Last active
August 29, 2015 14:17
-
-
Save byronyi/761dc3fe0e5e283e6c20 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Logistic Regression\n", | |
| "===" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "%matplotlib inline\n", | |
| "\n", | |
| "import numpy as np\n", | |
| "import pandas as pd\n", | |
| "from matplotlib import pyplot as plt\n", | |
| "\n", | |
| "pd.set_option('display.max_rows', 500)\n", | |
| "pd.set_option('display.max_columns', 500)\n", | |
| "pd.set_option('display.width', 80)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": { | |
| "collapsed": false, | |
| "scrolled": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "demo_barrier.csv\n", | |
| "\n", | |
| " precision recall f1-score support\n", | |
| "\n", | |
| " cost 0.57 0.44 0.50 235\n", | |
| " range 0.59 0.42 0.49 241\n", | |
| " safety 0.09 0.62 0.16 8\n", | |
| " charge 0.05 0.20 0.08 10\n", | |
| " location 0.09 0.38 0.14 13\n", | |
| "\n", | |
| "avg / total 0.55 0.43 0.47 507\n", | |
| "\n", | |
| "\t\tPredicted target\n", | |
| " cost range safety charge location\n", | |
| "cost 104 61 28 19 23\n", | |
| "range 71 101 23 20 26\n", | |
| "safety 2 1 5 0 0\n", | |
| "charge 2 4 0 2 2\n", | |
| "location 3 4 0 1 5\n", | |
| "\n", | |
| "\t\tCoefficients\n", | |
| " cost range safety charge location\n", | |
| "intercept 0.15 -1.94 -5.76 -4.67 -3.86\n", | |
| "male -0.05 -0.87 -4.26 -1.54 -1.83\n", | |
| "female 0.20 -1.07 -1.50 -3.13 -2.03\n", | |
| "age_0 5.27 -3.30 -8.46 -2.93 -5.98\n", | |
| "age_2 -1.22 0.31 -0.20 2.37 0.59\n", | |
| "age_3 -1.03 0.08 0.97 1.53 1.13\n", | |
| "age_4 -1.01 0.31 1.13 -8.87 -0.24\n", | |
| "age_5 -1.87 0.67 0.80 3.22 0.64\n", | |
| "high_b 5.85 -3.97 -7.21 -7.64 -0.29\n", | |
| "high -1.36 0.14 1.13 1.12 -1.68\n", | |
| "bachelor -1.87 0.66 -0.97 1.19 -0.73\n", | |
| "master -2.48 1.24 1.29 0.66 -1.16\n", | |
| "0k -0.44 -0.08 0.06 -0.18 -7.31\n", | |
| "30k 0.34 -0.49 -1.80 -1.86 -7.45\n", | |
| "50k -0.32 -0.14 -1.47 -0.63 3.56\n", | |
| "100k -0.34 -0.27 0.43 -0.16 3.67\n", | |
| "200k 0.90 -0.95 -2.98 -1.84 3.67\n", | |
| "pop_1 0.65 -0.35 -4.72 -8.06 -0.82\n", | |
| "pop_2 0.55 -1.07 5.16 1.13 -0.83\n", | |
| "pop_3 0.06 -0.45 5.51 -0.07 -0.98\n", | |
| "pop_4 0.00 -0.38 -7.04 0.38 -0.11\n", | |
| "pop_5 -1.12 0.31 -4.66 1.95 -1.13\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/markdown": [ | |
| "---" | |
| ], | |
| "text/plain": [ | |
| "<IPython.core.display.Markdown object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "demo_range.csv\n", | |
| "\n", | |
| " precision recall f1-score support\n", | |
| "\n", | |
| " 250k 0.49 0.49 0.49 353\n", | |
| " 350k 0.46 0.24 0.32 293\n", | |
| " 450k 0.18 0.21 0.19 86\n", | |
| " 550k 0.07 0.30 0.11 20\n", | |
| " 650k 0.19 0.34 0.24 59\n", | |
| "\n", | |
| "avg / total 0.41 0.36 0.37 811\n", | |
| "\n", | |
| "\t\tPredicted target\n", | |
| " 250k 350k 450k 550k 650k\n", | |
| "250k 174 52 43 38 46\n", | |
| "350k 126 71 30 38 28\n", | |
| "450k 34 20 18 4 10\n", | |
| "550k 6 4 3 6 1\n", | |
| "650k 16 9 8 6 20\n", | |
| "\n", | |
| "\t\tCoefficients\n", | |
| " 250k 350k 450k 550k 650k\n", | |
| "intercept -0.13 -1.75 -2.65 -3.10 -1.89\n", | |
| "male -0.10 -0.84 -1.41 -2.02 -0.63\n", | |
| "female -0.04 -0.91 -1.25 -1.09 -1.26\n", | |
| "age_0 1.06 -4.13 -5.07 -6.43 0.56\n", | |
| "age_2 -0.30 0.78 0.34 1.43 -1.04\n", | |
| "age_3 -0.51 0.74 0.73 0.92 -0.41\n", | |
| "age_4 -0.30 0.55 0.92 0.53 -0.79\n", | |
| "age_5 -0.08 0.32 0.42 0.45 -0.20\n", | |
| "high_b 0.49 -0.49 -5.08 -5.57 -4.31\n", | |
| "high -0.05 -0.67 0.73 1.13 1.03\n", | |
| "bachelor -0.13 -0.40 0.89 0.77 0.39\n", | |
| "master -0.44 -0.19 0.82 0.56 1.00\n", | |
| "0k 0.01 -0.38 -0.95 -0.07 -0.03\n", | |
| "30k 0.11 -0.27 -0.74 -0.69 -0.69\n", | |
| "50k 0.21 -0.42 -0.64 -0.80 -0.78\n", | |
| "100k -0.26 -0.39 -0.26 0.05 -0.09\n", | |
| "200k -0.19 -0.27 -0.06 -1.60 -0.29\n", | |
| "pop_1 5.60 -3.98 -4.63 -7.26 -4.46\n", | |
| "pop_2 -1.42 0.46 1.07 0.35 0.40\n", | |
| "pop_3 -1.29 0.50 0.22 0.87 0.77\n", | |
| "pop_4 -1.31 0.61 0.55 0.69 0.28\n", | |
| "pop_5 -1.72 0.67 0.15 2.24 1.12\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/markdown": [ | |
| "---" | |
| ], | |
| "text/plain": [ | |
| "<IPython.core.display.Markdown object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "demo_time.csv\n", | |
| "\n", | |
| " precision recall f1-score support\n", | |
| "\n", | |
| " min_30 0.27 0.18 0.22 145\n", | |
| " min_20 0.37 0.43 0.40 297\n", | |
| " min_10 0.26 0.25 0.26 161\n", | |
| " min_5 0.17 0.18 0.18 105\n", | |
| " min_0 0.19 0.20 0.19 103\n", | |
| "\n", | |
| "avg / total 0.28 0.29 0.28 811\n", | |
| "\n", | |
| "\t\tPredicted target\n", | |
| " min_30 min_20 min_10 min_5 min_0\n", | |
| "min_30 26 61 28 17 13\n", | |
| "min_20 32 127 56 36 46\n", | |
| "min_10 9 71 40 20 21\n", | |
| "min_5 17 43 14 19 12\n", | |
| "min_0 11 38 14 19 21\n", | |
| "\n", | |
| "\t\tCoefficients\n", | |
| " min_30 min_20 min_10 min_5 min_0\n", | |
| "intercept -1.04 -1.09 -1.04 -1.77 -1.53\n", | |
| "male -0.66 -0.43 -0.54 -0.84 -0.82\n", | |
| "female -0.38 -0.66 -0.50 -0.92 -0.71\n", | |
| "age_0 0.11 -0.63 1.02 -5.25 -5.50\n", | |
| "age_2 -0.06 -0.03 -0.47 0.95 0.48\n", | |
| "age_3 -0.35 -0.15 -0.20 0.76 0.96\n", | |
| "age_4 -0.40 -0.40 -0.51 1.55 1.04\n", | |
| "age_5 -0.33 0.12 -0.88 0.22 1.48\n", | |
| "high_b -4.59 -0.36 0.45 -5.11 0.24\n", | |
| "high 1.42 -0.32 -0.51 1.12 -0.71\n", | |
| "bachelor 1.07 -0.23 -0.15 1.00 -0.79\n", | |
| "master 1.07 -0.19 -0.83 1.22 -0.28\n", | |
| "0k -0.34 -0.27 -0.29 -0.44 0.18\n", | |
| "30k -0.31 -0.25 -0.00 -0.25 -0.49\n", | |
| "50k -0.18 -0.24 -0.09 -0.37 -0.42\n", | |
| "100k -0.27 -0.21 -0.21 -0.44 -0.14\n", | |
| "200k 0.06 -0.11 -0.45 -0.27 -0.66\n", | |
| "pop_1 1.51 -4.24 -4.17 0.47 -5.51\n", | |
| "pop_2 -0.67 0.85 0.77 -0.53 0.97\n", | |
| "pop_3 -0.42 0.94 0.84 -0.86 0.64\n", | |
| "pop_4 -0.81 0.82 1.08 -0.61 0.84\n", | |
| "pop_5 -0.64 0.54 0.45 -0.25 1.52\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/markdown": [ | |
| "---" | |
| ], | |
| "text/plain": [ | |
| "<IPython.core.display.Markdown object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "habit_barrier.csv\n", | |
| "\n", | |
| " precision recall f1-score support\n", | |
| "\n", | |
| " cost 0.63 0.49 0.55 235\n", | |
| " range 0.64 0.42 0.51 241\n", | |
| " safety 0.14 0.88 0.24 8\n", | |
| " charge 0.08 0.50 0.14 10\n", | |
| " location 0.06 0.23 0.09 13\n", | |
| "\n", | |
| "avg / total 0.60 0.46 0.51 507\n", | |
| "\n", | |
| "\t\tPredicted target\n", | |
| " cost range safety charge location\n", | |
| "cost 116 50 20 27 22\n", | |
| "range 63 102 22 27 27\n", | |
| "safety 1 0 7 0 0\n", | |
| "charge 2 3 0 5 0\n", | |
| "location 3 5 2 0 3\n", | |
| "\n", | |
| "\t\tCoefficients\n", | |
| " cost range safety charge location\n", | |
| "intercept 0.96 -1.95 -6.58 -6.14 -5.49\n", | |
| "car_0 0.59 -0.82 -10.74 -1.56 -8.90\n", | |
| "car_1 0.07 -0.50 1.76 -2.48 2.29\n", | |
| "car_2 0.31 -0.63 2.40 -2.09 1.13\n", | |
| "daily 0.27 -0.58 -1.88 0.85 -0.92\n", | |
| "weekly 0.57 -0.63 -2.09 1.45 -2.50\n", | |
| "monthly -0.04 -0.38 -1.69 -9.88 -0.54\n", | |
| "never 0.16 -0.37 -0.91 1.43 -1.54\n", | |
| "leisure -6.02 3.66 -0.27 -6.73 3.12\n", | |
| "commute -5.89 3.12 -2.27 5.32 3.14\n", | |
| "professional -5.56 3.94 -1.01 -4.63 -8.39\n", | |
| "km_0 0.66 -0.54 -2.91 -2.45 5.68\n", | |
| "km_5 -0.02 -0.11 -2.03 0.64 -4.05\n", | |
| "km_10 0.02 -0.23 -14.98 -0.35 -2.94\n", | |
| "km_20 0.59 -1.00 6.11 -1.71 -2.37\n", | |
| "km_30 -0.30 -0.07 7.23 -2.27 -1.81\n", | |
| "min_0 0.02 -0.44 3.04 -10.66 -7.66\n", | |
| "min_15 0.55 -0.88 4.22 -0.03 1.87\n", | |
| "min_30 -0.16 0.21 -6.54 1.66 0.43\n", | |
| "min_60 0.54 -0.84 -7.30 2.88 -0.13\n", | |
| "never.1 0.87 -1.35 0.26 -0.14 1.20\n", | |
| "hv 0.03 -0.60 1.76 -0.01 1.38\n", | |
| "phv 0.00 0.00 0.00 0.00 0.00\n", | |
| "ev 0.06 0.00 -8.60 -5.99 -8.07\n", | |
| "no 0.26 -0.79 0.60 -10.06 1.07\n", | |
| "yr_0 0.43 -0.38 -10.03 0.99 -9.12\n", | |
| "yr_1 0.13 -0.17 0.61 1.04 1.22\n", | |
| "yr_3 0.04 -0.17 0.85 0.64 0.63\n", | |
| "yr_5 0.11 -0.44 1.38 1.25 0.70\n", | |
| "200k 0.65 -1.01 3.27 -1.94 -2.12\n", | |
| "300k 0.56 -0.94 3.05 -1.86 -2.41\n", | |
| "400k -0.25 0.00 -12.91 -2.34 -0.96\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/markdown": [ | |
| "---" | |
| ], | |
| "text/plain": [ | |
| "<IPython.core.display.Markdown object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "habit_range.csv\n", | |
| "\n", | |
| " precision recall f1-score support\n", | |
| "\n", | |
| " 250k 0.54 0.50 0.52 353\n", | |
| " 350k 0.51 0.42 0.46 293\n", | |
| " 450k 0.20 0.22 0.21 86\n", | |
| " 550k 0.08 0.30 0.13 20\n", | |
| " 650k 0.18 0.24 0.21 59\n", | |
| "\n", | |
| "avg / total 0.46 0.42 0.43 811\n", | |
| "\n", | |
| "\t\tPredicted target\n", | |
| " 250k 350k 450k 550k 650k\n", | |
| "250k 177 84 34 24 34\n", | |
| "350k 97 124 31 22 19\n", | |
| "450k 30 17 19 13 7\n", | |
| "550k 5 4 3 6 2\n", | |
| "650k 18 14 6 7 14\n", | |
| "\n", | |
| "\t\tCoefficients\n", | |
| " 250k 350k 450k 550k 650k\n", | |
| "intercept -0.68 -0.61 -0.85 -2.61 -1.66\n", | |
| "car_0 -0.35 -0.43 -0.04 -0.25 0.02\n", | |
| "car_1 -0.31 0.03 -0.47 -1.10 -0.74\n", | |
| "car_2 -0.02 -0.21 -0.34 -1.27 -0.94\n", | |
| "daily -0.29 -0.16 0.16 -1.05 -0.15\n", | |
| "weekly 0.11 -0.56 0.01 -0.04 -0.49\n", | |
| "monthly -0.36 -0.03 -0.51 -0.71 -0.02\n", | |
| "never -0.14 0.13 -0.52 -0.82 -1.00\n", | |
| "leisure -0.36 -0.07 -0.26 -1.12 0.01\n", | |
| "commute -0.12 -0.51 -0.10 -1.37 -0.04\n", | |
| "professional -0.20 -0.03 -0.49 -0.12 -1.63\n", | |
| "km_0 -0.61 0.42 -0.81 -1.63 0.52\n", | |
| "km_5 -0.52 0.06 -0.14 -0.71 -0.20\n", | |
| "km_10 0.09 -0.45 -0.19 0.16 -0.23\n", | |
| "km_20 0.09 -0.47 -0.10 0.02 -0.23\n", | |
| "km_30 0.28 -0.18 0.39 -0.45 -1.52\n", | |
| "min_0 0.49 -1.05 0.56 0.26 -0.82\n", | |
| "min_15 -0.10 0.07 -0.26 -1.01 -0.95\n", | |
| "min_30 -0.53 0.39 -0.38 -1.72 -0.34\n", | |
| "min_60 -0.53 -0.02 -0.77 -0.15 0.45\n", | |
| "never.1 0.16 -0.38 -0.39 1.22 2.84\n", | |
| "hv 0.09 -0.30 -0.51 0.60 3.07\n", | |
| "phv -0.31 -0.65 1.05 -6.46 -2.88\n", | |
| "ev -0.62 0.71 -1.00 2.02 -4.68\n", | |
| "no -0.10 -0.34 0.00 1.46 -0.01\n", | |
| "yr_0 -0.02 0.14 -1.14 -8.32 -0.06\n", | |
| "yr_1 -0.31 0.04 -0.04 1.66 -0.49\n", | |
| "yr_3 -0.04 -0.36 0.28 1.32 -0.63\n", | |
| "yr_5 -0.19 -0.10 0.05 1.26 -0.47\n", | |
| "200k 0.20 -0.30 -0.72 -1.24 -0.79\n", | |
| "300k -0.23 -0.13 -0.26 -1.00 -0.67\n", | |
| "400k -0.64 -0.18 0.13 -0.38 -0.20\n", | |
| "green -0.44 0.18 0.09 2.24 -1.04\n", | |
| "cost 0.09 0.10 -0.87 -8.63 -0.83\n", | |
| "style -0.32 -0.89 -0.08 3.78 0.20\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/markdown": [ | |
| "---" | |
| ], | |
| "text/plain": [ | |
| "<IPython.core.display.Markdown object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "habit_time.csv\n", | |
| "\n", | |
| " precision recall f1-score support\n", | |
| "\n", | |
| " min_30.1 0.30 0.31 0.30 145\n", | |
| " min_20 0.43 0.45 0.44 297\n", | |
| " min_10 0.34 0.30 0.32 161\n", | |
| " min_5 0.19 0.12 0.15 105\n", | |
| " min_0.1 0.26 0.34 0.29 103\n", | |
| "\n", | |
| "avg / total 0.34 0.34 0.34 811\n", | |
| "\n", | |
| "\t\tPredicted target\n", | |
| " min_30.1 min_20 min_10 min_5 min_0.1\n", | |
| "min_30.1 45 44 21 14 21\n", | |
| "min_20 46 135 47 29 40\n", | |
| "min_10 28 56 48 9 20\n", | |
| "min_5 12 46 15 13 19\n", | |
| "min_0.1 20 34 9 5 35\n", | |
| "\n", | |
| "\t\tCoefficients\n", | |
| " min_30.1 min_20 min_10 min_5 min_0.1\n", | |
| "intercept -0.76 -0.39 -1.75 -0.35 -0.79\n", | |
| "car_0 -0.02 -0.60 -0.52 -0.05 0.10\n", | |
| "car_1 -0.66 0.21 -0.37 0.08 -0.84\n", | |
| "car_2 -0.08 0.00 -0.86 -0.39 -0.06\n", | |
| "daily -0.06 -0.16 -0.45 -0.07 -0.26\n", | |
| "weekly -0.04 -0.07 -0.65 -0.09 -0.14\n", | |
| "monthly -0.36 -0.08 -0.36 -0.13 -0.06\n", | |
| "never -0.30 -0.08 -0.29 -0.06 -0.33\n", | |
| "leisure -0.58 -0.03 -0.58 -0.23 0.07\n", | |
| "commute -0.33 -0.10 -0.25 -0.19 -0.54\n", | |
| "professional 0.15 -0.25 -0.92 0.07 -0.31\n", | |
| "km_0 -0.75 0.72 -1.00 -0.15 0.34\n", | |
| "km_5 -0.03 0.11 -0.35 -0.43 -0.26\n", | |
| "km_10 -0.19 0.10 -0.70 0.12 -0.20\n", | |
| "km_20 0.09 -0.64 -0.13 0.27 -0.26\n", | |
| "km_30 0.12 -0.66 0.43 -0.16 -0.41\n", | |
| "min_0 0.24 -0.64 -0.04 -0.13 -0.45\n", | |
| "min_15 -0.51 -0.18 -0.34 0.18 0.01\n", | |
| "min_30 -0.32 -0.10 -0.05 -0.15 -0.41\n", | |
| "min_60 -0.17 0.54 -1.31 -0.25 0.06\n", | |
| "never.1 1.67 -0.48 1.21 -0.59 1.11\n", | |
| "hv 1.23 -0.38 0.99 -0.71 1.71\n", | |
| "phv -4.48 0.82 -5.20 0.71 -4.10\n", | |
| "ev 0.82 -0.35 1.25 0.23 0.48\n", | |
| "no -0.08 -0.34 -0.42 0.12 0.34\n", | |
| "yr_0 -0.05 -0.02 -0.28 0.25 -1.39\n", | |
| "yr_1 -0.17 0.22 -0.53 -0.35 -0.08\n", | |
| "yr_3 -0.03 -0.12 -0.45 -0.20 0.20\n", | |
| "yr_5 -0.45 -0.12 -0.08 -0.18 0.14\n", | |
| "200k -0.12 -0.11 -0.65 -0.27 -0.20\n", | |
| "300k -0.12 -0.13 -0.52 -0.24 -0.41\n", | |
| "400k -0.53 -0.15 -0.58 0.16 -0.19\n", | |
| "green -0.79 -0.02 2.14 0.03 -0.47\n", | |
| "cost 0.07 -0.17 1.61 -0.01 -0.81\n", | |
| "style -0.05 -0.19 -5.50 -0.37 0.48\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/markdown": [ | |
| "---" | |
| ], | |
| "text/plain": [ | |
| "<IPython.core.display.Markdown object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "from IPython.display import display, Markdown\n", | |
| "\n", | |
| "from sklearn.metrics import confusion_matrix, classification_report\n", | |
| "from sklearn.linear_model import LogisticRegression\n", | |
| "\n", | |
| "dataset = !ls *.csv\n", | |
| "for data in dataset:\n", | |
| " df = pd.read_csv(data)\n", | |
| " feature_names = df.columns[:-5]\n", | |
| " target_names = df.columns[-5:]\n", | |
| " X = np.array(df[feature_names])\n", | |
| " Y = np.array(df[target_names])\n", | |
| " y = np.argwhere(Y == 1)[:, 1]\n", | |
| " \n", | |
| " print data\n", | |
| " print\n", | |
| " model = LogisticRegression(C=1e10, class_weight='auto')\n", | |
| " model.fit(X, y)\n", | |
| " # print model.dual_coef_\n", | |
| " print classification_report(y, model.predict(X), target_names=target_names)\n", | |
| " print '\\t\\tPredicted target'\n", | |
| " print pd.DataFrame(confusion_matrix(y, model.predict(X)), index=target_names, columns=target_names)\n", | |
| " print\n", | |
| " print '\\t\\tCoefficients'\n", | |
| " print pd.DataFrame(np.round(np.c_[model.intercept_, model.coef_].T, 2), \n", | |
| " index=['intercept']+list(feature_names), columns=target_names)\n", | |
| " print\n", | |
| " display(Markdown('---'))" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 2", | |
| "language": "python", | |
| "name": "python2" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 2 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython2", | |
| "version": "2.7.9" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 0 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment