A list of useful commands for the FFmpeg command line tool.
Download FFmpeg: https://www.ffmpeg.org/download.html
Full documentation: https://www.ffmpeg.org/ffmpeg.html
A list of useful commands for the FFmpeg command line tool.
Download FFmpeg: https://www.ffmpeg.org/download.html
Full documentation: https://www.ffmpeg.org/ffmpeg.html
################################################################################ | |
# | |
# ikashnitsky.github.io 2017-12-10 | |
# Data acquisition in R 3/4 | |
# https://ikashnitsky.github.io/2017/data-acquisition-three | |
# Ilya Kashnitsky, [email protected] | |
# | |
################################################################################ | |
require(tidyverse) | |
require(lubridate) | |
#Data from www.parlgov.org | |
dat <- read.csv("view_election.csv") | |
dat <- dat %>% | |
filter(election_type != "ep") %>% | |
mutate(election_date = as.Date(election_date)) %>% | |
filter(election_date > as.Date("1945-01-01")) %>% | |
distinct(country_name, election_date) %>% | |
group_by(country_name) %>% |
/* | |
Create a userChrome.css file by finding your Firefox profile, | |
making a directory called chrome and in it, a file called userChrome.css inside that. | |
Pasting this CSS and restarting Firefox will kill the left drag strip | |
*/ | |
@namespace url("http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"); | |
.titlebar-placeholder[type="pre-tabs"] { | |
width: 2px !important; |
library(magrittr) | |
library(magick) | |
image_read("logo:") %>% | |
image_convert('png', colorspace = 'gray') %>% | |
image_edge(radius = 1) %>% | |
image_negate() %>% | |
image_transparent('white', 10000) %>% | |
image_background("white") %>% | |
image_browse() |
################################################################################ | |
# | |
# ikashnitsky.github.io 2017-07-18 | |
# Accessing Eurostat data using the `eurostat` R package | |
# Young people neither in employment nor in education and training in Europe | |
# Ilya Kashnitsky, [email protected] | |
# | |
################################################################################ | |
library(tidyverse) |
I hereby claim:
To claim this, I am signing this object:
library(foreign) ## for data import | |
library(dplyr) ## for chaining ops together | |
library(ggplot2) ## for plotting | |
library(reshape2) ## for reshaping | |
library(hrbrthemes) ## for pretty pictures | |
library(survey) ## for... uh, survey data | |
party.colours <- c("#0087DC","#D50000","#FDBB30","#FFFF00","#008142","#99CC33","#70147A","#DDDDDD") | |
bes <- read.spss("~/Dropbox/2017-forecasting/data/individual/BES2015_W10_Panel_v0.3.sav") |
The dplyr
package in R makes data wrangling significantly easier.
The beauty of dplyr
is that, by design, the options available are limited.
Specifically, a set of key verbs form the core of the package.
Using these verbs you can solve a wide range of data problems effectively in a shorter timeframe.
Whilse transitioning to Python I have greatly missed the ease with which I can think through and solve problems using dplyr in R.
The purpose of this document is to demonstrate how to execute the key dplyr verbs when manipulating data using Python (with the pandas
package).
dplyr is organised around six key verbs:
msg <- function(..., prob = 0.25) { | |
if (runif(1) > prob) { | |
return(invisible()) | |
} | |
messages <- c(...) | |
message(sample(messages, 1)) | |
} | |
encourage <- function() { |