Created
April 12, 2020 04:07
-
-
Save buswedg/a30331b78b47dcc1418804fae95639ef to your computer and use it in GitHub Desktop.
reinforcement_learning_for_share_trading\utils
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns\n", | |
"sns.set_style('darkgrid')\n", | |
"\n", | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"\n", | |
"import yfinance as yf # will likely need to pip install\n", | |
"# note an issue with yfinance here: github.com/ranaroussi/yfinance/issues/214\n", | |
"\n", | |
"from indicators import *\n", | |
"from col_refs import *" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def get_price(entity_symbol, data_source='yfinance', table_type='eod_price'):\n", | |
" ticker = yf.Ticker(entity_symbol)\n", | |
" pd_price = ticker.history(period='max', auto_adjust=False, rounding=False)\n", | |
"\n", | |
" dic_cols_rename = dic_cols_rename_ref[data_source][table_type]\n", | |
"\n", | |
" if not set(pd_price.columns).issubset(dic_cols_rename.keys()):\n", | |
" print('WARNING: unknown columns encountered')\n", | |
"\n", | |
" pd_price = pd_price.rename(columns=dic_cols_rename)\n", | |
" pd_price['entity_symbol'] = entity_symbol\n", | |
" pd_price = pd_price.drop(['dividend', 'split'], axis=1)\n", | |
" pd_price.index.name = None\n", | |
"\n", | |
" return pd_price" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def get_indicator(pd_prices):\n", | |
"\n", | |
" pd_indicator = calc_indicators(pd_prices, col_high='high', col_low='low', col_close='close', col_volume='volume', bool_fillna=False)\n", | |
"\n", | |
" pd_indicator = pd_indicator.dropna(axis=1, how='all')\n", | |
"\n", | |
" #for c in pd_indicator.columns:\n", | |
" # if pd_indicator[c].isnull().sum(axis=0) / len(pd_indicator) > 0.5:\n", | |
" # pd_indicator = pd_indicator.drop(c, axis=1)\n", | |
"\n", | |
" pd_indicator = pd_indicator.fillna(method='ffill')\n", | |
" pd_indicator = pd_indicator.fillna(method='bfill')\n", | |
"\n", | |
" return pd_indicator" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def compute_portvals(pd_orders, pd_prices, sv=1000000, comm=9.95, imp=0.005):\n", | |
" ls_symbols = pd_prices['entity_symbol'].unique()\n", | |
"\n", | |
" sd = pd_orders.index.min()\n", | |
" ed = pd_orders.index.max()\n", | |
"\n", | |
" pd_prices = pd_prices.loc[sd:ed, :]\n", | |
"\n", | |
" pd_prices_all = pd.DataFrame([], index=pd_prices.index)\n", | |
"\n", | |
" for symb in ls_symbols:\n", | |
" pd_prices_all[symb] = pd_prices.loc[pd_prices['entity_symbol'] == symb, 'close']\n", | |
"\n", | |
" pd_account = pd.DataFrame(0, index=pd_prices_all.index, columns=['credit', 'debit', 'fees'])\n", | |
" pd_positions = pd.DataFrame(0, index=pd_prices_all.index, columns=pd_prices_all.columns)\n", | |
"\n", | |
" pd_account.loc[sd, 'credit'] = sv\n", | |
"\n", | |
" for index, row in pd_orders.iterrows():\n", | |
" symb = row['entity_symbol']\n", | |
" order = row['order']\n", | |
" shares = row['shares']\n", | |
"\n", | |
" price = pd_prices_all.loc[index, symb]\n", | |
"\n", | |
" trade_value = price * shares\n", | |
" trade_cost = comm + imp * trade_value\n", | |
"\n", | |
" if order == 'BUY':\n", | |
" pd_positions.loc[index, symb] = pd_positions.loc[index, symb] + shares\n", | |
" pd_account.loc[index, 'debit'] = pd_account.loc[index, 'debit'] - trade_value\n", | |
"\n", | |
" else:\n", | |
" pd_positions.loc[index, symb] = pd_positions.loc[index, symb] - shares\n", | |
" pd_account.loc[index, 'credit'] = pd_account.loc[index, 'credit'] + trade_value\n", | |
"\n", | |
" pd_account.loc[index, 'fees'] = pd_account.loc[index, 'fees'] - trade_cost\n", | |
"\n", | |
" pd_positions = pd_positions.cumsum()\n", | |
"\n", | |
" pd_account['balance'] = pd_account[['credit', 'debit', 'fees']].sum(axis=1)\n", | |
" pd_account['balance'] = pd_account['balance'].cumsum()\n", | |
"\n", | |
" pd_holdings = pd_positions * pd_prices_all\n", | |
" pd_account['holdings'] = pd_holdings.sum(axis=1)\n", | |
"\n", | |
" pd_account['value'] = pd_account[['balance', 'holdings']].sum(axis=1)\n", | |
"\n", | |
" portvals = pd.DataFrame(pd_account['value'].values, pd_account.index, ['port_val'])\n", | |
"\n", | |
" return portvals" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def compute_portfolio_stats(port_val, rfr=0.0, sf=252.0):\n", | |
" dr = (port_val / port_val.shift(1)) - 1\n", | |
" cr = (port_val.iloc[-1] / port_val.iloc[0]) - 1\n", | |
"\n", | |
" dr.iloc[0] = 0\n", | |
" dr = dr[1:]\n", | |
" dr_rfr = dr - rfr\n", | |
"\n", | |
" adr_rfr = dr_rfr.mean()\n", | |
" adr = dr.mean()\n", | |
" sddr = dr.std()\n", | |
"\n", | |
" sr = np.sqrt(sf) * (adr_rfr / sddr)\n", | |
"\n", | |
" return cr, adr, sddr, sr" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def market_simulator(pd_orders, pd_benchmark, pd_prices,\n", | |
" sv=1000000, comm=9.95, imp=0.005,\n", | |
" daily_rf=0.0, samples_per_year=252.0,\n", | |
" save_fig=False, gen_stats=True,\n", | |
" fig_name='plot.png', stats_name='stats.tsv'):\n", | |
"\n", | |
" portvals = compute_portvals(pd_orders, pd_prices, sv, comm, imp)\n", | |
" cr_port, adr_port, sddr_port, sr_port = compute_portfolio_stats(portvals, rfr=daily_rf, sf=samples_per_year)\n", | |
"\n", | |
" benchvals = compute_portvals(pd_benchmark, pd_prices, sv, comm, imp)\n", | |
" cr_bench, adr_bench, sddr_bench, sr_bench = compute_portfolio_stats(benchvals, rfr=daily_rf, sf=samples_per_year)\n", | |
"\n", | |
" pd_stats = pd.DataFrame({'cumulative_return': ['{:0.6f}'.format(cr_port[0]), '{:0.6f}'.format(cr_bench[0])],\n", | |
" 'average_daily_return': ['{:0.6f}'.format(adr_port[0]), '{:0.6f}'.format(adr_bench[0])],\n", | |
" 'std_dev_of_returns': ['{:0.6f}'.format(sddr_port[0]), '{:0.6f}'.format(sddr_bench[0])],\n", | |
" 'sharpe_ratio': ['{:0.4f}'.format(sr_port[0]), '{:0.4f}'.format(sr_bench[0])],\n", | |
" 'number_of_trades': [len(pd_orders), len(pd_benchmark)]},\n", | |
" columns=['cumulative_return', 'average_daily_return', 'std_dev_of_returns', 'sharpe_ratio', 'number_of_trades'],\n", | |
" index=['portfolio', 'benchmark'])\n", | |
"\n", | |
" if gen_stats == True:\n", | |
" pd_stats.to_csv(stats_name, sep='\\t')\n", | |
"\n", | |
" portvals_norm = portvals / portvals.iloc[0]\n", | |
" benchvals_norm = benchvals / benchvals.iloc[0]\n", | |
"\n", | |
" portvals_norm = portvals_norm.reset_index()\n", | |
" benchvals_norm = benchvals_norm.reset_index()\n", | |
"\n", | |
" vals_norm = pd.merge(portvals_norm, benchvals_norm, on='index', how='outer')\n", | |
" vals_norm = vals_norm.set_index('index').sort_index().ffill()\n", | |
" vals_norm.columns = ['portfolio', 'benchmark']\n", | |
"\n", | |
" fig = plt.figure(figsize=(20, 12))\n", | |
" ax1 = fig.add_subplot(111)\n", | |
"\n", | |
" plt.plot(vals_norm.index, vals_norm['portfolio'], color='black', label='portfolio')\n", | |
" plt.plot(vals_norm.index, vals_norm['benchmark'], color='blue', label='benchmark')\n", | |
"\n", | |
" for date in pd_orders.index:\n", | |
"\n", | |
" if pd_orders.loc[date, 'order'] == 'BUY':\n", | |
" plt.axvline(date, color='g', alpha=0.5)\n", | |
"\n", | |
" else:\n", | |
" plt.axvline(date, color='r', alpha=0.5)\n", | |
"\n", | |
" plt.title('strategy_learner portfolio vs. benchmark')\n", | |
" plt.ylabel('normalized value')\n", | |
" plt.legend(loc='upper right')\n", | |
"\n", | |
" if save_fig == True:\n", | |
" plt.savefig(fig_name, bbox_inches='tight')\n", | |
"\n", | |
" else:\n", | |
" plt.interactive(True)\n", | |
" plt.show()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment