Error while installing through pip install psycopg2 looks like this:
Please add the directory containing pg_config to the PATH
or specify the full executable path with the option (...)
Reference to the solution here.
Error while installing through pip install psycopg2 looks like this:
Please add the directory containing pg_config to the PATH
or specify the full executable path with the option (...)
Reference to the solution here.
| import pandas as pd | |
| df = pd.DataFrame({"A": [0, 1, 0], "B": ["a", "b", "c"], "C": [1, 2, 3]}) | |
| df.set_index(["A", "C"], drop=False, inplace=True) | |
| result = {level: df.xs(level).to_dict("index") for level in df.index.levels[0]} | |
| print(result[0]) |
| # Remember to install more_itertools first | |
| # pip install more-itertools | |
| from more_itertools import grouper | |
| def do_something_with_iterable(iterable): | |
| pass | |
| n = 3 | |
| chunks = grouper('a'*10, n) | |
| for c in chunks: |
| from functools import partial | |
| def print_n_dict_elem(n, dictionary, elem): | |
| print(n * dictionary[elem]) | |
| # Create a new function that print elem 3 times | |
| print_3_dict_elem = partial(print_n_dict_elem, n=3, dictionary={"a": "A", "b": "B"}) | |
| print_3_dict_elem(elem="a") | |
| # Update dictionary passed as an argument |
| -- You can count the rows to be equal to columns that you're checking | |
| SELECT * | |
| FROM information_schema.columns | |
| WHERE table_schema = '<table_schema>' | |
| AND table_name = '<table_name>' | |
| AND column_name IN ('<column1>', '<column2>'); |
| import pandas as pd | |
| utc_now_pd = pd.Timestamp.utcnow() | |
| # The function round(freq="D") is magic behind the round up | |
| # Use replace(tzinfo=None) to remove timezone information | |
| utc_now_ceil = utc_now_pd.round(freq="D").to_pydatetime().replace(tzinfo=None) | |
| # Convert to ISO format | |
| utc_now_str = utc_now_ceil.strftime("%Y-%m-%dT%H:%M:%S") |
| import pandas as pd | |
| # The function shows `str` for dates, but could be datetime.date objects as well | |
| def n_date_intervals(start_date: str, end_date: str, intervals_count: int) -> pd.Series: | |
| return pd.Series(pd.date_range(start_date, end_date, periods=intervals_count)) | |
| # Change this variables as needed | |
| start_date = "2018-01-01" | |
| end_date = "2021-03-24" | |
| intervals_count = 5 |
| import pandas as pd | |
| # Create sample pandas.Series to calculate frequency | |
| s = pd.Series(pd.date_range("2021", freq="18H", periods=1000)) | |
| # Calculate frequency grouping by month | |
| # If you want another period check following link: | |
| # https://pandas.pydata.org/docs/user_guide/timeseries.html#timeseries-offset-aliases | |
| freq_count = s.dt.to_period("M").value_counts(sort=False) |