We create a table with products and segments:
-- Create the sample table
CREATE TABLE sales_data (
product VARCHAR(10),
segment VARCHAR(10),
library(tidyverse)
sim_risk_ratios <- function(x){
events <- map2(rep(c(TRUE, FALSE), 5), c(31, 414 - 31, 82, 1492 - 82, 252, 4832 - 252, 423, 11831 - 423, 52, 1509-52), rep) %>% unlist()
outcomes <- tibble(
group = map2(c("<8 h", "8<10 h", "10<12 h", "12-16 h", ">16 h"), c(414, 1492, 4832, 11831, 1509), rep) %>% unlist()) %>%
mutate(event_sim = sample(events, n(), replace = TRUE)) %>%
group_by(group) %>%
summarise(risk = mean(event_sim))
library(magrittr) | |
find_in_files <- function(path, pattern){ | |
path %>% | |
fs::dir_ls(recurse = TRUE, type = "file", regexp = "(\\.[rR])$") %>% | |
purrr::map(~grep(pattern, readLines(.x, warn = FALSE), value = TRUE)) %>% | |
purrr::keep(~length(.x) > 0) | |
} |
library(tidyverse)
urls <- tibble(month = month.name, month_num = 1:12) %>%
cross_join(tibble(year = 2019:2023)) %>%
arrange(year) %>%
mutate(year_month = make_date(year = year, month = month_num)) %>%
filter(year_month < floor_date(today(), "months")) %>%
mutate(urls = paste0("https://www.seattle.gov/documents/Departments/SDCI/Resources/Stats/", year, month, "Summary", ".xlsx"))
library(tidyverse)
library(httr)
library(jsonlite)
# downloaded data from: https://data.seattle.gov/Permitting/Building-Permits/76t5-zqzr
data_permits <- read_csv("Building_Permits.csv")
data_permits %>%
filter(PermitTypeDesc == "New") %>%
# This example only includes a value in the rolling mean() if the close date on | |
# the historical dates comes after the snapshot date for row of interest | |
### CREATE SAMPLE DATA | |
library(tidyverse) | |
library(slider) | |
library(lubridate) | |
sample_size <- 5000 |
# This example only includes a value in the rolling mean() if the close date on | |
# the historical dates comes after the snapshot date for row of interest | |
### CREATE SAMPLE DATA | |
library(tidyverse) | |
library(slider) | |
sample_size <- 5000 | |
obs_per_day <- 100 |
library(tidyverse)
lag_multiple <- function(x, n_vec){
map(n_vec, lag, x = x) %>%
set_names(paste0("lag", n_vec)) %>%
as_tibble()
}
df <- tibble(a = 1:10, b = 11:20, c= 21:30)
library(dplyr)
library(ggplot2)
library(modeldata)
data(ames)
set.seed(123)
ames %>%
sample_n(200) %>%
library(priceR) | |
library(dplyr) | |
library(tidyr) | |
library(purrr) | |
library(lubridate) | |
# Create rates lookup table | |
pminmax <- function(x, y) { | |
paste(pmin.int(x, y), pmax.int(x, y), sep = ".") |