I hereby claim:
- I am benwhalley on github.
- I am benwhalley (https://keybase.io/benwhalley) on keybase.
- I have a public key ASC19V1R0DG97deKeZwym3XYq0JBGYGSL4qscFyPL_bqXgo
To claim this, I am signing this object:
https://transfer.sh/adEXM/6-sem.pdf | |
https://transfer.sh/FObPj/6-sem-extra.pdf |
https://www.dropbox.com/s/76vg2ortmid2x6t/Session5.pptx?dl=0 | |
https://psy379-placebo.s3.amazonaws.com/index.html |
https://www.dropbox.com/s/76vg2ortmid2x6t/Session5.pptx?dl=0 |
I hereby claim:
To claim this, I am signing this object:
library(tidyverse) | |
library(lmerTest) | |
library(broom) | |
mu_type1 <- 20 | |
mu_type2 <- 70 | |
sd_both <- 20 | |
pwr <- function(N, mu_type1, mu_type2, sd_both){ |
library(tidyverse) | |
library(lmerTest) | |
library(broom) | |
mu_type1 <- 20 | |
mu_type2 <- 70 | |
sd_both <- 20 | |
pwr <- function(N, mu_type1, mu_type2, sd_both){ |
library(tidyverse) | |
library(lmerTest) | |
library(broom) | |
pwr <- function(N){ | |
simdata <- data_frame(person =1:N, c1=rnorm(N, 20, 25), c2 = rnorm(N, 77, 27)) %>% | |
reshape2::melt(id.var="person") | |
lmer(value~variable+(1|person), data=simdata) %>% summary tidy %>% | |
mutate(N=N) | |
} |
library(lmerTest) | |
library(merTools) | |
library(tidyverse) | |
# linear model | |
m <- lmer(Reaction~Days*I(Days^2)+(1|Subject), data=sleepstudy) | |
newdata = expand.grid(Reaction=NA, Days=1:5, Subject=Inf) %>% as.data.frame | |
sims <- predictInterval(m, newdata=newdata, returnSims = T) |
p1 <- | |
ggplot(group.table, aes(month, fit, group=grp, color=grp, shape=grp)) + | |
geom_point() + geom_line() + | |
scale_color_discrete("") + scale_shape_discrete("") + | |
geom_text(show_guide = FALSE, aes(label=fit, y=fit), size=3) + | |
xlab(paste("Month")) + | |
ylab(paste("Model adjusted", toupper(dv))) + | |
theme(legend.position="top") + | |
theme(axis.text.x=element_blank(),axis.title.x=element_blank()) | |
rf2.longs.with <- bind_sims(extract_sims(rf2.preds), newdata) | |
rf2predswide <- rf2.longs %>% | |
dcast(., month+sim+pd.b~grp, value.var="fitted", fun.aggregate=mean) | |
intervals <- rf2predswide %>% | |
mutate(diff=tau-dbt) %>% | |
group_by(month) %>% | |
do(., as.data.frame(t(quantile(.$diff, probs=c(.025, .5, .975))))) |