Skip to content

Instantly share code, notes, and snippets.

@bkj
bkj / ablr.py
Last active January 19, 2024 23:37
#!/usr/bin/env python
"""
ablr.py
"""
import numpy as np
import torch
from torch import nn
#!/usr/bin/env python
"""
simple-random-nasbench.py
"""
import numpy as np
import pandas as pd
from tqdm import tqdm, trange
from matplotlib import pyplot as plt
@bkj
bkj / sgd_optimizers.py
Last active May 31, 2019 18:31
sgd_optimizers.py
#!/usr/bin/env python
"""
sgd_optimizers.py
Pseudocode for optimizers
These _should be_ identical to Pytorch implementation of the optimizers
"""
@bkj
bkj / simple_batchnorm.py
Last active May 31, 2019 19:18
simple_batchnorm.py
#!/usr/bin/env python
"""
simple_batchnorm.py
"""
class SimpleBatchNorm1d(nn.Module):
def __init__(self, dim, momentum=0.5, eps=1e-5, affine=True, track_running_stats=True):
self.eps = eps
self.momentum = momentum
// Note: `@` refers to matrix-matrix or matrix-vector multiplication. `*` refers to elementwise multiplication.
degrees = // vector s.t. degree[i] is the degree of the i'th node in graph G
D = // diagonal matrix s.t. D[i, i] = degrees[i]
D_inv = // diagonal matrix s.t. D_inv[i, i] = 1 / sqrt(degrees[i])
q = // zero matrix of shape (max_iters, num_nodes)
grad = -alpha * D_inv @ s
while k < max_iters do
def rle2mask(rle, height, width):
rle = [int(xx) for xx in rle.split(' ')]
offsets, runs = rle[0::2], rle[1::2]
tmp = np.zeros(height * width, dtype=np.uint8)
for offset, run in zip(offsets, runs):
tmp[offset:offset + run] = 1
return tmp.reshape(width, height).T
#!/usr/bin/env python
"""
prep-CUB200.py
"""
import os
import shutil
import pandas as pd
from tqdm import tqdm
@bkj
bkj / fast_argmax.py
Created November 12, 2019 16:42
fast_argmax.py
#!/usr/bin/env python
"""
fast_argmax.py
"""
import numpy as np
from time import time
from numba import jit, prange
@bkj
bkj / ee.py
Created February 12, 2020 16:39
import ee
import urllib
import numpy as np
from skimage import io
from PIL import Image
from zipfile import ZipFile
from matplotlib import pyplot as plt
ee.Initialize()
import numpy as np
from numba import njit, parallel
@njit(parallel=True)
def cross_exchange(route1, route2, dist):
best_savings = -np.inf
for offset11 in prange(len(route1) - 3):
i1, i2 = route1[offset11], route1[offset11 + 1]
dii = dist[i1, i2]