Skip to content

Instantly share code, notes, and snippets.

@bgbg
Forked from anonymous/monty_hall.ipynb
Created February 7, 2018 12:21
Show Gist options
  • Save bgbg/62f5d67f054abbdaa865bfd64200c1d1 to your computer and use it in GitHub Desktop.
Save bgbg/62f5d67f054abbdaa865bfd64200c1d1 to your computer and use it in GitHub Desktop.
monty_hall.ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {},
"cell_type": "markdown",
"source": "# Monty Hall problem simulation\n\nThis notebook contains a simple simulation of the famous [Monty Hall problem](https://en.wikipedia.org/wiki/Monty_Hall_problem). The logic of this particular implementation works only for the case of three possible doors."
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "import numpy as np\nimport matplotlib.pylab as plt\n%matplotlib inline",
"execution_count": 1,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "randint = np.random.randint\nN = 3 # Don't change N. The logic works only for N == 3",
"execution_count": 2,
"outputs": []
},
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "def arrange():\n \"\"\"Arrange the game. Put one care and two goats\"\"\"\n doors = np.zeros(N, dtype=bool)\n ix = randint(0, N)\n doors[ix] = True\n return doors",
"execution_count": 3,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "def car_print(x, pref=''):\n \"\"\"Print a nice representation of the game\"\"\"\n ret = [['🐐', '🚙'][v] for v in x]\n print (f'{pref:30s}\\t{\"\".join(ret)}')\ncar_print(arrange())",
"execution_count": 4,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": " \t🚙🐐🐐\n"
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "def sel_print(x, pref=''):\n \"\"\"Print a nice representation of a selection\"\"\"\n ret = [['∅', '✓'][v] for v in x]\n print (f'{pref:30s}\\t{\"\".join(ret)}')",
"execution_count": 5,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "def make_a_guess():\n \"\"\"Make a guess\"\"\"\n return arrange() # Technically, making a guess is identical to arranging a new game",
"execution_count": 6,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "def check(doors, guess):\n \"\"\"Check the results\"\"\"\n success = (doors * guess).sum()\n return success",
"execution_count": 7,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "Let's see an example"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "doors = arrange()\nguess = make_a_guess()\ncar_print(doors, 'Truth')\nsel_print(guess, 'Guess')\nprint(check(doors, guess))",
"execution_count": 8,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": "Truth \t🚙🐐🐐\nGuess \t✓∅∅\n1\n"
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "doors = arrange()\ncar_print(doors, 'Truth')\nguess = make_a_guess()\nsel_print(guess, 'Guess')\nnot_selected = ~guess\nno_car = ~doors\nmaybe_open = not_selected & no_car\nsel_print(maybe_open, 'What to open')\nto_open = np.zeros(N, dtype=bool)\nix_to_open = np.where(maybe_open)\nix_to_open = ix_to_open[randint(0, len(ix_to_open))]\nto_open = np.zeros(N, dtype=bool)\nto_open[ix_to_open] = True\nsel_print(to_open, 'To open')\nswitch = (~guess) & (~to_open)\nsel_print(switch , 'Switch')\nresult = check(doors, guess) - check(doors, switch)\nprint(f'{\"Result\":30s}{result}')",
"execution_count": 9,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": "Truth \t🐐🚙🐐\nGuess \t∅✓∅\nWhat to open \t✓∅✓\nTo open \t✓∅✓\nSwitch \t∅∅∅\nResult 1\n"
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "def running_mean(x):\n cumsum = np.cumsum(np.array(x) == -1) \n return cumsum / (np.arange(1.0, len(x) + 1.0))",
"execution_count": 10,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "results = []\nfor i in range(30):\n doors = arrange()\n guess = make_a_guess()\n not_selected = ~guess\n no_car = ~doors\n maybe_open = not_selected & no_car\n to_open = np.zeros(N, dtype=bool)\n ix_to_open = np.where(maybe_open)\n ix_to_open = ix_to_open[randint(0, len(ix_to_open))]\n to_open = np.zeros(N, dtype=bool)\n to_open[ix_to_open] = True\n switch = (~guess) & (~to_open)\n result = check(doors, guess) - check(doors, switch)\n results.append(result)\nplt.figure(figsize=(10, 4))\nplt.title('Results')\nplt.plot(results, 'o')\nplt.figure(figsize=(10, 4))\nplt.title('Cumulative results')\nplt.plot(np.cumsum(results), '-o', color='C1')",
"execution_count": 11,
"outputs": [
{
"data": {
"text/plain": "[<matplotlib.lines.Line2D at 0x10d668390>]"
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAEICAYAAAAeDYM+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGelJREFUeJzt3X+wXGd93/H3J5JtXEixjIQjZIPt\n4Brza+Rm43RKhxCwsWEIclJCbEoiUlK3HZzSEFxsQktCIRhMa5iWAAYMglAEMWCUdlJhG0PoDCZa\nYYF/jbAwBMtS7AtGAY9V/5C//eMepevre3Ul7V7dZ1fv18zO7nnOc8757jPPNR/Oj1WqCkmSJC2u\nn1nsAiRJkmQokyRJaoKhTJIkqQGGMkmSpAYYyiRJkhpgKJMkSWqAoUyS9kOSFyTZvth1SJpchjJJ\nYynJ95PsTnJfkr9N8vEkTzjExz/zUB1P0uQzlEkaZ79aVU8AVgOnA5cscj2SdNAMZZLGXlX9LbCR\n6XBGkqOSvCfJD5LcneSDSY7u1i1P8j+T7Epyb5KvJfmZbl0lefre/XZn394+83hJPgk8FfiL7kzd\nf0jyuCR/luRH3b43JTnuUHx/SZPBUCZp7CU5HngJsK1rehfwj5gOaU8HVgH/qVv3B8B2YAVwHPBm\n4ID+vbmq+i3gB3Rn6qrq3cBa4InACcCTgH8D7D74byXpcGMokzTOrk7yU+BO4B7grUkC/Cvg96vq\n3qr6KfAnwHndNg8BK4GnVdVDVfW1Gs0/AvwQ02Hs6VW1p6o2V9VPRrBfSYcJQ5mkcXZuVf0s8ALg\nGcByps+A/QNgc3cZcRfwv7t2gMuYPqP2pSR3JLl4RLV8kulLqOuT7Ejy7iRHjGjfkg4DhjJJY6+q\nvgp8HHgP8EOmLxs+q6qO6V5P7B4IoKp+WlV/UFUnA78KvCHJi7pd3c90oNvr5/Z12Bk1PFRVf1xV\nzwT+KfAy4LdH8PUkHSYMZZImxXuBs4DnAh8GLk/yZIAkq5Kc3X1+WZKnd5c5fwLs6V4AW4BXJVmS\n5Bzgl/dxvLuBk/cuJPmVJM9JsqTb70MD+5WkeRnKJE2EqpoCPgH8R+BNTF+ivCHJT4BrgVO7rqd0\ny/cBXwf+tKq+0q17PdNnz3YB/wK4eh+HfCfwlu4S6RuZPqt2FdOB7Dbgq8Cfjer7SZp8Gc39rZIk\nSRqGZ8okSZIaYCiTJElqgKFMkiSpAYYySZKkBixd7AIOxvLly+vEE09c7DIkSZLmtXnz5h9W1Yr5\n+o1lKDvxxBPp9/uLXYYkSdK8kvzN/vTz8qUkSVIDDGWSJEkNMJRJkiQ1wFAmSZLUAEOZJElSA0by\n9GWSK4GXAfdU1bNnWR/gfcBLgfuB11TVN7t1a4G3dF3fXlXrRlHTJLj6xru4bONWduzazVOOOZqL\nzj6Vc09fNda1jGI/kzguk1ZLS5y7C1tLS99pFFr6Pi3NOcfl0BjJP0ie5PnAfcAn5ghlLwV+j+lQ\n9kvA+6rql5IcC/SBHlDAZuAXqurH+zper9erSf9JjKtvvItLPn8Tux/a8/dtRx+xhHf++nMO+cQZ\nVS2j2M8kjsuk1dIS5+7C1tLSdxqFlr5PS3POcRleks1V1Zuv30guX1bVXwH37qPLGqYDW1XVDcAx\nSVYCZwPXVNW9XRC7BjhnFDWNu8s2bn3UhAHY/dAeLtu4dWxrGcV+JnFcJq2Wljh3F7aWlr7TKLT0\nfVqac47LoXOo7ilbBdw5sLy9a5ur/TGSXJCkn6Q/NTW1YIW2Yseu3QfUvpBGVcso9jOJ4zIKLdXS\nEufu7Foal5a09H1amnOOy6FzqEJZZmmrfbQ/trHqiqrqVVVvxYp5/6WCsfeUY44+oPaFNKpaRrGf\nSRyXUWiplpY4d2fX0ri0pKXv09Kcc1wOnUMVyrYDJwwsHw/s2Ef7Ye+is0/l6COWPKrt6COWcNHZ\np45tLaPYzySOy6TV0hLn7sLW0tJ3GoWWvk9Lc85xOXQO1b99uQG4MMl6pm/0/7uq2plkI/AnSZZ1\n/V4MXHKIamra3psNW3g6ZFS1jGI/kzguk1ZLS5y7C1tLS99pFFr6Pi3NOcfl0BnV05efBl4ALAfu\nBt4KHAFQVR/sfhLjvzN9E//9wO9UVb/b9l8Cb+529Y6q+th8xzscnr6UJEmTYX+fvhzJmbKqOn+e\n9QW8bo51VwJXjqIOSZKkceUv+kuSJDXAUCZJktQAQ5kkSVIDDGWSJEkNMJRJkiQ1wFAmSZLUAEOZ\nJElSAwxlkiRJDTCUSZIkNcBQJkmS1ABDmSRJUgMMZZIkSQ0wlEmSJDXAUCZJktQAQ5kkSVIDDGWS\nJEkNGEkoS3JOkq1JtiW5eJb1lyfZ0r2+k2TXwLo9A+s2jKIeSZKkcbN02B0kWQK8HzgL2A5sSrKh\nqm7d26eqfn+g/+8Bpw/sYndVrR62DkmSpHE2ijNlZwDbquqOqnoQWA+s2Uf/84FPj+C4kiRJE2MU\noWwVcOfA8vau7TGSPA04CfjyQPPjkvST3JDk3LkOkuSCrl9/ampqBGVLkiS1YxShLLO01Rx9zwOu\nqqo9A21Praoe8CrgvUl+frYNq+qKqupVVW/FihXDVSxJktSYUYSy7cAJA8vHAzvm6HseMy5dVtWO\n7v0O4Cs8+n4zSZKkw8IoQtkm4JQkJyU5kung9ZinKJOcCiwDvj7QtizJUd3n5cDzgFtnbitJkjTp\nhn76sqoeTnIhsBFYAlxZVbckeRvQr6q9Ae18YH1VDV7aPA34UJJHmA6Ilw4+tSlJknS4yKMz0njo\n9XrV7/cXuwxJkqR5Jdnc3T+/T/6ivyRJUgMMZZIkSQ0wlEmSJDXAUCZJktQAQ5kkSVIDDGWSJEkN\nMJRJkiQ1wFAmSZLUAEOZJElSAwxlkiRJDTCUSZIkNcBQJkmS1ABDmSRJUgMMZZIkSQ0wlEmSJDXA\nUCZJktSAkYSyJOck2ZpkW5KLZ1n/miRTSbZ0r98dWLc2ye3da+0o6pEkSRo3S4fdQZIlwPuBs4Dt\nwKYkG6rq1hldP1NVF87Y9ljgrUAPKGBzt+2Ph61LkiRpnIziTNkZwLaquqOqHgTWA2v2c9uzgWuq\n6t4uiF0DnDOCmiRJksbKKELZKuDOgeXtXdtM/zzJt5NcleSEA9yWJBck6SfpT01NjaBsSZKkdowi\nlGWWtpqx/BfAiVX1XOBaYN0BbDvdWHVFVfWqqrdixYqDLlaSJKlFowhl24ETBpaPB3YMdqiqH1XV\nA93ih4Ff2N9tJUmSDgejCGWbgFOSnJTkSOA8YMNghyQrBxZfDtzWfd4IvDjJsiTLgBd3bZIkSYeV\noZ++rKqHk1zIdJhaAlxZVbckeRvQr6oNwL9L8nLgYeBe4DXdtvcm+c9MBzuAt1XVvcPWJEmSNG5S\nNestXE3r9XrV7/cXuwxJkqR5JdlcVb35+vmL/pIkSQ0wlEmSJDXAUCZJktQAQ5kkSVIDDGWSJEkN\nMJRJkiQ1wFAmSZLUAEOZJElSAwxlkiRJDTCUSZIkNcBQJkmS1ABDmSRJUgMMZZIkSQ0wlEmSJDXA\nUCZJktSAkYSyJOck2ZpkW5KLZ1n/hiS3Jvl2kuuSPG1g3Z4kW7rXhlHUI0mSNG6WDruDJEuA9wNn\nAduBTUk2VNWtA91uBHpVdX+Sfwu8G/jNbt3uqlo9bB2SJEnjbBRnys4AtlXVHVX1ILAeWDPYoaqu\nr6r7u8UbgONHcFxJkqSJMYpQtgq4c2B5e9c2l9cCfzmw/Lgk/SQ3JDl3ro2SXND1609NTQ1XsSRJ\nUmOGvnwJZJa2mrVj8mqgB/zyQPNTq2pHkpOBLye5qaq++5gdVl0BXAHQ6/Vm3b8kSdK4GsWZsu3A\nCQPLxwM7ZnZKcibwh8DLq+qBve1VtaN7vwP4CnD6CGqSJEkaK6MIZZuAU5KclORI4DzgUU9RJjkd\n+BDTgeyegfZlSY7qPi8HngcMPiAgSZJ0WBj68mVVPZzkQmAjsAS4sqpuSfI2oF9VG4DLgCcAf54E\n4AdV9XLgNOBDSR5hOiBeOuOpTUmSpMNCqsbv9qxer1f9fn+xy5AkSZpXks1V1Zuvn7/oL0mS1ABD\nmSRJUgMMZZIkSQ0wlEmSJDXAUCZJktQAQ5kkSVIDDGWSJEkNMJRJkiQ1wFAmSZLUAEOZJElSAwxl\nkiRJDTCUSZIkNcBQJkmS1ABDmSRJUgMMZZIkSQ0wlEmSJDVgJKEsyTlJtibZluTiWdYfleQz3fpv\nJDlxYN0lXfvWJGePoh5JkqRxM3QoS7IEeD/wEuCZwPlJnjmj22uBH1fV04HLgXd12z4TOA94FnAO\n8Kfd/iRJkg4rozhTdgawraruqKoHgfXAmhl91gDrus9XAS9Kkq59fVU9UFXfA7Z1+5MkSTqsjCKU\nrQLuHFje3rXN2qeqHgb+DnjSfm4LQJILkvST9KempkZQtiRJUjtGEcoyS1vtZ5/92Xa6seqKqupV\nVW/FihUHWKIkSVLbRhHKtgMnDCwfD+yYq0+SpcATgXv3c1tJkqSJN4pQtgk4JclJSY5k+sb9DTP6\nbADWdp9fAXy5qqprP697OvMk4BTgr0dQkyRJ0lhZOuwOqurhJBcCG4ElwJVVdUuStwH9qtoAfBT4\nZJJtTJ8hO6/b9pYknwVuBR4GXldVe4atSZIkadxk+oTVeOn1etXv9xe7DEmSpHkl2VxVvfn6+Yv+\nkiRJDTCUSZIkNcBQJkmS1ABDmSRJUgMMZZIkSQ0wlEmSJDXAUCZJktQAQ5kkSVIDDGWSJEkNMJRJ\nkiQ1wFAmSZLUAEOZJElSAwxlkiRJDTCUSZIkNcBQJkmS1ABDmSRJUgOGCmVJjk1yTZLbu/dls/RZ\nneTrSW5J8u0kvzmw7uNJvpdkS/daPUw9kiRJ42rYM2UXA9dV1SnAdd3yTPcDv11VzwLOAd6b5JiB\n9RdV1erutWXIeiRJksbSsKFsDbCu+7wOOHdmh6r6TlXd3n3eAdwDrBjyuJIkSRNl2FB2XFXtBOje\nn7yvzknOAI4EvjvQ/I7usublSY7ax7YXJOkn6U9NTQ1ZtiRJUlvmDWVJrk1y8yyvNQdyoCQrgU8C\nv1NVj3TNlwDPAH4ROBZ401zbV9UVVdWrqt6KFZ5okyRJk2XpfB2q6sy51iW5O8nKqtrZha575uj3\nD4H/Bbylqm4Y2PfO7uMDST4GvPGAqpckSZoQw16+3ACs7T6vBb44s0OSI4EvAJ+oqj+fsW5l9x6m\n70e7ech6JEmSxtKwoexS4KwktwNndcsk6SX5SNfnlcDzgdfM8tMXn0pyE3ATsBx4+5D1SJIkjaVU\n1WLXcMB6vV71+/3FLkOSJGleSTZXVW++fv6ivyRJUgMMZZIkSQ0wlEmSJDXAUCZJktQAQ5kkSVID\nDGWSJEkNMJRJkiQ1wFAmSZLUAEOZJElSAwxlkiRJDTCUSZIkNcBQJkmS1ABDmSRJUgMMZZIkSQ0w\nlEmSJDVgqFCW5Ngk1yS5vXtfNke/PUm2dK8NA+0nJflGt/1nkhw5TD2SJEnjatgzZRcD11XVKcB1\n3fJsdlfV6u718oH2dwGXd9v/GHjtkPVIkiSNpWFD2RpgXfd5HXDu/m6YJMALgasOZntJkqRJMmwo\nO66qdgJ070+eo9/jkvST3JBkb/B6ErCrqh7ulrcDq+Y6UJILun30p6amhixbkiSpLUvn65DkWuDn\nZln1hwdwnKdW1Y4kJwNfTnIT8JNZ+tVcO6iqK4ArAHq93pz9JEmSxtG8oayqzpxrXZK7k6ysqp1J\nVgL3zLGPHd37HUm+ApwOfA44JsnS7mzZ8cCOg/gOkiRJY2/Yy5cbgLXd57XAF2d2SLIsyVHd5+XA\n84Bbq6qA64FX7Gt7SZKkw8GwoexS4KwktwNndcsk6SX5SNfnNKCf5FtMh7BLq+rWbt2bgDck2cb0\nPWYfHbIeSZKksZTpE1bjpdfrVb/fX+wyJEmS5pVkc1X15uvnL/pLkiQ1wFAmSZLUAEOZJElSAwxl\nkiRJDTCUSZIkNcBQJkmS1ABDmSRJUgMMZZIkSQ0wlEmSJDXAUCZJktQAQ5kkSVIDDGWSJEkNMJRJ\nkiQ1wFAmSZLUAEOZJElSAwxlkiRJDRgqlCU5Nsk1SW7v3pfN0udXkmwZeP3fJOd26z6e5HsD61YP\nU48kSdK4GvZM2cXAdVV1CnBdt/woVXV9Va2uqtXAC4H7gS8NdLlo7/qq2jJkPZIkSWNp2FC2BljX\nfV4HnDtP/1cAf1lV9w95XEmSpIkybCg7rqp2AnTvT56n/3nAp2e0vSPJt5NcnuSouTZMckGSfpL+\n1NTUcFVLkiQ1Zt5QluTaJDfP8lpzIAdKshJ4DrBxoPkS4BnALwLHAm+aa/uquqKqelXVW7FixYEc\nWpIkqXlL5+tQVWfOtS7J3UlWVtXOLnTds49dvRL4QlU9NLDvnd3HB5J8DHjjftYtSZI0UYa9fLkB\nWNt9Xgt8cR99z2fGpcsuyJEkTN+PdvOQ9UiSJI2lYUPZpcBZSW4HzuqWSdJL8pG9nZKcCJwAfHXG\n9p9KchNwE7AcePuQ9UiSJI2leS9f7ktV/Qh40SztfeB3B5a/D6yapd8Lhzm+JEnSpPAX/SVJkhpg\nKJMkSWqAoUySJKkBhjJJkqQGGMokSZIaYCiTJElqgKFMkiSpAYYySZKkBhjKJEmSGmAokyRJaoCh\nTJIkqQGGMkmSpAYYyiRJkhpgKJMkSWqAoUySJKkBhjJJkqQGLB1m4yS/AfwRcBpwRlX15+h3DvA+\nYAnwkaq6tGs/CVgPHAt8E/itqnpwmJqGdfWNd3HZxq3s2LWbpxxzNBedfSrnnr5q0fYzCi3V0pKW\nxmXSapnEv6OWTNq4TOJ8aamWVjgm80tVHfzGyWnAI8CHgDfOFsqSLAG+A5wFbAc2AedX1a1JPgt8\nvqrWJ/kg8K2q+sB8x+31etXvz5r/hnL1jXdxyedvYvdDe/6+7egjlvDOX3/OAU2cUe1nFFqqpSUt\njcuk1TKJf0ctmbRxmcT50lItrTjcxyTJ5qrqzddvqMuXVXVbVW2dp9sZwLaquqM7C7YeWJMkwAuB\nq7p+64Bzh6lnWJdt3PqoCQOw+6E9XLZxvq+4MPsZhZZqaUlL4zJptUzi31FLJm1cJnG+tFRLKxyT\n/XMo7ilbBdw5sLy9a3sSsKuqHp7RPqskFyTpJ+lPTU0tSKE7du0+oPaF3s8otFRLS1oal0mrZRL/\njloyaeMyifOlpVpa4Zjsn3lDWZJrk9w8y2vNfh4js7TVPtpnVVVXVFWvqnorVqzYz0MfmKccc/QB\ntS/0fkahpVpa0tK4TFotk/h31JJJG5dJnC8t1dIKx2T/zBvKqurMqnr2LK8v7ucxtgMnDCwfD+wA\nfggck2TpjPZFc9HZp3L0EUse1Xb0EUu46OxTF2U/o9BSLS1paVwmrZZJ/DtqyaSNyyTOl5ZqaYVj\nsn+GevpyP20CTumetLwLOA94VVVVkuuBVzB9n9laYH+D3oLYe7PhsE+HjGo/o9BSLS1paVwmrZZJ\n/DtqyaSNyyTOl5ZqaYVjsn+Gffry14D/BqwAdgFbqursJE9h+qcvXtr1eynwXqZ/EuPKqnpH134y\n//8nMW4EXl1VD8x33IV6+lKSJGnU9vfpy6FC2WIxlEmSpHFxSH4SQ5IkSaNhKJMkSWqAoUySJKkB\nhjJJkqQGjOWN/kmmgL9Z4MMsZ/q31LQwHN+F49guLMd34Ti2C8exXVjzje/TqmreX74fy1B2KCTp\n78+TEjo4ju/CcWwXluO7cBzbhePYLqxRja+XLyVJkhpgKJMkSWqAoWxuVyx2ARPO8V04ju3CcnwX\njmO7cBzbhTWS8fWeMkmSpAZ4pkySJKkBhjJJkqQGGMpmkeScJFuTbEty8WLXM0mSfD/JTUm2JPFf\nlR9SkiuT3JPk5oG2Y5Nck+T27n3ZYtY4ruYY2z9Kclc3f7ckeeli1jiukpyQ5PoktyW5Jcnru3bn\n7gjsY3ydv0NK8rgkf53kW93Y/nHXflKSb3Rz9zNJjjyo/XtP2aMlWQJ8BzgL2A5sAs6vqlsXtbAJ\nkeT7QK+q/BHDEUjyfOA+4BNV9eyu7d3AvVV1afd/KpZV1ZsWs85xNMfY/hFwX1W9ZzFrG3dJVgIr\nq+qbSX4W2AycC7wG5+7Q9jG+r8T5O5QkAR5fVfclOQL4P8DrgTcAn6+q9Uk+CHyrqj5woPv3TNlj\nnQFsq6o7qupBYD2wZpFrkmZVVX8F3DujeQ2wrvu8jun/GOsAzTG2GoGq2llV3+w+/xS4DViFc3ck\n9jG+GlJNu69bPKJ7FfBC4Kqu/aDnrqHssVYBdw4sb8fJPEoFfCnJ5iQXLHYxE+q4qtoJ0/9xBp68\nyPVMmguTfLu7vOnltSElORE4HfgGzt2RmzG+4PwdWpIlSbYA9wDXAN8FdlXVw12Xg84NhrLHyixt\nXuMdnedV1T8GXgK8rrtEJI2LDwA/D6wGdgL/ZXHLGW9JngB8Dvj3VfWTxa5n0swyvs7fEaiqPVW1\nGjie6atrp83W7WD2bSh7rO3ACQPLxwM7FqmWiVNVO7r3e4AvMD2hNVp3d/eU7L235J5FrmdiVNXd\n3X+QHwE+jPP3oHX343wO+FRVfb5rdu6OyGzj6/wdraraBXwF+CfAMUmWdqsOOjcYyh5rE3BK9yTF\nkcB5wIZFrmkiJHl8d9MpSR4PvBi4ed9b6SBsANZ2n9cCX1zEWibK3sDQ+TWcvwelu1n6o8BtVfVf\nB1Y5d0dgrvF1/g4vyYokx3SfjwbOZPqeveuBV3TdDnru+vTlLLrHhN8LLAGurKp3LHJJEyHJyUyf\nHQNYCvwPx3Y4ST4NvABYDtwNvBW4Gvgs8FTgB8BvVJU3rB+gOcb2BUxf+ing+8C/3nsPlPZfkn8G\nfA24CXika34z0/c9OXeHtI/xPR/n71CSPJfpG/mXMH1i67NV9bbuf9/WA8cCNwKvrqoHDnj/hjJJ\nkqTF5+VLSZKkBhjKJEmSGmAokyRJaoChTJIkqQGGMkmSpAYYyiRJkhpgKJMkSWrA/wMO2kkgFDup\niQAAAABJRU5ErkJggg==\n",
"text/plain": "<matplotlib.figure.Figure at 0x10864f9b0>"
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAEICAYAAAB2/gEGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XmclWX9//HXh2HYYdgXAUHBDRFQ\nR2Tfhkot0zZKszJNMzMycy1BQFNTM8XKfpqalWakVi7V1xh2EGVQQAU3FAREGED2bWCu3x/XGRiY\nhTnn3MuZM+/n48FjmPucc99v7nMz8znXdd3XZc45RERERCQ99eIOICIiIpINVFSJiIiIBEBFlYiI\niEgAVFSJiIiIBEBFlYiIiEgAVFSJiIiIBEBFlYjEwswmmNlf0nj9W2Y2IsBIkTKzGWb2vbhziEhw\nVFSJ1DFmdqGZFZnZdjNba2b/MbMhceeqjpn90cxuK7/NOXeyc25GTJECZWYXm9mcuHOISHpUVInU\nIWZ2DXAfcDvQATga+B1wXpy5MpWZ1Y87g4jUHiqqROoIM8sDJgE/dM4965zb4Zwrcc4975y7LvGc\nQ1qEzGyEma0u9/0KM7vOzJaY2Q4ze8TMOiRau7aZ2VQza1XZa8u9fnQV+f5uZp+Y2RYzm2VmJye2\nXw58E7g+0br2fPl9mdlRZrbLzFqX29epZrbBzHIT319iZsvM7FMz+z8z61ZFhu5m5szsUjP7CJiW\n2D7AzOaZ2WYzW1y+2zHRyvRB4t//oZl9M7H9kO7Ncvuuf9gxTwJ+DwxM/Ps2J7afY2ZLE/tdY2bX\nVpZZRDKHiiqRumMg0Aj4R5r7+QrwGeB44FzgP8DPgLb4nyljU9zvf4DjgPbAa8ATAM65hxJ/v8s5\n18w5d275FznnPgZeTuQqcyHwtHOuxMzOT+T7MtAOmA389QhZhgMnAZ8zs87Ai8BtQGvgWuAZM2tn\nZk2BycDZzrnmwCBgUTL/aOfcMuAK4OXEv69l4qFHgO8n9tubRIEnIplLRZVI3dEG2OCc25fmfh5w\nzq1zzq3BFyivOOded87twRdsp6ayU+fco865bYn9TAD6JlrXauJJ4AIAMzPgG4ltAN8H7nDOLUv8\n228H+lXVWpUwIdGStwu4CPi3c+7fzrlS59z/gCLgnMRzS4HeZtbYObfWOfdWzf/V1SoBeplZC+fc\np8651wLar4iEREWVSN2xEWgbwDihdeX+vquS75slu0MzyzGzO81suZltBVYkHmpbw108je8+OwoY\nBjh8wQfQDbg/0XW3GdgEGNC5mv2tKvf3bsDXyl6f2McQoJNzbgfwdXxL01oze9HMTqxh5iP5Cr5w\nW2lmM81sYED7FZGQqKgSqTteBnYD51fznB1Ak3Lfd0zjeIfsy8xy8N1vlbkQP1h+NJAHdC97WeKr\nq+5AzrnNwEvAmMS+/uqcK3vNKnw3Wstyfxo75+ZVt8tyf18F/Pmw1zd1zt2ZOPb/Oec+A3QC3gYe\nruzfT/XnssK/zzm3wDl3Hr479J/AlGpeLyIZQEWVSB3hnNsCjAd+a2bnm1kTM8s1s7PN7K7E0xYB\n55hZazPrCFydxiHfBRqZ2ecTA8ZvBhpW8dzmwB58a1oTfBddeeuAY49wvCeBb+NbeJ4st/33wE3l\nBr7nmdnXkvh3/AU418w+l2hRa5QYhN8lMUj/i4mxVXuA7cD+xOsWAcPM7OhEN+ZN1RxjHdDFzBok\nMjYws2+aWZ5zrgTYWm6/IpKhVFSJ1CHOuXuBa/AFTjG+FeYqfEsIwJ+Bxfjut5eAv6VxrC3AlcAf\ngDX4lpvVVTz9T8DKxPOWAvMPe/wR/PiizWb2z8NfnPAcfqD7Oufc4nI5/gH8Engq0bX4JnB2Ev+O\nVfhWtJ9x8Jxdh//5WQ/4KfAxvltxeOLfTGLs1d+AJcBC4IVqDjMNeAv4xMw2JLZ9C1iRyHwFfmyX\niGQwO9hCLiIiIiKpUkuViIiISABUVImIiIgEQEWViIiISABUVImIiIgEIJbFQtu2beu6d+8ex6FF\nREREkrJw4cINzrmq5tk7IJaiqnv37hQVFcVxaBEREZGkmNnKmjxP3X8iIiIiAVBRJSIiIhIAFVUi\nIiIiAVBRJSIiIhIAFVUiIiIiAQisqEqs3v66mVW3aKiIiIhI+pZMgV/3hgkt/dclU+JOFOiUCj8G\nlgEtAtyniIiIyKGWTIHnx0LJLv/9llX+e4A+Y2KLFUhLlZl1AT4P/CGI/YmIiIhUqXDSwYKqTMku\nvz1GQXX/3QdcD5RW9QQzu9zMisysqLi4OKDDioiISJ2zZXVy2yOSdlFlZl8A1jvnFlb3POfcQ865\nfOdcfrt2R5zpXURERKRyLTpXvj2vS7Q5DhNES9Vg4ItmtgJ4ChhlZn8JYL8iIiIiFXXtX3FbbmMo\nGB99lnLSLqqcczc557o457oD3wCmOecuSjuZiIiIyOF2fQrLC6FDb8jrCpj/eu7kWAepQ0wLKouI\niIikZO5k2L0FLn4ROp4Sd5pDBFpUOedmADOC3KeIiIgIANs+gfkPwilfy7iCCjSjuoiIiNQWM++C\n0hIY+bO4k1RKRZWIiIhkvo3L4bXH4fSLofWxcaeplIoqERERyXzTb4ecBjDsuriTVElFlYiIiGS2\ntUvgzadhwA+gece401RJRZWIiIhktmm3QqOWMGhs3EmqpaJKREREMteKufDeSzD0GmjcMu401VJR\nJSIiIpnJOSicCM07Qf/L405zRCqqREREJDO9+19Y9QqMuNEvQ5PhVFSJiIhI5indD4WToHUP6Fc7\nVr/TMjUiIiKSed74O6xfCl99DHJqR7milioRERHJLPv2wPRfQKe+0Ov8uNPUWO0o/URERKTuWPhH\n2PwRfOE+qFd72n9qT1IRERHJfnu2+TX+ug+FHqPiTpMUFVUiIiKSOeY/CDs3wOgJYBZ3mqSoqBIR\nEZHMsGMjzJ0MJ34BuuTHnSZpKqpEREQkM8y5F0p2wKhxcSdJiYoqERERid+W1fDqw9D3Qmh/Ytxp\nUqKiSkREROI3407A+dnTaykVVSIiIhKv4ndh0RNwxmXQsmvcaVKmokpERETiNe1WyG0KQ6+JO0la\nVFSJiIhIfNYshGXPwaAfQdO2cadJi4oqERERic/UidCkLQy8Mu4kaVNRJSIiIvFYPh0+nAnDroOG\nzeNOkzYVVSIiIhI952DqBMg7GvK/G3eaQKS9oLKZNQJmAQ0T+3vaOXdLuvsVERGRgCyZAoWT/FxQ\neV2gYDz0GRNzllX++9O/C/UbxpMlYEG0VO0BRjnn+gL9gLPMbEAA+xUREZF0LZkCz49NFDHOf31+\nrN8ea5aybU/FkyUEaRdVztue+DY38celu18REREJQOEkKNl16LaSXX57Xc4SgkDGVJlZjpktAtYD\n/3POvVLJcy43syIzKyouLg7isCIiInIkW1Yntz1MmZQlBIEUVc65/c65fkAXoL+Z9a7kOQ855/Kd\nc/nt2rUL4rAiIiJyJHldktsepkzKEoJA7/5zzm0GZgBnBblfERERSdGw6ypuq9/QD1aP2tBrK27L\nbRxPlhCkXVSZWTsza5n4e2NgNPB2uvsVERGRAGz92H9t1h4wsHrQukc8d/+VDVBv1sFnyesK506O\n707EgKU9pQLQCXjczHLwRdoU59wLAexXRERE0rFjA7z8G+h1Hoz5k982dzL8bxx8OBuOGRpdlm3r\nYP7voPdX4KuPRnfcCAVx998S59ypzrk+zrnezrnsGMIvIiJS283+lb+7btS4g9v6XwbNj4LCiX4C\nzsiy3AP798LIn0d3zIhpRnUREZFstPkjWPAHOPWb0Pa4g9tzG8OIG2H1Anjn39Fk2fQhFD0Gp30b\n2vSI5pgxUFElIiKSjWbcCRgMv7HiY/2+CW16+vmhSvdHkOUOqFcfhl0f/rFipKJKREQk26xfBov/\nCmdeDnmdKz6eU993CRa/DUv+Fm6WT970M6YPuAJadAr3WDFTUSUiIpJtpt0GDZrBkGuqfk6v86BT\nP5h+O+zbE2KWW6FRCxj84/COkSFUVImIiGSTVQvg7Rdg0Fho0rrq55nB6Al+moOikO7GW/kyvPtf\nGHw1NG4VzjEyiIoqERGRbOEcTJ0ATdvBgB8c+fk9RsIxw2HW3bBnWzhZmnWEM68Idt8ZSkWViIhI\ntlheCCvn+AHhDZvV7DWjb4GdG+Hl3wab5b2XYNV8GH49NGgS7L4zlIoqERGRbFBaClMnQsuj4fSL\na/66zqfDSV+EeQ/4yUKDzNLqGD+NQh2hokpERCQbLP0HfLIERt4M9Rsk99pR46BkJ8y+N5gsbz4N\n69+CUTdDTm4w+6wFVFSJiIjUdvtL/B1/7U+GU76a/OvbHQ/9LoQFD8PmVell2bfXZ+l4Cpz85fT2\nVcuoqBIREantXv8zbPoACsZDvZzU9jH8RsASk4am4bXHYfNKKJgA9epWmVG3/rUiIiLZZu9OmHkX\ndB0Ax38u9f207OrXBVz8JKx/O7V97Nnus3QbAj0LUs9SS6moEhERqc1efQi2rfVzTpmlt68h10Bu\nUz9hZypeeRB2rPd3FKabpRZSUSUiIlJb7foU5twLx30Oug1Mf39N28DgsX7y0NVFyb125yaYOxlO\n+Dx07Z9+llpIRZWIiEhtNXcy7N7qx1IFZcCV0KStn7jTuZq/bs6v/QSiBeOCy1LLqKgSERGpjbZ9\nAvMfhFO+Bh17B7ffhs38hJ0rZsPyaTV7zZY1vhuy7wXQ/qTgstQyKqpERERqo5l3QWkJjLwp+H2f\nfrGfRLRwop/I84hZfgml+2HEjcFnqUVUVImIiNQ2G5f7qQtOvxhaHxv8/us3hJE/h7WLYek/q3/u\nhvfg9b/AGZdCq27BZ6lFVFSJiIjUNtNvh5wGMOy68I5xytegfS8/kef+kqqfN+02qN8Ihl4bXpZa\nQkWViIhIbbJ2iV8GZsAPoHnH8I5TL8cPgN+0HBY9Uflz1rzmW7IGXQXN2oWXpZZQUSUiIlKbFE6C\nRi1h0Njwj3X8WdD1TD/LesmuyrM0bg0Drwo/Sy2gokpERKS2WDEH3v8fDL0GGrcM/3hmflLRbWv9\n3X3lfTADPpgOw66FRi3Cz1ILqKgSERGpDZyDqROheSfof3l0x+02CI77LMy+F3ZtPjRLiy6Qf2l0\nWTKciioREZHa4J3/wOpX/bQFuY2jPXbBeNi9GeZN9t8vex4+fs1P55DbKNosGax+ujsws67An4CO\nQCnwkHPu/nT3KyIiEVgyxY+L2bIa8rr4X559xsSdSspbMsXPF7VlNdSrDzkxFDEdT/F3A86dDIue\n9N2B9eqDpV1GZJUgWqr2AT91zp0EDAB+aGa9AtiviIiEackUeH4sbFkFOP/1+bF+u2SGA+/Rav99\n6T548ep43qOj+vnJRretjT9Lhkq7qHLOrXXOvZb4+zZgGdA53f2KiEjICidVvKOrZJffLpkhk96j\n+b+vuE3XyyECHVNlZt2BU4FXKnnscjMrMrOi4uLiIA8rIiKpKGv9qOl2iV4mvUeZlCVDBVZUmVkz\n4Bngaufc1sMfd8495JzLd87lt2unCcJERGLXoopOhbwu0eaQqrU4qvLtcbxHVR1T18sBgRRVZpaL\nL6iecM49G8Q+RUQkZN0GVtyW29gPVpfM0Dm/4ra43qOC8RXvOtT1coi0iyozM+ARYJlz7t70I4mI\nSOh2b4X3C6HdSZDX9eD2/Et191+m2LERlk+DTv0S75H5r+dOjuc96jPGHzsTsmSoIO6FHAx8C3jD\nzBYltv3MOffvAPYtIiJhePk3sGsTXPQMdD7NL5j72/7+l3jpfr/um8Rrzr1QsgO+9P+g/Ylxp/H6\njFERVY0g7v6b45wz51wf51y/xB8VVCIimWp7Mcz7DfQ63xdUADm5MOpmWL8U3vh7vPkENq+CVx+G\nvhdmTkElR6QZ1UVE6prZ98C+3b6IKq/Xl6BjH5j+C9i3J55s4s28E3B+9nSpNVRUiYjUJZ+uhAWP\nwKkXQdvjDn2sXj0YfQts/ggW/jGWeAIUv+NnLT/jMmjZ9cjPl4yhokpEpC6ZcYcfLzX8hsof71EA\n3YfCzLtgz7Zos4k37VbIbQpDr4k7iSRJRZWISF2xbiksfgr6Xw55VcxRZQYFt8DODTD/wWjzCaxe\n6BcrHvQjaNo27jSSJBVVIiJ1xbTboGELGPKT6p/X9Qw48Qsw7wF/W79Ep3AiNGkLA6+MO4mkQEWV\niEhdsOpVeOdFGDwWmrQ+8vNH3Qx7t/vb+iUay6fDhzNh2HXQsHncaSQFKqpERLKdczB1AjRtDwN+\nULPXtD8J+l7gb+vX2m7hK3uP8o6G/O/GnUZSpKJKRCTbvV8IK+fC8OuhQdOav27EjYCDGXeGFk0S\nlv4L1i6CkTdB/YZxp5EUqagSEclmpaVQOAFadoPTvpPca1seDWd8DxY9AcXvhhJPgP37/B1/7U6E\nPl+PO42kQUWViEg2e+tZ+OQNP0aqfoPkXz/0p5DbxP/Sl3AsegI2vu8XJtbyQLWaiioRkWy1v8Tf\n8dehN/T+amr7aNrW396/7DlYszDYfAIlu3z3apcz4IRz4k4jaVJRJSKSrV77E3z6YaIFJI0f9wN/\nCE3awNSJwWUT79WHYdvHMHqCnyNMajUVVSIi2WjvTpj5Szh6IBz32fT21bA5DL3W3+6/fHow+QR2\nbYbZv4Keo6H7kLjTSABUVImIZKNXfg/b1/nZ0YNoAcm/BPK6+tv+nUt/f+InV9292bckSlZQUSUi\nkm12fQpz74Pjz4JuA4PZZ24jGHGTv+1/6b+C2Wddtm0dzP8d9P4KdOobdxoJiIoqEZFsM+c+2L0V\nRo0Ldr99v+Fv+592q58GQFI3627YvxdG/jzuJBIgFVUiItlk61rf9ddnDHTsHey+6+X4Qm3j+34a\nAEnNpg9h4WNw2rehTY+400iAVFSJiGSTWXdB6T7fVReGEz8PnfP9IPiSXeEcI9vNuAPq5cKw6+NO\nIgFTUSUiki02LoeFj8Pp34XWx4RzDDN/+//WNbDgD+EcI5t98iYsmQJnfh9adIo7jQRMRZWISLaY\n/gu/btyw68I9zjFDoUeBnw5g95Zwj5Vtpt0KjVrAkKvjTiIhUFElIpIN1i6GN5+BAVdC8w7hH69g\nvL/LcN4D4R8rW6x8Gd79Lwy+Ghq3ijuNhEBFlYhINiic5H9RDx4bzfGO6gcnfxle/i1sXx/NMWsz\n5/wcX806wplXxJ1GQqKiSkSktvtwNrw/FYZcA43yojvuqJth3x4/PYBU772XYNV8GH49NGgSdxoJ\niYoqEZHazDkonAjNj4L+l0V77DY9/LQARY/5aQKkcqWlft3EVsf48yVZK5CiysweNbP1ZvZmEPuT\nLLdkCvy6N0xo6b8umaIsmZZFKpdJ71FZloktYfUC6FkAuY2jzzH8Bl/YPTgos85LJmWZ1ArWv+Xf\no5zc+PJI6IJqqfojcFZA+5JstmQKPD8WtqwCnP/6/Nh4fvApiyQjk96jQ7IkvPl0PFlWzAYDSnaS\nWeclk7IkLHpC/6ezXCBFlXNuFrApiH1JliucVHHCwJJdfruyZEYWqVwmvUeZlqX0sCVrdF4yK4tE\nJrIxVWZ2uZkVmVlRcXFxVIeVTLNldXLbw6QskoxMeo+UJblj1vUsEpnIiirn3EPOuXznXH67du2i\nOqxkmrwuyW0Pk7JIMjLpPVKW5I5Z17NIZHT3n0Rr5M/xAzDKycn1EwlGnuVnGZ6lQTxZpHLDb6i4\nLa73aHgla8blNo4nS8H4igPk4zovQ39acVtOw5iyXFNxW1zvkURGRZVEa99uwEGTtoD5H771m8CJ\nX4g+y94dFbPkNoWTvhh9lt1bfZam7XyWernQoBn0Oi/6LFK57ev816bt8e9RfWjc2k+AGbWta/3X\nZokseV3h3MnQZ0z0WfqM8cfO6+qz1Mvx56j3V6PPsvkj/7VZB5/Fcvw5iiNL2RQTzToS+3skkakf\nxE7M7K/ACKCtma0GbnHOPRLEviWL7N3pV7bvOgAu+a9fmHXlPHjsbHj1oWjXwtq7A2beBd2GwMUv\n+CwfzoLHz/WLxA66Krose7b5yROPGQ7fec5vWz4N/vwlP//PAM2+HLudm2Du/XDC5+GCJ/22Zc/D\n3y6CxX+F074VXZYdG/zSMCedC1//S3THrU6fMQeLhTeehmcu9Uvm9PladBm2fQLzH4RTxsBXHvbb\nFj8F//g+LP0n9I6w+N2yxv9M63sBfOn30R1XYhfU3X8XOOc6OedynXNdVFBJpV59CLat9SvcW6Kr\nq9sgOO6zMOdev45YVOY/CDvWw+hbDmY5Zhj0GBX9IrEv/w52bvBZyhw70ueZdbcvuiRec37t34eC\ncQe3nfgF6Hw6zLgDSnZHl2X2vVCyA0aNO/Jz43Dyl6HDKTD9Nti3N7rjzrwLSksSXekJp3wN2veC\nabfB/pIIs/wSSvfDiJuiO6ZkBHX/STR2feoLp+M+B90GHvpYwXhfxMydHE2W8q0OXftXzLJrE8z7\nTTRZDrQ6fNH/gi5jBgUTfLH18u+iySKVK9/q0P6kg9vN/AeErWt862YUNq+CBQ9Dvwuh3QnRHDNZ\n9er5DwifroDXHo/mmBuX+2Od/l1ofUy5LDn+//Sm5fB6RK16G97zxzrjUmjVLZpjSsZQUSXRmDvZ\nF04FlXy67niK/0Q5/0HfhB+2slaHUTdXfOyoU+HkL0W3SOyBVodKsnQ53XfxzHvAF18SjwOtDjdW\nfCzq1s0ZdwIGwyvJkkl6joZug33r0d4d4R9v+u1+TOSw6yo+dvxZ0PVM/z7u3Rl+lmm3Qf1GMPTa\n8I8lGUdFlYTvwFiHr/kCqjIjf+ab7mfeFW6WA60O34AOvarIcrMfUD/rnnCz1KTVYdQ4X3TNvjfc\nLFK5mrQ6RNW6uf5tWPykX9+vZddwj5UuMyi4xXexz38w3GOtXeJnkx/wA2jeofIsoyf4oQevPhRu\nljWv+fFbg66CZpo6qC5SUSXhq2ysw+FaHwunX+yb8DcuDzFLDcY6tO3pBx4XPeq7MMJSk1aHdif4\nomvBw74Ik2jVpNUhqtbNabf6u1OHVHKrfiY6+kw44Rzf1b4zxAU3CidBo5YwaGzVz4lq7GbhJH9H\n6MAIb3SRjKKiSsJ1YKzDxb5wqs6w6/xUAtNvDydLMmMdht/gx2NMvyOcLMm0OpQVXTPuDCeLVC6Z\nVoewWzdXF8HbL8DgsdC0TTjHCMOocb6rfc6vw9n/ijnw/v/8nFCNWx45S5hjNz+YAR9Mh2HXQqMW\n4RxDMp6KKglXdWMdDte8o2/Cf/Np36QftGTGOrQ4CvpfDkv+BuveCiFLEq0OLbvCGZf5Imz928Fn\nkcol0+rQtiecelE4rZvOwdQJfj61AVcGu++wdejlu9pffQi2fhzsvp2DqROheSf/f/VIOvXx81WF\nMXazLEuLLpB/abD7llpFRZWE55CxDh1r9prBP/ZN+dNuDTZLKmMdhvwEGrbwxViQUml1GHqNL8KC\nPi9SuVRaHcpaN4NuUVw+DVbM9rOoN2wW7L6jMOIm3+U+85fB7ved/8DqV/0NBIfP6F6VsrGbs+4O\nNsuy5+Hj12DkTZDbKNh9S62iokrCU5OxDodr3NIXM++9BCvmBpsl2bEOTVr7wuedf8NHrwSTI9VW\nh6ZtYdCPfDG2uiiYLFK5VFsd8jr7FpPFT8G6pcFkKS2FwomQd7TvQq+NWnWD/EvgtT/DhveD2Wfp\nfv9/uk1P6HdRzV/Xpgec9h1Y+EfY9EEwWfbv8x922h4Pfb4RzD6l1lJRJeFYMbfmYx0O1/9y36Rf\nONH/gktXOmMdBvzAL7kxdUIwWdJpdRh4pS/GgsoilUun1eFA62ZALYpL/wlrF/sWlvoNg9lnHIZd\n67vepwfU6rtkChQv81OR5CS5MMjw64Mdu7n4r7DhXT9mK9ksknVUVEnwnPMFUU3HOhyuQRPflbLq\nFXj3v+lnSWesQ4Om/ofwR/Pg/anpZSlrdWiZYqtDw+Z+bNqK2b5IlODt3+e7e9uekFqrQ5Ctm/tL\nfJZ2J9X+9eKatYeBP4S3/gEfv57evvbt8QVRp35wUgprY5aN3Xzj7+mP3SzZ7WfUP+o0P6ec1Hkq\nqiR47/7XF0TJjHU43KkXQesevom/dH/qWYIY63Dad6BVd1+clZamnuVAq8PPU291yP+u7wpKN4tU\nbslTsOEdP0ltqq0OQbVuvv4XPxN4wXg/Vqu2G3SV74IvnJTefooegy0f+Vnb66X4KyyosZsL/uBn\n1B894eByV1KnqaiSYJWNdWjdI7mxDofLyfVN++uX+k+UqQhqrEP9Bv6W+XVvwFvPppilXKvDKWks\nMlu/oe8KWrsIlv0r9f1IRSW7/RQanU/36/qlKojWzZJdfmB3l/5wwtmpZ8kkjfJg6E99F/gHM1Pb\nR9ni492H+vUxUxXE2M3dW/1M+seOhGOHp55FsoqKKgnWG3/3hVAqYx0O1+t86NQXpv/CN/kna8lT\nwY116P0V6NDbF2mpLBK76IngWh36jPHFWeGt0S4Sm+2KHoGtq/1M4Om2OqTbulnZ4uPZ4IzvQYvO\nqY+XnP9gYvHxCemfl3THbr78Gz+TfsH49HJIVlFRJcHZt8cXQJ36+oIoXfXq+V9wmz/yd+sko6zV\nIaixDmVZPl0Br/8pySy7/G32QbU6lF8kdtET6e9PfKvDrHuCa3VIp3Vz12a/LFHPz0D3welnySS5\njfwUC2sW+jtZk7Fjo5+488QvQJf89LOkM3Zze7FflqjX+dD5tPSzSNZQUSXBWfhHXwAVpDHW4XA9\nRvmm/pl3+ab/miprdRg9IbhP+sd9Bo4elPwisWG0Opxwti/SZtzpizZJTxitDqm2bs6bDLs3Z28L\nSN8LfJd84a2+i76m5pQtPl7JouypSnXs5ux7/Az6lS2ELnWaiioJxp5tvtjoPtQXQkEpWwx154aa\nL8wadKvDIVluge3r4JXf1+w1YbU6RLlIbLYLq9UhldbNssXHe3/VzwCejXLq+8Jowzu+i74mNq+C\nVx+GvhdC+xMDzJLC2M1PV8KCR3xB1va44LJIVlBRJcEIcqzD4brk+yb/uZN9F8CRhDnW4egBcPzZ\nMKeGi8SG2erQfbAv1mbf64tVbEXqAAAZ6klEQVQ3SU2YrQ7Jtm7Ouhv2761+8fFscNK5vmt++h2+\nq/5IZt4JOH9HcdAOGbtZgxbFGXf4LvjhNwSfRWo9FVWSvqDHOlRm1Djf9D/n3uqfF8VYh4JxsGcr\nzL2/+udF0epQMN4XbfNCWiQ224Xd6nBI6+b/q/65mz7wXeinfcfP/J3Nylpat6726yVWp/gdWPSk\nX//ySIuPpyKZsZvrlvoZ8/tf7mfQFzmMiipJXxhjHQ7X/kTf9P/qw7BlddXPi2KsQ4eToc/XfRdg\ndYvERtHqEOYisXVBFK0OZa2bc++DXZ9W/bzpt/uZvodfH16WTHLscN9FP/se32VflbLFx4fWYPHx\nVJWN3Zx1F+zZXn2Whi38dAwilVBRJekJa6xDZUbcCLiqF6yNcqzDyLJFYu+q/PEoWx1G/swXb0Ev\nEpvtomx1KBjnC4c591X++NolfkxPMouPZ4OC8bBzI7z828ofX73QT+A76Ed+/cuwmPnWqh3FVY/d\n/OgVP1P+4LF+5nyRSqiokvSEOdbhcC27+nluFj0Bxe9WfDzKsQ6tuvvZzV/7E2xcXvHxKFsd2vSA\n074d7CKxdUGUrQ4dTvbzi1XVujntVj855uAkFh/PBp1Pg17n+XGQ24sPfcw5mHqLX+9yYBKLj6eq\n6xl+CMO8SsZuli2E3rS9L3xFqqCiSlJ3YKzD98IZ61CZoT+F3CYVl5c40OpwWXRjHYZd5xeJnXbY\nIrEHWh2uiK7VYVjAi8RmuwOtDj+KrtVhRBWtmyvm+pm9h/wEGreKJksmGTXOTwsy+1eHbv9gul/n\ncti1ft3LSLLcDHu3Vxy7+f5UP0P+8Ov9jPkiVVBRJambdpsvcIb+NLpjNm3ruwKWPecnEDyQ5Vb/\ng3dIiOMuDtesvf8E/daz8PGiQ7M0yvPri0WlRSdfxL3xNHzyRnTHrY3KFvxu2h7OjLDVofUxFVs3\ny7I06wj9vx9dlkzS9jg49Zt+brlPV/ptpaV+Nvq8rpB/SXRZ2p/k59EqP3azLEvLbr47X6QaKqok\nNWsW+sIm7LEOlRn4Q2jSxv+gg3jHOgz6kW9dKFskNs5Wh8E/hkYt/KSKUrX3C2HlXN/q0LBZtMc+\nvHXzwOLjN/gZvuuq4TcCdnC85LJ/+fUtR/4s9cXHU3X42M23nvUz44+62c+UL1KNNBdE88zsLOB+\nIAf4g3OuipHEUustmeILiC2rwOpBi6Oiz9Cwuf/l9N8b4e6efnCp1YNmHaLPUrZI7Es3H5qlSbvo\nszRu5Yu5qRPg7uN8lrwufjBwnzHR58k0S6b4VqEtq8Fy4unGKWvdnHW3L+y2r4N69aF+4+izZJK8\nznDm5TDvAVheePC8WAyf+1se7Yc0zP+d/4C0fZ3vWk9lfUCpc9K+Ys0sB/gtcDbQC7jAzHqlu1/J\nQEumwPNjfUEF4ErhP9f77VFrlAeYLxziztK4VSVZro0nS1kxt2M94Px79fzYeLJkkgPXbqJLx+2H\nF6+J57zkdfFft6/zX0v3wYs/0XvU+lj/tfx5eeHqeM5Lm56HZSmBF36s90iOKIiPAf2B951zHzjn\n9gJPAecFsF/JNIWTKq4zV7LrYNdXlKbfDhz2yTGuLDPuzJwsMytpJI4rSybJpGt31j0Vt+k98isD\nHC6u8zLn15mTRWqVIIqqzsCqct+vTmw7hJldbmZFZlZUXFx8+MNSG1Q16WZ1k3GGRVmSO2YcWTJJ\nJp2XTMqSSTLpvGRSFqlVgiiqKlvorULns3PuIedcvnMuv127GMabSPqqmqqgrDsjSlUdU1mS215X\ntNC1m/Ey6bxkUhapVYIoqlYD5Scp6gJUs3aH1FrHjqy4LbdxOIsFH0nBeH9sZcncLJmkS/+K2/Qe\nZZZMOi+ZlEVqlSCKqgXAcWZ2jJk1AL4BPBfAfiWTlOzyt6K3OsbPHYP5r+dOjufOsj5j/LGVpfos\nACedX7fv/tv1KXxQCB37ZOZ7FGeWTJJJ5yWTskitYi6A20TN7BzgPvyUCo86535R3fPz8/NdUVFR\n2seVCM2dDP8bBxe/CN2HxJ1GasI5ePxcKH4bxi6Kfk6mTPG/W2Du/XDFHOjYO+40IlILmdlC51z+\nkZ4XyCQgzrl/O+eOd871OFJBJbXQrs1+CYmeo1VQ1SY1WSQ222392K+312eMCioRCZ1mVJcjm/cA\n7N6s8QS1Udcz4ITP+0Vid26KO030Zt7l5zsacVPcSUSkDlBRJdXbvt7PLHzyl6FT37jTSCoKxsGe\nbRUXic12G5f7dfZO/65fd09EJGQqqqR6s+6GfXv8uldSO5UtEvvKQ7BlTdxpojP9F37duGHXxZ1E\nROoIFVVStU0fQtFjcNq3oU2PuNNIOsoWia1sxvVstHYxvPkMDLgSmsewJqSI1EkqqqRqM+6Aejkw\n/Ia4k0i6WnWD/Evh9b9A8btxpwlf4SS/JuPgsXEnEZE6REWVVO6TN/3ioWdeAS06xZ1GgjD0p5Db\nBKbfFneScH04G96fCkOuSSy8LSISDRVVUrlpt0KjFjDk6riTSFCatYOBV8HSf8GahXGnCYdzUDgR\nmh8F/S+LO42I1DEqqqSilS/Du/+FwVf7LhTJHgN/CE3a+O6xbPTOv2H1Aj+G7PBlRkREQqaiSg7l\nHEydAM06+q4/yS6NWsDQa+GDGbB8etxpglW63xeLbXpCv2/GnUZE6iAVVXKo916CVfNh+PXQoEnc\naSQM+Zf4tcwKJ/oiOlss+ZtfkmfUOMipH3caEamDVFTJQaWl/pN+q2P8NAqSnXIb+RnGP34dlmXJ\n2uf79sD026FTP+h1XtxpRKSOUlElB735DKx700/0mZMbdxoJU99vQLsTYdptsH9f3GnSV/QYbFkF\noyf4NQ9FRGKgokq8fXv9rfYdT/FL0kh2q5fju8k2vAuL/xp3mvTs2eZn/j9mOPQYGXcaEanDVFSJ\n99rj8OkKKLgF6umyqBNO/Dx0zveTvJbsjjtN6l7+Hezc4K9dEZEY6benwN4dMPMu6DYYeo6OO41E\nxQxG3wJb18CCP8SdJjU7NsC8B+Ckc6HL6XGnEZE6TkWVwPwHYcd6/0lf41HqlmOGQY9RMPtXsHtL\n3GmSN/teKNnhuzJFRGKmoqqu27kJ5t4PJ5wDR58ZdxqJQ8F42LUJ5v0m7iTJ2bwKFjwM/S6EdifE\nnUZEREVVnTfn136grz7p111HnQonfwle/i1sXx93mpqbcSdgMPzGuJOIiAAqquq2LWvg1Yf87fUd\nesWdRuI08mbYtxtm3RN3kppZ/zYsftKv79eya9xpREQAFVV128xf+qU9RtwUdxKJW9uecNq3oOhR\nfxdoppt2K+Q2hSHXxJ1EROQAFVV11Yb34PW/wBmXQqtucaeRTDD8Bj9/1fQ74k5SvdVF8PYLMHgs\nNG0TdxoRkQNUVNVV026D+o384roiAC2OgjO/79fQW/dW3GkqV7bgd5O2MODKuNOIiBxCRVVd9PHr\nsPSfMOgqaNYu7jSSSQZfDQ1b+KI7E30wHVbM9gt+N2wWdxoRkUOoqKqLCidB49Yw8Kq4k0imadIa\nhvwY3vk3fPRK3GkOVVoKUydCy6Ph9IvjTiMiUkFaRZWZfc3M3jKzUjPLDypUWpZMgV/3hgkt/dcl\nU5Tl8CzLp0HPAmjUIr48krnOvMK3Vj1+bmZdu5NawdpFftb/+g3jyyMiUoV0W6reBL4MzAogS/qW\nTIHnx/rV6nH+6/Nj4/mFkMlZAJa9EO8vSslcb78I+3bB/j1k1rWbsPivunZFJCOlVVQ555Y5594J\nKkzaCidBya5Dt5Xs8tuV5dBt+2LKIpmvcBLsLzl0WyZdu3FlERE5gsjGVJnZ5WZWZGZFxcXF4Rxk\ny+rktodJWaS2yqTrJZOyiIgcwRGLKjObamZvVvLnvGQO5Jx7yDmX75zLb9cupDvO8roktz1MyiK1\nVSZdL5mURUTkCI5YVDnnRjvnelfy519RBExKwXjIbXzotnr1/faojfwZYJmRZcRNFbPkNo4ni2S+\nyv4f5eTGc71UNo+arl0RyVDZNaVCnzFw7mTI6woY1G8M1INjR0afZc82wEHTdgezWA70KIg+y+7N\nh2bJ6+rPU58x0WeRzHf4/6Ochv76PfHz0WfZ8pH/2qwDunZFJNOZcy71F5t9CXgAaAdsBhY55z53\npNfl5+e7oqKilI9bYxveg9+e6RddPfuX4R+vzJ5tcH8/v0jxt58DM78A7IMD/SzQn/tFdFl2b4X7\n+0KnvvDtf0Z3XMkeH82HRz/nW4eG/jS64277BCafCiecA199JLrjiogcxswWOueOOHVUunf//cM5\n18U519A516EmBVWk2h4Hp14ECx6BT1dGd9z5D8LODVAwwRdUAO1PhL4XwqsPw+ZV1b48UC//BnZt\nUneJpO7oAXD82TDnfti5Kbrjzrob9u9NdKWLiGS+7Or+q0zZIrEzIlokdsdGmDsZTvwCdDn90MdG\n3Ag4mHlnNFm2F8O830Cv86HzadEcU7JTwTjYsxXm3hfN8TZ9AAv/CKd9B9r0iOaYIiJpyv6iKq8z\n9L8cFj8F65aGf7w590LJDhg1ruJjLbvCGZfBoieh+N3ws8y+B/bthlE3h38syW4dToY+X4dX/h9s\n/Tj8402/Herl+jX+RERqiewvqgCG/CSxSOyt4R5n8yrfvdf3Qt/dV5mh10Buk/CzfLrSd3ueepHv\nBhVJ18iboHQ/zLwr3OOsXQJv/B0G/ACadwz3WCIiAaobRVWT1jB4rF8kdtWr4R1n5p2AS3TzVaFp\nWxj0I1j2HKxZGF6WGXf4bs/hN4R3DKlbWnWH/EvgtT/BxuXhHWfardCoJQz+cXjHEBEJQd0oqsB/\n6m3aHqZOgDTueKxS8Tu+W++My3w3X3UG/hCatIGpE4PPAb6bc/FTvtszr3M4x5C6adi1UL8RTLst\nnP2vnAfvveRblxu3DOcYIiIhqTtFVYOmfnzGyrnwfmHw+592G+Q29d17R9KwOQy7Dj6cCcunh5Ol\nYXP/i0kkSM3aw8Ar4a1n4eNFwe7bOf9Bo1lH/4FARKSWqTtFFfg7iVp1h8IJUFoa3H7XLPTdeYN+\n5Lv3aiL/Ej+RYdAtZ6tehXde9N2dTVoHt1+RMoN+BI1bBb+o8bv/B6vmw4gboEGTYPctIhKBulVU\n1W8AI38On7zhP2kHZepEaNLWf4KvcZaGfv6dtYtgaUAr/jjni7Sm7eHMHwSzT5HDNcrzk4AuL4QP\nZwWzz9L9UDgRWh8Lp34rmH2KiESsbhVVAL2/Ch16+y6y/SXp72/5dN+NN+w63+WWjD5fh3Yn+oG5\n+/eln+X9Qt+9Ofx6aNgs/f2JVOWM70GLzv4DRRAtrW88DeuX+uk/cnLT35+ISAzqXlFVr56fXfzT\nD/1dTOkoaxnKOxryv5tClhyfZeP7sOiJ9LKUlvpuzZbdfDenSJhyG/u7XNcUwdsvprevfXth+m3Q\nsQ/0+lIw+UREYlD3iiqA4z4LRw+Emb+EvTtT38/Sf/nuu5E3+e68VJxwDnQ5A2bcCSW7Us/y1rO+\nW3PUzb6bUyRsfS+ENsf5sVWl+1Pfz8I/wuaPYPQt/kOPiEgtVTd/gplBwS2wfR288vvU9rF/n++2\na3ei78ZLJ8voCbDtYz9xaEpZSnx3ZofevntTJAo59f3yNRve8VN4pGLPdph1F3QfCj0Kgs0nIhKx\nullUAXQbCMef5dcy2/Vp8q9f9ITvtisY77vx0tF9CPQc7Ze42b0l+de/9iffnVkwXp/0JVonfRGO\nOtVPNrtvT/Kvn/8g7Cj2H3LKFh8XEaml6vZv4FHjYPdWmJPkIrElu3x3XZczfPddEArG++Ju3gPJ\nvW7vTt+NefRA360pEqWyltYtq6Do0eReu2MjzEssPt71jDDSiYhEqm4XVR17Q58xiUVi19b8da8+\n7LvrRk8I7tN1p77Q+yvw8m9h+/qav+6V3/tuTH3Sl7gcO8L/mXU37NlW89fNuRf2bteC3yKSNep2\nUQUw4iYo3efHddTErs0w+1e+u677kGCzjPw57N/rfznVKMunvvvy+LN8d6ZIXArGw86N/kNBTWxZ\nnVh8/AJof1K42UREIqKiqvUxfjqEhY/XbJHYeQ/A7s3+l0jQ2vSA074NRY/Bpg+P/Pw59/nuy1Hj\ngs8ikozOp0Ov8/z/jx0bjvz8GTVYfFxEpJZRUQV+4s76jWD6L6p/3rZ1MP93vpuuU9+QslwP9er7\ngb/V2fqx7/rrM8Z3Y4rEbdQ4P95w9q+qf17xu/5GjzO+By2PjiabiEgEVFTBwUVi33wG1i6u+nmz\n7vbdcyN/Hl6WFp3gzO/DkinwyZtVP2/mXb7bcsRN4WURSUbb46DfhbDgD37eqapMuxVym/ilbkRE\nsoiKqjJHWiR204ew8DHfPdemR7hZhlwNjVr4Xz6V2bjcT6Nw+nd996VIphhxI2CJ7r1KlC0+PvCq\nmi8+LiJSS6ioKtMoD4ZcA+9PhQ9nV3x8+u1QL9d3z4WtcSsYfDW8+19Y+XLFx6fd5mdwH3Zd+FlE\nkpHXBfpfBov/CuuXVXx86kRo0gYG/jD6bCIiIVNRVV7/y6D5UVB42CKxn7wBb/zdd8u16BRNljOv\ngGYd/dqC5bN8vMgvSTPgSmjeIZosIskY+lNo0MwX/+WVLT4+9FrfEisikmVUVJVXtkjs6gXwzr8P\nbi+81f8SGHJ1dFkaNIHh18Oq+fDeS+WyTEq0ZI2NLotIMpq0hkFj4e0XYNUCv+3A4uNdIf+SWOOJ\niIRFRdXh+n0T2vQ8uEjsynnw3v/57rjGraLNctq3odUxvsuktBQ+nAXLC303ZaO8aLOIJGPAD6Bp\nu4MtrWWLj4+4CXIbxZ1ORCQU9dN5sZndDZwL7AWWA991zm0OIlhscur7W8P//h24uyfs2gRWD5q2\njyFLrp9t+plL4e4eiSw5viVAJJM1bObHH/7nOv//aOcGP1VIuutkiohksHRbqv4H9HbO9QHeBbLj\n/v79ewHzRQyAK4X/XOunOYha6f7DsuyHf8eURSQZDZsB5gsq8FOAvHC1rl0RyVppFVXOuZecc/sS\n384HuqQfKQMUTgLcodtKdlU93UKYpt2aOVlEkjH9dnTtikhdEuSYqkuA/1T1oJldbmZFZlZUXFwc\n4GFDsGV1ctvDlElZRJKha1dE6pgjFlVmNtXM3qzkz3nlnvNzYB/wRFX7cc495JzLd87lt2vXLpj0\nYcmrosGtqu1hyqQsIsnQtSsidcwRiyrn3GjnXO9K/vwLwMy+A3wB+KZzzlW/t1qiYLyfXqG83Mbh\nLKJcm7KIJEPXrojUMWl1/5nZWcANwBedczuDiZQB+oyBcyf7OXUw//XcyX57Xc4ikgxduyJSx1g6\njUtm9j7QENiY2DTfOXfFkV6Xn5/vioqKUj6uiIiISFTMbKFzLv9Iz0trnirnXM90Xi8iIiKSLTSj\nuoiIiEgAVFSJiIiIBEBFlYiIiEgAVFSJiIiIBCCtu/9SPqhZMbAy5MO0BTaEfIy6TOc3PDq34dL5\nDY/Obbh0fsNzpHPbzTl3xJnLYymqomBmRTW5/VFSo/MbHp3bcOn8hkfnNlw6v+EJ6tyq+09EREQk\nACqqRERERAKQzUXVQ3EHyHI6v+HRuQ2Xzm94dG7DpfMbnkDObdaOqRIRERGJUja3VImIiIhERkWV\niIiISACysqgys7PM7B0ze9/Mbow7TzYxsxVm9oaZLTKzorjz1HZm9qiZrTezN8tta21m/zOz9xJf\nW8WZsbaq4txOMLM1iet3kZmdE2fG2szMuprZdDNbZmZvmdmPE9t1/aapmnOr6zcAZtbIzF41s8WJ\n8zsxsf0YM3slce3+zcwaJL3vbBtTZWY5wLvAZ4DVwALgAufc0liDZQkzWwHkO+c0AV0AzGwYsB34\nk3Oud2LbXcAm59ydiQ8FrZxzN8SZszaq4txOALY75+6JM1s2MLNOQCfn3Gtm1hxYCJwPXIyu37RU\nc27HoOs3bWZmQFPn3HYzywXmAD8GrgGedc49ZWa/BxY75x5MZt/Z2FLVH3jfOfeBc24v8BRwXsyZ\nRCrlnJsFbDps83nA44m/P47/YSpJquLcSkCcc2udc68l/r4NWAZ0Rtdv2qo5txIA521PfJub+OOA\nUcDTie0pXbvZWFR1BlaV+341uhiD5ICXzGyhmV0ed5gs1cE5txb8D1egfcx5ss1VZrYk0T2orqkA\nmFl34FTgFXT9Buqwcwu6fgNhZjlmtghYD/wPWA5sds7tSzwlpdohG4sqq2RbdvVxxmuwc+404Gzg\nh4kuFpHa4kGgB9APWAv8Kt44tZ+ZNQOeAa52zm2NO082qeTc6voNiHNuv3OuH9AF38N1UmVPS3a/\n2VhUrQa6lvu+C/BxTFmyjnPu48TX9cA/8BejBGtdYkxF2diK9THnyRrOuXWJH6alwMPo+k1LYjzK\nM8ATzrlnE5t1/QagsnOr6zd4zrnNwAxgANDSzOonHkqpdsjGomoBcFxiFH8D4BvAczFnygpm1jQx\naBIzawp8Fniz+ldJCp4DvpP4+3eAf8WYJauU/bJP+BK6flOWGOz7CLDMOXdvuYd0/aapqnOr6zcY\nZtbOzFom/t4YGI0ftzYd+GriaSldu1l39x9A4jbT+4Ac4FHn3C9ijpQVzOxYfOsUQH3gSZ3b9JjZ\nX4ERQFtgHXAL8E9gCnA08BHwNeecBlwnqYpzOwLfdeKAFcD3y8b/SHLMbAgwG3gDKE1s/hl+7I+u\n3zRUc24vQNdv2sysD34geg6+cWmKc25S4nfcU0Br4HXgIufcnqT2nY1FlYiIiEjUsrH7T0RERCRy\nKqpEREREAqCiSkRERCQAKqpEREREAqCiSkRERCQAKqpEREREAqCiSkRERCQA/x9ETrFNh2K3dwAA\nAABJRU5ErkJggg==\n",
"text/plain": "<matplotlib.figure.Figure at 0x10d6556d8>"
},
"metadata": {},
"output_type": "display_data"
}
]
}
],
"metadata": {
"kernelspec": {
"name": "python3",
"display_name": "Python 3",
"language": "python"
},
"language_info": {
"name": "python",
"version": "3.6.3",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"gist": {
"id": "",
"data": {
"description": "monty_hall.ipynb",
"public": true
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment