conda create -n habitat_headless python=3.6 cmake=3.14.0
conda activate habitat_headless
cd ~/github/habitat-sim/
pip install -r requirements.txt
conda activate habitat_headless
import networkx as nx | |
def to_directed(graph): | |
G = nx.DiGraph(source=[], sink=[]) | |
for node in range(graph.number_of_nodes()): | |
neighbors = list(graph.neighbors(node)) | |
neighbors.sort() | |
if node < neighbors[0]: # input nodes | |
G.graph['source'].append(node) |
import numpy as np | |
np.random.seed(0) | |
import torch | |
import torch.nn as nn | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
slim = tf.contrib.slim |
import numpy as np | |
from PIL import Image | |
np.random.seed(2) | |
import torchvision | |
import torch | |
# torch.manual_seed(0) | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision import transforms | |
import tensorflow as tf |
import numpy as np | |
from numpy.linalg import norm | |
from scipy.special import erf | |
def get_rotation_matrix(x): | |
""" | |
Get rotation matrix for the space that aligns vector x with y = [1, 0, 0, 0, 0, ..., 0] | |
See: https://math.stackexchange.com/questions/598750/finding-the-rotation-matrix-in-n-dimensions | |
""" |
conda create -n habitat_headless python=3.6 cmake=3.14.0
conda activate habitat_headless
cd ~/github/habitat-sim/
pip install -r requirements.txt
conda activate habitat_headless
import torch | |
import numpy as np | |
# This will be share by both iterations and will make the second backward fail ! | |
a = torch.ones(3, requires_grad=True) * 4 | |
# Instead, do | |
# a = torch.tensor(np.ones(3) * 4, requires_grad=True) | |
for i in range(10): |