Skip to content

Instantly share code, notes, and snippets.

@benjic
Last active September 20, 2015 18:24
Show Gist options
  • Save benjic/c518f8cb6d76ee9500ac to your computer and use it in GitHub Desktop.
Save benjic/c518f8cb6d76ee9500ac to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "",
"signature": "sha256:7f51b80667b65a15fe1ea2880b2fb6a6e7f547b93be046434d5ae8840d2a9019"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Introduction to Python Assignment\n",
"# PHSX216N Physics Lab I -- Section 2\n",
"# Ben Campbell <[email protected]\n",
"# 2015-09-15\n",
"\n",
"import numpy as np\n",
"\n",
"x = np.array([14.5, 32.6, 42.1, 65.23, 5.9])\n",
"y = np.array([2.0, 3.0, 8.5, 58.36, 4.22])\n",
"\n",
"# Print out the answers to the following operations:\n",
"# x*y, x + 2*y, 0.5*x*y2\n",
"print(x*y)\n",
"print(x + 2*y)\n",
"print(0.5*x*y**2)\n",
"\n",
"#create scatter plot\n",
"plt.scatter(x, y, color='blue', marker='o')\n",
"\n",
"#create labels\n",
"plt.xlabel('x')\n",
"plt.ylabel('y')\n",
"plt.title('A simple plot')\n",
"plt.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[ 29. 97.8 357.85 3806.8228 24.898 ]\n",
"[ 18.5 38.6 59.1 181.95 14.34]\n",
"[ 2.90000000e+01 1.46700000e+02 1.52086250e+03 1.11083089e+05\n",
" 5.25347800e+01]\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFd1JREFUeJzt3X+QZWV95/H3B0bXAYzDhM0wKohmJWDWH2CFaKLrxciA\nCSKkdjFkSydu4m7cbLBSo+VoyqV3U1mVKhLdsqzKKroTNkHRCBk0ZGZAbqnZLfkhRASHMSoG1GlQ\nIf4iWZTv/nFOw+Vun5np7pk5fabfr6pbnPOcX99uevrTz/Occ2+qCkmS5nNY3wVIkpYvQ0KS1MmQ\nkCR1MiQkSZ0MCUlSJ0NCktTJkNCKl+TfJtl2gM79P5P8wQE4728k+fT+Pq80zZDQ4CUZJ/lOkscv\n5viq+rOqOnN/1zV3+vbVm/b785t91qDhMiQ0aElOAE4D7gXO6bWYbun5+j4xq0UzJDR0rwGuBS4D\nNu5px3aI5stJvpvkK0l+faL90xP7PZzk9Um+1O77X5P8dJL/k+SBJB9K8rh231GSe5K8Jcl9Sb46\nd96OGs5OcmuS+5P8TZJn72Hfh5P8blvzfUkuTjJv4CT5hSQ3tvXdkOSFbfsfAi8G3pPke0n++56+\nR9I0Q0JD9xrgw8AVwJlJfmq+nZIcCbwbOKuqfgJ4IXDrHs67ATgFeAHwZuB9wAXA8cCz2+U564Cf\nBJ5ME1T/I8kz56nhFOBS4HXAWuBPgK17GSY7F3g+cCrwSuDfzXPetcAngHe15/0j4BNJjq6q3wc+\nDfxOVT2xqi7cw7Wk/48hocFK8iLgKcDWqvoScAfQ+Vc88DDw7CSrq2q2qu7Yw74XV9X3231uA66p\nqruq6rvANTQBMultVfVQVX2K5hf2qya2zQ33/HvgT6rqxmr8KfBPNEHU5Z1V9UBV3U0TAhfMs8+v\nAHe2cysPV9WHgJ08dvit7yEvDZQhoSHbCGyvqu+16x+hY8ipqn5A84v7t4FvJPl4kp/Zw7lnJ5Yf\nnFr/R+CoifX7q+rBifWvAevnOefTgE3tUNP9Se4Hntqx75y7J5b/nqa3Mu3J7bZJX5va13kJLYoh\noUFKsho4H3hpkm8m+SawCXhukufMd0xVba+qDcCxNH9pv2+Rl5/+hXt0kiMm1p8GfGOe4/4e+MOq\nOnridVRVfXgP1zp+avnr8+zz9faak542sa8BoUUzJDRU5wI/Ak4Gntu+TqYZf3/N9M5JfirJK9u5\niYeAHwA/XsD10rE8578keVySF9MM/3xkYt+5/d8H/HaS09I4MsmvJDlqnvPNeWOSNUmOAy6kmX+Z\ndg1wYpILkqxK8irgJODj7fZZ4Kf36auUphgSGqrXAB+oqnuq6t72NQu8B/j1JNM/24cBv0fz1/W3\nae74eX27bfpZhvn+8p7ePrm+G7ifpvdwGfAfqmrX9L5VdTPNpPV7gO8AX2KeQJvyl8DNwC00v/Qv\nnee83wbOpulJfQt4I3B2VX2n3ffdwL9unyV5116uJz1G+vrQoXY8+EMTTc8A3gb8L5q/lp4G3AWc\nX1UPHPQCpX2QZARcVlXHHYBzPwz8i6r6yv4+t7SveutJVNWdVXVKVZ1Cc4vfD4Ergc3Ajqo6Ebiu\nXZck9WC5DDe9DPi79ja/c4AtbfsWmrFnaTk7UN1xJ5zVu96Gmx5TRPIB4Kaqem+S+6vq6LY9wHfm\n1iVJB1fvPYn2adNX8OjdII+oJsH6TzFJWqFW9V0A8HLg5qq6r12fTXJsVe1Osp7mjdseI4nBIUmL\nUFULevq+954EzdsMXD6xvpVHn5rdCFw130FVNdjXRRdd1HsN1t9/HdY/vNeQa69a3N/WvYZE+2DT\ny4CPTTS/AzgjyS7gpe26JKkHvQ43VfN+OsdMtX2HJjgkST1bDsNNK85oNOq7hCWx/n5Zf3+GXPti\nLYtbYBcqSQ2xbknqUxJqgBPXkqRlypCQJHUyJCRJnQwJSVInQ0KS1MmQkCR1MiQkSZ0MCUlSJ0NC\nktTJkJAkdTIkJEmdDAlJUidDQpLUyZCQJHUyJCRJnQwJSVInQ0KS1KnXkEiyJslHk3wxyR1Jfj7J\n2iQ7kuxKsj3Jmj5rlKSVrO+exLuBv6qqk4HnADuBzcCOqjoRuK5dlyT1oLfPuE7yJOCWqnrGVPtO\n4CVVNZvkWGBcVSdN7eNnXEvSAg3tM66fDtyX5INJPpfkfUmOBNZV1Wy7zyywrr8SJWll6zMkVgGn\nAu+tqlOBHzA1tNR2F+wySFJPVvV47XuAe6rqxnb9o8BbgN1Jjq2q3UnWA/fOd/DMzMwjy6PRiNFo\ndGCrlaSBGY/HjMfjJZ2jtzkJgCSfAn6rqnYlmQGOaDd9u6remWQzsKaqNk8d55yEpEPKtm1wySXN\n8qZNcOaZ+/8ai5mT6Dskngu8H3g88GXgtcDhwBXA8cBdwPlV9cDUcYaEpEPGtm1w3nnw4IPN+urV\ncOWV+z8oBhcSi2VISDqUbNgAO3Y8tu2MM2D79v17naHd3SRJWuYMCUnq2aZNzRDTnNWrm7blwOEm\nSVoGnLjejwwJSVo45yQkSfuVISFJ6mRISJI6GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROhoQkqZMh\nIUnqZEhIkjoZEpKkToaEJKmTISFJ6mRISJI6rerz4knuAr4L/Bh4qKpOS7IW+DDwNOAu4PyqeqC3\nIiVpBeu7J1HAqKpOqarT2rbNwI6qOhG4rl2XJPWg75AAmP6UpHOALe3yFuDcg1uOJGlO3yFRwLVJ\nbkryurZtXVXNtsuzwLp+SpMk9TonAfxiVX0zyT8HdiTZObmxqirJvB9mPTMz88jyaDRiNBodyDol\naXDG4zHj8XhJ50jVvL+DD7okFwHfB15HM0+xO8l64PqqOmlq31oudUvSUCShqqaH+Peot+GmJEck\neWK7fCSwAbgN2ApsbHfbCFzVT4WSpN56EkmeDlzZrq4C/qyq3t7eAnsFcDwdt8Dak5CkhVtMT2LZ\nDDcthCEhSQs3qOEmSdLyZ0hIkjoZEpKkToaEJKmTISFJ6mRISJI6GRKSpE6GhCSpkyEhSepkSEiS\nOhkSkqROhoQkqZMhIUnqZEhIkjoZEpKkToaEJKmTISFJ6mRISJI6GRKSpE69h0SSw5PckuTqdn1t\nkh1JdiXZnmRN3zVK0krVe0gAbwDuAKpd3wzsqKoTgevadUlSD3oNiSRPBX4ZeD+QtvkcYEu7vAU4\nt4fSJEn035P4Y+BNwMMTbeuqarZdngXWHfSqJEkArOrrwknOBu6tqluSjObbp6oqSc23bWZm5pHl\n0WjEaDTvKSRpxRqPx4zH4yWdI1Xz/g4+4JL8N+DVwI+AJwA/AXwM+DlgVFW7k6wHrq+qk6aOrb7q\nlqShSkJVZe97Pqq34aaqemtVHVdVTwd+DfhkVb0a2ApsbHfbCFzVV42StNL1PScxaa5r8A7gjCS7\ngJe265KkHvQ23LQUDjdJ0sINarhJkrT8GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROhoQkqZMhIUnq\nZEhIkjoZEpKkToaEJKmTISFJ6mRISJI6GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROhoQkqVNvIZHk\nCUk+m+TWJHckeXvbvjbJjiS7kmxPsqavGiVppUtV9Xfx5Iiq+mGSVcBngDcC5wDfqqqLk7wZOLqq\nNk8dV33WLUlDlISqykKO2WtPIsmFSY5efFndquqH7eLjgcOB+2lCYkvbvgU490BcW5K0d/sy3LQO\nuDHJFUnOSrKgFNqTJIcluRWYBa6vqtuBdVU12+4y215fktSDVXvboap+P8nbgA3AbwDvSXIFcGlV\nfXkpF6+qh4HnJXkSsC3J6VPbK8m840ozMzOPLI9GI0aj0VJKkaRDzng8ZjweL+kc+zwnkeR5wGuB\ns4BPAi8Arq2qNy2pgkfP/zbgQeC3gFFV7U6ynqaHcdLUvs5JSNICHag5iTckuRm4GPgb4F9W1euB\n5wO/uqhKm/MeM3fnUpLVwBnALcBWYGO720bgqsVeQ5K0NHsdbgLWAr9aVV+bbKyqh5O8YgnXXg9s\nSXIYTVhdVlXXJbkFuCLJbwJ3Aecv4RqSpCXo9RbYxXK4SZIW7oAMN0mSVi5DQpLUyZCQJHUyJCRJ\nnQwJSVInQ0KS1MmQkCR1MiQkSZ0MCUlSJ0NCktTJkJAkdTIkJEmdDAlJUidDQpLUyZCQJHUyJCRJ\nnQwJSVInQ0KS1MmQkCR16i0kkhyX5Poktyf5QpIL2/a1SXYk2ZVke5I1fdUoSStdqqqfCyfHAsdW\n1a1JjgJuBs4FXgt8q6ouTvJm4Oiq2jx1bPVVtyQNVRKqKgs5preeRFXtrqpb2+XvA18EngKcA2xp\nd9tCExySpB4sizmJJCcApwCfBdZV1Wy7aRZY11NZkrTireq7gHao6S+AN1TV95JHe0JVVUnmHVea\nmZl5ZHk0GjEajQ5soZI0MOPxmPF4vKRz9DYnAZDkccDHgWuq6l1t205gVFW7k6wHrq+qk6aOc05C\nkhZoUHMSaboMlwJ3zAVEayuwsV3eCFx1sGuTJDX6vLvpRcCngM8Dc0W8BbgBuAI4HrgLOL+qHpg6\n1p6EJC3QYnoSvQ43LZYhIUkLN6jhJknS8mdISJI6GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROhoQk\nqZMhIUnqZEhIkjoZEpKkToaEJKmTISFJ6mRISJI6GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROvYZE\nkg8kmU1y20Tb2iQ7kuxKsj3Jmj5rlKSVrO+exAeBs6baNgM7qupE4Lp2XZLUg15Doqo+Ddw/1XwO\nsKVd3gKce1CLkiQ9ou+exHzWVdVsuzwLrOuzGElayVb1XcCeVFUlqfm2zczMPLI8Go0YjUYHqSpJ\nGobxeMx4PF7SOVI17+/ggybJCcDVVfXsdn0nMKqq3UnWA9dX1UlTx1TfdUvL1bZtcMklzfKmTXDm\nmf3Wo+UjCVWVhRyzHHsSW4GNwDvb/17VbznScGzbBuedBw8+2Kx/5jNw5ZUGhRav155EksuBlwDH\n0Mw//GfgL4ErgOOBu4Dzq+qBqePsSUjz2LABdux4bNsZZ8D27f3Uo+VlcD2JqrqgY9PLDmohkqR5\nLce7myQt0qZNsHr1o+urVzdt0mL1PnG9GA43Sd2cuFaXxQw3GRKStEIsJiQcbpIkdTIkJEmdDAlJ\nUidDQpLUyZCQJHUyJPZi27bmKdYNG5plSVpJvAV2D6bfB2f1at8HR9JweQvsfnbJJY8GBDTLcw8p\nSdJKYEhIkjoZEnvg++CsbM5HSc5J7JXvg7MyOR+lQ5Hv3bRCGWT7n5/LoEPR4D5PQkvnJ5FJOpCc\nkxg478A6MJyPkhqGhDSPM89semRnnNG87J1ppVqWcxJJzgLeBRwOvL+q3jm13TmJlhOskvbVITFx\nneRw4E6az7n+OnAjcEFVfXFiH0NighPXkvbFoRISLwQuqqqz2vXNAFX1jol9DAlJWqBD5W05ngLc\nPbF+T9smSTrIlmNI2EWQpGViOT4n8XXguIn142h6E48xMzPzyPJoNGI0Gh3ouiRpUMbjMePxeEnn\nWI5zEqtoJq5/CfgGcANOXEvSkh0ST1xX1Y+S/CdgG80tsJdOBoQk6eBZdj2JfWFPQpIW7lC5u0mS\ntEwYEpKkToaEJKmTISFJ6mRISJI6GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROhoQkqZMhIUnqZEhI\nkjoZEpKkToaEJKmTISFJ6mRISJI6GRKSpE6GhCSpUy8hkeTfJLk9yY+TnDq17S1JvpRkZ5INfdQn\nSWr01ZO4DTgP+NRkY5JnAa8CngWcBbw3ySHX2xmPx32XsCTW3y/r78+Qa1+sXn4BV9XOqto1z6ZX\nApdX1UNVdRfwd8BpB7W4g2DoP2jW3y/r78+Qa1+s5fZX+pOBeybW7wGe0lMtkrTirTpQJ06yAzh2\nnk1vraqrF3Cq2k8lSZIWKFX9/Q5Ocj2wqao+165vBqiqd7Trfw1cVFWfnTrO4JCkRaiqLGT/A9aT\nWIDJgrcCf57kj2iGmZ4J3DB9wEK/SEnS4vR1C+x5Se4GXgB8Isk1AFV1B3AFcAdwDfAfq8+ujiSt\ncL0ON0mSlrfldnfTXiU5q33Q7ktJ3tx3PXuT5ANJZpPcNtG2NsmOJLuSbE+yps8auyQ5Lsn17YOP\nX0hyYds+lPqfkOSzSW5NckeSt7ftg6h/TpLDk9yS5Op2fTD1J7kryefb+m9o24ZU/5okH03yxfZn\n6OeHUn+Sn2m/73Ovf0hy4ULrH1RIJDkceA/Ng3bPAi5IcnK/Ve3VB2nqnbQZ2FFVJwLXtevL0UPA\n71XVz9IMDf5O+/0eRP1V9Y/A6VX1POA5wOlJXsRA6p/wBpoh2Llu/5DqL2BUVadU1dwzT0Oq/93A\nX1XVyTQ/QzsZSP1VdWf7fT8FeD7wQ+BKFlp/VQ3mBbwQ+OuJ9c3A5r7r2oe6TwBum1jfCaxrl48F\ndvZd4z5+HVcBLxti/cARwI3Azw6pfuCpwLXA6cDVQ/v5Ab4K/ORU2yDqB54EfGWe9kHUP1XzBuDT\ni6l/UD0Jmjue7p5YH+rDduuqarZdngXW9VnMvkhyAnAK8FkGVH+Sw5LcSlPn9VV1OwOqH/hj4E3A\nwxNtQ6q/gGuT3JTkdW3bUOp/OnBfkg8m+VyS9yU5kuHUP+nXgMvb5QXVP7SQOORm2auJ82X9dSU5\nCvgL4A1V9b3Jbcu9/qp6uJrhpqcC/yrJ6VPbl239Sc4G7q2qW3jsreKPWM71t36xmuGOl9MMV754\ncuMyr38VcCrw3qo6FfgBU0Mzy7x+AJI8HngF8JHpbftS/9BC4uvAcRPrx/HYt/EYitkkxwIkWQ/c\n23M9nZI8jiYgLquqq9rmwdQ/p6r+AfgEzdjsUOr/BeCcJF+l+SvwpUkuYzj1U1XfbP97H814+GkM\np/57gHuq6sZ2/aM0obF7IPXPeTlwc/v/ABb4/R9aSNwEPDPJCW06vormAbyh2QpsbJc30oz1LztJ\nAlwK3FFV75rYNJT6j5m7cyPJauAM4BYGUn9VvbWqjquqp9MMF3yyql7NQOpPckSSJ7bLR9KMi9/G\nQOqvqt3A3UlObJteBtwOXM0A6p9wAY8ONcFCv/99T6gsYgLm5cCdNO8Q+5a+69mHei8HvgH8X5r5\nlNcCa2kmI3cB24E1fdfZUfuLaMbCb6X55XoLzZ1aQ6n/2cDn2vo/D7ypbR9E/VNfy0uArUOqn2ZM\n/9b29YW5f69Dqb+t9bk0Nzz8LfAxmsnsIdV/JPAt4IkTbQuq34fpJEmdhjbcJEk6iAwJSVInQ0KS\n1MmQkCR1MiQkSZ0MCUlSJ0NCktTJkJAkdTIkpP0gyc8l+dsk/yzJke2HND2r77qkpfKJa2k/SfIH\nwBOA1cDdVfXOnkuSlsyQkPaT9h1zbwIeBF5Y/uPSIcDhJmn/OYbmDdWOoulNSINnT0LaT5JsBf4c\neAawvqp+t+eSpCVb1XcB0qEgyWuAf6qqDyU5DPjfSUZVNe65NGlJ7ElIkjo5JyFJ6mRISJI6GRKS\npE6GhCSpkyEhSepkSEiSOhkSkqROhoQkqdP/A2zsKZkoLH23AAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x7f3d2ded5ed0>"
]
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment