A one or two line description.
Enables you to do...
| # Import C# CLR interface and system | |
| import clr, sys | |
| # Add C# Library Paths and add references via CLR module | |
| sys.path.append('C:\\Program Files (x86)\\Accord.NET\\Framework\\Release\\net40') | |
| sys.path.append('C:\\Program Files (x86)\\AForge.NET\\Framework\\Release') | |
| clr.AddReference('System.Core') | |
| clr.AddReference('AForge.Math') | |
| clr.AddReference('Accord.Statistics') | |
| clr.AddReference('System.Linq') |
| """ | |
| Initiating a 9000x9000 triangular matrix and applying XOR across all elements | |
| """ | |
| """ Using ufunc without at() """ | |
| %%timeit | |
| a = np.tri(9000,dtype=int) | |
| a = np.bitwise_xor(a,1) | |
| # 1 loops, best of 3: 373 ms per loop |
| """ | |
| Test how to composite matrices with 'where' | |
| Test generator builds random incrementing matrices | |
| The compositor takes output from this generator and performs the compositing. | |
| Display an image map of the matrices | |
| """ | |
| import numpy as np | |
| from matplotlib import pyplot as pl |
| def elim(row, minus_row, scale, n=3): | |
| m = np.eye(n) | |
| m[row, minus_row] = -scale | |
| return m |
| def scramble2Decrypt(cipherText): | |
| halfLength = len(cipherText) // 2 | |
| oddChars = cipherText[:halfLength] | |
| evenChars = cipherText[halfLength:] | |
| plainText = "" | |
| for i in range(halfLength): | |
| plainText = plainText + evenChars[i] | |
| plainText = plainText + oddChars[i] | |
| if len(oddChars) < len(evenChars): | |
| plainText = plainText + evenChars[-1] |
| # Initialize two signals with arbitrary length | |
| n, m = 5, 7 | |
| convolution_length = n+m-1 | |
| u = np.random.randint(0, 255, n) | |
| v = np.random.randint(0, 255, m) | |
| # Convolve the two signals | |
| cv = sp.signal.convolve(u, v) |
| import base64 | |
| # Create a string and encode to bytes | |
| s = 'Convert me to base64!' | |
| sb = s.encode('utf-8') | |
| # Take bytes and encode to base64 string | |
| sb64 = base64.b64encode(sb).decode() | |
| # Q29udmVydCBtZSB0byBiYXNlNjQh |
| import numpy as np | |
| A = np.eye(20) | |
| A @ A # `@` is the matrix multiplication operator |
| Overfitting happens in education; it's called specialization. |