Skip to content

Instantly share code, notes, and snippets.

@caryan
Created May 20, 2020 21:17
Show Gist options
  • Save caryan/f4c9afb2dfe4921ca72950bb90b5cfd0 to your computer and use it in GitHub Desktop.
Save caryan/f4c9afb2dfe4921ca72950bb90b5cfd0 to your computer and use it in GitHub Desktop.
Demonstrate how manual CSE can speed up ModelingToolkit ODE functions
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Explore Common Subexpression Elimination\n",
"\n",
"Many of the linear drive terms have the form of $A(t)H_{drive}$ where we have a time dependent drive amplitude $A$ multiplying the drive Hamiltonion. The same $A(t)$ will appear for every non zero element of $H_{drive}$ and so we would like calculate it once, bind the result to a variable, and then use the variable everywhere. The compiler is supposed to do this via common subexpression elimination. Let's check whether it actually works."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"using BenchmarkTools\n",
"using MacroTools: postwalk\n",
"using ModelingToolkit, OrdinaryDiffEq"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3-element Array{Equation,1}:\n",
" Equation(derivative(ψ₁(t), t), cos(ω * t) * ψ₁(t))\n",
" Equation(derivative(ψ₂(t), t), cos(ω * t) * ψ₂(t))\n",
" Equation(derivative(ψ₃(t), t), cos(ω * t) * ψ₃(t))"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# create trivial diagonal system of N equations\n",
"\n",
"N = 3\n",
"@parameters ω, t\n",
"@variables ψ[1:N](t)\n",
"@derivatives D'~t\n",
"\n",
"drive_amplitude = cos(ω*t)\n",
"\n",
"eqs = D.(ψ) .~ drive_amplitude.*ψ"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
":((var\"##MTIIPVar#258\", var\"##MTKArg#254\", var\"##MTKArg#255\", var\"##MTKArg#256\")->begin\n",
" @inbounds begin\n",
" let (ψ₁, ψ₂, ψ₃, ω, t) = (var\"##MTKArg#254\"[1], var\"##MTKArg#254\"[2], var\"##MTKArg#254\"[3], var\"##MTKArg#255\"[1], var\"##MTKArg#256\")\n",
" var\"##MTIIPVar#258\"[1] = cos(ω * t) * ψ₁\n",
" var\"##MTIIPVar#258\"[2] = cos(ω * t) * ψ₂\n",
" var\"##MTIIPVar#258\"[3] = cos(ω * t) * ψ₃\n",
" end\n",
" end\n",
" nothing\n",
" end)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# let's look at the in-place ODE function\n",
"de = ODESystem(eqs)\n",
"generate_function(de)[2]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 91.733 ns (0 allocations: 0 bytes)\n"
]
}
],
"source": [
"# and time its performance\n",
"u = collect(range(0,1; length=N)); du = similar(u);\n",
"f = eval(generate_function(de)[2])\n",
"@btime f($du, $u, 5e9, 2.0)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
":((var\"##MTIIPVar#282\", var\"##MTKArg#278\", var\"##MTKArg#279\", var\"##MTKArg#280\")->begin\n",
" @inbounds begin\n",
" let (ψ₁, ψ₂, ψ₃, ω, t) = (var\"##MTKArg#278\"[1], var\"##MTKArg#278\"[2], var\"##MTKArg#278\"[3], var\"##MTKArg#279\"[1], var\"##MTKArg#280\")\n",
" drive_amplitude = cos(ω * t)\n",
" var\"##MTIIPVar#282\"[1] = drive_amplitude * ψ₁\n",
" var\"##MTIIPVar#282\"[2] = drive_amplitude * ψ₂\n",
" var\"##MTIIPVar#282\"[3] = drive_amplitude * ψ₃\n",
" end\n",
" end\n",
" nothing\n",
" end)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# now let's do some manual CSE\n",
"ex = generate_function(de)[2]\n",
"ex = postwalk(x -> x == :(cos(ω*t)) ? :(drive_amplitude) : x, ex)\n",
"pushfirst!(ex.args[2].args[1].args[3].args[1].args[2].args, :(drive_amplitude = cos(ω*t)))\n",
"ex"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 46.231 ns (0 allocations: 0 bytes)\n"
]
}
],
"source": [
"# and time that\n",
"u = collect(range(0,1; length=N)); du = similar(u);\n",
"f = eval(ex)\n",
"@btime f($du, $u, 2π*5, 2.0)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3-element Array{Float64,1}:\n",
" 0.0\n",
" 0.5\n",
" 1.0"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# check that it calculated something\n",
"f(du, u, 2π*5, 2.0)\n",
"du"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Without manual CSE\n",
" 3.385 μs (0 allocations: 0 bytes)\n",
"\n",
" With manual CSE\n",
" 80.211 ns (0 allocations: 0 bytes)\n"
]
}
],
"source": [
"# repeat with 100 terms to see a much bigger gap\n",
"\n",
"N = 100\n",
"@parameters ω, t\n",
"@variables ψ[1:N](t)\n",
"@derivatives D'~t\n",
"\n",
"drive_amplitude = cos(ω*t)\n",
"\n",
"eqs = D.(ψ) .~ drive_amplitude.*ψ\n",
"\n",
"de = ODESystem(eqs)\n",
"\n",
"println(\"Without manual CSE\")\n",
"u = collect(range(0,1; length=N)); du = similar(u);\n",
"f = eval(generate_function(de)[2])\n",
"@btime f($du, $u, 5e9, 2.0)\n",
"\n",
"println(\"\\n With manual CSE\")\n",
"ex = generate_function(de)[2]\n",
"ex = postwalk(x -> x == :(cos(ω*t)) ? :(drive_amplitude) : x, ex)\n",
"pushfirst!(ex.args[2].args[1].args[3].args[1].args[2].args, :(drive_amplitude = cos(ω*t)))\n",
"f = eval(ex)\n",
"@btime f($du, $u, 2π*5, 2.0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Julia 1.4.0",
"language": "julia",
"name": "julia-1.4"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.4.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment