Skip to content

Instantly share code, notes, and snippets.

#!/usr/bin/env python
"""
dump-es
"""
import json
import argparse
from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan
CC=g++
CFLAGS=-fPIC -m64 -Wall -g -O3 -mavx -msse4 -mpopcnt -fopenmp -Wno-sign-compare -std=c++11 -fopenmp
LDFLAGS=-g -fPIC -fopenmp
# common linux flags
SHAREDEXT=so
SHAREDFLAGS=-shared
FAISSSHAREDFLAGS=-shared
#!/usr/bin/env python
"""
latlon2cartesian.py
!! These are parameterized differently than stuff listed in textbooks...
!!!!!! gist `bkj/latlon2cartesian-new.py` has better API
"""
import numpy as np
from snapvx import *
from cvxpy import *
import time
np.random.seed(123)
num_nodes = 2000
node_deg = 3
from __future__ import division
import numpy as np
def mut_info(X, y):
n = X.shape[0]
n_11 = np.asarray(X[y].sum(axis=0)).squeeze()
n_01 = np.asarray(X[~y].sum(axis=0)).squeeze()
n_10 = np.asarray(y.sum() - n_11).squeeze()
n_00 = np.asarray(n - n_11 - n_01 - n_10).squeeze()
import os
import re
import string
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
import torch
from torch import nn
#!/usr/bin/env python
"""
bow2adjlist.py
Convert a sparse matrix (eg term-document matrix) to two dense matrices
Useful for feeding into BOW models
"""
@bkj
bkj / pytorch-dask.py
Created December 14, 2017 19:59
pytorch + dask
#!/usr/bin/env python
"""
pytorch-dask.py
"""
import torch
from torch import nn
from torch.nn import functional as F
@bkj
bkj / auction-lap.py
Last active December 19, 2017 23:15
#!/usr/bin/env python
"""
auction-lap.py
From
https://dspace.mit.edu/bitstream/handle/1721.1/3265/P-2108-26912652.pdf;sequence=1
"""
from __future__ import print_function, division
@bkj
bkj / sgdr.py
Last active December 20, 2017 19:16
#!/usr/bin/env python
"""
sgdr.py
Code to reproduce Fig. 1 from https://arxiv.org/pdf/1608.03983.pdf
"""
import numpy as np