PySAL: Python Spatial Analysis Library
- Name: Taylor Oshan
import Neuralyzer | |
struct IrisData: Codable { | |
let row: [Double] | |
} | |
var parsedData: [IrisData] = [] | |
if let file = Bundle.main.path(forResource: "iris", ofType: "json") { | |
do { | |
let jsonDecoder = JSONDecoder() |
func circularMean() { | |
let formatter = DateFormatter() | |
formatter.dateFormat = "yyyy/MM/dd HH:mm:ss zzz" | |
let times = [Date](arrayLiteral: formatter.date(from: "2017/10/17 23:00:17 UTC")!, formatter.date(from: "2017/10/17 23:40:20 UTC")!, formatter.date(from: "2017/10/17 00:12:45 UTC")!, formatter.date(from: "2017/10/17 00:17:19 UTC")!) | |
// 1 second of time = 360/(24 * 3600) = 1/240th degree | |
let angles = times.map { secondOfDay(fromDate: $0) / 240 } | |
print(degreeToTime(degree: meanAngle(angles: angles), forDate: Date())!) | |
} | |
func meanAngle(angles: [Double]) -> Double { |
from shapely import wkt | |
from shapely import ops | |
import matplotlib.pyplot as plt | |
%matplotlib inline | |
a = wkt.loads("LINESTRING (-180 68.96363636363637, -177.55 68.2, -174.92825 67.20589, -175.01425 66.58435, -174.33983 66.33556, -174.57182 67.06219, -171.85731 66.91307999999999, -169.89958 65.97723999999999, -170.89107 65.54139000000001, -172.53025 65.43791, -172.555 64.46079, -172.95533 64.25269, -173.89184 64.2826, -174.65392 64.63124999999999, -175.98353 64.92288000000001, -176.20716 65.35666999999999, -177.22266 65.52024, -178.35993 65.39052, -178.90332 65.74044000000001, -178.68611 66.11211, -179.88377 65.87456, -179.43268 65.40411, -180 64.97970870219837)") | |
b = wkt.loads("LINESTRING (180 64.97432999999999, 178.7072000000003 64.53493, 177.4112800000002 64.60821, 178.3130000000002 64.07593, 178.9082500000002 63.25197000000014, 179.37034 62.98262000000011, 179.48636 62.56894, 179.2282500000001 62.30410000000015, 177.3643 62.5219, 174.5692900000002 61.76915, 173.68013 61.65261, 172.15 60.95, 170.698500000000 |
Total CO2 emissions from fossil-fuels (1000 metric tons) for the United States | |
Data source: | |
Source organization(s): CDIAC (Carbon Dioxide Information Analysis Center) | |
Link to source organization: http://cdiac.ornl.gov/ | |
File name: nation.1751_2009.csv | |
Link to complete reference: http://cdiac.ornl.gov/ftp/ndp030/CSV-FILES/ | |
Data attributes: | |
year: |
id | x | y | |
---|---|---|---|
0 | -73.992191 | 40.739449 | |
1 | -73.018136 | 40.87074 | |
2 | -73.946186 | 40.632716 | |
3 | -73.880039 | 40.998842 | |
4 | -72.165523 | 41.422617 | |
5 | -73.82308 | 40.990214 | |
6 | -73.070623 | 40.760706 | |
7 | -73.980833 | 40.77083 | |
8 | -73.530004 | 40.873758 |
def run_remote_code(url): | |
"""Fetch and run remote Python code. | |
This is a custom function that fetches | |
and runs remote Python code inside of an | |
IPython Notebook. | |
Careful, this could be super bad stuff! | |
""" | |
from IPython.core.magics.code import CodeMagics |