Created
August 15, 2016 09:29
-
-
Save bodokaiser/a7e175a7db5ea2738a07544c2fd78572 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import tensorflow as tf | |
| import numpy as np | |
| from tensorflow.examples.tutorials.mnist import input_data | |
| mnist = input_data.read_data_sets('/tmp/mnist', one_hot=True) | |
| sess = tf.Session( | |
| config=tf.ConfigProto( | |
| gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.3) | |
| ) | |
| ) | |
| x = tf.placeholder(tf.float32, shape=[None, 784]) | |
| y_ = tf.placeholder(tf.float32, shape=[None, 10]) | |
| def conv2d(x, W): | |
| return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') | |
| def max_pool_2x2(x): | |
| return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') | |
| def bias_variable(shape): | |
| return tf.Variable(tf.constant(.1, shape=shape)) | |
| def weight_variable(shape): | |
| return tf.Variable(tf.truncated_normal(shape, stddev=1.0)) | |
| W_conv1 = weight_variable([5, 5, 1, 32]) | |
| b_conv1 = bias_variable([32]) | |
| x_image = tf.reshape(x, [-1, 28, 28, 1]) | |
| h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) | |
| h_pool1 = max_pool_2x2(h_conv1) | |
| W_conv2 = weight_variable([5, 5, 32, 64]) | |
| b_conv2 = bias_variable([64]) | |
| h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) | |
| h_pool2 = max_pool_2x2(h_conv2) | |
| W_fc1 = weight_variable([7 * 7 * 64, 1024]) | |
| b_fc1 = bias_variable([1024]) | |
| h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) | |
| h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+ b_fc1) | |
| keep_prop = tf.placeholder(tf.float32) | |
| h_fc1_drop = tf.nn.dropout(h_fc1, keep_prop) | |
| W_fc2 = weight_variable([1024, 10]) | |
| b_fc2 = bias_variable([10]) | |
| y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) | |
| cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1])) | |
| train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) | |
| correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) | |
| accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
| sess.run(tf.initialize_all_variables()) | |
| for i in range(20000): | |
| batch = mnist.train.next_batch(50) | |
| if i % 1000 == 0: | |
| train_accuracy = accuracy.eval(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prop: 1.0}) | |
| print("step %d, training accuracy %g" % (i, train_accuracy)) | |
| train_step.run(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prop: 0.5}) | |
| for i in range(200): | |
| batch = mnist.test.next_batch(50) | |
| print("test accuracy %g" % accuracy.eval(session=sess, feed_dict={ | |
| x: batch[0], y_: batch[1], keep_prop: 1.0 | |
| })) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment