Skip to content

Instantly share code, notes, and snippets.

@bernatfp
Created February 9, 2014 00:02
Show Gist options
  • Save bernatfp/8892223 to your computer and use it in GitHub Desktop.
Save bernatfp/8892223 to your computer and use it in GitHub Desktop.
Trying IPython Notebook
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Testing IPython Notebook\n",
"One of the most exciting features that brings IPython is what's called notebooks. Notebooks allow to write Python code in the browser and evaluate it directly in the same page. This way we can show the results of running a piece of code and we can document the steps if we want with proper formatting (Markdown in this case), so we can get rid of writing comments besides the code. Oh, and it can even display plots!"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print \"Hello world!\"\n",
"\n",
"for x in range(10):\n",
" print \"number %d\" % x\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Hello world!\n",
"number 0\n",
"number 1\n",
"number 2\n",
"number 3\n",
"number 4\n",
"number 5\n",
"number 6\n",
"number 7\n",
"number 8\n",
"number 9\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So, the output above is the result of running the previous code."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's try a dummy plot example.\n",
"\n",
"First of all, we must tell the backend to use the notebook as the frontend for the plots."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can import the libraries that are required to plot (namely `matplotlib` and `numpy`)."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
"\n",
"x = np.arange(0, 5, 0.1);\n",
"y = np.sin(x)\n",
"plt.plot(x, y)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 4,
"text": [
"[<matplotlib.lines.Line2D at 0x104bd8f10>]"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlY1WXex/H3UXR61MmlBRWZMDdAUSjUMjHc8kkTbcxR\nsjRzyxa1dbJlRpsWLXNacKycZ0yzcJtScmHUFDONSKVpsXEpKUSlKbNFKxTP88ddmgoIHM65f+d3\nPq/rOlcx/uB8rjP67fZ7bx6v1+tFRERcq5rtACIi4l8q9CIiLqdCLyLicir0IiIup0IvIuJyKvQi\nIi7nc6G/8cYbCQ8PJy4urtRnxo0bR4sWLWjXrh25ubm+vqWIiFSAz4V++PDhZGZmlvrrK1asYNeu\nXezcuZMXXniBsWPH+vqWIiJSAT4X+qSkJOrXr1/qr2dkZDBs2DAAOnbsyMGDByksLPT1bUVEpJz8\n3qMvKCggMjLy+NdNmjRhz549/n5bERH5WUAmY089ZcHj8QTibUVEBAjz9xtERESQn59//Os9e/YQ\nERFx2nPNmzfnk08+8XccERFXadasGbt27SrzGb+P6FNSUpg7dy4A2dnZ1KtXj/Dw8NOe++STT/B6\nvXp5vfz5z3/2y889dszLhg1eRo/20qCBl6QkLxMnelm82Mvu3ebXffn5Bw96WbjQy9ChXs4910tc\nnPn5Gzd6OXrUWZ9FML70WeizKOlVngGyzyP61NRU1q9fz5dffklkZCSTJ0/myJEjAIwZM4bevXuz\nYsUKmjdvTu3atZk9e7avbykVtGsXvPQSzJsHv/kNDB0K770Hv5o6qRJ168LAgeZVXAw5ObBsGYwd\nC199BePHw+jR5jkRCRyfC316evoZn0lLS/P1baQSNmyAP/0Jtm2D1FRYuBAuuggCMUVSvTpceql5\nPfII5ObCtGlw4YUwYoQp+iV08ETED7Qz1oGSk5N9+v7cXLjySjNyv+EG2LMHnnoKLr44MEW+JAkJ\n8PLLsGULFBVBXBwMHw4ffVT29/n6WbiJPosT9FlUjMfr9Tri4hGPx4NDogSt7dvhwQfhrbfg/vth\n1CioWdN2qpJ99RXMnAlpadCtGzz5JDRqZDuVSPApT+3UiN4F9u6FkSOhc2fTmtm5E265xblFHuCc\nc+CBB+DTT+GCC6BtW5gxw/T2RaRqqdAHMa/XTLDGx8N555kCf++9ULu27WTlV6sWPPYYZGXBggVw\nySWwdavtVCLuotZNkPriC7OaZft2mDvXjOSDndcLc+aY/1gNGgR/+QucfbbtVCLOptaNS732GrRr\nB82bm8lNNxR5MBPFN9xgJmgPHYLYWHjjDdupRIKfRvRB5OuvYdw4yM42I99OnWwn8q833oDrroNb\nb4WJE6GahiUip9GI3kXefttMWNarZzY7ub3IA3TvDps3w8qV0LcvHDhgO5FIcFKhDwIvvQT9+pnl\niM8+G1yTrb6KiIB16yA62uwD2LzZdiKR4KPWjYMVF5v18IsWQUYGtG5tO5Fd//ynmYB+6CEYM8be\n5i8RJylP7VShd6jvvoMhQ+Dbb2HxYjj3XNuJnGHHDrjmGrPTdtYsZ+8VEAkE9eiD1O7dpgffqBGs\nWqUi/2stW5rJ6G+/NX3777+3nUjE+VToHebNN81BYKNHw3PPacRaklq1TDsrMtIcn/Df/9pOJOJs\nKvQOsmyZaUvMnQu33aYedFnCwkzrpmdPc/TDZ5/ZTiTiXH6/YUrK59VXzUTjsmXQoYPtNMHB4zFH\nIIeHm2K/ciW0aWM7lYjzqNA7wPz5MGGCKVRu2eUaSOPGmXmM7t3NfzAvu8x2IhFnUevGsjlz4I47\nYPVqFXlfXHutaXn172/+gykiJ2h5pUUvvGAO7lq92mwIEt9lZ0NKCqSnmxG+iNtpHb2DPfusuVrv\njTfM4WRSdd58EwYMgCVL1MYR99M6eod6+mlztd/69Sry/tClizmn/+qrdba9CKjQB9y8eebavHXr\nICrKdhr36tXLtMZ694YPP7SdRsQurboJoJUr4c47TZH/3e9sp3G//v3h8GFT9LOyoEUL24lE7FCh\nD5B33oGhQ83hZLGxttOEjmuvNcW+Rw/Tu7/gAtuJRAJPhT4APv7YHDP84ovmeAMJrJEjzY1V3bvD\nW29Bw4a2E4kElgq9n+Xnw//+Lzz+OPTpYztN6Bo/3tzQlZJi2ji1atlOJBI4Wl7pRwcOQFISDB8O\nd91lO414vaZ99sMPsHChriYUd9A6eosOHzYHbnXqBE88YTuN/OKnn078/zJliu00Ir5TobfE64XU\nVHPC4ty5Gjk6zVdfwSWXwB//aPr3IsGsPLVTPXo/eOwxc3nI+vUq8k50zjmwfLlpqzVtqqMSxP1U\nhqrY0qXmEu/XXoOzzrKdRkrTsqXp06emwrZtttOI+JcKfRX68EMYNcocldu4se00ciaXX27OG7rq\nKvjiC9tpRPxHhb6KfPWVWSv/179C+/a200h5DR1qLmHv399M1Iq4kSZjq8CRI2abfYcOWskRjI4d\nM6ddNm4MM2bYTiNSMTq9MkBuv91swHnkEdtJpDKqVTO7llevNqukRNxGq2589PzzsHatufCienXb\naaSy6tY1cytdu0K7duYl4hZq3fggJ8dM5G3cqJMR3SI9HR58EN59F+rXt51G5My0YcqPDhyAiy+G\n6dPNBRfiHuPGmX0QS5dqH4Q4nwq9n3i9ZpXGhReaVTbiLkVFpoXTuzfcf7/tNCJl085YP5k+Hfbv\nh0WLbCcRf6hZ02ymat/evK64wnYiEd9oRF9Bb79tRvM5ObrEwu2ysmDwYHNpjP6/FqfS8soq9tVX\n5g/+3/+uP/ihIDnZHC89aJDZKyESrDSiL6djx6BvX3MNoI4dDh3HjpkLYy66SPskxJk0GVuFpkyB\n1183f52vUcN2GgmkwkJISIB586BbN9tpRE6mQl9FNmyAgQPN2urISNtpxIZ//cucXZ+bC+eeazuN\nyAkq9FXg668hPh7+9jfd+Rrq7roLdu6EJUvA47GdRsRQoa8C114LDRpAWprtJGJbURFceimMGAE3\n32w7jYihdfQ+euUV81f1LVtsJxEnqFnTHJFw2WXQpQu0aWM7kUj5+Ly8MjMzk+joaFq0aMHUqVNP\n+/WsrCzq1q1LQkICCQkJPPzww76+ZUB89hlMmAAvv2xOphQBczPV44+bZbY//GA7jUj5+NS6KS4u\nplWrVqxZs4aIiAjat29Peno6MTExx5/Jyspi+vTpZGRklB3EQa2b4mKzuqJ3b3OBtMiv/XL5+znn\n6Px6sc/vG6ZycnJo3rw5UVFR1KhRg8GDB7N06dLTnnNKAS+vadPMP++6y24OcSaPB557DlasMEtu\nRZzOp0JfUFBA5K/WGzZp0oSCgoKTnvF4PGzatIl27drRu3dvtjn8JuatW02hnztX58tL6erVgzlz\nYMwY+PJL22lEyubTZKynHGvMLrroIvLz86lVqxYrV66kf//+7Nixo8RnJ02adPzfk5OTSU5O9iVe\nhR0+bO4PfeopHXEgZ9ali2nh3HwzLFigJZcSGFlZWWRlZVXoe3zq0WdnZzNp0iQyMzMBeOyxx6hW\nrRp/LKOx3bRpU7Zs2UKDBg1ODuKAHv2tt5pz5l95xWoMCSI//miOR/jTn8wErUig+b1Hn5iYyM6d\nO8nLy6OoqIgFCxaQkpJy0jOFhYXHQ+Tk5OD1ek8r8k7wr39BRoYm16RizjrLtHDGj4d9+2ynESmZ\nT62bsLAw0tLS6NWrF8XFxYwYMYKYmBief/55AMaMGcPixYuZOXMmYWFh1KpVi/nz51dJ8Kr0zTcw\nahT84x+6Pk4qrn1706sfORKWLVMLR5xHO2MxOx1r1DArKUQqo6gILrkEbrnF/H4SCRQdgVAOmZlw\n003w/vtw9tkBf3txkQ8+MPsv3n0XoqJsp5FQoYtHzuCbb2D0aHORiIq8+Couzuy9GD7cnGMv4hQh\nPaIfORLCwtSykapTXAydO5tll+PG2U4joUCtmzKoZSP+snOnOeUyOxuaN7edRtxOrZtSqGUj/tSi\nBdx3n/kbo1o44gQhWejvvNMcWNajh+0k4lbjx5vTLf/+d9tJREKwdaOWjQTKhx9C167mToMmTWyn\nEbdS6+YU336rlo0ETps25liNm24yRxuL2BJSI/pbbzVnk+iv0xIoRUVw8cWmZ5+aajuNuJFW3fzK\nxo0wcCB89JGOOZDAysmBlBSzoeq882ynEbdR6+ZnP/1kzrJ55hkVeQm8Dh3M8dcTJthOIqEqJAr9\nlClmyduAAbaTSKj6y1/gnXfMoWcigeb61s22bXD55Vr5IPatWwdDh5rVOHXr2k4jbhHyPfpjxyAp\nCa67DsaOrdIfLVIpo0dDtWo6dkOqTsj36J97zpwNPmaM7SQixuOPmwvFN260nURCiWtH9Pn55oq3\n9eshNrbKfqyIzxYuhIceMhfR16xpO40Eu5Ad0Xu95gKI225TkRfnGTjQXD7/5JO2k0iocOWIftEi\nmDTJTMBqxCROlJcHiYlmJU6zZrbTSDALycnYgwfNKH7xYujUqQqCifjJtGmwapW5mF73zEplhWTr\n5v77oW9fFXlxvvHj4Ysv4JVXbCcRt3PViD4nB/r1M2vntQNWgsEvv2c/+ggaNLCdRoJRSLVujh6F\n9u3NWfPXXVeFwUT87LbbzGF7s2bZTiLBKKQK/V//araXr1mjfqcEl2+/NfNK6elmg59IRYRMoc/P\nh4QEswmlVasqDiYSAK++auaX3nsPfvMb22kkmITMZOz48easeRV5CVZXX20O3nviCdtJxI2CfkT/\n+uumL//++3DWWX4IJhIgn31mLinJyYELL7SdRoKF61s3hw5B69bmxihd9C1uMGUKbNhg5ps01yTl\n4frWzeTJ0Lmziry4xx13wO7dsGSJ7STiJkE7ov/gA+je3fwzPNyPwUQCLCvLnFu/bRvUqWM7jTid\na1s3x45Bly7mejadMy9uNHSoGcBoclbOxLWF/sUXYcYMyM6G6tX9m0vEhsJCaNPG3ErVpo3tNOJk\nriz0Bw6YzSXLlpnT/0TcauZMcw7O+vXmViqRkrhyMvb+++H3v1eRF/cbPRp++gnmzrWdRIJdUI3o\n330XUlJ0aJmEji1boE8fc+jZOefYTiNO5KrWTXExdOxoDoAaNiyAwUQsu+02M7J/4QXbScSJXFXo\nZ840hz6tX6+NJBJafrlM59VX4ZJLbKcRp3FNof/iC7Py4I03IC4uwMFEHGDePHNCa06OVprJyVwz\nGfvHP8L116vIS+gaMsRsnnr+edtJJBg5fkT/1lsweDB8/DH89rcWgok4xIcfQrdu5p/nn287jThF\n0I/ojx6Fm2+G6dNV5EXatDF/s733XttJJNg4ekT/1FOwfDmsWqUJWBE4cRvVggVw2WW204gTBPVk\n7L59pievW6NETjZ/vjnOePNmCAuznUZsC+rWzd13w6hRKvIipxo0CBo0MEuORcrDkSP69etNL/Lj\nj6F2bcvBRBxo2za4/HJzTHfDhrbTiE1BOaI/cgRuucWsGVaRFylZbCzceCPcc4/tJBIMHFfo09Ig\nIsIcXCYipXvwQXOM8Ztv2k4iTueo1k1BgZe2bWHTJmjZ0nYiEedbtAgeegi2boUaNWynERsC0rrJ\nzMwkOjqaFi1aMHXq1BKfGTduHC1atKBdu3bk5uaW+rPuvtsczaoiL1I+11xjevQzZthOIk7m04i+\nuLiYVq1asWbNGiIiImjfvj3p6enExMQcf2bFihWkpaWxYsUK3nnnHcaPH092dvbpQTwefvc7L9u2\nqTcvUhH/+Q8kJcH770OjRrbTSKD5fUSfk5ND8+bNiYqKokaNGgwePJilS5ee9ExGRgbDfj5XuGPH\njhw8eJDCwsISf54mYEUqLjoaRo7UxKyUzqdCX1BQQGRk5PGvmzRpQkFBwRmf2bNnT4k/7+qrfUkj\nEroeeMAsS9bErJTEp311nnKeS3DqXytK+77Jkycd//fk5GSSk5MrG00kpNSubc6EuuUWTcy6XVZW\nFllZWRX6Hp8KfUREBPn5+ce/zs/Pp0mTJmU+s2fPHiIiIkr8eZMmTfIljkhIGzDA3EI1YwZMmGA7\njfjLqYPgyZMnn/F7fGrdJCYmsnPnTvLy8igqKmLBggWkpKSc9ExKSgpzf77dODs7m3r16hEeHu7L\n24pICTweePZZeOQRc1aUyC98GtGHhYWRlpZGr169KC4uZsSIEcTExPD8z7cjjBkzht69e7NixQqa\nN29O7dq1mT17dpUEF5HTtWp1YmL2pZdspxGncNSGKYdEEQlqhw5BTIy5frBLF9tpxN+C8qwbEfHN\nrydmjxyxnUacQIVexIUGDDCbp9LSbCcRJ1DrRsSltm83t1C9/z40bmw7jfhLUN8wJSK+u+8+yMuD\nV16xnUT8RYVeJMQdOgStW8Ps2dC1q+004g+ajBUJcbVrw1NPmYnZoiLbacQWFXoRl+vXD6KiTMGX\n0KTWjUgI+OQT6NgRcnPhV2cMiguodSMiADRrBrfeCnfcYTuJ2KARvUiI+OEHaNMGZs6EK66wnUaq\nikb0InLc//wPPPOMGdn/9JPtNBJIKvQiIaRPH4iNhWnTbCeRQFLrRiTE5OVBYiJs3mxW40hwU+tG\nRE4TFWUmZceNs51EAkWFXiQE3XUX7NwJS5faTiKBoNaNSIhatw5uuAE++gjq1LGdRipLZ92ISJmu\nv94cZ/z447aTSGWp0ItImQoLIS4O1q41a+wl+GgyVkTKFB4OkyfD2LFw7JjtNOIvKvQiIW70aLOB\nas4c20nEX9S6ERG2boXevc3E7Dnn2E4jFaEevYiU27hx5jycWbNsJ5GKUKEXkXL75htzPMKiRdCp\nk+00Ul6ajBWRcqtbF558Em66CY4csZ1GqpIKvYgcN2iQWVc/fbrtJFKV1LoRkZN8+il06AA5OXDh\nhbbTyJmodSMiFXbhhXDPPWZtvcZe7qBCLyKnuf122L8f0tNtJ5GqoNaNiJQoJwf69TNr6xs0sJ1G\nSqPllSLik3Hj4NAh+L//s51ESqNCLyI++fZbaN0a5s2Dyy+3nUZKoslYEfHJ2WfDs8/CmDG6UDyY\nqdCLSJn69zc7Zh97zHYSqSy1bkTkjAoKID4e3nwTYmJsp5FfU+tGRKpERARMmgSjRunc+mCkQi8i\n5TJ2LHg8MGOG7SRSUWrdiEi5bd8Ol10G774LTZvaTiOg1o2IVLFWrczxCKNH63iEYKJCLyIVcscd\n8PXX8I9/2E4i5aXWjYhU2PvvQ/fu8N57ZqJW7FHrRkT8om1buOUWc0mJxmfOp0IvIpVy332Ql6cT\nLoOBWjciUmnvvgt9+5pWzvnn204TmnSomYj43T33wOefw/z5tpOEJvXoRcTvJk+GrVvh1VdtJ5HS\naEQvIj57+224+mr4978hPNx2mtCi1o2IBMx998GHH8LSpeaoBAkMv7ZuDhw4QM+ePWnZsiVXXHEF\nBw8eLPG5qKgo2rZtS0JCAh06dKjs24mIw02aZHr1L75oO4mcqtKFfsqUKfTs2ZMdO3bQvXt3pkyZ\nUuJzHo+HrKwscnNzycnJqXRQEXG2mjVh7lwzOZuXZzuN/FqlC31GRgbDhg0DYNiwYSxZsqTUZ9WS\nEQkNbdvC3XfDDTfoOGMnqXShLywsJPznWZfw8HAKCwtLfM7j8dCjRw8SExOZNWtWZd9ORILEnXfC\n0aPw9NO2k8gvwsr6xZ49e7J///7T/vdHHnnkpK89Hg+eUmZfNm7cSKNGjfjvf/9Lz549iY6OJikp\nqcRnJ02adPzfk5OTSU5OPkN8EXGa6tVhzhzo2BF69TLXEErVycrKIisrq0LfU+lVN9HR0WRlZdGw\nYUP27dtH165d+c9//lPm90yePJk6depw5513nh5Eq25EXOWFF+D55yE7G2rUsJ3Gvfy66iYlJYU5\nc+YAMGfOHPr373/aM4cPH+a7774D4NChQ6xatYq4uLjKvqWIBJFRo8ya+ocftp1EKj2iP3DgAH/4\nwx/4/PPPiYqKYuHChdSrV4+9e/cyatQoli9fzqeffsrvf/97AI4ePcqQIUOYOHFiyUE0ohdxnX37\nICEB/vlPczOVVD1tmBIR6zIyYNw4yM2F+vVtp3EfFXoRcYTx42HPHli8WLtmq5oONRMRR3j8cfj0\nUzM5K4GnEb2IBMT27dC5M6xdC1qTUXU0ohcRx2jVCqZNg0GD4PBh22lCi0b0IhIwXi9cfz3UqmXW\n2YvvNKIXEUfxeGDmTFi3DhYutJ0mdGhELyIBt3kzXHkl5ORA06a20wQ3jehFxJESE2HiRNOv//FH\n22ncTyN6EbHC64WBA80mKh1sW3ka0YuIY3k8MHs2bNqkQu9vGtGLiFXbt0NSErz+ujnaWCpGI3oR\ncbxWrcyIfuBAKOX+IvGRCr2IWNevHwwbZiZnjxyxncZ91LoREUcoLoarroKYGJg+3Xaa4KHWjYgE\njerV4eWXYelSeOUV22ncRSN6EXGUf/8bevSA1ashPt52GufTiF5Egk67djBjBqSkmDPsxXdhtgOI\niJzqD3+A3buhTx/YsAHOPtt2ouCm1o2IOJLXC2PHQl6eWWNfo4btRM6k1o2IBC2PB9LSoFo1uPlm\nU/ilclToRcSxwsJgwQJz2uXUqbbTBC/16EXE0X77W1i+HC69FC64AFJTbScKPir0IuJ4jRvDsmXQ\nvTs0aWLOxpHyU+tGRIJCXJzZUHXNNfDBB7bTBBcVehEJGj17wjPPQK9esG2b7TTBQ60bEQkqgwZB\nUZEp+uvWQcuWthM5nwq9iASd6683p1x27w5ZWdCsme1EzqZCLyJB6cYbTy72UVG2EzmXCr2IBK0x\nY0wbp1s3WL8eIiNtJ3ImFXoRCWq33WZG9r8U+8aNbSdyHhV6EQl6d9xhRvaXXw6ZmerZn0qFXkRc\n4d57zSmXSUmQkQGJibYTOYdOrxQRV1myBEaNgrlz4corbafxP51eKSIhp39/cx3h8OEwe7btNM6g\nEb2IuNL27WZEP3w4PPCAOfbYjcpTO1XoRcS19u+H3r1Nv/5vfzPHHruNWjciEtIaNjRLLj//3JyP\ns3+/7UR2qNCLiKv9cp59UhJcdBGsXm07UeCpdSMiIWPtWnNOzvDhMGmSO1o56tGLiJyisNAU+x9+\ngPR0c5FJMFOPXkTkFOHhZvfsL5O0y5fbTuR/GtGLSMh66y0YMsQcnTB1KjRqZDtRxWlELyJShs6d\n4aOPzEFocXEwbZo5M8dtNKIXEQF27IAJE2D3bnNdYc+ethOVjyZjRUQqwOuFZctMwW/XDqZPd/6F\nJmrdiIhUgMcDffuads5FF5nXkCGQk2M7mW8qXegXLVpE69atqV69Olu3bi31uczMTKKjo2nRogVT\np06t7NuJiATMWWeZ83E+/RQuvthcSH7JJWY5ZjD28Ctd6OPi4njttdfo0qVLqc8UFxdz6623kpmZ\nybZt20hPT+fjjz+u7FuGjKysLNsRHEOfxQn6LE4I1GdRr5651GTXLpg4EWbNgqZN4eGHoaAgIBGq\nRKULfXR0NC1btizzmZycHJo3b05UVBQ1atRg8ODBLF26tLJvGTL0B/oEfRYn6LM4IdCfRfXq0K+f\n2VmbmQmffQZt20Lr1jB+vOnrf/dd1b2f1ws7d8KLL8Lo0b63jvy6AbigoIDIX93W26RJE9555x1/\nvqWIiF/FxZmR/XPPQW6uOTtn+nRITYWEBOjRA2JiICLCLNts3Bhq1iz95/34Ixw8CJ98Ahs3wqZN\n5nXWWdCpE1x2mflZviiz0Pfs2ZP9JRz39uijj9K3b98z/nCPWw+AFpGQV7262VmbmGjaOocOwYYN\n8MYbppe/d69p7xQWmhZQ48Zw7rnw/femsP/yOnYM6teHyEhT2FNT4dlnzddVxuuj5ORk75YtW0r8\ntbffftvbq1ev418/+uij3ilTppT4bLNmzbyAXnrppZdeFXg1a9bsjHW6Slo33lLWcCYmJrJz507y\n8vJo3LgxCxYsID09vcRnd+3aVRVRRETkFJWejH3ttdeIjIwkOzubPn36cOXPt/Du3buXPn36ABAW\nFkZaWhq9evUiNjaWQYMGERMTUzXJRUSkXByzM1ZERPzD+s5Ybag64cYbbyQ8PJy4uDjbUazKz8+n\na9eutG7dmjZt2vDMM8/YjmTNjz/+SMeOHYmPjyc2NpaJEyfajmRdcXExCQkJ5VoQ4mZRUVG0bduW\nhIQEOnToUOazVkf0xcXFtGrVijVr1hAREUH79u1JT08P2fbOhg0bqFOnDkOHDuWDDz6wHcea/fv3\ns3//fuLj4/n++++5+OKLWbJkScj+vjh8+DC1atXi6NGjdO7cmWnTptG5c2fbsayZPn06W7Zs4bvv\nviMjI8N2HGuaNm3Kli1baNCgwRmftTqi14aqkyUlJVG/fn3bMaxr2LAh8fHxANSpU4eYmBj27t1r\nOZU9tWrVAqCoqIji4uJy/cF2qz179rBixQpGjhypQxApfSHMqawW+pI2VBUE075i8bu8vDxyc3Pp\n2LGj7SjWHDt2jPj4eMLDw+natSuxsbG2I1lz++2388QTT1CtmvWus3Uej4cePXqQmJjIrFmzynzW\n6qelDVVSlu+//55rrrmGp59+mjp16tiOY021atV477332LNnD2+++WbIHoWwbNkyzj//fBISEjSa\nBzZu3Ehubi4rV65kxowZbNiwodRnrRb6iIgI8vPzj3+dn59Pk2C/qVeqxJEjRxgwYADXXXcd/fv3\ntx3HEerWrUufPn3YvHmz7ShWbNq0iYyMDJo2bUpqaipr165l6NChtmNZ0+jnew/PO+88rr76anLK\nOBDHaqH/9YaqoqIiFixYQEpKis1I4gBer5cRI0YQGxvLhAkTbMex6ssvv+TgwYMA/PDDD6xevZqE\nhATLqex49NFHyc/PZ/fu3cyfP59u3boxd+5c27GsOHz4MN/9fIraoUOHWLVqVZmr9awWem2oOllq\naiqdOnVix44dREZGMnv2bNuRrNi4cSPz5s1j3bp1JCQkkJCQQGZmpu1YVuzbt49u3boRHx9Px44d\n6du3L92+sSOHAAAAVklEQVS7d7cdyxFCufVbWFhIUlLS8d8XV111FVdccUWpz2vDlIiIy2nqWkTE\n5VToRURcToVeRMTlVOhFRFxOhV5ExOVU6EVEXE6FXkTE5VToRURc7v8BiJsVSrcR4N8AAAAASUVO\nRK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x104bb50d0>"
]
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment