Skip to content

Instantly share code, notes, and snippets.

@brydavis
Created August 3, 2019 08:56
Show Gist options
  • Save brydavis/8a1a94ded28aacff53fe0cf769684ff9 to your computer and use it in GitHub Desktop.
Save brydavis/8a1a94ded28aacff53fe0cf769684ff9 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"\n",
"from pymongo import MongoClient\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# mongo_client?"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# MongoClient?"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# CLIENT\n",
"mongo = MongoClient(\"mongodb://localhost:27017\")\n",
"# 127.0.0.1"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"\n",
"# CREATE A DATABASE\n",
"db = mongo[\"ecommerce_store\"]\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# TABLE == COLLECTION\n",
"\n",
"customers = db[\"customers\"]\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5d40f396a64c92be10817e90\n"
]
}
],
"source": [
"# CREATE\n",
"# READ\n",
"# UPDATE\n",
"# DELETE\n",
"\n",
"# CRUD\n",
"\n",
"\n",
"\n",
"# DOCUMENT == ROW\n",
"\n",
"row = {\n",
" \"first_name\": \"Sam\", \n",
" \"last_name\": \"Adams\",\n",
" \"occupation\": \"beverage maker\",\n",
" \"city\": \"Boston\"\n",
"}\n",
"\n",
"# CREATE\n",
"results = customers.insert_one(row)\n",
"\n",
"if results.acknowledged: \n",
" print(results.inserted_id)\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ObjectId('5d40f9a2a64c92be10817e9b'), ObjectId('5d40f9a2a64c92be10817e9c'), ObjectId('5d40f9a2a64c92be10817e9d'), ObjectId('5d40f9a2a64c92be10817e9e'), ObjectId('5d40f9a2a64c92be10817e9f')]\n"
]
}
],
"source": [
"# INSERT MULTIPLE ROWS\n",
"\n",
"\n",
"rows = [\n",
" { \"first_name\": \"Amy\", \"last_name\": \"Jones\", \"city\": \"Seattle\" },\n",
" { \"first_name\": \"Vu\", \"last_name\": \"Huong\", \"city\": \"New York\" },\n",
" { \"first_name\": \"Keerthi\", \"last_name\": \"Mittal\", \"city\": \"Charlotte\" },\n",
" { \"first_name\": \"Sandy\", \"last_name\": \"Richardson\", \"city\": \"Portland\" },\n",
" { \"first_name\": \"Bryan\", \"last_name\": \"Davis\", \"city\": [\"Seattle\",\"Chicago\"] },\n",
"]\n",
"\n",
"results = customers.insert_many(rows)\n",
"\n",
"if results.acknowledged: \n",
" print(results.inserted_ids)\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"_id = results.inserted_ids[0]"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'5d40f9a2a64c92be10817e9b'"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"str(_id)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'_id': ObjectId('5d40f396a64c92be10817e90'),\n",
" 'first_name': 'Sam',\n",
" 'last_name': 'Adams',\n",
" 'occupation': 'beverage maker',\n",
" 'city': 'Boston'},\n",
" {'_id': ObjectId('5d40f4e2a64c92be10817e91'),\n",
" 'first_name': 'Amy',\n",
" 'last_name': 'Jones',\n",
" 'city': 'Seattle'},\n",
" {'_id': ObjectId('5d40f4e2a64c92be10817e92'),\n",
" 'first_name': 'Vu',\n",
" 'last_name': 'Huong',\n",
" 'city': 'New York'},\n",
" {'_id': ObjectId('5d40f4e2a64c92be10817e93'),\n",
" 'first_name': 'Keerthi',\n",
" 'last_name': 'Mittal',\n",
" 'city': 'Charlotte'},\n",
" {'_id': ObjectId('5d40f4e2a64c92be10817e94'),\n",
" 'first_name': 'Sandy',\n",
" 'last_name': 'Richardson',\n",
" 'city': 'Portland'},\n",
" {'_id': ObjectId('5d40f4e2a64c92be10817e95'),\n",
" 'first_name': 'Bryan',\n",
" 'last_name': 'Davis',\n",
" 'city': 'Seattle'},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e96'),\n",
" 'first_name': 'Amy',\n",
" 'last_name': 'Jones',\n",
" 'city': 'Seattle'},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e97'),\n",
" 'first_name': 'Vu',\n",
" 'last_name': 'Huong',\n",
" 'city': 'New York'},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e98'),\n",
" 'first_name': 'Keerthi',\n",
" 'last_name': 'Mittal',\n",
" 'city': 'Charlotte'},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e99'),\n",
" 'first_name': 'Sandy',\n",
" 'last_name': 'Richardson',\n",
" 'city': 'Portland'},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e9a'),\n",
" 'first_name': 'Bryan',\n",
" 'last_name': 'Davis',\n",
" 'city': ['Seattle']},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9b'),\n",
" 'first_name': 'Amy',\n",
" 'last_name': 'Jones',\n",
" 'city': 'Seattle'},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9c'),\n",
" 'first_name': 'Vu',\n",
" 'last_name': 'Huong',\n",
" 'city': 'New York'},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9d'),\n",
" 'first_name': 'Keerthi',\n",
" 'last_name': 'Mittal',\n",
" 'city': 'Charlotte'},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9e'),\n",
" 'first_name': 'Sandy',\n",
" 'last_name': 'Richardson',\n",
" 'city': 'Portland'},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9f'),\n",
" 'first_name': 'Bryan',\n",
" 'last_name': 'Davis',\n",
" 'city': ['Seattle', 'Chicago']}]"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"\n",
"\n",
"\n",
"# READ ALL DOCUMENTS\n",
"list(customers.find())"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"where = {\"city\": \"Seattle\"}\n",
"\n",
"seattlites = customers.find_one(where)\n",
"\n",
"type(seattlites)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# UPDATE\n",
"\n",
"where = {\n",
" \"last_name\": \"Huong\"\n",
"}\n",
"\n",
"update = {\n",
" \"$set\": {\"city\": \"San Francisco\"}\n",
"}\n",
"\n",
"\n",
"results = customers.update_one(\n",
" where,\n",
" update\n",
")\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
" resul"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results.matched_count"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'_id': ObjectId('5d40f4e2a64c92be10817e92'),\n",
" 'first_name': 'Vu',\n",
" 'last_name': 'Huong',\n",
" 'city': 'San Francisco'},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e97'),\n",
" 'first_name': 'Vu',\n",
" 'last_name': 'Huong',\n",
" 'city': 'San Francisco'},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9c'),\n",
" 'first_name': 'Vu',\n",
" 'last_name': 'Huong',\n",
" 'city': 'San Francisco'}]"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(customers.find({\"last_name\":\"Huong\"}))"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<pymongo.results.UpdateResult at 0x107c8c320>"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from random import randint, random, seed\n",
"from datetime import datetime\n",
"\n",
"seed(datetime.now())\n",
"\n",
"where = {\n",
" \"city\": \"San Francisco\"\n",
"}\n",
"\n",
"update = {\n",
" \"$set\": {\"age\": 35}\n",
"}\n",
"\n",
"\n",
"customers.update_many(\n",
" where,\n",
" update\n",
")\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'_id': ObjectId('5d40f396a64c92be10817e90'),\n",
" 'first_name': 'Sam',\n",
" 'last_name': 'Adams',\n",
" 'occupation': 'beverage maker',\n",
" 'city': 'Boston'},\n",
" {'_id': ObjectId('5d40f4e2a64c92be10817e91'),\n",
" 'first_name': 'Amy',\n",
" 'last_name': 'Jones',\n",
" 'city': 'Seattle',\n",
" 'occupation': 'developer',\n",
" 'age': 30},\n",
" {'_id': ObjectId('5d40f4e2a64c92be10817e92'),\n",
" 'first_name': 'Vu',\n",
" 'last_name': 'Huong',\n",
" 'city': 'San Francisco',\n",
" 'age': 35},\n",
" {'_id': ObjectId('5d40f4e2a64c92be10817e93'),\n",
" 'first_name': 'Keerthi',\n",
" 'last_name': 'Mittal',\n",
" 'city': 'Charlotte'},\n",
" {'_id': ObjectId('5d40f4e2a64c92be10817e94'),\n",
" 'first_name': 'Sandy',\n",
" 'last_name': 'Richardson',\n",
" 'city': 'Portland'},\n",
" {'_id': ObjectId('5d40f4e2a64c92be10817e95'),\n",
" 'first_name': 'Bryan',\n",
" 'last_name': 'Davis',\n",
" 'city': 'Seattle',\n",
" 'occupation': 'developer',\n",
" 'age': 30},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e96'),\n",
" 'first_name': 'Amy',\n",
" 'last_name': 'Jones',\n",
" 'city': 'Seattle',\n",
" 'occupation': 'developer',\n",
" 'age': 30},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e97'),\n",
" 'first_name': 'Vu',\n",
" 'last_name': 'Huong',\n",
" 'city': 'San Francisco',\n",
" 'age': 35},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e98'),\n",
" 'first_name': 'Keerthi',\n",
" 'last_name': 'Mittal',\n",
" 'city': 'Charlotte'},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e99'),\n",
" 'first_name': 'Sandy',\n",
" 'last_name': 'Richardson',\n",
" 'city': 'Portland'},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e9a'),\n",
" 'first_name': 'Bryan',\n",
" 'last_name': 'Davis',\n",
" 'city': ['Seattle'],\n",
" 'occupation': 'developer',\n",
" 'age': 30},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9b'),\n",
" 'first_name': 'Amy',\n",
" 'last_name': 'Jones',\n",
" 'city': 'Seattle',\n",
" 'occupation': 'developer',\n",
" 'age': 30},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9c'),\n",
" 'first_name': 'Vu',\n",
" 'last_name': 'Huong',\n",
" 'city': 'San Francisco',\n",
" 'age': 35},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9d'),\n",
" 'first_name': 'Keerthi',\n",
" 'last_name': 'Mittal',\n",
" 'city': 'Charlotte'},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9e'),\n",
" 'first_name': 'Sandy',\n",
" 'last_name': 'Richardson',\n",
" 'city': 'Portland'},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9f'),\n",
" 'first_name': 'Bryan',\n",
" 'last_name': 'Davis',\n",
" 'city': ['Seattle', 'Chicago'],\n",
" 'occupation': 'developer',\n",
" 'age': 30}]"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(customers.find({}))"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'_id': ObjectId('5d40f4e2a64c92be10817e91'),\n",
" 'first_name': 'Amy',\n",
" 'last_name': 'Jones',\n",
" 'city': 'Seattle',\n",
" 'occupation': 'developer',\n",
" 'age': 30},\n",
" {'_id': ObjectId('5d40f4e2a64c92be10817e95'),\n",
" 'first_name': 'Bryan',\n",
" 'last_name': 'Davis',\n",
" 'city': 'Seattle',\n",
" 'occupation': 'developer',\n",
" 'age': 30},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e96'),\n",
" 'first_name': 'Amy',\n",
" 'last_name': 'Jones',\n",
" 'city': 'Seattle',\n",
" 'occupation': 'developer',\n",
" 'age': 30},\n",
" {'_id': ObjectId('5d40f8b6a64c92be10817e9a'),\n",
" 'first_name': 'Bryan',\n",
" 'last_name': 'Davis',\n",
" 'city': ['Seattle'],\n",
" 'occupation': 'developer',\n",
" 'age': 30},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9b'),\n",
" 'first_name': 'Amy',\n",
" 'last_name': 'Jones',\n",
" 'city': 'Seattle',\n",
" 'occupation': 'developer',\n",
" 'age': 30},\n",
" {'_id': ObjectId('5d40f9a2a64c92be10817e9f'),\n",
" 'first_name': 'Bryan',\n",
" 'last_name': 'Davis',\n",
" 'city': ['Seattle', 'Chicago'],\n",
" 'occupation': 'developer',\n",
" 'age': 30}]"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(customers.find({\n",
" \"age\": {\"$lt\": 32},\n",
" \"occupation\": {\"$eq\": \"developer\"}\n",
"}))"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<pymongo.results.DeleteResult at 0x108285d70>"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"where = {\n",
" \"city\": \"Seattle\",\n",
" \"last_name\": \"Davis\"\n",
"}\n",
"\n",
"\n",
"\n",
"customers.delete_one(\n",
" where\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'_id': ObjectId('5d40f396a64c92be10817e90'),\n",
" 'city': 'Boston',\n",
" 'first_name': 'Sam',\n",
" 'last_name': 'Adams',\n",
" 'occupation': 'beverage maker'}\n",
"{'_id': ObjectId('5d40f4e2a64c92be10817e91'),\n",
" 'age': 30,\n",
" 'city': 'Seattle',\n",
" 'first_name': 'Amy',\n",
" 'last_name': 'Jones',\n",
" 'occupation': 'developer'}\n",
"{'_id': ObjectId('5d40f4e2a64c92be10817e93'),\n",
" 'city': 'Charlotte',\n",
" 'first_name': 'Keerthi',\n",
" 'last_name': 'Mittal'}\n",
"{'_id': ObjectId('5d40f4e2a64c92be10817e94'),\n",
" 'city': 'Portland',\n",
" 'first_name': 'Sandy',\n",
" 'last_name': 'Richardson'}\n",
"{'_id': ObjectId('5d40f8b6a64c92be10817e96'),\n",
" 'age': 30,\n",
" 'city': 'Seattle',\n",
" 'first_name': 'Amy',\n",
" 'last_name': 'Jones',\n",
" 'occupation': 'developer'}\n",
"{'_id': ObjectId('5d40f8b6a64c92be10817e98'),\n",
" 'city': 'Charlotte',\n",
" 'first_name': 'Keerthi',\n",
" 'last_name': 'Mittal'}\n",
"{'_id': ObjectId('5d40f8b6a64c92be10817e99'),\n",
" 'city': 'Portland',\n",
" 'first_name': 'Sandy',\n",
" 'last_name': 'Richardson'}\n",
"{'_id': ObjectId('5d40f8b6a64c92be10817e9a'),\n",
" 'age': 30,\n",
" 'city': ['Seattle'],\n",
" 'first_name': 'Bryan',\n",
" 'last_name': 'Davis',\n",
" 'occupation': 'developer'}\n",
"{'_id': ObjectId('5d40f9a2a64c92be10817e9b'),\n",
" 'age': 30,\n",
" 'city': 'Seattle',\n",
" 'first_name': 'Amy',\n",
" 'last_name': 'Jones',\n",
" 'occupation': 'developer'}\n",
"{'_id': ObjectId('5d40f9a2a64c92be10817e9d'),\n",
" 'city': 'Charlotte',\n",
" 'first_name': 'Keerthi',\n",
" 'last_name': 'Mittal'}\n",
"{'_id': ObjectId('5d40f9a2a64c92be10817e9e'),\n",
" 'city': 'Portland',\n",
" 'first_name': 'Sandy',\n",
" 'last_name': 'Richardson'}\n",
"{'_id': ObjectId('5d40f9a2a64c92be10817e9f'),\n",
" 'age': 30,\n",
" 'city': ['Seattle', 'Chicago'],\n",
" 'first_name': 'Bryan',\n",
" 'last_name': 'Davis',\n",
" 'occupation': 'developer'}\n"
]
}
],
"source": [
"from pprint import pprint\n",
"\n",
"for customer in customers.find():\n",
" pprint(customer)"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'_id': ObjectId('5d40f396a64c92be10817e90'),\n",
" 'city': 'Boston',\n",
" 'first_name': 'Sam',\n",
" 'last_name': 'Adams'}\n"
]
}
],
"source": [
"# update({}, {'$unset': {'parent.toremove':1}}, multi=True)\n",
"\n",
"customers.update_many(\n",
" {\"city\":\"Boston\", \"last_name\":\"Adams\"},\n",
" {\"$unset\": {\"occupation\" : \"\"}},\n",
")\n",
"\n",
"\n",
"for customer in customers.find({\"city\":\"Boston\"}):\n",
" pprint(customer)"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"customers.drop()\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"\n",
"\n",
"db[\"orders\"].drop()\n",
"db[\"inventory\"].drop()\n",
"\n",
"\n",
"\n",
"orders = db[\"orders\"]\n",
"inventory = db[\"inventory\"]\n",
"\n",
"db[\"orders\"].insert_many([\n",
" { \"_id\" : 1, \"item\" : \"almonds\", \"price\" : 12, \"quantity\" : 2 },\n",
" { \"_id\" : 2, \"item\" : \"pecans\", \"price\" : 20, \"quantity\" : 1 },\n",
"])\n",
"\n",
"db.inventory.insert_many([\n",
" { \"_id\" : 1, \"sku\" : \"almonds\", \"description\": \"product 1\", \"instock\" : 120 },\n",
" { \"_id\" : 2, \"sku\" : \"bread\", \"description\": \"product 2\", \"instock\" : 80 },\n",
" { \"_id\" : 3, \"sku\" : \"cashews\", \"description\": \"product 3\", \"instock\" : 60 },\n",
" { \"_id\" : 4, \"sku\" : \"pecans\", \"description\": \"product 4\", \"instock\" : 70 },\n",
" { \"_id\" : 5, \"sku\": None, \"description\": \"Incomplete\" },\n",
"])\n",
"\n",
"results = orders.aggregate([\n",
" {\n",
" \"$lookup\":\n",
" {\n",
" \"from\": \"inventory\",\n",
" \"localField\": \"item\",\n",
" \"foreignField\": \"sku\",\n",
" \"as\": \"inventory_docs\"\n",
" }\n",
" }\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'_id': 1,\n",
" 'inventory_docs': [{'_id': 1,\n",
" 'description': 'product 1',\n",
" 'instock': 120,\n",
" 'sku': 'almonds'}],\n",
" 'item': 'almonds',\n",
" 'price': 12,\n",
" 'quantity': 2}\n",
"{'_id': 2,\n",
" 'inventory_docs': [{'_id': 4,\n",
" 'description': 'product 4',\n",
" 'instock': 70,\n",
" 'sku': 'pecans'}],\n",
" 'item': 'pecans',\n",
" 'price': 20,\n",
" 'quantity': 1}\n"
]
}
],
"source": [
"from pprint import pprint\n",
"\n",
"for row in results:\n",
" pprint(row)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment