if you are using linux, unix, os x:
pip install -U setuptools
pip install -U pip
pip install numpy
pip install scipy
pip install matplotlib
#pip install PySide
| # | |
| # CONFIGURATION FOR USING SMS KANNEL WITH RAPIDSMS | |
| # | |
| # For any modifications to this file, see Kannel User Guide | |
| # If that does not help, see Kannel web page (http://www.kannel.org) and | |
| # various online help and mailing list archives | |
| # | |
| # Notes on those who base their configuration on this: | |
| # 1) check security issues! (allowed IPs, passwords and ports) | |
| # 2) groups cannot have empty rows inside them! |
| from django.core.exceptions import PermissionDenied | |
| from django.http import HttpResponse | |
| from pyExcelerator import * | |
| def export_as_xls(modeladmin, request, queryset): | |
| """ | |
| Generic xls export admin action. | |
| usage:actions = [export_as_xls] |
| """ | |
| Two things are wrong with Django's default `SECRET_KEY` system: | |
| 1. It is not random but pseudo-random | |
| 2. It saves and displays the SECRET_KEY in `settings.py` | |
| This snippet | |
| 1. uses `SystemRandom()` instead to generate a random key | |
| 2. saves a local `secret.txt` |
| //simple_list_item_1 | |
| <TextView xmlns:android="http://schemas.android.com/apk/res/android" | |
| android:id="@android:id/text1" | |
| style="?android:attr/listItemFirstLineStyle" | |
| android:paddingTop="2dip" | |
| android:paddingBottom="3dip" | |
| android:layout_width="fill_parent" | |
| android:layout_height="wrap_content" /> | |
| //simple_list_item_2 |
| #One of those handy scripts, see:http://djangotricks.blogspot.co.ke/2013/12/how-to-export-data-as-excel.html | |
| from .models import * | |
| from django.http import * | |
| """ | |
| # Quick 'how-to' guide | |
| # model in question | |
| class Duplicate(models.Model): |
| import urllib2 | |
| """ | |
| #Usage: | |
| in a python shell | |
| >> import get_pepperstone_data | |
| >> get_pepperstone_data.run() | |
| # Notes: | |
| 1: Selection of pairs is highly opinionated |
| #List unique values in a DataFrame column | |
| pd.unique(df.column_name.ravel()) | |
| #Convert Series datatype to numeric, getting rid of any non-numeric values | |
| df['col'] = df['col'].astype(str).convert_objects(convert_numeric=True) | |
| #Grab DataFrame rows where column has certain values | |
| valuelist = ['value1', 'value2', 'value3'] | |
| df = df[df.column.isin(value_list)] |
if you are using linux, unix, os x:
pip install -U setuptools
pip install -U pip
pip install numpy
pip install scipy
pip install matplotlib
#pip install PySide
from scipy.spatial import Delaunay
import networkx as nx
points = [ [0,0],[0,50],[50,50],[50,0],[0,400],[0,450],[50,400],[50,450],[700,300],[700,350],[750,300],[750,350],
[900,600],[950,650],[950,600],[900,650]
]
def concave(points,alpha_x=150,alpha_y=250):
points = [(i[0],i[1]) if type(i) <> tuple else i for i in points]
de = Delaunay(points)| """Information Retrieval metrics | |
| Useful Resources: | |
| http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt | |
| http://www.nii.ac.jp/TechReports/05-014E.pdf | |
| http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf | |
| http://hal.archives-ouvertes.fr/docs/00/72/67/60/PDF/07-busa-fekete.pdf | |
| Learning to Rank for Information Retrieval (Tie-Yan Liu) | |
| """ | |
| import numpy as np |