Skip to content

Instantly share code, notes, and snippets.

View briverse17's full-sized avatar
🎯
Focusing

briverse17

🎯
Focusing
View GitHub Profile
DOWNLOAD_DIR="/tmp"
DOWNLOAD_URL="https://code.visualstudio.com/sha/download?build=stable&os=linux-deb-x64"
echo "Getting stable VSCode .deb distribution"
wget -q --show-progress -nc -O "$DOWNLOAD_DIR/code_stable.deb" "$DOWNLOAD_URL"
if [ -f "$DOWNLOAD_DIR/code_stable.deb" ]; then
echo "Installing stable VSCode"
apt install "$DOWNLOAD_DIR/code_stable.deb/"
echo "Cleaning up..."

Keybase proof

I hereby claim:

  • I am briverse17 on github.
  • I am briverse17 (https://keybase.io/briverse17) on keybase.
  • I have a public key ASClqICkmZWZzzb0EGXAf22qkhszbwGm45mQ6FchnmLmJgo

To claim this, I am signing this object:

def isConverged(self, new_medoids):
return set([tuple(x) for x in self.medoids]) == set([tuple(x) for x in new_medoids])
new_medoids = []
for i in range(0, self.k):
new_medoid = self.medoids[i]
old_medoids_cost = self.medoids_cost[i]
for j in range(len(clusters[i])):
#Cost of the current data points to be compared with the current optimal cost
cur_medoids_cost = 0
for dpoint_index in range(len(clusters[i])):
cur_medoids_cost += euclideanDistance(clusters[i][j], clusters[i][dpoint_index])
for i in range(self.max_iter):
#Labels for this iteration
cur_labels = []
for medoid in range(0,self.k):
#Dissimilarity cost of the current cluster
self.medoids_cost[medoid] = 0
for k in range(len(X)):
#Distances from a data point to each of the medoids
d_list = []
for j in range(0,self.k):
def initMedoids(self, X):
'''
Parameters
----------
X: input data.
'''
self.medoids = []
#Starting medoids will be random members from data set X
indexes = np.random.randint(0, len(X)-1,self.k)
class k_medoids:
def __init__(self, k = 2, max_iter = 300, has_converged = False):
'''
Class constructor
Parameters
----------
- k: number of clusters.
- max_iter: number of times centroids will move
- has_converged: to check if the algorithm stop or not
'''
class k_medoids:
def __init__(self, k = 2, max_iter = 300, has_converged = False):
'''
Class constructor
Parameters
----------
- k: number of clusters.
- max_iter: number of times centroids will move
- has_converged: to check if the algorithm stop or not
'''