkAMffF/369ePgwYMMGDCgyXadO3e29fj12rRXe+ijlgj6XXHkyBEWLVrE\nbbfdRlhYWJPfuVwuXC5Xix44LS2NtLS0wO3y8vIW3V/aP7uf8/r6etxut637/KGGhoYWbf/tt9/y\n6aefMnjw4B/dt76+Xq/5Nqy9PDe9evUKarugVt00NDSwaNEifv7znzNixAgAoqOjA1MylZWVREVF\nAeDxeJr8kSoqKvB4PC0KL9LeHT58mLvuuovHHnuMyMhIp+NIB9ds0VuWxXPPPUdCQgLXXHNN4OdJ\nSUnk5eUBkJeXx/DhwwM/37hxI5ZlsWPHDsLCwn40bSNismPHjnHXXXcxadIkrr76aqfjiDQ/dbN9\n+3Y2btxI7969+c1vfgPAlClTmDhxIosXLyY3NzewvBJgyJAhFBcXM2vWLDp16kRGRkbrHoFIG2JZ\nFvfffz99+/bl7rvvdjqOCAAuy7Isp0MAlJaWOh2hWY13Xed0BKO4X7B3HX1tbe2PPj860z7++GMm\nTZpE//79A59bzZ8/n7FjxzbZzu6sem3ay+7XZmsJdo5elykWsdFll13Gd99953QMkSZ0CQQREcOp\n6EVEDKeiFxExnIpeRMRwKnoREcOp6EVEDKfllWKspUuX2rq/WbNmNbvNkSNHuOGGG6ivr6exsZH0\n9HTmzp1raw6RllLRi9ioc+fO/OUvfyE8PJxjx44xadIkrrzySoYNG+Z0NOnANHUjYiOXy0V4eDhw\n/GKAx44da/GVXUXspqIXsVljYyPjxo1j8ODBpKSkMHToUKcjSQenohexmdvt5v3336ewsJCSkhK+\n/PJLpyNJB6eiF2kl0dHRjBo1ig0bNjgdRTo4Fb2IjSoqKgJfq1lXV8fGjRvp06ePw6mko9OqGzFW\nMMsh7XbgwAFmz56N3+/H7/dz7bXXMm7cuDOeQ+SHVPQiNhowYADvvfee0zFEmtDUjYiI4VT0IiKG\nU9GLiBhORS8iYjgVvYiI4VT0IiKG0/JKMVb3XQ/aur+yvv8b9LaNjY1MmDCBHj168Kc//cnWHCIt\npRG9SCvIysriggsucDqGCKCiF7FdaWkp//znP5kyZYrTUUQAFb2I7RYsWMAjjzxCSIjeXtI26JUo\nYqP333+fuLg4Bg8e7HQUkQB9GCtio8LCQt577z1yc3Opr6+nurqamTNnsmzZMqejSQemEb2IjR58\n8EGKiorYsmULK1euZNSoUSp5cVyzI/qVK1dSXFxMdHQ0ixYtAqCmpobFixdz8OBB4uPjmTNnDhER\nEViWxerVqykpKaFz585kZGSQmJjY6gchciItWQ4pYrJmR/SjR4/moYceavKz7OxsBg0axNKlSxk0\naBDZ2dkAlJSUsH//fpYuXcovf/lLsrKyWie1SDswcuRIraGXNqHZoh8wYAARERFNflZQUEBqaioA\nqampFBQUAMfnJ1NSUnC5XPTr14/Dhw9TWVnZCrFFRCRYp/VhbFVVFTExMQB069Yt8NVpPp+PuLi4\nwHaxsbH4fL7Atj/k9Xrxer0AZGZmNrlfW3XA6QCGsfs5P3DgAKGh7WN9QefOnW09fr027dUe+qgl\nfvK7wuVy4XK5Wny/tLQ00tLSArfLy8t/ahRpZ+x+zuvr63G73bbus7XU19frNd+GtZfnplevXkFt\nd1qrbqKjowNTMpWVlURFRQHg8Xia/IEqKirweDyn8xAiImKT0yr6pKQk8vLyAMjLy2P48OGBn2/c\nuBHLstixYwdhYWEnnLYREZEzp9mpmyVLlvD5559TXV3NPffcw4033sjEiRNZvHgxubm5geWVAEOG\nDKG4uJhZs2bRqVMnMjIyWv0ARETk1FyWZVlOh4DjF4Jq6xrvus7pCEZxv/A3W/dXW1tLWFhY4PZr\n226xdf83DXwpqO1GjBhBREQEISEhhIaG8u677/5om//O+lPptWkvu1+brSXYOfr2sURBpJ15/fXX\n9fmUtBm6BIKIiOFU9CI2c7lcTJkyhV/84hesXbvW6TgimroRsdtbb71Fz549KS8v5+abb6Zv374k\nJyc7HUs6MI3oRWzWs2dP4PjZlRMmTGDr1q0OJ5KOTkUvYqPa2lpqamoC/87Ly+PCCy90OJV0dJq6\nEWMFuxzSTgcPHuSOO+4AoLGxkYkTJ3LllVee8RwiP6SiF7HRueeeG7hYn0hboakbERHDqehFRAyn\nohcRMZyKXkTEcCp6ERHDqehFRAyn5ZVirF5bP7V1f6WXDgpqu1WrVvHKK6/gcrm46KKLePbZZ+nS\npYutWURaQiN6ERvt27ePP/zhD7zzzjvk5ubS2NhITk6O07Gkg1PRi9isoaGBI0eO0NDQQF1dHT16\n9HA6knRwKnoRG/Xs2ZN77rmHyy67jCFDhhAVFUVqaqrTsaSDU9GL2OjQoUOsX7+ezZs3U1xcTG1t\nLW+88YbTsaSDU9GL2GjTpk307t2b2NhYzjrrLCZMmEBhYaHTsaSDU9GL2CghIYHi4mLq6uqwLIsP\nP/yQCy64wOlY0sFpeaUYK9jlkHYaOnQo6enpjB8/ntDQUAYOHMi0adPOeA6RH1LRi9hs7ty5zJ07\n1+kYIgGauhERMZyKXkTEcCp6MYZlWU5HCFp7yirtn4pejBESEkJDQ4PTMZrV0NBASIjeenLm6MNY\nMUaXLl04cuQI9fX1uFwup+OckGVZhISE6CJnckap6MUYLpeLrl27Oh1DpM1plaLfunUrq1evxu/3\nM3bsWCZOnNgaDyMiIkGwfaLQ7/fz4osv8tBDD7F48WL+9a9/sXfvXrsfRkREgmR70e/atYsePXpw\n9tlnExoaysiRIykoKLD7YUREJEi2T934fD5iY2MDt2NjY9m5c+ePtvN6vXi9XgAyMzPp1auX3VHs\n93ddnEraKL025RQcW+OVlpZGZmYmmZmZTkUw1vz5852OIHJCem06w/ai93g8VFRUBG5XVFTg8Xjs\nfhgREQmS7UXfp08f9u3bR1lZGQ0NDeTn55OUlGT3w4iISJBsn6N3u93cfvvtPPHEE/j9fq688krO\nOeccux9GTiEtLc3pCCInpNemM1yWLrohImI0XXBDRMRwKnoREcOp6EVEDKeiFxExnK5eKSKtoqam\n5pS/j4iIOENJRKtu2rFbb731lNdd/+Mf/3gG04g0NWPGDFwuF5ZlUV5eTkREBJZlcfjwYeLi4lix\nYoXTETsMFb0BXnvtNbp160ZKSgqWZfHhhx9SV1fH9ddf73Q0EVatWkVSUhJDhw4FoKSkhE8//ZRb\nb73V4WQdh+boDfDvf/+b8ePH07VrV8LCwrjqqqvYsmWL07FEAPjqq68CJQ8wZMgQPv/8cwcTdTwq\negOEhISwadMm/H4/fr+fTZs26TtJpc2IiorijTfeoKysjLKyMt58800iIyOdjtWhaOrGAGVlZaxZ\ns4bt27cDcOGFF3LbbbfRvXt3h5OJHP9Q9vXXX+eLL74AoH///kyePFkfxp5BKnoREcNpeaUBSktL\nycrKoqqqikWLFvH1119TWFjIDTfc4HQ0Eb7//ntycnLYu3cvR48eDfx8wYIFDqbqWDSRa4Dnn3+e\nqVOn4na7ATj33HPJz893OJXIcUuXLiUhIYGysjImT55MfHw8ffr0cTpWh6KiN8DRo0fp27dvk5/p\nw1hpK6qrqxkzZgxut5sBAwaQkZFxwq8XldajqRsDREZGsn///sDJU5s3byYmJsbhVCLHhYYer5mY\nmBiKi4uJiYnB5/M5nKpj0YexBjhw4ACrVq1i+/bthIeH0717d2bNmkV8fLzT0UQoKiqif//+lJeX\ns3r1ampra5k8ebK+ee4MUtEbwO/3ExISwpEjR7Asi65duzodSUTaEE3kGmDGjBk8//zz7Ny5ky5d\nujgdR6SJ0tJSfve733H//fcD8PXXX/PGG284nKpjUdEbYMmSJQwaNIj169dz77338uKLL/Lll186\nHUsE0KqwtkBFb4DOnTszcuRI5s6dy5NPPkldXZ3WKEuboVVhztOqG0N8/vnn5Ofns3XrVhITE5kz\nZ47TkUQArQprC/RhrAFmzJjBeeedx+WXX05SUpLm6aVN0aow56noDVBbW0tYWJjTMUSaWLduXZPb\nR48exe/3BwYi11xzjROxOiRN3bRjOTk5XH/99bz66qsn/P3tt99+hhOJ/L+6ujrg+Kqbr776KrBu\nftOmTfTv39/JaB2Oir4dS0hIACAxMdHhJCI/NnnyZAAef/xxnnzyycD5HZMnT+bZZ591MlqHo6Jv\nx/4zQurdu7fKXtqs8vLywGUQ4PglEQ4ePOhgoo5HRW+Al156iUOHDjFixAhGjhxJ7969nY4kEpCS\nksJDDz3E8OHDASgoKCA1NdXhVB2LPow1xKFDh8jPz+ejjz6itraWkSNH6nr00mbs3r07cBJf//79\nOf/88x1O1LGo6A3zzTffkJOTQ35+Pq+88orTcUSkDVDRG2Dv3r3k5+ezZcsWIiMjGTlyJCNGjCA6\nOtrpaCLSBqjoDfDwww8zatQokpOT8Xg8TscRkTZGH8a2c36/n7PPPpurr77a6Sgi0kbpykLtXEhI\nCNXV1TQ0NDgdRUTaKE3dGGDVqlXs2bOHYcOGNbnOjU4xFxHQ1I0RYmJiiImJwbKswGnnIiL/oRG9\niIjhNKI3wGOPPXbCn+vLR0QEVPRGuOWWWwL/Pnr0KFu2bAl8bZuIiIreAP99QbOLLrpIo3kRCVDR\nG6Cmpibwb7/fz+7duzl06JCDiUSkLVHRG+CBBx7A5XJhWRahoaHEx8fzq1/9yulYItJGqOgNMG3a\nNC699FLCwsL461//yp49e+jUqZPTsUSkjdCZsQZ48803CQsL48svv+TTTz9l9OjRZGVlOR1LRNoI\nFb0BQkKOP43FxcWMGzeO4cOH65IIIhKgojeAx+Nh1apV5OfnM2TIEI4dO4bOgxOR/9CZsQaor69n\n69at9O7dm549e1JZWck333zDJZdc4nQ0EWkDVPQiIobT1I2IiOFU9CIihlPRi4gYTkUvImK4/wOL\nbpj0Y6uAUAAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0xd906240>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEqCAYAAAAbLptnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHixJREFUeJzt3X9UVHXi//HnMCQ6CMiAP8DSQtNV09XEJO0jqNgvrey0\nVmh2WnerXUxXN/eT2W6eNutLW6bHH50yWt1dPVvbj8XddtuKCLRFDQTLstTUkxkhwiCBIMjM/f7h\n2fnEagF28cKb1+MvZrxz53Xnx+tc3/c997osy7IQERFjhTgdQERE2paKXkTEcCp6ERHDqehFRAyn\nohcRMZyKXkTEcCp6EZvk5ubicrk4cuSI01FEmlDRi4gYTkUv0gINDQ1ORxA5Zyp6MU5KSgpz5sxh\n8eLFxMbGEhkZyT333MPJkycBePvtt0lJScHr9RIVFUVycjLvv/9+k3W4XC5WrVrFzJkziYqKYvbs\n2QCUlZXx4x//mN69e9O1a1cGDx7M73//+yaP/eSTT5gwYQIej4ehQ4fyxhtvnJ8NF/kWKnox0iuv\nvEJFRQVbt25l06ZNZGVl8eCDDwJQU1NDeno627ZtIz8/n0svvZRrr72WioqKJut45JFHGDduHEVF\nRSxbtoy6ujqSk5P54IMP2LRpE3v27GH16tV4PJ4mj1u0aBFLlizhgw8+YOzYsdx2221UVlaet20X\nOYMlYpjk5GSrf//+VmNjY/C+5557zgoLC7NqamrOWN7v91s9evSwNm7cGLwPsObMmdNkuczMTCss\nLMz64osvzvq87777rgVYr776avC+0tJSC7D+9a9/fd/NEjln2qMXI11xxRW43e7g7fHjx1NfX8+B\nAwc4dOgQs2fPZuDAgURGRhIZGUlVVRWff/75Gev4pp07dzJ06FAuvPDC73zukSNHBv/u3bs3breb\no0eP2rBVIucm1OkAIufbtGnTiI2NZe3atVx00UV06dKFq6666owDruHh4ee0/i5dupxxXyAQOKd1\nidhBe/RipIKCAvx+f/B2fn4+YWFhxMTEsGfPHhYvXsw111zD0KFD6dq1K2VlZc2uc/To0ezZs0fz\n5KXDUdGLkSoqKpg7dy6ffPIJ//jHP/jNb37DvffeS1xcHD179uT5559n3759bNu2jbS0NLp169bs\nOtPS0ujfvz833ngj2dnZHDp0iHfeeYeXXnrpPGyRyLlT0YuRfvSjHxEREcFVV13F7bffzrRp08jI\nyCAkJISXX36ZAwcOMGLECO666y4WLFhAXFxcs+v0eDzk5eVx2WWXcfvttzNkyBDmzp1LXV3dedgi\nkXPnsixdYUrMkpKSwsCBA8nMzHQ6iki7oD16ERHDqehFRAynoRsREcNpj15ExHAqehERw7WbX8aW\nlJQ4HcEYsbGxlJeXOx1D5Az6bNorPj6+Rctpj15ExHAqehERw6noRUQMp6IXETGcil5ExHAqehER\nw6noRUQMp6IXETGcil5ExHDt5pexInLuXvp4ttMRjHLbsD85HcFW2qMXETGc9uhFDDAv7EKnIxil\n+UvFdywqehED/PqfzV/zVlpu/nynE9hLRS9igEt63+l0BGnHNEYvImI4Fb2IiOFU9CIihlPRi4gY\nTkUvImI4Fb2IiOFU9CIihlPRi4gYTkUvImI4Fb2IiOFadAqEuXPn0rVrV0JCQnC73WRkZFBTU8OK\nFSs4duwYPXv2ZOHChXTv3h3Lsli/fj3FxcWEhYWRnp5OQkJCW2+HiIh8ixaf62bp0qVERkYGb2dl\nZTF8+HCmT59OVlYWWVlZ3HHHHRQXF1NaWsqqVavYv38/mZmZPP74420SXkREmnfOQzcFBQUkJycD\nkJycTEFBAQCFhYVMmDABl8vFoEGDOHHiBJWVlfakFRGRVmvxHv1jjz0GwJQpU0hNTaWqqoro6GgA\nevToQVVVFQA+n4/Y2Njg42JiYvD5fMFl/yM7O5vs7GwAMjIymjxGvp/Q0FC9np3OcacDGMW070+L\niv7RRx/F6/VSVVXFsmXLiI+Pb/LvLpcLl8vVqidOTU0lNTU1eLu8vLxVj5dvFxsbq9ezk8lsLHU6\nglFuKO/hdIQW+e8u/jYtGrrxer0AREVFMWbMGD777DOioqKCQzKVlZXB8Xuv19ukZCoqKoKPFxGR\n86/Zoj958iR1dXXBvz/88EP69etHYmIieXl5AOTl5TFmzBgAEhMT2bJlC5ZlsW/fPjwezxnDNiIi\ncv40O3RTVVXFU089BYDf7+eqq65i5MiRDBgwgBUrVpCTkxOcXgkwatQoioqKmD9/Pl26dCE9Pb1t\nt0BERL6Ty7Isy+kQACUlJU5HMIbG6DufmzZ96nQEo2ye9QOnI7SIrWP0IiLScanoRUQMp6IXETGc\nil5ExHAqehERw6noRUQMp6IXETGcil5ExHAqehERw6noRUQMp6IXETGcil5ExHAqehERw6noRUQM\np6IXETFciy8OLiLt12u5/+t0BLPM+pvTCWylPXoREcOp6EVEDKeiFxExnIpeRMRwKnoREcOp6EVE\nDKeiFxExnIpeRMRwKnoREcOp6EVEDKeiFxExnIpeRMRwKnoREcO1+OyVgUCAxYsX4/V6Wbx4MWVl\nZaxcuZLq6moSEhKYN28eoaGhnDp1ijVr1nDw4EEiIiJYsGABvXr1asttEBGR79DiPfp//vOf9O3b\nN3h748aNTJ06ldWrVxMeHk5OTg4AOTk5hIeHs3r1aqZOncqmTZvsTy0iIi3WoqKvqKigqKiIyZMn\nA2BZFh9//DFJSUkApKSkUFBQAEBhYSEpKSkAJCUl8dFHH2FZVhtEFxGRlmjR0M2GDRu44447qKur\nA6C6uhqPx4Pb7QbA6/Xi8/kA8Pl8xMTEAOB2u/F4PFRXVxMZGdlkndnZ2WRnZwOQkZFBbGysPVsk\nhIaG6vXsZI46HcAwpn1/mi36nTt3EhUVRUJCAh9//LFtT5yamkpqamrwdnl5uW3r7uxiY2P1eop8\nDx3l+xMfH9+i5Zot+r1791JYWEhxcTENDQ3U1dWxYcMGamtr8fv9uN1ufD4fXq8XOL13X1FRQUxM\nDH6/n9raWiIiIr7f1oiIyDlrdox+5syZPPvss6xdu5YFCxZw2WWXMX/+fIYNG8b27dsByM3NJTEx\nEYDRo0eTm5sLwPbt2xk2bBgul6vttkBERL7TOc+jnzVrFq+//jrz5s2jpqaGSZMmATBp0iRqamqY\nN28er7/+OrNmzbItrIiItJ7LaidTYkpKSpyOYAyN0Xc+/rtvdDqCUdzP/83pCC3S0jF6/TJWRMRw\nKnoREcOp6EVEDKeiFxExnIpeRMRwKnoREcOp6EVEDKeiFxExnIpeRMRwKnoREcOp6EVEDKeiFxEx\nnIpeRMRwKnoREcOp6EVEDKeiFxExXLPXjJX/s2rVKqcjGGX+/PlORxDpFFT0rXBJ7zudjiAi0moa\nuhERMZyKXkTEcCp6ERHDqehFRAynohcRMZyKXkTEcCp6ERHDqehFRAynohcRMZyKXkTEcM2eAqGh\noYGlS5fS2NiI3+8nKSmJW2+9lbKyMlauXEl1dTUJCQnMmzeP0NBQTp06xZo1azh48CAREREsWLCA\nXr16nY9tERGRs2h2j/6CCy5g6dKlPPnkk/zud79j165d7Nu3j40bNzJ16lRWr15NeHg4OTk5AOTk\n5BAeHs7q1auZOnUqmzZtavONEBGRb9ds0btcLrp27QqA3+/H7/fjcrn4+OOPSUpKAiAlJYWCggIA\nCgsLSUlJASApKYmPPvoIy7LaKL6IiDSnRWevDAQCPPDAA5SWlnLNNdfQu3dvPB4PbrcbAK/Xi8/n\nA8Dn8xETEwOA2+3G4/FQXV1NZGRkG22CiIh8lxYVfUhICE8++SQnTpzgqaeeoqSk5Hs/cXZ2NtnZ\n2QBkZGQQGxv7vdfZ9o47HcAodr/nlmXh8/lobGy0db12Cw0Nxev14nK5bFvnUdvWJGD/Z9NprTof\nfXh4OMOGDWPfvn3U1tbi9/txu934fD68Xi9weu++oqKCmJgY/H4/tbW1REREnLGu1NRUUlNTg7fL\ny8u/56a0vczGUqcjGOWG8h62rq+uro4LLriA0ND2fZmFU6dOceTIEbp16+Z0FPkWHaGPAOLj41u0\nXLNj9F9//TUnTpwATs/A+fDDD+nbty/Dhg1j+/btAOTm5pKYmAjA6NGjyc3NBWD79u0MGzbM1j0X\nkW8TCATafcnD6T36QCDgdAzpRJr9VlRWVrJ27VoCgQCWZXHllVcyevRoLrzwQlauXMmLL77IJZdc\nwqRJkwCYNGkSa9asYd68eXTv3p0FCxa0+UaIAB1qh6IjZZWOz2W1kykxdoz7t7WbNn3qdASjbJ71\nA1vXV1tbi8fjsXWdbcXurP67b7RtXQLu5//mdIQWaenQTfv/f67IObK7/Fr65X/33Xd5+OGHCQQC\npKWlcd9999maQ6S1dAoEERv5/X4eeughNm7cyLvvvktWVhb79u1zOpZ0cip6ERsVFxdz8cUX079/\nf7p06cJNN93Em2++6XQs6eRU9CI2Ki0tbTJuGhcXR2mppuWKs1T0IiKGU9GL2KhPnz5NZpB99dVX\n9OnTx8FEIip6EVuNHDmSQ4cOcfjwYRoaGti8eTNXX32107Gkk9P0SjGWE3OhQ0NDWbZsGTNnziQQ\nCHDbbbcxePDg855D5JtU9CI2mzx5MpMnT3Y6hkiQhm5ERAynohcRMZyKXkTEcCp6ERHDqehFRAyn\nohcRMZymV4qx7L5+QEvOn//LX/6S7OxsYmNjycnJsfX5Rc6V9uhFbHTrrbeyadMmp2OINKGiF7FR\nUlISPXrYe9Fzke9LRS8iYjgVvYiI4XQwthVey/1fpyOYZVbHuACzSEenPXoREcNpj16M1ZLpkHZL\nT09n27Zt+Hw+Ro8ezaJFi0hLSzvvOUS+SUUvYqNnnnnG6QgiZ9DQjYiI4VT0IiKGU9GLiBhORS8i\nYjgVvYiI4ZqddVNeXs7atWs5fvw4LpeL1NRUrr/+empqalixYgXHjh2jZ8+eLFy4kO7du2NZFuvX\nr6e4uJiwsDDS09NJSEg4H9siIiJn0WzRu91uZs+eTUJCAnV1dSxevJgRI0aQm5vL8OHDmT59OllZ\nWWRlZXHHHXdQXFxMaWkpq1atYv/+/WRmZvL444+fj20RaeLvLx23dX033Nb8ycq+/PJLfvGLX1Be\nXo7L5WLWrFn89Kc/tTWHSGs1O3QTHR0d3CPv1q0bffv2xefzUVBQQHJyMgDJyckUFBQAUFhYyIQJ\nE3C5XAwaNIgTJ05QWVnZhpsg0n6EhoaydOlScnNz+fvf/86GDRvYt2+f07Gkk2vVD6bKyso4dOgQ\nAwcOpKqqiujoaAB69OhBVVUVAD6fj9jY2OBjYmJi8Pl8wWX/Izs7m+zsbAAyMjKaPKa9Oup0AMPY\n/Z4fPXqU0NC2+w1gS9bdt29f+vbtC5z+XgwaNIhjx44xdOjQJsuFhYXZuv36bNqrI/RRa7T4W3Hy\n5EmWL1/OXXfdhcfjafJvLpcLl8vVqidOTU0lNTU1eLu8vLxVj5eOz+73vL6+Hrfbbes6v6mxsbFV\ny3/xxRfs3r2bESNGnPHY+vp6febbsY7y3sTHx7douRbNumlsbGT58uX8z//8D2PHjgUgKioqOCRT\nWVlJZGQkAF6vt8mLVFFRgdfrbVV4kY7uxIkT3H333TzyyCNEREQ4HUc6uWaL3rIsnn32Wfr27cu0\nadOC9ycmJpKXlwdAXl4eY8aMCd6/ZcsWLMti3759eDyeM4ZtREx26tQp7r77bm6++Wauv/56p+OI\nND90s3fvXrZs2UK/fv341a9+BUBaWhrTp09nxYoV5OTkBKdXAowaNYqioiLmz59Ply5dSE9Pb9st\nEGlHLMvi/vvvZ+DAgdx7771OxxEBwGVZluV0CICSkhKnIzTLf/eNTkcwivt5ey88Ultbe8bxo/Pt\n/fff5+abb2bIkCHB41aLFy9m8uTJTZazO6s+m/ay+7PZVlo6Rq/TFIvY6IorruDLL790OoZIEzoF\ngoiI4VT0IiKGU9GLiBhORS8iYjgVvYiI4VT0IiKG0/RKMdaqVatsXd/8+fObXebkyZPccsst1NfX\n4/f7mTp1KosWLbI1h0hrqehFbBQWFsZf/vIXwsPDOXXqFDfffDMTJ05k9OjRTkeTTkxDNyI2crlc\nhIeHA6dPBnjq1KlWn9lVxG4qehGb+f1+pkyZwogRI5gwYQKXX36505Gkk1PRi9jM7Xbz9ttvU1hY\nSHFxMZ9++qnTkaSTU9GLtJGoqCjGjx9Pbm6u01Gkk1PRi9iooqIieFnNuro6tmzZwoABAxxOJZ2d\nZt2IsVoyHdJuR48eZcGCBQQCAQKBADfccANTpkw57zlEvklFL2KjoUOH8tZbbzkdQ6QJDd2IiBhO\nRS8iYjgVvYiI4VT0IiKGU9GLiBhORS8iYjhNrxRj9frsQVvXVzbw/7V4Wb/fz3XXXUefPn344x//\naGsOkdbSHr1IG8jMzOTSSy91OoYIoKIXsV1JSQnvvPMOaWlpTkcRAVT0IrZbunQpv/71rwkJ0ddL\n2gd9EkVs9PbbbxMbG8uIESOcjiISpIOxIjYqLCzkrbfeIicnh/r6eqqrq5k3bx6rV692Opp0Ytqj\nF7HRgw8+yM6dO9mxYwfPPPMM48ePV8mL45rdo3/mmWcoKioiKiqK5cuXA1BTU8OKFSs4duwYPXv2\nZOHChXTv3h3Lsli/fj3FxcWEhYWRnp5OQkJCm2+EyNm0ZjqkiMma3aNPSUlhyZIlTe7Lyspi+PDh\nrFq1iuHDh5OVlQVAcXExpaWlrFq1invuuYfMzMy2SS3SAYwbN05z6KVdaLbohw4dSvfu3ZvcV1BQ\nQHJyMgDJyckUFBQAp8cnJ0yYgMvlYtCgQZw4cYLKyso2iC0iIi11Tgdjq6qqiI6OBqBHjx7BS6f5\nfD5iY2ODy8XExODz+YLLflN2djbZ2dkAZGRkNHlce3XU6QCGsfs9P3r0KKGhHWN+QVhYmK3br8+m\nvTpCH7XG9/5WuFwuXC5Xqx+XmppKampq8HZ5efn3jSIdjN3veX19PW6329Z1tpX6+np95tuxjvLe\nxMfHt2i5c5p1ExUVFRySqaysJDIyEgCv19vkBaqoqMDr9Z7LU4iIiE3OqegTExPJy8sDIC8vjzFj\nxgTv37JlC5ZlsW/fPjwez1mHbURE5Pxpduhm5cqV7Nmzh+rqan72s59x6623Mn36dFasWEFOTk5w\neiXAqFGjKCoqYv78+XTp0oX09PQ23wAREfluLsuyLKdDwOkTQbV3/rtvdDqCUdzP/83W9dXW1uLx\neIK3X/p4tq3rv23Yn1q03NixY+nevTshISGEhobyxhtvnLHMf2f9vvTZtJfdn8220tIx+o4xRUGk\ng3n55Zd1fEraDZ0CQUTEcCp6EZu5XC7S0tK49tpr2bhxo9NxRDR0I2K3v/71r8TFxVFeXs7tt9/O\nwIEDSUpKcjqWdGLaoxexWVxcHHD615XXXXcdu3btcjiRdHYqehEb1dbWUlNTE/w7Ly+PwYMHO5xK\nOjsN3YixWjod0k7Hjh3jJz/5CQB+v5/p06czceLE855D5JtU9CI26t+/f/BkfSLthYZuREQMp6IX\nETGcil5ExHAqehERw6noRUQMp6IXETGcpleKseJ37bZ1fSUjh7douaqqKhYtWsTevXtxuVwsX76c\nxMREW7OItIaKXsRmDz/8MBMnTuT555+noaGBuro6pyNJJ6ehGxEbff311+zYsYO0tDQAunTpQlRU\nlMOppLNT0YvY6PDhw8TExLBw4UKuvvpqFi1aRG1trdOxpJNT0YvYyO/3s3v3bu68807eeustPB4P\na9ascTqWdHIqehEbxcXFERcXx+WXXw7A1KlT2b3b3oPCIq2lohexUa9evYiPj+ezzz4D4L333mPQ\noEEOp5LOTrNuxFgtnQ5pt0cffZR58+Zx6tQp+vXrx9NPP+1IDpH/UNGL2Oyyyy7jjTfecDqGSJCG\nbkREDKeiFxExnIpejGFZltMRWqwjZZWOT0UvxggJCaGxsdHpGM1qbGwkJERfPTl/dDBWjNG1a1dO\nnjxJfX09LpfL6ThnZVkWISEhdO3a1eko0omo6MUYLpeLbt26OR1DpN1pk6LftWsX69evJxAIMHny\nZKZPn94WTyMiIi1g+0BhIBDghRdeYMmSJaxYsYJ///vfHDlyxO6nERGRFrK96D/77DP69OlD7969\nCQ0NZdy4cRQUFNj9NCIi0kK2D934fD5iYmKCt2NiYti/f/8Zy2VnZ5OdnQ1ARkYG8fHxdkex3z8K\nnU4gcnb6bMp3cGyOV2pqKhkZGWRkZDgVwViLFy92OoLIWemz6Qzbi97r9VJRURG8XVFRgdfrtftp\nRESkhWwv+gEDBvDVV19RVlZGY2Mj+fn5ujCyiIiDbB+jd7vdzJkzh8cee4xAIMDEiRO56KKL7H4a\n+Q6pqalORxA5K302neGydNINERGj6YQbIiKGU9GLiBhORS8iYjgVvYiI4XT2ShFpEzU1Nd/57927\ndz9PSUSzbjqwO++88zvPu/6HP/zhPKYRaWru3Lm4XC4sy6K8vJzu3btjWRYnTpwgNjaWtWvXOh2x\n01DRG+Cll16iR48eTJgwAcuyeO+996irq+Omm25yOpoI69atIzExkcsvvxyA4uJidu/ezZ133ulw\nss5DY/QG+OCDD7jmmmvo1q0bHo+Hq6++mh07djgdSwSAAwcOBEseYNSoUezZs8fBRJ2Pit4AISEh\nbN26lUAgQCAQYOvWrbomqbQbkZGRvPrqq5SVlVFWVsZrr71GRESE07E6FQ3dGKCsrIwNGzawd+9e\nAAYPHsxdd91Fr169HE4mcvqg7Msvv8wnn3wCwJAhQ5gxY4YOxp5HKnoREcNpeqUBSkpKyMzMpKqq\niuXLl/P5559TWFjILbfc4nQ0Eb7++ms2b97MkSNHaGhoCN6/dOlSB1N1LhrINcBzzz3HzJkzcbvd\nAPTv35/8/HyHU4mctmrVKvr27UtZWRkzZsygZ8+eDBgwwOlYnYqK3gANDQ0MHDiwyX06GCvtRXV1\nNZMmTcLtdjN06FDS09PPenlRaTsaujFAREQEpaWlwR9Pbd++nejoaIdTiZwWGnq6ZqKjoykqKiI6\nOhqfz+dwqs5FB2MNcPToUdatW8fevXsJDw+nV69ezJ8/n549ezodTYSdO3cyZMgQysvLWb9+PbW1\ntcyYMUNXnjuPVPQGCAQChISEcPLkSSzLolu3bk5HEpF2RAO5Bpg7dy7PPfcc+/fvp2vXrk7HEWmi\npKSE3/72t9x///0AfP7557z66qsOp+pcVPQGWLlyJcOHD+fNN9/kvvvu44UXXuDTTz91OpYIoFlh\n7YGK3gBhYWGMGzeORYsW8cQTT1BXV6c5ytJuaFaY8zTrxhB79uwhPz+fXbt2kZCQwMKFC52OJAJo\nVlh7oIOxBpg7dy4XX3wxV155JYmJiRqnl3ZFs8Kcp6I3QG1tLR6Px+kYIk28/vrrTW43NDQQCASC\nOyLTpk1zIlanpKGbDmzz5s3cdNNNvPjii2f99zlz5pznRCL/p66uDjg96+bAgQPBefNbt25lyJAh\nTkbrdFT0HVjfvn0BSEhIcDiJyJlmzJgBwLJly3jiiSeCv++YMWMGTz/9tJPROh0VfQf2nz2kfv36\nqeyl3SovLw+eBgFOnxLh2LFjDibqfFT0BvjTn/7E8ePHGTt2LOPGjaNfv35ORxIJmjBhAkuWLGHM\nmDEAFBQUkJyc7HCqzkUHYw1x/Phx8vPz2bZtG7W1tYwbN07no5d24+DBg8Ef8Q0ZMoRLLrnE4USd\ni4reMIcPH2bz5s3k5+fz5z//2ek4ItIOqOgNcOTIEfLz89mxYwcRERGMGzeOsWPHEhUV5XQ0EWkH\nVPQGeOihhxg/fjxJSUl4vV6n44hIO6ODsR1cIBCgd+/eXH/99U5HEZF2SmcW6uBCQkKorq6msbHR\n6Sgi0k5p6MYA69at49ChQ4wePbrJeW70E3MRAQ3dGCE6Opro6Ggsywr+7FxE5D+0Ry8iYjjt0Rvg\nkUceOev9uviIiICK3gizZ88O/t3Q0MCOHTuCl20TEVHRG+C/T2j2gx/8QHvzIhKkojdATU1N8O9A\nIMDBgwc5fvy4g4lEpD1R0RvggQcewOVyYVkWoaGh9OzZk5///OdOxxKRdkJFb4BZs2YxcuRIPB4P\nr7zyCocOHaJLly5OxxKRdkK/jDXAa6+9hsfj4dNPP2X37t2kpKSQmZnpdCwRaSdU9AYICTn9NhYV\nFTFlyhTGjBmjUyKISJCK3gBer5d169aRn5/PqFGjOHXqFPodnIj8h34Za4D6+np27dpFv379iIuL\no7KyksOHD/PDH/7Q6Wgi0g6o6EVEDKehGxERw6noRUQMp6IXETGcil5ExHD/H8vnc1UYZQCiAAAA\nAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0xcb99cc0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEqCAYAAAAbLptnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHihJREFUeJzt3W10FOXBxvFrs4G8k2QT0CaIGAR5Cy8SFAISjGutgBW1\naBX0WHu0FQrCafvogyJWxQYUEwmoIB6wxaMU5UREi20OgmjEBhMQoQIajpRGDMkmMa+EZOf5wHH7\npCAJsGF27/x/n9iZ2dlrdoeL4d7ZGYdlWZYAAMYKsTsAAKBjUfQAYDiKHgAMR9EDgOEoegAwHEUP\nAIaj6NGpOBwOrVmzpkPWvXr1aoWGhnbIunv37q0nn3yyQ9YN81H0AGA4ih7wg+PHj9sdAfhBFD0C\nVm5urvr376/w8HD17dtXCxYsUHNzs6QTQxnz5s3T/fffr7i4OPXo0UNLly7VsWPHNHPmTMXHxys5\nOVlLly49ab0VFRW65ZZbFBUVpeTkZD333HOt5j/33HMaNmyYoqOjdeGFF+rnP/+5vvnmG9/8LVu2\nyOFw6J133tHYsWMVHh6ulStXnvQ6jY2Nuvnmm5Wamqp///vfkqTa2lo98MADSk5OVmRkpIYPH671\n69e3et6uXbuUnp6usLAw9e3bV3/5y1/O+b1EJ2cBAWj+/PlWr169rPXr11slJSXWO++8Y1100UXW\nI488YlmWZV188cVWbGystXjxYuvAgQPWE088YUmyrr/+et+0p556ynI4HNaePXt865VkxcfHW0uW\nLLH27dtn5eTkWE6n08rLy/Mtk5OTY/3973+3SkpKrIKCAmv06NHWuHHjfPPff/99S5J12WWXWRs2\nbLBKSkqsf/3rX9aqVassp9NpWZZleTwea8yYMda4ceOsyspKy7Isy+v1WuPHj7cyMjKsbdu2WV99\n9ZW1fPlyq0uXLlZ+fr5lWZZVX19vJSUlWddff721c+dOq6CgwEpLS7MiIiKsJ554osPfd5iJokfA\nqaursyIiIqy//vWvraa/8sorVmxsrGVZJ4r+xhtv9M1raWmxYmJirEmTJrWaFhcXZ+Xm5vqmSbKm\nTZvWar233367NXbs2B/MU1RUZEmyDh8+bFnWf4r+T3/6U6vlvi/6Q4cOWQMHDrRuuukmq6GhwTf/\n/ffft8LCwqyqqqpWz/vFL37h25aXXnrJioqKsjwej2/+7t27LUkUPc5ax5wiAJyDPXv2qKGhQbfc\ncoscDodvektLixobG3X06FFJ0tChQ33zQkJC1L17dw0ZMqTVtB49eqisrKzV+kePHt3q8ZgxYzRv\n3jzf4y1btuiPf/yj9u7dq6qqKnm9XknS119/reTkZN9yV1xxxUnZvV6vRo8erTFjxui1115TSMh/\nRkcLCwvV1NTUah2S1NTUpL59+0qS9u7dqwEDBig+Pt43f/DgwYqNjf2htwtoE0WPgPN9sa5bt079\n+vU7ab7L5ZIkdenSpdV0h8Nxymnfr689Dh06pAkTJujOO+/Uo48+qsTERB0+fFhut1tNTU2tlo2K\nijrp+SEhIZo0aZLWr1+vPXv2KDU1tdV2xcbGqrCw8KTnde3atd0ZgTNF0SPgDBo0SOHh4SopKdGE\nCRP8vv7t27dr+vTpvscFBQUaOHCgpBNH3Q0NDcrJyVFERIQk6dNPPz2j9b/wwgvq0qWLrr76auXn\n52vYsGGSpLS0NFVVVamxsVGDBw8+5XMHDhyoFStWqKqqSnFxcZJO/A+nurr6jLcT+B5Fj4ATHR2t\nuXPnau7cuXI4HHK73Wpubtbu3btVXFyshQsXntP6N27cqKVLl+q6667Tpk2btHbtWq1bt06S1Ldv\nXzkcDi1evFhTp07Vrl279Pjjj5/R+h0Oh3Jzc9W1a1dlZmbqb3/7m9LS0pSZmSm3262bb75ZixYt\n0pAhQ1RZWamCggKFh4fr3nvv1R133KF58+Zp2rRpWrBggRoaGvTAAw/4/tEBzganVyIgzZs3T88+\n+6xeeuklDR06VGPHjlV2drZ69+59zut+9NFHlZ+fr6FDh+qpp57SokWLdNNNN0mShgwZotzcXC1f\nvlwDBw7UM888o5ycnLN6ncWLF+tXv/qV3G63tm/fLofDoQ0bNujmm2/WnDlz1L9/f02cOFHvvPOO\n+vTpI0mKjIzUu+++q4qKCl1xxRWaOnWq5syZox49epzzdqPzclgWd5gCAJNxRA8AhqPoAcBwFD0A\nGI6iBwDDUfQAYLiAOY++tLTU7gjGSExMVHl5ud0xgJOwb/pXUlJSu5bjiB4ADEfRA4DhKHoAMFzA\njNH/N8uy1NjYKK/X2+pStYHGsiyFhIQoPDw8oHMC6LwCtugbGxvVpUsXhYYGbESf5uZmNTY2cuEp\nAAEpYIduvF5vUJS8JIWGhp7RNc8B4HwK2KIPtmGQYMsLoPMI2KIHAPhHcIyNSGq596d+XZ/zpQ3t\nWu65555TXl6enE6nHA6HFi5cqMsvv9yvWQCgIwVN0dthx44dys/P16ZNmxQWFiaPx3PSfUOBQPD2\n2iq7I7RTcOS84bY4uyP4FUV/GmVlZXK5XAoLC5P0n5tSA0AwYYz+NDIyMlRaWqqxY8fqf//3f/Xx\nxx/bHQkAzhhFfxpRUVHatGmTFi1apISEBN1///1au3at3bEA4IwwdNMGp9Op9PR0paenq3///lq3\nbp1uu+02u2MBQLtxRH8aX375pUpKSnyP9+zZo549e9qYCADOXNAc0bf3dEh/qq+v1yOPPKLvvvtO\noaGh6t27txYtWnTecwDAuQiaorfDkCFDtGHD+f8HBgD8iaEbADAcRQ8AhqPoAcBwFD0AGI6iBwDD\nUfQAYLigOb3yxle/8Ov63prav13LlZWVaf78+dq1a5e6du2qiy66SI899pj69Onj1zwA0FHaVfQz\nZsxQeHi4QkJC5HQ6lZWVpdraWmVnZ+vo0aPq3r275syZo+joaFmWpVWrVqm4uFhhYWGaPn26UlJS\nOno7OoRlWfrlL3+pKVOm6IUXXpAkff755yovL6foAQSNdh/Rz58/X926dfM9zsvLU2pqqiZPnqy8\nvDzl5eVp2rRpKi4u1pEjR7RkyRIdOHBAK1eu1FNPPdUh4TvaRx99pC5duuiuu+7yTRs8eLCNiQDg\nzJ31GH1hYaEyMjIknbicb2FhoaQTN+sYN26cHA6H+vXrp7q6OlVWVvon7Xm2b98+paam2h0DAM5J\nu4/oFyxYIEm69tpr5Xa7VV1drfj4eElSXFycqqurJUkej0eJiYm+5yUkJMjj8fiW/V5+fr7y8/Ml\nSVlZWa2eI0nffvutQkM77iuE9qw7JCREISEh7Vo2LCzspG2wS2hoaMBkwfmxstm/32F1dr9IvNTu\nCH7VriZ94okn5HK5VF1drSeffFJJSUmt5jscDjkcjjN6YbfbLbfb7XtcXl7eav6xY8fkdDrPaJ1n\norm5uc1lLr30Ur399tvtWvbYsWMnbYNdEhMTAyYLEIyC5e/Pf3fxD2nX0M33t9CLjY3VyJEj9eWX\nXyo2NtY3JFNZWekbv3e5XK3epIqKiqC9Bd/YsWPV1NSkNWvW+Kbt3LmTO00BCCptHtE3NjbKsixF\nRESosbFRn332mX72s58pLS1NW7du1eTJk7V161aNHDlSkpSWlqZNmzZpzJgxOnDggCIjI08atjkb\n7T0d0p8cDodWrlyp+fPn6/nnn1dYWJh69uypP/zhD+c9CwCcrTaLvrq6Ws8884wkqaWlRWPHjtWw\nYcPUp08fZWdna/Pmzb7TKyVp+PDhKioq0qxZs9S1a1dNnz69Y7egg1144YVavny53TEA4Kw5LMuy\n7A4hSaWlpa0e19fXKzIy0qY0Zy6Q8jJG3/n4+weFnZ0dIwhnw69j9ACA4EXRA4DhKHoAMBxFDwCG\no+gBwHBBc5nit9dW+XV9N9wW167lSktL9fDDD2v//v3yer3KzMzUo48+qrCwML/mAYCOwhH9aViW\npXvvvVc/+clP9NFHH+nDDz9UY2Oj77o/ABAMKPrT+PDDDxUWFqbbbrtNkuR0OvXYY4/pjTfeUF1d\nnc3pAKB9KPrT2L9//0mXKY6JiVHPnj118OBBm1IBwJmh6AHAcBT9afTt21e7d+9uNa2mpkZHjx7l\nVoIAggZFfxpXXXWVGhoatG7dOkknLur2+OOP6+6771ZERITN6QCgfYLm9Mr2ng7pT99fpvjhhx9W\nTk6OPB6PbrjhBj3wwAPnPQsAnK2gKXq7JCcna/Xq1ZJO3Cd3xowZ2r17N/eSBRA0KPozMHLkSP3j\nH/+wOwYAnBHG6AHAcAFb9AFyP5R2C7a8ADqPgC36kJAQNTc32x2jXZqbmxUSErBvJYBOLmDH6MPD\nw9XY2Khjx47J4XDYHecHWZalkJAQhYeH2x0FAE4pYIve4XBwrjoA+AHjDQBgOIoeAAwXsEM3ANpv\n/Zb/sTuCWaZusDuBX3FEDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAzX7tMrvV6vHnroIblcLj30\n0EMqKytTTk6OampqlJKSopkzZyo0NFTHjx/X0qVLVVJSopiYGM2ePVs9evToyG0AAJxGu4/o3333\nXSUnJ/ser1mzRhMnTlRubq6ioqK0efNmSdLmzZsVFRWl3NxcTZw4Ua+++qr/UwMA2q1dRV9RUaGi\noiJdc801kk5cyGvPnj0aNWqUJGn8+PEqLCyUJO3YsUPjx4+XJI0aNUqff/45l/AFABu1a+hm9erV\nmjZtmhoaGiRJNTU1ioyMlNPplCS5XC55PB5JksfjUUJCgiTJ6XQqMjJSNTU16tatW6t15ufnKz8/\nX5KUlZWlxMRE/2wRFBoayvvZyXxrdwDDmPb3p82i//TTTxUbG6uUlBTt2bPHby/sdrvldrt9j8vL\ny/227s4uMTGR9xM4B8Hy9ycpKaldy7VZ9Pv27dOOHTtUXFyspqYmNTQ0aPXq1aqvr1dLS4ucTqc8\nHo9cLpekE0f3FRUVSkhIUEtLi+rr6xUTE3NuWwMAOGttjtHfcccdevHFF7Vs2TLNnj1bgwcP1qxZ\nszRo0CBt375dkrRlyxalpaVJkkaMGKEtW7ZIkrZv365BgwYF9I1DAMB0Z30e/dSpU7Vx40bNnDlT\ntbW1yszMlCRlZmaqtrZWM2fO1MaNGzV16lS/hQUAnDmHFSCnxJSWltodwRiM0Xc+Lff+1O4IRnG+\nFByXKW7vGD2/jAUAw1H0AGA4ih4ADEfRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoe\nAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwFD0AGI6iBwDDtXlzcPzH22ur7I7QTsGR84bb4uyOAHQKHNED\ngOEoegAwHEUPAIaj6AHAcBQ9ABiOogcAw1H0AGA4ih4ADEfRA4DhKHoAMFybl0BoamrS/Pnz1dzc\nrJaWFo0aNUq33nqrysrKlJOTo5qaGqWkpGjmzJkKDQ3V8ePHtXTpUpWUlCgmJkazZ89Wjx49zse2\ndLiVzUfsjmCUG8QlEIDzoc0j+i5dumj+/Pl6+umntWjRIu3cuVP79+/XmjVrNHHiROXm5ioqKkqb\nN2+WJG3evFlRUVHKzc3VxIkT9eqrr3b4RgAAflibRe9wOBQeHi5JamlpUUtLixwOh/bs2aNRo0ZJ\nksaPH6/CwkJJ0o4dOzR+/HhJ0qhRo/T555/LsqwOig8AaEu7rl7p9Xr14IMP6siRI7ruuut0wQUX\nKDIyUk6nU5Lkcrnk8XgkSR6PRwkJCZIkp9OpyMhI1dTUqFu3bh20CQCA02lX0YeEhOjpp59WXV2d\nnnnmGZWWlp7zC+fn5ys/P1+SlJWVpcTExHNeJ4ILn7n/fGt3AMOYtm+e0fXoo6KiNGjQIO3fv1/1\n9fVqaWmR0+mUx+ORy+WSdOLovqKiQgkJCWppaVF9fb1iYmJOWpfb7Zbb7fY9Li8vP8dNQbDhM0eg\nCpZ9MykpqV3LtTlG/91336murk7SiTNwPvvsMyUnJ2vQoEHavn27JGnLli1KS0uTJI0YMUJbtmyR\nJG3fvl2DBg2Sw+E4m20AAPhBm0f0lZWVWrZsmbxeryzL0ujRozVixAj17NlTOTk5ev3113XJJZco\nMzNTkpSZmamlS5dq5syZio6O1uzZszt8IwAAP8xhBcgpMf4Y9+9oN776hd0RjPLW1P52RzBGy70/\ntTuCUZwvbbA7Qrv4begGABDcKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAxH0QOA4Sh6\nADAcRQ8AhqPoAcBwFD0AGI6iBwDDUfQAYDiKHgAMR9EDgOEoegAwHEUPAIaj6AHAcBQ9ABiOogcA\nw1H0AGA4ih4ADEfRA4DhKHoAMFyo3QGCyfot/2N3BLNM3WB3AqBT4IgeAAxH0QOA4docuikvL9ey\nZctUVVUlh8Mht9utCRMmqLa2VtnZ2Tp69Ki6d++uOXPmKDo6WpZladWqVSouLlZYWJimT5+ulJSU\n87EtAIBTaPOI3ul06s4771R2drYWLFig9957T4cPH1ZeXp5SU1O1ZMkSpaamKi8vT5JUXFysI0eO\naMmSJbrvvvu0cuXKDt8IAMAPa7Po4+PjfUfkERERSk5OlsfjUWFhoTIyMiRJGRkZKiwslCTt2LFD\n48aNk8PhUL9+/VRXV6fKysoO3AQAwOmc0Vk3ZWVlOnjwoC699FJVV1crPj5ekhQXF6fq6mpJksfj\nUWJiou85CQkJ8ng8vmW/l5+fr/z8fElSVlZWq+cEqm/tDmCYYPjMgwX7pn+Ztm+2u+gbGxu1ePFi\n3X333YqMjGw1z+FwyOFwnNELu91uud1u3+Py8vIzej6CH585AlWw7JtJSUntWq5dZ900Nzdr8eLF\nuuqqq3TllVdKkmJjY31DMpWVlerWrZskyeVytXqTKioq5HK5zig8AMB/2ix6y7L04osvKjk5WZMm\nTfJNT0tL09atWyVJW7du1ciRI33TP/jgA1mWpf379ysyMvKkYRsAwPnT5tDNvn379MEHH6hXr176\n/e9/L0m6/fbbNXnyZGVnZ2vz5s2+0yslafjw4SoqKtKsWbPUtWtXTZ8+vWO3AABwWg7Lsiy7Q0hS\naWmp3RHa1HLvT+2OYBTnS1wCwV/YN/0rWPZNv47RAwCCF0UPAIaj6AHAcBQ9ABiOogcAw1H0AGA4\nih4ADEfRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAxH0QOA4Sh6ADAcRQ8AhqPo\nAcBwFD0AGI6iBwDDUfQAYDiKHgAMR9EDgOEoegAwHEUPAIaj6AHAcBQ9ABiOogcAw4W2tcDzzz+v\noqIixcbGavHixZKk2tpaZWdn6+jRo+revbvmzJmj6OhoWZalVatWqbi4WGFhYZo+fbpSUlI6fCMA\nAD+szSP68ePHa+7cua2m5eXlKTU1VUuWLFFqaqry8vIkScXFxTpy5IiWLFmi++67TytXruyY1ACA\ndmuz6AcOHKjo6OhW0woLC5WRkSFJysjIUGFhoSRpx44dGjdunBwOh/r166e6ujpVVlZ2QGwAQHu1\nOXRzKtXV1YqPj5ckxcXFqbq6WpLk8XiUmJjoWy4hIUEej8e37P+Xn5+v/Px8SVJWVlar5wWqb+0O\nYJhg+MyDBfumf5m2b55V0f9/DodDDofjjJ/ndrvldrt9j8vLy881CoIMnzkCVbDsm0lJSe1a7qzO\nuomNjfUNyVRWVqpbt26SJJfL1eoNqqiokMvlOpuXAAD4yVkVfVpamrZu3SpJ2rp1q0aOHOmb/sEH\nH8iyLO3fv1+RkZGnHLYBAJw/bQ7d5OTkaO/evaqpqdGvf/1r3XrrrZo8ebKys7O1efNm3+mVkjR8\n+HAVFRVp1qxZ6tq1q6ZPn97hGwAAOD2HZVmW3SEkqbS01O4IbWq596d2RzCK86UNdkcwBvumfwXL\nvtmhY/QAgOBB0QOA4Sh6ADAcRQ8AhqPoAcBwFD0AGI6iBwDDUfQAYDiKHgAMR9EDgOEoegAwHEUP\nAIaj6AHAcBQ9ABiOogcAw1H0AGA4ih4ADEfRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABg\nOIoeAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwoR2x0p07d2rVqlXyer265pprNHny5I54GQBAO/j9iN7r\n9erll1/W3LlzlZ2drY8++kiHDx/298sAANrJ70X/5Zdf6sILL9QFF1yg0NBQpaenq7Cw0N8vAwBo\nJ78P3Xg8HiUkJPgeJyQk6MCBAyctl5+fr/z8fElSVlaWkpKS/B3F/97ZYXcC4NTYN3Eatn0Z63a7\nlZWVpaysLLsiGOuhhx6yOwJwSuyb9vB70btcLlVUVPgeV1RUyOVy+ftlAADt5Pei79Onj7755huV\nlZWpublZBQUFSktL8/fLAADaye9j9E6nU/fcc48WLFggr9erq6++WhdddJG/Xwan4Xa77Y4AnBL7\npj0clmVZdocAAHQcfhkLAIaj6AHAcBQ9ABiOogcAw3XIRc0AoLa29rTzo6Ojz1MScNZNELvrrrvk\ncDh+cP4rr7xyHtMArc2YMUMOh0OWZam8vFzR0dGyLEt1dXVKTEzUsmXL7I7YaVD0Bli7dq3i4uI0\nbtw4WZalDz/8UA0NDbrxxhvtjgZoxYoVSktL0+WXXy5JKi4u1u7du3XXXXfZnKzzYIzeALt27dJ1\n112niIgIRUZG6sc//rE++eQTu2MBkqSvvvrKV/KSNHz4cO3du9fGRJ0PRW+AkJAQbdu2TV6vV16v\nV9u2bVNICB8tAkO3bt305ptvqqysTGVlZVq/fr1iYmLsjtWpMHRjgLKyMq1evVr79u2TJF122WW6\n++671aNHD5uTASe+lF23bp3++c9/SpIGDBigKVOm8GXseUTRA4DhOL3SAKWlpVq5cqWqq6u1ePFi\nff3119qxY4duueUWu6MB+u677/TWW2/p8OHDampq8k2fP3++jak6FwZyDbB8+XLdcccdcjqdkqSL\nL75YBQUFNqcCTliyZImSk5NVVlamKVOmqHv37urTp4/dsToVit4ATU1NuvTSS1tN48tYBIqamhpl\nZmbK6XRq4MCBmj59+ilvL4qOw9CNAWJiYnTkyBHfj6e2b9+u+Ph4m1MBJ4SGnqiZ+Ph4FRUVKT4+\nXh6Px+ZUnQtfxhrg22+/1YoVK7Rv3z5FRUWpR48emjVrlrp37253NECffvqpBgwYoPLycq1atUr1\n9fWaMmUKd547jyh6A3i9XoWEhKixsVGWZSkiIsLuSAACCAO5BpgxY4aWL1+uAwcOKDw83O44QCul\npaV6/PHH9dvf/laS9PXXX+vNN9+0OVXnQtEbICcnR6mpqXrvvff0m9/8Ri+//LK++OILu2MBkjgr\nLBBQ9AYICwtTenq6fve732nhwoVqaGjgHGUEDM4Ksx9n3Rhi7969Kigo0M6dO5WSkqI5c+bYHQmQ\nxFlhgYAvYw0wY8YM9e7dW6NHj1ZaWhrj9AgonBVmP4reAPX19YqMjLQ7BtDKxo0bWz1uamqS1+v1\nHYhMmjTJjlidEkM3Qeytt97SjTfeqNdff/2U8++5557znAj4j4aGBkknzrr56quvfOfNb9u2TQMG\nDLAzWqdD0Qex5ORkSVJKSorNSYCTTZkyRZL05JNPauHChb7fd0yZMkXPPvusndE6HYo+iH1/hNSr\nVy/KHgGrvLzcdxkE6cQlEY4ePWpjos6HojfAn//8Z1VVVenKK69Uenq6evXqZXckwGfcuHGaO3eu\nRo4cKUkqLCxURkaGzak6F76MNURVVZUKCgr08ccfq76+Xunp6VyPHgGjpKTE9yO+AQMG6JJLLrE5\nUedC0Rvm0KFDeuutt1RQUKDXXnvN7jgAAgBFb4DDhw+roKBAn3zyiWJiYpSenq4rr7xSsbGxdkcD\nEAAoegM8/PDDGjNmjEaNGiWXy2V3HAABhi9jg5zX69UFF1ygCRMm2B0FQIDiykJBLiQkRDU1NWpu\nbrY7CoAAxdCNAVasWKGDBw9qxIgRra5zw0/MAUgM3RghPj5e8fHxsizL97NzAPgeR/QAYDiO6A3w\nhz/84ZTTufkIAImiN8Kdd97p+3NTU5M++eQT323bAICiN8B/X9Csf//+HM0D8KHoDVBbW+v7s9fr\nVUlJiaqqqmxMBCCQUPQGePDBB+VwOGRZlkJDQ9W9e3fdf//9dscCECAoegNMnTpVw4YNU2RkpN54\n4w0dPHhQXbt2tTsWgADBL2MNsH79ekVGRuqLL77Q7t27NX78eK1cudLuWAACBEVvgJCQEx9jUVGR\nrr32Wo0cOZJLIgDwoegN4HK5tGLFChUUFGj48OE6fvy4+B0cgO/xy1gDHDt2TDt37lSvXr30ox/9\nSJWVlTp06JCGDh1qdzQAAYCiBwDDMXQDAIaj6AHAcBQ9ABiOogcAw/0fbYJmZMt6fuoAAAAASUVO\nRK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11720c50>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def draw_chart(col):\n", | |
" survived= data[data['survived']==1][col].value_counts()\n", | |
" dead=data[data['survived']==0][col].value_counts()\n", | |
" df=pd.DataFrame([survived,dead])\n", | |
" df.index=['survived','dead']\n", | |
" df.plot.bar(stacked=True,title=col)\n", | |
"draw_chart('sex')\n", | |
"draw_chart('pclass')\n", | |
"draw_chart('sibsp')\n", | |
"draw_chart('parch')\n", | |
"draw_chart('embarked')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 100, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.legend.Legend at 0x111e1d30>" | |
] | |
}, | |
"execution_count": 100, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGktJREFUeJzt3X9s1PXhx/HX9Y5ZCvYX5YctsFklYXao21pah6aIR3Ug\n2CEhEXAxZt+AIApz06pbWSKERqitP8rYvjpZ3DdxxowCzileKjXiMCeoJWWiGDVsSEt7pbaUa727\nz/cPQyMDer9/9N3n4y+vd5/7vO7u05dv3v183mezLMsSAGDYS0t2AABAbFDoAGAICh0ADEGhA4Ah\nKHQAMASFDgCGoNABwBAUOgAYgkIHAENQ6ABgCEeid3j8+PGItsvLy1NHR0eM00SPXOEhV3jIFR5T\nc+Xn54f0OEboAGAICh0ADEGhA4AhEj6HDsB8lmXJ6/UqEAjIZrMlbL9tbW3q7+9P2P5CFUouy7KU\nlpam9PT0iN8zCh1AzHm9Xo0aNUoOR2IrxuFwyG63J3SfoQg1l8/nk9fr1ejRoyPaD1MuAGIuEAgk\nvMxN4HA4FAgEIt6eQgcQc4mcZjFNNO8dhQ4AhuDfRADizv8/C2P6fPb/3RXT5wvFnj179PHHH+ve\ne++N+rmmTZumTz75JAapzkWh4zy3/d9HQ96/c9n0BCUBEsvn81107r+iokIVFRUJThQeplwAGKev\nr0933nmnnE6n5syZo507d6q0tFQej0eS9OGHH2rx4sWSpNraWj344IO64447dP/99+vWW2/VkSNH\nBp9r8eLF+vDDD/XXv/5Vjz76qL766ivNnDlz8I+XfX19Ki4u1tdff63PP/9cy5Yt0y233KKf/exn\nOnr0qCTpiy++0IIFCzRv3jw9/vjjcXvdFDoA47z55puaNGmSXC6XmpqadOONNw75+JaWFv3pT39S\nQ0ODFi5cqN27d0v65vzxtrY2XXPNNYOPzczMVFFRkf75z39Kkt544w3Nnj1bo0aN0oMPPqjHHntM\nr732mn7729/q4YcfliT95je/0c9//nO9+uqrmjBhQpxeNYUOwEDTp0/XW2+9pY0bN+rdd99VZmbm\nkI+vqKgYPPd7wYIF+vvf/y5J2r17t+bPn3/e4xcuXKhdu76Zx9+1a5cWLlyo06dP68CBA1qxYoXm\nzp2rhx56SO3t7ZIkt9utyspKSdLtt98es9f535hDB2CcK664Qq+99pqampq0adMmlZeXn3OO939f\ntZmRkTH435dddplycnJ0+PBh7dq1SzU1Nec9f0VFhWpqatTV1aWWlhbNmjVLfX19yszM1BtvvHHB\nTIk4lZMROgDjnDhxQqNHj9btt9+ulStX6tChQ5o8ebJaWlokaXAEfjELFy7U73//e/X09Oiqq646\n7/4xY8bommuuUXV1tZxOp+x2uy699FJNmTJlcLrGsiy1trZKkkpKSrRz505J0t/+9rdYvtRzMEIH\nEHeJPs3wo48+0oYNG2Sz2TRq1Cht2rRJXq9XDzzwgJ5++mn98Ic/HHL7+fPnq7q6WmvXrr3oYxYu\nXKgVK1bo5ZdfHvzZM888o4cfflhPPvmkfD6fbrvtNhUVFWnDhg1auXKlnnvuOc2bNy9mr/O/2SzL\nsuL27BfAF1wkRjS54nnaoonvVzwN11x9fX3nTGMkisPhkM/nS/h+gwkn14XeO77gAgBGGAodAAxB\noQOAISh0ADAEhQ4AhqDQAcAQnIcOIO6CnQobrnBPna2trdWYMWO0cuXKqPZbWlqqf/zjH8rNzY3q\neeIlpEJfvXq10tPTlZaWJrvdrpqaGvX29qqurk4nT57U+PHjtW7dOo0dOzbeefEtQ/2S7Lv/+gQm\nAZAKQh6hr1+//pwFbhobGzVjxgxVVlaqsbFRjY2NWr58eVxCAkC4nnzySb388svKz8/XuHHjdPXV\nV+vzzz/Xo48+qs7OTo0ePVqbN2/WlVdeqT179uipp57SwMCAcnJy9Mwzz2j8+PHyeDxavXq1Ojs7\nde211yrB12GGLeI5dLfbrfLycklSeXm53G53zEIBQDRaWlq0a9cu7dmzR88++6w+/PBDSbro8rYz\nZ87U7t27tWfPHt12223aunWrJKmurk4zZ87Unj17VFFRof/85z9Je02hCHmEvnHjRknS3Llz5XQ6\n1d3drZycHElSdna2uru745MQAML07rvv6pZbbhlcEnfu3Lnyer2Dy9ueNTAwIEn68ssvdc8996i9\nvV0DAwOaOnWqJGn//v169tlnJUlOp1PZ2dkJfiXhCanQH3vsMeXm5qq7u1sbNmw4b10Bm8120aUh\nXS6XXC6XJKmmpkZ5eXmRBXU4It42nkZirmiedyS+X9EYrrna2tou+lVusdr/UPelpaUpLS1t8HFp\naWmy2WzKzMzUm2++ed421dXVWrFihW655Rbt27dPW7ZskcPhkM1mk91uP2d//307Fpm/7ZJLLom8\nJ0N50Nm/6GZlZamkpERHjx5VVlaWurq6lJOTo66urosuIO90OuV0OgdvR7rQ0HBdpChZfD5f3HJF\n87yp+n6RKzzBcvX398tut8dt/xdb6OrsIlgzZ87UunXrtGrVKvn9fr3++uu68847NWXKFO3YsUML\nFiyQZVk6fPiwioqK1N3drQkTJsjn8+nFF1+UZVny+XwqLS3Vyy+/rLVr16qpqUmnTp2S3+8PewGw\ncBbn6u/vP++9DXVxrqCF7vV6ZVmWRo8eLa/Xq5aWFi1evFjFxcVqbm5WZWWlmpubVVJSEtIOAYw8\nif5i8RkzZmjBggWqqKjQ5MmTVVpaKuniy9s+8MADWrFihSZNmqQf/ehHOnbsmCRp3bp1Wr16tW6+\n+WaVlZWpoKAgoa8jXEGXz21ra9OWLVskSX6/X9dff70WLVqknp4e1dXVqaOjI6zTFlk+N3aCnbbI\n8rmhI1d4WD43PIlaPjfoCH3ixInavHnzeT+/9NJLVV1dHdJOAADxx6X/AGAICh1AzKX6BTipLJr3\njkIHEHNpaWkpOZed6nw+n9LSIq9lFucCEHPp6enyer3q7++/6DUq8XDJJZeov78/YfsLVSi5LMtS\nWlqa0tPTI94PhQ4g5mw22+BVmok0XM8KihWmXADAEIzQEXMs6wskByN0ADAEhQ4AhqDQAcAQFDoA\nGIJCBwBDUOgAYAgKHQAMQaEDgCEodAAwBIUOAIbg0n8k1Kwn3x7y/kR/9yRgEkboAGAICh0ADEGh\nA4AhKHQAMASFDgCGoNABwBAUOgAYgvPQR6ihviYOwPDECB0ADEGhA4AhKHQAMETIc+iBQEBVVVXK\nzc1VVVWV2tvbVV9fr56eHhUWFmrNmjVyOJiSB4BkCXmE/uqrr6qgoGDw9l/+8hfNnz9fTz/9tMaM\nGaOmpqa4BAQAhCakQu/s7NTBgwd10003SZIsy1Jra6vKysokSbNnz5bb7Y5fSgBAUCHNkWzfvl3L\nly/XmTNnJEk9PT3KyMiQ3W6XJOXm5srj8VxwW5fLJZfLJUmqqalRXl5eZEEdjoi3jadUzRVsmdpo\nxPP1Juu9TNXPkVzhGem5ghb6gQMHlJWVpcLCQrW2toa9A6fTKafTOXi7o6Mj7OeQvvlFj3TbeErV\nXPEUz9ebrPcyVT9HcoXH1Fz5+fkhPS5ooR85ckTvvfee3n//fQ0MDOjMmTPavn27+vr65Pf7Zbfb\n5fF4lJubG3FYAED0ghb60qVLtXTpUklSa2urdu/erfvuu09PPPGE9u/fr1mzZmnv3r0qLi6Oe1gA\nwMVFfB76smXL9Morr2jNmjXq7e3VnDlzYpkLABCmsE4cLyoqUlFRkSRp4sSJ2rRpU1xCAQDCx5Wi\nAGAICh0ADEGhA4AhKHQAMASFDgCGoNABwBAUOgAYgkIHAENQ6ABgCL5iCGG77f8+SnYEABfACB0A\nDEGhA4AhKHQAMARz6EgpQ83P71w2PYFJgOGHEToAGIJCBwBDUOgAYAjm0DFsBDv/nTl2jHSM0AHA\nEBQ6ABiCQgcAQ1DoAGAICh0ADEGhA4AhKHQAMASFDgCGoNABwBAUOgAYIuil/wMDA1q/fr18Pp/8\nfr/Kysq0ZMkStbe3q76+Xj09PSosLNSaNWvkcLCSAAAkS9AGHjVqlNavX6/09HT5fD5VV1fr2muv\n1SuvvKL58+dr1qxZ+uMf/6impiZVVFQkIjMA4AKCTrnYbDalp6dLkvx+v/x+v2w2m1pbW1VWViZJ\nmj17ttxud3yTAgCGFNIcSSAQ0EMPPaQTJ07o5ptv1sSJE5WRkSG73S5Jys3NlcfjiWtQAMDQQir0\ntLQ0bd68WadPn9aWLVt0/PjxkHfgcrnkcrkkSTU1NcrLy4ssqMMR8bbxFM9cs558Oy7Pa6poPoeR\neHxFg1zhSVSusP6KOWbMGBUVFenjjz9WX1+f/H6/7Ha7PB6PcnNzL7iN0+mU0+kcvN3R0RFR0Ly8\nvIi3jadUzTUSRfM5pOrnSK7wmJorPz8/pMcFnUP/6quvdPr0aUnfnPHS0tKigoICFRUVaf/+/ZKk\nvXv3qri4OOKwAIDoBR2hd3V1qaGhQYFAQJZl6brrrtOPf/xjTZ48WfX19XrxxRd1+eWXa86cOYnI\nCwC4iKCF/t3vflePP/74eT+fOHGiNm3aFJdQQCT4ijqMdFwpCgCGoNABwBAUOgAYgkIHAENQ6ABg\nCAodAAxBoQOAISh0ADAEhQ4AhqDQAcAQFDoAGIJCBwBDUOgAYAgKHQAMEdY3FgHD2VDL6+67//oE\nJgHigxE6ABiCQgcAQ1DoAGAICh0ADEGhA4AhKHQAMASFDgCGoNABwBAUOgAYgkIHAENQ6ABgCAod\nAAxBoQOAISh0ADBE0OVzOzo61NDQoFOnTslms8npdGrevHnq7e1VXV2dTp48qfHjx2vdunUaO3Zs\nIjIjzv6298Eh7180+/EEJUmcWU++PeT9O5dNv+h9Qy3LG2xbIJaCFrrdbtedd96pwsJCnTlzRlVV\nVbr66qu1d+9ezZgxQ5WVlWpsbFRjY6OWL1+eiMwAgAsIOuWSk5OjwsJCSdLo0aNVUFAgj8cjt9ut\n8vJySVJ5ebncbnd8kwIAhhTWNxa1t7frs88+05VXXqnu7m7l5ORIkrKzs9Xd3X3BbVwul1wulySp\npqZGeXl5kQV1OCLeNp5SNRdiK5rPOJptU/X4Ild4EpUr5EL3er2qra3VXXfdpYyMjHPus9lsstls\nF9zO6XTK6XQO3u7o6IgoaF5eXsTbxlOq5kJsRfMZR7Ntqh5f5ApPtLny8/NDelxIZ7n4fD7V1tbq\nhhtuUGlpqSQpKytLXV1dkqSuri5lZmZGGBUAEAtBC92yLG3btk0FBQW69dZbB39eXFys5uZmSVJz\nc7NKSkrilxIAEFTQKZcjR47orbfe0tSpU/XrX/9aknTHHXeosrJSdXV1ampqGjxtEQCQPEELffr0\n6XrppZcueF91dXXMAwEAIsOVogBgCAodAAwR1nnoSC1DXaKfqpfnD9dlBYJd3g+kAkboAGAICh0A\nDEGhA4AhmENH2JI1Dz5c59+jEc2yvhh5GKEDgCEodAAwBIUOAIYwZg59qPOEmWc8X7D56GRJ1VzA\ncMAIHQAMQaEDgCGMmXJB6mDaJDwsK4BYYYQOAIag0AHAEBQ6ABhi2MyhB7sEeijB5ig5rRHxxBw5\nEoUROgAYgkIHAENQ6ABgCAodAAxBoQOAISh0ADAEhQ4Ahhg256En6+vHgp1DvO/+6+P23KyJEp6R\n+BV1wLcxQgcAQ1DoAGCIoFMuW7du1cGDB5WVlaXa2lpJUm9vr+rq6nTy5EmNHz9e69at09ixY+Me\nNlJBpy6W7UpMEACIo6Aj9NmzZ+uRRx4552eNjY2aMWOGnnrqKc2YMUONjY1xCwgACE3QQr/qqqvO\nG3273W6Vl5dLksrLy+V2u+OTDgAQsojm0Lu7u5WTkyNJys7OVnd3d0xDAQDCF/VpizabTTab7aL3\nu1wuuVwuSVJNTY3y8vIi2k9bRFuFJtJMkuRwOKLaHokz1N9SknlKYzS5hjr2gi05Hc0pt6l63I/0\nXBEVelZWlrq6upSTk6Ouri5lZmZe9LFOp1NOp3PwdkdHRyS7jKtoMvl8vpR8TRgZojn2otk2Ly8v\nJY97U3Pl5+eH9LiIplyKi4vV3NwsSWpublZJSUkkTwMAiKGgI/T6+nodPnxYPT09WrlypZYsWaLK\nykrV1dWpqalp8LRFAEByBS30tWvXXvDn1dXVMQ8DAIgcV4oCgCEodAAwBIUOAIYYNsvnBsNSs+fi\n/QhPNEvvsmwvUgUjdAAwBIUOAIYwZsplOGJaZPhI1mcVbL+3KfLpnGDfmBWNncumx+25cXGM0AHA\nEBQ6ABiCQgcAQzCHrujmEoMtUcpcIkaiYL9T/F7EByN0ADAEhQ4AhqDQAcAQzKEDSLih5tijmV8f\n6X/TYoQOAIag0AHAEBQ6ABiCOfQgWBoVqSyaNWbieezye5McjNABwBAUOgAYgkIHAEMwh674rnXt\n/5+FcXtuIJ6G+r1gDjw1MUIHAENQ6ABgCKZcgBEqmqlGvj4xNTFCBwBDUOgAYAgKHQAMEdUc+gcf\nfKDnn39egUBAN910kyorK2OVa9hgLhHBcIyEJ5lfXxfNsr5DnqK8451II4Ul4hF6IBDQc889p0ce\neUR1dXXat2+f/v3vf8cyGwAgDBEX+tGjRzVp0iRNnDhRDodDP/nJT+R2u2OZDQAQhogL3ePxaNy4\ncYO3x40bJ4/HE5NQAIDwxf08dJfLJZfLJUmqqalRfn5+ZE/09/dimApAMsXr3/LuX0fYL7HYPkhH\nRdx9YYh4hJ6bm6vOzs7B252dncrNzT3vcU6nUzU1NaqpqYl0V5KkqqqqqLaPF3KFh1zhIVd4Rnqu\niAv9iiuu0Jdffqn29nb5fD698847Ki4ujmU2AEAYIp5ysdvtuvvuu7Vx40YFAgHdeOONmjJlSiyz\nAQDCYP/d7373u0g3vuyyy/TTn/5U8+bN0/e///0YxrqwwsLCuO8jEuQKD7nCQ67wjORcNsuyrLjv\nBQAQd1z6DwCGGBbL56bKEgNbt27VwYMHlZWVpdraWklSb2+v6urqdPLkSY0fP17r1q3T2LFjE5qr\no6NDDQ0NOnXqlGw2m5xOp+bNm5f0bAMDA1q/fr18Pp/8fr/Kysq0ZMkStbe3q76+Xj09PSosLNSa\nNWvkcCT2UAwEAqqqqlJubq6qqqpSIpMkrV69Wunp6UpLS5PdbldNTU3SP0dJOn36tLZt26Zjx47J\nZrPpnnvuUX5+flJzHT9+XHV1dYO329vbtWTJEpWXlyf9/XrllVfU1NQkm82mKVOmaNWqVTp16lT8\njzErxfn9fuvee++1Tpw4YX399dfWr371K+vYsWNJydLa2mp9+umn1i9/+cvBn73wwgvWjh07LMuy\nrB07dlgvvPBCwnN5PB7r008/tSzLsvr6+qz77rvPOnbsWNKzBQIB68yZM5ZlWdbXX39tPfzww9aR\nI0es2tpa6+2337Ysy7L+8Ic/WK+//npCc1mWZe3evduqr6+3Nm3aZFmWlRKZLMuyVq1aZXV3d5/z\ns2R/jpZlWU8//bTlcrksy/rms+zt7U2JXGf5/X7rF7/4hdXe3p70XJ2dndaqVaus/v5+y7K+Obbe\nfPPNhBxjKT/lkkpLDFx11VXn/Z/e7XarvLxcklReXp6UbDk5OYN/cBk9erQKCgrk8XiSns1msyk9\nPV2S5Pf75ff7ZbPZ1NraqrKyMknS7NmzE56rs7NTBw8e1E033SRJsiwr6ZmGkuzPsa+vT//61780\nZ84cSZLD4dCYMWOSnuvbDh06pEmTJmn8+PEpkSsQCGhgYEB+v18DAwPKzs5OyDGW8lMuF1pi4JNP\nPklionN1d3crJydHkpSdna3u7u6k5mlvb9dnn32mK6+8MiWyBQIBPfTQQzpx4oRuvvlmTZw4URkZ\nGbLb7ZK+uUAt0UtGbN++XcuXL9eZM2ckST09PUnP9G0bN26UJM2dO1dOpzPpn2N7e7syMzO1detW\nffHFFyosLNRdd92V9Fzftm/fPs2aNUtS8n8nc3NztWDBAt1zzz36zne+o2uuuUaFhYUJOcZSvtCH\nE5vNJpvNlrT9e71e1dbW6q677lJGRsY59yUrW1pamjZv3qzTp09ry5YtOn78eMIzfNuBAweUlZWl\nwsJCtba2JjXLhTz22GPKzc1Vd3e3NmzYcN7l4sn4HP1+vz777DPdfffdmjZtmp5//nk1NjYmPddZ\nPp9PBw4c0NKlS8+7Lxm5ent75Xa71dDQoIyMDD3xxBP64IMPErLvlC/0UJcYSJasrCx1dXUpJydH\nXV1dyszMTEoOn8+n2tpa3XDDDSotLU2pbJI0ZswYFRUV6eOPP1ZfX5/8fr/sdrs8Hk9CP88jR47o\nvffe0/vvv6+BgQGdOXNG27dvT2qmbzu736ysLJWUlOjo0aNJ/xzHjRuncePGadq0aZKksrIyNTY2\nJj3XWe+//74uv/xyZWdnS0r+cX/o0CFNmDBhcL+lpaU6cuRIQo6xlJ9DT/UlBoqLi9Xc3CxJam5u\nVklJScIzWJalbdu2qaCgQLfeemvKZPvqq690+vRpSd+c8dLS0qKCggIVFRVp//79kqS9e/cm9PNc\nunSptm3bpoaGBq1du1Y/+MEPdN999yU101ler3dwGsjr9aqlpUVTp05N+ueYnZ2tcePGDf7r6tCh\nQ5o8eXLSc5317ekWKfnHfV5enj755BP19/fLsqzB9ysRx9iwuLDo4MGD+vOf/zy4xMCiRYuSkqO+\nvl6HDx9WT0+PsrKytGTJEpWUlKiurk4dHR1JO0Xqo48+UnV1taZOnTr4z8s77rhD06ZNS2q2L774\nQg0NDQoEArIsS9ddd50WL16strY21dfXq7e3V5dffrnWrFmjUaNGJSzXWa2trdq9e7eqqqpSIlNb\nW5u2bNki6Ztpjuuvv16LFi1ST09P0o+xzz//XNu2bZPP59OECRO0atUqWZaV9Fxer1erVq3SM888\nMzjNmArv10svvaR33nlHdrtd3/ve97Ry5Up5PJ64H2PDotABAMGl/JQLACA0FDoAGIJCBwBDUOgA\nYAgKHQAMQaEDgCEodAAwBIUOAIb4f+48tuDVe+1ZAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x9a14cf8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"col='age'\n", | |
"survived_age= data[data['survived']==1][col].dropna()\n", | |
"dead_age=data[data['survived']==0][col].dropna()\n", | |
"plt.hist([survived_age,dead_age], stacked=True,bins = 40,label = ['survived','dead'])\n", | |
"plt.legend()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 101, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEqCAYAAAAbLptnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlUU2fiPvDnEmQJe1hUUKzIWNw6OoJ7cUPbqi1OW9pO\nxWXsdE4H63Zsp/y0o7S1li4OHJcuFkWn2r029ms9XTJUXFALgqViRaz7UGUJIjtC3t8fnmYmdSGG\nwA0vz+ccz/GGm5vnkuTx+t43N4oQQoCIiKTlpHYAIiJqWyx6IiLJseiJiCTHoicikhyLnohIcix6\nIiLJseipQzhz5gwURcG+fftuuZ6iKNi6dWs7pXJMu3fvhqIouHDhgtpRyEE4qx2AyJ5++eUX+Pr6\nqh2DyKGw6Ekq3bp1UzuCVRobG+Hi4qJ2DOokOHRD7Wr9+vXo378/XF1dERQUhIceeggA8P7772P4\n8OHw8fFBQEAApk6dihMnTlx3/zNnzmDixIlwd3dHWFgYPvzwQ4uf/3boRlEUvPnmm5g5cya8vLzQ\no0cPvPLKK1bnnTNnDmJiYpCSkoKQkBBotVrExcXBaDSa18nNzcV9992HoKAgeHp6IioqCl999ZXF\ndu644w48//zzSEhIgL+/P+6++24AQFpaGvr16wc3NzfodDpER0dbDLkcPnwYkydPhqenJwIDA/Hg\ngw/i7NmzFtteu3YtevToAa1Wi3vuuQfnzp2zev+okxBE7WT58uXCw8NDrF27VhQWForDhw+LlStX\nCiGE2LRpk/jiiy/EyZMnRW5urrj//vtFeHi4aGhoEEIIcfr0aQFAdO/eXWzdulUcP35cLFu2TDg5\nOYnc3FzzYwAQ7733nsVyUFCQ2LBhgzh58qRYt26dACAMBoNVmWfPni28vLzE/fffL/Lz88V3330n\nwsPDxfTp083rfPfddyI9PV0cPXpUFBYWimXLlokuXbqIwsJC8zq9evUSXl5eYsWKFaKwsFAUFBSI\nnJwcodFoxJYtW8SZM2dEfn6+ePfdd8X58+eFEEIUFBQIDw8PsXz5cvHTTz+J/Px88fDDD4vf/e53\noq6uTgghhF6vFxqNRqxevVoUFhaKtLQ0ERQUJACYt0PEoqd2UV1dLdzc3MTrr79u1frl5eUCgNi3\nb58Q4r9F//zzz1usN3LkSBEfH29evlHRz58/3+I+ERERIjEx0aocs2fPFh4eHuLy5cvm277++msB\nQBQVFd30fnfddZf5HzEhrhX9hAkTLNbZvn278Pb2FpWVlTd97EcffdTitvr6euHu7i4+//xzIYQQ\no0ePFo8//rjFOkuWLGHRkwUO3VC7KCgoQH19PSZPnnzDnx85cgR//OMf0bt3b3h5eSE0NBQArhum\nGDlypMXy6NGjUVBQcMvHHjx4sMVycHAwLl26ZHX2/v37w8fHx+IxAeDYsWMAgNLSUiQkJCAiIgK+\nvr7w9PREQUHBddmHDRtmsTxp0iSEhYWhd+/eeOyxx7BhwwaUlZWZf56dnY3PP/8cnp6e5j/+/v6o\nr69HUVGROcOoUaMstjtmzBir9406B56MJdXV1tZi8uTJGDNmDNLT09G1a1cAwIABA9DY2Njq7f/2\npKeiKDCZTK3e7q/mzJmDc+fO4bXXXkPv3r3h7u6Oxx577LrsHh4eFsuenp7IycnB/v37YTAY8Pbb\nb+Pvf/87/v3vf2Po0KEwmUyYOXMmEhMTr3tMf39/u+Un+fGIntpF//794ebmhm+++ea6n/30008o\nLS3Fyy+/jHHjxqFfv36oqKiAuMEVtA8ePGixnJWVhf79+7dZ7l/zXblyxeIxAZgfd8+ePUhISMAD\nDzyAQYMGoXv37jh16pRV29ZoNIiOjsaLL76Iw4cPo3v37nj//fcBAJGRkcjPz0efPn0QHh5u8cfP\nz8+c4dc8v9q/f3+r95nkwiN6aheenp5YsmQJkpKS4O7ujkmTJqGurg67du3Ck08+CVdXV6xduxZL\nlizBmTNnkJiYCEVRrtvOxo0bERERgcjISGzduhUHDhzA2rVr2zS7oiiYNWsWVq5cCaPRiHnz5uGB\nBx5AeHg4AODOO+/Etm3bMGbMGDQ3N2P58uVobm5ucbs7duzAqVOnEB0djcDAQBw+fBjnz583/wOy\ndOlSDBs2DPHx8Vi4cCECAwNx5swZ6PV6LFy4EGFhYViyZAni4uIwbNgwTJkyBfv27cN7773Xpr8P\n6oDUPklAnYfJZBKpqamib9++okuXLiIoKEg8/PDDQgghPvnkExEeHi5cXV3F4MGDxe7du4VGoxHp\n6elCiP+ejP3Xv/4lxo4dK1xdXcUdd9whtm3bZvEYuMHJ2P9dFkKIiRMnitmzZ1uVefbs2WLixIni\n9ddfF926dRPu7u7iwQcfFGVlZeZ18vPzxciRI4Wbm5vo1auXWL9+/XWP0atXL/HSSy9ZbDszM1OM\nHz9eBAQECFdXVxEeHi5eeeUVi3Xy8/PFAw88IHx9fYWbm5vo06ePePLJJ0V5ebl5ndTUVBEcHCzc\n3NzExIkTxebNm3kyliwoQvAbpohuZs6cObhw4QIMBoPaUYhsxjF6IiLJseip09q7d6/F1MXf/tm7\nd6/aEYnsgkM31GnV1dXhP//5z01/HhISAnd393ZMRNQ2WPRERJLj0A0RkeQcZh59cXGx2hGkERAQ\nYPFReiJHwdemfQUHB1u1Ho/oiYgkx6InIpIci56ISHIseiIiybHoiYgkx6InIpIci56ISHIseiIi\nybHoiYgk5zCfjCUi28VuO652BKnsmBGhdgS74hE9EZHkWPRERJJj0RMRSY5FT0QkORY9EZHkWPRE\nRJJj0RMRSY5FT0QkORY9EZHkWPRERJJj0RMRSY5FT0QkORY9EZHkWPRERJKz6jLF8+bNg5ubG5yc\nnKDRaJCcnIzq6mqkpKSgtLQUgYGBWLx4MTw9PSGEQHp6OvLy8uDq6oqEhASEhYW19X4QEdFNWH09\n+hUrVsDb29u8rNfrMWjQIEyfPh16vR56vR7x8fHIy8vDxYsXsWbNGhQVFSEtLQ2rVq1qk/BERNQy\nm4dusrOzMXbsWADA2LFjkZ2dDQDIyclBdHQ0FEVB3759UVNTg4qKCvukJSKi22b1Ef3LL78MAJg0\naRJiYmJQWVkJPz8/AICvry8qKysBAEajEQEBAeb7+fv7w2g0mtf9lcFggMFgAAAkJydb3Idax9nZ\nmb9PolaQ7f1jVdG/9NJL0Ol0qKysxMqVKxEcHGzxc0VRoCjKbT1wTEwMYmJizMtlZWW3dX+6uYCA\nAP4+iVqho7x/ftvFN2PV0I1OpwMA+Pj4ICoqCidPnoSPj495SKaiosI8fq/T6Sx+SeXl5eb7ExFR\n+2ux6Ovr61FXV2f+e35+PkJDQxEZGYnMzEwAQGZmJqKiogAAkZGR2LNnD4QQOHHiBLRa7XXDNkRE\n1H5aHLqprKzEG2+8AQBobm7GmDFjMHjwYPTp0wcpKSnIyMgwT68EgCFDhiA3NxcLFiyAi4sLEhIS\n2nYPiIjolhQhhFA7BAAUFxerHUEaHKPvfGK3HVc7glR2zIhQO4JV7DpGT0REHReLnohIcix6IiLJ\nseiJiCTHoicikhyLnohIcix6IiLJseiJiCTHoicikhyLnohIcix6IiLJseiJiCTHoicikhyLnohI\ncix6IiLJseiJiCTHoicikhyLnohIcix6IiLJseiJiCTHoicikhyLnohIcix6IiLJseiJiCTHoici\nkhyLnohIcix6IiLJseiJiCTHoicikpyztSuaTCYkJiZCp9MhMTERJSUlSE1NRVVVFcLCwjB//nw4\nOzvj6tWrWLduHU6dOgUvLy8sWrQIQUFBbbkPRER0C1Yf0e/atQshISHm5a1bt2Lq1KlYu3YtPDw8\nkJGRAQDIyMiAh4cH1q5di6lTp2Lbtm32T01ERFazqujLy8uRm5uLiRMnAgCEECgoKMCIESMAAOPG\njUN2djYAICcnB+PGjQMAjBgxAkePHoUQog2iExGRNawautm8eTPi4+NRV1cHAKiqqoJWq4VGowEA\n6HQ6GI1GAIDRaIS/vz8AQKPRQKvVoqqqCt7e3hbbNBgMMBgMAIDk5GQEBATYZ48Izs7O/H0StYJs\n758Wi/7w4cPw8fFBWFgYCgoK7PbAMTExiImJMS+XlZXZbdudXUBAAH+fRK3QUd4/wcHBVq3XYtEX\nFhYiJycHeXl5aGxsRF1dHTZv3oza2lo0NzdDo9HAaDRCp9MBuHZ0X15eDn9/fzQ3N6O2thZeXl6t\n2xsiIrJZi2P0jz/+ON5++22sX78eixYtwsCBA7FgwQIMGDAABw8eBADs3r0bkZGRAIChQ4di9+7d\nAICDBw9iwIABUBSl7faAiIhuyeZ59DNmzMDOnTsxf/58VFdXY8KECQCACRMmoLq6GvPnz8fOnTsx\nY8YMu4UlIqLbpwgHmRJTXFysdgRpcIy+84nddlztCFLZMSNC7QhWsXaMnp+MJSKSHIueiEhyVl8C\ngchRCCFQX18Pk8kkzYl+IQScnJzg5uYmzT6R42DRU4dTX1+PLl26wNlZrpdvU1MT6uvr4e7urnYU\nkgyHbqjDMZlM0pU8cO0TzSaTSe0YJCEWPXU4Mg9tyLxvpB4WPRGR5OT7/y91Os1PPmDX7Wne/cKq\n9b766is88cQTyMzMRHh4uF0zENkTj+iJbKTX6zFs2DDo9Xq1oxDdEoueyAY1NTXIzs7GG2+8gR07\ndqgdh+iWWPRENvj6668xbtw49OnTB35+fsjPz1c7EtFNseiJbKDX6xEbGwsAiI2N5fANOTSejCW6\nTRUVFdi/fz+OHz8ORVHQ3NwMRVHwj3/8g9MjySHxiJ7oNn355Zd46KGH8P333+PQoUPIyclBaGgo\nDh06pHY0ohviET11eNZOh7QXvV6PefPmWdw2ZcoU6PV6jBgxol2zEFmDRU90mz799NPrbnviiSdU\nSEJkHRb9beCXO9hXR/lyB6KOjmP0RESSY9ETEUmORU9EJDkWPRGR5Fj0RESS46wb6vDsPRvKmtlA\nPXv2REREBIQQ0Gg0WLlyJaKiouyag8heWPRENnBzc8O3334LANi9ezeSk5Px2WefqZyK6MY4dEPU\nSlVVVfDx8VE7BtFN8YieyAb19fWYNGkSGhoaUFJSgo8//ljtSEQ3xaInssH/Dt3k5ORg4cKFyMjI\n4NUrySFx6IaolSIjI2E0GlFeXq52FKIbavGIvrGxEStWrEBTUxOam5sxYsQIPPLIIygpKUFqaiqq\nqqoQFhaG+fPnw9nZGVevXsW6detw6tQpeHl5YdGiRQgKCmqPfSFSxcmTJ9Hc3Aw/Pz+1oxDdUItF\n36VLF6xYsQJubm5oamrC8uXLMXjwYOzcuRNTp07F6NGjsWHDBmRkZGDy5MnIyMiAh4cH1q5di/37\n92Pbtm1YvHhxe+wLdVJqXBzt1zF6ABBCIDU1FRqNpt1zEFmjxaJXFAVubm4AgObmZvO36RQUFGDh\nwoUAgHHjxuGTTz7B5MmTkZOTg7i4OADAiBEjsGnTJgghOHZJUjl//rzaEYisZtXJWJPJhOeeew4X\nL17EPffcg65du0Kr1ZqPYHQ6HYxGIwDAaDTC398fAKDRaKDValFVVQVvb+822gUiIroVq4reyckJ\nr7/+OmpqavDGG2+guLi41Q9sMBhgMBgAAMnJyQgICGj1NqljsfU5v3TpEpyd5Zww5urqyveCA5Dt\nObitd4uHhwcGDBiAEydOoLa2Fs3NzdBoNDAajdDpdACuHd2Xl5fD398fzc3NqK2thZeX13XbiomJ\nQUxMjHm5rKyslbtCHY2tz3lDQ4O04+ENDQ18LziAjvIcBAcHW7Vei9Mrr1y5gpqaGgDXZuDk5+cj\nJCQEAwYMwMGDBwFc+wh4ZGQkAGDo0KHYvXs3AODgwYMYMGAAx+eJiFTU4hF9RUUF1q9fD5PJBCEE\nRo4ciaFDh6JHjx5ITU3Fhx9+iN69e2PChAkAgAkTJmDdunWYP38+PD09sWjRojbfCSIiujlFCCHU\nDgHALuP+bY3fGWtftk6LrK2thVartXMax2DrvvG1aV8d5fuMrR26kfOMFnUq//fRZbtu7/5Hfa1a\nr6SkBCtWrMAPP/wAFxcX9OzZE0lJSejTp49d8xC1FoueyAZCCDzxxBOIi4vDW2+9BQA4evQoysrK\nWPTkcFj0RDbYv38/unTpglmzZplvGzhwoIqJiG6OFzUjskFhYSEGDRqkdgwiq7DoiYgkx6InskHf\nvn3x448/qh2DyCoseiIbjBkzBo2Njdi6dav5tiNHjuDAgQMqpiK6MZ6MpQ7P2umQ9qQoCtLS0rBi\nxQq8+eabcHV1RY8ePfDCCy+0exailrDoiWzUrVs3vPPOO2rHIGoRh26IiCTHoicikhyLnohIcix6\nIiLJseiJiCTHoicikhynV1KHt2bNGrtub8GCBS2u07NnT0RERKCpqQkajQYPP/ww/vrXv8LJicdO\n5HhY9EQ2cHNzw7fffgvg2veLzps3D9XV1XjmmWdUTkZ0PR5+ELVSQEAAXnvtNaSnp8NBvrCNyAKL\nnsgOevXqBZPJhLKyMrWjEF2HRU9EJDkWPZEdnD17Fk5OTggICFA7CtF1WPRErVReXo7ExET8+c9/\nhqIoaschug5n3VCHZ810SHurr6/HpEmTrpteSeSIWPRENjh//rzaEYisxqEbIiLJseiJiCTHoici\nkhyLnohIcix6IiLJtTjrpqysDOvXr8fly5ehKApiYmIwZcoUVFdXIyUlBaWlpQgMDMTixYvh6ekJ\nIQTS09ORl5cHV1dXJCQkICwsrD32hYiIbqDFotdoNJg5cybCwsJQV1eHxMRE3HXXXdi9ezcGDRqE\n6dOnQ6/XQ6/XIz4+Hnl5ebh48SLWrFmDoqIipKWlYdWqVe2xL9RJBZ38f3bdXkn4Ky2u8+tlin8V\nGxuLp59+2q45iOylxaL38/ODn58fAMDd3R0hISEwGo3Izs5GUlISAGDs2LFISkpCfHw8cnJyEB0d\nDUVR0LdvX9TU1KCiosK8DSIZ/O9liokc3W19YKqkpASnT59GeHg4KisrzeXt6+uLyspKAIDRaLS4\n3oe/vz+MRuN1RW8wGGAwGAAAycnJvEZIJ2Trc37p0iU4O7fdZ/2s3XZbZHB1deV7wQHI9hxY/Uqt\nr6/H6tWrMWfOHGi1WoufKYpy29f4iImJQUxMjHmZl3ftfGx9zhsaGqDRaOyc5r+amppaXKe+vh7j\nx483Lz/99NOIjY1t9WM3NDTwveAAOspzEBwcbNV6VhV9U1MTVq9ejbvvvhvDhw8HAPj4+JiHZCoq\nKuDt7Q0A0Ol0Fr+k8vJy6HS6281P5NA4dEMdSYvTK4UQePvttxESEoJp06aZb4+MjERmZiYAIDMz\nE1FRUebb9+zZAyEETpw4Aa1Wy/F5IiIVtXhEX1hYiD179iA0NBTPPvssAOBPf/oTpk+fjpSUFGRk\nZJinVwLAkCFDkJubiwULFsDFxQUJCQltuwdERHRLinCQL7ksLi5WO0KLYrcdVzuCVHbMiGh5pRuo\nra297jxRe/vt9Mrx48dj6dKlrd6urfvG16Z92frabG92HaMnIku8TDF1JLwEAhGR5Fj0RESSY9ET\nEUmORU9EJDkWPRGR5Fj0RESS4/RK6vA+Kphp1+09OuC9Ftf57Tz6TZs2oWfPnnbNQWQvLHoiG/Ba\nN9SRcOiGiEhyPKInskF9fT0mTZoEAAgNDcXGjRtVTkR0cyx6Ihtw6IY6Eg7dEBFJjkVPRCQ5Dt1Q\nh2fNdEiizoxH9EQ2KCoqUjsCkdVY9EREkmPRExFJjkVPRCQ5noy9DY8PflntCJLhSVSi9sAjeiIi\nybHoiYgkx6Gb2zDftYfaEaRSYqftBB/50U5buqZ48CCr1istLUVSUhJyc3Ph4+ODLl26ICEhAffd\nd59d8xC1FoueyAZCCMydOxdxcXFYv349AODChQv45ptvVE5GdD0O3RDZYN++fXBxccGsWbPMt/Xo\n0QNz585VMRXRjbHoiWxw4sQJDBw4UO0YRFbh0A2RHSxduhTff/89XFxcsGvXLrXjEFngET2RDfr2\n7YujR4+al1etWoWPP/4Y5eXlKqYiujEWPZENxowZg4aGBmzZssV8W11dnYqJiG6uxaGbN9980zx9\nbPXq1QCA6upqpKSkoLS0FIGBgVi8eDE8PT0hhEB6ejry8vLg6uqKhIQEhIWFtflOUOdm7XRIe1IU\nBRs3bkRSUhLeeust+Pv7w93dHUuXLm33LEQtabHox40bh3vvvdc8hQwA9Ho9Bg0ahOnTp0Ov10Ov\n1yM+Ph55eXm4ePEi1qxZg6KiIqSlpWHVqlVtugNEaunatSveeusttWMQtajFou/fvz9KSiw/2pKd\nnY2kpCQAwNixY5GUlIT4+Hjk5OQgOjoaiqKgb9++qKmpQUVFBfz8/NokfHt7fld3tSNIZcECtRMQ\ndQ42zbqprKw0l7evry8qKysBAEajEQEBAeb1/P39YTQab1j0BoMBBoMBAJCcnGxxP+ocbH3OL126\nBGdnOSeMubq68r3gAGR7Dlr9blEUBYqi3Pb9YmJiEBMTY14uKytrbRTqYGx9zhsaGqDRaOycxjE0\nNDTwveAAOspzEBwcbNV6Ns268fHxQUVFBQCgoqIC3t7eAACdTmfxCyovL4dOp7PlIYiIyE5sKvrI\nyEhkZmYCADIzMxEVFWW+fc+ePRBC4MSJE9BqtdKMzxMRdVQtDt2kpqbi2LFjqKqqwlNPPYVHHnkE\n06dPR0pKCjIyMszTKwFgyJAhyM3NxYIFC+Di4oKEhIQ23wEiIrq1Fot+0aJFN7x9+fLl192mKAr+\n8pe/tD4V0W1ofvIBu25P8+4Xt/y50WjEo48+CuDapYo1Go15iPLLL7+Ei4uLXfMQtZacUxeI2pBO\np8O3334LAFi9ejU8PDzw1FNPqZyK6OZ4CQQiIsmx6ImIJMehm9vQu+usllciInIwPKInIpIci56I\nSHIcuqEOr6XpkJ3B9t1/VzuCXGbI9Zpi0RO1wpIlS9SOAAD4dJGP2hGk8qjaAeyMQzdERJLjET2R\nBOa79lA7glRKWl6lQ+ERPRGR5Fj0RESS49ANkQT4NZf2JdvXXPKInohIcjyipw4vdttxu25vx4wI\nu26PSG0seiIJ8DpMdCss+tuQ1nRR7QhSuR++akew2fnz5xEfH49hw4YhJycH3bp1w6ZNm7B9+3Zs\n27YNjY2N6N27N9asWQN3d3csWrQIXl5e+OGHH1BaWoply5Zh2rRpau8GdRIcoyey0enTpzF79mx8\n99138Pb2xq5du3Dfffdh165dMBgMCA8PxwcffGBe/9KlS9Dr9diyZQteeeUVFZNTZ8MjeiIb9ezZ\nEwMHDgQA3HXXXTh//jwKCwvx2muv4cqVK6ipqcHYsWPN6997771wcnJC3759UVpaqlZs6oRY9EQ2\ncnV1Nf9do9Ggvr4eixcvxsaNGzFgwAB89NFHOHDggHmd//0uWSFEu2alzo1DN0R2VF1dja5du+Lq\n1av4/PPP1Y5DBIBH9CQBR5oO+eyzz2LatGno0aMHIiIiUF1drXYkIijCQf4PWVxcrHaEFtl7vnZn\nZ2tB19bWQqvV2jmNY7B13/7vo8ttkKbzuv/RjjEjLDg42Kr1OHRDRCQ5Dt0QSYCf8bCvjvwZjxvh\nET11OA4y2tgmZN43Ug+LnjocJycnNDU1qR3D7pqamuDkxLck2R+HbqjDcXNzQ319PRoaGqAoitpx\n7EIIAScnJ7i5uakdhSTEoqcOR1EUuLu7qx2DqMNok6I/cuQI0tPTYTKZMHHiREyfPr0tHqbdbd/9\nd7UjyGXGF2onkAZfm3Ym2WvT7gOCJpMJGzduxNKlS5GSkoL9+/fjwoUL9n4YIiKykt2L/uTJk+jW\nrRu6du0KZ2dnjBo1CtnZ2fZ+GCIispLdh26MRiP8/f3Ny/7+/igqKrpuPYPBAIPBAABITk62+hNe\nqvoyR+0ERDfG1ybdgmpzuWJiYpCcnIzk5GS1IkgrMTFR7QhEN8TXpjrsXvQ6nQ7l5eXm5fLycuh0\nOns/DBERWcnuRd+nTx/88ssvKCkpQVNTE7KyshAZGWnvhyEiIivZfYxeo9Fg7ty5ePnll2EymTB+\n/Hj07NnT3g9DtxATE6N2BKIb4mtTHQ5zmWIiImobvLAGEZHkWPRERJJj0RMRSY5FT0QkOV69koja\nREtfjO7p6dlOSYizbjqwWbNm3fJ67Fu2bGnHNESW5s2bB0VRIIRAWVkZPD09IYRATU0NAgICsH79\nerUjdhosegl89NFH8PX1RXR0NIQQ2LdvH+rq6hAbG6t2NCJs2LABkZGR+MMf/gAAyMvLw48//ohZ\ns2apnKzz4Bi9BH744Qfcc889cHd3h1arxeTJk3Ho0CG1YxEBAH7++WdzyQPAkCFDcOzYMRUTdT4s\negk4OTlh7969MJlMMJlM2Lt3L797lByGt7c3PvvsM5SUlKCkpATbt2+Hl5eX2rE6FQ7dSKCkpASb\nN29GYWEhAODOO+/EnDlzEBQUpHIyomsnZT/55BP89NNPAIB+/fohLi6OJ2PbEYueiEhynF4pgeLi\nYqSlpaGyshKrV6/G2bNnkZOTg4ceekjtaES4cuUKduzYgQsXLqCxsdF8+4oVK1RM1blwIFcC77zz\nDh5//HFoNBoAQK9evZCVlaVyKqJr1qxZg5CQEJSUlCAuLg6BgYHo06eP2rE6FRa9BBobGxEeHm5x\nG0/GkqOoqqrChAkToNFo0L9/fyQkJNzw60Wp7XDoRgJeXl64ePGi+cNTBw8ehJ+fn8qpiK5xdr5W\nM35+fsjNzYWfnx+MRqPKqToXnoyVwKVLl7BhwwYUFhbCw8MDQUFBWLBgAQIDA9WORoTDhw+jX79+\nKCsrQ3p6OmpraxEXF8dvnmtHLHoJmEwmODk5ob6+HkIIuLu7qx2JiBwIB3IlMG/ePLzzzjsoKiqC\nm5ub2nGILBQXF+PFF1/EkiVLAABnz57FZ599pnKqzoVFL4HU1FQMGjQIX3/9NZ5++mls3LgRx48f\nVzsWEQB/Y0U0AAADHElEQVTOCnMELHoJuLq6YtSoUXjmmWfw6quvoq6ujnOUyWFwVpj6OOtGEseO\nHUNWVhaOHDmCsLAwLF68WO1IRAA4K8wR8GSsBObNm4c77rgDI0eORGRkJMfpyaFwVpj6WPQSqK2t\nhVarVTsGkYWdO3daLDc2NsJkMpkPRKZNm6ZGrE6JQzcd2I4dOxAbG4sPP/zwhj+fO3duOyci+q+6\nujoA12bd/Pzzz+Z583v37kW/fv3UjNbpsOg7sJCQEABAWFiYykmIrhcXFwcAWLlyJV599VXz5zvi\n4uLwz3/+U81onQ6LvgP79QgpNDSUZU8Oq6yszHwZBODaJRFKS0tVTNT5sOgl8N577+Hy5csYPnw4\nRo0ahdDQULUjEZlFR0dj6dKliIqKAgBkZ2dj7NixKqfqXHgyVhKXL19GVlYWDhw4gNraWowaNYrX\noyeHcerUKfOH+Pr164fevXurnKhzYdFL5ty5c9ixYweysrLwwQcfqB2HiBwAi14CFy5cQFZWFg4d\nOgQvLy+MGjUKw4cPh4+Pj9rRiMgBsOglsGzZMowePRojRoyATqdTOw4RORiejO3gTCYTunbtiilT\npqgdhYgcFK8s1ME5OTmhqqoKTU1NakchIgfFoRsJbNiwAadPn8bQoUMtrnPDj5gTEcChGyn4+fnB\nz88PQgjzx86JiH7FI3oiIsnxiF4CL7zwwg1v55ePEBHAopfCzJkzzX9vbGzEoUOHzF/bRkTEopfA\nby9oFhERwaN5IjJj0Uugurra/HeTyYRTp07h8uXLKiYiIkfCopfAc889B0VRIISAs7MzAgMD8be/\n/U3tWETkIFj0EpgxYwYGDx4MrVaLTz/9FKdPn4aLi4vasYjIQfCTsRLYvn07tFotjh8/jh9//BHj\nxo1DWlqa2rGIyEGw6CXg5HTtaczNzcWkSZMQFRXFSyIQkRmLXgI6nQ4bNmxAVlYWhgwZgqtXr4Kf\ngyOiX/GTsRJoaGjAkSNHEBoaiu7du6OiogLnzp3D73//e7WjEZEDYNETEUmOQzdERJJj0RMRSY5F\nT0QkORY9EZHk/j+bMiBtKv9SngAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0xa983390>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def parse_cabin(df):\n", | |
" df['cabin_parsed']=[i[0] if i!='nan' else 'nan' for i in df['cabin']]\n", | |
" df.drop('cabin',axis=1,inplace=True)\n", | |
" return df\n", | |
"\n", | |
"data.pipe(parse_cabin)\n", | |
"draw_chart('cabin_parsed')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 102, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.legend.Legend at 0xd964518>" | |
] | |
}, | |
"execution_count": 102, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAHVCAYAAAADyWaQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+QVfV9//HX3V0Ult/LqhTUNPhjHAmJRoiYRCG6IRkx\naIl1Ro2ZZGKJxWowbfzVBNoak62IID+sna+JNhOnickkqG2qZrMF5htLAoLS4Cix0abWH7jsiggS\n3OV+/3Cy33D8scDuuuzl8fiLvZx77+fcd3J9ejx7TqlcLpcDAAB0qurrBQAAwIFGJAMAQIFIBgCA\nApEMAAAFIhkAAApEMgAAFIhkAAAoEMkAAFBQs7cb7t69O9dee23q6upy7bXXZvPmzVm0aFG2bduW\ncePG5YorrkhNTU1ef/31LF26NL/5zW8ydOjQzJkzJ4cffnhv7gMAAPSovT6S/JOf/CRjx47t/Pm7\n3/1upk+fniVLlmTw4MFpbm5OkjQ3N2fw4MFZsmRJpk+fnrvvvrvnVw0AAL1or44kb9myJevWrcvM\nmTPzL//yLymXy9m4cWO+9KUvJUmmTp2aH/zgB5k2bVrWrl2bP/3TP02STJ48Od/+9rdTLpdTKpXe\n8T2ee+65bu7K/qmvr09LS0ufvDe9y2wrk7lWLrOtXGZbufrjbMeMGbNX2+1VJN911135zGc+k9de\ney1Jsm3bttTW1qa6ujpJUldXl9bW1iRJa2trRo0alSSprq5ObW1ttm3blmHDhu3xmk1NTWlqakqS\nNDY2pr6+fq8W3NNqamr67L3pXWZbmcy1cplt5TLbylXJs+0ykh955JEMHz4848aNy8aNG3vsjRsa\nGtLQ0ND5c1/9W0h//Dcg9o7ZViZzrVxmW7nMtnL1x9n22JHkJ598MmvXrs369euza9euvPbaa7nr\nrruyY8eOdHR0pLq6Oq2tramrq0vyxlHlLVu2ZNSoUeno6MiOHTsydOjQ7u0NAAC8i7qM5IsuuigX\nXXRRkmTjxo25//77c+WVV+aWW27J6tWr85GPfCQrVqzIxIkTkySnnHJKVqxYkeOPPz6rV6/O+PHj\nuzwfGQCAt1Yul7Nz587s3r37gGuqF198Mb/73e/6ehlvUi6XU1VVlYEDB+73Z7bXl4Aruvjii7No\n0aJ873vfy3vf+96ceeaZSZIzzzwzS5cuzRVXXJEhQ4Zkzpw5+/sWAAAHvZ07d2bAgAGpqdnvbOs1\nNTU1nb+jdqBpb2/Pzp07M2jQoP16fqlcLpd7eE37xdUt6GlmW5nMtXKZbeUy2+7Zvn17Bg8e3NfL\neEs1NTVpb2/v62W8rbf67Pb2nGR33AMAOIAdaKdY9Cfd+exEMgAAFBx4J7cAAPC2Ov5sRo++XvX/\nua9HX29vPfTQQ9m0aVP+4i/+otuvddxxx+XXv/51D6zq/xPJAAD0ivb29rf9hcNp06Zl2rRp7/KK\n9p7TLQAAeEc7duzIJZdckoaGhpx55pm59957c+qpp2bLli1Jksceeyznn39+kmTBggW5+uqrc+GF\nF+ZLX/pSzjnnnDz55JOdr3X++efnsccey/e///389V//dV555ZV86EMfyu7duzvfa+LEiXn99dfz\nzDPP5OKLL84nP/nJ/Mmf/EmeeuqpJMlvf/vbfOpTn8rZZ5+dm266qVf2WSQDAPCO/v3f/z2jR49O\nU1NTmpub87GPfewdt9+wYUO+/e1vZ9myZZkxY0buv//+JG9cV/nFF1/MBz7wgc5thw0blvHjx+c/\n/uM/kiQ//elPM3Xq1AwYMCBXX311brjhhjzwwAP52te+luuuuy5JMnfu3Hz2s5/NT37ykxx++OG9\nss8iGQCAd3TCCSdk1apVufHGG/OLX/wiw4YNe8ftp02b1nl94k996lP513/91yTJ/fffn+nTp79p\n+xkzZuS++944N/q+++7LjBkzsn379jzyyCP54he/mI9//OO55pprsnnz5iTJmjVrct555yVJPv3p\nT/fYfv4h5yQDAPCOjjnmmDzwwANpbm7ON7/5zUyZMiU1NTWdp0gU77pXW1vb+ec/+qM/ysiRI/P4\n44/nvvvuS2Nj45tef9q0aWlsbExbW1s2bNiQj3zkI9mxY0eGDRuWn/70p2+5pt6+NJ4jyQAAvKMX\nXnghgwYNyqc//elcdtll+c///M8ceeSR2bBhQ5J0Hil+OzNmzMg//MM/ZNu2bTnxxBPf9PeDBw/O\nBz7wgcydOzcNDQ2prq7O0KFDc9RRR3WeqlEul7Nx48YkyaRJk3LvvfcmSX70ox/15K52ciQZAKAf\n6YtLtj3xxBP5+te/nlKplAEDBuSb3/xmdu7cmb/6q79KfX19Tj755Hd8/vTp0zN37tzMmTPnbbeZ\nMWNGvvjFL+aHP/xh52NLly7Nddddl1tvvTXt7e0599xzM378+Pzd3/1dLr/88nzrW9/K2Wef3WP7\n+YfcltqtMiuW2VYmc61cZlu5zLZ7duzYscfpCweSA/221G/12bktNQAA7CeRDAAABQf9OckfufX/\n7vdz7734hB5cCQAABwpHkgEAoEAkAwBAgUgGAICCg/6cZACA/uTcu5/o0dfb19+xWrBgQQYPHpzL\nLrusW+976qmn5t/+7d9SV1fXrdfpLY4kAwBAgSPJAAC8o1tvvTU//OEPM2bMmIwaNSrvf//788wz\nz+SrX/1qWlpaMmjQoMyfPz/HHntsHnrooSxevDi7du3KyJEjs3Tp0hx22GFpbW3N5Zdfni1btuSk\nk07KAXI/u7flSDIAAG9rw4YNue+++/LQQw/ljjvuyGOPPZYkufrqq/ONb3wjDzzwQL72ta/luuuu\nS5J86EMfyv3335+HHnoo5557bm677bYkycKFC/OhD30oDz30UKZNm5b//d//7bN92huOJAMA8LZ+\n8Ytf5JOf/GQGDRqUJPn4xz+enTt35pFHHsmll17aeUR4165dSZLnn38+f/7nf57Nmzdn165dOfro\no5Mkq1evzh133JEkaWhoyIgRI/pgb/aeSAYAYJ+Uy+UMGzYszc3NaW9v3+Pvvva1r2XWrFmZNm1a\nHn744dxyyy19tMrucboFAABva/LkyXnwwQfz2muv5dVXX81Pf/rTDBo0KEcddVTuu+++JG9E88aN\nG5Mkr7zySkaPHp0k+cEPfrDH6/z4xz9OkjQ3N+fll19+l/dk3ziSDADQj+zrJdu6a8KECfnUpz6V\nadOm5cgjj8ypp56aJFm6dGmuv/763HLLLWlvb8+5556b8ePH5y//8i/zxS9+MaNHj84HP/jB/M//\n/E+S5Kqrrsrll1+eT3ziE5k8eXLGjh37ru7HviqVD5BfLXzuuef65H27c63Bd/t/pOyb+vr6tLS0\n9PUy6GHmWrnMtnKZbffs2LEjtbW1fb2Mt1RTU/Om0y0OJG/12Y0ZM2avnut0CwAAKBDJAABQIJIB\nAA5gB8iZsf1Sdz47kQwAcACrqqo6oM/7PVC1t7enqmr/U9fVLQAADmADBw7Mzp0787vf/S6lUqmv\nl7OHQw89NL/73e/6ehlvUi6XU1VVlYEDB+73a4hkAIADWKlU6rzb3YGmkq9c4nQLAAAoEMkAAFAg\nkgEAoEAkAwBAgUgGAIACkQwAAAUiGQAACkQyAAAUiGQAACgQyQAAUCCSAQCgQCQDAECBSAYAgIKa\nrjbYtWtX5s2bl/b29nR0dGTy5Mm54IILsmzZsjz++OOpra1Nklx++eX54z/+45TL5dx5551Zv359\nDj300MyePTvjxo3r9R0BAICe0mUkDxgwIPPmzcvAgQPT3t6euXPn5qSTTkqSXHLJJZk8efIe269f\nvz4vvPBCFi9enF//+te544478o1vfKN3Vg8AAL2gy9MtSqVSBg4cmCTp6OhIR0dHSqXS226/du3a\nnHHGGSmVSjn++OOzffv2tLW19dyKAQCgl3V5JDlJdu/enWuuuSYvvPBCPvGJT+S4447LQw89lH/+\n53/OD3/4w7zvfe/LxRdfnAEDBqS1tTX19fWdzx01alRaW1szcuTIPV6zqakpTU1NSZLGxsY9ntNf\n9Mc1H0xqamrMqAKZa+Uy28pltpWrkme7V5FcVVWV+fPnZ/v27bn55pvz29/+NhdddFFGjBiR9vb2\n/OM//mPuvffenH/++Xv9xg0NDWloaOj8uaWlZd9X38f645oPJvX19WZUgcy1cplt5TLbytUfZztm\nzJi92m6frm4xePDgjB8/Po8++mhGjhyZUqmUAQMG5GMf+1ieeuqpJEldXd0eH9aWLVtSV1e3L28D\nAAB9qstIfuWVV7J9+/Ykb1zpYsOGDRk7dmznecblcjlr1qzJUUcdlSSZOHFiVq1alXK5nE2bNqW2\ntvZNp1oAAMCBrMvTLdra2rJs2bLs3r075XI5p512Wk455ZT87d/+bV555ZUkyXve857MmjUrSXLy\nySdn3bp1ufLKK3PIIYdk9uzZvbsHAADQw7qM5Pe85z256aab3vT4vHnz3nL7UqmUSy+9tPsrAwCA\nPuKOewAAUCCSAQCgQCQDAECBSAYAgAKRDAAABSIZAAAKRDIAABSIZAAAKBDJAABQIJIBAKBAJAMA\nQIFIBgCAApEMAAAFIhkAAApEMgAAFIhkAAAoEMkAAFAgkgEAoEAkAwBAgUgGAIACkQwAAAUiGQAA\nCkQyAAAUiGQAACgQyQAAUCCSAQCgQCQDAECBSAYAgAKRDAAABSIZAAAKRDIAABSIZAAAKBDJAABQ\nIJIBAKBAJAMAQIFIBgCAApEMAAAFIhkAAApEMgAAFIhkAAAoEMkAAFAgkgEAoEAkAwBAgUgGAIAC\nkQwAAAU1XW2wa9euzJs3L+3t7eno6MjkyZNzwQUXZPPmzVm0aFG2bduWcePG5YorrkhNTU1ef/31\nLF26NL/5zW8ydOjQzJkzJ4cffvi7sS8AANAjujySPGDAgMybNy/z58/PTTfdlEcffTSbNm3Kd7/7\n3UyfPj1LlizJ4MGD09zcnCRpbm7O4MGDs2TJkkyfPj133313r+8EAAD0pC4juVQqZeDAgUmSjo6O\ndHR0pFQqZePGjZk8eXKSZOrUqVmzZk2SZO3atZk6dWqSZPLkyfnVr36VcrncS8sHAICe1+XpFkmy\ne/fuXHPNNXnhhRfyiU98IkcccURqa2tTXV2dJKmrq0tra2uSpLW1NaNGjUqSVFdXp7a2Ntu2bcuw\nYcP2eM2mpqY0NTUlSRobG1NfX99jO/Vu6Y9rPpjU1NSYUQUy18pltpXLbCtXJc92ryK5qqoq8+fP\nz/bt23PzzTfnueee6/YbNzQ0pKGhofPnlpaWbr/mu60/rvlgUl9fb0YVyFwrl9lWLrOtXP1xtmPG\njNmr7fbp6haDBw/O+PHjs2nTpuzYsSMdHR1J3jh6XFdXl+SNo8pbtmxJ8sbpGTt27MjQoUP35W0A\nAKBPdRnJr7zySrZv357kjStdbNiwIWPHjs348eOzevXqJMmKFSsyceLEJMkpp5ySFStWJElWr16d\n8ePHp1Qq9dLyAQCg53V5ukVbW1uWLVuW3bt3p1wu57TTTsspp5ySI488MosWLcr3vve9vPe9782Z\nZ56ZJDnzzDOzdOnSXHHFFRkyZEjmzJnT6zsBAAA9qVQ+QC490RPnOe+Pc+9+Yr+fe+/FJ/TgSuhp\n/fE8KbpmrpXLbCuX2Vau/jjbXjknGQAADgYiGQAACkQyAAAUiGQAACgQyQAAUCCSAQCgQCQDAECB\nSAYAgAKRDAAABSIZAAAKRDIAABSIZAAAKBDJAABQIJIBAKBAJAMAQIFIBgCAApEMAAAFIhkAAApE\nMgAAFIhkAAAoEMkAAFAgkgEAoEAkAwBAgUgGAIACkQwAAAUiGQAACkQyAAAUiGQAACgQyQAAUCCS\nAQCgQCQDAECBSAYAgAKRDAAABSIZAAAKRDIAABSIZAAAKBDJAABQIJIBAKBAJAMAQIFIBgCAApEM\nAAAFIhkAAApEMgAAFIhkAAAoEMkAAFBQ09UGLS0tWbZsWV5++eWUSqU0NDTk7LPPzj333JOf/exn\nGTZsWJLkwgsvzAc/+MEkyY9//OM0Nzenqqoqn//853PSSSf17l4AAEAP6jKSq6urc8kll2TcuHF5\n7bXXcu211+b9739/kmT69OmZMWPGHts/++yzefjhh3PLLbekra0tN9xwQ2699dZUVTloDQBA/9Bl\nuY4cOTLjxo1LkgwaNChjx45Na2vr226/Zs2afPjDH86AAQNy+OGHZ/To0Xnqqad6bsUAANDLujyS\n/Ic2b96cp59+Oscee2yeeOKJPPjgg1m1alXGjRuXz372sxkyZEhaW1tz3HHHdT6nrq7uLaO6qakp\nTU1NSZLGxsbU19d3c1feff1xzQeTmpoaM6pA5lq5zLZymW3lquTZ7nUk79y5MwsWLMjnPve51NbW\nZtq0aTn//POTJN///vfzne98J7Nnz97rN25oaEhDQ0Pnzy0tLfuw7ANDf1zzwaS+vt6MKpC5Vi6z\nrVxmW7n642zHjBmzV9vt1YnC7e3tWbBgQU4//fSceuqpSZIRI0akqqoqVVVVOeuss/Jf//VfSd44\ncrxly5bO57a2tqaurm5f1w8AAH2my0gul8u5/fbbM3bs2Jxzzjmdj7e1tXX++Ze//GWOOuqoJMnE\niRPz8MMP5/XXX8/mzZvz/PPP59hjj+2FpQMAQO/o8nSLJ598MqtWrcrRRx+dr3zlK0neuNzbz3/+\n8zzzzDMplUo57LDDMmvWrCTJUUcdldNOOy1f/vKXU1VVlS984QuubAEAQL/SZSSfcMIJueeee970\n+O+vifxWZs6cmZkzZ3ZvZQAA0Ecc4gUAgAKRDAAABSIZAAAKRDIAABSIZAAAKBDJAABQIJIBAKBA\nJAMAQIFIBgCAApEMAAAFIhkAAApEMgAAFIhkAAAoEMkAAFAgkgEAoEAkAwBAgUgGAIACkQwAAAUi\nGQAACkQyAAAUiGQAACgQyQAAUCCSAQCgQCQDAECBSAYAgAKRDAAABSIZAAAKRDIAABSIZAAAKBDJ\nAABQIJIBAKBAJAMAQIFIBgCAApEMAAAFIhkAAApEMgAAFIhkAAAoEMkAAFAgkgEAoEAkAwBAgUgG\nAIACkQwAAAUiGQAACkQyAAAUiGQAACio6WqDlpaWLFu2LC+//HJKpVIaGhpy9tln59VXX83ChQvz\n0ksv5bDDDstVV12VIUOGpFwu584778z69etz6KGHZvbs2Rk3bty7sS8AANAjujySXF1dnUsuuSQL\nFy7MjTfemAcffDDPPvtsli9fngkTJmTx4sWZMGFCli9fniRZv359XnjhhSxevDizZs3KHXfc0es7\nAQAAPanLSB45cmTnkeBBgwZl7NixaW1tzZo1azJlypQkyZQpU7JmzZokydq1a3PGGWekVCrl+OOP\nz/bt29PW1taLuwAAAD1rn85J3rx5c55++ukce+yx2bp1a0aOHJkkGTFiRLZu3ZokaW1tTX19fedz\nRo0aldbW1h5cMgAA9K4uz0n+vZ07d2bBggX53Oc+l9ra2j3+rlQqpVQq7dMbNzU1pampKUnS2Ni4\nR1j3F/1xzQeTmpoaM6pA5lq5zLZymW3lquTZ7lUkt7e3Z8GCBTn99NNz6qmnJkmGDx+etra2jBw5\nMm1tbRk2bFiSpK6uLi0tLZ3P3bJlS+rq6t70mg0NDWloaOj8+Q+f01/0xzUfTOrr682oAplr5TLb\nymW2las/znbMmDF7tV2Xp1uUy+XcfvvtGTt2bM4555zOxydOnJiVK1cmSVauXJlJkyZ1Pr5q1aqU\ny+Vs2rQptbW1nadlAABAf9DlkeQnn3wyq1atytFHH52vfOUrSZILL7ww5513XhYuXJjm5ubOS8Al\nycknn5x169blyiuvzCGHHJLZs2f37h4AAEAP6zKSTzjhhNxzzz1v+Xdz585902OlUimXXnpp91cG\nAAB9xB33AACgQCQDAECBSAYAgAKRDAAABSIZAAAKRDIAABSIZAAAKBDJAABQIJIBAKBAJAMAQIFI\nBgCAApEMAAAFIhkAAApEMgAAFIhkAAAoEMkAAFAgkgEAoEAkAwBAQU1fL6A/O/fuJ/b7ufdefEIP\nrgQAgJ7kSDIAABSIZAAAKBDJAABQIJIBAKBAJAMAQIFIBgCAApEMAAAFIhkAAApEMgAAFIhkAAAo\nEMkAAFAgkgEAoEAkAwBAgUgGAIACkQwAAAUiGQAACkQyAAAUiGQAACgQyQAAUCCSAQCgQCQDAECB\nSAYAgAKRDAAABSIZAAAKRDIAABSIZAAAKKjpaoPbbrst69aty/Dhw7NgwYIkyT333JOf/exnGTZs\nWJLkwgsvzAc/+MEkyY9//OM0Nzenqqoqn//853PSSSf14vIBAKDndRnJU6dOzSc/+cksW7Zsj8en\nT5+eGTNm7PHYs88+m4cffji33HJL2tracsMNN+TWW29NVZUD1gAA9B9d1uuJJ56YIUOG7NWLrVmz\nJh/+8IczYMCAHH744Rk9enSeeuqpbi8SAADeTV0eSX47Dz74YFatWpVx48bls5/9bIYMGZLW1tYc\nd9xxndvU1dWltbW1RxYKAADvlv2K5GnTpuX8889Pknz/+9/Pd77zncyePXufXqOpqSlNTU1JksbG\nxtTX1+/PUvqtg21/+0JNTY3PuQKZa+Uy28pltpWrkme7X5E8YsSIzj+fddZZ+fu///skbxw53rJl\nS+fftba2pq6u7i1fo6GhIQ0NDZ0/t7S07M9S+q2DbX/7Qn19vc+5Aplr5TLbymW2las/znbMmDF7\ntd1+/UZdW1tb559/+ctf5qijjkqSTJw4MQ8//HBef/31bN68Oc8//3yOPfbY/XkLAADoM10eSV60\naFEef/zxbNu2LZdddlkuuOCCbNy4Mc8880xKpVIOO+ywzJo1K0ly1FFH5bTTTsuXv/zlVFVV5Qtf\n+IIrWwAA0O90Gclz5sx502Nnnnnm224/c+bMzJw5s3urAgCAPuQwLwAAFIhkAAAoEMkAAFAgkgEA\noGC/77hH95x79xP7/dx7Lz6hB1cCAECRI8kAAFAgkgEAoEAkAwBAgUgGAIACkQwAAAUiGQAACkQy\nAAAUiGQAACgQyQAAUCCSAQCgQCQDAECBSAYAgAKRDAAABSIZAAAKRDIAABSIZAAAKBDJAABQIJIB\nAKBAJAMAQIFIBgCAApEMAAAFIhkAAApEMgAAFIhkAAAoEMkAAFAgkgEAoEAkAwBAgUgGAIACkQwA\nAAUiGQAACkQyAAAUiGQAACgQyQAAUCCSAQCgQCQDAECBSAYAgAKRDAAABSIZAAAKRDIAABSIZAAA\nKKjpaoPbbrst69aty/Dhw7NgwYIkyauvvpqFCxfmpZdeymGHHZarrroqQ4YMSblczp133pn169fn\n0EMPzezZszNu3Lhe3wkAAOhJXR5Jnjp1aq6//vo9Hlu+fHkmTJiQxYsXZ8KECVm+fHmSZP369Xnh\nhReyePHizJo1K3fccUfvrBoAAHpRl5F84oknZsiQIXs8tmbNmkyZMiVJMmXKlKxZsyZJsnbt2pxx\nxhkplUo5/vjjs3379rS1tfXCsgEAoPfs1znJW7duzciRI5MkI0aMyNatW5Mkra2tqa+v79xu1KhR\naW1t7YFlAgDAu6fLc5K7UiqVUiqV9vl5TU1NaWpqSpI0NjbuEde8M5/V3qmpqfFZVSBzrVxmW7nM\ntnJV8mz3K5KHDx+etra2jBw5Mm1tbRk2bFiSpK6uLi0tLZ3bbdmyJXV1dW/5Gg0NDWloaOj8+Q+f\nxzvzWe2d+vp6n1UFMtfKZbaVy2wrV3+c7ZgxY/Zqu/063WLixIlZuXJlkmTlypWZNGlS5+OrVq1K\nuVzOpk2bUltb23laBgAA9BddHkletGhRHn/88Wzbti2XXXZZLrjggpx33nlZuHBhmpubOy8BlyQn\nn3xy1q1blyuvvDKHHHJIZs+e3es7AAAAPa3LSJ4zZ85bPj537tw3PVYqlXLppZd2f1UAANCH3HEP\nAAAKRDIAABSIZAAAKBDJAABQIJIBAKBAJAMAQIFIBgCAgv26LXUl+dGKq/f7uTOn3tSDKwEA4EDh\nSDIAABSIZAAAKBDJAABQIJIBAKBAJAMAQIFIBgCAApEMAAAFIhkAAApEMgAAFIhkAAAoEMkAAFAg\nkgEAoEAkAwBAgUgGAIACkQwAAAUiGQAACkQyAAAUiGQAACio6esF9Gc/WnH1fj935tSbenAlAAD0\nJEeSAQCgQCQDAECBSAYAgAKRDAAABSIZAAAKRDIAABSIZAAAKHCd5D7SnWss5+L7em4hAAC8iSPJ\nAABQIJIBAKBAJAMAQIFIBgCAApEMAAAFIhkAAApEMgAAFIhkAAAoEMkAAFAgkgEAoEAkAwBAQU13\nnnz55Zdn4MCBqaqqSnV1dRobG/Pqq69m4cKFeemll3LYYYflqquuypAhQ3pqvQAA0Ou6FclJMm/e\nvAwbNqzz5+XLl2fChAk577zzsnz58ixfvjyf+cxnuvs2AADwrunx0y3WrFmTKVOmJEmmTJmSNWvW\n9PRbAABAr+r2keQbb7wxSfLxj388DQ0N2bp1a0aOHJkkGTFiRLZu3fqWz2tqakpTU1OSpLGxMfX1\n9d1dyn55sU/etXv66rPqb2pqanxWFchcK5fZVi6zrVyVPNtuRfINN9yQurq6bN26NV//+tczZsyY\nPf6+VCqlVCq95XMbGhrS0NDQ+XNLS0t3lnJQ8Vntnfr6ep9VBTLXymW2lctsK1d/nG2xV99Ot063\nqKurS5IMHz48kyZNylNPPZXhw4enra0tSdLW1rbH+coAANAf7Hck79y5M6+99lrnnzds2JCjjz46\nEydOzMqVK5MkK1euzKRJk3pmpQAA8C7Z79Mttm7dmptvvjlJ0tHRkY9+9KM56aSTcswxx2ThwoVp\nbm7uvAQcAAD0J/sdyUcccUTmz5//pseHDh2auXPndmtRAADQl9xxDwAACkQyAAAUiGQAACgQyQAA\nUCCSAQCgoNu3pab/OffuJ/b7ufdefEIPrgQA4MDkSDIAABSIZAAAKBDJAABQIJIBAKBAJAMAQIGr\nW/CucVV2w1+6AAAITklEQVQNAKC/cCQZAAAKRDIAABQ43aIf6s5pCwAAdM2RZAAAKBDJAABQIJIB\nAKBAJAMAQIFf3DsI/WjF1fv/5Ivv67mFAAAcoEQy7xpxDgD0F063AACAApEMAAAFTrdgn3TnRiY/\n6sF1AAD0JkeSAQCgQCQDAECBSAYAgAKRDAAABSIZAAAKRDIAABSIZAAAKBDJAABQIJIBAKBAJAMA\nQIFIBgCAApEMAAAFNX29AOht5979RLeef+/FJ/TQSgCA/kIk90M/WnF1Xy8BAKCiiWT2iUB/93Tn\nCLij3wDQPSKZfqG7p0wAAOwLkUy/0KdHsC++b7+fKu4BoH8SydCL+izuuxH29B9OyQHoPSIZOOi5\nAgoARSIZutDxZzP6egnshYPx1JZu/ZcK/7UB4B25mQgAABT02pHkRx99NHfeeWd2796ds846K+ed\nd15vvRVAv/3lToD+quPPZuTF/Xxu9f858L83eyWSd+/enW9961v56le/mlGjRuW6667LxIkTc+SR\nR/bG2wEF3TlFpD98cVWS7pwm8qMeXAcAe+qVSH7qqacyevToHHHEEUmSD3/4w1mzZo1IBihwgx6A\nA1OvRHJra2tGjRrV+fOoUaPy61//eo9tmpqa0tTUlCRpbGzMmDFjemMpXfvXtX3zvsB+e8vvi/76\n/+X+uu5e0mf/LKDXmW0FqvDvrz77xb2GhoY0NjamsbGxr5aQJLn22mv79P3pPWZbmcy1cplt5TLb\nylXJs+2VSK6rq8uWLVs6f96yZUvq6up6460AAKDH9UokH3PMMXn++eezefPmtLe35+GHH87EiRN7\n460AAKDHVf/N3/zN3/T0i1ZVVWX06NFZsmRJHnjggZx++umZPHlyT79Njxk3blxfL4FeYraVyVwr\nl9lWLrOtXJU621K5XC739SIAAOBA4o57AABQIJIBAKCg125LfaBz2+z+7bbbbsu6desyfPjwLFiw\nIEny6quvZuHChXnppZdy2GGH5aqrrsqQIUNSLpdz5513Zv369Tn00EMze/bsij1/qhK0tLRk2bJl\nefnll1MqldLQ0JCzzz7bfCvArl27Mm/evLS3t6ejoyOTJ0/OBRdckM2bN2fRokXZtm1bxo0blyuu\nuCI1NTV5/fXXs3Tp0vzmN7/J0KFDM2fOnBx++OF9vRu8jd27d+faa69NXV1drr32WnOtEJdffnkG\nDhyYqqqqVFdXp7Gx8aD5Pj4ojyT//rbZ119/fRYuXJif//znefbZZ/t6WeyDqVOn5vrrr9/jseXL\nl2fChAlZvHhxJkyYkOXLlydJ1q9fnxdeeCGLFy/OrFmzcscdd/TFktlL1dXVueSSS7Jw4cLceOON\nefDBB/Pss8+abwUYMGBA5s2bl/nz5+emm27Ko48+mk2bNuW73/1upk+fniVLlmTw4MFpbm5OkjQ3\nN2fw4MFZsmRJpk+fnrvvvruP94B38pOf/CRjx47t/NlcK8fv/3/7+3tbHCzfxwdlJP/hbbNramo6\nb5tN/3HiiSdmyJAhezy2Zs2aTJkyJUkyZcqUzpmuXbs2Z5xxRkqlUo4//vhs3749bW1t7/qa2Tsj\nR47sPPIwaNCgjB07Nq2treZbAUqlUgYOHJgk6ejoSEdHR0qlUjZu3Nh5BaSpU6fuMdupU6cmSSZP\nnpxf/epX8bvmB6YtW7Zk3bp1Oeuss5Ik5XLZXCvYwfJ9fFBG8lvdNru1tbUPV0RP2Lp1a0aOHJkk\nGTFiRLZu3ZrkjXnX19d3bmfe/cfmzZvz9NNP59hjjzXfCrF79+585StfyaWXXpoJEybkiCOOSG1t\nbaqrq5O8cTOq38/vD7+rq6urU1tbm23btvXZ2nl7d911Vz7zmc+kVColSbZt22auFeTGG2/MNddc\nk6ampiQHzz9vD9pzkqlspVKp88ua/mnnzp1ZsGBBPve5z6W2tnaPvzPf/quqqirz58/P9u3bc/PN\nN+e5557r6yXRTY888kiGDx+ecePGZePGjX29HHrYDTfckLq6umzdujVf//rXM2bMmD3+vpK/jw/K\nSHbb7Mo0fPjwtLW1ZeTIkWlra8uwYcOSvDHvlpaWzu3M+8DX3t6eBQsW5PTTT8+pp56axHwrzeDB\ngzN+/Phs2rQpO3bsSEdHR6qrq9Pa2to5v99/V48aNSodHR3ZsWNHhg4d2scrp+jJJ5/M2rVrs379\n+uzatSuvvfZa7rrrLnOtEL+f2/DhwzNp0qQ89dRTB8338UF5uoXbZlemiRMnZuXKlUmSlStXZtKk\nSZ2Pr1q1KuVyOZs2bUptbW3nfybiwFMul3P77bdn7NixOeecczofN9/+75VXXsn27duTvHGliw0b\nNmTs2LEZP358Vq9enSRZsWJF5/fxKaeckhUrViRJVq9enfHjx1fsEav+7KKLLsrtt9+eZcuWZc6c\nOXnf+96XK6+80lwrwM6dO/Paa691/nnDhg05+uijD5rv44P2jnvr1q3LP/3TP2X37t352Mc+lpkz\nZ/b1ktgHixYtyuOPP55t27Zl+PDhueCCCzJp0qQsXLgwLS0tb7okzbe+9a089thjOeSQQzJ79uwc\nc8wxfb0LvI0nnngic+fOzdFHH935D84LL7wwxx13nPn2c//93/+dZcuWZffu3SmXyznttNNy/vnn\n58UXX8yiRYvy6quv5r3vfW+uuOKKDBgwILt27crSpUvz9NNPZ8iQIZkzZ06OOOKIvt4N3sHGjRtz\n//3359prrzXXCvDiiy/m5ptvTvLGL9t+9KMfzcyZM7Nt27aD4vv4oI1kAAB4Owfl6RYAAPBORDIA\nABSIZAAAKBDJAABQIJIBAKBAJAMAQIFIBgCAgv8H2ke78udHlrsAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11b24a90>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.figure(figsize=(12,8))\n", | |
"col='fare'\n", | |
"survived_age= data[data['survived']==1][col].dropna()\n", | |
"dead_age=data[data['survived']==0][col].dropna()\n", | |
"plt.hist([survived_age,dead_age], stacked=True,bins = 40,label = ['survived','dead'])\n", | |
"plt.legend()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 103, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"24.6673553719 00\n", | |
"24.0463917526 10\n", | |
"22.1724137931 01\n", | |
"23.2166666667 11\n", | |
"15.306122449 12\n", | |
"13.1612903226 02\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>survived</th>\n", | |
" <th>pclass</th>\n", | |
" <th>name</th>\n", | |
" <th>sex</th>\n", | |
" <th>age</th>\n", | |
" <th>sibsp</th>\n", | |
" <th>parch</th>\n", | |
" <th>ticket</th>\n", | |
" <th>fare</th>\n", | |
" <th>embarked</th>\n", | |
" <th>cabin_parsed</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>passengerid</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Braund, Mr. Owen Harris</td>\n", | |
" <td>0</td>\n", | |
" <td>22.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>A/5 21171</td>\n", | |
" <td>7.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n", | |
" <td>1</td>\n", | |
" <td>38.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>PC 17599</td>\n", | |
" <td>71.0</td>\n", | |
" <td>C</td>\n", | |
" <td>C</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>Heikkinen, Miss. Laina</td>\n", | |
" <td>1</td>\n", | |
" <td>26.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>STON/O2. 3101282</td>\n", | |
" <td>8.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n", | |
" <td>1</td>\n", | |
" <td>35.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>113803</td>\n", | |
" <td>53.0</td>\n", | |
" <td>S</td>\n", | |
" <td>C</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Allen, Mr. William Henry</td>\n", | |
" <td>0</td>\n", | |
" <td>35.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>373450</td>\n", | |
" <td>8.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Moran, Mr. James</td>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>330877</td>\n", | |
" <td>8.0</td>\n", | |
" <td>Q</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>McCarthy, Mr. Timothy J</td>\n", | |
" <td>0</td>\n", | |
" <td>54.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>17463</td>\n", | |
" <td>52.0</td>\n", | |
" <td>S</td>\n", | |
" <td>E</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Palsson, Master. Gosta Leonard</td>\n", | |
" <td>0</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>3</td>\n", | |
" <td>1</td>\n", | |
" <td>349909</td>\n", | |
" <td>21.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)</td>\n", | |
" <td>1</td>\n", | |
" <td>27.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>347742</td>\n", | |
" <td>11.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>Nasser, Mrs. Nicholas (Adele Achem)</td>\n", | |
" <td>1</td>\n", | |
" <td>14.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>237736</td>\n", | |
" <td>30.0</td>\n", | |
" <td>C</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>Sandstrom, Miss. Marguerite Rut</td>\n", | |
" <td>1</td>\n", | |
" <td>4.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>PP 9549</td>\n", | |
" <td>17.0</td>\n", | |
" <td>S</td>\n", | |
" <td>G</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Bonnell, Miss. Elizabeth</td>\n", | |
" <td>1</td>\n", | |
" <td>58.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>113783</td>\n", | |
" <td>27.0</td>\n", | |
" <td>S</td>\n", | |
" <td>C</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>13</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Saundercock, Mr. William Henry</td>\n", | |
" <td>0</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>A/5. 2151</td>\n", | |
" <td>8.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>14</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Andersson, Mr. Anders Johan</td>\n", | |
" <td>0</td>\n", | |
" <td>39.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>5</td>\n", | |
" <td>347082</td>\n", | |
" <td>31.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Vestrom, Miss. Hulda Amanda Adolfina</td>\n", | |
" <td>1</td>\n", | |
" <td>14.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>350406</td>\n", | |
" <td>8.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>Hewlett, Mrs. (Mary D Kingcome)</td>\n", | |
" <td>1</td>\n", | |
" <td>55.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>248706</td>\n", | |
" <td>16.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Rice, Master. Eugene</td>\n", | |
" <td>0</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>4</td>\n", | |
" <td>1</td>\n", | |
" <td>382652</td>\n", | |
" <td>29.0</td>\n", | |
" <td>Q</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18</th>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>Williams, Mr. Charles Eugene</td>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>244373</td>\n", | |
" <td>13.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>19</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Vander Planke, Mrs. Julius (Emelia Maria Vande...</td>\n", | |
" <td>1</td>\n", | |
" <td>31.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>345763</td>\n", | |
" <td>18.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20</th>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>Masselmani, Mrs. Fatima</td>\n", | |
" <td>1</td>\n", | |
" <td>24.046392</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2649</td>\n", | |
" <td>7.0</td>\n", | |
" <td>C</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>21</th>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>Fynney, Mr. Joseph J</td>\n", | |
" <td>0</td>\n", | |
" <td>35.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>239865</td>\n", | |
" <td>26.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>22</th>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>Beesley, Mr. Lawrence</td>\n", | |
" <td>0</td>\n", | |
" <td>34.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>248698</td>\n", | |
" <td>13.0</td>\n", | |
" <td>S</td>\n", | |
" <td>D</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>23</th>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>McGowan, Miss. Anna \"Annie\"</td>\n", | |
" <td>1</td>\n", | |
" <td>15.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>330923</td>\n", | |
" <td>8.0</td>\n", | |
" <td>Q</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>24</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Sloper, Mr. William Thompson</td>\n", | |
" <td>0</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>113788</td>\n", | |
" <td>36.0</td>\n", | |
" <td>S</td>\n", | |
" <td>A</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Palsson, Miss. Torborg Danira</td>\n", | |
" <td>1</td>\n", | |
" <td>8.000000</td>\n", | |
" <td>3</td>\n", | |
" <td>1</td>\n", | |
" <td>349909</td>\n", | |
" <td>21.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>26</th>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...</td>\n", | |
" <td>1</td>\n", | |
" <td>38.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>5</td>\n", | |
" <td>347077</td>\n", | |
" <td>31.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>27</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Emir, Mr. Farred Chehab</td>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2631</td>\n", | |
" <td>7.0</td>\n", | |
" <td>C</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>28</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>Fortune, Mr. Charles Alexander</td>\n", | |
" <td>0</td>\n", | |
" <td>19.000000</td>\n", | |
" <td>3</td>\n", | |
" <td>2</td>\n", | |
" <td>19950</td>\n", | |
" <td>263.0</td>\n", | |
" <td>S</td>\n", | |
" <td>C</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>29</th>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>O'Dwyer, Miss. Ellen \"Nellie\"</td>\n", | |
" <td>1</td>\n", | |
" <td>24.046392</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>330959</td>\n", | |
" <td>8.0</td>\n", | |
" <td>Q</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>30</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Todoroff, Mr. Lalio</td>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>349216</td>\n", | |
" <td>8.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>862</th>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>Giles, Mr. Frederick Edward</td>\n", | |
" <td>0</td>\n", | |
" <td>21.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>28134</td>\n", | |
" <td>12.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>863</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Swift, Mrs. Frederick Joel (Margaret Welles Ba...</td>\n", | |
" <td>1</td>\n", | |
" <td>48.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>17466</td>\n", | |
" <td>26.0</td>\n", | |
" <td>S</td>\n", | |
" <td>D</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>864</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Sage, Miss. Dorothy Edith \"Dolly\"</td>\n", | |
" <td>1</td>\n", | |
" <td>15.306122</td>\n", | |
" <td>8</td>\n", | |
" <td>2</td>\n", | |
" <td>CA. 2343</td>\n", | |
" <td>70.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>865</th>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>Gill, Mr. John William</td>\n", | |
" <td>0</td>\n", | |
" <td>24.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>233866</td>\n", | |
" <td>13.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>866</th>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>Bystrom, Mrs. (Karolina)</td>\n", | |
" <td>1</td>\n", | |
" <td>42.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>236852</td>\n", | |
" <td>13.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>867</th>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>Duran y More, Miss. Asuncion</td>\n", | |
" <td>1</td>\n", | |
" <td>27.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>SC/PARIS 2149</td>\n", | |
" <td>14.0</td>\n", | |
" <td>C</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>868</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>Roebling, Mr. Washington Augustus II</td>\n", | |
" <td>0</td>\n", | |
" <td>31.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>PC 17590</td>\n", | |
" <td>50.0</td>\n", | |
" <td>S</td>\n", | |
" <td>A</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>869</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>van Melkebeke, Mr. Philemon</td>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>345777</td>\n", | |
" <td>10.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>870</th>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>Johnson, Master. Harold Theodor</td>\n", | |
" <td>0</td>\n", | |
" <td>4.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>347742</td>\n", | |
" <td>11.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>871</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Balkic, Mr. Cerin</td>\n", | |
" <td>0</td>\n", | |
" <td>26.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>349248</td>\n", | |
" <td>8.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>872</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Beckwith, Mrs. Richard Leonard (Sallie Monypeny)</td>\n", | |
" <td>1</td>\n", | |
" <td>47.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>11751</td>\n", | |
" <td>53.0</td>\n", | |
" <td>S</td>\n", | |
" <td>D</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>873</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>Carlsson, Mr. Frans Olof</td>\n", | |
" <td>0</td>\n", | |
" <td>33.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>695</td>\n", | |
" <td>5.0</td>\n", | |
" <td>S</td>\n", | |
" <td>B</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>874</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Vander Cruyssen, Mr. Victor</td>\n", | |
" <td>0</td>\n", | |
" <td>47.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>345765</td>\n", | |
" <td>9.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>875</th>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>Abelson, Mrs. Samuel (Hannah Wizosky)</td>\n", | |
" <td>1</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>P/PP 3381</td>\n", | |
" <td>24.0</td>\n", | |
" <td>C</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>876</th>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>Najib, Miss. Adele Kiamie \"Jane\"</td>\n", | |
" <td>1</td>\n", | |
" <td>15.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2667</td>\n", | |
" <td>7.0</td>\n", | |
" <td>C</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>877</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Gustafsson, Mr. Alfred Ossian</td>\n", | |
" <td>0</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7534</td>\n", | |
" <td>10.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>878</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Petroff, Mr. Nedelio</td>\n", | |
" <td>0</td>\n", | |
" <td>19.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>349212</td>\n", | |
" <td>8.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>879</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Laleff, Mr. Kristo</td>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>349217</td>\n", | |
" <td>8.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>880</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)</td>\n", | |
" <td>1</td>\n", | |
" <td>56.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>11767</td>\n", | |
" <td>83.0</td>\n", | |
" <td>C</td>\n", | |
" <td>C</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>881</th>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>Shelley, Mrs. William (Imanita Parrish Hall)</td>\n", | |
" <td>1</td>\n", | |
" <td>25.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>230433</td>\n", | |
" <td>26.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>882</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Markun, Mr. Johann</td>\n", | |
" <td>0</td>\n", | |
" <td>33.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>349257</td>\n", | |
" <td>8.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>883</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Dahlberg, Miss. Gerda Ulrika</td>\n", | |
" <td>1</td>\n", | |
" <td>22.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7552</td>\n", | |
" <td>11.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>884</th>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>Banfield, Mr. Frederick James</td>\n", | |
" <td>0</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>C.A./SOTON 34068</td>\n", | |
" <td>10.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>885</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Sutehall, Mr. Henry Jr</td>\n", | |
" <td>0</td>\n", | |
" <td>25.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>SOTON/OQ 392076</td>\n", | |
" <td>7.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>886</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Rice, Mrs. William (Margaret Norton)</td>\n", | |
" <td>1</td>\n", | |
" <td>39.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>5</td>\n", | |
" <td>382652</td>\n", | |
" <td>29.0</td>\n", | |
" <td>Q</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>887</th>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>Montvila, Rev. Juozas</td>\n", | |
" <td>0</td>\n", | |
" <td>27.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>211536</td>\n", | |
" <td>13.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>888</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Graham, Miss. Margaret Edith</td>\n", | |
" <td>1</td>\n", | |
" <td>19.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>112053</td>\n", | |
" <td>30.0</td>\n", | |
" <td>S</td>\n", | |
" <td>B</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>889</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Johnston, Miss. Catherine Helen \"Carrie\"</td>\n", | |
" <td>1</td>\n", | |
" <td>15.306122</td>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>W./C. 6607</td>\n", | |
" <td>23.0</td>\n", | |
" <td>S</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>890</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Behr, Mr. Karl Howell</td>\n", | |
" <td>0</td>\n", | |
" <td>26.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>111369</td>\n", | |
" <td>30.0</td>\n", | |
" <td>C</td>\n", | |
" <td>C</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>891</th>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Dooley, Mr. Patrick</td>\n", | |
" <td>0</td>\n", | |
" <td>32.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>370376</td>\n", | |
" <td>8.0</td>\n", | |
" <td>Q</td>\n", | |
" <td>nan</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>891 rows × 11 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" survived pclass \\\n", | |
"passengerid \n", | |
"1 0 3 \n", | |
"2 1 1 \n", | |
"3 1 3 \n", | |
"4 1 1 \n", | |
"5 0 3 \n", | |
"6 0 3 \n", | |
"7 0 1 \n", | |
"8 0 3 \n", | |
"9 1 3 \n", | |
"10 1 2 \n", | |
"11 1 3 \n", | |
"12 1 1 \n", | |
"13 0 3 \n", | |
"14 0 3 \n", | |
"15 0 3 \n", | |
"16 1 2 \n", | |
"17 0 3 \n", | |
"18 1 2 \n", | |
"19 0 3 \n", | |
"20 1 3 \n", | |
"21 0 2 \n", | |
"22 1 2 \n", | |
"23 1 3 \n", | |
"24 1 1 \n", | |
"25 0 3 \n", | |
"26 1 3 \n", | |
"27 0 3 \n", | |
"28 0 1 \n", | |
"29 1 3 \n", | |
"30 0 3 \n", | |
"... ... ... \n", | |
"862 0 2 \n", | |
"863 1 1 \n", | |
"864 0 3 \n", | |
"865 0 2 \n", | |
"866 1 2 \n", | |
"867 1 2 \n", | |
"868 0 1 \n", | |
"869 0 3 \n", | |
"870 1 3 \n", | |
"871 0 3 \n", | |
"872 1 1 \n", | |
"873 0 1 \n", | |
"874 0 3 \n", | |
"875 1 2 \n", | |
"876 1 3 \n", | |
"877 0 3 \n", | |
"878 0 3 \n", | |
"879 0 3 \n", | |
"880 1 1 \n", | |
"881 1 2 \n", | |
"882 0 3 \n", | |
"883 0 3 \n", | |
"884 0 2 \n", | |
"885 0 3 \n", | |
"886 0 3 \n", | |
"887 0 2 \n", | |
"888 1 1 \n", | |
"889 0 3 \n", | |
"890 1 1 \n", | |
"891 0 3 \n", | |
"\n", | |
" name sex \\\n", | |
"passengerid \n", | |
"1 Braund, Mr. Owen Harris 0 \n", | |
"2 Cumings, Mrs. John Bradley (Florence Briggs Th... 1 \n", | |
"3 Heikkinen, Miss. Laina 1 \n", | |
"4 Futrelle, Mrs. Jacques Heath (Lily May Peel) 1 \n", | |
"5 Allen, Mr. William Henry 0 \n", | |
"6 Moran, Mr. James 0 \n", | |
"7 McCarthy, Mr. Timothy J 0 \n", | |
"8 Palsson, Master. Gosta Leonard 0 \n", | |
"9 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) 1 \n", | |
"10 Nasser, Mrs. Nicholas (Adele Achem) 1 \n", | |
"11 Sandstrom, Miss. Marguerite Rut 1 \n", | |
"12 Bonnell, Miss. Elizabeth 1 \n", | |
"13 Saundercock, Mr. William Henry 0 \n", | |
"14 Andersson, Mr. Anders Johan 0 \n", | |
"15 Vestrom, Miss. Hulda Amanda Adolfina 1 \n", | |
"16 Hewlett, Mrs. (Mary D Kingcome) 1 \n", | |
"17 Rice, Master. Eugene 0 \n", | |
"18 Williams, Mr. Charles Eugene 0 \n", | |
"19 Vander Planke, Mrs. Julius (Emelia Maria Vande... 1 \n", | |
"20 Masselmani, Mrs. Fatima 1 \n", | |
"21 Fynney, Mr. Joseph J 0 \n", | |
"22 Beesley, Mr. Lawrence 0 \n", | |
"23 McGowan, Miss. Anna \"Annie\" 1 \n", | |
"24 Sloper, Mr. William Thompson 0 \n", | |
"25 Palsson, Miss. Torborg Danira 1 \n", | |
"26 Asplund, Mrs. Carl Oscar (Selma Augusta Emilia... 1 \n", | |
"27 Emir, Mr. Farred Chehab 0 \n", | |
"28 Fortune, Mr. Charles Alexander 0 \n", | |
"29 O'Dwyer, Miss. Ellen \"Nellie\" 1 \n", | |
"30 Todoroff, Mr. Lalio 0 \n", | |
"... ... ... \n", | |
"862 Giles, Mr. Frederick Edward 0 \n", | |
"863 Swift, Mrs. Frederick Joel (Margaret Welles Ba... 1 \n", | |
"864 Sage, Miss. Dorothy Edith \"Dolly\" 1 \n", | |
"865 Gill, Mr. John William 0 \n", | |
"866 Bystrom, Mrs. (Karolina) 1 \n", | |
"867 Duran y More, Miss. Asuncion 1 \n", | |
"868 Roebling, Mr. Washington Augustus II 0 \n", | |
"869 van Melkebeke, Mr. Philemon 0 \n", | |
"870 Johnson, Master. Harold Theodor 0 \n", | |
"871 Balkic, Mr. Cerin 0 \n", | |
"872 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) 1 \n", | |
"873 Carlsson, Mr. Frans Olof 0 \n", | |
"874 Vander Cruyssen, Mr. Victor 0 \n", | |
"875 Abelson, Mrs. Samuel (Hannah Wizosky) 1 \n", | |
"876 Najib, Miss. Adele Kiamie \"Jane\" 1 \n", | |
"877 Gustafsson, Mr. Alfred Ossian 0 \n", | |
"878 Petroff, Mr. Nedelio 0 \n", | |
"879 Laleff, Mr. Kristo 0 \n", | |
"880 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) 1 \n", | |
"881 Shelley, Mrs. William (Imanita Parrish Hall) 1 \n", | |
"882 Markun, Mr. Johann 0 \n", | |
"883 Dahlberg, Miss. Gerda Ulrika 1 \n", | |
"884 Banfield, Mr. Frederick James 0 \n", | |
"885 Sutehall, Mr. Henry Jr 0 \n", | |
"886 Rice, Mrs. William (Margaret Norton) 1 \n", | |
"887 Montvila, Rev. Juozas 0 \n", | |
"888 Graham, Miss. Margaret Edith 1 \n", | |
"889 Johnston, Miss. Catherine Helen \"Carrie\" 1 \n", | |
"890 Behr, Mr. Karl Howell 0 \n", | |
"891 Dooley, Mr. Patrick 0 \n", | |
"\n", | |
" age sibsp parch ticket fare embarked \\\n", | |
"passengerid \n", | |
"1 22.000000 1 0 A/5 21171 7.0 S \n", | |
"2 38.000000 1 0 PC 17599 71.0 C \n", | |
"3 26.000000 0 0 STON/O2. 3101282 8.0 S \n", | |
"4 35.000000 1 0 113803 53.0 S \n", | |
"5 35.000000 0 0 373450 8.0 S \n", | |
"6 24.667355 0 0 330877 8.0 Q \n", | |
"7 54.000000 0 0 17463 52.0 S \n", | |
"8 2.000000 3 1 349909 21.0 S \n", | |
"9 27.000000 0 2 347742 11.0 S \n", | |
"10 14.000000 1 0 237736 30.0 C \n", | |
"11 4.000000 1 1 PP 9549 17.0 S \n", | |
"12 58.000000 0 0 113783 27.0 S \n", | |
"13 20.000000 0 0 A/5. 2151 8.0 S \n", | |
"14 39.000000 1 5 347082 31.0 S \n", | |
"15 14.000000 0 0 350406 8.0 S \n", | |
"16 55.000000 0 0 248706 16.0 S \n", | |
"17 2.000000 4 1 382652 29.0 Q \n", | |
"18 24.667355 0 0 244373 13.0 S \n", | |
"19 31.000000 1 0 345763 18.0 S \n", | |
"20 24.046392 0 0 2649 7.0 C \n", | |
"21 35.000000 0 0 239865 26.0 S \n", | |
"22 34.000000 0 0 248698 13.0 S \n", | |
"23 15.000000 0 0 330923 8.0 Q \n", | |
"24 28.000000 0 0 113788 36.0 S \n", | |
"25 8.000000 3 1 349909 21.0 S \n", | |
"26 38.000000 1 5 347077 31.0 S \n", | |
"27 24.667355 0 0 2631 7.0 C \n", | |
"28 19.000000 3 2 19950 263.0 S \n", | |
"29 24.046392 0 0 330959 8.0 Q \n", | |
"30 24.667355 0 0 349216 8.0 S \n", | |
"... ... ... ... ... ... ... \n", | |
"862 21.000000 1 0 28134 12.0 S \n", | |
"863 48.000000 0 0 17466 26.0 S \n", | |
"864 15.306122 8 2 CA. 2343 70.0 S \n", | |
"865 24.000000 0 0 233866 13.0 S \n", | |
"866 42.000000 0 0 236852 13.0 S \n", | |
"867 27.000000 1 0 SC/PARIS 2149 14.0 C \n", | |
"868 31.000000 0 0 PC 17590 50.0 S \n", | |
"869 24.667355 0 0 345777 10.0 S \n", | |
"870 4.000000 1 1 347742 11.0 S \n", | |
"871 26.000000 0 0 349248 8.0 S \n", | |
"872 47.000000 1 1 11751 53.0 S \n", | |
"873 33.000000 0 0 695 5.0 S \n", | |
"874 47.000000 0 0 345765 9.0 S \n", | |
"875 28.000000 1 0 P/PP 3381 24.0 C \n", | |
"876 15.000000 0 0 2667 7.0 C \n", | |
"877 20.000000 0 0 7534 10.0 S \n", | |
"878 19.000000 0 0 349212 8.0 S \n", | |
"879 24.667355 0 0 349217 8.0 S \n", | |
"880 56.000000 0 1 11767 83.0 C \n", | |
"881 25.000000 0 1 230433 26.0 S \n", | |
"882 33.000000 0 0 349257 8.0 S \n", | |
"883 22.000000 0 0 7552 11.0 S \n", | |
"884 28.000000 0 0 C.A./SOTON 34068 10.0 S \n", | |
"885 25.000000 0 0 SOTON/OQ 392076 7.0 S \n", | |
"886 39.000000 0 5 382652 29.0 Q \n", | |
"887 27.000000 0 0 211536 13.0 S \n", | |
"888 19.000000 0 0 112053 30.0 S \n", | |
"889 15.306122 1 2 W./C. 6607 23.0 S \n", | |
"890 26.000000 0 0 111369 30.0 C \n", | |
"891 32.000000 0 0 370376 8.0 Q \n", | |
"\n", | |
" cabin_parsed \n", | |
"passengerid \n", | |
"1 nan \n", | |
"2 C \n", | |
"3 nan \n", | |
"4 C \n", | |
"5 nan \n", | |
"6 nan \n", | |
"7 E \n", | |
"8 nan \n", | |
"9 nan \n", | |
"10 nan \n", | |
"11 G \n", | |
"12 C \n", | |
"13 nan \n", | |
"14 nan \n", | |
"15 nan \n", | |
"16 nan \n", | |
"17 nan \n", | |
"18 nan \n", | |
"19 nan \n", | |
"20 nan \n", | |
"21 nan \n", | |
"22 D \n", | |
"23 nan \n", | |
"24 A \n", | |
"25 nan \n", | |
"26 nan \n", | |
"27 nan \n", | |
"28 C \n", | |
"29 nan \n", | |
"30 nan \n", | |
"... ... \n", | |
"862 nan \n", | |
"863 D \n", | |
"864 nan \n", | |
"865 nan \n", | |
"866 nan \n", | |
"867 nan \n", | |
"868 A \n", | |
"869 nan \n", | |
"870 nan \n", | |
"871 nan \n", | |
"872 D \n", | |
"873 B \n", | |
"874 nan \n", | |
"875 nan \n", | |
"876 nan \n", | |
"877 nan \n", | |
"878 nan \n", | |
"879 nan \n", | |
"880 C \n", | |
"881 nan \n", | |
"882 nan \n", | |
"883 nan \n", | |
"884 nan \n", | |
"885 nan \n", | |
"886 nan \n", | |
"887 nan \n", | |
"888 B \n", | |
"889 nan \n", | |
"890 C \n", | |
"891 nan \n", | |
"\n", | |
"[891 rows x 11 columns]" | |
] | |
}, | |
"execution_count": 103, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# deal with missing data\n", | |
"from sklearn.preprocessing import Imputer\n", | |
"\n", | |
"\n", | |
"cached_mean_age={}\n", | |
"\n", | |
"\n", | |
"def generate_key(i):\n", | |
" return str(i['sex'])+str(i['parch'])\n", | |
"\n", | |
"def impute_age(df):\n", | |
" new_age=[]\n", | |
" df['age'].fillna(-1,inplace=True)\n", | |
" for _,i in df.iterrows():\n", | |
" if i['age']!=-1:\n", | |
" new_age.append(i['age'])\n", | |
" else:\n", | |
" if generate_key(i) in cached_mean_age:\n", | |
" new_age.append(cached_mean_age[generate_key(i)])\n", | |
" else:\n", | |
" mean_age=data[(data['sex']==i['sex']) & (data['parch']==i['parch'])]['age'].dropna().mean()\n", | |
" if pd.isnull(mean_age):\n", | |
" mean_age=data['age'].dropna().mean()\n", | |
" print(mean_age,generate_key(i))\n", | |
" cached_mean_age[generate_key(i)]=mean_age\n", | |
" new_age.append(mean_age)\n", | |
" \n", | |
" df['age']=new_age\n", | |
" return df\n", | |
"\n", | |
"def impute_embarked(df):\n", | |
" df['embarked'].fillna('S',inplace=True)\n", | |
" return df\n", | |
"\n", | |
"data.pipe(impute_age)\n", | |
"data.pipe(impute_embarked)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 104, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEqCAYAAAAbLptnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVHXCB/DvYVBwAIHhJmBeEG8RJgFJ5ALqqJml9LTo\nmunjtlqJwWKxZfquPpX1UpvheukxpXS3fLq4Ffb6dtFZBEzSBwI207ylj1YIOAwi98vMef/gbYpE\nGZwDZ/jx/fzFHM7M+Z6Z4evxN79zRpJlWQYREQnLSe0ARETUs1j0RESCY9ETEQmORU9EJDgWPRGR\n4Fj0RESCY9GTcJ599lkEBARAkiTs2rWrx7YzYsQIrF+/3no7ISEBS5cu7bHtEd0sZ7UDECnp6NGj\nyMjIQHZ2NiZNmgRPT88e21ZhYSG0Wm2PPT6RUlj0JJQzZ87AyckJc+fO7fFt+fn59fg2iJTAoRsS\nxpIlS7Bo0SJYLBZIkgRJklBcXIxZs2bB398f7u7uiI6Oxueff97hfiNGjMBf//pXLF++HF5eXvD3\n98eWLVvQ3NyMlJQUeHt7Izg4GFu2bLnmfr8euvm1Xbt2wcvLCw0NDR2WP//88xg9ejR4Qjr1JhY9\nCePvf/87Nm7cCI1Gg0uXLuHSpUu4evUq5s+fj4MHD6K4uBgzZ87EnDlzcPr06Q733bx5M0aPHo2i\noiKkpqYiJSUFDzzwAEaOHInCwkI88cQTSE1NxYkTJ2zKMn/+fEiShD179liXWSwWvPXWW1i6dCkk\nSVJ034luhEVPwvD09LSOyQ8ZMgRDhgxBQkIClixZgrCwMIwZMwbr16/H+PHjOxQw0P5B6pNPPonQ\n0FCsXr0aHh4e0Gg01mXPPPMMPD09kZOTY1OWQYMGYdGiRdixY4d12YEDB1BWVoY//vGPyu00kQ1Y\n9CS0y5cvIzk5GePGjYOXlxfc3d1x/PhxXLhwocN6t99+u/VnJycn+Pn5YcKECR2W+fv7o7Ky0uZt\nP/bYYzh8+DC+++47AMCOHTswZ84c+Pv727lXRN3DoiehLVmyBIcOHcIrr7yCQ4cOobS0FBMnTkRL\nS0uH9QYMGNDhtiRJnS6zWCw2bzssLAyTJ0/Gjh07UFlZiU8++QSPPvroze8M0U3irBsSWn5+Pl55\n5RXMmTMHAFBfX49z587htttu65XtP/bYY0hLS4NOp0NwcDCmT5/eK9sl+jUe0ZPQxo4di927d+PY\nsWMoLS3FggULYDabe237v//97wEAL7zwAj+EJdWw6EloO3fuhMViwZ133onExETcc889iI6O7rXt\nu7q6Wqd8PvLII722XaJfk/gNU0Q9a968eWhtbcXHH3+sdhTqpzhGT9RDqqurkZeXh48//hj//ve/\n1Y5D/RiLnqiHREREoKqqCk8//TTi4uLUjkP9GIduiIgExw9jiYgEx6InIhKcw4zRl5WVqR1BGL6+\nvjAajWrHILoG35vKCgoKsmk9HtETEQmORU9EJDgWPRGR4Fj0RESCY9ETEQmORU9EJDgWPRGR4Fj0\nRESCY9ETEQnOYc6MJaKbN3f3SbUjCGXvwnFqR1AUj+iJiATHI3oiAXyU+7TaEcSy8BO1EyiKR/RE\nRIJj0RMRCY5DN0QCuGXFi2pHEIpoF03nET0RkeBY9EREguPQDZEAMge8onYEoczH22pHUBSP6ImI\nBMeiJyISHIueiEhwLHoiIsGx6ImIBMeiJyISnE3TK1esWAFXV1c4OTlBo9EgIyMDdXV1yMzMxOXL\nl+Hn54eVK1fC3d0dsixj586dKCkpgYuLC5KTkxESEtLT+0HUr6W4DFU7glAq1Q6gMJvn0a9btw6D\nBw+23s7OzkZ4eDgSExORnZ2N7OxsPPzwwygpKUF5eTk2bdqEM2fOICsrCy+99FKPhCcioq7d9NBN\nYWEh4uPjAQDx8fEoLCwEABQVFSEuLg6SJGHMmDGor69HdXW1MmmJiKjbbD6if/HF9osmTZ8+HXq9\nHjU1NfD29gYAeHl5oaamBgBgMpng6+trvZ+Pjw9MJpN13Z8ZDAYYDAYAQEZGRof7kH2cnZ35fPY3\nZ9UOIBbR/n5sKvoXXngBOp0ONTU1WL9+PYKCgjr8XpIkSJLUrQ3r9Xro9XrrbaPR2K370/X5+vry\n+exnNn0aqHYEoaSG9o2/n9928fXYNHSj0+kAAJ6enoiOjsbZs2fh6elpHZKprq62jt/rdLoOJVNV\nVWW9PxER9b4ui76pqQmNjY3Wn7/55hsMGzYMUVFRyMvLAwDk5eUhOjoaABAVFYX8/HzIsozTp09D\nq9VeM2xDRES9p8uhm5qaGrz66qsAALPZjMmTJ2PixIkYNWoUMjMzkZOTY51eCQAREREoLi5Gamoq\nBg4ciOTk5J7dAyLCyIDFakcgBybJsiyrHQIAyspE+04X9XCMvv/5n/evqB1BKPfP91I7gk0UHaMn\nIqK+i0VPRCQ4Fj0RkeBY9EREgmPRExEJjkVPRCQ4Fj0RkeBY9EREgmPRExEJjkVPRCQ4Fj0RkeBY\n9EREgmPRExEJjkVPRCQ4Fj0RkeBs/nJwInJcWW3lakcQyv3oG9ejtxWP6ImIBMeiJyISHIueiEhw\nLHoiIsGx6ImIBMeiJyISHIueiEhwLHoiIsGx6ImIBMeiJyISHIueiEhwLHoiIsGx6ImIBGfz1Sst\nFgtWrVoFnU6HVatWobKyEhs3bkRtbS1CQkKQkpICZ2dntLa2YsuWLTh37hw8PDyQlpYGf3//ntwH\nIiK6AZuP6D/99FMEBwdbb7/zzjuYPXs2Nm/eDDc3N+Tk5AAAcnJy4Obmhs2bN2P27NnYvXu38qmJ\niMhmNhV9VVUViouLMW3aNACALMs4fvw4YmJiAAAJCQkoLCwEABQVFSEhIQEAEBMTg2+//RayLPdA\ndCIisoVNQze7du3Cww8/jMbGRgBAbW0ttFotNBoNAECn08FkMgEATCYTfHx8AAAajQZarRa1tbUY\nPHhwh8c0GAwwGAwAgIyMDPj6+iqzRwRnZ2c+n0R2EO3vp8ui//rrr+Hp6YmQkBAcP35csQ3r9Xro\n9XrrbaPRqNhj93e+vr58Pons0Ff+foKCgmxar8uiP3XqFIqKilBSUoKWlhY0NjZi165daGhogNls\nhkajgclkgk6nA9B+dF9VVQUfHx+YzWY0NDTAw8PDvr0hIqKb1uUY/UMPPYRt27Zh69atSEtLw223\n3YbU1FSEhYXhyJEjAIDc3FxERUUBACIjI5GbmwsAOHLkCMLCwiBJUs/tARER3dBNz6NfuHAh9u3b\nh5SUFNTV1WHq1KkAgKlTp6Kurg4pKSnYt28fFi5cqFhYIiLqPkl2kCkxZWVlakcQBsfo+5+5u0+q\nHUEoexeOUzuCTWwdo+eZsUREgmPRExEJzuZLIBA5IlmW0dTUBIvF0uc+9JdlGU5OTnB1de1z2alv\nYdFTn9bU1IQBAwbA2blvvpXb2trQ1NSEQYMGqR2FBNY3/zqI/p/FYumzJQ+0n8Xc3Nxs9+N8lPu0\nAmnIauEnaidQFMfoqU8TYchDhH0gx8aiJyISXN/9Py9RJ8zL5ij6eJodtv0X/uDBg1i7di0sFgsW\nLFiAJ554QtEcRPbgET2RncxmM9asWYN33nkHBw8eRHZ2Nk6fPq12LCIrFj2RnUpKSjBixAgMHz4c\nAwcOxNy5c/HFF1+oHYvIikVPZKfy8vIOp6IHBgaivLxcxUREHbHoiYgEx6InstOQIUM6XJTv0qVL\nGDJkiIqJiDpi0RPZaeLEiTh//jwuXryIlpYW7N27FzNmzFA7FpEVp1eSUGydDqkkZ2dnrF+/Hg89\n9BAsFgvmz5+PsWPH9noOouth0RMpYNq0aZg2bZraMYg6xaLvhqDSY2pHsJltX0egrrKJ4WpHIOoX\nWPTdkDngFbUjCGU+3lY7AlG/wA9jiYgExyP6bkhxGap2BKFUqh2AqJ9g0XfDf30aqHYEoaSmqp2A\nqH/g0A0RkeB4RE9Cmbv7pKKPt3fhuC7XefLJJ2EwGODr64ucnBxFt0+kBB7RE9lp3rx52L17t9ox\niK6LRU9kp5iYGHh5eakdg+i6WPRERIJj0RMRCY5FT0QkuC5n3bS0tGDdunVoa2uD2WxGTEwM5s2b\nh8rKSmzcuBG1tbUICQlBSkoKnJ2d0draii1btuDcuXPw8PBAWloa/P39e2NfetzIgMVqRyAi6rYu\ni37AgAFYt24dXF1d0dbWhrVr12LixInYt28fZs+ejbvvvhvbt29HTk4OZsyYgZycHLi5uWHz5s04\nfPgwdu/ejZUrV/bGvhDZNB1SacnJyfjqq69gMpkQGRmJ9PR0LFiwoNdzEF1Pl0M3kiTB1dUVQPu3\n3ZvNZkiShOPHjyMmJgYAkJCQgMLCQgBAUVEREhISALTPRvj2228hy3IPxSdS3+uvv46SkhJcuHAB\nX3/9NUueHI5NJ0xZLBY888wzKC8vx8yZMxEQEACtVguNRgMA0Ol0MJlMAACTyQQfHx8AgEajgVar\nRW1tLQYPHtxDu0BERDdiU9E7OTnhb3/7G+rr6/Hqq692+H7Mm2UwGGAwGAAAGRkZ8PX1tfsxe94V\ntQMIRYnXvKKiAs7OffsEbxcXF7ufiwqFslC7vtFHtuvWX4ibmxvCwsJw+vRpNDQ0wGw2Q6PRwGQy\nQafTAWg/uq+qqoKPjw/MZjMaGhrg4eFxzWPp9Xro9XrrbaPRaOeuUF+jxGve3Nxs/Z9lX9Xc3Mz3\nv4PpK69HUJBtXzHU5Rj91atXUV9fD6B9Bs4333yD4OBghIWF4ciRIwCA3NxcREVFAQAiIyORm5sL\nADhy5AjCwsIgSdLN7AMRESmgyyP66upqbN26FRaLBbIs46677kJkZCSGDh2KjRs34r333sPIkSMx\ndepUAMDUqVOxZcsWpKSkwN3dHWlpaT2+E0REdH2S7CBTYpQY9+9p//M+x+iVdP98+68P09DQAK1W\nq0Aa9SixD+ZlcxRKQwCg2fGJ2hFsYuvQTd/+FIvoN5T+x9iWf4x++ukn/PnPf4bRaIQkSVi4cCGW\nLl2qaA4ie7Doiezk7OyMdevWITw8HHV1dbjnnnsQFxeHMWPGqB2NCACvdUNkt4CAAISHhwMA3N3d\nMXr0aJSXl6uciugXLHoiBf3www/49ttvERERoXYUIisWPZFC6uvrsWzZMjz33HOdnjtCpBYWPZEC\nWltbsWzZMjzwwAO499571Y5D1AGLnshOsizjqaeeQmhoKB577DG14xBdg7NuSChKzM3vrsLCQnz4\n4YcYP348pk+fDgBYtWoVpk2b1utZiDrDoiey05133omffvpJ7RhE18WhGyIiwbHoiYgEx6InIhIc\ni56ISHD8MLYbstp4WruS7kfvz5Ah6o94RE9EJDge0ZNQNm3apOjjpaamdrlOU1MTHnzwQTQ3N8Ns\nNmP27NlIT09XNAeRPVj0RHZycXHBBx98ADc3N7S2tuKBBx7AlClTEBkZqXY0IgAcuiGymyRJcHNz\nAwC0tbWhtbWV35NMDoVFT6QAs9mM6dOnY8KECYiLi8Mdd9yhdiQiKxY9kQI0Gg0OHDiAoqIilJSU\n4OTJk2pHIrJi0RMpyNPTE3fffTdyc3PVjkJkxaInslNVVRVqamoAAI2NjcjPz8eoUaNUTkX0C866\nIaHYMh1SaRUVFUhLS4PFYoHFYsH9999vvVwxkSNg0RPZ6dZbb8X+/fvVjkF0XRy6ISISHIueiEhw\nLHoiIsGx6ImIBMeiJyISXJezboxGI7Zu3YorV65AkiTo9Xrce++9qKurQ2ZmJi5fvgw/Pz+sXLkS\n7u7ukGUZO3fuRElJCVxcXJCcnIyQkJDe2BciIupEl0Wv0WiwaNEihISEoLGxEatWrcKECROQm5uL\n8PBwJCYmIjs7G9nZ2Xj44YdRUlKC8vJybNq0CWfOnEFWVhZeeuml3tgXIviffVbRx6sM/W+b1zWb\nzZg1axaGDBmCf/7zn4rmILJHl0M33t7e1iPyQYMGITg4GCaTCYWFhYiPjwcAxMfHo7CwEABQVFSE\nuLg4SJKEMWPGoL6+HtXV1T24C0SOISsrC6NHj1Y7BtE1unXCVGVlJc6fP4/Q0FDU1NTA29sbAODl\n5WU9BdxkMsHX19d6Hx8fH5hMJuu6PzMYDDAYDACAjIyMDveh/kGJ17yiogLOzj133p+tj11WVoac\nnBykpaVh27Zt3crk4uJi93NRYde96bdE6yOb341NTU3YsGEDlixZAq1W2+F3kiR1+/rber0eer3e\nettoNHbr/tT3KfGaNzc3Q6PRKJCmc21tbTatt2bNGqxZswZ1dXWQZdnm+wHt+8D3v2PpK69HUFCQ\nTevZNOumra0NGzZswO9+9ztMmjQJQPtV+n4ekqmursbgwYMBADqdrsOTVFVVBZ1O163wRH3JgQMH\n4OvriwkTJqgdhahTXRa9LMvYtm0bgoODcd9991mXR0VFIS8vDwCQl5eH6Oho6/L8/HzIsozTp09D\nq9VeM2xDJJKioiLs378fkyZNQnJyMg4fPoyUlBS1YxFZdTl0c+rUKeTn52PYsGH4y1/+AgBYsGAB\nEhMTkZmZiZycHOv0SgCIiIhAcXExUlNTMXDgQCQnJ/fsHhCp7Nlnn8Wzz7bP9ikoKMC2bduwefNm\nlVMR/aLLoh83bhw++OCDTn+3du3aa5ZJkoSlS5fan4zoJnRnOiRRf8HLFBMpKDY2FrGxsWrHIOqA\nl0AgIhIci56ISHAseiIiwbHoiYgEx6InIhIci56ISHCcXklCef/4IkUfb37Y2zatN2nSJLi7u8PJ\nyQnOzs747LPPFM1BZA8WfTd8lPu02hHEsvATtRMoas+ePbyuEzkkDt0QEQmORU+kAEmSsGDBAtxz\nzz1455131I5D1AGHbogU8PHHHyMwMBBGoxF/+MMfEBoaipiYGLVjEQHgET2RIgIDAwG0fzPRrFmz\nUFpaqnIiol+w6Ins1NDQgLq6OuvPeXl5GDt2rMqpiH7BoRsSiq3TIZV0+fJl/OlPfwIAmM1mJCYm\nYsqUKb2eg+h6WPREdho+fLj1i+6JHBGHboiIBMeiJyISHIueiEhwLHoiIsGx6ImIBMeiJyISHKdX\nklCCSo8p+nhlE8NtWq+mpgbp6ek4deoUJEnChg0bEBUVpWgWopvFoidSwNq1azFlyhTs2LEDLS0t\naGxsVDsSkRWHbojsdPXqVRw9ehQLFiwAAAwcOBCenp4qpyL6BYueyE4XL16Ej48PVq5ciRkzZiA9\nPR0NDQ1qxyKyYtET2clsNuPYsWNYvHgx9u/fD61Wiy1btqgdi8iKRU9kp8DAQAQGBuKOO+4AAMye\nPRvHjin7oTCRPVj0RHby9/dHUFAQzp49CwD48ssvMWbMGJVTEf2iy1k3r7/+OoqLi+Hp6YkNGzYA\nAOrq6pCZmYnLly/Dz88PK1euhLu7O2RZxs6dO1FSUgIXFxckJycjJCSkx3eC6Ge2TodU2gsvvICU\nlBS0trZi2LBheO2111TJQdSZLo/oExISsHr16g7LsrOzER4ejk2bNiE8PBzZ2dkAgJKSEpSXl2PT\npk149NFHkZWV1TOpiRzMbbfdhs8++wwGgwFvvfUWvLy81I5EZNVl0d96661wd3fvsKywsBDx8fEA\ngPj4eBQWFgIAioqKEBcXB0mSMGbMGNTX16O6uroHYhMRka1u6oSpmpoaeHt7AwC8vLxQU1MDADCZ\nTPD19bWu5+PjA5PJZF331wwGg/XLGjIyMjrcz1FVqB1AMEq85hUVFXB27tvn/bm4uNj9XPC9qay+\n0EfdYfdfiCRJkCSp2/fT6/XQ6/XW20aj0d4o1Mco8Zo3NzdDo9EokEY9zc3NfP87mL7yegQFBdm0\n3k3NuvH09LQOyVRXV2Pw4MEAAJ1O1+EJqqqqgk6nu5lNEBGRQm6q6KOiopCXlwcAyMvLQ3R0tHV5\nfn4+ZFnG6dOnodVqOx22ISKi3tPl0M3GjRtx4sQJ1NbW4vHHH8e8efOQmJiIzMxM5OTkWKdXAkBE\nRASKi4uRmpqKgQMHIjk5ucd3gIiIbkySZVlWOwQAlJWVqR2hS+Zlc9SOIBTNjk/sfoyGhgZotVrr\nbaVfI1synj17FsuXL7fevnjxItLT07Fs2TKbtvHbfbgZfG8qS4n3Zm+wdYy+b09XIHIAoaGhOHDg\nAID2695ERkZi1qxZKqci+gUvgUCkoC+//BLDhw/H0KFD1Y5CZMWiJ1LQ3r17kZiYqHYMog5Y9EQK\naWlpwf79+3HfffepHYWoAxY9kUIOHjyI8PBw+Pn5qR2FqAMWPZFCsrOzOWxDDomzbkgoak2La2ho\nQH5+Pl5++WVVtk90Iyx6IgVotVocP35c7RhEneLQDRGR4Fj0RESCY9ETEQmORU9EJDgWPRGR4Fj0\nRESC4/RKEsrc3ScVfby9C8d1uc6TTz4Jg8EAX19f5OTkAGj/5rXly5fjhx9+wC233IJt27bBy8tL\n0WxEtuIRPZGd5s2bh927d3dYtnXrVkyePBmHDx/G5MmTsXXrVpXSEbHoiewWExNzzdH6F198gaSk\nJABAUlISPv/8czWiEQFg0RP1CKPRiICAAACAv78/jEajyomoP2PRE/UwSZIgSZLaMagfY9ET9QBf\nX19UVFQAACoqKuDj46NyIurPWPREPWDGjBnYs2cPAGDPnj2YOXOmyomoP+P0ShKKLdMhlZacnIyv\nvvoKJpMJkZGRSE9Px4oVK/D444/j3XffxdChQ7Ft27Zez0X0MxY9kZ1ef/31Tpd/8MEHvZyEqHMc\nuiEiEhyLnohIcCx66tNkWVY7gt1E2AdybCx66tOcnJzQ1tamdoyb1tbWBicn/hlSz+KHsdSnubq6\noqmpCc3NzX3upCRZluHk5ARXV1e1o5DgWPTUp0mShEGDBqkdg8ih9UjRl5aWYufOnbBYLJg2bRoS\nExN7YjNERGQDxQcHLRYL3nzzTaxevRqZmZk4fPgwfvzxR6U3Q0RENlK86M+ePYshQ4YgICAAzs7O\niI2NRWFhodKbISIiGyk+dGMymTpcwMnHxwdnzpy5Zj2DwQCDwQAAyMjIQFBQkNJRlPe/RWonIOoc\n35t0A6rN69Lr9cjIyEBGRoZaEYS1atUqtSMQdYrvTXUoXvQ6nQ5VVVXW21VVVdDpdEpvhoiIbKR4\n0Y8aNQqXLl1CZWUl2traUFBQgKioKKU3Q0RENlJ8jF6j0eCRRx7Biy++CIvFgilTpuCWW25RejN0\nA3q9Xu0IRJ3ie1MdkswLbRARCY0X2SAiEhyLnohIcCx6IiLBseiJiATHq1cSUY+oq6u74e/d3d17\nKQlx1k0ftnjx4hteg/0f//hHL6Yh6mjFihWQJAmyLMNoNMLd3R2yLKO+vh6+vr7YunWr2hH7DRa9\nAN5//314eXkhLi4Osizjyy+/RGNjI+bOnat2NCJs374dUVFRuOOOOwAAJSUlOHbsGBYvXqxysv6D\nY/QC+M9//oOZM2di0KBB0Gq1mDFjBo4ePap2LCIAwPfff28teQCIiIjAiRMnVEzU/7DoBeDk5IRD\nhw7BYrHAYrHg0KFD/B5SchiDBw/Ghx9+iMrKSlRWVuKjjz6Ch4eH2rH6FQ7dCKCyshK7du3CqVOn\nAABjx47FkiVL4O/vr3IyovYPZffs2YPvvvsOADB+/HgkJSXxw9hexKInIhIcp1cKoKysDFlZWaip\nqcGGDRtw4cIFFBUV4cEHH1Q7GhGuXr2KvXv34scff0RLS4t1+bp161RM1b9wIFcAb7zxBh566CFo\nNBoAwPDhw1FQUKByKqJ2mzZtQnBwMCorK5GUlAQ/Pz+MGjVK7Vj9CoteAC0tLQgNDe2wjB/GkqOo\nra3F1KlTodFocOuttyI5ObnTrxelnsOhGwF4eHigvLzcevLUkSNH4O3trXIqonbOzu014+3tjeLi\nYnh7e8NkMqmcqn/hh7ECqKiowPbt23Hq1Cm4ubnB398fqamp8PPzUzsaEb7++muMHz8eRqMRO3fu\nRENDA5KSkvjNc72IRS8Ai8UCJycnNDU1QZZlDBo0SO1IRORAOJArgBUrVuCNN97AmTNn4OrqqnYc\nog7Kysrw/PPP46mnngIAXLhwAR9++KHKqfoXFr0ANm7ciPDwcHzxxRd44okn8Oabb+LkyZNqxyIC\nwFlhjoBFLwAXFxfExsYiPT0dL7/8MhobGzlHmRwGZ4Wpj7NuBHHixAkUFBSgtLQUISEhWLlypdqR\niABwVpgj4IexAlixYgVGjBiBu+66C1FRURynJ4fCWWHqY9ELoKGhAVqtVu0YRB3s27evw+2WlhZY\nLBbrgch9992nRqx+iUM3fdjevXsxd+5cvPfee53+/pFHHunlRES/aGxsBNA+6+b777+3zps/dOgQ\nxo8fr2a0fodF34cFBwcDAEJCQlROQnStpKQkAMD69evx8ssvW8/vSEpKwmuvvaZmtH6HRd+H/XyE\nNGzYMJY9OSyj0Wi9DALQfkmEy5cvq5io/2HRC+Dtt9/GlStXMGnSJMTGxmLYsGFqRyKyiouLw+rV\nqxEdHQ0AKCwsRHx8vMqp+hd+GCuIK1euoKCgAF999RUaGhoQGxvL69GTwzh37pz1JL7x48dj5MiR\nKifqX1j0grl48SL27t2LgoICvPvuu2rHISIHwKIXwI8//oiCggIcPXoUHh4eiI2NxaRJk+Dp6al2\nNCJyACx6AaxZswZ33303YmJioNPp1I5DRA6GH8b2cRaLBQEBAbj33nvVjkJEDopXFurjnJycUFtb\ni7a2NrWjEJGD4tCNALZv347z588jMjKyw3VueIo5EQEcuhGCt7c3vL29Icuy9bRzIqKf8YieiEhw\nPKIXwHPPPdfpcn75CBEBLHohLFq0yPpzS0sLjh49av3aNiIiFr0AfntBs3HjxvFonoisWPQCqKur\ns/5ssVhw7tw5XLlyRcVERORIWPQCeOaZZyBJEmRZhrOzM/z8/LB8+XK1YxGRg2DRC2DhwoWYOHEi\ntFot/vWvf+H8+fMYOHCg2rGIyEHwzFgBfPTRR9BqtTh58iSOHTuGhIQEZGVlqR2LiBwEi14ATk7t\nL2NxcTF5eXE5AAAAaUlEQVSmT5+O6OhoXhKBiKxY9ALQ6XTYvn07CgoKEBERgdbWVvA8OCL6Gc+M\nFUBzczNKS0sxbNgwBAYGorq6GhcvXsTtt9+udjQicgAseiIiwXHohohIcCx6IiLBseiJiATHoici\nEtz/AaCkZ3DqUuVdAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0xd09bcc0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAFHCAYAAACvRIfjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdgVFXax/HvZEISQgqpICAiVWARkbChJgihSBGkioAL\nvoAIggiKoC6IBbFQpCkoggq7ugqisi5q6IhgKCpFem+mElIgZCbz/pFl1hgkASeZm5vf56/MnXPP\nPDeTeXLm3HOfa3E4HA5ERMS0PNwdgIiIFC0lehERk1OiFxExOSV6ERGTU6IXETE5JXoREZPzdHcA\nImIsDoeDhIQEsrOz3R2K/FeZMmUICwvDYrHc1P4WraMXkd+Kj4/HZrNRpkwZd4ci/5WdnY2npyfh\n4eE3tb+mbkQkj+zsbCV5gylTpsyf+oalRC8iYnJK9CJiSL/++ivDhg2jSZMmtGzZkn79+nHkyJEb\n7mfBggVkZmYWQYQlh+boRSSPM2fO4OXl5Xx8edC9Lu3fZ8l/CmzjcDjo1KkTffv2ZdCgQQDs3r2b\njIwMmjZtekOv17hxY7755htCQkJuJlzDuHLlCpUrV76pfbXqRkQMZ/PmzZQpU8aZ5AEaNGhAeno6\nPXv25MKFC9hsNiZMmMC9997LyZMneeCBB7j77rvZvXs3NWrUYO7cuSxbtozz58/To0cPgoOD+eyz\nz9x3UG6kqRsRMZz9+/fTsGHDfNt9fHxYsmQJa9asYcWKFUyePJmrkxKHDx9m4MCBbNiwAX9/fxYv\nXszQoUOpWLEiK1asKLVJHpToRaQEcTgcvPzyy0RHR9OrVy/Onz9PfHw8AJUrVyYyMhKAXr16sW3b\nNneGaihK9CJiOHXq1OGnn37Kt3358uUkJSURGxvLunXrCAsLIysrCyDfxUQ3e3GRGSnRi4jhtGrV\niitXrvDBBx84t+3atYtTp04RGhpKmTJl2Lx5M6dOnXI+f/r0aeLi4gBYsWKFc3Tv5+dHenp68R6A\nwSjRi4jhWCwWlixZwsaNG2nSpAmtWrXi9ddfJyYmhh9//JF27dqxfPlyatWq5dynVq1afPzxx0RH\nR3PhwgXnidyBAwfywAMPcP/997vpaNxPyytFJI/fL68sCU6ePMmAAQPYuHGju0MpMn9meaVG9CIi\nJqcRvYjkURJH9KWBRvQiIvKHlOhFRExOiV5ExOSU6EVETE6JXkQM6UbKFJ88eZKoqKhijrDkUPVK\nEbmuTkt2u7S/rwY1KLCNw+Fg0KBB9O3bl4ULFwK5ZYoTEhKoUaOGS+MpDTSiFxHD+aMyxZGRkTz/\n/PNERUURHR3NypUr3RdkCaIRvYgYzh+VKV61ahV79uxh3bp1JCUl0aFDB5o1a+aGCEsWjehFpMT4\n4Ycf6NGjB1arlfDwcJo1a8auXbvcHZbhKdGLiOH8UZliuTlK9CJiOH9UpjggIICVK1dit9tJTExk\n69atNGrUyI2RlgyaoxcRw7lapvi5555jzpw5+Pj4cOutt/LSSy+RkZHBPffcg8ViYdKkSVSoUIGT\nJ0+6O2RDU1EzEclDRc2MSUXNRETkDynRS6lnsVhYunTpddusX78ei8XC6dOniykqEddRopdSJSYm\nJs9FOADnzp2jV69ezseenp4sWbKkeAMTKUI6GSulXsWKFd0dgkiR0oheSo1BgwaxZs0a3n//fSwW\nCxaLxTklc3Xqplq1atjtdgYPHuxs80cOHz5Mz549KV++PEFBQbRv357du11bF0bEFZTopdR48803\nadWqFX369OHcuXOcO3eO5s2b52kTFxeH1Wpl1qxZzjbX8uuvv9KyZUvCw8PZtGkTW7dupU6dOrRu\n3ZqEhITiOByRQtPUjZQagYGBeHl5UbZs2T+crgkLC3O2vd6UzltvvUW1atV46623nNtmz57NV199\nxbJlyxgzZoxrgy9lKlasSN26dbHZbFitVvr06cPw4cPx8NDY9GYo0YvchLi4OHbs2IGfn1+e7Zcu\nXeLQoUNuiqporFjq2m8oPQaEFdjGx8eHdevWAZCQkMDw4cNJS0vj6aefdmkspYUSvchNyMnJoW3b\ntsydOzffc4GBgW6IyLzCwsKYPn06HTp0YPz48WRlZTF+/Hh++uknrFYrL7zwAi1btuSjjz5i9erV\nXLp0iePHj9OpUycmT57s7vANQYleShUvLy/sdvufbhMREcGSJUuoUqUKPj4+rgxRruHqSfKEhAQ+\n/fRTLBYLGzZs4NChQ/Tp04fvv/8egD179rB27Vq8vLxo3rw5Q4YMuemrSc1EE15Sqtx+++3s2LGD\nI0eOkJiYSHZ29jXbrFu3jrNnz5KYmHjNfh577DHsdjvdunVj06ZNHD9+nM2bN/Pss8+yZcuWoj6M\nUm3btm3O6x5q1apFlSpVnLcYjIqKIiAgAB8fH2rXrs2pU6fcGaphKNFLqTJu3DhCQ0Np2LAhYWFh\nfPfdd/naTJ8+nR07dlCtWjXnydnfq1ChAt9//z2hoaH06NGDOnXq0L9/f06cOMEtt9xS1IdR6hw/\nfhyr1fqH78dVv63RY7VaC/xmVlpo6kZKlerVq7Nx48Y8235f169jx4507Ngxz7bWrVvna3fbbbex\nbNmyoglUnBITE3nqqad4+OGHsVgsNG3alOXLl9OqVSuOHDnCmTNnqFmzpq5huA4lehExnMuXL3PP\nPfc4l1f27t2bRx99FIDBgwczfvx4oqOjsVqtzJ49G29vbzdHbGwqUywieahMsTGpTLGIiPwhJXoR\nEZNTohcRMTnDzNGfPXvW3SGYRmho6B+u/xYpSGZmJr6+vkXSt6enJzabrUj6NrtrvS+VKlUq1L4a\n0YuImJwSvYiIyWkdvYgYzq233sodd9zhXEffq1cvhg0bpjLFN0mJXkSua/bs2S7tb/To0QW28fHx\n4dtvvwVyr4wdOXIk6enpPPnkk3na2Ww2PD2Vxgqi35CIGFpoaCivvfYanTp1Yty4cfzrX/9izZo1\nZGVlkZmZySeffOLuEA1PiV5EDO+2224jJyfHuZpsx44dxMbGEhQU5ObISgZNeIlIiRMVFaUkfwOU\n6EXE8E6cOIGHhwehoaEARbbO36yU6EXE0JKSkpgwYQKDBw/GYrG4O5wSSXP0IiZgH3qfy/rKeeAR\nHDVqu6y/33McL/jm6ZcvX6ZddBQ2mx2rp5WeHdoxrEfX3H0Tf8Vx8UKh+rlZlmq1iqxvd1AJBBNS\nCYTSx5WJ/tIDj1CuCBN9SWDERP9nSiBoRC9iAp+OCXRZXw2CvKgYZHVZfyVRsLsDcDHN0YuImJwS\nvYiIySnRi4iYnBK9iIjJKdGLiJicEr2IGNJf72x/U/t1iO5NSvKFPNvOnD7H/fc+5IqwSiQtrxSR\n67rjzDsu7W9/5aEu7c+dSkqZZONHKCKllsPhYMar89m8YRtYLDwy8iE6dm5L3NZdzJ/9HkFBgRw6\ndIx6f6nDtOl/z1Mi4fLlLMaMeJaY9lE0a9kEe04Ozz/zKj/u3EN4hTBmL3gFHx9vTp04w8vPzyA5\n+QJly/ow+eXxBP+lurP0wpkzZwCYMmUKTZo0Yfr06fz666+cOnWK4OBg5s2b565fT6Fp6kZEDCv2\n6w3s/+Uwn65azDsfzGT6tPkkxOde9b1/3yHGPzeaz1d/yOmTZ9m1Y7dzv8zMSzw27Gk6dY2h1wO5\nVw2fPH6aBwb0YOXqD/EP8OPb1esBmPLca0ycPIZ/fb6IcRNG8PLkGQBMmjSJoUOH8tVXX/HOO+/k\nuenJzz//zHvvvVcikjxoRC9iCqO8q7isr3MeZfG2eLmsv98LL2TfFmD/jr307dqBWzzLcktYWVpG\n3s2p3Ycp71eOuxvW585KucfdqF4d0s8kEN7ECysWxg5/hpHDBtKrW0cALlvKULXKLUTVrw/AXxvU\nI/VMAuUybfy0cy9Pj5rsfN0rV7IB2LRpEwcPHnRuT09PJyMjA4D27dtTtmzZP/27KC5K9CJSInl5\nlXH+bLV6YLPZnY//2rgh6zZ+T8/7Ojinc7y8/vcPxurhwWW7nZycHAIC/Fi7ammevm1ATk4OX375\nJT4+Pvleu6SVSdbUjYgYVtMmd/H5v2Ox2+0kJqWw9Ycfubth/QL3Gz9mGIEBAUyY/Pp12/n7+1G1\nSiW++GoNkHtOYO8vuaP46OhoFi9e7Gy7Z8+eP3Ek7lWoEf3IkSPx8fHBw8MDq9XKtGnTSE9PZ+bM\nmSQkJBAWFsYTTzyBn58fDoeDxYsXs2vXLry9vRkxYgTVq1cv6uMQEROx2Wx4e5WhU/vWbN+5m3s6\nD8BisfD3px8jPCyEQ0eOF9jHy5PGMubpF3lh2hwGDej5h+3mz3yBp//+KjPnvYfNZqN7l3bUadSG\nF198kWeeeYaYmBhsNhuRkZG8+uqrLjzK4lOoMsUjR47klVdeISAgwLlt6dKl+Pn50b17d1auXEl6\nejoDBgxg586drF69mokTJ3Lo0CGWLFnC1KlTCwxEZYpdR2WKS5/wwxNd1tc5v854l6/msv5uxt5f\nDjL2mVf4+rPFBTcuAjYf153zcJU/U6b4pqdu4uLiiI6OBnK/4sTFxQGwfft2oqKisFgs1K5dm4yM\nDFJSUm72ZUSklHn/HysYPubvTBz7iLtDMY1Cn4x9+eWXAWjXrh0xMTGkpqY6b85bvnx5UlNTAUhO\nTnbe1xEgJCSE5OTkfDfyjY2NJTY2FoBp06bl2Uf+HE9PT/0+S5vD7g7Adf72YA/+9mAPt8ZgxIug\nvL29b/pzXaijefHFFwkODiY1NZWXXnop39cFi8Vyw/dyjImJISYmxvlYUw2uo6mb0ifc3QGYjM1m\nc3cI+WRlZeX7XLt06iY4OPd+K4GBgTRp0oTDhw8TGBjonJJJSUlxzt8HBwfnCSYpKcm5v4iIFL8C\nE/3ly5e5dOmS8+eff/6ZqlWrEhERwYYNGwDYsGEDTZo0ASAiIoKNGzficDg4ePAgvr6++aZtRESk\n+BQ4dZOamsobb7wBgN1up2XLltx1113UqFGDmTNnsnbtWufySoBGjRqxc+dORo8ejZeXFyNGjCja\nIxARkesq1PLK4qDlla6jOfrSx2zLK29v0Jpju9ff1L4RUd35euUSQoLL3/Trm215pfFOLYuIoSw7\n4rp/IgD9a7zi0v6kYEr0IlIifL1mEzPnLSY7O5ug8oHMnzmF8NAQklNSGT7mOZKSL9DoznpcnaR4\ndeYCypcP4JHB/QCY+sZbhIYEMWzwA+48DLdQrRsRKREiIxryn+WLWPPlh3Tv0o55C3MLkb0x+10i\nIxqy5ssP6RDTitNnzwPQr3dXPvnsP0BugbKV//6WXt3vdVv87qQRvYiUCGfPxzNs9LP8Gp9EdnY2\nVavkzk9vjdvFe/Nza9C0u6cl5QNzl3pXrVKJoPKB7N57gITEZBrUq01wUKDb4ncnJXoRKRGenTKd\nRx7uR8eYKL7buoM3Zr9b4D79+9zHR8tXEZ+QTL9eXYshSmPS1I2IlAgX09K5pUIYAP9a8W/n9qZN\nGrHii68BWLN+CxdSLzqf69S+Nes2buXH3fu4J6pp8QZsIBrRi4jhXLp0mbtadHE+Hv7wgzw5eghD\nRj3DLRXCaHzXXzh5+hwAT44ewvAxzxFz30M0+2sjqlSq6NzPy6sMLZo2JiDAH6vVWuzHYRRaR29C\nWkdf+phtHb2r5OTkEHPfQ7w7ZyrVb69a6P3Mto5eUzciYkoHDh0lsk1PWjVvckNJ3ow0dSMiplSn\nVnXi1n/m7jAMQSN6ERGTU6IXETE5JXoREZNTohcRMTklehExnAo1IhkxdrLzsc1mo16TDvQfMva6\n+/348y88M2V6UYdX4mjVjYhcV/j+FJf2F39HwXec8/Uty/6DR7h0+TJlfXzYsPkHKv73qtjruevO\nutx1Z91Cx2Kz2Qx5I3BX04heRAypbevmxK77DoDPvvyG+7u2dz6386e9dOr1f7TtOpDOvYZw+OgJ\nAL7busM56k+5kMrfHnmK1p36c2/Ph9m7/xAAr7/5DuOemUqfv43isSenFPNRuYcSvYgYUvcu7Vi5\n6lsuZ2Wx78Bh7m5Y3/lcreq38cVHC1jz5YeMf2IYU9+Yn2//12a9Q4P6dVj/1TKeGTeCUb9J6j/v\n2c/7C17n7VkvFsuxuJv5v7OISIlU/45anDp9js++/Ia2rZvnee5iWgajnnqBo8dPYbFYsNls+fb/\nYcdPLJo3DYBWzSNISUklLS0dgA4xUZT18Sn6gzAIjehFxLA6xLRiyiuz80zbQO7do1o0bczG1f/k\nw3feICvryg3161u29CR5UKIXEQPr16sr40YNoV6dmnm2X0xL55aKuSdnP17+72vtSmTEXaz4fDWQ\nO3cfHFwef3+/og3YoJToRcSwKt1SgaGD+ubbPnLYQF5+fT5deg/Fbrfnec5isQDw1OND+GnPflp3\n6s9Lr89j9uuTiiVmI1KZYhNSmeLSR2WKc61avZavYzcx543JBTe+DpUpFhExoNWxG3ll+ts81O9+\nd4diOFp1IyKm0DEmio4xUe4Ow5A0ohcRMTklehERk1OiFxExuULP0efk5DBhwgSCg4OZMGEC8fHx\nzJo1i7S0NKpXr86oUaPw9PQkOzubuXPncvToUfz9/RkzZgzh4eFFeQwiInIdhR7Rf/XVV1SuXNn5\neOnSpXTu3Jk5c+ZQrlw51q5dC8DatWspV64cc+bMoXPnzixbtsz1UYuIqd1smeJrSb2YxuKln7oy\nvBKnUCP6pKQkdu7cSY8ePVi1ahUOh4O9e/fy+OOPA9C6dWs++eQT2rdvz/bt2+nduzcATZs25b33\n3sPhcDgvYhCRkiVr1AiX9uc9J38Bst+72TLF15Kb6JczeECvQu/jcDhwOBx4eJhjdrtQR7FkyRIG\nDBjgTNZpaWn4+vpitVoBCA4OJjk5GYDk5GRCQkIAsFqt+Pr6kpaWVhSxi4iJ3UyZ4v0Hj9Lh/sG0\n6TKA1p36c/TYSV56bR4nTp6hTZcBTHllNgDzFn5Ih+6DaN2pP6/NWgjAydNnadm+L09Peo0OHTqY\n6iLOAkf0O3bsIDAwkOrVq7N3716XvXBsbCyxsbEATJs2jdDQUJf1Xdp5enrq91naHHZ3AK7XvUs7\nZsxZRLs2Ldl34DD9endla9yPwP/KFHt6erLhux+Y+sZ83pv/Ku//YwVDB/WlV7eOXLmSjT3HznPj\nR7L/4FHWrloKwPpNWzl6/BSrP1uMw+Fg4LAn+f6HXVSuVIHDR08w69XneHVGwd86ipu3t/dNf64L\nTPQHDhxg+/bt7Nq1iytXrnDp0iWWLFlCZmYmdrsdq9VKcnIywcHBQO7oPikpiZCQEOx2O5mZmfj7\n++frNyYmhpiYGOdjXbLvOiqBUPqYcbnDzZQpjri7AW/OX8y58/F0bt+a6rdXzdfv+k3b2LD5B9p2\nHQhARsYljh4/ReVKFahSuSIRjRpcs+yxu2VlZeX7XBe2BEKBif7BBx/kwQcfBGDv3r18+eWXjB49\nmhkzZrB161ZatGjB+vXriYiIAKBx48asX7+e2rVrs3XrVurXr6/5eRG5KVfLFK/4x1ukpKQ6t18t\nU7zk7dc4efosPR7MPY/Q874ONG5Yn2/XfUffwY8zY+qz3FY1bzJ0AKOHP8RDD/bIs/3k6bP4li1b\n5MfkDjd9pqF///6sWrWKUaNGkZ6eTps2bQBo06YN6enpjBo1ilWrVtG/f3+XBSsipcuNlik+fvIM\nt1WtzNBBfenQthX7DhzCr1w5MjIynW3uaRXJPz5d5dx27nw8CYnJxXA07nNDtW7q169P/fq5t/Oq\nUKECr7zySr42Xl5ejB1740ugRER+73plikc/NYW3F/2Tls0aO7d/8VUsn678D56enoSHhjBu1P8R\nVD6QJo3vJKpjP9pGN2PyxNEcPHycTr2GAFCuXFnmT5+Ch9UcK2yuRWWKTUhz9KWPyhS7lsoUi4hI\niaJELyJickr0IiImp0QvImJySvQiIianRC8iYnJK9CJiOAWVKV4du5HZb7/vrvBKHN0cXESuq/Py\ndJf29++efgW2KahMsW4EfmM0ohcRQ7pemeKPPl3FxOdfB+CLr9YQ1bEf93TuT7cHHgGuXa64NNOI\nXkQM6Xplin9r+pxFfLzkTW6pGE7qxdx7X1yrXHFpphG9iBjS9coU/9ZfG9/J6PEv8uFHK7Hbc4Dc\ncsWz31rCnAUfcPrMOcr6+BRX2IakRC8ihnW1TPFvp21+7/WXJjBh7COcPfcrbbsMIDkllZ73deCD\nBW/g4+1N38GPs2nL9mKM2ng0dSMihtWvV1cC/P2pV6cm323dcc02x0+cpvFdf6HxXX/hm7WbOXvu\nVy6mpTvLFZ84dYZ9Bw7RqnlEMUdvHEr0ImJYf1Sm+LemTJvD0eOncDgctGoeQf26tZiz4IN85YpL\nM5UpNiGVKS59VKbYtVSmWEREShRN3dyAbsv2uzsEU/m8/x3uDkGkVFCivwEP3vWyu0MwmQ/dHYBI\nqaCpGxERk1OiFxExOSV6ERGTU6IXEcMpqEzxb4uavf7mO8x/Z6lb4iwpdDJWRK7rs88LLit8I+7v\nVnDZ44LKFMuN0YheRAzpemWK/8jxE6d5YNDjtLvvIe7rO4xDR44XcZQlgxK9iBhS9y7tWLnqWy5n\nZbHvwGHubli/wH3GPfsKUyeP49svPmDyxNE8Pem1YojU+DR1IyKGVNgyxVdlZGSyfeduhox6xrnt\nypXsogyxxFCiFxHDulqmeMU/3iIlJfW6bXNycggI8GPtKp2Y/T1N3YiIYfXr1ZVxo4ZQr07NAtv6\n+/tRtUolvvhqDQAOh4O9vxws6hBLhAJH9FeuXGHy5MnYbDbsdjtNmzalT58+xMfHM2vWLNLS0qhe\nvTqjRo3C09OT7Oxs5s6dy9GjR/H392fMmDGEh4cXx7GIiMkUpkzxb82f+QJP//1VZs57D5vNRvcu\n7ahft3YRRlgyFFim2OFwkJWVhY+PDzabjUmTJjFo0CBWrVpFZGQkLVq0YOHChVSrVo327dvz9ddf\nc+LECYYNG8Z3333HDz/8wBNPPFFgICWhTPHHewe6OwRT6VtftW5cRWWKXavUlSm2WCz4/Pd+i3a7\nHbvdjsViYe/evTRt2hSA1q1bExcXB8D27dtp3bo1AE2bNmXPnj0YpOS9iEipVKiTsTk5OTz99NOc\nP3+eDh06UKFCBXx9fbFarQAEBweTnJwMQHJyMiEhIQBYrVZ8fX1JS0sjICCgiA5BRESup1CJ3sPD\ng9dff52MjAzeeOMNl0yzxMbGEhsbC8C0adMIDQ39031KyaL33IUOuzsAc/H0NN6CRG9v75v+zNzQ\n0ZQrV4769etz8OBBMjMzsdvtWK1WkpOTCQ4OBnJH90lJSYSEhGC328nMzMTf3z9fXzExMcTExDgf\n69Z3pY/ec9fRcgfXstls7g4hn6ysrHyfGZfN0V+8eJGMjAwgdwXOzz//TOXKlalfvz5bt24FYP36\n9URE5N5hvXHjxqxfvx6ArVu3Ur9+fSwWS6EPRkREXKvAEX1KSgrz5s0jJycHh8NBs2bNaNy4MVWq\nVGHWrFl89NFH3H777bRp0waANm3aMHfuXEaNGoWfnx9jxowp8oMQEZE/VuDyyuKi5ZWlj5ZXuo7Z\nlldWqBFJz24dmT9jCpA7lXJns840alifZe/OKPLXN9vySuOdcRARQ5mxcIVL+xs7rEeBbVSm2LWU\n6EXEkK6WKe56b1tnmeKtcT8CuTcbOXnqLL8mJHL02CmmPPs4O3btYc2G77mlQhgfvjOdMmU8+Wn3\nL0ye+iYZGZkEB5dn9muTqBBe+lZ7qdaNiBhSQWWKj588zbJ3Z/L+gtcYOXYyLZo2ZsN//oGPjzff\nrvuO7Gwbz0yZzrtzX+HbLz6gX6+uTJ3+lpuOxr00ohcRQyqoTHGb6OaUKeNJ3To1sefk0Ca6GQB1\n69Tg1JmzHD56gv2HjtDnb6MAsNtzqBAeUqzHYBRK9CJiWNcrU+ztVQbIvaDT09PTuYzbw8MDu82O\nAwd1alXnq08XFXvcRqOpGxExrBspU/x7NW+/jaSkC8Tt3A1AdraN/QePujrEEkEjehExrBstU/xb\nXl5lWDTvFZ59YToX09Kx2+0MHfQAd9Su7uIojU/r6G+A1tG7ltbRu47Z1tG7m9nW0WvqRkTE5JTo\nRURMToleRMTklOhFRExOiV5ExOSU6EVETE6JXkQMp0KNSEaMnex8bLPZqNekA/2HjHVjVCWXLpgS\nkesKPj3Ppf0lVxlZYJsbKVNss9kMeY9XI9FvR0QMqaAyxed/TeDUmXMEB5Xn7VkvujlaY1OivwGj\nvI13tVxJFu/uAMTQundpx4w5i2jXpiX7DhymX++uzkQP8POe/Xzxr4WU9fFxY5Qlg+boRcSQCipT\n3CEmSkm+kJToRcSwrpYpvr9r+3zP+ZZVki8sTd2IiGH169WVAH9/6tWpyXdbd7g7nBJLI3oRMaw/\nU6ZY/kcjehG5rsIsh3S1Y7vX59vWomljWjRtDMBTjw8t5ohKNo3oRURMToleRMTklOhFRExOiV5E\nxOSU6EVETE6JXkTE5ApcXpmYmMi8efO4cOECFouFmJgYOnXqRHp6OjNnziQhIYGwsDCeeOIJ/Pz8\ncDgcLF68mF27duHt7c2IESOoXr16cRyLiJhEhRqR9OzWkfkzpgC5FSrvbNaZRg3rs+zdGW6OruQp\nMNFbrVYGDhxI9erVuXTpEhMmTODOO+9k/fr1NGjQgO7du7Ny5UpWrlzJgAED2LVrF+fPn2f27Nkc\nOnSId999l6lTpxbHsYhIEVh2ZKJL++tf45UC26hMsWsVOHUTFBTkHJGXLVuWypUrk5ycTFxcHNHR\n0QBER0cTFxcHwPbt24mKisJisVC7dm0yMjJISUkpwkMQETO6WqYYcJYpvur1N99h3DNT6fO3UTz2\n5BT2HzxKh/sH06bLAFp36s/RYyfdFbYh3dC/wfj4eI4dO0bNmjVJTU0lKCgIgPLly5OamgpAcnIy\noaGhzn1CQkJITk52tr0qNjaW2NhYAKZNm5ZnH8M67O4AzKVEvOclhQn/Nm+kTPHE599g6KC+9OrW\nkStXsrFh2gWDAAAUo0lEQVTn2P/UaxvxG4K3t/dNf2YKfTSXL19m+vTpDBo0CF9f3zzPWSwWLBbL\nDb1wTEwMMTExzseJiYk3tL87hLs7AJMpCe95SWHGv80bKVMccXcD3py/mHPn4+ncvjXVb6/6p17b\nZrP9qf2LQlZWVr7PTKVKlQq1b6FW3dhsNqZPn06rVq2IjIwEIDAw0Dklk5KSQkBAAADBwcF5gklK\nSiI4OLhQwYiI/FZhyxT3vK8DHyx4Ax9vb/oOfpxNW7YXZ5iGV2CidzgcvP3221SuXJkuXbo4t0dE\nRLBhwwYANmzYQJMmTZzbN27ciMPh4ODBg/j6+uabthERKYx+vboybtQQ6tWped12x0+e4baqlRk6\nqC8d2rZi34FDxRRhyVDg1M2BAwfYuHEjVatW5amnngKgX79+dO/enZkzZ7J27Vrn8kqARo0asXPn\nTkaPHo2XlxcjRowo2iMQEdMqbJniL76K5dOV/8HT05Pw0BDGjfq/Yoiu5LA4HA6Hu4MAOHv2rLtD\nKFD4YdcuMyvt4msWvMxOCseVf5vn/DrjXb6ay/oriWw+xrs/dGZmZr7zoy6doxcRkZJLiV5ExOSU\n6EVETE6JXkTE5JToRURMToleRMTklOhFxHAq1IhkxNjJzsc2m416TTrQf8hYN0ZVchmvco+IGEr4\nftdWn42/o+Ar5W+kTLEUTCN6ETGk65Up3rJtJ226DKBNlwG07TqQ9PQMd4VZIijRi4ghde/SjpWr\nvuVyVhb7Dhzm7ob1nc/Nf3cZ055/irWrlvLFRwvw8fF2Y6TGp6mbG7Box9PuDsFUul6/TpWUctcr\nU/zXxncyaeqb9LyvA507tKbSLRXcFGXJoER/A961nXd3CKbSlfLuDkEM7mqZ4hX/eIuUlFTn9tHD\n/0bMPS1Ys34LnXr9H598MJdaNaq5L1CDU6IXEcPq16srAf7+1KtTk++27nBuP37iNPXq1KRenZps\n37mbQ0dOKNFfhxK9iBjWH5UpXrD4I77bugMPDw/q1LqdttHN3BBdyaFELyLXVZjlkK52bPf6fNta\nNG1Mi6aNAXjl+SeLOaKSTatuRERMToleRMTklOhFRExOiV5ExOSU6EVETE6JXkTE5LS8UkQM55Za\nzahbpwY2m52qt1Zi3vTnCQzwd3dYJZYSvYhcV9aoES7tz3vO/ALb+Ph4s3bVUgBGPTmF9z78lCdG\nDnZpHKWJpm5ExNAi7m7A+V8TnI/nLfyQDt0H0bpTf16btRCAF1+bx3sffuJs8/qb7zD/naXFHqtR\nKdGLiGHZ7XY2bYmjQ9tWAKzftJWjx0+x+rPFrF31IT/t2c/3P+yie+cYvvhqjXO/L76KpVvndu4K\n23A0dSMihnP5chZtugzg1Olz3PmXO4hu+VcA1m/axobNP9C260AAMjIucfT4Kfr3uY/EpBTO/5pA\nUnIKgQEBVK6k0sVXKdGLiOFcnaO/mJbOgCFjee/DTxk6qC8OYPTwh3jowR759ul6bxu+/M9a4hOT\n6NY5pviDNjBN3YiIYQX4+/HypHG8vegf2Gw27mkVyT8+XUVGRiYA587Hk5CYDEC3zrl3pFr1n7Xc\n16mtO8M2nAJH9PPnz2fnzp0EBgYyffp0ANLT05k5cyYJCQmEhYXxxBNP4Ofnh8PhYPHixezatQtv\nb29GjBhB9erVi/wgRMS8GtSvQ907avLZl9/Q+/5OHDx8nE69hgBQrlxZ5k+fQlhoMHfUrk56RiYV\nK4RRITzUzVEbi8XhcDiu12Dfvn34+Pgwb948Z6JfunQpfn5+dO/enZUrV5Kens6AAQPYuXMnq1ev\nZuLEiRw6dIglS5YwderUQgVy9uzZP380Razbsv3uDsFUPu9/h7tDMI3wwxNd1tc5v854l6/msv5K\nIptPFXeHkE9mZia+vr55tlWqVKlQ+xY4dVOvXj38/PzybIuLiyM6OhqA6Oho4uLiANi+fTtRUVFY\nLBZq165NRkYGKSkphQpERESKxk3N0aemphIUlHszgvLly5Oamnsvx+TkZEJD//eVKSQkhOTkZBeE\nKSIiN+tPr7qxWCxYLJYb3i82NpbY2FgApk2blucfhJQOes9d6LC7AzAXT0/jLUj09va+6c/MTR1N\nYGAgKSkpBAUFkZKSQkBAAADBwcEkJiY62yUlJREcHHzNPmJiYoiJ+d8SqN/uJ6WD3nPXCXd3ACZj\ns9ncHUI+WVlZ+T4zLpujv5aIiAg2bNgAwIYNG2jSpIlz+8aNG3E4HBw8eBBfX1/nFI+IiLhHgSP6\nWbNmsW/fPtLS0hg+fDh9+vShe/fuzJw5k7Vr1zqXVwI0atSInTt3Mnr0aLy8vBgxwrXFkERE5MYV\nmOjHjBlzze2TJk3Kt81isTBkyJA/H5WIlHoz5y3msy+/xsPDioeHhddfmsDSjz9n+MP9qFNL1+fc\nCOOdcRARQ+m8PN2l/f27p1+BbeJ27ubbdZv59vMP8Pb2Iin5AtnZ2cx85dlrtrfb7VitVpfGaSYq\ngSAihhOfkEhwUHm8vb0ACAkuT8UKYdz/4KP8+PMvANzeoDWvzlxAxx4Ps33XbneGa3ga0YuYQLNt\nf3NZX8MaBlKnTPnfbHHtiH5/RkiBbW65+16Ovfk+jdv0pXFkc9p07MxdEZFk2j05fjkQn4wQMjMv\n4X9bQ2YNe+a//bouxpo+ruvLCJToRcRwfH3LsfCjlfy8M45dP2xlylOPM2zMU3naWK1WomM6uinC\nkkWJXkQMyWq10qhJUxo1aUr1WnVY/cWKPM97eXlrXr6QNEcvIoZz8thRTp847nx8+MAvVKxU2X0B\nlXAa0YuI4Vy6lMmbr0whPe0iVqsnlavexpOTXmLyuMfcHVqJpEQvItc1veNtxf6ader9hfm/udn3\nVW++9w/nz6u3/VycIZVomroRETE5JXoREZNTohcRMTklehERk1OiFxExOSV6ERGTU6IXEUNJu3iR\nzz5a6ny8K24rEx4b+qf6XP3FZwy6/17+dn9HHuregY+WvPtnw8xn9uzZLu/TVbSOXkSu65fYLJf2\nVzfG+7rPp6dd5POPl3H/AwNc8npbN23g06WLeWPBEkLDK5CVlcU3X37mkr5/a86cOYwePdrl/bqC\nRvQiYigL33ydM6dP8n+9u/LW9GkAXMrMYNLYkQy8rz0vThiLw+EA4MC+PYwe3I+hfbvx5PBBJCXE\n5+tv2aK3GTFuIqHhFYDcm2x37fUAAIf27+PR/j0Z3LMzz455lLSLqQD06tWLn376CYDk5GQiIyMB\n+PjjjxkyZAj9+/enRYsWvPTSSwBMnTqVy5cv065dOx57LPfq3eXLl9O5c2fatWvH+PHjsdvt2O12\nxowZQ5s2bWjbti0LFy4EYNGiRbRu3ZqYmBgeffRRl/9ONaIXEUMZ9vhTHDt0kEWffAnkTt0c2r+P\nJSv+Q2h4BUY+1Ifdu3ZQr0FD3nxlClPffJvywSGsXf1v3pkzgwkvTMvT37HDB6ld7y/XfK2pzz7F\n4xMncVdEJIvmzWLJW3MY9fRz141v7969fP3113h5eREVFcXgwYN55plnWLx4Md9++y0Ahw4d4osv\nvmDlypWUKVOGiRMnsmLFCurUqcP58+dZu3YtAKmpuf9Y5s2bx/fff4+3t7dzmysp0YuI4d3xl4aE\nV7wFgJp16nH+7Gn8/AM4dvgg4x4ZBOTeZSokLKzQfaanpZGedpG7InJH6x3vu5/J40YVuF/Lli0J\nCAgAoHbt2pw5c4bKlfMWXNu8eTO7d++mU6dOAFy+fJnQ0FDatWvHyZMnee6552jbti3R0dEA1K1b\nl8cee4yOHTvSsaPrSy8r0YuI4Xl5eTl/tlo9sNvtOBwOqtWoxVtLP73uvtVq1OLgvj3cHdms0K9n\ntVrJyckBcpP0H8Xi4eGBzWbLt7/D4aB3795MnDgx33Pffvst69evZ8mSJXz55ZfMmDGDDz74gK1b\nt/LNN98wa9Ys1q1bh6en69Kz5uhFxFB8y5UjM7Pg20VVvf12UlOS2fPTTgBs2dkcO3wwX7sBQ4bz\n1oxpJCUmAHDlShafLnsfP39//AMC+WlHHADffLmSuyL+CsCtt97Kzz/nFk3797//Xai4y5QpQ3Z2\nNpA76l+1ahWJiYkApKSkcPr0aZKTk8nJyaFz58489dRT7N69m5ycHM6ePUuLFi147rnnuHjxIhkZ\nLrxdFhrRi4jBBJYP4i93NWbQ/fcS2TKaplGtr9muTBkvpkyfy+xpL5KRnobdbqNX/0HcXrN2nnZN\nW7UmOSmRcUMfwoEDCxbuvb8XABNfeo0ZL/6dy5cvU6nKrUx48VUAhg8fzvDhw1m+fDktW7YsVNz9\n+/cnJiaGBg0aMHfuXMaPH0+/fv1wOBx4enry8ssv4+Pjw9ixY53fFiZOnIjdbmfUqFGkpaXhcDgY\nOnQogYGBN/nbuzaL4+rpazc7e/asu0MokH3ofe4OwVSs73zh7hBMo9uy/S7ra1jDQOrcUr7ghiZW\nM6Ssu0PIJzMzE19f3zzbKlWqVKh9NaIXMYEV68e7rK9LFR+hnF/tghuaWUgtd0fgUpqjFxExOSV6\nERGTU6IXkbyMcdpOfufPnE5VoheRPCznT2Oz57g7DPkNm82Gh8fNp2udjBWRPLw3/ocsIKtiFbBY\n3B2OW3iEVy64UTFxOBx4eHjg4+Nz030USaL/8ccfWbx4MTk5ObRt25bu3bsXxcuISBGwOBz4bPjK\n3WG4lbVtZ3eH4FIuT/Q5OTksWrSI5557jpCQECZOnEhERARVqlRx9UuJyH/NaxDj7hBMxZjFhm+e\nyxP94cOHqVixIhUq5JYEbd68OXFxcaZI9PowuZbZPkwiRuXyRJ+cnExISIjzcUhICIcOHXL1y4jI\nb6wJae/uEEzFbIMQt52MjY2NJTY2FoBp06YV+lJed5o2bVrBjUTcIO4p439+xH1cvrwyODiYpKQk\n5+OkpCSCg4PztYuJiWHatGlKnkVgwoQJ7g5B5Jr0t+keLk/0NWrU4Ny5c8THx2Oz2diyZQsRERGu\nfhkRESkkl0/dWK1WHn74YV5++WVycnK45557uPXWW139MiIiUkhFMkd/9913c/fddxdF11IIMTFa\nHSTGpL9N9zBMPXoRESkaqnUjImJySvQiIianRC8iYnKqXikiRSI9Pf26z/v5+RVTJKKTsSXYQw89\nhOU6ZWTff//9YoxGJK+RI0disVhwOBwkJibi5+eHw+EgIyOD0NBQ5s2b5+4QSw0lehP4+OOPKV++\nPFFRUTgcDjZv3sylS5fo1q2bu0MTYeHChURERDiXXO/atYvdu3fz0EMPuTmy0kNz9Cbw008/0aFD\nB8qWLYuvry/t27dn27Zt7g5LBIAjR47kua6mUaNG7Nu3z40RlT5K9Cbg4eHBpk2byMnJIScnh02b\nNv2p246JuFJAQADLly8nPj6e+Ph4VqxYgb+/v7vDKlU0dWMC8fHxLFmyhAMHDgBQp04dBg0aRHh4\nuJsjE8k9KfvJJ5/wyy+/AFC3bl169+6tk7HFSIleRMTktLzSBM6ePcu7775Lamoq06dP58SJE2zf\nvp2ePXu6OzQRLl68yOeff87p06e5cuWKc/vkyZPdGFXpoolcE1iwYAEPPvggVqsVgNtuu40tW7a4\nOSqRXLNnz6Zy5crEx8fTu3dvwsLCqFGjhrvDKlWU6E3gypUr1KxZM882nYwVo0hLS6NNmzZYrVbq\n1avHiBEjdHvRYqapGxPw9/fn/Pnzzountm7dSlBQkJujEsnl6ZmbZoKCgti5cydBQUEkJye7OarS\nRSdjTeDXX39l4cKFHDhwgHLlyhEeHs7o0aMJCwtzd2gi7Nixg7p165KYmMjixYvJzMykd+/euvNc\nMVKiN4GcnBw8PDy4fPkyDoeDsmXLujskETEQTeSawMiRI1mwYAGHDh3Cx8fH3eGI5HH27FleeOEF\nxo0bB8CJEydYvny5m6MqXZToTWDWrFk0aNCAr7/+mscee4xFixaxf/9+d4clAmhVmBEo0ZuAt7c3\nzZs358knn+TVV1/l0qVLWqMshqFVYe6nVTcmsW/fPrZs2cKPP/5I9erVeeKJJ9wdkgigVWFGoJOx\nJjBy5EiqVatGs2bNiIiI0Dy9GIpWhbmfEr0JZGZm4uvr6+4wRPJYtWpVnsdXrlwhJyfHORDp0qWL\nO8IqlTR1U4J9/vnndOvWjY8++uiazz/88MPFHJHI/1y6dAnIXXVz5MgR57r5TZs2UbduXXeGVuoo\n0ZdglStXBqB69epujkQkv969ewPw0ksv8eqrrzqv7+jduzczZsxwZ2iljhJ9CXZ1hFS1alUlezGs\nxMREZxkEyC2JkJCQ4MaISh8lehP48MMPuXDhApGRkTRv3pyqVau6OyQRp6ioKJ555hmaNGkCQFxc\nHNHR0W6OqnTRyViTuHDhAlu2bOH7778nMzOT5s2bqx69GMbRo0edF/HVrVuX22+/3c0RlS5K9CZz\n8uRJPv/8c7Zs2cI///lPd4cjIgagRG8Cp0+fZsuWLWzbtg1/f3+aN29OZGQkgYGB7g5NRAxAid4E\nnn32WVq0aEHTpk0JDg52dzgiYjA6GVvC5eTkUKFCBTp16uTuUETEoFRZqITz8PAgLS0Nm83m7lBE\nxKA0dWMCCxcu5NixYzRu3DhPnRtdYi4ioKkbUwgKCiIoKAiHw+G87FxE5CqN6EVETE4jehOYMmXK\nNbfr5iMiAkr0pjBw4EDnz1euXGHbtm3O27aJiCjRm8DvC5rdcccdGs2LiJMSvQmkp6c7f87JyeHo\n0aNcuHDBjRGJiJEo0ZvA008/jcViweFw4OnpSVhYGI8++qi7wxIRg1CiN4H+/ftz11134evry6ef\nfsqxY8fw8vJyd1giYhC6MtYEVqxYga+vL/v372f37t20bt2ad999191hiYhBKNGbgIdH7tu4c+dO\n2rVrR5MmTVQSQUSclOhNIDg4mIULF7JlyxYaNWpEdnY2ug5ORK7SlbEmkJWVxY8//kjVqlW55ZZb\nSElJ4eTJkzRs2NDdoYmIASjRi4iYnKZuRERMToleRMTklOhFRExOiV5ExOSU6EVETO7/AXteQnVJ\nuuCKAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0xd09b668>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"all_title=''\n", | |
"\n", | |
"def add_title(df):\n", | |
" titles=[]\n", | |
" for i in df['name']:\n", | |
" title=i.split(',')[1].split('.')[0].strip()\n", | |
" if all_title:\n", | |
" if title not in all_title:\n", | |
" title='Unknown'\n", | |
" titles.append(title)\n", | |
" df['title']=titles\n", | |
" df.drop('name',axis=1,inplace=True)\n", | |
" return df\n", | |
"\n", | |
"data.pipe(add_title)\n", | |
"all_title=set(list(data['title'].unique()))\n", | |
"\n", | |
"def add_family(df):\n", | |
" df['family']=df['sibsp']+df['parch']\n", | |
" return df\n", | |
"\n", | |
"data.pipe(add_family)\n", | |
"\n", | |
"draw_chart('family')\n", | |
"draw_chart('title')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 105, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"37.0 14\n", | |
"28.5116331857 09\n", | |
"28.5116331857 19\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>survived</th>\n", | |
" <th>sex</th>\n", | |
" <th>age</th>\n", | |
" <th>sibsp</th>\n", | |
" <th>parch</th>\n", | |
" <th>ticket</th>\n", | |
" <th>fare</th>\n", | |
" <th>family</th>\n", | |
" <th>cabin_parsed_A</th>\n", | |
" <th>cabin_parsed_B</th>\n", | |
" <th>...</th>\n", | |
" <th>title_Rev</th>\n", | |
" <th>title_Sir</th>\n", | |
" <th>title_Unknown</th>\n", | |
" <th>title_the Countess</th>\n", | |
" <th>embarked_C</th>\n", | |
" <th>embarked_Q</th>\n", | |
" <th>embarked_S</th>\n", | |
" <th>pclass_1</th>\n", | |
" <th>pclass_2</th>\n", | |
" <th>pclass_3</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>passengerid</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>22.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>A/5 21171</td>\n", | |
" <td>7.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>38.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>PC 17599</td>\n", | |
" <td>71.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>26.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>STON/O2. 3101282</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>35.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>113803</td>\n", | |
" <td>53.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>35.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>373450</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>330877</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>54.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>17463</td>\n", | |
" <td>52.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>3</td>\n", | |
" <td>1</td>\n", | |
" <td>349909</td>\n", | |
" <td>21.0</td>\n", | |
" <td>4</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>27.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>347742</td>\n", | |
" <td>11.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>14.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>237736</td>\n", | |
" <td>30.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>4.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>PP 9549</td>\n", | |
" <td>17.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>58.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>113783</td>\n", | |
" <td>27.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>13</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>A/5. 2151</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>14</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>39.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>5</td>\n", | |
" <td>347082</td>\n", | |
" <td>31.0</td>\n", | |
" <td>6</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>14.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>350406</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>55.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>248706</td>\n", | |
" <td>16.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>4</td>\n", | |
" <td>1</td>\n", | |
" <td>382652</td>\n", | |
" <td>29.0</td>\n", | |
" <td>5</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18</th>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>244373</td>\n", | |
" <td>13.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>19</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>31.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>345763</td>\n", | |
" <td>18.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>24.046392</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2649</td>\n", | |
" <td>7.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>21</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>35.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>239865</td>\n", | |
" <td>26.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>22</th>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>34.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>248698</td>\n", | |
" <td>13.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>23</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>15.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>330923</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>24</th>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>113788</td>\n", | |
" <td>36.0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>8.000000</td>\n", | |
" <td>3</td>\n", | |
" <td>1</td>\n", | |
" <td>349909</td>\n", | |
" <td>21.0</td>\n", | |
" <td>4</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>26</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>38.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>5</td>\n", | |
" <td>347077</td>\n", | |
" <td>31.0</td>\n", | |
" <td>6</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>27</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2631</td>\n", | |
" <td>7.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>28</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>19.000000</td>\n", | |
" <td>3</td>\n", | |
" <td>2</td>\n", | |
" <td>19950</td>\n", | |
" <td>263.0</td>\n", | |
" <td>5</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>29</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>24.046392</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>330959</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>30</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>349216</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>862</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>21.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>28134</td>\n", | |
" <td>12.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>863</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>48.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>17466</td>\n", | |
" <td>26.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>864</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>15.306122</td>\n", | |
" <td>8</td>\n", | |
" <td>2</td>\n", | |
" <td>CA. 2343</td>\n", | |
" <td>70.0</td>\n", | |
" <td>10</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>865</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>24.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>233866</td>\n", | |
" <td>13.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>866</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>42.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>236852</td>\n", | |
" <td>13.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>867</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>27.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>SC/PARIS 2149</td>\n", | |
" <td>14.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>868</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>31.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>PC 17590</td>\n", | |
" <td>50.0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>869</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>345777</td>\n", | |
" <td>10.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>870</th>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>4.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>347742</td>\n", | |
" <td>11.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>871</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>26.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>349248</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>872</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>47.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>11751</td>\n", | |
" <td>53.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>873</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>33.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>695</td>\n", | |
" <td>5.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>874</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>47.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>345765</td>\n", | |
" <td>9.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>875</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>P/PP 3381</td>\n", | |
" <td>24.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>876</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>15.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2667</td>\n", | |
" <td>7.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>877</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7534</td>\n", | |
" <td>10.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>878</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>19.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>349212</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>879</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>349217</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>880</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>56.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>11767</td>\n", | |
" <td>83.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>881</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>25.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>230433</td>\n", | |
" <td>26.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>882</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>33.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>349257</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>883</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>22.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7552</td>\n", | |
" <td>11.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>884</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>C.A./SOTON 34068</td>\n", | |
" <td>10.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>885</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>25.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>SOTON/OQ 392076</td>\n", | |
" <td>7.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>886</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>39.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>5</td>\n", | |
" <td>382652</td>\n", | |
" <td>29.0</td>\n", | |
" <td>5</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>887</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>27.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>211536</td>\n", | |
" <td>13.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>888</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>19.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>112053</td>\n", | |
" <td>30.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>889</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>15.306122</td>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>W./C. 6607</td>\n", | |
" <td>23.0</td>\n", | |
" <td>3</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>890</th>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>26.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>111369</td>\n", | |
" <td>30.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>891</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>32.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>370376</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>891 rows × 41 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" survived sex age sibsp parch ticket fare \\\n", | |
"passengerid \n", | |
"1 0 0 22.000000 1 0 A/5 21171 7.0 \n", | |
"2 1 1 38.000000 1 0 PC 17599 71.0 \n", | |
"3 1 1 26.000000 0 0 STON/O2. 3101282 8.0 \n", | |
"4 1 1 35.000000 1 0 113803 53.0 \n", | |
"5 0 0 35.000000 0 0 373450 8.0 \n", | |
"6 0 0 24.667355 0 0 330877 8.0 \n", | |
"7 0 0 54.000000 0 0 17463 52.0 \n", | |
"8 0 0 2.000000 3 1 349909 21.0 \n", | |
"9 1 1 27.000000 0 2 347742 11.0 \n", | |
"10 1 1 14.000000 1 0 237736 30.0 \n", | |
"11 1 1 4.000000 1 1 PP 9549 17.0 \n", | |
"12 1 1 58.000000 0 0 113783 27.0 \n", | |
"13 0 0 20.000000 0 0 A/5. 2151 8.0 \n", | |
"14 0 0 39.000000 1 5 347082 31.0 \n", | |
"15 0 1 14.000000 0 0 350406 8.0 \n", | |
"16 1 1 55.000000 0 0 248706 16.0 \n", | |
"17 0 0 2.000000 4 1 382652 29.0 \n", | |
"18 1 0 24.667355 0 0 244373 13.0 \n", | |
"19 0 1 31.000000 1 0 345763 18.0 \n", | |
"20 1 1 24.046392 0 0 2649 7.0 \n", | |
"21 0 0 35.000000 0 0 239865 26.0 \n", | |
"22 1 0 34.000000 0 0 248698 13.0 \n", | |
"23 1 1 15.000000 0 0 330923 8.0 \n", | |
"24 1 0 28.000000 0 0 113788 36.0 \n", | |
"25 0 1 8.000000 3 1 349909 21.0 \n", | |
"26 1 1 38.000000 1 5 347077 31.0 \n", | |
"27 0 0 24.667355 0 0 2631 7.0 \n", | |
"28 0 0 19.000000 3 2 19950 263.0 \n", | |
"29 1 1 24.046392 0 0 330959 8.0 \n", | |
"30 0 0 24.667355 0 0 349216 8.0 \n", | |
"... ... ... ... ... ... ... ... \n", | |
"862 0 0 21.000000 1 0 28134 12.0 \n", | |
"863 1 1 48.000000 0 0 17466 26.0 \n", | |
"864 0 1 15.306122 8 2 CA. 2343 70.0 \n", | |
"865 0 0 24.000000 0 0 233866 13.0 \n", | |
"866 1 1 42.000000 0 0 236852 13.0 \n", | |
"867 1 1 27.000000 1 0 SC/PARIS 2149 14.0 \n", | |
"868 0 0 31.000000 0 0 PC 17590 50.0 \n", | |
"869 0 0 24.667355 0 0 345777 10.0 \n", | |
"870 1 0 4.000000 1 1 347742 11.0 \n", | |
"871 0 0 26.000000 0 0 349248 8.0 \n", | |
"872 1 1 47.000000 1 1 11751 53.0 \n", | |
"873 0 0 33.000000 0 0 695 5.0 \n", | |
"874 0 0 47.000000 0 0 345765 9.0 \n", | |
"875 1 1 28.000000 1 0 P/PP 3381 24.0 \n", | |
"876 1 1 15.000000 0 0 2667 7.0 \n", | |
"877 0 0 20.000000 0 0 7534 10.0 \n", | |
"878 0 0 19.000000 0 0 349212 8.0 \n", | |
"879 0 0 24.667355 0 0 349217 8.0 \n", | |
"880 1 1 56.000000 0 1 11767 83.0 \n", | |
"881 1 1 25.000000 0 1 230433 26.0 \n", | |
"882 0 0 33.000000 0 0 349257 8.0 \n", | |
"883 0 1 22.000000 0 0 7552 11.0 \n", | |
"884 0 0 28.000000 0 0 C.A./SOTON 34068 10.0 \n", | |
"885 0 0 25.000000 0 0 SOTON/OQ 392076 7.0 \n", | |
"886 0 1 39.000000 0 5 382652 29.0 \n", | |
"887 0 0 27.000000 0 0 211536 13.0 \n", | |
"888 1 1 19.000000 0 0 112053 30.0 \n", | |
"889 0 1 15.306122 1 2 W./C. 6607 23.0 \n", | |
"890 1 0 26.000000 0 0 111369 30.0 \n", | |
"891 0 0 32.000000 0 0 370376 8.0 \n", | |
"\n", | |
" family cabin_parsed_A cabin_parsed_B ... title_Rev \\\n", | |
"passengerid ... \n", | |
"1 1 0 0 ... 0 \n", | |
"2 1 0 0 ... 0 \n", | |
"3 0 0 0 ... 0 \n", | |
"4 1 0 0 ... 0 \n", | |
"5 0 0 0 ... 0 \n", | |
"6 0 0 0 ... 0 \n", | |
"7 0 0 0 ... 0 \n", | |
"8 4 0 0 ... 0 \n", | |
"9 2 0 0 ... 0 \n", | |
"10 1 0 0 ... 0 \n", | |
"11 2 0 0 ... 0 \n", | |
"12 0 0 0 ... 0 \n", | |
"13 0 0 0 ... 0 \n", | |
"14 6 0 0 ... 0 \n", | |
"15 0 0 0 ... 0 \n", | |
"16 0 0 0 ... 0 \n", | |
"17 5 0 0 ... 0 \n", | |
"18 0 0 0 ... 0 \n", | |
"19 1 0 0 ... 0 \n", | |
"20 0 0 0 ... 0 \n", | |
"21 0 0 0 ... 0 \n", | |
"22 0 0 0 ... 0 \n", | |
"23 0 0 0 ... 0 \n", | |
"24 0 1 0 ... 0 \n", | |
"25 4 0 0 ... 0 \n", | |
"26 6 0 0 ... 0 \n", | |
"27 0 0 0 ... 0 \n", | |
"28 5 0 0 ... 0 \n", | |
"29 0 0 0 ... 0 \n", | |
"30 0 0 0 ... 0 \n", | |
"... ... ... ... ... ... \n", | |
"862 1 0 0 ... 0 \n", | |
"863 0 0 0 ... 0 \n", | |
"864 10 0 0 ... 0 \n", | |
"865 0 0 0 ... 0 \n", | |
"866 0 0 0 ... 0 \n", | |
"867 1 0 0 ... 0 \n", | |
"868 0 1 0 ... 0 \n", | |
"869 0 0 0 ... 0 \n", | |
"870 2 0 0 ... 0 \n", | |
"871 0 0 0 ... 0 \n", | |
"872 2 0 0 ... 0 \n", | |
"873 0 0 1 ... 0 \n", | |
"874 0 0 0 ... 0 \n", | |
"875 1 0 0 ... 0 \n", | |
"876 0 0 0 ... 0 \n", | |
"877 0 0 0 ... 0 \n", | |
"878 0 0 0 ... 0 \n", | |
"879 0 0 0 ... 0 \n", | |
"880 1 0 0 ... 0 \n", | |
"881 1 0 0 ... 0 \n", | |
"882 0 0 0 ... 0 \n", | |
"883 0 0 0 ... 0 \n", | |
"884 0 0 0 ... 0 \n", | |
"885 0 0 0 ... 0 \n", | |
"886 5 0 0 ... 0 \n", | |
"887 0 0 0 ... 1 \n", | |
"888 0 0 1 ... 0 \n", | |
"889 3 0 0 ... 0 \n", | |
"890 0 0 0 ... 0 \n", | |
"891 0 0 0 ... 0 \n", | |
"\n", | |
" title_Sir title_Unknown title_the Countess embarked_C \\\n", | |
"passengerid \n", | |
"1 0 0 0 0 \n", | |
"2 0 0 0 1 \n", | |
"3 0 0 0 0 \n", | |
"4 0 0 0 0 \n", | |
"5 0 0 0 0 \n", | |
"6 0 0 0 0 \n", | |
"7 0 0 0 0 \n", | |
"8 0 0 0 0 \n", | |
"9 0 0 0 0 \n", | |
"10 0 0 0 1 \n", | |
"11 0 0 0 0 \n", | |
"12 0 0 0 0 \n", | |
"13 0 0 0 0 \n", | |
"14 0 0 0 0 \n", | |
"15 0 0 0 0 \n", | |
"16 0 0 0 0 \n", | |
"17 0 0 0 0 \n", | |
"18 0 0 0 0 \n", | |
"19 0 0 0 0 \n", | |
"20 0 0 0 1 \n", | |
"21 0 0 0 0 \n", | |
"22 0 0 0 0 \n", | |
"23 0 0 0 0 \n", | |
"24 0 0 0 0 \n", | |
"25 0 0 0 0 \n", | |
"26 0 0 0 0 \n", | |
"27 0 0 0 1 \n", | |
"28 0 0 0 0 \n", | |
"29 0 0 0 0 \n", | |
"30 0 0 0 0 \n", | |
"... ... ... ... ... \n", | |
"862 0 0 0 0 \n", | |
"863 0 0 0 0 \n", | |
"864 0 0 0 0 \n", | |
"865 0 0 0 0 \n", | |
"866 0 0 0 0 \n", | |
"867 0 0 0 1 \n", | |
"868 0 0 0 0 \n", | |
"869 0 0 0 0 \n", | |
"870 0 0 0 0 \n", | |
"871 0 0 0 0 \n", | |
"872 0 0 0 0 \n", | |
"873 0 0 0 0 \n", | |
"874 0 0 0 0 \n", | |
"875 0 0 0 1 \n", | |
"876 0 0 0 1 \n", | |
"877 0 0 0 0 \n", | |
"878 0 0 0 0 \n", | |
"879 0 0 0 0 \n", | |
"880 0 0 0 1 \n", | |
"881 0 0 0 0 \n", | |
"882 0 0 0 0 \n", | |
"883 0 0 0 0 \n", | |
"884 0 0 0 0 \n", | |
"885 0 0 0 0 \n", | |
"886 0 0 0 0 \n", | |
"887 0 0 0 0 \n", | |
"888 0 0 0 0 \n", | |
"889 0 0 0 0 \n", | |
"890 0 0 0 1 \n", | |
"891 0 0 0 0 \n", | |
"\n", | |
" embarked_Q embarked_S pclass_1 pclass_2 pclass_3 \n", | |
"passengerid \n", | |
"1 0 1 0 0 1 \n", | |
"2 0 0 1 0 0 \n", | |
"3 0 1 0 0 1 \n", | |
"4 0 1 1 0 0 \n", | |
"5 0 1 0 0 1 \n", | |
"6 1 0 0 0 1 \n", | |
"7 0 1 1 0 0 \n", | |
"8 0 1 0 0 1 \n", | |
"9 0 1 0 0 1 \n", | |
"10 0 0 0 1 0 \n", | |
"11 0 1 0 0 1 \n", | |
"12 0 1 1 0 0 \n", | |
"13 0 1 0 0 1 \n", | |
"14 0 1 0 0 1 \n", | |
"15 0 1 0 0 1 \n", | |
"16 0 1 0 1 0 \n", | |
"17 1 0 0 0 1 \n", | |
"18 0 1 0 1 0 \n", | |
"19 0 1 0 0 1 \n", | |
"20 0 0 0 0 1 \n", | |
"21 0 1 0 1 0 \n", | |
"22 0 1 0 1 0 \n", | |
"23 1 0 0 0 1 \n", | |
"24 0 1 1 0 0 \n", | |
"25 0 1 0 0 1 \n", | |
"26 0 1 0 0 1 \n", | |
"27 0 0 0 0 1 \n", | |
"28 0 1 1 0 0 \n", | |
"29 1 0 0 0 1 \n", | |
"30 0 1 0 0 1 \n", | |
"... ... ... ... ... ... \n", | |
"862 0 1 0 1 0 \n", | |
"863 0 1 1 0 0 \n", | |
"864 0 1 0 0 1 \n", | |
"865 0 1 0 1 0 \n", | |
"866 0 1 0 1 0 \n", | |
"867 0 0 0 1 0 \n", | |
"868 0 1 1 0 0 \n", | |
"869 0 1 0 0 1 \n", | |
"870 0 1 0 0 1 \n", | |
"871 0 1 0 0 1 \n", | |
"872 0 1 1 0 0 \n", | |
"873 0 1 1 0 0 \n", | |
"874 0 1 0 0 1 \n", | |
"875 0 0 0 1 0 \n", | |
"876 0 0 0 0 1 \n", | |
"877 0 1 0 0 1 \n", | |
"878 0 1 0 0 1 \n", | |
"879 0 1 0 0 1 \n", | |
"880 0 0 1 0 0 \n", | |
"881 0 1 0 1 0 \n", | |
"882 0 1 0 0 1 \n", | |
"883 0 1 0 0 1 \n", | |
"884 0 1 0 1 0 \n", | |
"885 0 1 0 0 1 \n", | |
"886 1 0 0 0 1 \n", | |
"887 0 1 0 1 0 \n", | |
"888 0 1 1 0 0 \n", | |
"889 0 1 0 0 1 \n", | |
"890 0 0 1 0 0 \n", | |
"891 1 0 0 0 1 \n", | |
"\n", | |
"[891 rows x 41 columns]" | |
] | |
}, | |
"execution_count": 105, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# dummy code cabin, title, embarked\n", | |
"\n", | |
"csv1 = pd.read_csv('train.csv',header=0)\n", | |
"csv1.columns = csv1.columns.str.lower()\n", | |
"csv1.set_index('passengerid',inplace=True)\n", | |
"\n", | |
"csv2 = pd.read_csv('test.csv',header=0)\n", | |
"csv2.columns = csv2.columns.str.lower()\n", | |
"csv2.set_index('passengerid',inplace=True)\n", | |
"all_csv = pd.concat([csv1.iloc[:,1:],csv2],axis=0,ignore_index=True)\n", | |
"all_csv.pipe(round_data).pipe(convert_to_str).pipe(convert_sex_to_int).pipe(parse_cabin).pipe(add_title).pipe(impute_age)\n", | |
"\n", | |
"\n", | |
"cached_col_candicates={}\n", | |
"\n", | |
"def convert_to_dummy(df):\n", | |
" columns=['cabin_parsed','title','embarked','pclass']\n", | |
" for col in columns:\n", | |
" \n", | |
" if col not in cached_col_candicates:\n", | |
" if col=='title':\n", | |
" cached_col_candicates[col]=pd.Series(data[col].unique()).append(pd.Series('Unknown'))\n", | |
" else:\n", | |
" cached_col_candicates[col]=pd.Series(data[col].unique())\n", | |
" dummy_code=pd.get_dummies(df[col].append(cached_col_candicates[col]),prefix=col).iloc[:-len(cached_col_candicates[col])]\n", | |
" for dummy_col in dummy_code:\n", | |
" df[dummy_col]=dummy_code[dummy_col]\n", | |
" df.drop(col,axis=1,inplace=True)\n", | |
" return df\n", | |
" \n", | |
"data.pipe(convert_to_dummy)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 106, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 891 entries, 1 to 891\n", | |
"Data columns (total 40 columns):\n", | |
"survived 891 non-null int64\n", | |
"sex 891 non-null int64\n", | |
"age 891 non-null float64\n", | |
"sibsp 891 non-null int64\n", | |
"parch 891 non-null int64\n", | |
"fare 891 non-null float64\n", | |
"family 891 non-null int64\n", | |
"cabin_parsed_A 891 non-null uint8\n", | |
"cabin_parsed_B 891 non-null uint8\n", | |
"cabin_parsed_C 891 non-null uint8\n", | |
"cabin_parsed_D 891 non-null uint8\n", | |
"cabin_parsed_E 891 non-null uint8\n", | |
"cabin_parsed_F 891 non-null uint8\n", | |
"cabin_parsed_G 891 non-null uint8\n", | |
"cabin_parsed_T 891 non-null uint8\n", | |
"cabin_parsed_nan 891 non-null uint8\n", | |
"title_Capt 891 non-null uint8\n", | |
"title_Col 891 non-null uint8\n", | |
"title_Don 891 non-null uint8\n", | |
"title_Dr 891 non-null uint8\n", | |
"title_Jonkheer 891 non-null uint8\n", | |
"title_Lady 891 non-null uint8\n", | |
"title_Major 891 non-null uint8\n", | |
"title_Master 891 non-null uint8\n", | |
"title_Miss 891 non-null uint8\n", | |
"title_Mlle 891 non-null uint8\n", | |
"title_Mme 891 non-null uint8\n", | |
"title_Mr 891 non-null uint8\n", | |
"title_Mrs 891 non-null uint8\n", | |
"title_Ms 891 non-null uint8\n", | |
"title_Rev 891 non-null uint8\n", | |
"title_Sir 891 non-null uint8\n", | |
"title_Unknown 891 non-null uint8\n", | |
"title_the Countess 891 non-null uint8\n", | |
"embarked_C 891 non-null uint8\n", | |
"embarked_Q 891 non-null uint8\n", | |
"embarked_S 891 non-null uint8\n", | |
"pclass_1 891 non-null uint8\n", | |
"pclass_2 891 non-null uint8\n", | |
"pclass_3 891 non-null uint8\n", | |
"dtypes: float64(2), int64(5), uint8(33)\n", | |
"memory usage: 84.4 KB\n" | |
] | |
} | |
], | |
"source": [ | |
"# final data\n", | |
"data.drop('ticket',axis=1,inplace=True)\n", | |
"data.info()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 107, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(891, 10)" | |
] | |
}, | |
"execution_count": 107, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABOAAAARiCAYAAAANw4ijAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WuUVuWZJuC7qKJAQCJYIVIqnlCKBjEqosFDD5lKx4ia\nZNnB1niI46FdRKfNQnRIYkdjUEpEJwdMFjShu2WRaIwZccIYrY7EVkPUEFFxjEFDLBWsLkh7oCyg\nDvODlZqgEEHZ9X3odf2qb+937/3sr+rhx8377l3R1dXVFQAAAACgEL1KXQAAAAAAvJ8J4AAAAACg\nQAI4AAAAACiQAA4AAAAACiSAAwAAAIACCeAAAAAAoEACOAAAAAAokAAOAAAAAAokgAMAAACAAgng\nAAAAAKBAAjgAAAAAKFBVqQugZ7z88sulLgH4MzU1NWlpaSl1GcBb6E0oP/oSyo++hM1qa2u3e6wZ\ncAAAAABQIAEcAAAAABRIAAcAAAAABRLAAQAAAECBBHAAAAAAUKCKrq6urlIXQfGaJo4tdQkAAADA\nB1Tl3EWlLmGn8xZUAAAAACgTAjgAAAAAKJAADgAAAAAKJIADAAAAgAJVlboAkhtuuCFr167Npk2b\nctJJJ6W+vj4///nPc9ddd2XQoEHZa6+90rt375x//vl57bXXMmfOnKxduzZJcu6556aurq7EdwAA\nAADAtgjgysDkyZMzYMCAbNy4MdOmTcsRRxyRH//4x2loaEjfvn3z9a9/Pfvtt1+SZP78+Tn55JNT\nV1eXlpaWTJ8+PTfffHOJ7wAAAACAbRHAlYHFixfn0UcfTZK0tLTkgQceyMiRIzNgwIAkyTHHHJPV\nq1cnSZ588sm8+OKL3ce2tramra0tffv23eKcjY2NaWxsTJLMmDGjJ24DAAAAYKtqampKXUJJCeBK\nbMWKFXnyySfzjW98I3369MnVV1+d2traLUK2P9fV1ZXp06enurr6L563vr4+9fX1RZQMAAAAsENa\nWlpKXcJOV1tbu91jvYShxFpbW9O/f//06dMnL730Un73u99lw4YN+b//9//mjTfeSEdHR371q191\njx8zZkzuueee7s+rVq0qQdUAAAAAbK+Krq6urlIX8UG2adOmzJw5M+vWrUttbW1ee+21fO5zn8vq\n1atz9913Z9CgQdl7770zYMCAnHHGGXnttdcyb968vPTSS+no6MjIkSNz0UUXveN1miaO7YG7AQAA\nAHi7yrmLSl3CTrcjM+AEcGXqT8916+joyMyZM/Pxj38848aNe9fnE8ABAAAApfJBD+A8A65M3X77\n7XnyySezadOmjBkzJkcddVSpSwIAAADgXRDAlalzzjmn1CUAAAAAsBNYgvoB8fLLL5e6BODP1NTU\nvC/fAgS7Or0J5UdfQvnRl7CZt6ACAAAAQJkQwAEAAABAgQRwAAAAAFAgARwAAAAAFEgABwAAAAAF\nEsABAAAAQIEEcAAAAABQIAEcAAAAABRIAAcAAAAABRLAAQAAAECBBHAAAAAAUCABHAAAAAAUqKrU\nBdAzOi48tdQlAH/mlVIXAGyV3oTys7P7snLuop18RgB4Z2bAAQAAAECBBHAAAAAAUCABHAAAAAAU\nyDPgSmzx4sW57777csABB+S///f/XupyAAAAANjJBHAldu+99+bLX/5yhgwZ8o5jOzo6UllZ2QNV\nAQAAALCzCOBKaM6cOXnllVfS0NCQ448/Po8++mg2bdqU6urqTJ48ObW1tVmyZEmWLVuWjRs3ZsOG\nDfna176WRYsW5Ze//GU2bdqUcePGZdKkSaW+FQAAAAC2QQBXQhdddFGWL1+er33ta6mqqsopp5yS\nysrKPPHEE1m4cGEuv/zyJMmzzz6bG2+8MQMGDMjy5cuzevXqXHfddenq6soNN9yQp59+On/1V3+1\nxbkbGxvT2NiYJJkxY0aP3xsAAJSjmpqaUpcAu7yqqiq9BDtIAFcmWltbM3v27KxZsybJ5uWmfzJm\nzJgMGDAgSbJ8+fI88cQTueKKK5IkbW1tWbNmzdsCuPr6+tTX1/dQ9QAAsGtoaWkpdQmwy6upqdFL\nkKS2tna7xwrgysRtt92WUaNGZerUqWlubs4111zTva9Pnz5bjP3MZz6TT3ziEz1dIgAAAADvQq9S\nF8Bmra2tGTx4cJJkyZIl2xx32GGH5f77709bW1uSZN26dXn11Vd7okQAAAAA3gUz4MrEpz/96cye\nPTs//elPM2rUqG2OO+yww/LSSy/lK1/5SpKkb9++ufTSS/OhD32op0oFAAAAYAdUdHV1dZW6CIrX\nNHFsqUsAAICSq5y7qNQlwC7PM+Bgsx15BpwlqAAAAABQIEtQPyD8Tx+UF/9rCOVJb0L50ZcAvB+Y\nAQcAAAAABRLAAQAAAECBBHAAAAAAUCABHAAAAAAUSAAHAAAAAAUSwAEAAABAgQRwAAAAAFAgARwA\nAAAAFEgABwAAAAAFEsABAAAAQIEEcAAAAABQIAEcAAAAABRIAAcAAAAABaoqdQH0jI4LTy11CcCf\neaXUBQBbpTd3jsq5i0pdAgBAWTEDDgAAAAAKJIADAAAAgAIJ4AAAAACgQAI4AAAAACiQlzCUiba2\nttx8881Zt25dOjs7c9ppp2WvvfbKv/zLv6StrS0DBw7M5MmTM3DgwHz1q1/NWWedlVGjRmXhwoWp\nqKjIGWecUepbAAAAAGArBHBl4vHHH8+gQYMybdq0JElra2uuu+66XHHFFRk4cGAefvjh/OAHP8jk\nyZMzefLk3HTTTTnvvPPy+OOP57rrritx9QAAAABsiwCuTAwbNiy33nprFixYkCOPPDL9+/dPU1NT\nrr322iRJZ2dnBg0alCTZd999c/zxx6ehoSHf+MY3UlX19l9jY2NjGhsbkyQzZszouRsBAD7wampq\nSl0C7yNVVVX+pqDM6EvYcQK4MlFbW5uGhoYsW7YsCxcuzJgxY7LPPvtk+vTpWx3/wgsvpF+/fnn1\n1Ve3ur++vj719fVFlgwAsFUtLS2lLoH3kZqaGn9TUGb0JWxWW1u73WO9hKFMrFu3LtXV1TnhhBNy\nyimnZOXKlXnttdfy7LPPJkna29vT1NSUJPnVr36V9evX55prrsn8+fOzfv36UpYOAAAAwF9gBlyZ\neOGFF7JgwYJUVFSkqqoqF1xwQSorKzN//vy0tramo6MjJ510Uj70oQ9l4cKFueqqq1JTU5NPfvKT\nmT9/fi655JJS3wIAAAAAW1HR1dXVVeoiKF7TxLGlLgEA+IConLuo1CXwPmKpG5QffQmbWYIKAAAA\nAGVCAAcAAAAABfIMuA8IS0GgvJi2D+VJbwIAUAQz4AAAAACgQAI4AAAAACiQAA4AAAAACiSAAwAA\nAIACCeAAAAAAoEACOAAAAAAokAAOAAAAAAokgAMAAACAAgngAAAAAKBAAjgAAAAAKJAADgAAAAAK\nJIADAAAAgAIJ4AAAAACgQFWlLoCe0XHhqaUuAfgzr5S6AGCrduXerJy7qNQlAACwDWbAAQAAAECB\nBHAAAAAAUCABHAAAAAAUSAD3Lqxfvz4/+9nPkiTr1q3LrFmzkiSrVq3KsmXLusctWbIk8+bN2+Hz\nL1myJJMmTcoTTzzRve2RRx7JpEmTsnTp0vdYPQAAAAA9SQD3Lqxfvz733ntvkmTw4MGZMmVKks0B\n3G9+85udco1hw4bl4Ycf7v780EMPZb/99tvq2M7Ozp1yTQAAAAB2Pm9BfRcWLlyYNWvWZOrUqRk6\ndGheeumlNDQ05LbbbsvGjRvzzDPP5LOf/ewWx7z22muZM2dO1q5dmyQ599xzU1dXt81r1NXV5Zln\nnkl7e3va29uzZs2a7L///t37v/jFL2bChAlZvnx5TjzxxBx77LGF3CsAAAAA740A7l0488wz09TU\nlJkzZ6a5uTkNDQ2pqqrK6aefnueeey7nn39+ks1LSf9k/vz5Ofnkk1NXV5eWlpZMnz49N9988zav\nUVFRkUMPPTTLly9Pa2trxo4dm+bm5i3G9O7dO9dee+1Wj29sbExjY2OSZMaMGe/xjgGAcldTU1Pq\nEqAQVVVV/r6hzOhL2HECuB7y5JNP5sUXX+z+3Nramra2tvTt23ebxxx77LFZvHhxWltbc8455+Qn\nP/nJFvvHjx+/zWPr6+tTX1//3gsHAHYJLS0tpS4BClFTU+PvG8qMvoTNamtrt3usAK6HdHV1Zfr0\n6amurt7uY4YPH56mpqZUV1dv9Zfap0+fnVkiAAAAAAXwEoZ3Ybfddsubb775tu19+/bd6vYkGTNm\nTO65557uz6tWrdqua5155pk544wz3lWdAAAAAJSeGXDvwu67754RI0ZkypQp2Xvvvbu3jx49Onfd\ndVemTp36tpcwnHfeeZk3b14uv/zydHR0ZOTIkbnooove8VqHH374Tq8fAAAAgJ5T0dXV1VXqIihe\n08SxpS4BAChQ5dxFpS4BCuFZU1B+9CVstiPPgLMEFQAAAAAKZAlqCd1///1ZvHjxFttGjBiRCy64\nYKdfy/+KQ3nxv4ZQnvQmAABFEMCV0IQJEzJhwoRSlwEAAABAgSxBBQAAAIACCeAAAAAAoEACOAAA\nAAAokAAOAAAAAAokgAMAAACAAgngAAAAAKBAAjgAAAAAKJAADgAAAAAKJIADAAAAgAIJ4AAAAACg\nQAI4AAAAACiQAA4AAAAAClRV6gLoGR0XnlrqEoA/80qB566cu6jAswMAALCjzIADAAAAgAIJ4AAA\nAACgQAK4AixevDhf+tKX8q1vfes9nee2227LE088kSS5+uqr89xzz+2M8gAAAADoQZ4BV4B77703\nX/7ylzNkyJD3dJ7TTz99J1UEAAAAQKkI4HayOXPm5JVXXklDQ0OOP/74PProo9m0aVOqq6szefLk\n1NbWZsmSJXnkkUfS2dmZpqamnHLKKWlvb88DDzyQ3r17Z9q0aRkwYEBmz56dI488Msccc0z3+X/+\n85/nhRdeyBe+8IUkSWNjY1588cXuzwAAAACUF0tQd7KLLroogwcPzte+9rX8zd/8Tb7+9a/nhhtu\nyKRJk7Jw4cLucU1NTfmHf/iHXH/99fnBD36Q6urq3HDDDTn44IPzi1/8YpvnHz9+fH7961+nvb09\nSbJkyZJ8/OMfL/y+AAAAAHh3zIArUGtra2bPnp01a9YkSTo6Orr3jRo1Krvttlt222239OvXL2PH\njk2SDBs2LC+88MI2z9m3b9+MGjUqy5Yty957752Ojo4MGzbsbeMaGxvT2NiYJJkxY8bOvC2gzNXU\n1JS6BNhlVVVV6SEoM/oSyo++hB0ngCvQbbfdllGjRmXq1Klpbm7ONddc072vd+/e3T/36tUrVVVV\n3T//eVC3Nf/1v/7X/OQnP0ltbW3+y3/5L1sdU19fn/r6+vd+E8Aup6WlpdQlwC6rpqZGD0GZ0ZdQ\nfvQlbFZbW7vdYy1BLVBra2sGDx6cZPNS0Z3l4IMPztq1a/PQQw/l2GOP3WnnBQAAAGDnE8AV6NOf\n/nR+8IMf5KqrrkpnZ+dOPffHPvaxjBgxIgMGDNip5wUAAABg56ro6urqKnUR7LgZM2Zk4sSJOfTQ\nQ7drfNPEsQVXBJSLyrmLSl0C7LIsqYHyoy+h/OhL2MwS1Pex9evX5x/+4R9SXV293eEbAAAAAKXj\nJQy7mP79++eb3/xmqcsAAAAAYDsJ4D4gLEmD8mLaPgAAwAeHJagAAAAAUCABHAAAAAAUSAAHAAAA\nAAUSwAEAAABAgQRwAAAAAFAgARwAAAAAFEgABwAAAAAFEsABAAAAQIEEcAAAAABQIAEcAAAAABRI\nAAcAAAAABRLAAQAAAECBBHAAAAAAUKCqUhdAz+i48NRSlwAfSJVzF5W6BAAAAErMDDgAAAAAKJAA\nDgAAAAAKJIADAAAAgAJ5BtxOtmLFitx99935H//jfxR2je9+97t5/vnn09XVlaFDh+aLX/xi+vbt\nW9j1AAAAAHj3BHC7oHPPPTf9+vVLkvzLv/xL7rnnnnzmM58pcVUAAAAAbI0Abjs0Nzfnuuuuy/Dh\nw7Nq1aoMHTo0l1xySZqamvLP//zP2bBhQ6qqqvKP//iPWxy3cuXKzJ8/P5s2bUp1dXUmT56c2tra\nNDU15ZZbbkl7e3u6uroyZcqUDBo0KDfffHPWrVuXzs7OnHbaaRk/fvxW6/lT+NbV1ZWNGzcWfv8A\nAAAAvHsCuO308ssv5+KLL05dXV1uueWW3HPPPbnvvvty2WWXZfjw4WltbU11dfUWx9TW1ubrX/96\nKisr88QTT2ThwoW5/PLLc9999+Wkk07K8ccfn/b29nR2dmbZsmUZNGhQpk2bliRpbW39i/Xccsst\n+c1vfpN99tkn55xzztv2NzY2prGxMUkyY8aMnfQtADuqpqZmq9urqqq2uQ8oHb0J5UdfQvnRl7Dj\nBHDbac8990xdXV2S5IQTTsidd96ZQYMGZfjw4Un+/6y0P9fa2prZs2dnzZo1SZKOjo4kySGHHJI7\n77wza9euzdFHH52hQ4dm2LBhufXWW7NgwYIceeSRGTly5F+sZ/Lkyens7Mz3v//9PPzww5kwYcIW\n++vr61NfX/+e7xt4b1paWra6vaamZpv7gNLRm1B+9CWUH30Jm9XW1m73WG9B3U4VFRVbfN5tt93e\n8Zjbbrsto0aNyqxZs3LllVdm06ZNSZLjjjsuV1xxRaqrqzN9+vQ89dRTqa2tTUNDQ4YNG5aFCxfm\njjvueMfz9+rVK+PHj8+vfvWrd3dTAAAAABROALedWlpa8uyzzyZJHnzwwRx88MH54x//mJUrVyZJ\n3nzzze4Zbn/S2tqawYMHJ0mWLFnSvf2VV17JRz7ykZx00kkZO3Zs/vCHP2TdunWprq7OCSeckFNO\nOSXPP//8Vuvo6urqnlHX1dWVxx57bIcSVwAAAAB6liWo22nvvffOkiVLMmfOnOy111751Kc+ldGj\nR2f+/PnZuHFjqqurc9VVV21xzKc//enMnj07P/3pTzNq1Kju7b/85S/zwAMPpLKyMnvssUf+9m//\nNitXrsyCBQtSUVGRqqqqXHDBBVuto6urK7Nnz+5+Rtx+++23zbEAAAAAlF5FV1dXV6mLKHfNzc1p\naGjIrFmzSl3Ku9Y0cWypS4APpMq5i7a63XMzoDzpTSg/+hLKj76EzTwDDgAAAADKhCWo22HIkCEl\nmf02c+bMNDc3b7Ht85//fD760Y/u8Lm2NQsHAAAAgGIJ4MrY1KlTS10CAAAAAO+RJagAAAAAUCAB\nHAAAAAAUSAAHAAAAAAUSwAEAAABAgQRwAAAAAFAgARwAAAAAFEgABwAAAAAFEsABAAAAQIEEcAAA\nAABQIAEcAAAAABRIAAcAAAAABRLAAQAAAECBqkpdAD2j48JTS10CFK5y7qJSlwAAAABvYwYcAAAA\nABRIAAcAAAAABRLAAQAAAECBBHBvsX79+vzsZz9Lkqxbty6zZs1KkqxatSrLli3rHrdkyZLMmzdv\nh8+/ZMmSTJo0KU888UT3tkceeSSTJk3K0qVLkyTf+9738uKLL76X2wAAAACgTAjg3mL9+vW59957\nkySDBw/OlClTkmwO4H7zm9/slGsMGzYsDz/8cPfnhx56KPvtt1/354svvjj77LPPTrkWAAAAAKXl\nLahvsXDhwqxZsyZTp07N0KFD89JLL6WhoSG33XZbNm7cmGeeeSaf/exntzjmtddey5w5c7J27dok\nybnnnpu6urptXqOuri7PPPNM2tvb097enjVr1mT//ffv3n/11Vfn7LPPzgEHHJDvfve7ef7555Mk\nEyZMyMknn5zFixfnvvvuS2VlZfbZZ59cdtllO/+LAAAAAGCnEMC9xZlnnpmmpqbMnDkzzc3NaWho\nSFVVVU4//fQ899xzOf/885NsXkr6J/Pnz8/JJ5+curq6tLS0ZPr06bn55pu3eY2KiooceuihWb58\neVpbWzN27Ng0Nze/bdyqVau2WAa7fv36JMldd92V73znO+ndu3f3trdqbGxMY2NjkmTGjBnv6ruA\nXU1NTU2pS9huVVVVu1S98EGhN6H86EsoP/oSdpwAbid48sknt3hmW2tra9ra2tK3b99tHnPsscdm\n8eLFaW1tzTnnnJOf/OQnbxszZMiQNDc35/vf/36OOOKIjBkzJsnmJazf+ta3ctRRR2XcuHFbPX99\nfX3q6+vf453BrqWlpaXUJWy3mpqaXape+KDQm1B+9CWUH30Jm9XW1m73WAHcTtDV1ZXp06enurp6\nu48ZPnx4mpqaUl1dvc1f2IABAzJz5sw8/vjjueeee/Lwww9n8uTJmTZtWp5++uk89thj+fGPf5yb\nbroplZWVO+t2AAAAANiJvIThLXbbbbe8+eabb9vet2/frW5PkjFjxuSee+7p/rxq1artutaZZ56Z\nM844Y5v7X3vttXR2duaYY47J3/3d3+X3v/99Ojs709LSktGjR+ess87qnm0HAAAAQHkyA+4tdt99\n94wYMSJTpkzJ3nvv3b199OjRueuuuzJ16tS3vYThvPPOy7x583L55Zeno6MjI0eOzEUXXfSO1zr8\n8MP/4v5169blu9/9bjo7O5NsDuw6Ozvz7W9/O62trUmSiRMnpn///jt6mwAAAAD0kIqurq6uUhdB\n8Zomji11CVC4yrmLSl3CdvPcDChPehPKj76E8qMvYbMdeQacJagAAAAAUCBLUAty//33Z/HixVts\nGzFiRC644IKS1LMrzQwCAAAAeD8RwBVkwoQJmTBhQqnLAAAAAKDELEEFAAAAgAIJ4AAAAACgQAI4\nAAAAACiQAA4AAAAACiSAAwAAAIACCeAAAAAAoEACOAAAAAAokAAOAAAAAAokgAMAAACAAgngAAAA\nAKBAAjgAAAAAKJAADgAAAAAKVFXqAugZHReeWuoSeB+rnLuo1CUAAABA2TIDDgAAAAAKJIADAAAA\ngAIJ4Erke9/7Xl588cUkydlnn13iagAAAAAoimfAlcjFF19c6hIAAAAA6AECuB7Q1taWm2++OevW\nrUtnZ2dOO+203HvvvTn77LNz0EEHJUn+9V//NStWrEj//v1z2WWXZeDAgVm8eHHuu+++VFZWZp99\n9slll12W22+/Pa+88krWrVuXtWvX5tRTT019fX2J7xAAAACAbRHA9YDHH388gwYNyrRp05Ikra2t\nuffee7v3b9iwIQcccEDOOeec3HHHHfnRj36U888/P3fddVe+853vpHfv3lm/fn33+BdeeCHTp09P\nW1tbrrzyyhxxxBEZPHhwj98XAAAAAO9MANcDhg0blltvvTULFizIkUcemZEjR26xv6KiIuPHj0+S\nHH/88bnxxhu7j/vWt76Vo446KuPGjeseP3bs2FRXV6e6ujqjRo3KypUrt9ifJI2NjWlsbEySzJgx\no8jbg9TU1JS6hF1OVVWV7w3KkN6E8qMvofzoS9hxArgeUFtbm4aGhixbtiwLFy7MYYcd9hfHV1RU\nJEmmTZuWp59+Oo899lh+/OMf56abbtpi/1vH/7n6+npLU+kxLS0tpS5hl1NTU+N7gzKkN6H86Eso\nP/oSNqutrd3usd6C2gPWrVuX6urqnHDCCTnllFPy/PPPb7G/q6srS5cuTZI8+OCDqaurS2dnZ1pa\nWjJ69OicddZZaW1tTVtbW5Lk0UcfzcaNG/P6669nxYoV3c+RAwAAAKD8mAHXA1544YUsWLAgFRUV\nqaqqygUXXJBbb721e3+fPn3S1NSUK6+8Mv369cuXvvSldHZ25tvf/nZaW1uTJBMnTkz//v2TJMOH\nD8+MGTPS0tKS0047zfPfAAAAAMpYRVdXV1epi2D73X777enbt29OPfXUHTquaeLYgiqCpHLuolKX\nsMsxbR/Kk96E8qMvofzoS9jMElQAAAAAKBOWoO5iJk2aVOoSAAAAANgBArgPCEsEAQAAAErDElQA\nAAAAKJAADgAAAAAKJIADAAAAgAIJ4AAAAACgQAI4AAAAACiQAA4AAAAACiSAAwAAAIACCeAAAAAA\noEACOAAAAAAokAAOAAAAAAokgAMAAACAAgngAAAAAKBAAjgAAAAAKFBVqQugZ3RceGqpS2AXVzl3\nUalLAAAAgF2SGXAAAAAAUCABHAAAAAAUSAAHAAAAAAUSwL2D9evX52c/+1mSZN26dZk1a1aSZNWq\nVVm2bFn3uCVLlmTevHk7fP4lS5Zk0qRJeeKJJ7q3PfLII5k0aVKWLl36HqsHAAAAoNQEcO9g/fr1\nuffee5MkgwcPzpQpU5JsDuB+85vf7JRrDBs2LA8//HD354ceeij77bffVsd2dnbulGsCAAAA0DO8\nBfUdLFy4MGvWrMnUqVMzdOjQvPTSS2loaMhtt92WjRs35plnnslnP/vZLY557bXXMmfOnKxduzZJ\ncu6556aurm6b16irq8szzzyT9vb2tLe3Z82aNdl///2793/xi1/MhAkTsnz58px44ol59dVXc999\n96WysjL77LNPLrvsskLuHQAAAID3TgD3Ds4888w0NTVl5syZaW5uTkNDQ6qqqnL66afnueeey/nn\nn59k81LSP5k/f35OPvnk1NXVpaWlJdOnT8/NN9+8zWtUVFTk0EMPzfLly9Pa2pqxY8emubl5izG9\ne/fOtddemyT5+7//+3znO99J7969s379+q2es7GxMY2NjUmSGTNmvJevAJIkNTU1pS7hfaWqqsp3\nCmVIb0L50ZdQfvQl7DgBXAGefPLJvPjii92fW1tb09bWlr59+27zmGOPPTaLFy9Oa2trzjnnnPzk\nJz/ZYv/48eO7fx42bFi+9a1v5aijjsq4ceO2er76+vrU19e/xzuB/6+lpaXUJbyv1NTU+E6hDOlN\nKD/6EsqPvoTNamtrt3usAK4AXV1dmT59eqqrq7f7mOHDh6epqSnV1dVb/QX26dOn++dp06bl6aef\nzmOPPZYf//jHuemmm1JZWblTagcAAABg5/IShnew22675c0333zb9r59+251e5KMGTMm99xzT/fn\nVatWbde1zjzzzJxxxhl/cUxnZ2daWloyevTonHXWWd2z6wAAAAAoT2bAvYPdd989I0aMyJQpU7L3\n3nt3bx/anPYGAAAgAElEQVQ9enTuuuuuTJ069W0vYTjvvPMyb968XH755eno6MjIkSNz0UUXveO1\nDj/88Hcc09nZmW9/+9tpbW1NkkycODH9+/ffwbsCAAAAoKdUdHV1dZW6CIrXNHFsqUtgF1c5d1Gp\nS3hf8dwMKE96E8qPvoTyoy9hsx15BpwlqAAAAABQIEtQe8j999+fxYsXb7FtxIgRueCCC3rk+mYv\nAQAAAJSGAK6HTJgwIRMmTCh1GQAAAAD0MEtQAQAAAKBAAjgAAAAAKJAADgAAAAAKJIADAAAAgAIJ\n4AAAAACgQAI4AAAAACiQAA4AAAAACiSAAwAAAIACCeAAAAAAoEACOAAAAAAokAAOAAAAAApUVeoC\n6BkdF55a6hLYBVXOXVTqEgAAAGCXZwYcAAAAABRIAAcAAAAABRLAAQAAAECByi6Au/3227No0duf\nO7Vu3brMmjWrBBW9N9u6HwAAAAA+GMougNuWwYMHZ8qUKT1+3Y6Ojh6/JgAAAADvHz32FtRf/OIX\nufvuu1NRUZFhw4blYx/7WO688860t7dn9913z6WXXpo99tgjSfKHP/wh11xzTdauXZtTTz019fX1\naW5uTkNDQ2bNmpUlS5bksccey4YNG/LKK69k3LhxOeuss7Z57bPPPjuf+MQnsmLFivTv3z+XXXZZ\nBg4cmMbGxvzbv/1b2tvb85GPfCSXXnpp+vTpk9mzZ2fAgAFZtWpVDjjggIwdOzbz589PklRUVOSa\na67JbrvtlkWLFuWXv/xlNm3alHHjxmXSpElJkjvvvDO/+MUvUlNTk9133z0HHnjgNmu7+uqrM3z4\n8KxYsSKtra25+OKLM3LkyDQ3N+c73/lONmzYkCT5b//tv2XEiBFZsWJFfvSjH2X33XdPU1NTDjzw\nwFx66aWpqKjYWb8qAAAAAHaiHgngmpqacuedd+baa6/NwIED88YbbyRJpk+fnoqKivzbv/1bFi1a\nlHPOOSdJ8sILL2T69Olpa2vLlVdemSOOOOJt51y1alVuuOGGVFVV5bLLLsuJJ56YmpqarV5/w4YN\nOeCAA3LOOefkjjvuyI9+9KOcf/75Ofroo1NfX58k+eEPf5if//zn+dSnPpUkWb16da666qr06tUr\nM2bMyPnnn5+6urq0tbWld+/eWb58eVavXp3rrrsuXV1dueGGG/L000+nb9++eeihh3LDDTeko6Mj\nV1555V8M4JKks7Mz119/fZYtW5Y77rgjV111VT70oQ/lq1/9aqqrq7N69ep885vfzIwZM5Ikv//9\n73PTTTdl0KBBueqqq/Lb3/42dXV1W5yzsbExjY2NSdJ9HOyobfUU711VVZXvF8qQ3oTyoy+h/OhL\n2HE9EsA99dRTOeaYYzJw4MAkyYABA/LCCy/kf/7P/5k//vGPaW9vz5AhQ7rHjx07NtXV1amurs6o\nUaOycuXK7L///lucc/To0enXr1+SZJ999klLS8s2/wGoqKjI+PHjkyTHH398brzxxiSbg8Ef/vCH\nWb9+fdra2nLYYYd1H3PMMcekV6/NK3Tr6uryr//6rznuuONy9NFHZ88998zy5cvzxBNP5IorrkiS\ntLW1Zc2aNXnzzTczbty49OnTp/te3sm4ceOSJAceeGCam5uTbF76Om/evKxatSq9evXK6tWru8cP\nHz48e+65Z5Jk//33T3Nz89sCuPr6+u5wEd6tlpaWUpfwvlVTU+P7hTKkN6H86EsoP/oSNqutrd3u\nsT22BPWtvv/97+fkk0/O2LFju5dV/slbl1NubXll7969u3/u1avXDj2r7U/nmz17dqZOnZr9998/\nS5YsyYoVK7rH9O3bt/vnz3zmMzniiCOybNmyfOUrX8lVV13Vvf0Tn/jEFuf+6U9/ut11vPVeevXq\nlc7OziTJ//7f/zsf+tCHMnPmzHR1deXzn//828a/9RgAAAAAyk+PvIRh9OjRWbp0aV5//fUkyRtv\nvJHW1tYMHjw4yebnw/25Rx99NBs3bszrr7+eFStW5KCDDnpP1+/q6srSpUuTJA8++GD3bLG2trYM\nGjQo7e3t+fd///dtHr9mzZoMGzYsn/nMZ3LggQfmpZdeymGHHZb7778/bW1tSTa/pfXVV1/NyJEj\nu+t/88038+tf//pd1dza2ppBgwalV69eeeCBB4RsAAAAALuoHpkBt+++++azn/1srr766vTq1Sv7\n779/Pve5z+Wmm27K4MGDc/DBB3cvvUw2L7GcMWNGWlpactppp2Xw4MFb7N9Rffr0SVNTU6688sr0\n69cvX/rSl5Ikp59+er785S/nwx/+cIYNG5Y333xzq8cvXrw4K1asSEVFRfbZZ58cfvjh6d27d156\n6aV85StfSbJ5xtyll16aAw88MOPHj8/UqVPz4Q9/+G1LQ7fXJz/5ycyaNStLly7NqFGjupe0AgAA\nALBrqejq6uoqdRFFO/vss3PrrbeWuoySapr4zs+ig7eqnLuo1CW8b3luBpQnvQnlR19C+dGXsNmO\nPAOuR5agAgAAAMAHVclewlCEL3/5y9m0adMW2y699NKymP32T//0T/ntb3+7xbaTTjopEyZM6JHr\nm8kEAAAAUBofiCWoJC+//HKpSwD+jGn7UJ70JpQffQnlR1/CZpagAgAAAECZEMABAAAAQIEEcAAA\nAABQIAEcAAAAABRIAAcAAAAABRLAAQAAAECBBHAAAAAAUCABHAAAAAAUSAAHAAAAAAUSwAEAAABA\ngQRwAAAAAFAgARwAAAAAFKiq1AXQMzouPLXUJXwgVM5dVOoSAAAAgDJjBhwAAAAAFEgABwAAAAAF\nEsDtYpqbmzNlypRSlwEAAADAdhLAlamOjo5SlwAAAADATuAlDAVqbm7Oddddl+HDh2fVqlUZOnRo\nLrnkktx999359a9/nY0bN+aQQw7JRRddlIqKilx99dU55JBD8tvf/jZjx47N8ccfn7lz56a5uTlJ\ncsEFF2TQoEHp7OzM9773vTz77LMZPHhwrrjiilRXV5f4bgEAAADYGjPgCvbyyy+nvr4+N954Y3bb\nbbf87Gc/y4knnpjrr78+s2bNysaNG/PrX/+6e3xra2uuueaanHLKKZk/f37+6q/+KjNnzkxDQ0P2\n3XffJMnq1atz4okn5qabbkq/fv2ydOnSUt0eAAAAAO/ADLiC7bnnnqmrq0uSnHDCCVm8eHGGDBmS\nRYsWZcOGDXnjjTey7777ZuzYsUmS8ePHdx/71FNP5ZJLLkmS9OrVK/369csbb7yRIUOGZP/990+S\nHHjggfmP//iPt123sbExjY2NSZIZM2YUeYv8mZqamlKXwC6iqqrK3wuUIb0J5UdfQvnRl7DjBHAF\nq6ioeNvnefPm5frrr09NTU1uv/32bNy4sXt/nz593vGcvXv37v65V69eWxz/J/X19amvr38PlfNu\ntLS0lLoEdhE1NTX+XqAM6U0oP/oSyo++hM1qa2u3e6wlqAVraWnJs88+myR58MEHu2fDDRw4MG1t\nbfnVr361zWMPPfTQ3HvvvUmSzs7OtLa2Fl8wAAAAADuVGXAF23vvvbNkyZLMmTMne+21V/7mb/4m\n69evz5QpUzJkyJAcdNBB2zz2C1/4QubMmZOf//zn6dWrVy688MLssccePVg9AAAAAO9VRVdXV1ep\ni3i/am5uTkNDQ2bNmlXqUtI0cWypS/hAqJy7qNQlsIswbR/Kk96E8qMvofzoS9jMElQAAAAAKBMC\nuAINGTKkLGa/AQAAAFA6ngH3AWFpJAAAAEBpmAEHAAAAAAUSwAEAAABAgQRwAAAAAFAgARwAAAAA\nFEgABwAAAAAFEsABAAAAQIEEcAAAAABQIAEcAAAAABRIAAcAAAAABRLAAQAAAECBBHAAAAAAUCAB\nHAAAAAAUSAAHAAAAAAWqKnUB9IyOC08tdQnvS5VzF5W6BAAAAKDMmQEHAAAAAAUSwAEAAABAgQRw\nAAAAAFAgAdxOtmLFisyYMaPQa9xzzz259NJLM2nSpLz22muFXgsAAACA90YAtwsaMWJErrrqqnz4\nwx8udSkAAAAAvANvQd0Ozc3Nue666zJ8+PCsWrUqQ4cOzSWXXJKmpqb88z//czZs2JCqqqr84z/+\n4xbHrVy5MvPnz8+mTZtSXV2dyZMnp7a2Nk1NTbnlllvS3t6erq6uTJkyJYMGDcrNN9+cdevWpbOz\nM6eddlrGjx+/1XoOOOCAnrhtAAAAAHYCAdx2evnll3PxxRenrq4ut9xyS+65557cd999ueyyyzJ8\n+PC0tramurp6i2Nqa2vz9a9/PZWVlXniiSeycOHCXH755bnvvvty0kkn5fjjj097e3s6OzuzbNmy\nDBo0KNOmTUuStLa2vqd6Gxsb09jYmCSFL4n9IKupqSl1Ceyiqqqq/P1AGdKbUH70JZQffQk7TgC3\nnfbcc8/U1dUlSU444YTceeedGTRoUIYPH54k6dev39uOaW1tzezZs7NmzZokSUdHR5LkkEMOyZ13\n3pm1a9fm6KOPztChQzNs2LDceuutWbBgQY488siMHDnyPdVbX1+f+vr693QO3llLS0upS2AXVVNT\n4+8HypDehPKjL6H86EvYrLa2drvHegbcdqqoqNji82677faOx9x2220ZNWpUZs2alSuvvDKbNm1K\nkhx33HG54oorUl1dnenTp+epp55KbW1tGhoaMmzYsCxcuDB33HFHIfcBAAAAQM8SwG2nlpaWPPvs\ns0mSBx98MAcffHD++Mc/ZuXKlUmSN998s3uG25+0trZm8ODBSZIlS5Z0b3/llVfykY98JCeddFLG\njh2bP/zhD1m3bl2qq6tzwgkn5JRTTsnzzz/fMzcGAAAAQKEsQd1Oe++9d5YsWZI5c+Zkr732yqc+\n9amMHj068+fPz8aNG1NdXZ2rrrpqi2M+/elPZ/bs2fnpT3+aUaNGdW//5S9/mQceeCCVlZXZY489\n8rd/+7dZuXJlFixYkIqKilRVVeWCCy7YZi2LFy/OokWL8p//+Z+ZOnVqDj/88Fx88cWF3TsAAAAA\n715FV1dXV6mLKHfNzc1paGjIrFmzSl3Ku9Y0cWypS3hfqpy7qNQlsIvy3AwoT3oTyo++hPKjL2Ez\nz4ADAAAAgDJhCep2GDJkSElmv82cOTPNzc1bbPv85z+fj370ozt8LjO1AAAAAEpDAFfGpk6dWuoS\nAAAAAHiPLEEFAAAAgAIJ4AAAAACgQAI4AAAAACiQAA4AAAAACiSAAwAAAIACCeAAAAAAoEACOAAA\nAAAokAAOAAAAAAokgAMAAACAAgngAAAAAKBAAjgAAAAAKJAADgAAAAAKVFXqAugZHReeWuoSylrl\n3EWlLgEAAAB4nzIDDgAAAAAKJIADAAAAgAIJ4AAAAACgQJ4B9xZLlizJc889l/PPP/9dn+OLX/xi\nrr/++gwcOHCnX//ll1/OnDlzsn79+rS3t6euri5///d//65rBQAAAKBYAridrLOzs9Dzz58/PxMn\nTsxRRx2VJHnhhRcKvR4AAAAA7837NoB74IEH8n/+z/9Je3t7Dj744FxwwQU599xz88lPfjJPPvlk\nBgwYkDPOOCMLFixIS0tLvvCFL2Ts2LFJkrVr12b69Olpbm7Occcdl8997nNJkhtuuCFr167Npk2b\nctJJJ6W+vj5JcvbZZ+fkk0/O8uXLc84553TXsHHjxtx4440ZN25c6uvrt1pTr169cv/99+d//a//\nlT322CNDhw5N7969t3lff/zjH7Pnnnt2fx42bFgRXx8AAAAAO8n7MoB78cUX8/DDD+faa69NVVVV\n/umf/in//u//ng0bNmTUqFE566yzMnPmzPzwhz/MV7/61bz44ouZPXt2dwC3cuXKzJo1K3369Mm0\nadNyxBFH5KCDDsrkyZMzYMCAbNy4MdOmTcvRRx+d3XffPRs2bMi+++6b008/vbuGtra2fPOb38wJ\nJ5yQv/7rv95mTWPGjMntt9+ehoaG9OvXL9dcc03233//bd7bxIkTc80112TEiBEZM2ZMJkyYkP79\n+79tXGNjYxobG5MkM2bM2Llf8PtQTU1NqUvgA6aqqsrfHZQhvQnlR19C+dGXsOPelwHcU089ld//\n/veZNm1aks0z0QYOHJiqqqp89KMfTbJ55ljv3r1TVVWVYcOG5T/+4z+6jx8zZkx23333JMm4cePy\nzDPP5KCDDsrixYvz6KOPJklaWlqyevXq7L777unVq1eOOeaYLWqYOXNmTj311Bx//PF/sabf/e53\nGTVqVPfz4j72sY9l9erV27y3CRMm5LDDDsvjjz+exx57LI2NjZk5c+bbZs3V19d3z9DjnbW0tJS6\nBD5gampq/N1BGdKbUH70JZQffQmb1dbWbvfY92UA19XVlb/+67/OmWeeucX2u+++OxUVFUmSioqK\nVFVtvv1evXqlo6Njm+erqKjIihUr8uSTT+Yb3/hG+vTpk6uvvjqbNm1KkvTu3Tu9em35QtkRI0bk\n8ccfz3HHHZeKiopt1vTII4/s8P0NHjw4H//4x/Pxj388U6ZMSVNTUw488MAdPg8AAAAAxev1zkN2\nPYceemiWLl2aV199NUnyxhtvbDHD7Z08+eSTeeONN7Jx48Y8+uijGTFiRFpbW9O/f//06dMnL730\nUn73u9/9xXNMmjQp/fv3z7x58/5iTQcffHCefvrpvP7662lvb8/SpUv/4nkff/zxtLe3J0n+8z//\nM6+//noGDx683fcGAAAAQM96X86A22efffJ3f/d3+cY3vpGurq5UVlbm/PPP3+7jR4wYkW9/+9tZ\ns2ZNjjvuuBx00EEZNmxY7rvvvlx++eWpra3NwQcf/I7nOe+88/Ld7343CxYsyFlnnbXVmg455JB8\n7nOfy1e/+tXsscceOeCAA/7im1SXL1+e+fPnp7q6Okly1llnZY899tjuewMAAACgZ1V0dXV1lboI\nitc0cWypSyhrlXMXlboEPmA8NwPKk96E8qMvofzoS9hsR54B975cgvr/2Lv7sKjuO///rxmGG7mr\nIuqGIosgEVeikRJAq0lscavGUqJRm6xQW5Jst1m65GsMVWMjMVjEmyZNSa8ramyi7Vo1tMVLm42o\neFdZjaao48bGpkRCQDpqDQgDzDi/P7icX6iioB5mxOfjuryumTPnfM77HH37x+v6nM8BAAAAAAAA\nvEWvfAS1NygpKdHBgwc7bBszZoymTZt2U+MxwwsAAAAAAMAzCOC81LRp0246bAMAAAAAAID34BFU\nAAAAAAAAwEAEcAAAAAAAAICBCOAAAAAAAAAAAxHAAQAAAAAAAAYigAMAAAAAAAAMRAAHAAAAAAAA\nGIgADgAAAAAAADAQARwAAAAAAABgIAI4AAAAAAAAwEAEcAAAAAAAAICBCOAAAAAAAAAAAxHAAQAA\nAAAAAAayeLoA9AznU+meLqHH+Kwu9XQJAAAAAAAAbsyAAwAAAAAAAAxEAAcAAAAAAAAYiAAOAAAA\nAAAAMBBrwN1mVqtVW7du1Y9+9CPDzvGzn/1Mf/nLX2SxWBQbG6unn35aFgt/lQAAAAAAAN6IGXB3\noHHjxumVV17RihUr1Nraql27dnm6JAAAAAAAAHSCaVNdUF9fr6VLl2ro0KGqqqrSPffco//8z/9U\ndXW1fvnLX6qlpUUWi0U//vGPOxx3+vRprVu3Tm1tbfLz89MPfvADRUREqLq6Wq+//rocDodcLpfm\nzp2rfv366ac//anOnz+vy5cva/r06Ro7duw160lMTHR/Hjp0qM6dO2fo9QMAAAAAAODmEcB10Wef\nfabvf//7io+P1+uvv653331XO3bsUG5uroYOHaqmpib5+fl1OCYiIkIvvfSSfHx8dOzYMf3617/W\nc889px07dmjKlCkaP368HA6HLl++rKNHj6pfv36aP3++JKmpqemGNTkcDu3bt09z5sy56reysjKV\nlZVJkgoLC2/9BtxBwsPDPV0CcEMWi4V/q4AXojcB70NfAt6HvgS6jwCui/r376/4+HhJ0oMPPqiS\nkhL169dPQ4cOlSQFBgZedUxTU5OKi4tVV1cnSXI6nZKke++9VyUlJTp37pxSUlJ0zz33KCoqSuvX\nr9eGDRv0la98RcOHD79hTWvWrNHw4cOvuW9aWprS0tJu+nrvZDabzdMlADcUHh7Ov1XAC9GbgPeh\nLwHvQ18C7SIiIrq8L2vAdZHJZOrwvU+fPjc85je/+Y1GjBihlStXKi8vT21tbZLa13B7/vnn5efn\np4KCAp04cUIRERFatmyZoqKi9Otf/1pbtmy57tibN2/W559/rqysrJu/KAAAAAAAABiOAK6LbDab\n/vznP0uS9u/fr7i4OF24cEGnT5+WJDU3N7tnuF3R1NSksLAwSVJ5ebl7+9mzZzVo0CBNmTJFSUlJ\n+uSTT3T+/Hn5+fnpwQcf1De/+U19/PHHndayc+dOVVZWKjc3V2Yzf4UAAAAAAADejEdQu+jLX/6y\nysvL9cYbb+if/umfNHnyZCUkJGjdunVqbW2Vn5+fFi1a1OGYb33rWyouLta2bds0YsQI9/aDBw9q\n79698vHxUd++ffXYY4/p9OnT2rBhg0wmkywWi5588slOa1m9erUGDBighQsXSpJSUlL02GOPGXPh\nAAAAAAAAuCUml8vl8nQR3q6+vl7Lli3TypUrPV3KTat+JMnTJfQYn9Wlni4BuCHWzQC8E70JeB/6\nEvA+9CXQjjXgAAAAAAAAAC/BI6hdMHDgQI/Mflu+fLnq6+s7bPu3f/s33X///d0ei1lhAAAAAAAA\nnkEA58XmzZvn6RIAAAAAAABwi3gEFQAAAAAAADAQARwAAAAAAABgIAI4AAAAAAAAwEAEcAAAAAAA\nAICBCOAAAAAAAAAAAxHAAQAAAAAAAAYigAMAAAAAAAAMRAAHAAAAAAAAGIgADgAAAAAAADAQARwA\nAAAAAABgIAI4AAAAAAAAwEAEcAAAAAAAAICBLJ4uAD3D+VS6p0voMT6rSz1dAgAAAAAAgBsz4AAA\nAAAAAAADEcABAAAAAAAABiKAAwAAAAAAAAzEGnD/oLy8XH/5y1+UnZ1902M888wz+slPfqLQ0FBD\nzr9nzx6VlpbK5XLJ5XJpwoQJSk+/e9Z4AwAAAAAAuJMQwN1mly9fNnT8Dz74QNu3b9fChQsVFham\n1tZW7d2719BzAgAAAAAA4Ob12gBu7969+sMf/iCHw6G4uDg9+eST+s53vqNvfOMbOn78uIKDg/X4\n449rw4YNstlsmjNnjpKSkiRJ586dU0FBgerr6zVu3DjNmDFDklRUVKRz586pra1NU6ZMUVpamiQp\nMzNTU6dOVWVlpbKystw1tLa2asWKFUpOTlZaWto1azKbzdq9e7d+97vfqW/fvrrnnnvk6+vb6XX9\n7ne/U2ZmpsLCwiRJfn5+7joAAAAAAADgfXplAPfpp5/qj3/8o5YsWSKLxaI1a9Zo3759amlp0YgR\nIzR79mwtX75cGzdu1AsvvKBPP/1UxcXF7gDu9OnTWrlypfz9/TV//nwlJiYqNjZWP/jBDxQcHKzW\n1lbNnz9fKSkpCgkJUUtLiwYPHqxZs2a5a7Db7Xr11Vf14IMP6qGHHuq0ppEjR2rTpk1atmyZAgMD\nlZ+fr+jo6E6v7cyZM4qJibnhPSgrK1NZWZkkqbCw8NZu6B0mPDzc0yUAN2SxWPi3CnghehPwPvQl\n4H3oS6D7emUAd+LECf31r3/V/PnzJbXPRAsNDZXFYtH9998vSYqKipKvr68sFouioqL0t7/9zX38\nyJEjFRISIklKTk7Whx9+qNjYWG3fvl2HDx+WJNlsNtXW1iokJERms1mpqakdali+fLnS09M1fvz4\n69b00UcfacSIEe714saMGaPa2tpbvgdpaWl37cw4m83m6RKAGwoPD+ffKuCF6E3A+9CXgPehL4F2\nERERXd63VwZwLpdLDz30kJ544okO27du3SqTySRJMplMsljaL99sNsvpdHY6nslkktVq1fHjx/Xy\nyy/L399fixcvVltbmyTJ19dXZnPHF8oOGzZMf/rTnzRu3DiZTKZOazp06FC3rm3w4MH6+OOPlZCQ\n0K3jAAAAAAAA4BnmG+9y57nvvvtUUVGhixcvSpIaGxs7zHC7kePHj6uxsVGtra06fPiwhg0bpqam\nJgUFBcnf3181NTX66KOPrjvGzJkzFRQUpLVr1163pri4OJ08eVINDQ1yOByqqKi47rgZGRlav369\n/v73v0uS2tratH379i5fGwAAAAAAAHpWr5wBFxkZqW9/+9t6+eWX5XK55OPjo+zs7C4fP2zYML32\n2muqq6vTuHHjFBsbq6ioKO3YsUPPPfecIiIiFBcXd8Nxvvvd7+oXv/iFNmzYoNmzZ1+zpnvvvVcz\nZszQCy+8oL59+2rIkCHXfZNqYmKiLl68qCVLlsjlcslkMmnChAldvjYAAAAAAAD0LJPL5XJ5uggY\nr/qRJE+X0GN8Vpd6ugTghlg3A/BO9CbgfehLwPvQl0C77qwB1ysfQQUAAAAAAAC8Ra98BLU3KCkp\n0cGDBztsGzNmjKZNm3ZT4zErDAAAAAAAwDMI4LzUtGnTbjpsAwAAAAAAgPfgEVQAAAAAAADAQARw\nAAAAAAAAgIEI4AAAAAAAAAADEcABAAAAAAAABiKAAwAAAAAAAAxEAAcAAAAAAAAYiAAOAAAAAAAA\nMBABHAAAAAAAAGAgAjgAAAAAAADAQARwAAAAAAAAgIEI4AAAAAAAAAADEcABAAAAAAAABrJ4ugD0\nDOdT6Z4uoct8Vpd6ugQAAAAAAIDbhhlwAAAAAAAAgIEI4AAAAAAAAAADEcABAAAAAAAABur1Adyl\nS5f0P//zP5Kk8+fPa+XKlZKkqqoqHT161L1feXm51q5d2+3xy8vLNXPmTB07dsy97dChQ5o5c6Yq\nKiq6PZ7VatWpU6e6fRwAAAAAAAC8010RwL333nuSpLCwMM2dO1dSewD3wQcf3JZzREVF6Y9//KP7\n+8LUQTsAACAASURBVIEDB/TP//zPNzXWzQRwTqfzps4FAAAAAAAA4/X6t6D++te/Vl1dnebNm6d7\n7rlHNTU1WrZsmX7zm9+otbVVH374oR599NEOx3z++ed64403dO7cOUnSd77zHcXHx3d6jvj4eH34\n4YdyOBxyOByqq6tTdHS0+/ctW7boyJEjam1t1b333qunn35aJpNJ27dv144dO+Tj46PIyEg98cQT\n2rFjh8xms/bt26fvfe97+vKXv3zNWjZt2qQLFy7ob3/7m0JCQvRf//Vft//mAQAAAAAA4Jb1+gDu\niSeeUHV1tZYvX676+notW7ZMFotFs2bN0l/+8hdlZ2dLan+U9Ip169Zp6tSpio+Pl81mU0FBgX76\n0592eg6TyaT77rtPlZWVampqUlJSkurr692/T5o0SY899pgk6bXXXtORI0eUlJSk3//+9/r5z38u\nX19fXbp0SUFBQZo4caICAgKUnp4uSXr11Vc7reXjjz/WkiVL5Ofnd1VNZWVlKisrkyQVFhbe2k3s\nYeHh4Z4uATCcxWLh3zrghehNwPvQl4D3oS+B7uv1AdzNOH78uD799FP396amJtntdgUEBHR6zFe/\n+lVt375dTU1NysrK0m9/+1v3bydOnFBpaalaWlrU2NiowYMHKykpSVFRUfrZz36mBx54QMnJyd2q\nRZKSkpKuGb5JUlpamtLS0rp13d7CZrN5ugTAcOHh4fxbB7wQvQl4H/oS8D70JdAuIiKiy/sSwF2D\ny+VSQUFBp+HWtQwdOlTV1dXy8/Pr8BfQ2tqqtWvX6ic/+YnCw8O1adMmtba2SpLmz5+vkydP6v33\n39c777yjVatWdasWf3//m7g6AAAAAAAA9KRe/xKGPn36qLm5+artAQEB19wuSSNHjtS7777r/l5V\nVdWlcz3xxBN6/PHHO2xra2uTJIWGhsput+t///d/JUmXL1+WzWZTQkKCZs+e7Z7Z1qdPH/cMt1up\nBQAAAAAAAN6h18+ACwkJ0bBhwzR37lx9+ctfdm9PSEjQ73//e82bN++qlzB897vf1dq1a/Xcc8/J\n6XRq+PDhevrpp294rtGjR1+1LSgoSF//+tc1d+5cDRw4ULGxsZLaA7jXXntNTU1NkqRHHnlEQUFB\n+spXvqJVq1bp8OHD+t73vnfTtQAAAAAAAMA7mFwul8vTRcB41Y8kebqELvNZXerpEgDDsW4G4J3o\nTcD70JeA96EvgXbdWQOu1z+CCgAAAAAAAHhSr38E9XbZvXu3tm/f3mHbsGHD9OSTT3qoou5hVhkA\nAAAAAIBnEMB10YQJEzRhwgRPlwEAAAAAAIA7DI+gAgAAAAAAAAYigAMAAAAAAAAMRAAHAAAAAAAA\nGIgADgAAAAAAADAQARwAAAAAAABgIAI4AAAAAAAAwEAEcAAAAAAAAICBCOAAAAAAAAAAAxHAAQAA\nAAAAAAYigAMAAAAAAAAMRAAHAAAAAAAAGIgADgAAAAAAADCQxdMFoGc4n0r3dAlX8Vld6ukSAAAA\nAAAADMcMOAAAAAAAAMBABHAAAAAAAACAgQjgAAAAAAAAAAMRwH1BeXm51q5de0tjPPPMM/r8888N\nO39ZWZlyc3OVm5urH/3oR7JarTd1LgAAAAAAAPQMXsJwG12+fNnQ8Y8cOaIdO3bopZdeUmhoqD7+\n+GMVFRVp6dKlCgsLM/TcAAAAAAAAuDm9MoDbu3ev/vCHP8jhcCguLk5PPvmkvvOd7+gb3/iGjh8/\nruDgYD3++OPasGGDbDab5syZo6SkJEnSuXPnVFBQoPr6eo0bN04zZsyQJBUVFencuXNqa2vTlClT\nlJaWJknKzMzU1KlTVVlZqaysLHcNra2tWrFihZKTk5WWlnbNmsxms3bv3q3f/e536tu3r+655x75\n+vp2el2///3vlZmZqdDQUElSTEyMHn74Yb377rt64oknjLqdAAAAAAAAuAW9LoD79NNP9cc//lFL\nliyRxWLRmjVrtG/fPrW0tGjEiBGaPXu2li9fro0bN+qFF17Qp59+quLiYncAd/r0aa1cuVL+/v6a\nP3++EhMTFRsbqx/84AcKDg5Wa2ur5s+fr5SUFIWEhKilpUWDBw/WrFmz3DXY7Xa9+uqrevDBB/XQ\nQw91WtPIkSO1adMmLVu2TIGBgcrPz1d0dHSn11ZdXa2YmJgO22JjY7V79+6r9i0rK1NZWZkkqbCw\n8Dbc2dsvPDzc0yUAHmOxWOgBwAvRm4D3oS8B70NfAt3X6wK4EydO6K9//avmz58vqX0mWmhoqCwW\ni+6//35JUlRUlHx9fWWxWBQVFaW//e1v7uNHjhypkJAQSVJycrI+/PBDxcbGavv27Tp8+LAkyWaz\nqba2ViEhITKbzUpNTe1Qw/Lly5Wenq7x48dft6aPPvpII0aMcM9oGzNmjGpra2/LfUhLS3PP0vNW\nNpvN0yUAHhMeHk4PAF6I3gS8D30JeB/6EmgXERHR5X17XQDncrn00EMPXfVI5tatW2UymSRJJpNJ\nFkv7pZvNZjmdzk7HM5lMslqtOn78uF5++WX5+/tr8eLFamtrkyT5+vrKbO74Lothw4bpT3/6k8aN\nGyeTydRpTYcOHerWtUVGRurjjz9WQkKCe9vHH3+s2NjYbo0DAAAAAACAntPr3oJ63333qaKiQhcv\nXpQkNTY2dpjhdiPHjx9XY2OjWltbdfjwYQ0bNkxNTU0KCgqSv7+/ampq9NFHH113jJkzZyooKMj9\nRtPOaoqLi9PJkyfV0NAgh8OhioqK6477rW99S7/61a/U0NAgSaqqqtKhQ4c0ceLELl8fAAAAAAAA\nelavmwEXGRmpb3/723r55Zflcrnk4+Oj7OzsLh8/bNgwvfbaa6qrq9O4ceMUGxurqKgo7dixQ889\n95wiIiIUFxd3w3G++93v6he/+IU2bNig2bNnX7Ome++9VzNmzNALL7ygvn37asiQIdd9k2pSUpLO\nnz+vRYsWyel06u9//7uWL1/ufoQVAAAAAAAA3sfkcrlcni4C3ed0OvX666/L5XIpJyfH/XhtZ6of\nSeqhyrrOZ3Wpp0sAPIZ1MwDvRG8C3oe+BLwPfQm0u6vXgLtb+Pj4KCcnx9NlAAAAAAAA4AYI4LxQ\nSUmJDh482GHbmDFjNG3atJsek9lmAAAAAAAAnkEA54WmTZt2S2EbAAAAAAAAvEevewsqAAAAAAAA\n4E0I4AAAAAAAAAADEcABAAAAAAAABiKAAwAAAAAAAAxEAAcAAAAAAAAYiAAOAAAAAAAAMBABHAAA\nAAAAAGAgAjgAAAAAAADAQARwAAAAAAAAgIEI4AAAAAAAAAADEcABAAAAAAAABrJ4ugD0DOdT6Z4u\nwc1ndamnSwAAAAAAAOgxzIADAAAAAAAADEQABwAAAAAAABiIAA4AAAAAAAAw0B2/BtymTZsUEBCg\n9PSOa5ydP39e69at09y5cz1U2c3p7HquKC4u1smTJxUYGChJ8vf318svv9yTJQIAAAAAAKAb7vgA\nrjNhYWEeCd+cTqd8fHwMPUdmZqZSU1MNPQcAAAAAAABuD68N4Pbs2aOtW7fKZDIpKipKY8aMUUlJ\niRwOh0JCQpSTk6O+fftKkj755BPl5+fr3LlzSk9PV1pamurr67Vs2TKtXLlS5eXlev/999XS0qKz\nZ88qOTlZs2fP7vTcmZmZmjhxoqxWq4KCgpSbm6vQ0FCVlZVp586dcjgcGjRokHJycuTv76/i4mIF\nBwerqqpKQ4YMUVJSktatWydJMplMys/PV58+fVRaWqqDBw+qra1NycnJmjlzpiSppKREe/bsUXh4\nuEJCQhQTE2P8DQYAAAAAAECP8MoArrq6WiUlJVqyZIlCQ0PV2NgoSSooKJDJZNLOnTtVWlqqrKws\nSdKZM2dUUFAgu92uvLw8JSYmXjVmVVWVioqKZLFYlJubq0mTJik8PPya529padGQIUOUlZWlLVu2\naPPmzcrOzlZKSorS0tIkSRs3btSuXbs0efJkSVJtba0WLVoks9mswsJCZWdnKz4+Xna7Xb6+vqqs\nrFRtba2WLl0ql8uloqIinTx5UgEBATpw4ICKiorkdDqVl5d3wwBu/fr1eueddyRJgwcP1g9/+MOr\n9ikrK1NZWZkkqbCwsCu3vcd0dt+Bu4nFYqEXAC9EbwLeh74EvA99CXSfVwZwJ06cUGpqqkJDQyVJ\nwcHBOnPmjF555RVduHBBDodDAwcOdO+flJQkPz8/+fn5acSIETp9+rSio6M7jJmQkOBeNy0yMlI2\nm63T/zBMJpPGjh0rSRo/frxWrFghqT0Y3Lhxoy5duiS73a5Ro0a5j0lNTZXZ3P5Oi/j4eL399tsa\nN26cUlJS1L9/f1VWVurYsWN6/vnnJUl2u111dXVqbm5WcnKy/P393ddyI115BDUtLc0dFnobm83m\n6RIAjwsPD6cXAC9EbwLeh74EvA99CbSLiIjo8r5eGcBdy5tvvqmpU6cqKSlJVqtVmzdvdv9mMpk6\n7PuP3yXJ19fX/dlsNsvpdHb53FfGKy4u1rx58xQdHa3y8nJZrVb3PgEBAe7PGRkZSkxM1NGjR7Vw\n4UItWrTIvX3ixIkdxt62bVuX6wAAAAAAAMCdx+zpAq4lISFBFRUVamhokCQ1NjaqqalJYWFhktrX\nh/uiw4cPq7W1VQ0NDbJarYqNjb2l87tcLlVUVEiS9u/fr/j4eEnts9b69esnh8Ohffv2dXp8XV2d\noqKilJGRoZiYGNXU1GjUqFHavXu37Ha7pPa3tF68eFHDhw9319/c3KwjR47cUu0AAAAAAADwLl45\nA27w4MF69NFHtXjxYpnNZkVHR2vGjBlatWqVwsLCFBcXp/r6evf+Q4cOVWFhoWw2m6ZPn66wsLAO\nv3eXv7+/qqurlZeXp8DAQD377LOSpFmzZmnBggUaMGCAoqKi1NzcfM3jt2/fLqvVKpPJpMjISI0e\nPVq+vr6qqanRwoULJbXPmMvJyVFMTIzGjh2refPmacCAAe6w73q+uAacJP3kJz+RxeKVf5UAAAAA\nAAB3PZPL5XJ5ughvk5mZqfXr13u6jNuq+pEbry3XU3xWl3q6BMDjWDcD8E70JuB96EvA+9CXQLvu\nrAHnlY+gAgAAAAAAAL3FXf3c4oIFC9TW1tZhW05OjlfMfluzZo1OnTrVYduUKVM0YcKEmxqPWWcA\nAAAAAACewSOod4nPPvvM0yUA+AKm7QPeid4EvA99CXgf+hJoxyOoAAAAAAAAgJcggAMAAAAAAAAM\nRAAHAAAAAAAAGIgADgAAAAAAADAQARwAAAAAAABgIAI4AAAAAAAAwEAEcAAAAAAAAICBCOAAAAAA\nAAAAAxHAAQAAAAAAAAYigAMAAAAAAAAMRAAHAAAAAAAAGIgADgAAAAAAADCQxdMFoGc4n0r32Ll9\nVpd67NwAAAAAAACexgw4AAAAAAAAwEAEcAAAAAAAAICBCOAAAAAAAAAAA93xa8Bt2rRJAQEBSk/v\nuMbZ+fPntW7dOs2dO9dDld2czq7niuLiYp08eVKBgYFqa2vTV7/6Vc2YMaOHqwQAAAAAAEBX3fEB\nXGfCwsI8Er45nU75+PgYeo7MzEylpqaqtbVV/+///T899NBDGjhwoKHnBAAAAAAAwM3x2gBuz549\n2rp1q0wmk6KiojRmzBiVlJTI4XAoJCREOTk56tu3ryTpk08+UX5+vs6dO6f09HSlpaWpvr5ey5Yt\n08qVK1VeXq73339fLS0tOnv2rJKTkzV79uxOz52ZmamJEyfKarUqKChIubm5Cg0NVVlZmXbu3CmH\nw6FBgwYpJydH/v7+Ki4uVnBwsKqqqjRkyBAlJSVp3bp1kiSTyaT8/Hz16dNHpaWlOnjwoNra2pSc\nnKyZM2dKkkpKSrRnzx6Fh4crJCREMTExXbpHbW1tkiR/f/9budUAAAAAAAAwkFcGcNXV1SopKdGS\nJUsUGhqqxsZGSVJBQYFMJpN27typ0tJSZWVlSZLOnDmjgoIC2e125eXlKTEx8aoxq6qqVFRUJIvF\notzcXE2aNEnh4eHXPH9LS4uGDBmirKwsbdmyRZs3b1Z2drZSUlKUlpYmSdq4caN27dqlyZMnS5Jq\na2u1aNEimc1mFRYWKjs7W/Hx8bLb7fL19VVlZaVqa2u1dOlSuVwuFRUV6eTJkwoICNCBAwdUVFQk\np9OpvLy8GwZw69ev1zvvvKO6ujpNnjxZX/rSl67ap6ysTGVlZZKkwsLCLt55Y3R2n4G7mcVioTcA\nL0RvAt6HvgS8D30JdJ9XBnAnTpxQamqqQkNDJUnBwcE6c+aMXnnlFV24cEEOh6PDI5dJSUny8/OT\nn5+fRowYodOnTys6OrrDmAkJCQoMDJQkRUZGymazdfofhslk0tixYyVJ48eP14oVKyS1B4MbN27U\npUuXZLfbNWrUKPcxqampMpvb32kRHx+vt99+W+PGjVNKSor69++vyspKHTt2TM8//7wkyW63q66u\nTs3NzUpOTnbPYktKSrrh/bnyCKrdbtdLL72kU6dOadiwYR32SUtLc4eFnmaz2TxdAuB1wsPD6Q3A\nC9GbgPehLwHvQ18C7SIiIrq8r1cGcNfy5ptvaurUqUpKSpLVatXmzZvdv5lMpg77/uN3SfL19XV/\nNpvNcjqdXT73lfGKi4s1b948RUdHq7y8XFar1b1PQECA+3NGRoYSExN19OhRLVy4UIsWLXJvnzhx\nYoext23b1uU6/lFAQID+5V/+RR9++OFVARwAAAAAAAC8g9nTBVxLQkKCKioq1NDQIElqbGxUU1OT\nwsLCJLWvD/dFhw8fVmtrqxoaGmS1WhUbG3tL53e5XKqoqJAk7d+/X/Hx8ZLaZ63169dPDodD+/bt\n6/T4uro6RUVFKSMjQzExMaqpqdGoUaO0e/du2e12Se1vab148aKGDx/urr+5uVlHjhzpcp1Op1On\nT5/WoEGDbuFqAQAAAAAAYCSvnAE3ePBgPfroo1q8eLHMZrOio6M1Y8YMrVq1SmFhYYqLi1N9fb17\n/6FDh6qwsFA2m03Tp09XWFhYh9+7y9/fX9XV1crLy1NgYKCeffZZSdKsWbO0YMECDRgwQFFRUWpu\nbr7m8du3b5fVapXJZFJkZKRGjx4tX19f1dTUaOHChZLaZ6/l5OQoJiZGY8eO1bx58zRgwAB32Hc9\nV9aAczgcuu+++5SSknLT1woAAAAAAABjmVwul8vTRXibzMxMrV+/3tNl3FbVj9x4bTmj+Kwu9di5\nAW/FuhmAd6I3Ae9DXwLeh74E2nVnDTivfAQVAAAAAAAA6C288hHUnrJgwQK1tbV12JaTk+MVs9/W\nrFmjU6dOddg2ZcoUTZgw4abGYxYaAAAAAACAZ3TrEVSbzabz58/r3nvvNbImGOCzzz7zdAkAvoBp\n+4B3ojcB70NfAt6HvgTadecR1C7NgLPZbHr11VdVVVUlqf0lABUVFfrTn/6k73//+zdVJAAAAAAA\nAHA36NIacG+88YZGjx6tt956SxZLe2Y3cuRIHTt2zNDiAAAAAAAAgDtdlwK406dPKyMjQ2bz/797\nYGCgmpqaDCsMAAAAAAAA6A26FMB96UtfUl1dXYdtn376qcLDww0pCgAAAAAAAOgturQG3De/+U0t\nW7ZMGRkZunz5svbv36/f/va3ysjIMLo+AAAAAAAA4I7WpQDua1/7mkJCQlRWVqb+/ftr7969mjVr\nlpKTk42uDwAAAAAAALij3TCAu3z5sjZv3qxp06bpgQce6ImaAAAAAAAAgF7jhmvAmc1mvffee/Lx\n8emJegAAAAAAAIBepUsvYXjwwQe1Y8cOo2sBAAAAAAAAep0urQF3+vRpvfvuuyotLVX//v1lMpnc\nv+Xn5xtWHAAAAAAAAHCn61IA9/Wvf11f//rXja4FAAAAAAAA6HW6FMA9/PDDBpcBAAAAAAAA9E5d\nCuB27drV6W9f+9rXblsxMI7zqXSPndtndanHzg0AAAAAAOBpXQrg9u3b1+H73//+d9XV1Sk+Pp4A\nDgAAAAAAALiOLgVwL7744lXbdu3apZqamtteEAAAAAAAANCbmG/2wIcffvi6j6YCAAAAAAAA6OIM\nuMuXL3f43traqr179yooKMiQorpj06ZNCggIUHp6xzXOzp8/r3Xr1mnu3LkequzmdHY9X1RaWqpd\nu3bJx8dHZrNZU6dO1UMPPdSDVQIAAAAAAKCruhTAPf7441dtCwsL07//+7/f9oJul7CwMI+Eb06n\nUz4+PoaN/9577+n48eNaunSpAgMD1dTUpEOHDhl2PgAAAAAAANyaLgVwP//5zzt89/f3V2hoqCEF\nXbFnzx5t3bpVJpNJUVFRGjNmjEpKSuRwOBQSEqKcnBz17dtXkvTJJ58oPz9f586dU3p6utLS0lRf\nX69ly5Zp5cqVKi8v1/vvv6+WlhadPXtWycnJmj17dqfnzszM1MSJE2W1WhUUFKTc3FyFhoaqrKxM\nO3fulMPh0KBBg5STkyN/f38VFxcrODhYVVVVGjJkiJKSkrRu3TpJkslkUn5+vvr06aPS0lIdPHhQ\nbW1tSk5O1syZMyVJJSUl2rNnj8LDwxUSEqKYmJhOa/vtb3+rxYsXKzAwUJIUGBiohx9++DbddQAA\nAAAAANxuXQrgtm7dqu9973tXbf/lL3+pOXPm3O6aVF1drZKSEi1ZskShoaFqbGyUJBUUFMhkMmnn\nzp0qLS1VVlaWJOnMmTMqKCiQ3W5XXl6eEhMTrxqzqqpKRUVFslgsys3N1aRJkxQeHn7N87e0tGjI\nkCHKysrSli1btHnzZmVnZyslJUVpaWmSpI0bN2rXrl2aPHmyJKm2tlaLFi2S2WxWYWGhsrOzFR8f\nL7vdLl9fX1VWVqq2tlZLly6Vy+VSUVGRTp48qYCAAB04cEBFRUVyOp3Ky8vrNIBramqS3W7XoEGD\nbngPy8rKVFZWJkkqLCy84f5G6uw+A3czi8VCbwBeiN4EvA99CXgf+hLovi4FcHv27LlmALd3715D\nArgTJ04oNTXVPcsuODhYZ86c0SuvvKILFy7I4XBo4MCB7v2TkpLk5+cnPz8/jRgxQqdPn1Z0dHSH\nMRMSEtyzxiIjI2Wz2Tr9D8NkMmns2LGSpPHjx2vFihWS2oPBjRs36tKlS7Lb7Ro1apT7mNTUVJnN\n7e+0iI+P19tvv61x48YpJSVF/fv3V2VlpY4dO6bnn39ekmS321VXV6fm5mYlJyfL39/ffS23Q1pa\nmjss9DSbzebpEgCvEx4eTm8AXojeBLwPfQl4H/oSaBcREdHlfa8bwF15y6nT6bzqjaf19fUKCQm5\nifJuzptvvqmpU6cqKSlJVqtVmzdvdv9mMpk67PuP3yXJ19fX/dlsNsvpdHb53FfGKy4u1rx58xQd\nHa3y8nJZrVb3PgEBAe7PGRkZSkxM1NGjR7Vw4UItWrTIvX3ixIkdxt62bVuX6wgMDFRAQIDOnj3b\npVlwAAAAAAAA8Dzz9X7ct2+f9u3bJ4fD4f585U9dXZ2eeeYZQ4pKSEhQRUWFGhoaJEmNjY1qampS\nWFiYpPYZeV90+PBhtba2qqGhQVarVbGxsbd0fpfLpYqKCknS/v37FR8fL6l91lq/fv3c96MzdXV1\nioqKUkZGhmJiYlRTU6NRo0Zp9+7dstvtktrf0nrx4kUNHz7cXX9zc7OOHDly3doyMjK0du1aNTU1\nSWp/LPXKo6YAAAAAAADwPtedAffiiy9Kal/v7Nvf/naPFCRJgwcP1qOPPqrFixfLbDYrOjpaM2bM\n0KpVqxQWFqa4uDjV19e79x86dKgKCwtls9k0ffp0hYWFdfi9u/z9/VVdXa28vDwFBgbq2WeflSTN\nmjVLCxYs0IABAxQVFaXm5uZrHr99+3ZZrVaZTCZFRkZq9OjR8vX1VU1NjRYuXCipfcZcTk6OYmJi\nNHbsWM2bN08DBgxwh32d+dd//VfZ7XbNnz9fFotFPj4+mjp16k1fKwAAAAAAAIxlcrlcru4c4HK5\n9MVDrqx71ptkZmZq/fr1ni7jtqp+5PasLXczfFaXeuzcgLdi3QzAO9GbgPehLwHvQ18C7W7bGnBX\nnD9/XmvXrtX//d//6dKlSx1++81vftO96gAAAAAAAIC7SJcCuDfeeEP+/v768Y9/rBdffFH5+fna\nvHmzRo8ebXR9hlqwYIHa2to6bMvJyfGK2W9r1qzRqVOnOmybMmWKJkyYcFPjMQsNAAAAAADAM7oU\nwP35z3/W66+/roCAAJlMJkVHR+s//uM/9MILLygtLc3oGg2zdOlST5fQqSeffNLTJQAAAAAAAOA2\n6NICbmazWT4+PpKkoKAgff755/L399f58+cNLQ4AAAAAAAC403VpBtzQoUP1wQcfKDk5WaNGjdJP\nf/pT+fn5KTY21uj6AAAAAAAAgDtalwK4nJwc95tP58yZo61bt6q5uVmPPPKIocUBAAAAAAAAd7ou\nBXBBQUHuz35+fpo+fbphBQEAAAAAAAC9SZcCuLa2Nm3ZskUHDhxQQ0OD3nrrLVVWVqq2tlaTJk0y\nukYAAAAAAADgjtWllzC89dZbqq6u1g9/+EOZTCZJ0uDBg/Xee+8ZWhwAAAAAAABwp+vSDLhDhw7p\nZz/7mQICAtwBXFhYGG9BBQAAAAAAAG6gSzPgLBaLLl++3GHb559/rpCQEEOKAgAAAAAAAHqLLgVw\nqamp+vnPf676+npJ0oULF7R27VqNHTvW0OIAAAAAAACAO12nAdy7777r/jxx4kQNHDhQc+fOVVNT\nk374wx+qX79+euyxx3qkSAAAAAAAAOBO1ekacP/93//tfsPpj370I7311luaM2eO+9HTK2vBAQAA\nAAAAAOhcpwHcoEGD9PbbbysyMlIOh0O7d++Wy+W6ar+vfe1rhhYIAAAAAAAA3Mk6DeByc3NVWlqq\nAwcOyOl0au/evdfcjwDuzuB8Kr1HzuOzurRHzgMAAAAAAHCn6DSAi4iI0Pe//31J0ksvvaQfUdET\nMAAAIABJREFU//jHPVYUAAAAAAAA0Ft06S2ohG8AAAAAAADAzelSAAcAAAAAAADg5nT6COqdYNOm\nTQoICFB6esf1zc6fP69169Zp7ty5Hqrs5nR2PVcUFxfr5MmTCgwMVGtrq+Li4vT444+rf//+PVwp\nAAAAAAAAuuqODuA6ExYW5pHwzel0ysfHx9BzZGZmKjU1VS6XS9u2bdNLL72klStXymLplX+VAAAA\nAAAAdzyvTG327NmjrVu3ymQyKSoqSmPGjFFJSYkcDodCQkKUk5Ojvn37SpI++eQT5efn69y5c0pP\nT1daWprq6+u1bNkyrVy5UuXl5Xr//ffV0tKis2fPKjk5WbNnz+703JmZmZo4caKsVquCgoKUm5ur\n0NBQlZWVaefOnXI4HBo0aJBycnLk7++v4uJiBQcHq6qqSkOGDFFSUpLWrVsnSTKZTMrPz1efPn1U\nWlqqgwcPqq2tTcnJyZo5c6YkqaSkRHv27FF4eLhCQkIUExPTpXtkMpk0depUHT58WB988IEeeOCB\nW7zrAAAAAAAAMILXBXDV1dUqKSnRkiVLFBoaqsbGRklSQUGBTCaTdu7cqdLSUmVlZUmSzpw5o4KC\nAtntduXl5SkxMfGqMauqqlRUVCSLxaLc3FxNmjRJ4eHh1zx/S0uLhgwZoqysLG3ZskWbN29Wdna2\nUlJSlJaWJknauHGjdu3apcmTJ0uSamtrtWjRIpnNZhUWFio7O1vx8fGy2+3y9fVVZWWlamtrtXTp\nUrlcLhUVFenkyZMKCAjQgQMHVFRUJKfTqby8vC4HcFcMGTJENTU1VwVwZWVlKisrkyQVFhZ2a8xb\n0dl9BdCRxWKhXwAvRG8C3oe+BLwPfQl0n9cFcCdOnFBqaqpCQ0MlScHBwTpz5oxeeeUVXbhwQQ6H\nQwMHDnTvn5SUJD8/P/n5+WnEiBE6ffq0oqOjO4yZkJCgwMBASVJkZKRsNlun/1mYTCaNHTtWkjR+\n/HitWLFCUnswuHHjRl26dEl2u12jRo1yH5Oamiqzuf19FvHx8Xr77bc1btw4paSkqH///qqsrNSx\nY8f0/PPPS5Lsdrvq6urU3Nys5ORk+fv7u6+lu1wu1zW3p6WluQPDnmSz2Xr8nMCdKDw8nH4BvBC9\nCXgf+hLwPvQl0C4iIqLL+3pdAHctb775pqZOnaqkpCRZrVZt3rzZ/ZvJZOqw7z9+lyRfX1/3Z7PZ\nLKfT2eVzXxmvuLhY8+bNU3R0tMrLy2W1Wt37BAQEuD9nZGQoMTFRR48e1cKFC7Vo0SL39okTJ3YY\ne9u2bV2uozNVVVW67777bnkcAAAAAAAAGMPs6QL+UUJCgioqKtTQ0CBJamxsVFNTk8LCwiS1rw/3\nRYcPH1Zra6saGhpktVoVGxt7S+d3uVyqqKiQJO3fv1/x8fGS2met9evXTw6HQ/v27ev0+Lq6OkVF\nRSkjI0MxMTGqqanRqFGjtHv3btntdkntb2m9ePGihg8f7q6/ublZR44c6Vad27dv14ULF3T//fff\nwhUDAAAAAADASF43A27w4MF69NFHtXjxYpnNZkVHR2vGjBlatWqVwsLCFBcXp/r6evf+Q4cOVWFh\noWw2m6ZPn66wsLAOv3eXv7+/qqurlZeXp8DAQD377LOSpFmzZmnBggUaMGCAoqKi1NzcfM3jt2/f\nLqvVKpPJpMjISI0ePVq+vr6qqanRwoULJbXPmMvJyVFMTIzGjh2refPmacCAAe6w73rWr1+vd955\nRy0tLYqLi9OLL77IG1ABAAAAAAC8mMnV2SJid6nMzEytX7/e02XcdtWPdH99uZvhs7q0R84D3OlY\nNwPwTvQm4H3oS8D70JdAu+6sAed1j6ACAAAAAAAAvcld++ziggUL1NbW1mFbTk6OV8x+W7NmjU6d\nOtVh25QpUzRhwoSbHpOZaQAAAAAAAJ7BI6h3ic8++8zTJQD4AqbtA96J3gS8D30JeB/6EmjHI6gA\nAAAAAACAlyCAAwAAAAAAAAxEAAcAAAAAAAAYiAAOAAAAAAAAMBABHAAAAAAAAGAgAjgAAAAAAADA\nQARwAAAAAAAAgIEI4AAAAAAAAAADEcABAAAAAAAABiKAAwAAAAAAAAxEAAcAAAAAAAAYiAAOAAAA\nAAAAMJDF0wWgZzifSr8t4/isLr0t4wAAAAAAANwtmAEHAAAAAAAAGIgADgAAAAAAADAQARwAAAAA\nAABgoDs+gNu0aZNKS69el+z8+fNauXKlByq6NZ1dzxc5nU5lZ2frV7/6VQ9VBQAAAAAAgJt1xwdw\nnQkLC9PcuXN7/LxOp9Pwcxw7dkwRERGqqKiQy+Uy/HwAAAAAAAC4eV77FtQ9e/Zo69atMplMioqK\n0pgxY1RSUiKHw6GQkBDl5OSob9++kqRPPvlE+fn5OnfunNLT05WWlqb6+notW7ZMK1euVHl5ud5/\n/321tLTo7NmzSk5O1uzZszs9d2ZmpiZOnCir1aqgoCDl5uYqNDRUZWVl2rlzpxwOhwYNGqScnBz5\n+/uruLhYwcHBqqqq0pAhQ5SUlKR169ZJkkwmk/Lz89WnTx+Vlpbq4MGDamtrU3JysmbOnClJKikp\n0Z49exQeHq6QkBDFxMRc994cOHBAkydP1o4dO/TnP/9Zw4YNu013HQAAAAAAALebVwZw1dXVKikp\n0ZIlSxQaGqrGxkZJUkFBgUwmk3bu3KnS0lJlZWVJks6cOaOCggLZ7Xbl5eUpMTHxqjGrqqpUVFQk\ni8Wi3NxcTZo0SeHh4dc8f0tLi4YMGaKsrCxt2bJFmzdvVnZ2tlJSUpSWliZJ2rhxo3bt2qXJkydL\nkmpra7Vo0SKZzWYVFhYqOztb8fHxstvt8vX1VWVlpWpra7V06VK5XC4VFRXp5MmTCggI0IEDB1RU\nVCSn06m8vLzrBnCtra06fvy4nn76aTU1NenAgQPXDODKyspUVlYmSSosLOzG3b++zu4ZgO6xWCz0\nE+CF6E3A+9CXgPehL4Hu88oA7sSJE0pNTVVoaKgkKTg4WGfOnNErr7yiCxcuyOFwaODAge79k5KS\n5OfnJz8/P40YMUKnT59WdHR0hzETEhIUGBgoSYqMjJTNZuv0PwyTyaSxY8dKksaPH68VK1ZIag8G\nN27cqEuXLslut2vUqFHuY1JTU2U2tz/RGx8fr7ffflvjxo1TSkqK+vfvr8rKSh07dkzPP/+8JMlu\nt6uurk7Nzc1KTk6Wv7+/+1qu5+jRoxoxYoT8/PyUkpKid955R3PmzHGf+4q0tDR3WHg72Wy22z4m\ncDcKDw+nnwAvRG8C3oe+BLwPfQm0i4iI6PK+XhnAXcubb76pqVOnKikpSVarVZs3b3b/ZjKZOuz7\nj98lydfX1/3ZbDZ3a622K+MVFxdr3rx5io6OVnl5uaxWq3ufgIAA9+eMjAwlJibq6NGjWrhwoRYt\nWuTePnHixA5jb9u2rct1SNL+/ft16tQpPfPMM5KkhoYGnThxQiNHjuzWOAAAAAAAAOgZXvkShoSE\nBFVUVKihoUGS1NjYqKamJoWFhUlqXx/uiw4fPqzW1lY1NDTIarUqNjb2ls7vcrlUUVEhqT3wio+P\nl9Q+a61fv35yOBzat29fp8fX1dUpKipKGRkZiomJUU1NjUaNGqXdu3fLbrdLan9L68WLFzV8+HB3\n/c3NzTpy5Ein4zY1NenDDz/U66+/ruLiYhUXFys7O1v79++/pesFAAAAAACAcbxyBtzgwYP16KOP\navHixTKbzYqOjtaMGTO0atUqhYWFKS4uTvX19e79hw4dqsLCQtlsNk2fPl1hYWEdfu8uf39/VVdX\nKy8vT4GBgXr22WclSbNmzdKCBQs0YMAARUVFqbm5+ZrHb9++XVarVSaTSZGRkRo9erR8fX1VU1Oj\nhQsXSmqfMZeTk6OYmBiNHTtW8+bN04ABA9xh37UcOnRICQkJHWbzPfDAA9qwYYPa2to6bAcAAAAA\nAIB3MLlcLpeni/A2mZmZWr9+vafLuK2qH7n+2nJd5bO69LaMA9ztWDcD8E70JuB96EvA+9CXQLvu\nrAHnlY+gAgAAAAAAAL2FVz6C2lMWLFigtra2DttycnK8YvbbmjVrdOrUqQ7bpkyZogkTJtzUeMxc\nAwAAAAAA8AweQb1LfPbZZ54uAcAXMG0f8E70JuB96EvA+9CXQDseQQUAAAAAAAC8BAEcAAAAAAAA\nYCACOAAAAAAAAMBABHAAAAAAAACAgQjgAAAAAAAAAAMRwAEAAAAAAAAGIoADAAAAAAAADEQABwAA\nAAAAABiIAA4AAAAAAAAwEAEcAAAAAAAAYCACOAAAAAAAAMBABHAAAAAAAACAgSyeLgA9w/lU+m0Z\nx2d16W0ZBwAAAAAA4G7BDDgAAAAAAADAQARwAAD8f+zdf3RU9Z3/8dckk2T4kSwdBygBY0AkQ41Y\nYhYx2mq2g1rMpuSo5DQrIA2yu/akBzaMuHA4lXJGkyBiu6U9Bww5KytHfiwu0WaBM0ioSFl/QBHD\nxip2JATj7CQqkGQYMs73jxzna5oEk5CbuZbn46/cz7338/nc4bz543U+n3sBAAAAwEAEcAAAAAAA\nAICBCOAuo7W1VXv37pUktbS0aN26dZIkn8+no0ePRq+rra1VZWVlv/uvra1VcXGx3G63lixZolde\neWVwJg4AAAAAAADTIIC7jNbWVu3bt0+SZLfbVVpaKqkzgDt27NigjJGTk6O1a9dqzZo1eumllxQI\nBAalXwAAAAAAAJgDX0G9jK1bt6qpqUlut1vjxo1TY2OjysvLtW3bNoVCIdXX16ugoKDLPefOndPG\njRvV3NwsSVqwYIGcTufXjpWcnKxvf/vb+uyzz+RwOHrsZ8qUKSopKVFFRYVGjBghSfrZz36mX/zi\nFxo1atQgPz0AAAAAAAAGAwHcZRQVFamhoUFr166V3+9XeXm5rFarCgsLderUKRUXF0vq3Er6paqq\nKuXl5cnpdCoQCMjj8Wj9+vVfO1YgEFAoFFJaWtpl+8nOztYbb7yh3Nxcvf/++xo9enSP4ZvX65XX\n65UklZWVDcKv0cnhcAxaX8DVzGq1Uk+ACVGbgPlQl4D5UJdA/xHADbITJ07ozJkz0eO2tjYFg0HZ\nbLYerz98+LDq6up09uxZ/eM//qMSExMv209OTo527typ3Nxcvf7667rtttt67Nflcsnlcg3ik3Vi\niywwOBwOB/UEmBC1CZgPdQmYD3UJdEpNTe3ztQRwgywSicjj8USDtK+Tk5Oj4uJi/elPf9JTTz2l\n6dOna9SoUb32M2XKFDU1NencuXN68803df/99xvxGAAAAAAAABgkfIThMoYNG6b29vZu7Tabrcd2\nSZo2bZr27NkTPfb5fH0aa8qUKfr+97+vmpqay/ZjsVg0Y8YM/fu//7smTJig5OTkPj4NAAAAAAAA\nYoEA7jKSk5OVkZGh0tJS/cd//Ee0PTMzU42NjXK73Tp8+HCXexYuXKhTp05p2bJlWrp0afQrqn3x\nox/9SAcOHFB7e/tl+8nJydFrr73W6/ZTAAAAAAAAmIclEolEYj0JGK/hvuxB6Sd+U/Wg9ANc7Xhv\nBmBO1CZgPtQlYD7UJdCpP++AYwUcAAAAAAAAYCA+wjAEDhw4EH2325cyMjK0aNGiIZsDK9cAAAAA\nAABigwBuCOTm5io3NzfW0wAAAAAAAEAMsAUVAAAAAAAAMBABHAAAAAAAAGAgAjgAAAAAAADAQARw\nAAAAAAAAgIEI4AAAAAAAAAADEcABAAAAAAAABiKAAwAAAAAAAAxEAAcAAAAAAAAYiAAOAAAAAAAA\nMBABHAAAAAAAAGAgAjgAAAAAAADAQARwAAAAAAAAgIGssZ4Ahkb4kfwB3Re/qXqQZwIAAAAAAHB1\nYQUcAAAAAAAAYCACOAAAAAAAAMBABHAAAAAAAACAgXgH3AC1trbq0KFDuueee9TS0qKqqiqVlpbK\n5/OppaVFWVlZkqTa2lqdOnVKxcXF/eq/trZWW7Zs0TXXXKNgMKixY8fqgQceUEZGhhGPAwAAAAAA\nAIOwAm6AWltbtW/fPkmS3W5XaWmpJMnn8+nYsWODMkZOTo4qKir0q1/9Sj/60Y/09NNP68yZM92u\nC4fDgzIeAAAAAAAABh8r4AZo69atampqktvt1rhx49TY2Kjy8nJt27ZNoVBI9fX1Kigo6HLPuXPn\ntHHjRjU3N0uSFixYIKfT2afxMjMz5XK55PV69fDDD+uJJ57QlClT9N577yk7O1t///d/P+jPCAAA\nAAAAgCtHADdARUVFamho0Nq1a+X3+1VeXi6r1arCwsIuW05ra2uj91RVVSkvL09Op1OBQEAej0fr\n16/v85gTJ06U1+uNHre1tWn16tU9Xuv1eqPXlpWVDeAJOzkcjgHfC6B3VquV+gJMiNoEzIe6BMyH\nugT6jwBuCJ04caLLFtK2tjYFg0HZbLYB9ZeTk9PrOZfLJZfLNaB+vyoQCFxxHwC6czgc1BdgQtQm\nYD7UJWA+1CXQKTU1tc/XEsANoUgkIo/Ho8TExAHd/+c//1njx4+PHiclJQ3W1AAAAAAAAGAQPsIw\nQMOGDVN7e3u3dpvN1mO7JE2bNk179uyJHvt8vj6Pd/LkSXm9Xv3gBz/o91wBAAAAAAAQO6yAG6Dk\n5GRlZGSotLS0y6q0zMxM7d69W263u9tHGBYuXKjKykotW7ZM4XBYU6dO1eLFi3sd4/Dhw6qvr1co\nFNKYMWNUWlqqCRMmGPZMAAAAAAAAGHyWSCQSifUkYLyG+7IHdF/8pupBngkAifdmAGZFbQLmQ10C\n5kNdAp368w44tqACAAAAAAAABmILaowdOHBANTU1XdoyMjK0aNGiQR2HlWwAAAAAAACxQQAXY7m5\nucrNzY31NAAAAAAAAGAQtqACAAAAAAAABiKAAwAAAAAAAAxEAAcAAAAAAAAYiAAOAAAAAAAAMBAB\nHAAAAAAAAGAgAjgAAAAAAADAQARwAAAAAAAAgIEI4AAAAAAAAAADEcABAAAAAAAABiKAAwAAAAAA\nAAxEAAcAAAAAAAAYiAAOAAAAAAAAMJA11hPA0Ag/kt+v6+M3VRs0EwAAAAAAgKsLK+AAAAAAAAAA\nAxHAAQAAAAAAAAYigAMAAAAAAAAM9FfxDrjt27fLZrMpP7/re85aWlpUVVWl0tLSGM1sYHp7ni9t\n2LBBJ0+e1PDhwyVJubm5mj179lBOEQAAAAAAAH30VxHA9cZut8ckfAuHw4qPjzd0jHnz5mnmzJmG\njgEAAAAAAIArZ+oA7uDBg3r55ZdlsViUlpam2267Tbt27VJHR4eSk5NVUlKiUaNGSZI++ugjrV69\nWs3NzcrPz5fL5ZLf71d5ebnWrVun2tpavfXWW7p48aI++eQTzZgxQw899FCvY8+bN0+zZs1SXV2d\nRowYoSVLliglJUVer1f79+9XR0eHxo4dq5KSEiUlJWnDhg0aOXKkfD6fJk6cqOzsbFVVVUmSLBaL\nVq9erWHDhqm6ulp/+MMfdOnSJc2YMUNz586VJO3atUsHDx6Uw+FQcnKyJk2aZPwPDAAAAAAAAMOZ\nNoBraGjQrl27tGbNGqWkpOjChQuSJI/HI4vFov3796u6ulrz58+XJJ0+fVoej0fBYFDLly9XVlZW\ntz59Pp8qKipktVq1ZMkS3XvvvXI4HD2Of/HiRU2cOFHz58/Xzp07tWPHDhUXF+vWW2+Vy+WSJL34\n4ot69dVX9cMf/lCS9PHHH2vVqlWKi4tTWVmZiouL5XQ6FQwGlZCQoOPHj+vjjz/Wk08+qUgkooqK\nCp08eVI2m02vv/66KioqFA6HtXz58q8N4LZs2aL//M//lCSVlJQoLS2ty3mv1yuv1ytJKisr6+vP\nHtXb7wJgcFitVuoMMCFqEzAf6hIwH+oS6D/TBnDvvvuuZs6cqZSUFEnSyJEjdfr0aT377LP69NNP\n1dHRoTFjxkSvz87OVmJiohITE3XjjTfqgw8+UHp6epc+MzMzo+9NmzBhggKBQK//aVgsFuXk5EiS\nvve97+npp5+W1BkMvvjii2ptbVUwGNTNN98cvWfmzJmKi+v8roXT6dTzzz+vO+64Q7feequuueYa\nHT9+XO+8844ee+wxSVIwGFRTU5Pa29s1Y8YMJSUlRZ/l63zdFlSXyxUNCgciEAgM+F4AX8/hcFBn\ngAlRm4D5UJeA+VCXQKfU1NQ+X2vaAK4nmzdvVl5enrKzs1VXV6cdO3ZEz1ksli7X/uWxJCUkJET/\njouLUzgc7vPYX/a3YcMGud1upaenq7a2VnV1ddFrbDZb9O85c+YoKytLR48e1cqVK7Vq1apo+6xZ\ns7r0/bvf/a7P8wAAAAAAAMA3S1ysJ9CbzMxMHTlyROfPn5ckXbhwQW1tbbLb7ZI63w/3VW+++aZC\noZDOnz+vuro6XX/99Vc0fiQS0ZEjRyRJhw4dktPplNS5au1b3/qWOjo69Nprr/V6f1NTk9LS0jRn\nzhxNmjRJjY2Nuvnmm3XgwAEFg0FJnV9p/fzzzzV16tTo/Nvb2/X2229f0dwBAAAAAABgHqZdAXft\ntdeqoKBATzzxhOLi4pSenq4HH3xQzzzzjOx2u2644Qb5/f7o9ZMnT1ZZWZkCgYDuv/9+2e32Luf7\nKykpSQ0NDVq+fLmGDx+upUuXSpIKCwu1YsUKjR49WmlpaWpvb+/x/pqaGtXV1clisWjChAmaPn26\nEhIS1NjYqJUrV0rqXDFXUlKiSZMmKScnR263W6NHj46GfQAAAAAAAPjms0QikUisJ2FG8+bN05Yt\nW2I9jUHTcN/Xv1fuq+I3VRs0EwAS780AzIraBMyHugTMh7oEOvXnHXCm3YIKAAAAAAAA/DUw7RbU\nobJixQpdunSpS1tJSYkpVr8999xzeu+997q0zZ49W7m5uf3uixVtAAAAAAAAscEW1KvE2bNnYz0F\nAF/Bsn3AnKhNwHyoS8B8qEugE1tQAQAAAAAAAJMggAMAAAAAAAAMRAAHAAAAAAAAGIgADgAAAAAA\nADAQARwAAAAAAABgIAI4AAAAAAAAwEAEcAAAAAAAAICBCOAAAAAAAAAAAxHAAQAAAAAAAAYigAMA\nAAAAAAAMRAAHAAAAAAAAGMga6wlgaIQfye+xPX5T9RDPBAAAAAAA4OrCCjgAAAAAAADAQARwAAAA\nAAAAgIEI4AAAAAAAAAADfaPfAbd9+3bZbDbl53d9v1lLS4uqqqpUWloao5kNTG/P81WvvPKKvF6v\n4uPjFRcXp8zMTP3DP/yDrNZv9D8lAAAAAADAX62/ytTGbrfHJHwLh8OKj483rP99+/bp+PHj8ng8\nGjFihDo6OvTKK68oFAoRwAEAAAAAAJiUKVObgwcP6uWXX5bFYlFaWppuu+027dq1Sx0dHUpOTlZJ\nSYlGjRolSfroo4+0evVqNTc3Kz8/Xy6XS36/X+Xl5Vq3bp1qa2v11ltv6eLFi/rkk080Y8YMPfTQ\nQ72OPW/ePM2aNUt1dXUaMWKElixZopSUFHm9Xu3fv18dHR0aO3asSkpKlJSUpA0bNmjkyJHy+Xya\nOHGisrOzVVVVJUmyWCxavXq1hg0bpurqav3hD3/QpUuXNGPGDM2dO1eStGvXLh08eFAOh0PJycma\nNGlSr3N76aWXtHr1ao0YMUKSZLVaNWfOnMH62QEAAAAAAGAA0wVwDQ0N2rVrl9asWaOUlBRduHBB\nkuTxeGSxWLR//35VV1dr/vz5kqTTp0/L4/EoGAxq+fLlysrK6tanz+dTRUWFrFarlixZonvvvVcO\nh6PH8S9evKiJEydq/vz52rlzp3bs2KHi4mLdeuutcrlckqQXX3xRr776qn74wx9Kkj7++GOtWrVK\ncXFxKisrU3FxsZxOp4LBoBISEnT8+HF9/PHHevLJJxWJRFRRUaGTJ0/KZrPp9ddfV0VFhcLhsJYv\nX95rANfW1qZgMKgxY8b06Xf0er3yer2SpLKysl6v6+13AGAsq9VK/QEmRG0C5kNdAuZDXQL9Z7oA\n7t1339XMmTOVkpIiSRo5cqROnz6tZ599Vp9++qk6Ojq6hFDZ2dlKTExUYmKibrzxRn3wwQdKT0/v\n0mdmZqaGDx8uSZowYYICgUCv/1lYLBbl5ORIkr73ve/p6aefltQZDL744otqbW1VMBjUzTffHL1n\n5syZiovr/J6F0+nU888/rzvuuEO33nqrrrnmGh0/flzvvPOOHnvsMUlSMBhUU1OT2tvbNWPGDCUl\nJUWfpa/++Mc/6oUXXlBbW5t+9rOfKSMjo8t5l8sVDQwvJxAI9HlMAIPH4XBQf4AJUZuA+VCXgPlQ\nl0Cn1NTUPl9rugCuJ5s3b1ZeXp6ys7NVV1enHTt2RM9ZLJYu1/7lsSQlJCRE/46Li1M4HO7z2F/2\nt2HDBrndbqWnp6u2tlZ1dXXRa2w2W/TvOXPmKCsrS0ePHtXKlSu1atWqaPusWbO69P273/2uz/MY\nPny4bDab/H6/xowZo+9+97v67ne/q7KyMnV0dPS5HwAAAAAAAAytuFhP4C9lZmbqyJEjOn/+vCTp\nwoULamtrk91ul9T5frivevPNNxUKhXT+/HnV1dXp+uuvv6LxI5GIjhw5Ikk6dOiQnE6npM5Va9/6\n1rfU0dGh1157rdf7m5qalJaWpjlz5mjSpElqbGzUzTffrAMHDigYDErq/Err559/rqlTp0bn397e\nrrfffvuyc5szZ442bdqk1tbW6FwvXbp0Rc8LAAAAAAAAY5luBdy1116rgoICPfHEE4qLi1N6eroe\nfPBBPfPMM7Lb7brhhhvk9/uj10+ePFllZWUKBAK6//77Zbfbu5zvr6SkJDU0NGj58uUaPny4li5d\nKkkqLCzUihUrNHr0aKWlpam9vb3H+2tqalRXVyeLxaIJEyZo+vTpSkhIUGNjo1auXCmpc8VcSUmJ\nJk2apJycHLndbo0ePToa9vXm7rvv1sWLF7VixQolJCTIZrMpIyNDEydOHPDzAgAAAACu7ivDAAAg\nAElEQVQAwFiWSCQSifUkzGTevHnasmVLrKcx6Bru6/n9cvGbqod4JgAk3psBmBW1CZgPdQmYD3UJ\ndOrPO+BMtwUVAAAAAAAA+Gtiui2oQ2XFihXd3p9WUlJiitVvzz33nN57770ubbNnz1Zubu6A+2Sl\nGwAAAAAAQGywBfUqcfbs2VhPAcBXsGwfMCdqEzAf6hIwH+oS6MQWVAAAAAAAAMAkCOAAAAAAAAAA\nAxHAAQAAAAAAAAYigAMAAAAAAAAMRAAHAAAAAAAAGIgADgAAAAAAADAQARwAAAAAAABgIAI4AAAA\nAAAAwEAEcAAAAAAAAICBCOAAAAAAAAAAAxHAAQAAAAAAAAYigAMAAAAAAAAMZI31BDA0wo/kd2uL\n31Qdg5kAAAAAAABcXVgBBwAAAAAAABiIAA4AAAAAAAAwEAEcAAAAAAAAYKCrNoBrbW3V3r17JUkt\nLS1at26dJMnn8+no0aPR62pra1VZWdnv/mtrazV37ly988470bY33nhDc+fO1ZEjRy5777Zt27rc\nBwAAAAAAgG+uqzqA27dvnyTJbrertLRUUmcAd+zYsUEZIy0tTYcPH44ev/7667ruuuu+9r7CwkJN\nmzatz+N88cUXA5ofAAAAAAAAjHfVfgV169atampqktvt1rhx49TY2Kjy8nJt27ZNoVBI9fX1Kigo\n6HLPuXPntHHjRjU3N0uSFixYIKfT2esYTqdT9fX16ujoUEdHh5qampSenh49v3PnTr399tsKhUKa\nMmWKFi9eLIvFog0bNuiWW27RzJkzdeLECW3ZskXhcFjXX3+9HnnkESUkJOinP/2pcnNzdfz4cd17\n7726/fbbDfmdAAAAAAAAcGWu2gCuqKhIDQ0NWrt2rfx+v8rLy2W1WlVYWKhTp06puLhYUudW0i9V\nVVUpLy9PTqdTgUBAHo9H69ev73UMi8Wim266ScePH1dbW5uys7Pl9/uj5++991498MADkqR/+7d/\n09tvv63s7Ozo+VAopN/85jdatWqVUlNT9etf/1r79u3TfffdJ0lKSEjQmjVrehzb6/XK6/VKksrK\nynq8xuFw9OGXAmAEq9VKDQImRG0C5kNdAuZDXQL9d9UGcANx4sQJnTlzJnrc1tamYDAom83W6z23\n3367ampq1NbWpvnz5+ull16Knnv33XdVXV2tixcv6sKFC7r22mu7BHBnz57VmDFjlJqaKkm68847\ntXfv3mgAl5OT0+u4LpdLLpfrss8TCAQu/8AADONwOKhBwISoTcB8qEvAfKhLoNOXeU1fEMD1QyQS\nkcfjUWJiYp/vmTx5shoaGpSYmNjlHyYUCqmyslJPPfWUHA6Htm/frlAo1K/5JCUl9et6AAAAAAAA\nDL2r9iMMw4YNU3t7e7d2m83WY7skTZs2TXv27Ike+3y+Po1VVFSkH//4x13aLl26JElKSUlRMBjU\n//zP/3S7LzU1VX6/X01NTZKk3//+9/rOd77TpzEBAAAAAABgDlftCrjk5GRlZGSotLRU48ePj7Zn\nZmZq9+7dcrvd3T7CsHDhQlVWVmrZsmUKh8OaOnWqFi9e/LVjTZ8+vVvbiBEj9IMf/EClpaUaM2aM\nrr/++m7XJCYm6tFHH9UzzzwT/QjDrFmzBvC0AAAAAAAAiBVLJBKJxHoS6KqsrEx5eXnKzMwctD4b\n7svu1ha/qXrQ+gfQP7w3AzAnahMwH+oSMB/qEujUn3fAXbVbUM3qN7/5jUKhkJxOZ6ynAgAAAAAA\ngEFw1W5BHSwHDhxQTU1Nl7aMjAwtWrRoQP09+uijgzGtbljtBgAAAAAAEBsEcFcoNzdXubm5sZ4G\nAAAAAAAATIotqAAAAAAAAICBCOAAAAAAAAAAAxHAAQAAAAAAAAYigAMAAAAAAAAMRAAHAAAAAAAA\nGIgADgAAAAAAADAQARwAAAAAAABgIAI4AAAAAAAAwEAEcAAAAAAAAICBCOAAAAAAAAAAAxHAAQAA\nAAAAAAYigAMAAAAAAAAMZI31BDA0wo/kdzmO31Qdo5kAAAAAAABcXVgBBwAAAAAAABiIAA4AAAAA\nAAAwEAEcAAAAAAAAYCACuD5qbW3V3r17JUktLS1at26dJMnn8+no0aPR62pra1VZWTmgMY4dO6bH\nH39cS5cu1ZIlS/T8889f9vrt27erupp3uQEAAAAAAJgZH2Hoo9bWVu3bt0/33HOP7Ha7SktLJXUG\ncKdOnVJWVtYV9X/69Glt3rxZjz/+uMaPH69wOKz9+/cPxtQBAAAAAAAQQwRwfbR161Y1NTXJ7XZr\n3LhxamxsVHl5ubZt26ZQKKT6+noVFBR0uefcuXPauHGjmpubJUkLFiyQ0+nssf/q6moVFBRo/Pjx\nkqT4+HjdfffdkiS/36/f/va3On/+vFJSUvToo4/K4XAY+LQAAAAAAAAYLARwfVRUVKSGhgatXbtW\nfr9f5eXlslqtKiws1KlTp1RcXCypcwvql6qqqpSXlyen06lAICCPx6P169f32H9DQ4Py8vJ6PLd5\n82bdeeeduuuuu/Tqq69q8+bNeuyxxy47X6/XK6/XK0kqKyvrdp4AD4gtq9VKHQImRG0C5kNdAuZD\nXQL9RwBnoBMnTujMmTPR47a2NgWDQdlstn718/7772vZsmWSpO9///t64YUXvvYel8sll8vV6/lA\nINCvOQAYXA6HgzoETIjaBMyHugTMh7oEOqWmpvb5WgI4A0UiEXk8HiUmJn7ttRMmTNCHH36o9PR0\n4ycGAAAAAACAIcNXUPto2LBham9v79Zus9l6bJekadOmac+ePdFjn8/Xa//5+fl66aWXdPbsWUnS\nF198oVdeeUWSNGXKFB0+fFiSdOjQoV7fIwcAAAAAAADzYQVcHyUnJysjI0OlpaXRDyVIUmZmpnbv\n3i23293tIwwLFy5UZWWlli1bpnA4rKlTp2rx4sU99n/dddfp4Ycf1i9/+UuFQiFJ0i233CJJ+slP\nfqLf/OY3qq6ujn6EAQAAAAAAAN8MlkgkEon1JGC8hvuyuxzHb6qO0UwASLw3AzArahMwH+oSMB/q\nEujUn3fAsQUVAAAAAAAAMBBbUIfYgQMHVFNT06UtIyNDixYtMnRcVrwBAAAAAADEBgHcEMvNzVVu\nbm6spwEAAAAAAIAhwhZUAAAAAAAAwEAEcAAAAAAAAICBCOAAAAAAAAAAAxHAAQAAAAAAAAYigAMA\nAAAAAAAMRAAHAAAAAAAAGIgADgAAAAAAADAQARwAAAAAAABgIAI4AAAAAAAAwEAEcAAAAAAAAICB\nCOAAAAAAAAAAAxHAAQAAAAAAAAayxnoCGBrhR/Kjf8dvqo7hTAAAAAAAAK4urIADAAAAAAAADEQA\nBwAAAAAAABiIAA4AAAAAAAAwEAFcP7W2tmrv3r2SpJaWFq1bt06S5PP5dPTo0eh1tbW1qqys7Hf/\ntbW1mjt3rt55551o2xtvvKG5c+fqyJEjVzh7AAAAAAAADDUCuH5qbW3Vvn37JEl2u12lpaWSOgO4\nY8eODcoYaWlpOnz4cPT49ddf13XXXTcofQMAAAAAAGBo8RXUftq6dauamprkdrs1btw4NTY2qry8\nXNu2bVMoFFJ9fb0KCgq63HPu3Dlt3LhRzc3NkqQFCxbI6XT2OobT6VR9fb06OjrU0dGhpqYmpaen\nR8+/8MILeuuttxQfH69p06Zp/vz5hjwrAAAAAAAArhwBXD8VFRWpoaFBa9euld/vV3l5uaxWqwoL\nC3Xq1CkVFxdL6txK+qWqqirl5eXJ6XQqEAjI4/Fo/fr1vY5hsVh000036fjx42pra1N2drb8fr8k\n6fz583rjjTf07LPPymKxqLW1tcc+vF6vvF6vJKmsrKzLOYfDcSU/AYBBYLVaqUXAhKhNwHyoS8B8\nqEug/wjghsCJEyd05syZ6HFbW5uCwaBsNluv99x+++2qqalRW1ub5s+fr5deekmSNHz4cCUmJuq3\nv/2tbrnlFt1yyy093u9yueRyuXo8FwgEruBpAAwGh8NBLQImRG0C5kNdAuZDXQKdUlNT+3wtAdwQ\niEQi8ng8SkxM7PM9kydPVkNDgxITE7v8g8bHx+vJJ5/UiRMndPjwYe3Zs0c///nPjZg2AAAAAAAA\nBgEfYeinYcOGqb29vVu7zWbrsV2Spk2bpj179kSPfT5fn8YqKirSj3/84y5twWBQbW1tysrK0sMP\nP9znvgAAAAAAABAbrIDrp+TkZGVkZKi0tFTjx4+PtmdmZmr37t1yu93dPsKwcOFCVVZWatmyZQqH\nw5o6daoWL178tWNNnz69W1t7e7sqKip06dIlRSIRLViw4MofCgAAAAAAAIaxRCKRSKwnAeM13Jcd\n/Tt+U3UMZwJA4r0ZgFlRm4D5UJeA+VCXQKf+vAOOLagAAAAAAACAgdiCGiMHDhxQTU1Nl7aMjAwt\nWrTIkPFY9QYAAAAAABAbBHAxkpubq9zc3FhPAwAAAAAAAAZjCyoAAAAAAABgIAI4AAAAAAAAwEAE\ncAAAAAAAAICBCOAAAAAAAAAAAxHAAQAAAAAAAAYigAMAAAAAAAAMRAAHAAAAAAAAGIgADgAAAAAA\nADAQARwAAAAAAABgIAI4AAAAAAAAwEAEcAAAAAAAAICBCOAAAAAAAAAAA1ljPQEMjfAj+dG/4zdV\nx3AmAAAAAAAAVxdWwAEAAAAAAAAGIoADAAAAAAAADEQABwAAAAAAABiIAO4rWltbtXfvXklSS0uL\n1q1bJ0ny+Xw6evRo9Lra2lpVVlYOaIxjx47p8ccf19KlS7VkyRI9//zzA+rH7/fr0KFDA7oXAAAA\nAAAAQ4cA7itaW1u1b98+SZLdbldpaamkzgDu2LFjV9z/6dOntXnzZpWUlGj9+vVat26dvv3tbw+o\nr//7v/8jgAMAAAAAAPgG4CuoX7F161Y1NTXJ7XZr3LhxamxsVHl5ubZt26ZQKKT6+noVFBR0uefc\nuXPauHGjmpubJUkLFiyQ0+nssf/q6moVFBRo/PjxkqT4+HjdfffdkqS33npLu3btUkdHh5KTk1VS\nUqJRo0Zp+/bt+uSTT9TS0qLm5mbl5+fL5XJp69atOnPmjNxut+68807l5eUZ+MsAAAAAAABgoAjg\nvqKoqEgNDQ1au3at/H6/ysvLZbVaVVhYqFOnTqm4uFhS5xbUL1VVVSkvL09Op1OBQEAej0fr16/v\nsf+GhoZegzKn0ymPxyOLxaL9+/erurpa8+fPl9S5cs7j8SgYDGr58uXKyspSUVGRXn75ZT3++OM9\n9uf1euX1eiVJZWVlXc45HI5+/S4ABp/VaqUWAROiNgHzoS4B86Eugf4jgLtCJ06c0JkzZ6LHbW1t\nCgaDstls/eqnpaVFzz77rD799FN1dHRozJgx0XPZ2dlKTExUYmKibrzxRn3wwQcaMWLEZftzuVxy\nuVw9ngsEAv2aG4DB53A4qEXAhKhNwHyoS8B8qEugU2pqap+vJYC7QpFIRB6PR4mJiV977YQJE/Th\nhx8qPT2927nNmzcrLy9P2dnZqqur044dO6LnLBZLl2v/8hgAAAAAAADmxUcYvmLYsGFqb2/v1m6z\n2Xpsl6Rp06Zpz5490WOfz9dr//n5+XrppZd09uxZSdIXX3yhV155RVLnyjm73S5JOnjwYJf73nzz\nTYVCIZ0/f151dXW6/vrre50rAAAAAAAAzIUVcF+RnJysjIwMlZaWRj+UIEmZmZnavXu33G53t48w\nLFy4UJWVlVq2bJnC4bCmTp2qxYsX99j/ddddp4cffli//OUvFQqFJEm33HKLJOnBBx/UM888I7vd\nrhtuuEF+vz963+TJk1VWVqZAIKD7779fdrtdKSkpiouL4yMMAAAAAAAAJmeJRCKRWE8Cvdu+fbts\nNpvy8/OvqJ+G+7Kjf8dvqr7SaQG4Qrw3AzAnahMwH+oSMB/qEujUn3fAsQUVAAAAAAAAMBBbUA1w\n4MAB1dTUdGnLyMjQokWL+t3X3LlzB2VOrHoDAAAAAACIDQI4A+Tm5io3NzfW0wAAAAAAAIAJsAUV\nAAAAAAAAMBABHAAAAAAAAGAgAjgAAAAAAADAQARwAAAAAAAAgIEI4AAAAAAAAAADEcABAAAAAAAA\nBiKAAwAAAAAAAAxEAAcAAAAAAAAYiAAOAAAAAAAAMBABHAAAAAAAAGAgAjgAAAAAAADAQARwAAAA\nAAAAgIGssZ4Ahkb4kfzo3/GbqmM4EwAAAAAAgKsLK+AAAAAAAAAAAxHAAQAAAAAAAAYigAMAAAAA\nAAAMxDvgetHa2qpDhw7pnnvuUUtLi6qqqlRaWiqfz6eWlhZlZWVJkmpra3Xq1CkVFxf3q//a2lpt\n2bJF11xzjYLBoMaOHasHHnhAGRkZRjwOAAAAAAAAYoQVcL1obW3Vvn37JEl2u12lpaWSJJ/Pp2PH\njg3KGDk5OaqoqNCvfvUr/ehHP9LTTz+tM2fODErfAAAAAAAAMAdWwPVi69atampqktvt1rhx49TY\n2Kjy8nJt27ZNoVBI9fX1Kigo6HLPuXPntHHjRjU3N0uSFixYIKfT2afxMjMz5XK55PV69fDDD8vn\n82nTpk26ePGixo4dq3/+53/WyJEj9cQTT2jy5Mmqq6tTW1ub/umf/klTp04d9OcHAAAAAADA4CCA\n60VRUZEaGhq0du1a+f1+lZeXy2q1qrCwsMuW09ra2ug9VVVVysvLk9PpVCAQkMfj0fr16/s85sSJ\nE+X1eiVJv/71r/WTn/xE3/nOd7Rt2zbt3LlTDz/8sCTpiy++0FNPPaWjR49q586dWrVqVbe+vF5v\ntK+ysrIu5xwOR39+CgAGsFqt1CJgQtQmYD7UJWA+1CXQfwRwg+jEiRNdtpC2tbUpGAzKZrP1q5+2\ntja1trbqO9/5jiTpzjvv7BLkzZgxQ5I0adIk+f3+HvtwuVxyuVw9ngsEAv2aD4DB53A4qEXAhKhN\nwHyoS8B8qEugU2pqap+vJYAbRJFIRB6PR4mJiQO6/89//rPGjx//tdclJCRIkuLi4vTFF18MaCwA\nAAAAAAAMDT7C0Ithw4apvb29W7vNZuuxXZKmTZumPXv2RI99Pl+fxzt58qS8Xq9+8IMfaPjw4Ro5\ncqT+93//V5L0+9//nve8AQAAAAAAfEOxAq4XycnJysjIUGlpaZdVaZmZmdq9e7fcbne3jzAsXLhQ\nlZWVWrZsmcLhsKZOnarFixf3Osbhw4dVX1+vUCikMWPGqLS0VBMmTJAk/fSnP41+hGHMmDF69NFH\njXlQAAAAAAAAGMoSiUQisZ4EjNdwX3b07/hN1TGcCQCJ92YAZkVtAuZDXQLmQ10CnfrzDji2oAIA\nAAAAAAAGYguqwQ4cOKCampoubRkZGVq0aNGQzoNVbwAAAAAAALFBAGew3Nxc5ebmxnoaAAAAAAAA\niBG2oAIAAAAAAAAGIoADAAAAAAAADEQABwAAAAAAABiIAA4AAAAAAAAwEAEcAAAAAAAAYCACOAAA\nAAAAAMBABHAAAAAAAACAgQjgAAAAAAAAAAMRwAEAAAAAAAAGIoADAAAAAAAADEQABwAAAAAAABiI\nAA4AAAAAAAAwEAHcVSL8SL7Cj+THehoAAAAAAABXHQI4AAAAAAAAwEAEcAAAAAAAAICBCOAAAAAA\nAAAAAxHADUBra6v27t0rSWppadG6deskST6fT0ePHo1eV1tbq8rKyn73/9lnn6msrExut1tLly7V\nU0891W0sAAAAAAAAfDNYYz2Bb6LW1lbt27dP99xzj+x2u0pLSyV1BnCnTp1SVlbWFfW/fft2TZs2\nTbNnz5YkffTRR5LUZayvCofDio+Pv6IxAQAAAAAAYAwCuAHYunWrmpqa5Ha7NW7cODU2Nqq8vFzb\ntm1TKBRSfX29CgoKutxz7tw5bdy4Uc3NzZKkBQsWyOl09tj/p59+qmnTpkWPr7vuOkmS3+9XeXm5\n1q1bp9raWh09elShUEgXL17Uz3/+c4OeFgAAAAAAAFeCAG4AioqK1NDQoLVr10ZDMavVqsLCQp06\ndUrFxcWSOregfqmqqkp5eXlyOp0KBALyeDxav359j/3fc889evbZZ7V3717ddNNNuuuuu2S327td\n96c//UlPP/20Ro4c2e2c1+uV1+uVJJWVlUXbHQ7HlTw6gEFitVqpR8CEqE3AfKhLwHyoS6D/COCG\nyIkTJ3TmzJnocVtbm4LBoGw2W7drv/vd7+rXv/61/vjHP+rYsWNavnx5j+9+mzZtWo/hmyS5XC65\nXK5u7YFA4AqeAsBgcTgc1CNgQtQmYD7UJWA+1CXQKTU1tc/XEsANkUgkIo/Ho8TExD5dP3LkSN1x\nxx264447VFZWppMnT2rSpEldrklKSjJiqgAAAAAAABhEfAV1AIYNG6b29vZu7Tabrcd2qXO12p49\ne6LHPp+v1/7fffddXbx4UZLU3t6uTz75hOW9AAAAAAAA31CsgBuA5ORkZWRkqLS0VOPHj4+2Z2Zm\navfu3XK73d0+wrBw4UJVVlZq2bJlCofDmjp1qhYvXtxj/x9++KEqKysVHx+vSCSiv/u7v9PkyZPl\n9/sNfS4AAAAAAAAMPkskEonEehIwXsN92ZKk+E3VMZ4JAIn3ZgBmRW0C5kNdAuZDXQKd+vMOOLag\nAgAAAAAAAAZiC2oMHThwQDU1NV3aMjIytGjRokEfi5VvAAAAAAAAsUEAF0O5ubnKzc2N9TQAAAAA\nAABgILagAgAAAAAAAAYigAMAAAAAAAAMRAAHAAAAAAAAGIgADgAAAAAAADAQARwAAAAAAABgIAI4\nAAAAAAAAwEAEcAAAAAAAAICBCOAAAAAAAAAAAxHAAQAAAAAAAAYigAMAAAAAAAAMRAAHAAAAAAAA\nGIgADgAAAAAAADAQAdxVIvxIvsKP5Md6GgAAAAAAAFcdAjgAAAAAAADAQARwAAAAAAAAgIEI4AAA\nAAAAAAADWWM9gcGwfft22Ww25ed3fcdZS0uLqqqqVFpaGqOZDUxvzyNJzz33nN577z11dHTI7/cr\nNTVVknT//fdr5syZQz1VAAAAAAAAfI2/igCuN3a7PSbhWzgcVnx8vCF9L1q0SJLk9/tVXl6utWvX\nGjIOAAAAAAAABoepA7iDBw/q5ZdflsViUVpamm677Tbt2rVLHR0dSk5OVklJiUaNGiVJ+uijj7R6\n9Wo1NzcrPz9fLpcrGlKtW7dOtbW1euutt3Tx4kV98sknmjFjhh566KFex543b55mzZqluro6jRgx\nQkuWLFFKSoq8Xq/279+vjo4OjR07ViUlJUpKStKGDRs0cuRI+Xw+TZw4UdnZ2aqqqpIkWSwWrV69\nWsOGDVN1dbX+8Ic/6NKlS5oxY4bmzp0rSdq1a5cOHjwoh8Oh5ORkTZo0yfgfGAAAAAAAAIYzbQDX\n0NCgXbt2ac2aNUpJSdGFCxckSR6PRxaLRfv371d1dbXmz58vSTp9+rQ8Ho+CwaCWL1+urKysbn36\nfD5VVFTIarVqyZIluvfee+VwOHoc/+LFi5o4caLmz5+vnTt3aseOHSouLtatt94ql8slSXrxxRf1\n6quv6oc//KEk6eOPP9aqVasUFxensrIyFRcXy+l0KhgMKiEhQcePH9fHH3+sJ598UpFIRBUVFTp5\n8qRsNptef/11VVRUKBwOa/ny5VccwHm9Xnm9XklSWVlZtL235wUwtKxWK/UImBC1CZgPdQmYD3UJ\n9J9pA7h3331XM2fOVEpKiiRp5MiROn36tJ599ll9+umn6ujo0JgxY6LXZ2dnKzExUYmJibrxxhv1\nwQcfKD09vUufmZmZGj58uCRpwoQJCgQCvf6nYbFYlJOTI0n63ve+p6efflpSZzD44osvqrW1VcFg\nUDfffHP0npkzZyourvO7Fk6nU88//7zuuOMO3Xrrrbrmmmt0/PhxvfPOO3rsscckScFgUE1NTWpv\nb9eMGTOUlJQUfZYr5XK5okHhVwUCgSvuG8CVczgc1CNgQtQmYD7UJWA+1CXQ6cv38veFaQO4nmze\nvFl5eXnKzs5WXV2dduzYET1nsVi6XPuXx5KUkJAQ/TsuLk7hcLjPY3/Z34YNG+R2u5Wenq7a2lrV\n1dVFr7HZbNG/58yZo6ysLB09elQrV67UqlWrou2zZs3q0vfvfve7Ps8DAAAAAAAA3yxxsZ5AbzIz\nM3XkyBGdP39eknThwgW1tbXJbrdL6nw/3Fe9+eabCoVCOn/+vOrq6nT99ddf0fiRSERHjhyRJB06\ndEhOp1NS56q1b33rW+ro6NBrr73W6/1NTU1KS0vTnDlzNGnSJDU2Nurmm2/WgQMHFAwGJXV+pfXz\nzz/X1KlTo/Nvb2/X22+/fUVzBwAAAAAAgHmYdgXctddeq4KCAj3xxBOKi4tTenq6HnzwQT3zzDOy\n2+264YYb5Pf7o9dPnjxZZWVlCgQCuv/++2W327uc76+kpCQ1NDRo+fLlGj58uJYuXSpJKiws1IoV\nKzR69GilpaWpvb29x/trampUV1cni8WiCRMmaPr06UpISFBjY6NWrlwpqXPFXElJiSZNmqScnBy5\n3W6NHj06GvYBAAAAAADgm88SiUQisZ6EGc2bN09btmyJ9TQGTcN9ne+Vi99UHeOZAJB4bwZgVtQm\nYD7UJWA+1CXQqT/vgDPtFlQAAAAAAADgr4Fpt6AOlRUrVujSpUtd2kpKSkyx+u25557Te++916Vt\n9uzZys3N7XdfrHwDAAAAAACIDbagXiXOnj0b6ykA+AqW7QPmRG0C5kNdAuZDXQKd2IIKAAAAAAAA\nmAQBHAAAAAAAAGAgAjgAAAAAAADAQARwAAAAAAAAgIEI4AAAAAAAAAADEcABAAAAAAAABiKAAwAA\nAAAAAAxEAAcAAAAAAAAYiAAOAAAAAAAAMBABHAAAAAAAAGAgAjgAAAAAAADAQARwAAAAAAAAgIEI\n4K4S4UfyYz0FAAAAAACAqxIBHAAAAAAAAGAgAjgAAAAAAADAQN/YAK61tVV790fHOIUAACAASURB\nVO6VJLW0tGjdunWSJJ/Pp6NHj0avq62tVWVlZb/7H+h9klRXV6eysrJu7du3b1d1dfWA+gQAAAAA\nAMA30zc6gNu3b58kyW63q7S0VFJnAHfs2LFYTm3IffHFF7GeAgAAAAAAAHphjfUEBmrr1q1qamqS\n2+3WuHHj1NjYqPLycm3btk2hUEj19fUqKCjocs+5c+e0ceNGNTc3S5IWLFggp9P5tWP5/X799re/\n1fnz55WSkqJHH31UDodDGzZs0LBhw/Thhx/qs88+00MPPaSZM2d2ufeDDz7Qxo0b9S//8i+SpDNn\nzuiJJ55QIBDQ7NmzNXv2bEnS73//e/33f/+3Ojo6dMMNN2jRokWKi4vT8ePHtX37dnV0dGjs2LF6\n9NFHZbPZ9NOf/lS5ubk6fvy47r33Xt1+++2D8bMCAAAAAABgkH1jA7iioiI1NDRo7dq18vv9Ki8v\nl9VqVWFhoU6dOqXi4mJJnVtJv1RVVaW8vDw5nU4FAgF5PB6tX7/+a8favHmz7rzzTt1111169dVX\ntXnzZj322GOSpM8++0y/+MUvdPbsWZWXl3cJ4N57773otQ6HQ5J09uxZ/fznP1d7e7uWLFmiu+++\nW01NTTp8+LDWrFkjq9Wq5557Tq+99pqmT5+uXbt2adWqVbLZbPqv//ovvfLKK3rggQckSQkJCVqz\nZk2Pc/Z6vfJ6vZIU3Q775RwAxJ7VaqUmAROiNgHzoS4B86Eugf77xgZwA3HixAmdOXMmetzW1qZg\nMCibzXbZ+95//30tW7ZMkvT9739fL7zwQvTc3/7t3youLk4TJkzQ559/Hm1vbGzUxo0btXLlStnt\n9mh7VlaWEhISlJCQoL/5m7/R559/rnfffVd//vOf9a//+q+SpFAopJSUFL3//vs6c+aMVq1aJUnq\n6OjQlClTon3l5OT0OmeXyyWXy9WlLRAIXPY5AQwdh8NBTQImRG0C5kNdAuZDXQKdUlNT+3ztVRXA\nRSIReTweJSYmDlqfCQkJXfr/0qhRo3Tp0iX5fL4uAZzV+v9/8ri4OIXDYUUiEd15550qKirq0vdb\nb72lm266SUuWLOlx7KSkpMF6DAAAgP/X3t3HVVnn+R9/n8MBDyXeIIOiPoBMBRxEy5t19JFGgzVr\nzq5mQfpoxvXmx9pYjruAo7WbrYXJuOpjttIZG9Ta1h60ba6OQ+qgsGnoZkPehFGJ0oAKR6RCORyB\nc67fH9TZCE1QLs8BX8+/uq5zfW+u6/jx1Lvre10AAAAwSad9CUNwcLDq6+tb7bfb7VfcL0kJCQna\ntWuXd7usrKxNYw0dOlSFhYWSpAMHDrTpuXG33367li5dqq1bt6q4uPh7jx0+fLgOHTrkvYPu0qVL\nOn/+vIYOHapPPvlElZWVkiSXy6WzZ8+2ac4AAAAAAADwD532DriQkBDFxMQoLS1NAwYM8O6Pj4/X\n9u3blZGR0eolDHPmzFF2drbS09PldrsVFxen1NTUK/bvdru9d7fNnTtX69ev144dO7wvYWiLXr16\naenSpVq5cqUef/zxqx43cOBAPfroo3r++edlGIYCAgI0b948DR06VAsXLtRvfvMbNTY2SpIeffTR\ndt3iCAAAAAAAAN+yGN9eNwmvLVu2KCIiQg888ICvp9Ihyh8crYBXdvh6GgC+xnMzAP9EbQL+h7oE\n/A91CTTjGXA3aOXKlWpqalJycrKvpwIAAAAAAIBO7pYP4PLz85Wbm9tiX0xMjObPn++jGZmDu98A\nAAAAAAB845YP4BITE5WYmOjraQAAAAAAAKCL6rRvQQUAAAAAAAA6AwI4AAAAAAAAwEQEcAAAAAAA\nAICJCOAAAAAAAAAAExHAAQAAAAAAACYigAMAAAAAAABMRAAHAAAAAAAAmIgADgAAAAAAADARARwA\nAAAAAABgIgI4AAAAAAAAwEQEcAAAAAAAAICJCOAAAAAAAAAAExHAAQAAAAAAACYigAMAAAAAAABM\nRAAHAAAAAAAAmIgADgAAAAAAADARAdxV1NXVaffu3ZKkmpoarVmzRpJUVlamoqIi73EFBQXKzs5u\nd/8FBQVKTk7WsWPHvPvef/99JScn69ChQ5KkZ599VqWlpZKkhQsXqra29rrPBwAAAAAAAL5BAHcV\ndXV12rNnjyQpNDRUaWlpkpoDuA8//LBDxoiMjFRhYaF3+7333lNUVFSH9A0AAAAAAAD/YPP1BPzV\n1q1bVVlZqYyMDEVEROjMmTPKyspSTk6OGhoaVFJSounTp7doU1tbq40bN+rChQuSpNmzZys2Nvaq\nY8TGxqqkpERNTU1qampSZWWloqOjrzm3d999V++8846ampo0ZMgQzZ8/X1YrWSoAAAAAAIA/IoC7\nilmzZqm8vFyrV6+Ww+FQVlaWbDabUlJSVFpaqnnz5klqXkr6jc2bN2vq1KmKjY1VdXW1MjMztW7d\nuquOYbFYNHz4cB09elROp1OjR4+Ww+H43nlVVFSosLBQzz33nGw2m37/+99r//79mjRpUovj8vLy\nlJeXJ0latWqVwsLCrvNKADCDzWajLgE/RG0C/oe6BPwPdQm0HwFcBzp+/LgqKiq8206nUy6XS3a7\n/aptJkyYoNzcXDmdTv385z/Xtm3bvneMjz76SKdPn9ayZcskSQ0NDerRo0er45KSkpSUlOTdrq6u\nbu/pADBRWFgYdQn4IWoT8D/UJeB/qEugWf/+/dt8LAFcBzIMQ5mZmQoKCmpzm8GDB6u8vFxBQUFt\n+uIMw9CkSZM0a9asG5kqAAAAAAAAbhIeHHYVwcHBqq+vb7Xfbrdfcb8kJSQkaNeuXd7tsrKyNo01\na9YszZw5s03HDh8+XIcOHdJXX30lSbp06ZLOnz/fprYAAAAAAAC4+bgD7ipCQkIUExOjtLQ0DRgw\nwLs/Pj5e27dvV0ZGRquXMMyZM0fZ2dlKT0+X2+1WXFycUlNTrznWXXfd1eZ5DRw4UI8++qief/55\nGYahgIAAzZs3Tz/4wQ/afnIAAAAAAAC4aSyGYRi+ngTMd/bsWV9PAcC38NwMwD9Rm4D/oS4B/0Nd\nAs3a8ww4lqACAAAAAAAAJmIJqsny8/OVm5vbYl9MTIzmz5/voxkBAAAAAADgZiKAM1liYqISExN9\nPQ0AAAAAAAD4CEtQAQAAAAAAABMRwAEAAAAAAAAmIoADAAAAAAAATEQABwAAAAAAAJiIAA4AAAAA\nAAAwEQEcAAAAAAAAYCICOAAAAAAAAMBEBHAAAAAAAACAiQjgAAAAAAAAABMRwAEAAAAAAAAmIoAD\nAAAAAAAATEQABwAAAAAAAJiIAA4AAAAAAAAwEQEcAAAAAAAAYCICOAAAAAAAAMBEBHAAAAAAAACA\niQjgvlZXV6fdu3dLkmpqarRmzRpJUllZmYqKirzHFRQUKDs7u939FxQUKDk5WceOHfPue//995Wc\nnKxDhw7d4OwBAAAAAADgrwjgvlZXV6c9e/ZIkkJDQ5WWliapOYD78MMPO2SMyMhIFRYWerffe+89\nRUVFdUjfAAAAAAAA8E82X0/AX2zdulWVlZXKyMhQRESEzpw5o6ysLOXk5KihoUElJSWaPn16iza1\ntbXauHGjLly4IEmaPXu2YmNjrzpGbGysSkpK1NTUpKamJlVWVio6Otr7+cKFCzVhwgQVFxfL7XYr\nNTVVb7zxhiorK/XTn/5U999/vyRpx44dOnjwoBobGzV27FglJyd3/AUBAAAAAABAhyCA+9qsWbNU\nXl6u1atXy+FwKCsrSzabTSkpKSotLdW8efMkNS8l/cbmzZs1depUxcbGqrq6WpmZmVq3bt1Vx7BY\nLBo+fLiOHj0qp9Op0aNHy+FwtDgmLCxMmZmZ2rJli9avX6/nnntOjY2NSktL0/3336+jR4/q3Llz\nWrlypQzD0K9//WudOHFCw4YNa9FPXl6e8vLyJEmrVq1SWFhYB10pAB3BZrNRl4AfojYB/0NdAv6H\nugTajwDuBhw/flwVFRXebafTKZfLJbvdftU2EyZMUG5urpxOp37+859r27ZtLT4fPXq0pOblqi6X\nS8HBwQoODpbNZlNdXZ2OHj2qY8eOacmSJZIkl8ulysrKVgFcUlKSkpKSvNvV1dU3fL4AOk5YWBh1\nCfghahPwP9Ql4H+oS6BZ//7923wsAdwNMAxDmZmZCgoKanObwYMHq7y8XEFBQVf8omy25q/EarUq\nMDDQu99qtcrtdkuSpk2bpsmTJ9/g7AEAAAAAAHAz8BKGrwUHB6u+vr7VfrvdfsX9kpSQkKBdu3Z5\nt8vKyto01qxZszRz5szrmueIESOUn58vl8slqfmNrV999dV19QUAAAAAAADzcQfc10JCQhQTE6O0\ntDQNGDDAuz8+Pl7bt29XRkZGq5cwzJkzR9nZ2UpPT5fb7VZcXJxSU1OvOdZdd9113fMcMWKEzpw5\no6efflpSc0D45JNPqmfPntfdJwAAAAAAAMxjMQzD8PUkYL6zZ8/6egoAvoXnZgD+idoE/A91Cfgf\n6hJo1p5nwLEEFQAAAAAAADARS1A7WH5+vnJzc1vsi4mJ0fz58300IwAAAAAAAPgSAVwHS0xMVGJi\noq+nAQAAAAAAAD/BElQAAAAAAADARARwAAAAAAAAgIkI4AAAAAAAAAATEcABAAAAAAAAJiKAAwAA\nAAAAAExEAAcAAAAAAACYiAAOAAAAAAAAMBEBHAAAAAAAAGAiAjgAAAAAAADARARwAAAAAAAAgIkI\n4AAAAAAAAAATEcABAAAAAAAAJiKAAwAAAAAAAExEAAcAAAAAAACYiAAOAAAAAAAAMBEBHAAAAAAA\nAGCiThfA1dXVaffu3ZKkmpoarVmzRpJUVlamoqIi73EFBQXKzs5ud/9vvvmmduzY0WLfwoULVVtb\n+73tnn32WZWWlrZ7PAAAAAAAAHRtnTKA27NnjyQpNDRUaWlpkpoDuA8//NCXUwMAAAAAAABasfl6\nAu21detWVVZWKiMjQxERETpz5oyysrKUk5OjhoYGlZSUaPr06S3a1NbWauPGjbpw4YIkafbs2YqN\njW332A6HQy+88IJiYmL06aefKjQ0VEuWLFFQUJD3GI/How0bNqhPnz569NFH9bOf/UxTpkxRUVGR\ngoKClJGRoV69esnhcGjDhg26ePGievTooV/84hcKDQ3Vk08+qZdeeklOp1Nz587V8uXLNWzYMC1f\nvlwLFizQ/v37VV1dLYfDoerqak2ZMkVTpky5sYsKAAAAAAAA03S6AG7WrFkqLy/X6tWr5XA4lJWV\nJZvNppSUFJWWlmrevHmSmpegfmPz5s2aOnWqYmNjVV1drczMTK1bt+66xj937px++ctfasGCBVq7\ndq0OHTqkiRMnSpLcbrf+7d/+TZGRkXrooYckSZcvX9aQIUM0c+ZMvf7669q7d69mzJihTZs2adKk\nSbr33nu1b98+bdq0SUuWLFH//v1VUVEhh8OhQYMGqaSkREOGDFF1dbUiIiIkSWfPntXy5ctVX1+v\nxYsX6/7775fN1vKrzMvLU15eniRp1apVCgsLu67zBWAOm81GXQJ+iNoE/A91Cfgf6hJov04XwF2P\n48ePq6KiwrvtdDrlcrlkt9tbHWuxWK7Yxzf7w8PDFR0dLUkaNGiQzp8/7z3mlVde0Y9+9CNv+CY1\n/8U0atQo7/HHjh2TJH322WdKT0+XJE2cOFH/8R//IUmKi4vTxx9/LIfDoWnTpmnv3r0aNmyY7rzz\nTm+fd999twIDAxUYGKiePXvqq6++Up8+fVrMNykpSUlJSd7t6urqa1wlADdTWFgYdQn4IWoT8D/U\nJeB/qEugWf/+/dt87C0RwBmGoczMzBZLRa8mJCREX3zxRYt99fX1uv3221VfX6/AwEDvfqvVqoaG\nBu/20KFDVVxcrKlTp3rHCggI8IZ3VqtVbrf7e8ePi4vTnj179MUXXyg5OVk7duxQcXGx4uLivMd8\n+263tvQJAAAAAAAA3+l0L2EIDg5WfX19q/12u/2K+yUpISFBu3bt8m6XlZVdtf+4uDh98MEH3r7+\n93//V1FRUbJar32p7rvvPt11111at27dNUOxoUOHqrCwUJJ04MAB7zPpBg8erE8//VQWi0VBQUGK\njo5WXl5eiwAOAAAAAAAAnUenuwMuJCREMTExSktL04ABA7z74+PjtX37dmVkZLR6CcOcOXOUnZ2t\n9PR0ud1uxcXFKTU19Yr9R0VF6Sc/+YmeeeYZSVLPnj21YMGCNs9v6tSpcjqdevHFF7Vo0aKrHjd3\n7lytX79eO3bs8L6EQZICAwPVp08fDRkyRFJzIPjee+8pMjKyzXMAAAAAAACA/7AYhmH4ehIw39mz\nZ309BQDfwnMzAP9EbQL+h7oE/A91CTRrzzPgOt0SVAAAAAAAAKAz6XRLUDtKfn6+cnNzW+yLiYnR\n/PnzfTQjAAAAAAAAdEW3bACXmJioxMREX08DAAAAAAAAXRxLUAEAAAAAAAATEcABAAAAAAAAJiKA\nAwAAAAAAAExEAAcAAAAAAACYiAAOAAAAAAAAMBEBHAAAAAAAAGAiAjgAAAAAAADARARwAAAAAAAA\ngIkI4AAAAAAAAAATEcABAAAAAAAAJiKAAwAAAAAAAExEAAcAAAAAAACYiAAOAAAAAAAAMBEBHAAA\nAAAAAGAiAjgAAAAAAADARARwAAAAAAAAgIkI4L5WV1en3bt3S5Jqamq0Zs0aSVJZWZmKioq8xxUU\nFCg7O7vd/V9vO0kqLi7WqlWrrqstAAAAAAAAfIsA7mt1dXXas2ePJCk0NFRpaWmSmgO4Dz/80JdT\nAwAAAAAAQCdm8/UE/MXWrVtVWVmpjIwMRURE6MyZM8rKylJOTo4aGhpUUlKi6dOnt2hTW1urjRs3\n6sKFC5Kk2bNnKzY2tl3jvvLKKyotLVVDQ4PGjRun5ORkSdKRI0e0ZcsWhYSE6I477pAkeTweLV68\nWM8//7x69Oghj8ejX/7yl8rMzFSPHj064CoAAAAAAACgoxHAfW3WrFkqLy/X6tWr5XA4lJWVJZvN\nppSUFJWWlmrevHmSmpeSfmPz5s2aOnWqYmNjVV1drczMTK1bt65d486cOVPdu3eXx+PRihUr9Pnn\nnysiIkK/+93v9Mwzz6hfv37ePq1Wq+655x7t379fDz74oI4fP66oqKgrhm95eXnKy8uTJK1atUph\nYWHXeWUAmMFms1GXgB+iNgH/Q10C/oe6BNqPAO4GHD9+XBUVFd5tp9Mpl8slu93e5j4KCwu1d+9e\nud1uffHFF6qoqJBhGAoPD1dERIQkaeLEid4wLTExUatXr9aDDz6o/Px8JSYmXrHfpKQkJSUleber\nq6uv5xQBmCQsLIy6BPwQtQn4H+oS8D/UJdCsf//+bT6WAO4GGIahzMxMBQUFXVd7h8OhP/zhD3rh\nhRfUvXt3vfzyy2psbPzeNmFhYerZs6c++ugjnTx5UosWLbqusQEAAAAAAHBz8BKGrwUHB6u+vr7V\nfrvdfsX9kpSQkKBdu3Z5t8vKyto1ptPplN1u12233aYvv/xSR44ckdScoDocDlVWVkqSDhw40KLd\nfffdpxdffFHjxo2T1cpXCAAAAAAA4M+4A+5rISEhiomJUVpamgYMGODdHx8fr+3btysjI6PVSxjm\nzJmj7Oxspaeny+12Ky4uTqmpqVcdo6CgQIcPH/ZuZ2ZmKjo6WmlpaQoPD1dMTIwkKSgoSH//93+v\nVatWKSQkRLGxsSovL/e2Gz16tDZs2HDV5acAAAAAAADwHxbDMAxfTwLtU1paqldffVUrVqxoc5uz\nZ8+aOCMA7cVzMwD/RG0C/oe6BPwPdQk04xlwXdh///d/a8+ePTz7DQAAAAAAoJMggOtg+fn5ys3N\nbbEvJiZG8+fP75D+p02bpmnTpnVIXwAAAAAAADAfAVwHS0xM5NlsAAAAAAAA8OIVmgAAAAAAAICJ\nCOAAAAAAAAAAExHAAQAAAAAAACYigAMAAAAAAABMRAAHAAAAAAAAmIgADgAAAAAAADARARwAAAAA\nAABgIgI4AAAAAAAAwEQEcAAAAAAAAICJCOAAAAAAAAAAE9l8PQH4hmEYcrlc8ng8slgsvp5Ol2YY\nhqxWq+x2O9caAAAAAIBbEAHcLcrlcikwMFA2G38Eboampia5XC4FBwf7eioAAAAAAOAmYwnqLcrj\n8RC+3UQ2m00ej8fX0wAAAAAAAD5AAHeLYinkzcc1BwAAAADg1kQAB5/5m7/5m5s6Xnl5ubZt23ZT\nxwQAAAAAAGANIiRJ7v/XsWFYwCs7rnnMjh3XPqajNDU1eQO46dOn37RxAQAAAAAATA/g6urqdODA\nAT3wwAOSpJqaGm3evFlpaWkqKytTTU2N7r77bklSQUGBSktLNW/evHaNUVxcLJvNppiYGEnSyy+/\nrFGjRmncuHHXNWeXy6XXXntNx48fV2BgoEJCQvTYY49pyJAh19XflXz33G9FQ4YM0WeffabCwkKt\nWbNGYWFhKi4u1pQpUxQbG6vs7Gy5XC5lZ2crOjpaixcvVrdu3fTpp5/q/PnzWr58uSZPniyXy6Vl\ny5bp2LFjCggI0PLlyzVhwgTl5ORo7969unz5spxOp+rr63Xy5ElNnjxZjzzyiP76r/9aixYtktPp\nlCQ9//zzGjNmjAoLC7V27Vr17t1bn3zyiRISEvTiiy/KYrHoyJEjeuaZZ+R0OtWtWzfl5OQoODhY\nK1eu1MGDB9XQ0KDZs2frZz/7mY+vLgAAAAAA8Bc3JYDbs2ePN4ALDQ1VWlqapOYQqrS09IZDqOLi\nYtntdm8Ad6N++9vfKjw8XL/5zW9ktVpVVVWlM2fOdEjf3+ioc+8qTpw4oYKCAvXq1Uvjx4/XzJkz\n9cc//lG///3vtWnTJq1YsUKSVFFRof/6r/9SWVmZHnnkEd1zzz3asmWLLBaL9u7dq5MnT2rmzJna\nv3+/JOnPf/6z8vLy1Lt3bxUWFuq3v/2tXnvtNUlSfX293njjDdntdp06dUoLFy7UO++8I0n66KOP\ntG/fPvXr109/+7d/q8OHD2vkyJF6/PHHtWHDBo0cOVIXL16U3W7XG2+8oZCQEOXm5ury5cuaNm2a\nJk2apMjISN9cTAAAAAAA4FdMD+C2bt2qyspKZWRkKCEhQQ888ICysrKUlZWlnJwcNTQ0qKSkpNWy\nwNraWm3cuFEXLlyQJM2ePVuxsbGt+nc4HPrTn/4kq9Wq/fv3a+7cuZKaA52dO3fqyy+/1GOPPea9\nG27Hjh06ePCgGhsbNXbsWCUnJ7for7KyUp999pkWLVokq7X5EXl9+/ZV3759JUk7d+5Ufn6+JOm+\n++7Tgw8+KIfDoaysLK1Zs8Y7hsvlUnJysp599lkNHjxYxcXFcjqdWrBggYYMGdLq3O+++25t2rRJ\n5eXlcrvdeuSRRzRmzBiVl5dr/fr1ampqkmEYSktLU+/evbVu3TrV1NTI4/FoxowZGj9+fEd9ZT4x\nYsQI7zWOiorSpEmTJEmxsbEqLCz0HvfTn/5UVqtVgwYNUlRUlE6ePKnDhw9rzpw5kqTBgwdr4MCB\nOnXqlCRp4sSJ6t279xXHbGxs1NNPP60TJ07IarV620jSyJEj1b9/f0nSD3/4Q5WXlyskJETh4eEa\nOXKkJCkkJESS9D//8z/6+OOP9cc//lGSdPHiRZ0+fZoADgAAAAAASLoJAdysWbNUXl6u1atXS2oO\nzCTJZrMpJSWlxZLTgoICb7vNmzdr6tSpio2NVXV1tTIzM7Vu3bpW/YeHh2vy5Mmy2+3eh/rv27dP\nX375pVasWKGzZ88qKytL48aN09GjR3Xu3DmtXLlShmHo17/+tU6cOKFhw4Z5+6uoqFB0dLQ3fPu2\nU6dOKT8/X5mZmZKkp556SsOGDdPtt9/+vdfA4/HohRdeUFFRkd566y398z//c6tz37p1q+Lj4/WL\nX/xCdXV1euqppzR8+HD96U9/0pQpU3TPPfeoqalJHo9HRUVF6t27t5YtWyZJ3iWU35aXl6e8vDxJ\n0qpVqxQWFtbi86qqKtls//f1u7/3DNrv231f67iAgAB169bN2yYgIEDBwcGy2WwKDAyU2+2WzWaT\n1WpVQECA9ziLxaLAwEBZLJZW+wMCAhQQEKDu3bu36NdisXi3s7Oz1bdvX7388svyeDyKjIy84nwC\nAwNlGEar9t+wWCx64YUXlJiY+L3n2q1bt1bfA25dNpuNPw+AH6I2Af9DXQL+h7oE2s9vX8Jw/Phx\nVVRUeLedTqdcLpfsdnub2o8ZM0ZWq1UDBw7UV199JUk6evSojh07piVLlkhqftZbZWVliwDu+5SU\nlGjs2LHeOYwdO1Yff/yxRo8e/b3txo4dK0kaNGiQN4D8rmPHjunPf/6z/vCHP0iSGhoaVF1draFD\nh+rtt9/WhQsX9Fd/9VeKiIhQZGSk/v3f/12vv/66Ro0apbi4uFb9JSUlKSkpybtdXV3d4vPLly8r\nICCgTed9PZqamtp8nNvtlmEY3jaGYcjtdrf6zOPxaMeOHZoxY4b+8pe/qKysTFFRURozZozeeust\n/ehHP1Jpaak3RD1y5Ig8Ho+33+DgYF26dMm7/eWXXyoiIkIej0c5OTlXHFNqDlDdbreio6NVVVWl\nDz74QCNHjtSlS5dkt9s1ceJEbd68WePGjVNgYKBKS0sVERGh2267rcW5Xr58udX3gFtXWFgYfx4A\nP0RtAv6HugT8D3UJNPtm5Vxb+G0AZxiGMjMzFRQUdF3tAwMDW/T1jWnTpmny5MlXbTdw4EB9/vnn\n8ng8V7wL7koCAgLk8Xi8242NjVeci9VqbXHct32zvPS7X97AgQM1ePBgFRUVKTMzUwsWLFB8fLyy\nsrJUVFSkrVu3asSIEXr44YfbNNfObtCgQZoxY4bOnz+vVatWyW63a/bs2Vq2bJl+/OMfKyAgQOvW\nrVO3bt1atY2Li5PValVSUpKSk5M1e/ZspaamaufOnZowYUKrwOy7goKCZWlvWgAACLtJREFUtGHD\nBv3TP/2TNwzOycnx3uX5k5/8RIZhKDQ0VJs2bTLrEgAAAAAAgE7G9AAuODhY9fX1V/zMbrdf9bOE\nhATt2rXLu6y0rKxM0dHR7R7j20aMGKGcnBzdc889stvtqqmpUUBAgHr27Ok9pl+/fho0aJDefPNN\npaSkyGKx6Ny5c6qoqFBsbKzWr1+vadOmyTAMHT58WE888YR69uyp2tpa70P5i4qKNGLEiO+dy3fP\nfcSIEXrnnXc0d+5cWSwWnT59WnfccYeqqqrUt29fTZkyRQ6HQ59//rn69++v7t27a+LEibLb7S2W\n7l6vgFd23HAf7fXZZ59JksaPH9/iGXZvvfWW95+/+9mYMWP0L//yLy36sdvtV1yenJKSopSUFO92\nYGCg/vM//7PFMd8s05XkXdL73TG/WXIsNT8bbufOna3GWrZsmbc9AAAAAADAt5kewIWEhCgmJkZp\naWkaOXKk922okhQfH6/t27crIyOj1UsY5syZo+zsbKWnp8vtdisuLk6pqalXHGPUqFFau3atDh8+\n7H0Jw5WMGDFCZ86c0dNPPy2pObh58sknWwRwkrRgwQK99tprWrRokYKCghQSEqLHHntMgwYN0r33\n3qunnnpKUvNLGO644w5J0owZM/TUU0+pb9++bboF8bvn/vDDD2vLli1KT0+XYRgKDw/X0qVLdfDg\nQb377rsKCAhQr1699PDDD+vkyZN6/fXXvc8jmz9//jXHAwAAAAAAgG9YjG+vz0SXdfbs2RbbTqfz\nmksu0bG45vg2npsB+CdqE/A/1CXgf6hLoFl7ngHXtoecAQAAAAAAALgufvsShivJz89Xbm5ui30x\nMTEswbwO3Ph483HNAQAAAAC4NXWqAC4xMVGJiYm+nkaXYLVa1dTUJJutU/0R6LSampra/FZdAAAA\nAADQtZC+3KLsdrtcLpcuX74si8Xi6+l0aYZhyGq1ym63+3oqAAAAAADABwjgblEWi0XBwcG+ngYA\nAAAAAECXx5o4AAAAAAAAwEQEcAAAAAAAAICJCOAAAAAAAAAAE1kMwzB8PQkAAAAAAACgq+IOuFvA\n0qVLfT0FAN9BXQL+idoE/A91Cfgf6hJoPwI4AAAAAAAAwEQEcAAAAAAAAICJCOBuAUlJSb6eAoDv\noC4B/0RtAv6HugT8D3UJtB8vYQAAAAAAAABMxB1wAAAAAAAAgIlsvp4AbsyRI0e0efNmeTwe/fjH\nP9a0adNafN7Y2KiXXnpJp06dUkhIiBYvXqzw8HBJ0rZt27Rv3z5ZrVbNmTNHI0eO9MUpAF3O9dal\nw+HQP/zDP6h///6SpCFDhig1NdUXpwB0OdeqyxMnTujVV1/V559/rsWLF2vcuHHezwoKCvT2229L\nkh566CHde++9N3PqQJd1I3WZkpKiyMhISVJYWJh+9atf3dS5A13Vtepy586d2rt3rwICAtSjRw89\n/vjj+sEPfiCJ30vgmgx0Wm6323jiiSeMyspKo7Gx0UhPTzfKy8tbHLNr1y7jd7/7nWEYhnHgwAFj\n7dq1hmEYRnl5uZGenm40NDQYVVVVxhNPPGG43e6bfg5AV3MjdVlVVWX84z/+402fM9DVtaUuq6qq\njLKyMuPFF180Dh486N1/8eJFY+HChcbFixdb/DOAG3MjdWkYhvHYY4/dzOkCt4S21OXx48cNl8tl\nGIZh7N692/vvsfxeAtfGEtRO7OTJk+rXr5/69u0rm82m8ePH6/Dhwy2O+eCDD7z/52HcuHH66KOP\nZBiGDh8+rPHjxyswMFDh4eHq16+fTp486YOzALqWG6lLAOZoS12Gh4crKipKFoulxf4jR44oISFB\n3bt3V/fu3ZWQkKAjR47czOkDXdKN1CUAc7SlLuPj49WtWzdJzas1ampqJPF7CbQFAVwnVlNToz59\n+ni3+/Tp4/0L8ErHBAQE6LbbbtPFixdbtQ0NDW3VFkD73UhdSpLD4dCSJUu0fPlyffzxxzdv4kAX\n1pa6bGtbfi+BjnEjdSk1P85h6dKlevrpp/X++++bMUXgltPeuty3b5/3MUb8XgLXxjPgAMBP9O7d\nW+vXr1dISIhOnTql1atXa82aNbrtttt8PTUAAPzK+vXrFRoaqqqqKq1YsUKRkZHq16+fr6cF3DLe\nffddnTp1Ss8++6yvpwJ0GtwB14mFhobqwoUL3u0LFy4oNDT0qse43W45nU6FhIS0altTU9OqLYD2\nu5G6DAwMVEhIiCRp0KBB6tu3r86dO3fzJg90UW2py7a25fcS6Bg3UpfftJekvn37atiwYSorK+vo\nKQK3nLbW5bFjx7Rt2zYtWbJEgYGBV2zL7yXQGgFcJ3bnnXfq3LlzcjgcampqUmFhoUaPHt3imFGj\nRqmgoECSdOjQIf3whz+UxWLR6NGjVVhYqMbGRjkcDp07d06DBw/2wVkAXcuN1GVtba08Ho8kqaqq\nSufOnVPfvn1v9ikAXU5b6vJqRo4cqaNHj+rSpUu6dOmSjh49ylvDgQ5wI3V56dIlNTY2SpJqa2v1\nySefaODAgWZOF7gltKUuT58+rVdeeUVLlixRz549vfv5vQSuzWLw5O9OraioSK+++qo8Ho8SExP1\n0EMPKScnR3feeadGjx6thoYGvfTSSzp9+rS6d++uxYsXe/+D/u2331Z+fr6sVqv+7u/+TnfddZeP\nzwboGq63Lg8dOqQ333xTAQEBslqteuSRR9r8HyMAvt+16vLkyZP613/9V9XV1SkwMFC9evXS2rVr\nJTU/42bbtm2SpIceekiJiYm+PBWgy7jeuvzkk0+0ceNGWa1WeTwePfjgg7rvvvt8fTpAl3Ctunzu\nuef0l7/8Rb169ZIkhYWF6Ve/+pUkfi+BayGAAwAAAAAAAEzEElQAAAAAAADARARwAAAAAAAAgIkI\n4AAAAAAAAAATEcABAAAAAAAAJiKAAwAAAAAAAExEAAcAAAAAAACYiAAOAAAAAAAAMBEBHAAAAAAA\nAGCi/w9AYlYuLtNTfAAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x120c4da0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import os\n", | |
"\n", | |
"from sklearn.feature_selection import SelectFromModel\n", | |
"from sklearn.ensemble import RandomForestClassifier\n", | |
"from sklearn.model_selection import cross_val_score,GridSearchCV\n", | |
"from sklearn.externals import joblib\n", | |
"\n", | |
"select_model_filename= 'select_from.pkl'\n", | |
"\n", | |
"X=data.iloc[:,1:]\n", | |
"y=data.iloc[:,0]\n", | |
"\n", | |
"clf = RandomForestClassifier(n_estimators=40,n_jobs=-1,random_state=1)\n", | |
"clf=clf.fit(X, y)\n", | |
"joblib.dump(clf,select_model_filename)\n", | |
"\n", | |
" \n", | |
"features = pd.DataFrame()\n", | |
"features['feature'] = X.columns\n", | |
"features['importance'] = clf.feature_importances_\n", | |
"features.sort_values(by=['importance'], ascending=True, inplace=True)\n", | |
"features.set_index('feature', inplace=True)\n", | |
"features.plot(kind='barh', figsize=(20, 20))\n", | |
"\n", | |
"\n", | |
"model = SelectFromModel(clf,'mean', prefit=True)\n", | |
"train_reduced = model.transform(X)\n", | |
"train_reduced.shape\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 108, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Best score: 0.8361391694725028\n", | |
"Best parameters: {'max_depth': 8, 'max_features': 5, 'n_estimators': 40, 'n_jobs': -1, 'random_state': 1}\n" | |
] | |
} | |
], | |
"source": [ | |
"final_model_filename='final_model.pkl'\n", | |
"\n", | |
"random_forest=RandomForestClassifier()\n", | |
"parameters = {'n_estimators':list(range(20,50,5)),'max_features':list(range(3,8)),'max_depth':list(range(4,16,2)),'n_jobs':[-1],'random_state':[1]}\n", | |
"clf = GridSearchCV(random_forest, parameters,scoring='accuracy')\n", | |
"\n", | |
"clf.fit(train_reduced,y)\n", | |
"joblib.dump(clf,final_model_filename)\n", | |
"\n", | |
"\n", | |
"model=clf\n", | |
"parameters=clf .best_params_\n", | |
"\n", | |
"print('Best score: {}'.format(clf.best_score_))\n", | |
"print('Best parameters: {}'.format(clf.best_params_))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 109, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>sex</th>\n", | |
" <th>age</th>\n", | |
" <th>sibsp</th>\n", | |
" <th>parch</th>\n", | |
" <th>fare</th>\n", | |
" <th>family</th>\n", | |
" <th>cabin_parsed_A</th>\n", | |
" <th>cabin_parsed_B</th>\n", | |
" <th>cabin_parsed_C</th>\n", | |
" <th>cabin_parsed_D</th>\n", | |
" <th>...</th>\n", | |
" <th>title_Rev</th>\n", | |
" <th>title_Sir</th>\n", | |
" <th>title_Unknown</th>\n", | |
" <th>title_the Countess</th>\n", | |
" <th>embarked_C</th>\n", | |
" <th>embarked_Q</th>\n", | |
" <th>embarked_S</th>\n", | |
" <th>pclass_1</th>\n", | |
" <th>pclass_2</th>\n", | |
" <th>pclass_3</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>passengerid</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>892</th>\n", | |
" <td>0</td>\n", | |
" <td>34.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>893</th>\n", | |
" <td>1</td>\n", | |
" <td>47.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>7.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>894</th>\n", | |
" <td>0</td>\n", | |
" <td>62.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>10.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>895</th>\n", | |
" <td>0</td>\n", | |
" <td>27.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>9.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>896</th>\n", | |
" <td>1</td>\n", | |
" <td>22.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>12.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>897</th>\n", | |
" <td>0</td>\n", | |
" <td>14.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>9.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>898</th>\n", | |
" <td>1</td>\n", | |
" <td>30.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>899</th>\n", | |
" <td>0</td>\n", | |
" <td>26.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>29.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>900</th>\n", | |
" <td>1</td>\n", | |
" <td>18.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>901</th>\n", | |
" <td>0</td>\n", | |
" <td>21.000000</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>24.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>902</th>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>903</th>\n", | |
" <td>0</td>\n", | |
" <td>46.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>26.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>904</th>\n", | |
" <td>1</td>\n", | |
" <td>23.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>82.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>905</th>\n", | |
" <td>0</td>\n", | |
" <td>63.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>26.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>906</th>\n", | |
" <td>1</td>\n", | |
" <td>47.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>61.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>907</th>\n", | |
" <td>1</td>\n", | |
" <td>24.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>28.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>908</th>\n", | |
" <td>0</td>\n", | |
" <td>35.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>12.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>909</th>\n", | |
" <td>0</td>\n", | |
" <td>21.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>910</th>\n", | |
" <td>1</td>\n", | |
" <td>27.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>911</th>\n", | |
" <td>1</td>\n", | |
" <td>45.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>912</th>\n", | |
" <td>0</td>\n", | |
" <td>55.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>59.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>913</th>\n", | |
" <td>0</td>\n", | |
" <td>9.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>3.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>914</th>\n", | |
" <td>1</td>\n", | |
" <td>24.046392</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>32.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>915</th>\n", | |
" <td>0</td>\n", | |
" <td>21.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>61.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>916</th>\n", | |
" <td>1</td>\n", | |
" <td>48.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>262.0</td>\n", | |
" <td>4</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>917</th>\n", | |
" <td>0</td>\n", | |
" <td>50.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>14.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>918</th>\n", | |
" <td>1</td>\n", | |
" <td>22.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>62.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>919</th>\n", | |
" <td>0</td>\n", | |
" <td>22.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>920</th>\n", | |
" <td>0</td>\n", | |
" <td>41.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>30.0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>921</th>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>22.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1280</th>\n", | |
" <td>0</td>\n", | |
" <td>21.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1281</th>\n", | |
" <td>0</td>\n", | |
" <td>6.000000</td>\n", | |
" <td>3</td>\n", | |
" <td>1</td>\n", | |
" <td>21.0</td>\n", | |
" <td>4</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1282</th>\n", | |
" <td>0</td>\n", | |
" <td>23.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>94.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1283</th>\n", | |
" <td>1</td>\n", | |
" <td>51.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>39.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1284</th>\n", | |
" <td>0</td>\n", | |
" <td>13.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>20.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1285</th>\n", | |
" <td>0</td>\n", | |
" <td>47.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>10.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1286</th>\n", | |
" <td>0</td>\n", | |
" <td>29.000000</td>\n", | |
" <td>3</td>\n", | |
" <td>1</td>\n", | |
" <td>22.0</td>\n", | |
" <td>4</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1287</th>\n", | |
" <td>1</td>\n", | |
" <td>18.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>60.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1288</th>\n", | |
" <td>0</td>\n", | |
" <td>24.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1289</th>\n", | |
" <td>1</td>\n", | |
" <td>48.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>79.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1290</th>\n", | |
" <td>0</td>\n", | |
" <td>22.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1291</th>\n", | |
" <td>0</td>\n", | |
" <td>31.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1292</th>\n", | |
" <td>1</td>\n", | |
" <td>30.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>165.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1293</th>\n", | |
" <td>0</td>\n", | |
" <td>38.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>21.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1294</th>\n", | |
" <td>1</td>\n", | |
" <td>22.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>59.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1295</th>\n", | |
" <td>0</td>\n", | |
" <td>17.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>47.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1296</th>\n", | |
" <td>0</td>\n", | |
" <td>43.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>28.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1297</th>\n", | |
" <td>0</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>14.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1298</th>\n", | |
" <td>0</td>\n", | |
" <td>23.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>10.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1299</th>\n", | |
" <td>0</td>\n", | |
" <td>50.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>212.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1300</th>\n", | |
" <td>1</td>\n", | |
" <td>24.046392</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1301</th>\n", | |
" <td>1</td>\n", | |
" <td>3.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>14.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1302</th>\n", | |
" <td>1</td>\n", | |
" <td>24.046392</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1303</th>\n", | |
" <td>1</td>\n", | |
" <td>37.000000</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>90.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1304</th>\n", | |
" <td>1</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1305</th>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1306</th>\n", | |
" <td>1</td>\n", | |
" <td>39.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>109.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1307</th>\n", | |
" <td>0</td>\n", | |
" <td>38.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1308</th>\n", | |
" <td>0</td>\n", | |
" <td>24.667355</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1309</th>\n", | |
" <td>0</td>\n", | |
" <td>22.172414</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>22.0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>418 rows × 39 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" sex age sibsp parch fare family cabin_parsed_A \\\n", | |
"passengerid \n", | |
"892 0 34.000000 0 0 8.0 0 0 \n", | |
"893 1 47.000000 1 0 7.0 1 0 \n", | |
"894 0 62.000000 0 0 10.0 0 0 \n", | |
"895 0 27.000000 0 0 9.0 0 0 \n", | |
"896 1 22.000000 1 1 12.0 2 0 \n", | |
"897 0 14.000000 0 0 9.0 0 0 \n", | |
"898 1 30.000000 0 0 8.0 0 0 \n", | |
"899 0 26.000000 1 1 29.0 2 0 \n", | |
"900 1 18.000000 0 0 7.0 0 0 \n", | |
"901 0 21.000000 2 0 24.0 2 0 \n", | |
"902 0 24.667355 0 0 8.0 0 0 \n", | |
"903 0 46.000000 0 0 26.0 0 0 \n", | |
"904 1 23.000000 1 0 82.0 1 0 \n", | |
"905 0 63.000000 1 0 26.0 1 0 \n", | |
"906 1 47.000000 1 0 61.0 1 0 \n", | |
"907 1 24.000000 1 0 28.0 1 0 \n", | |
"908 0 35.000000 0 0 12.0 0 0 \n", | |
"909 0 21.000000 0 0 7.0 0 0 \n", | |
"910 1 27.000000 1 0 8.0 1 0 \n", | |
"911 1 45.000000 0 0 7.0 0 0 \n", | |
"912 0 55.000000 1 0 59.0 1 0 \n", | |
"913 0 9.000000 0 1 3.0 1 0 \n", | |
"914 1 24.046392 0 0 32.0 0 0 \n", | |
"915 0 21.000000 0 1 61.0 1 0 \n", | |
"916 1 48.000000 1 3 262.0 4 0 \n", | |
"917 0 50.000000 1 0 14.0 1 0 \n", | |
"918 1 22.000000 0 1 62.0 1 0 \n", | |
"919 0 22.000000 0 0 7.0 0 0 \n", | |
"920 0 41.000000 0 0 30.0 0 1 \n", | |
"921 0 24.667355 2 0 22.0 2 0 \n", | |
"... ... ... ... ... ... ... ... \n", | |
"1280 0 21.000000 0 0 8.0 0 0 \n", | |
"1281 0 6.000000 3 1 21.0 4 0 \n", | |
"1282 0 23.000000 0 0 94.0 0 0 \n", | |
"1283 1 51.000000 0 1 39.0 1 0 \n", | |
"1284 0 13.000000 0 2 20.0 2 0 \n", | |
"1285 0 47.000000 0 0 10.0 0 0 \n", | |
"1286 0 29.000000 3 1 22.0 4 0 \n", | |
"1287 1 18.000000 1 0 60.0 1 0 \n", | |
"1288 0 24.000000 0 0 7.0 0 0 \n", | |
"1289 1 48.000000 1 1 79.0 2 0 \n", | |
"1290 0 22.000000 0 0 8.0 0 0 \n", | |
"1291 0 31.000000 0 0 8.0 0 0 \n", | |
"1292 1 30.000000 0 0 165.0 0 0 \n", | |
"1293 0 38.000000 1 0 21.0 1 0 \n", | |
"1294 1 22.000000 0 1 59.0 1 0 \n", | |
"1295 0 17.000000 0 0 47.0 0 0 \n", | |
"1296 0 43.000000 1 0 28.0 1 0 \n", | |
"1297 0 20.000000 0 0 14.0 0 0 \n", | |
"1298 0 23.000000 1 0 10.0 1 0 \n", | |
"1299 0 50.000000 1 1 212.0 2 0 \n", | |
"1300 1 24.046392 0 0 8.0 0 0 \n", | |
"1301 1 3.000000 1 1 14.0 2 0 \n", | |
"1302 1 24.046392 0 0 8.0 0 0 \n", | |
"1303 1 37.000000 1 0 90.0 1 0 \n", | |
"1304 1 28.000000 0 0 8.0 0 0 \n", | |
"1305 0 24.667355 0 0 8.0 0 0 \n", | |
"1306 1 39.000000 0 0 109.0 0 0 \n", | |
"1307 0 38.000000 0 0 7.0 0 0 \n", | |
"1308 0 24.667355 0 0 8.0 0 0 \n", | |
"1309 0 22.172414 1 1 22.0 2 0 \n", | |
"\n", | |
" cabin_parsed_B cabin_parsed_C cabin_parsed_D ... \\\n", | |
"passengerid ... \n", | |
"892 0 0 0 ... \n", | |
"893 0 0 0 ... \n", | |
"894 0 0 0 ... \n", | |
"895 0 0 0 ... \n", | |
"896 0 0 0 ... \n", | |
"897 0 0 0 ... \n", | |
"898 0 0 0 ... \n", | |
"899 0 0 0 ... \n", | |
"900 0 0 0 ... \n", | |
"901 0 0 0 ... \n", | |
"902 0 0 0 ... \n", | |
"903 0 0 0 ... \n", | |
"904 1 0 0 ... \n", | |
"905 0 0 0 ... \n", | |
"906 0 0 0 ... \n", | |
"907 0 0 0 ... \n", | |
"908 0 0 0 ... \n", | |
"909 0 0 0 ... \n", | |
"910 0 0 0 ... \n", | |
"911 0 0 0 ... \n", | |
"912 0 0 0 ... \n", | |
"913 0 0 0 ... \n", | |
"914 0 0 0 ... \n", | |
"915 0 0 0 ... \n", | |
"916 1 0 0 ... \n", | |
"917 0 0 0 ... \n", | |
"918 1 0 0 ... \n", | |
"919 0 0 0 ... \n", | |
"920 0 0 0 ... \n", | |
"921 0 0 0 ... \n", | |
"... ... ... ... ... \n", | |
"1280 0 0 0 ... \n", | |
"1281 0 0 0 ... \n", | |
"1282 1 0 0 ... \n", | |
"1283 0 0 1 ... \n", | |
"1284 0 0 0 ... \n", | |
"1285 0 0 0 ... \n", | |
"1286 0 0 0 ... \n", | |
"1287 0 1 0 ... \n", | |
"1288 0 0 0 ... \n", | |
"1289 1 0 0 ... \n", | |
"1290 0 0 0 ... \n", | |
"1291 0 0 0 ... \n", | |
"1292 0 1 0 ... \n", | |
"1293 0 0 0 ... \n", | |
"1294 0 0 0 ... \n", | |
"1295 0 0 0 ... \n", | |
"1296 0 0 1 ... \n", | |
"1297 0 0 1 ... \n", | |
"1298 0 0 0 ... \n", | |
"1299 0 1 0 ... \n", | |
"1300 0 0 0 ... \n", | |
"1301 0 0 0 ... \n", | |
"1302 0 0 0 ... \n", | |
"1303 0 1 0 ... \n", | |
"1304 0 0 0 ... \n", | |
"1305 0 0 0 ... \n", | |
"1306 0 1 0 ... \n", | |
"1307 0 0 0 ... \n", | |
"1308 0 0 0 ... \n", | |
"1309 0 0 0 ... \n", | |
"\n", | |
" title_Rev title_Sir title_Unknown title_the Countess \\\n", | |
"passengerid \n", | |
"892 0 0 0 0 \n", | |
"893 0 0 0 0 \n", | |
"894 0 0 0 0 \n", | |
"895 0 0 0 0 \n", | |
"896 0 0 0 0 \n", | |
"897 0 0 0 0 \n", | |
"898 0 0 0 0 \n", | |
"899 0 0 0 0 \n", | |
"900 0 0 0 0 \n", | |
"901 0 0 0 0 \n", | |
"902 0 0 0 0 \n", | |
"903 0 0 0 0 \n", | |
"904 0 0 0 0 \n", | |
"905 0 0 0 0 \n", | |
"906 0 0 0 0 \n", | |
"907 0 0 0 0 \n", | |
"908 0 0 0 0 \n", | |
"909 0 0 0 0 \n", | |
"910 0 0 0 0 \n", | |
"911 0 0 0 0 \n", | |
"912 0 0 0 0 \n", | |
"913 0 0 0 0 \n", | |
"914 0 0 0 0 \n", | |
"915 0 0 0 0 \n", | |
"916 0 0 0 0 \n", | |
"917 0 0 0 0 \n", | |
"918 0 0 0 0 \n", | |
"919 0 0 0 0 \n", | |
"920 0 0 0 0 \n", | |
"921 0 0 0 0 \n", | |
"... ... ... ... ... \n", | |
"1280 0 0 0 0 \n", | |
"1281 0 0 0 0 \n", | |
"1282 0 0 0 0 \n", | |
"1283 0 0 0 0 \n", | |
"1284 0 0 0 0 \n", | |
"1285 0 0 0 0 \n", | |
"1286 0 0 0 0 \n", | |
"1287 0 0 0 0 \n", | |
"1288 0 0 0 0 \n", | |
"1289 0 0 0 0 \n", | |
"1290 0 0 0 0 \n", | |
"1291 0 0 0 0 \n", | |
"1292 0 0 0 0 \n", | |
"1293 0 0 0 0 \n", | |
"1294 0 0 0 0 \n", | |
"1295 0 0 0 0 \n", | |
"1296 0 0 0 0 \n", | |
"1297 0 0 0 0 \n", | |
"1298 0 0 0 0 \n", | |
"1299 0 0 0 0 \n", | |
"1300 0 0 0 0 \n", | |
"1301 0 0 0 0 \n", | |
"1302 0 0 0 0 \n", | |
"1303 0 0 0 0 \n", | |
"1304 0 0 0 0 \n", | |
"1305 0 0 0 0 \n", | |
"1306 0 0 1 0 \n", | |
"1307 0 0 0 0 \n", | |
"1308 0 0 0 0 \n", | |
"1309 0 0 0 0 \n", | |
"\n", | |
" embarked_C embarked_Q embarked_S pclass_1 pclass_2 pclass_3 \n", | |
"passengerid \n", | |
"892 0 1 0 0 0 1 \n", | |
"893 0 0 1 0 0 1 \n", | |
"894 0 1 0 0 1 0 \n", | |
"895 0 0 1 0 0 1 \n", | |
"896 0 0 1 0 0 1 \n", | |
"897 0 0 1 0 0 1 \n", | |
"898 0 1 0 0 0 1 \n", | |
"899 0 0 1 0 1 0 \n", | |
"900 1 0 0 0 0 1 \n", | |
"901 0 0 1 0 0 1 \n", | |
"902 0 0 1 0 0 1 \n", | |
"903 0 0 1 1 0 0 \n", | |
"904 0 0 1 1 0 0 \n", | |
"905 0 0 1 0 1 0 \n", | |
"906 0 0 1 1 0 0 \n", | |
"907 1 0 0 0 1 0 \n", | |
"908 0 1 0 0 1 0 \n", | |
"909 1 0 0 0 0 1 \n", | |
"910 0 0 1 0 0 1 \n", | |
"911 1 0 0 0 0 1 \n", | |
"912 1 0 0 1 0 0 \n", | |
"913 0 0 1 0 0 1 \n", | |
"914 0 0 1 1 0 0 \n", | |
"915 1 0 0 1 0 0 \n", | |
"916 1 0 0 1 0 0 \n", | |
"917 0 0 1 0 0 1 \n", | |
"918 1 0 0 1 0 0 \n", | |
"919 1 0 0 0 0 1 \n", | |
"920 0 0 1 1 0 0 \n", | |
"921 1 0 0 0 0 1 \n", | |
"... ... ... ... ... ... ... \n", | |
"1280 0 1 0 0 0 1 \n", | |
"1281 0 0 1 0 0 1 \n", | |
"1282 0 0 1 1 0 0 \n", | |
"1283 0 0 1 1 0 0 \n", | |
"1284 0 0 1 0 0 1 \n", | |
"1285 0 0 1 0 1 0 \n", | |
"1286 0 0 1 0 0 1 \n", | |
"1287 0 0 1 1 0 0 \n", | |
"1288 0 1 0 0 0 1 \n", | |
"1289 1 0 0 1 0 0 \n", | |
"1290 0 0 1 0 0 1 \n", | |
"1291 0 1 0 0 0 1 \n", | |
"1292 0 0 1 1 0 0 \n", | |
"1293 0 0 1 0 1 0 \n", | |
"1294 1 0 0 1 0 0 \n", | |
"1295 0 0 1 1 0 0 \n", | |
"1296 1 0 0 1 0 0 \n", | |
"1297 1 0 0 0 1 0 \n", | |
"1298 0 0 1 0 1 0 \n", | |
"1299 1 0 0 1 0 0 \n", | |
"1300 0 1 0 0 0 1 \n", | |
"1301 0 0 1 0 0 1 \n", | |
"1302 0 1 0 0 0 1 \n", | |
"1303 0 1 0 1 0 0 \n", | |
"1304 0 0 1 0 0 1 \n", | |
"1305 0 0 1 0 0 1 \n", | |
"1306 1 0 0 1 0 0 \n", | |
"1307 0 0 1 0 0 1 \n", | |
"1308 0 0 1 0 0 1 \n", | |
"1309 1 0 0 0 0 1 \n", | |
"\n", | |
"[418 rows x 39 columns]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"test = pd.read_csv('test.csv',header=0)\n", | |
"test.columns = test.columns.str.lower()\n", | |
"test.set_index('passengerid',inplace=True)\n", | |
"\n", | |
"\n", | |
"test.pipe(round_data).pipe(convert_to_str).pipe(convert_sex_to_int).pipe(parse_cabin).pipe(impute_age).pipe(impute_embarked).pipe(add_title).pipe(add_family).pipe(convert_to_dummy)\n", | |
"test.drop('ticket',axis=1,inplace=True)\n", | |
"\n", | |
"display(test)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 110, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 418 entries, 892 to 1309\n", | |
"Data columns (total 39 columns):\n", | |
"sex 418 non-null int64\n", | |
"age 418 non-null float64\n", | |
"sibsp 418 non-null int64\n", | |
"parch 418 non-null int64\n", | |
"fare 418 non-null float64\n", | |
"family 418 non-null int64\n", | |
"cabin_parsed_A 418 non-null uint8\n", | |
"cabin_parsed_B 418 non-null uint8\n", | |
"cabin_parsed_C 418 non-null uint8\n", | |
"cabin_parsed_D 418 non-null uint8\n", | |
"cabin_parsed_E 418 non-null uint8\n", | |
"cabin_parsed_F 418 non-null uint8\n", | |
"cabin_parsed_G 418 non-null uint8\n", | |
"cabin_parsed_T 418 non-null uint8\n", | |
"cabin_parsed_nan 418 non-null uint8\n", | |
"title_Capt 418 non-null uint8\n", | |
"title_Col 418 non-null uint8\n", | |
"title_Don 418 non-null uint8\n", | |
"title_Dr 418 non-null uint8\n", | |
"title_Jonkheer 418 non-null uint8\n", | |
"title_Lady 418 non-null uint8\n", | |
"title_Major 418 non-null uint8\n", | |
"title_Master 418 non-null uint8\n", | |
"title_Miss 418 non-null uint8\n", | |
"title_Mlle 418 non-null uint8\n", | |
"title_Mme 418 non-null uint8\n", | |
"title_Mr 418 non-null uint8\n", | |
"title_Mrs 418 non-null uint8\n", | |
"title_Ms 418 non-null uint8\n", | |
"title_Rev 418 non-null uint8\n", | |
"title_Sir 418 non-null uint8\n", | |
"title_Unknown 418 non-null uint8\n", | |
"title_the Countess 418 non-null uint8\n", | |
"embarked_C 418 non-null uint8\n", | |
"embarked_Q 418 non-null uint8\n", | |
"embarked_S 418 non-null uint8\n", | |
"pclass_1 418 non-null uint8\n", | |
"pclass_2 418 non-null uint8\n", | |
"pclass_3 418 non-null uint8\n", | |
"dtypes: float64(2), int64(4), uint8(33)\n", | |
"memory usage: 36.3 KB\n", | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 891 entries, 1 to 891\n", | |
"Data columns (total 40 columns):\n", | |
"survived 891 non-null int64\n", | |
"sex 891 non-null int64\n", | |
"age 891 non-null float64\n", | |
"sibsp 891 non-null int64\n", | |
"parch 891 non-null int64\n", | |
"fare 891 non-null float64\n", | |
"family 891 non-null int64\n", | |
"cabin_parsed_A 891 non-null uint8\n", | |
"cabin_parsed_B 891 non-null uint8\n", | |
"cabin_parsed_C 891 non-null uint8\n", | |
"cabin_parsed_D 891 non-null uint8\n", | |
"cabin_parsed_E 891 non-null uint8\n", | |
"cabin_parsed_F 891 non-null uint8\n", | |
"cabin_parsed_G 891 non-null uint8\n", | |
"cabin_parsed_T 891 non-null uint8\n", | |
"cabin_parsed_nan 891 non-null uint8\n", | |
"title_Capt 891 non-null uint8\n", | |
"title_Col 891 non-null uint8\n", | |
"title_Don 891 non-null uint8\n", | |
"title_Dr 891 non-null uint8\n", | |
"title_Jonkheer 891 non-null uint8\n", | |
"title_Lady 891 non-null uint8\n", | |
"title_Major 891 non-null uint8\n", | |
"title_Master 891 non-null uint8\n", | |
"title_Miss 891 non-null uint8\n", | |
"title_Mlle 891 non-null uint8\n", | |
"title_Mme 891 non-null uint8\n", | |
"title_Mr 891 non-null uint8\n", | |
"title_Mrs 891 non-null uint8\n", | |
"title_Ms 891 non-null uint8\n", | |
"title_Rev 891 non-null uint8\n", | |
"title_Sir 891 non-null uint8\n", | |
"title_Unknown 891 non-null uint8\n", | |
"title_the Countess 891 non-null uint8\n", | |
"embarked_C 891 non-null uint8\n", | |
"embarked_Q 891 non-null uint8\n", | |
"embarked_S 891 non-null uint8\n", | |
"pclass_1 891 non-null uint8\n", | |
"pclass_2 891 non-null uint8\n", | |
"pclass_3 891 non-null uint8\n", | |
"dtypes: float64(2), int64(5), uint8(33)\n", | |
"memory usage: 84.4 KB\n" | |
] | |
} | |
], | |
"source": [ | |
"def impute_fare(df):\n", | |
" df['fare'].fillna(-1,inplace=True)\n", | |
" return Imputer(missing_values=-1,strategy=\"median\",axis=0)\n", | |
"\n", | |
"test.pipe(impute_fare)\n", | |
"\n", | |
" \n", | |
"test.info()\n", | |
"data.info()\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 111, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(418, 10)\n", | |
"[0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1\n", | |
" 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1\n", | |
" 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0\n", | |
" 1 1 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0\n", | |
" 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1\n", | |
" 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0\n", | |
" 1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 1\n", | |
" 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0\n", | |
" 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0\n", | |
" 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0\n", | |
" 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0\n", | |
" 0 1 1 1 1 0 0 1 0 0 1]\n" | |
] | |
} | |
], | |
"source": [ | |
"select_model=joblib.load(select_model_filename)\n", | |
"model = SelectFromModel(select_model,'mean', prefit=True)\n", | |
"test_reduced = model.transform(test)\n", | |
"test_reduced.shape\n", | |
"print(test_reduced.shape)\n", | |
"\n", | |
"final_model=joblib.load(final_model_filename)\n", | |
"predict_y=final_model.predict(test_reduced)\n", | |
"print(predict_y)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 112, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"result=pd.DataFrame()\n", | |
"result['PassengerId']=test.index\n", | |
"result['Survived']=predict_y\n", | |
"\n", | |
"result.to_csv('result.csv',index=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 113, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"2017-07-24 12:04:50.043929\n" | |
] | |
} | |
], | |
"source": [ | |
"import datetime\n", | |
"print(datetime.datetime.now())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment