Created
April 12, 2020 03:58
-
-
Save buswedg/bbb738211e0d26ef68556cb5322ea3c6 to your computer and use it in GitHub Desktop.
reinforcement_learning_for_share_trading\q_learner
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import random as rand\n", | |
"\n", | |
"import numpy as np\n", | |
"\n", | |
"from indicators import *\n", | |
"from col_refs import *" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"class QLearner(object):\n", | |
"\n", | |
" def __init__(self, num_states=100, num_actions=4, alpha=0.2, gamma=0.9, rar=0.98, radr=0.999, dyna=0,\n", | |
" verbose=False):\n", | |
"\n", | |
" self.alpha = alpha\n", | |
" self.gamma = gamma\n", | |
" self.rar = rar\n", | |
" self.radr = radr\n", | |
" self.dyna = dyna\n", | |
" self.verbose = verbose\n", | |
"\n", | |
" self.s = 0\n", | |
" self.a = 0\n", | |
"\n", | |
" self.Q = np.zeros(shape=(num_states, num_actions))\n", | |
" self.R = np.zeros(shape=(num_states, num_actions))\n", | |
"\n", | |
" self.T = np.zeros((num_states, num_actions, num_states))\n", | |
" self.Tc = np.zeros((num_states, num_actions, num_states))\n", | |
"\n", | |
" self.num_actions = num_actions\n", | |
" self.num_states = num_states\n", | |
"\n", | |
" def querysetstate(self, s):\n", | |
" rand.seed(0)\n", | |
" np.random.seed(0)\n", | |
"\n", | |
" if np.random.uniform() < self.rar:\n", | |
" action = rand.randint(0, self.num_actions - 1)\n", | |
"\n", | |
" else:\n", | |
" action = self.Q[s, :].argmax()\n", | |
"\n", | |
" self.s = s\n", | |
" self.a = action\n", | |
"\n", | |
" if self.verbose: print(\"s =\", s, \"a =\", action)\n", | |
"\n", | |
" return action\n", | |
"\n", | |
" def query(self, s_prime, r):\n", | |
" rand.seed(0)\n", | |
" np.random.seed(0)\n", | |
"\n", | |
" if np.random.uniform() < self.rar:\n", | |
" action = rand.randint(0, self.num_actions - 1)\n", | |
"\n", | |
" else:\n", | |
" action = self.Q[s_prime, :].argmax()\n", | |
"\n", | |
" r_fut = self.Q[s_prime, self.Q[s_prime, :].argmax()]\n", | |
"\n", | |
" self.Q[self.s, self.a] = (1 - self.alpha) * self.Q[self.s, self.a] + self.alpha * (r + (self.gamma * r_fut))\n", | |
"\n", | |
" self.rar = self.rar * self.radr\n", | |
"\n", | |
" if self.dyna != 0:\n", | |
" self.model_update(self.s, self.a, s_prime, r)\n", | |
"\n", | |
" self.hallucinate()\n", | |
"\n", | |
" self.s = s_prime\n", | |
" self.a = action\n", | |
"\n", | |
" if self.verbose: print(\"s =\", s_prime, \"a =\", action, \"r =\", r)\n", | |
"\n", | |
" return action\n", | |
"\n", | |
" def model_update(self, s, a, s_prime, r):\n", | |
" self.Tc[s, a, s_prime] += 1\n", | |
" self.T = self.Tc / self.Tc.sum(axis=2, keepdims=True)\n", | |
" self.R[s, a] = ((1 - self.alpha) * self.R[s, a]) + (self.alpha * r)\n", | |
"\n", | |
" def hallucinate(self):\n", | |
" rand.seed(0)\n", | |
" np.random.seed(0)\n", | |
"\n", | |
" for i in range(0, self.dyna):\n", | |
" s_rnd = rand.randint(0, self.num_states - 1)\n", | |
" a_rnd = rand.randint(0, self.num_actions - 1)\n", | |
"\n", | |
" s_prime = np.random.multinomial(100, self.T[s_rnd, a_rnd, :]).argmax()\n", | |
"\n", | |
" r_rnd = self.R[s_rnd, a_rnd]\n", | |
" r_fut = self.Q[s_prime, self.Q[s_prime, :].argmax()]\n", | |
"\n", | |
" self.Q[s_rnd, a_rnd] = (1 - self.alpha) * self.Q[s_rnd, a_rnd] + self.alpha * (r_rnd + (self.gamma * r_fut))\n" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment