Last active
October 4, 2016 10:57
-
-
Save cavaunpeu/1b70b904721293c61093bd63e2708027 to your computer and use it in GitHub Desktop.
Udacity Deep Learning, word2vec Example
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def generate_batch(batch_size, num_skips, skip_window): | |
| global data_index | |
| assert batch_size % num_skips == 0 | |
| assert num_skips <= 2 * skip_window | |
| batch = np.ndarray(shape=(batch_size), dtype=np.int32) | |
| labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) | |
| span = 2 * skip_window + 1 # [ skip_window target skip_window ] | |
| buffer = collections.deque(maxlen=span) | |
| for _ in range(span): | |
| buffer.append(data[data_index]) | |
| data_index = (data_index + 1) % len(data) | |
| for i in range(batch_size // num_skips): | |
| target = skip_window # target label at the center of the buffer | |
| targets_to_avoid = [ skip_window ] | |
| for j in range(num_skips): | |
| while target in targets_to_avoid: | |
| target = random.randint(0, span - 1) | |
| targets_to_avoid.append(target) | |
| batch[i * num_skips + j] = buffer[skip_window] | |
| labels[i * num_skips + j, 0] = buffer[target] | |
| buffer.append(data[data_index]) | |
| data_index = (data_index + 1) % len(data) | |
| return batch, labels |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment