Skip to content

Instantly share code, notes, and snippets.

@cavedave
Last active January 29, 2025 13:35
Show Gist options
  • Save cavedave/1083d866f78760b036263a98cb68c1dc to your computer and use it in GitHub Desktop.
Save cavedave/1083d866f78760b036263a98cb68c1dc to your computer and use it in GitHub Desktop.
ukincome.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"authorship_tag": "ABX9TyMUoDAi6IIcF98FPbuT2aFr",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/cavedave/1083d866f78760b036263a98cb68c1dc/ukincome.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"source": [
"code to graph uk disposable income and its previous tend\n",
"\n",
"\n",
"\n",
"data from https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/datasets/householddisposableincomeandinequality"
],
"metadata": {
"id": "b_NALyMZAWvJ"
}
},
{
"cell_type": "code",
"source": [
"#load the file\n",
"from google.colab import drive\n",
"import pandas as pd\n",
"\n",
"# Mount Google Drive\n",
"drive.mount('/content/drive')\n",
"\n",
"# Specify the file path in your Google Drive\n",
"file_path = '/content/drive/MyDrive/Table_1.csv' # Replace with your actual file path\n",
"\n",
"try:\n",
" # Load the CSV file into a pandas DataFrame\n",
" df = pd.read_csv(file_path)\n",
"\n",
" # Print or process the DataFrame\n",
" print(df.head()) # Print the first few rows\n",
"\n",
"except FileNotFoundError:\n",
" print(f\"Error: File not found at '{file_path}'. Please check the file path.\")\n",
"except pd.errors.ParserError:\n",
" print(f\"Error: Could not parse the CSV file at '{file_path}'. Please check the file format.\")\n",
"except Exception as e:\n",
" print(f\"An unexpected error occurred: {e}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LZbeJtisCxE4",
"outputId": "81f7aafd-0ff1-45e3-f3bc-28b2a81ccd03"
},
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mounted at /content/drive\n",
" Table 1: Timeseries of mean and median equivalised household disposable income, 1977-2022/23, UK (2022/23 prices) \\\n",
"0 See [note 1], [note 11], [note 12], [note 20] ... \n",
"1 This worksheet contains 6 columns and 46 rows ... \n",
"2 Adjusted series \n",
"3 £ per year (2022/23 prices) \n",
"4 NaN \n",
"\n",
" Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4 Unnamed: 5 Unnamed: 6 \\\n",
"0 NaN NaN NaN NaN NaN NaN \n",
"1 NaN NaN NaN NaN NaN NaN \n",
"2 NaN NaN NaN NaN NaN NaN \n",
"3 NaN NaN NaN NaN NaN NaN \n",
"4 All people NaN Non-retired NaN Retired NaN \n",
"\n",
" Unnamed: 7 \n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n"
]
}
]
},
{
"cell_type": "code",
"source": [
"\n",
"import pandas as pd\n",
"\n",
"# Define the file path\n",
"#file_path = '/content/Table 1-Table 1.csv'\n",
"\n",
"# Load the file while skipping rows until \"Year\" and stopping at \"Back to index\"\n",
"with open(file_path, 'r') as file:\n",
" lines = file.readlines()\n",
"\n",
"# Find the start and stop points\n",
"start_idx = next(i for i, line in enumerate(lines) if line.startswith(\"Year\"))\n",
"end_idx = next(i for i, line in enumerate(lines) if \"Back to index\" in line)\n",
"\n",
"# Read the relevant portion into a DataFrame\n",
"data = pd.read_csv(file_path, skiprows=start_idx, nrows=end_idx - start_idx - 1)\n",
"\n",
"# Display the DataFrame (this line is specific to the ACE tools environment)\n",
"# import ace_tools as tools; tools.display_dataframe_to_user(name=\"Filtered Table Data\", dataframe=data)\n",
"\n",
"data.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "O-soFyhfv_Pf",
"outputId": "5a4fa1e2-ac30-4d29-9533-99563151d063"
},
"execution_count": 2,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Year Mean Median Mean.1 Median.1 Mean.2 Median.2 Unnamed: 7\n",
"0 1977 17,215 15,450 18,000 16,289 11,366 9,815 NaN\n",
"1 1978 18,776 17,092 19,670 17,930 12,285 10,507 NaN\n",
"2 1979 19,644 17,752 20,755 18,908 12,057 10,443 NaN\n",
"3 1980 20,379 18,323 21,465 19,442 12,704 10,805 NaN\n",
"4 1981 19,805 17,397 20,762 18,480 13,325 11,236 NaN"
],
"text/html": [
"\n",
" <div id=\"df-72fdbb66-351a-4679-b225-18007c2dc976\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Year</th>\n",
" <th>Mean</th>\n",
" <th>Median</th>\n",
" <th>Mean.1</th>\n",
" <th>Median.1</th>\n",
" <th>Mean.2</th>\n",
" <th>Median.2</th>\n",
" <th>Unnamed: 7</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1977</td>\n",
" <td>17,215</td>\n",
" <td>15,450</td>\n",
" <td>18,000</td>\n",
" <td>16,289</td>\n",
" <td>11,366</td>\n",
" <td>9,815</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1978</td>\n",
" <td>18,776</td>\n",
" <td>17,092</td>\n",
" <td>19,670</td>\n",
" <td>17,930</td>\n",
" <td>12,285</td>\n",
" <td>10,507</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1979</td>\n",
" <td>19,644</td>\n",
" <td>17,752</td>\n",
" <td>20,755</td>\n",
" <td>18,908</td>\n",
" <td>12,057</td>\n",
" <td>10,443</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1980</td>\n",
" <td>20,379</td>\n",
" <td>18,323</td>\n",
" <td>21,465</td>\n",
" <td>19,442</td>\n",
" <td>12,704</td>\n",
" <td>10,805</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1981</td>\n",
" <td>19,805</td>\n",
" <td>17,397</td>\n",
" <td>20,762</td>\n",
" <td>18,480</td>\n",
" <td>13,325</td>\n",
" <td>11,236</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-72fdbb66-351a-4679-b225-18007c2dc976')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-72fdbb66-351a-4679-b225-18007c2dc976 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-72fdbb66-351a-4679-b225-18007c2dc976');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-ed8d3cfd-b752-4bce-8bb9-47ebe529e13c\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-ed8d3cfd-b752-4bce-8bb9-47ebe529e13c')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-ed8d3cfd-b752-4bce-8bb9-47ebe529e13c button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "data",
"summary": "{\n \"name\": \"data\",\n \"rows\": 46,\n \"fields\": [\n {\n \"column\": \"Year\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"2016/17\",\n \"2002/03\",\n \"2003/04\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mean\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"41,350 \",\n \"36,642 \",\n \"37,081 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Median\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"33,904 \",\n \"29,931 \",\n \"30,492 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mean.1\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"42,897 \",\n \"38,768 \",\n \"39,243 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Median.1\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"35,376 \",\n \"32,217 \",\n \"32,502 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mean.2\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"34,215 \",\n \"26,110 \",\n \"26,262 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Median.2\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"28,276 \",\n \"21,614 \",\n \"22,275 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Unnamed: 7\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 2
}
]
},
{
"cell_type": "code",
"source": [
"# Rename columns in the DataFrame\n",
"# The original DataFrame has 8 columns, so we need 8 column names.\n",
"# Assuming the 8th column is unnamed and you want to drop it later, we can give it a temporary name like \"Extra\".\n",
"data.columns = [\"Year\", \"All_Mean\", \"All_Median\", \"Work_Mean\", \"Work_Median\", \"Retired_Mean\", \"Retired_Median\", \"Extra\"]\n",
"# Drop the last empty column\n",
"data = data.drop(columns=[\"Extra\"])\n",
"data.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "gQXVAZy0xIeY",
"outputId": "6ad4ace1-9bf8-4215-d846-033be422ba7a"
},
"execution_count": 3,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Year All_Mean All_Median Work_Mean Work_Median Retired_Mean Retired_Median\n",
"0 1977 17,215 15,450 18,000 16,289 11,366 9,815 \n",
"1 1978 18,776 17,092 19,670 17,930 12,285 10,507 \n",
"2 1979 19,644 17,752 20,755 18,908 12,057 10,443 \n",
"3 1980 20,379 18,323 21,465 19,442 12,704 10,805 \n",
"4 1981 19,805 17,397 20,762 18,480 13,325 11,236 "
],
"text/html": [
"\n",
" <div id=\"df-f156172c-3029-41e2-9c1f-b31b0e53d23b\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Year</th>\n",
" <th>All_Mean</th>\n",
" <th>All_Median</th>\n",
" <th>Work_Mean</th>\n",
" <th>Work_Median</th>\n",
" <th>Retired_Mean</th>\n",
" <th>Retired_Median</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1977</td>\n",
" <td>17,215</td>\n",
" <td>15,450</td>\n",
" <td>18,000</td>\n",
" <td>16,289</td>\n",
" <td>11,366</td>\n",
" <td>9,815</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1978</td>\n",
" <td>18,776</td>\n",
" <td>17,092</td>\n",
" <td>19,670</td>\n",
" <td>17,930</td>\n",
" <td>12,285</td>\n",
" <td>10,507</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1979</td>\n",
" <td>19,644</td>\n",
" <td>17,752</td>\n",
" <td>20,755</td>\n",
" <td>18,908</td>\n",
" <td>12,057</td>\n",
" <td>10,443</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1980</td>\n",
" <td>20,379</td>\n",
" <td>18,323</td>\n",
" <td>21,465</td>\n",
" <td>19,442</td>\n",
" <td>12,704</td>\n",
" <td>10,805</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1981</td>\n",
" <td>19,805</td>\n",
" <td>17,397</td>\n",
" <td>20,762</td>\n",
" <td>18,480</td>\n",
" <td>13,325</td>\n",
" <td>11,236</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-f156172c-3029-41e2-9c1f-b31b0e53d23b')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-f156172c-3029-41e2-9c1f-b31b0e53d23b button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-f156172c-3029-41e2-9c1f-b31b0e53d23b');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-f1b99ba5-4e44-411b-b292-913f1db96208\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-f1b99ba5-4e44-411b-b292-913f1db96208')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-f1b99ba5-4e44-411b-b292-913f1db96208 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "data",
"summary": "{\n \"name\": \"data\",\n \"rows\": 46,\n \"fields\": [\n {\n \"column\": \"Year\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"2016/17\",\n \"2002/03\",\n \"2003/04\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"All_Mean\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"41,350 \",\n \"36,642 \",\n \"37,081 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"All_Median\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"33,904 \",\n \"29,931 \",\n \"30,492 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Work_Mean\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"42,897 \",\n \"38,768 \",\n \"39,243 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Work_Median\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"35,376 \",\n \"32,217 \",\n \"32,502 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Retired_Mean\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"34,215 \",\n \"26,110 \",\n \"26,262 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Retired_Median\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"28,276 \",\n \"21,614 \",\n \"22,275 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 3
}
]
},
{
"cell_type": "code",
"source": [
"print(data.dtypes)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "WpXzP7Mo1MeI",
"outputId": "28178ebe-ebe7-4189-e587-d87a997eb248"
},
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Year object\n",
"All_Mean object\n",
"All_Median object\n",
"Work_Mean object\n",
"Work_Median object\n",
"Retired_Mean object\n",
"Retired_Median object\n",
"dtype: object\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"#1994/1995 is not ideal\n",
"# Drop the second part of the year (after the '/') in the \"Year\" column\n",
"data[\"Year\"] = data[\"Year\"].astype(str).str.split('/').str[0]\n",
"\n",
"# Convert the \"Year\" column back to numeric\n",
"data[\"Year\"] = pd.to_numeric(data[\"Year\"], errors=\"coerce\")\n"
],
"metadata": {
"id": "dokguDt6wXGf"
},
"execution_count": 5,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Convert all object-type columns to numeric after removing commas\n",
"for column in data.columns:\n",
" if data[column].dtype == \"object\":\n",
" data[column] = data[column].replace(\",\", \"\", regex=True).astype(float)\n",
"\n",
"# Verify the conversion\n",
"print(data.dtypes)\n",
"\n",
"# Now you can graph all columns\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "wXHaPO4-1VYZ",
"outputId": "f492bf5c-3865-4e94-9ed5-4b5ca27d2c07"
},
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Year int64\n",
"All_Mean float64\n",
"All_Median float64\n",
"Work_Mean float64\n",
"Work_Median float64\n",
"Retired_Mean float64\n",
"Retired_Median float64\n",
"dtype: object\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"\n",
"# Find the 5 years with the highest \"All_Median\" income\n",
"# Convert \"All_Median\" column to numeric, handling potential commas and non-numeric values\n",
"data[\"All_Median\"] = pd.to_numeric(data[\"All_Median\"].astype(str).str.replace(',', ''), errors='coerce')\n",
"\n",
"# Now, you should be able to find the top 5 years\n",
"top_5_years = data.nlargest(10, \"All_Median\")\n",
"top_5_years"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "m2fmYZI5ymNa",
"outputId": "b312b8e4-638c-4502-d1e9-e96c60ed51c5"
},
"execution_count": 7,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Year All_Mean All_Median Work_Mean Work_Median Retired_Mean \\\n",
"43 2020 42481.0 35438.0 44430.0 37187.0 33205.0 \n",
"44 2021 42944.0 35335.0 44980.0 37259.0 33616.0 \n",
"42 2019 42725.0 34735.0 45088.0 36813.0 30996.0 \n",
"45 2022 40916.0 34462.0 42758.0 35968.0 31862.0 \n",
"39 2016 41350.0 33904.0 42897.0 35376.0 34215.0 \n",
"41 2018 41098.0 33364.0 42919.0 34822.0 32515.0 \n",
"40 2017 40668.0 33093.0 42381.0 34554.0 32561.0 \n",
"38 2015 41483.0 33013.0 43114.0 34375.0 33496.0 \n",
"37 2014 40173.0 32445.0 41991.0 34360.0 31495.0 \n",
"30 2007 42167.0 32179.0 44964.0 34725.0 28125.0 \n",
"\n",
" Retired_Median \n",
"43 28686.0 \n",
"44 28234.0 \n",
"42 26800.0 \n",
"45 28088.0 \n",
"39 28276.0 \n",
"41 27817.0 \n",
"40 27414.0 \n",
"38 27399.0 \n",
"37 26687.0 \n",
"30 24002.0 "
],
"text/html": [
"\n",
" <div id=\"df-d22a0694-8fef-487b-a327-984c4c1b9919\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Year</th>\n",
" <th>All_Mean</th>\n",
" <th>All_Median</th>\n",
" <th>Work_Mean</th>\n",
" <th>Work_Median</th>\n",
" <th>Retired_Mean</th>\n",
" <th>Retired_Median</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>43</th>\n",
" <td>2020</td>\n",
" <td>42481.0</td>\n",
" <td>35438.0</td>\n",
" <td>44430.0</td>\n",
" <td>37187.0</td>\n",
" <td>33205.0</td>\n",
" <td>28686.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>2021</td>\n",
" <td>42944.0</td>\n",
" <td>35335.0</td>\n",
" <td>44980.0</td>\n",
" <td>37259.0</td>\n",
" <td>33616.0</td>\n",
" <td>28234.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>2019</td>\n",
" <td>42725.0</td>\n",
" <td>34735.0</td>\n",
" <td>45088.0</td>\n",
" <td>36813.0</td>\n",
" <td>30996.0</td>\n",
" <td>26800.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45</th>\n",
" <td>2022</td>\n",
" <td>40916.0</td>\n",
" <td>34462.0</td>\n",
" <td>42758.0</td>\n",
" <td>35968.0</td>\n",
" <td>31862.0</td>\n",
" <td>28088.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39</th>\n",
" <td>2016</td>\n",
" <td>41350.0</td>\n",
" <td>33904.0</td>\n",
" <td>42897.0</td>\n",
" <td>35376.0</td>\n",
" <td>34215.0</td>\n",
" <td>28276.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>41</th>\n",
" <td>2018</td>\n",
" <td>41098.0</td>\n",
" <td>33364.0</td>\n",
" <td>42919.0</td>\n",
" <td>34822.0</td>\n",
" <td>32515.0</td>\n",
" <td>27817.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>2017</td>\n",
" <td>40668.0</td>\n",
" <td>33093.0</td>\n",
" <td>42381.0</td>\n",
" <td>34554.0</td>\n",
" <td>32561.0</td>\n",
" <td>27414.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>38</th>\n",
" <td>2015</td>\n",
" <td>41483.0</td>\n",
" <td>33013.0</td>\n",
" <td>43114.0</td>\n",
" <td>34375.0</td>\n",
" <td>33496.0</td>\n",
" <td>27399.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>37</th>\n",
" <td>2014</td>\n",
" <td>40173.0</td>\n",
" <td>32445.0</td>\n",
" <td>41991.0</td>\n",
" <td>34360.0</td>\n",
" <td>31495.0</td>\n",
" <td>26687.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>2007</td>\n",
" <td>42167.0</td>\n",
" <td>32179.0</td>\n",
" <td>44964.0</td>\n",
" <td>34725.0</td>\n",
" <td>28125.0</td>\n",
" <td>24002.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-d22a0694-8fef-487b-a327-984c4c1b9919')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-d22a0694-8fef-487b-a327-984c4c1b9919 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-d22a0694-8fef-487b-a327-984c4c1b9919');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-f93f4542-82f4-4f0c-ab58-ad9610d5640b\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-f93f4542-82f4-4f0c-ab58-ad9610d5640b')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-f93f4542-82f4-4f0c-ab58-ad9610d5640b button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" <div id=\"id_f946ea05-8b26-4b79-a6a7-e4592b150a45\">\n",
" <style>\n",
" .colab-df-generate {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-generate:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-generate {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-generate:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
" <button class=\"colab-df-generate\" onclick=\"generateWithVariable('top_5_years')\"\n",
" title=\"Generate code using this dataframe.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n",
" </svg>\n",
" </button>\n",
" <script>\n",
" (() => {\n",
" const buttonEl =\n",
" document.querySelector('#id_f946ea05-8b26-4b79-a6a7-e4592b150a45 button.colab-df-generate');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" buttonEl.onclick = () => {\n",
" google.colab.notebook.generateWithVariable('top_5_years');\n",
" }\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "top_5_years",
"summary": "{\n \"name\": \"top_5_years\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"Year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4,\n \"min\": 2007,\n \"max\": 2022,\n \"num_unique_values\": 10,\n \"samples\": [\n 2014,\n 2021,\n 2018\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"All_Mean\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 935.1536118615902,\n \"min\": 40173.0,\n \"max\": 42944.0,\n \"num_unique_values\": 10,\n \"samples\": [\n 40173.0,\n 42944.0,\n 41098.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"All_Median\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1161.198212575652,\n \"min\": 32179.0,\n \"max\": 35438.0,\n \"num_unique_values\": 10,\n \"samples\": [\n 32445.0,\n 35335.0,\n 33364.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Work_Mean\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1184.2983670605233,\n \"min\": 41991.0,\n \"max\": 45088.0,\n \"num_unique_values\": 10,\n \"samples\": [\n 41991.0,\n 44980.0,\n 42919.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Work_Median\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1173.7687118375957,\n \"min\": 34360.0,\n \"max\": 37259.0,\n \"num_unique_values\": 10,\n \"samples\": [\n 34360.0,\n 37259.0,\n 34822.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Retired_Mean\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1752.7831329377605,\n \"min\": 28125.0,\n \"max\": 34215.0,\n \"num_unique_values\": 10,\n \"samples\": [\n 31495.0,\n 33616.0,\n 32515.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Retired_Median\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1339.2904464678302,\n \"min\": 24002.0,\n \"max\": 28686.0,\n \"num_unique_values\": 10,\n \"samples\": [\n 26687.0,\n 28234.0,\n 27817.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"source": [
"# Filter data for the years 1977 to 2007\n",
"filtered_data = data[(data[\"Year\"] >= 1977) & (data[\"Year\"] <= 2007)]\n",
"\n",
"# Convert \"All_Median\" to numeric (removing commas, if necessary)\n",
"filtered_data[\"All_Median\"] = filtered_data[\"All_Median\"].replace(\",\", \"\", regex=True).astype(float)\n",
"\n",
"# Calculate the growth rate\n",
"start_value = filtered_data[filtered_data[\"Year\"] == 1977][\"All_Median\"].values[0]\n",
"end_value = filtered_data[filtered_data[\"Year\"] == 2007][\"All_Median\"].values[0]\n",
"\n",
"# Calculate the average annual growth rate\n",
"years_difference = 2007 - 1977\n",
"average_growth_rate = ((end_value / start_value) ** (1 / years_difference)) - 1\n",
"\n",
"# Display the result\n",
"average_growth_rate\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "tB-AdrFjzg3M",
"outputId": "b19e2e76-d1aa-456f-fd91-623ca4a8d54e"
},
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"<ipython-input-8-b9b13b6838d6>:5: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" filtered_data[\"All_Median\"] = filtered_data[\"All_Median\"].replace(\",\", \"\", regex=True).astype(float)\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.02475835688625505"
]
},
"metadata": {},
"execution_count": 8
}
]
},
{
"cell_type": "code",
"source": [
"# Set the growth rate and the starting value\n",
"\n",
"growth_rate = 0.024758\n",
"start_value = data[data[\"Year\"] == 1977][\"All_Median\"].iloc[0]\n",
"\n",
"# Ensure \"All_Median\" is numeric\n",
"data[\"All_Median\"] = data[\"All_Median\"].replace(\",\", \"\", regex=True).astype(float)\n",
"\n",
"# Create the \"Trend\" column based on the growth rate\n",
"data[\"Trend\"] = start_value * (1 + growth_rate) ** (data[\"Year\"] - 1977)\n"
],
"metadata": {
"id": "7tiukdCyzr8H"
},
"execution_count": 9,
"outputs": []
},
{
"cell_type": "code",
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"# Set up the figure\n",
"plt.figure(figsize=(12, 8))\n",
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Set up the figure\n",
"plt.figure(figsize=(12, 8))\n",
"\n",
"# Plot each column against \"Year\" except the \"Year\" column itself\n",
"for column in data.columns:\n",
" if column != \"Year\" and column != \"Trend\" and column != \"Trend_Work\" and column != \"Linear_Trend_Work\":\n",
" plt.plot(data[\"Year\"], data[column], label=column)\n",
"\n",
"# Add labels, title, and legend\n",
"plt.xlabel(\"Year\")\n",
"plt.ylabel(\"£ after - tax and + welfare\")\n",
"plt.title(\"UK Income Over Time\")\n",
"plt.legend(loc=\"best\")\n",
"plt.grid(True)\n",
"\n",
"# Save the plot as a PNG file\n",
"plt.savefig(\"allColumns.png\", dpi=300, bbox_inches=\"tight\")\n",
"\n",
"\n",
"# Show the plot\n",
"plt.show()\n",
"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 600
},
"id": "AEv0n8VC0mTn",
"outputId": "46662867-e5eb-4929-e0b5-0ae68b65e610"
},
"execution_count": 17,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1200x800 with 0 Axes>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1200x800 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/8AAAK9CAYAAABy5dyFAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYVMfXwPHvLr2rqBSligI2FHsFYkHFlhg19l5jj7HE2GKiJnZjSwyKMcYaTbFjwd4LdlRsWLEgvSzsvn/wur8QbCiwCOfzPPvo3jt35tz1Cjv3zpxRaDQaDUIIIYQQQgghhMi3lLoOQAghhBBCCCGEEDlLOv9CCCGEEEIIIUQ+J51/IYQQQgghhBAin5POvxBCCCGEEEIIkc9J518IIYQQQgghhMjnpPMvhBBCCCGEEELkc9L5F0IIIYQQQggh8jnp/AshhBBCCCGEEPmcdP6FEEIIIYQQQoh8Tjr/QgghhBA60L17d5ydnXUdhhBCiAJCOv9CCCHEG0yaNAmFQsGTJ09eur98+fL4+vpq39+6dQuFQsHMmTMzlNNoNPTr1w+FQsGkSZNe26ZCoWDQoEHvG3q+sXnzZpo0aYK1tTXGxsaUKVOGkSNH8vTpU12HloFCoXirV0hIiK5DFUIIUcDo6zoAIYQQoiDQaDQMHDiQn3/+mfHjx7+x8y/+Z+TIkcyaNQsvLy9Gjx5NkSJFOH36NAsWLGDNmjXs3r0bd3d3XYcJwMqVKzO8//XXXwkODs603dPTk6VLl6JWq3MzPCGEEAWYdP6FEEKIXDB48GCWLFnCuHHj+Oabb3Qdzgdj9erVzJo1i/bt27Nq1Sr09PS0+7p3746fnx9t27bl9OnT6Ovn3tea+Ph4zMzMMm3v3LlzhvdHjx4lODg403YhhBAit8mwfyGEECKHDR06lIULFzJ27Fi+/fbbd6ojJCQEhULBunXr+O677yhZsiTGxsY0aNCA69evZyp/7NgxmjVrRuHChTEzM6NixYrMmzcvQ5k9e/ZQr149zMzMKFSoEK1ateLy5csZyryY8nD16lU6d+6MlZUVxYoVY/z48Wg0GiIiImjVqhWWlpbY2toya9asTLEkJyczceJE3NzcMDIywsHBgVGjRpGcnPzG8548eTKFCxfm559/ztDxB6hevTqjR4/m/PnzbNiwAYBBgwZhbm5OQkJCpro6dOiAra0taWlp2m3btm3TfgYWFhYEBARw8eLFDMd1794dc3NzwsPDadasGRYWFnTq1OmNsb/Jf+f8/3u6yMKFC3F1dcXU1JTGjRsTERGBRqNhypQplCxZEhMTE1q1asWzZ88y1fs25ySEEKLgkc6/EEIIkYOGDx/O/PnzGT16NFOnTn3v+qZPn86mTZsYOXIkY8eO5ejRo5k6osHBwdSvX59Lly4xdOhQZs2ahZ+fH5s3b9aW2bVrF/7+/kRGRjJp0iRGjBjB4cOHqVOnDrdu3crUbvv27VGr1UyfPp0aNWrw7bffMnfuXBo1akSJEiX4/vvvcXNzY+TIkezfv197nFqtpmXLlsycOZMWLVrw448/0rp1a+bMmUP79u1fe67Xrl0jLCxMe3PhZbp27QqgPbf27dsTHx/Pli1bMpRLSEjgn3/+4dNPP9XeRFi5ciUBAQGYm5vz/fffM378eC5dukTdunUzfQapqan4+/tTvHhxZs6cSZs2bV4b+/tYtWoVixYtYvDgwXzxxRfs27ePdu3a8fXXX7N9+3ZGjx5N3759+eeffxg5cmSGY7NyTkIIIQoYjRBCCCFea+LEiRpA8/jx45fuL1eunMbHx0f7/ubNmxpA4+TkpAE0X375ZZbbBDSff/659v3evXs1gMbT01OTnJys3T5v3jwNoDl//rxGo9FoUlNTNS4uLhonJydNVFRUhjrVarX275UqVdIUL15c8/TpU+220NBQjVKp1HTt2jXTufft21e7LTU1VVOyZEmNQqHQTJ8+Xbs9KipKY2JiounWrZt228qVKzVKpVJz4MCBDLEsWbJEA2gOHTr0ys/gzz//1ACaOXPmvLKMRqPRWFpaary9vbXnWKJECU2bNm0ylFm3bp0G0Ozfv1+j0Wg0sbGxmkKFCmn69OmTodzDhw81VlZWGbZ369ZNA2jGjBnz2jhe5vPPP9e86utWt27dNE5OTtr3L66bYsWKaZ4/f67dPnbsWA2g8fLy0qhUKu32Dh06aAwNDTVJSUlZPichhBAFjzz5F0IIIXLIo0ePAChTpky21dmjRw8MDQ217+vVqwfAjRs3ADhz5gw3b95k2LBhFCpUKMOxCoUCgAcPHnD27Fm6d+9OkSJFtPsrVqxIo0aN2Lp1a6Z2e/furf27np4eVatWRaPR0KtXL+32QoUK4e7uro0FYP369Xh6euLh4cGTJ0+0r48++giAvXv3vvJcY2NjAbCwsHjtZ2JhYUFMTIz2HNu2bcvWrVuJi4vTllm7di0lSpSgbt26QProiOfPn9OhQ4cMcenp6VGjRo2XxjVgwIDXxpFd2rZti5WVlfZ9jRo1gPR8Av/Oa1CjRg1SUlK4d+8e8G7nJIQQouCQhH9CCCFENnjRsf630aNHs3XrVvr160ehQoX49NNP37sdR0fHDO8LFy4MQFRUFADh4eFA+vKDr3L79m2Al2bI9/T0ZMeOHZkS2v23XSsrK4yNjSlatGim7f9efu/atWtcvnyZYsWKvTSWyMjIV8b5otP/4ibAq8TGxlK8eHHt+/bt2zN37lz+/vtvOnbsSFxcnPbf4cW/07Vr1wC0NyH+67/TDPT19SlZsuRr48guL/usARwcHF66/cW/fVbPSQghRMEinX8hhBDiDYyNjQFITEx86f6EhARtmX8zNzdn27Zt1K9fn06dOmFpaUnjxo3fK5b/Jr17QaPRvFe979Lu28SiVqupUKECs2fPfmnZ/3Zo/83T0xOAc+fOvbLM7du3iYmJoWzZstptNWvWxNnZmXXr1tGxY0f++ecfEhMTM+QYeLHE3sqVK7G1tc1U739XDjAyMkKpzJ0Bk6/6XN/0eWf1nIQQQhQs8ltACCGEeAMnJycAwsLCMnVWExISiIiIeGWn3tramp07d1KnTh0++eQTgoODqVWrVo7FWqpUKQAuXLhAw4YNX1rm3+fzX1euXKFo0aIvXcbuXeMJDQ2lQYMGLx0d8TplypShTJky/Pnnn8ybN++lw/9//fVXAJo3b55he7t27Zg3bx4xMTGsXbsWZ2dnatasmSEugOLFi7/yc/rQ5MdzEkIIkX1kzr8QQgjxBg0aNMDQ0JDFixdrn66+8PPPP5OamkrTpk1feXyJEiUIDg7GzMyMgIAAzp8/n2Oxent74+Liwty5c3n+/HmGfS+eENvZ2VGpUiVWrFiRocyFCxfYuXMnzZo1y7Z42rVrx71791i6dGmmfYmJicTHx7/2+AkTJhAVFUX//v0zLNEHcOrUKb7//nvKly+fKft++/btSU5OZsWKFWzfvp127dpl2O/v74+lpSVTp05FpVJlavfx48dve4p5Rn48JyGEENlHnvwLIYQQb1C8eHEmTJjA119/Tf369WnZsiWmpqYcPnyY1atX07hxY1q0aPHaOkqXLs2OHTvw9fXF39+fgwcP4urqmu2xKpVKFi9eTIsWLahUqRI9evTAzs6OK1eucPHiRXbs2AHAjBkzaNq0KbVq1aJXr14kJiby448/YmVlxaRJk7Itni5durBu3Tr69+/P3r17qVOnDmlpaVy5coV169axY8cOqlat+srjO3XqxIkTJ5g3bx6XLl2iU6dOFC5cmNOnT7Ns2TKsra3ZsGEDBgYGGY7z9vbGzc2NcePGkZycnGlZQUtLSxYvXkyXLl3w9vbms88+o1ixYty5c4ctW7ZQp04dFixYkG2fQ27Ij+ckhBAi+0jnXwghhHgL48aNw9nZmQULFvDNN9+QmpqKi4sLkydPZvTo0W81H7xSpUps3ryZxo0b07BhQw4ePIi9vX22x+rv78/evXuZPHkys2bNQq1WU6pUKfr06aMt07BhQ7Zv387EiROZMGECBgYG+Pj48P333+Pi4pJtsSiVSv7880/mzJnDr7/+yqZNmzA1NcXV1ZWhQ4e+1UoIc+fOxc/Pj4ULFzJ16lQSEhJwcHDg888/Z8yYMZmSDr7Qvn17vvvuO9zc3PD29s60v2PHjtjb2zN9+nRmzJhBcnIyJUqUoF69evTo0eO9z10X8uM5CSGEyB4KTU5nCBJCCCGEEEIIIYROyZx/IYQQQgghhBAin5POvxBCCCGEEEIIkc9J518IIYQQQgghhMjnpPMvhBBCCCGEEELkc9L5F0IIIYQQQggh8jnp/AshhBBCCCGEEPmcvq4DyC/UajX379/HwsIChUKh63CEEEIIIYQQQuRzGo2G2NhY7O3tUSpf/2xfOv/Z5P79+zg4OOg6DCGEEEIIIYQQBUxERAQlS5Z8bRnp/GcTCwsLIP1Dt7S01HE0BZtKpWLnzp00btwYAwMDXYcjRI6S610UJHK9i4JCrnVRkMj1/n5iYmJwcHDQ9kdfRzr/2eTFUH9LS0vp/OuYSqXC1NQUS0tL+QEi8j253kVBIte7KCjkWhcFiVzv2eNtpp5Lwj8hhBBCCCGEECKfk86/EEIIIYQQQgiRz0nnXwghhBBCCCGEyOdkzn8u0mg0pKamkpaWputQ8jWVSoW+vj5JSUkF9rM2MDBAT09P12EIIYQQQggh8gjp/OeSlJQUHjx4QEJCgq5Dyfc0Gg22trZERES8VeKL/EihUFCyZEnMzc11HYoQQgghhBAiD5DOfy5Qq9XcvHkTPT097O3tMTQ0LLCd0tygVquJi4vD3NwcpbLgzWzRaDQ8fvyYu3fvUrp0aRkBIIQQQgghhJDOf25ISUlBrVbj4OCAqamprsPJ99RqNSkpKRgbGxfIzj9AsWLFuHXrFiqVSjr/QgghhBBCCEn4l5sKakdU5D4ZWSKEEEIIIYT4N+mNCiGEEEIIIYQQ+Zx0/oUQQgghhBBCiHxOOv/ivYSEhKBQKHj+/DkAQUFBFCpUSKcxCSGEEEIIIYTISDr/4q0cOXIEPT09AgICsq3OoKAgFAoFnp6emfatX78ehUKBs7NztrUnhBBCCCGEEAWVdP7FWwkMDGTw4MHs37+f+/fvZ1u9ZmZmREZGcuTIkUztOTo6Zls7QgghhBBCCFGQSedfRzQaDQkpqbn+0mg0WY41Li6OtWvXMmDAAAICAggKCsq2z0FfX5+OHTuybNky7ba7d+8SEhJCx44dM5X/66+/8Pb2xtjYGFdXVyZPnkxqaqp2/+zZs/Hy8qJEiRI4OTkxcOBA4uLitPtfTEvYsWMHnp6emJub06RJEx48eJBt5ySEEEIIIYQQeY2+rgMoqBJVaZSdsCPX2730jT+mhln7Z1+3bh0eHh64u7vTuXNnhg0bxtixY7NtObmePXvi6+vLvHnzMDU1JSgoiCZNmmBjY5Oh3IEDB+jatSvz58+nXr16hIeH07dvXwAmTpwIpC+nOHfuXIoVK0ZkZCSDBg1i1KhRLFq0SFtPQkICM2fOZOXKlSiVSjp37szIkSNZtWpVtpyPEEIIIYQQQuQ18uRfvFFgYCCdO3cGoEmTJkRHR7Nv375sq79y5cq4urqyYcMGNBoNQUFB9OzZM1O5yZMnM2bMGLp164arqyuNGjViypQp/PTTT9oyw4YNw8/PD0dHRz766CO+/fZb1q1bl6EelUrFkiVLqFq1Kt7e3gwaNIjdu3dn2/kIIYQQQgghRF4jT/51xMRAj0vf+Ouk3awICwvj+PHjbNq0CUgfpt++fXsCAwPx9fXNtrh69uzJ8uXLcXR0JD4+nmbNmrFgwYIMZUJDQzl06BDfffeddltaWhpJSUkkJCRgamrKrl27mDZtGpcvXyY2NpbU1NQM+wFMTU0pVaqUtg47OzsiIyOz7VyEEEIIIYQQIq+Rzr+OKBSKLA+/14XAwEBSU1Oxt7fXbtNoNBgZGWXqnL+PTp06MWrUKCZNmkSXLl3Q18/82cTFxTF58mQ++eSTTPuMjY25desWzZs3p3///owZMwYHBwcOHz5Mr169SElJ0Xb+DQwMMhyrUCjeKReCEEIIIYQQQnwo8n7vU+hMamoqv/76K7NmzaJx48YZ9rVu3ZrVq1fj4eGRLW0VKVKEli1bsm7dOpYsWfLSMt7e3oSFheHm5vbS/adOnUKtVjNz5kzi4uKwtLRkw4YN2RKfEEIIIYQQQnzIpPMvXmnz5s1ERUXRq1cvrKysMuxr06YNgYGBzJgxI9vaCwoKYtGiRVhbW790/4QJE2jevDmOjo58+umnKJVKQkNDuXDhAt9++y1ubm6oVCoWLFiAr68voaGhr7yRIIQQQgghhBAFiST8E68UGBhIw4YNM3X8Ib3zf/LkSc6dO5dt7ZmYmLyy4w/g7+/P5s2b2blzJ9WqVaNmzZrMmTMHJycnALy8vJg9ezY//PADtWvX5vfff2fatGnZFp8QQgghhBBCfKgUGpnsnC1iYmKwsrIiOjoaS0vLDPuSkpK4efMmLi4uGBsb6yjCgkOtVhMTE4OlpSVKZcG8vyXXXMGhUqnYunUrzZo1y5TPQoj8Rq53UVDItS4KErne38/r+qH/lWd6RtOnT0ehUDBs2DDtNl9fXxQKRYZX//79Mxx3584dAgICMDU1pXjx4nz55ZekpqZmKBMSEoK3tzdGRka4ubkRFBSUqf2FCxfi7OyMsbExNWrU4Pjx4zlxmkIIIYQQQgghRK7LE53/EydO8NNPP1GxYsVM+/r06cODBw+0rx9++EG7Ly0tjYCAAFJSUjh8+DArVqwgKCiICRMmaMvcvHmTgIAA/Pz8OHv2LMOGDaN3797s2LFDW2bt2rWMGDGCiRMncvr0aby8vPD395fl395TuXLlMDc3f+lr1apVug5PCCGEEEII8Q7UGjVnI8+SmJqo61BEFug84V9cXBydOnVi6dKlfPvtt5n2m5qaYmtr+9Jjd+7cyaVLl9i1axc2NjZUqlSJKVOmMHr0aCZNmoShoSFLlizBxcWFWbNmAeDp6cnBgweZM2cO/v7+AMyePZs+ffrQo0cPAJYsWcKWLVtYtmwZY8aMyaEzz/+2bt2KSqV66T4bG5tcjkYIIYQQQgiRHeaensvyC8uxMbVhiPcQmrs2R6nIE8+VxWvovPP/+eefExAQQMOGDV/a+V+1ahW//fYbtra2tGjRgvHjx2vXaz9y5AgVKlTI0JH09/dnwIABXLx4kcqVK3PkyBEaNmyYoU5/f3/t9IKUlBROnTrF2LFjtfuVSiUNGzbkyJEjr4w7OTmZ5ORk7fuYmBggfc7Kfzu8KpUKjUaDWq1GrVa/5Sfz4XNwcHjt/pz6LF6ksXjxmRdEarUajUaDSqVCT09P1+GIHPTi582rbrQJkZ/I9S5euBt3l6TUJNwKvXz53w+dXOsiL7sXd4/fLv0GwKOER4w7OI6VF1cyrPIwqttWz3J92XW9J6gS2HxzM0qFkjZubVAoFO9V34ciK5+bTjv/a9as4fTp05w4ceKl+zt27IiTkxP29vacO3eO0aNHExYWxsaNGwF4+PBhpifIL94/fPjwtWViYmJITEwkKiqKtLS0l5a5cuXKK2OfNm0akydPzrR9586d2psTL+jr62Nra0tcXBwpKSmvrFNkr9jYWF2HoDMpKSkkJiayf//+TDkwRP4UHBys6xCEyDVyvRdsz9KesTB2IWmkMdRyKIWVhXUdUo6Ra13kRevi16FSq3DRd6GMfhlCkkK4EnWF/nv6467vjr+JP8X1ime53ne93uPUcRxNPsqxlGMkatKnIdy+dBtPA893qu9Dk5CQ8NZlddb5j4iIYOjQoQQHB78yG3nfvn21f69QoQJ2dnY0aNCA8PBwSpUqlVuhvtTYsWMZMWKE9n1MTAwODg40btz4pdn+IyIiMDc3l8zruUCj0RAbG4uFhUWBueP3X0lJSZiYmFC/fn255vI5lUpFcHAwjRo1kgy5It+T612kqdPos7sPybHpoy+jHKLo5NVJx1FlP7nWRV51+dllzm1PX+r724bf4lnEk6ikKH6+8DN/XPuDsNQwrsdd5+NSH9O/Yn+KGBd5Y53ver3fjbvLyssr+fvG3ySnpf9MMNM3Iz41nqP6RxnWZBh6yvw/AvbFCPS3obPO/6lTp4iMjMTb21u7LS0tjf3797NgwQKSk5MzDVeuUaMGANevX6dUqVLY2tpmysr/6NEjAG2eAFtbW+22f5extLTExMQEPT099PT0XlrmVbkGAIyMjDAyMsq03cDAINNFm5aWhkKhQKlUFtil53LTi6H+Lz7zgkipVKJQKF56PYr8Sf6tRUEi13vB9duF3zj7+CwKFGjQ8Gf4nwyqPAgDvfx5Pci1LvISjUbD/LPzAWjm0oyKNunJ2osbFOfrWl/TqWwn5pyaw96IvWy4voFtt7fRq3wvupTtgrH+mx9Gve31fvnpZZZfWM6O2ztQa9K/95e3Lk/PCj2pZlONgE0BhEeHsyNiB63cWr3HGX8YsvIzQmc9owYNGnD+/HnOnj2rfVWtWpVOnTpx9uzZl85TPnv2LAB2dnYA1KpVi/Pnz2fIyh8cHIylpSVly5bVltm9e3eGeoKDg6lVqxYAhoaGVKlSJUMZtVrN7t27tWWEEEIIIYRuhT0L48czPwLwdc2vKWZSjGdJz9h9Z/cbjhRCZIdD9w9x7OExDJQGDK48ONN+FysX5n80n2X+yyhnXY54VTzzz8yn+abm/BP+j7aj/i40Gg3HHhyjX3A/2m1ux7Zb21Br1NSxr0Ng40B+D/idRk6NKGRciN4VegOw8OxCUtJkyvW/6azzb2FhQfny5TO8zMzMsLa2pnz58oSHhzNlyhROnTrFrVu3+Pvvv+natSv169fXLgnYuHFjypYtS5cuXQgNDWXHjh18/fXXfP7559qn8v379+fGjRuMGjWKK1eusGjRItatW8fw4cO1sYwYMYKlS5eyYsUKLl++zIABA4iPj9dm/xdCCCGEELqTkpbCVwe/QqVW4VvSl7Zl2tKmTBsA1oat1XF0QuR/aeo05pyaA0AHjw6UtCj5yrLVbKvxe8DvTK83HTszOx4lPOKrg1/x2ebPOP7g+CuPe1W7O2/tpMOWDvTe2ZvD9w+jVChp6tKU9S3Ws6TREqrbVc8w1beDRweKmxTnQfwD+fnwH3l2TLShoSG7du2icePGeHh48MUXX9CmTRv++ecfbRk9PT02b96Mnp4etWrVonPnznTt2pVvvvlGW8bFxYUtW7YQHByMl5cXs2bN4pdfftEu8wfQvn17Zs6cyYQJE6hUqRJnz55l+/btshzdWwgJCUGhUPD8+XMAgoKCKFSokE5j+i+FQsGff/4JwK1bt1AoFNpRJEIIIYTI+xadXcTVqKsUNirMxNoTUSgUtCndBj2FHicfnST8ebiuQxQiX9t8YzNXo65iYWBBnwp93lheqVAS4BrA363/Zpj3MMwNzLn87DK9dvZi8O7B3Hh+47XHJ6cls/7qelr91Yov9n3BxacXMdYz5jP3z9jy8RZ+qP8DHkU8Xnqssb4xAyoNAGDpuaXEpcRl/YTzKZ0v9fdvISEh2r87ODiwb9++Nx7j5OTE1q1bX1vG19eXM2fOvLbMoEGDGDRo0FvFWRAdOXKEunXr0qRJE7Zs2ZItdQYFBdGjRw88PDy4fPlyhn3r16+nXbt2ODk5cevWrWxpD9KvqwcPHlC0aNFsq1MIIYQQOedM5BmWX1wOwMRaEylqkv473NbMFp+SPuyJ2MO6sHWMrTH2ddUIId5RUmqSdspN74q9KWRc6K2PNdY3pleFXnxc+mMWn13M+qvrCbkbwoF7B/i0zKcM8BqApf7/kqXHpMSwLmwdv136jadJTwGwNLSkg0cHOnp2fKsEggCt3Vqz4uIKbsXc4tdLvzKw0sC3P+F8LM8++Rd5S2BgIIMHD2b//v3cv38/2+o1MzMjMjKSI0eOZGrP0dEx29p5QU9PD1tbW/T189R9LyGEEEK8RIIqga8OfIVao6ZlqZY0cGqQYX8793YA/B3+Nwmqt1/uSgjx9n6/8juPEh5ha2ZLR4+O71RHEeMijKs5jk2tNuHn4EeaJo21YWsJ2BTAsovLeJr2lLln5tJ4Q2PmnZ7H06Sn2JrZMqraKII/DWZQ5UFv3fEH0Ffqa/MSrLi4gqeJT98p7vxGOv+6otFASnzuvzSaLIcaFxfH2rVrGTBgAAEBAQQFBWXbx6Cvr0/Hjh1ZtmyZdtvdu3cJCQmhY8fMP1z++usvvL29MTY2xtXVlcmTJ2dYx/7atWv4+vpia2tL+fLlM60X+t9h/2lpafTq1QsXFxdMTExwd3dn3rx5GY7p3r07rVu3ZubMmdjZ2WFtbc3nn3+OSqXKts9BCCGEEJnNODmDu3F3sTWzZUz1MZn217KvhYOFA3GqOLbf2q6DCIXI354nPeeXc78AMKjSoLfK2v86/04KWNa6LPGqeBaELmBO7Bx+vfwr8ap43Aq58V3d79j6yVa6lO2CqYHpO7XVyKkR5azLkZCawNLzS98r7vxCHn/qiioBptrnfrtf3QdDsywdsm7dOjw8PHB3d6dz584MGzaMsWPHZkis8T569uyJr68v8+bNw9TUlKCgIJo0aZIp58KBAwfo2rUr8+fPp169eoSHh9O3b18AJk6ciFqt5pNPPsHGxobg4GDS0tIYMWLEa9tWq9WULFmS9evXY21tzeHDh+nbty92dna0a9dOW27v3r3Y2dmxd+9erl+/Tvv27alUqRJ9+rx5zpMQQgghsm7/3f1suLoBgG/rfIuFoUWmMkqFkrZl2jL71GzWhq3lk9Kf5HaYQuRrP5//mVhVLGUKl6G5a/Nsq7eabTVWB6xm682tzDs1j4cJD6lUrBK9K/SmXsl6KBXv/4xaoVAwrMow+uzsw9qwtXQp24US5iWyIfoPlzz5F28UGBhI586dAWjSpAnR0dFvlY/hbVWuXBlXV1c2bNiARqMhKCiInj17Zio3efJkxowZQ7du3XB1daVRo0ZMmTKFn376CYBdu3Zx5coVgoKCqFChAvXr12fq1KmvbdvAwIDJkydTtWpVXFxc6NSpEz169GDdunUZyhUuXJgFCxbg4eFB8+bNCQgIyLSEpBBCCCGyR1RSFBMOTQCgs2dnatjVeGXZ1m6tMVQacunpJS48uZBbIQqR792NvcvqK6sBGFFlBHrKzEuxvw+lQklz1+b82eJPhlsMZ1mjZfg4+GRLx/+FmnY1qWlXk1R1KgvPLMy2ej9U8uRfVwxM05/C66LdLAgLC+P48eNs2rQJSB+m3759ewIDA/H19c22sHr27Mny5ctxdHQkPj6eZs2asWDBggxlQkNDOXToEN999512W1paGklJSSQkJHD58mUcHBywt7cnJiYGgFq1ar2x7YULF7Js2TLu3LlDYmIiKSkpVKpUKUOZcuXKoaf3vx94dnZ2nD9//j3OWAghhBAvo9FomHJ0Ck+TnuJq5cpQ76GvLV/YuDCNnRuz+cZm1oatpXzR8rkUqRD5249nfiRVnUpNu5rUtq+dY+0Y6hlirWedY/UP8x7GZ1s+Y/ONzXQv350yhcvkWFt5nTz51xWFIn34fW6/sjhUPzAwkNTUVOzt7dHX10dfX5/Fixfzxx9/EB0dnW0fR6dOnTh69CiTJk2iS5cuL03IFxcXx+TJkzl79qz2df78ea5du4ax8bvNP1qzZg0jR46kV69e7Ny5k7Nnz9KjRw9SUlIylDMwMMjwXqFQoFar36lNIYQQQrza5hubCb4djL5Cn6n1pr7VHOP27u0B2H5zO9HJ2ff9RIiC6uLTi2y9mb6i2vAqw7Ntuq8ulCtajsZOjdGg4cfTP+o6HJ2SJ//ilVJTU/n111+ZNWsWjRs3zrCvdevWrF69Gg+Pl6+vmVVFihShZcuWrFu3jiVLlry0jLe3N2FhYbi5ub10v6enJxERETx48AAzs/S8BkePHn1tu4cOHaJ27doMHPi/5T/Cw2WtYCGEEEIXHsY/ZNqxaQD08+pHOetyb3WcVzEvyhQuw9Woq/wd/jddynbJyTCFyNc0Gg1zTs4BIMA1gLLWZXUc0fsbVHkQu+/sJuRuCKcfncbbxlvXIemEPPkXr7R582aioqLo1asX5cuXz/Bq06YNgYGB2dpeUFAQT548eeUNhQkTJvDrr78yefJkLl68yOXLl1mzZg1ff/01AA0bNqRMmTJ0796d8+fPc+DAAcaNG/faNkuXLs3JkyfZsWMHV69eZfz48Zw4cSJbz0sIIYQQb6bWqPn60NfEqmKpULQCvSv0futjFQqF9un/urB1aN5hdSMhRLpD9w9x7OExDJQG2uXyPnQuVi60dmsNwNzTcwvszwjp/ItXCgwMpGHDhlhZWWXa16ZNG06ePMm5c+eyrT0TExOsrV8938ff35/Nmzezc+dOqlWrRs2aNZkzZw5OTk4AKJVKNm3aRFJSEg0bNqRv374Z8gO8TL9+/fjkk09o3749NWrU4OnTpxlGAQghhBAid6y+sppjD45hrGfM1LpT0VdmbYBqgGsApvqm3Iq5xfGHx3MoSiHytzR1GrNPzQagg0eHfJUdf4DXAIz0jDgTeYYD9w7oOhydUGgK6m2PbBYTE4OVlRXR0dFYWlpm2JeUlMTNmzdxcXF557np4u2p1WpiYmKwtLREqSyY97fkmis4VCoVW7dupVmzZplyUwiR38j1nn/diL5Bu3/akZyWzFc1vqKDR4d3qmfKkSmsu7qORk6NmO07O5ujzD1yrQtd+fP6n4w/NB4LQwu2fbINK6PMDwGzW25e77NPzWb5heWULlya9c3XZ/sKBrrwun7ofxXMnpEQQgghhMgTVGoVXx34iuS0ZGrZ1dIO338X7dzbAbD3zl4eJzzOrhCFKBCSUpNYcCZ9ta0+FfrkSsc/t/Uq3wsLQwuuRV3TJjQsSKTzL3JMuXLlMDc3f+lr1apVug5PCCGEEHnAL+d+4eLTi1gYWjClzpT3WuPbvYg7lYpVIlWTysZrG7MxSiHyv1WXV/Eo4RG2ZrZ09Oyo63ByhJWRFT3L9wRg4dmFqNJUOo4od0m2f5Fjtm7dikr18v9QNjY2uRyNEEIIIfKaC08u8NO5nwD4usbX2Ji9//eDdu7tOPv4LBuubaB3hd75YlivEDntedJzAs+nJ/MeXHkwRnpGOo4o53Ty7MTvl3/nXtw91l1dRyfPTroOKdfIk3+RY5ycnHBzc3vpy8LCQtfhCSGEEEKHElMTGXtgLGmaNPyd/Wnq0jRb6m3s3JhCRoV4GP+Q/Xf3Z0udQuR3P5//mVhVLO6F3QlwCdB1ODnKRN+E/l79Afj53M/Eq+J1HFHukc6/EEIIIYTIdfNOz+NWzC2KmRTj6xpfo1AosqVeIz0jPnb7GIC1V9dmS51vKyUtpcAuISY+XHdj77L6ymoAhlcZXiBGy3xc+mMcLRx5lvSMlZdW6jqcXCOdfyGEEEIIkauO3D/Cqsvp+X8m155MIeNC2Vp/2zJtATh87zARsRHZWver7Li1gxq/12DO6Tm50p4Q2WX+mfmkqlOpaVeT2va1dR1OrjBQGjC48mAAgi4G8SzpmY4jyh3S+RdCCCGEELkmJiWG8YfGA9CuTDvqlayX7W04WDpQx74OGjSsv7o+2+v/r7BnYYw/NJ5UdSorLq7g8tPLOd6mENnh4tOLbLu5DYARVUZk2wicD0Fj58Z4FvEkXhXPL+d/0XU4uUI6/0IIIYQQItdMOzaNRwmPcLBw4IuqX+RYOy+W/fvz2p+kpKXkWDvRydEM2zuMxNREDJWGqDVqvjv2HWqNOsfaFCI7aDQaZp+cDUCAawCe1p46jih3KRVKhnkPA2DNlTU8iHug24BygXT+hRBCCCFErth5ayebb2xGqVAyte5UTA1Mc6yt+iXrY2NqQ1RyFDtv78yRNtLUaYzeP5q7cXcpYV6C1c1XY6JvQujjUP4J/ydH2hQiuxy8d5DjD49nGAJf0NSyr0V12+qo1CoWnl2o63BynHT+RZ4wadIkKlWqpOswhBBCCJFDHic8ZsrRKQD0Kt+LSsUr5Wh7+kp92pRpA8D6sJwZ+r/g7AIO3T+EsZ4x8/zmUaZwGW0W8dmnZhOTEpMj7QrxvtLUadr8FB09OlLCvISOI9INhULBUO+hAPxz4x+uR13XcUQ5Szr/4pWWLFmChYUFqamp2m1xcXEYGBjg6+uboWxISAgKhYLw8PBcjvJ/bRcuXJikpKQM+06cOIFCoShQ85eEEEKIvCY6OZoRISN4nvwcjyIeDPAakCvttindBj2FHqcjT3M16mq21r3z1k7tPOHJtSfjXsQdgC6eXXCxcuFZ0jMWn12crW0KkV3+ufEP16KuYWFoQZ+KfXQdjk5VLFaRho4NUWvU/HjmR12Hk6Ok8y9eyc/Pj7i4OE6ePKndduDAAWxtbTl27FiGjvbevXtxdHSkVKlSWWpDo9FkuLnwPiwsLNi0aVOGbYGBgTg6OmZL/UIIIYTIuofxD+m+vTtnH5/FwsCCaXWnYaBnkCttFzctzkeOHwGwLmxdttV7Peo6Xx/6GoCuZbvSzLWZdp+BngFjqo8BYPWV1dl+00GI95WUmsSCMwsA6FOhD1ZGVjqOSPcGVx6MUqFkT8QeQh+H6jqcHCOdf/FK7u7u2NnZERISot0WEhJCq1atcHFx4ejRoxm2+/n5kZyczJAhQyhevDjGxsbUrVuXEydOZCinUCjYtm0bVapUwcjIiIMHD2ZqOzw8HFdXVwYNGvTW6+V269aNZcuWad8nJiayZs0aunXrlqnswYMHqVevHiYmJjg4ODBkyBDi4+O1+1euXEnVqlWxsLDA1taWjh07EhkZmek8du/eTdWqVTE1NaV27dqEhYW9VaxCCCFEQRD+PJzOWztz/fl1ipsUJ6hpEG6F3XI1hheJ/zbf2EyCKuG964tJiWFYSHqCvxq2NRheZXimMrXta9PIqRFpmjS+O/rdW3+XEbqj0WiYfWo2tX+vzWebP2Pi4YmsuryKkw9P5rvpG6sur+JRwiPszOzo6NlR1+HkCa6FXGlVqhUAc0/Nzbf/Z6XzryMajYYEVUKuv7J6Ifv5+bF3717t+7179+Lr64uPj492e2JiIseOHcPPz49Ro0bxxx9/sGLFCk6fPo2bmxv+/v48e5Zx7cwxY8Ywffp0Ll++TMWKFTPsO3fuHHXr1qVjx44sWLDgrYfsd+nShQMHDnDnzh0A/vjjD5ydnfH29s5QLjw8nCZNmtCmTRvOnTvH2rVrOXjwIIMGDdKWUalUTJkyhdDQUP78809u3bpF9+7dM7U5btw4Zs2axcmTJ9HX16dnz55vFasQQgiR352JPEPXbV15lPAIFysXfmv2G2UKl8n1OGrY1sDZ0pl4VTybb2x+r7rUGjVjD4zldsxt7Mzs+MHnB/SV+i8t+2XVLzHRN+F05Gm23NzyXu2KnJWmTmPykcksv7CcWFUsF59eZOO1jUw/Pp0eO3pQZ3Ud/Df4M3jPYBacWUDw7WDuxNz5IFd0iEqK0k5XGVR5EEZ6RjqOKO8YWGkghkpDTj46yaH7h3QdTo54+U8rkeMSUxOp8XuNXG/3WMdjWcqs6+fnx7Bhw0hNTSUxMZEzZ87g4+ODSqViyZIlABw5coTk5GR8fX3p06cPQUFBNG3aFIClS5cSHBxMYGAgX375pbbeb775hkaNGmVq7/DhwzRv3pxx48bxxRdZW/6nePHiNG3alBUrVjB06FCCgoJe2hmfNm0anTp1YtiwYQCULl2a+fPn4+Pjw+LFizE2Ns5wnKurK/Pnz6datWrExcVhbm6u3ffdd9/h4+MDpN/QCAgIICkpCWNj4yzFLoQQQuQne+7sYdT+USSnJeNVzIsFHy2gkHEhncSiUChoW6YtM07OYF3YOtqWafvOuYAWhy5m/939GOkZMddvLkWMi7yyrJ25HX0q9GH+mfnMOjkL35K+mBuav7K80A2VWsW4A+PYdmsbSoWSUdVGUdSkKGHPwrgadZWwqDAexj/kfvx97sffJyQiRHusib4JpQuXxr2we/qriDulC5fGzMBMZ+fzJj+f+5k4VRzuhd0JcAnQdTjZ7m5UAhoNOBTJ+koitma2dPDowIpLK5h3eh617WujVOSvZ+XS+Rev5evrS3x8PCdOnCAqKooyZcpQrFgxfHx86NGjB0lJSYSEhODq6kp0dDQqlYo6depojzcwMKB69epcvnw5Q71Vq1bN1NadO3do1KgR3333nbZjnlU9e/Zk6NChtGrViiNHjrB+/XoOHDiQoUxoaCjnzp1j1apV2m0ajQa1Ws3Nmzfx9PTk1KlTTJo0idDQUKKiolCr1doYy5Ytqz3u36MW7OzsAIiMjJQ8A0IIIQqs9VfX8+3Rb1Fr1PiW9OUHnx8w0TfRaUyt3Fox/8x8wqLCCH0c+k4rDey5s4cloekPPibWmkhZ67JvOAK6levGn9f/5E7sHZaELmFktZFZblfknOS0ZEaGjCTkbgj6Cn2m15+Ov7M/gPZPSE9YeTXqavrNgGdhhEWFcT3qOompiZx7fI5zj89lqNfBwgH3wu54FfOipVvL194kyi0JqgQ2XtvImrA1AIyoMgI9pZ6Oo8oeSao0dlx8yJrjERy58RQjfSX/DK5LGRuLLNfVu0Jv/rj2B1eeXWH7ze0Z8nnkB9L51xETfROOdTymk3azws3NjZIlS7J3716ioqK0T7nt7e1xcHDg8OHD7N27l48++ihL9ZqZZb4jWqxYMezt7Vm9ejU9e/bE0tIyS3UCNG3alL59+zJ48GCaN2+OtbV1pjJxcXH069ePIUOGZNrn6OhIfHw8/v7++Pv7s2rVKooVK8adO3fw9/cnJSUlQ3kDg/8lLHrxFOHFjQIhhBCiINFoNCwJXcKi0EVAeqb9r2t+/cph8bnJysiKJs5N+Cv8L9aFrcty5/9G9A2+OvgVAJ08O9GiVIu3Os5Qz5Ax1ccwcPdAVl1excelP6ZUoawlRxY5I0GVwJC9Qzj24BhGekbM9p1N/ZL1X1rWysiKarbVqGZbTbstVZ3K7Zjb2psBYVFhXH12lceJj4mIjSAiNoJdd3bx45kfaV6qOZ08O+lk2svjhMf8fuV31oatJTYlFgCfkj7ULlE712PJblcexrDmeASbztwjOlGl3Z6cquabfy6xslf1LI/yKWRciB7le/DjmR/58cyPNHJqlGsJSnOD7n8aF1AKhSJLw+91yc/Pj5CQEKKiojIM3a9fvz7btm3j+PHjDBgwgFKlSmFoaMihQ4dwcnIC0ufOnzhx4q2e5JuYmLB582aaNWuGv78/O3fuxMIia3fs9PX16dKlCzNmzGDLlpfPr/P29ubSpUu4ub084dD58+d5+vQp06dPx8HBASDDigdCCCGEyChNnca3x75lw9UNAPT36s9Ar4F5aqnddu7t+Cv8L3bc2sGoaqPeehpCXEocQ/cMJV4VTxWbKnxRNWvTEuuVrIefgx97I/Yy7dg0ljZemqc+l4IoJiWGz3d9ztnHZzHRN2HBRwuoblc9S3XoK/UpVagUpQqVohn/ezr8LOlZ+g2BZ2Fsu7WNS08vsfHaRjZe20gN2xp0LtuZ+iXr5/hw8vDn4ay4uILNNzajUqd3jJ0snehatiut3FrlaNs5KS45lc2h91l9IoLQiOfa7fZWxrSt6kCtUtZ0XXacg9efsPPSI/zL2Wa5jc6enfn98u/cjbvLxmsbae/RPhvPQLek8y/eyM/Pj88//xyVSqV98g/g4+PDoEGDSElJwc/PDzMzMwYMGMCXX35JkSJFcHR05IcffiAhIYFevXq9VVtmZmZs2bKFpk2b0rRpU7Zv355hjv3b+Oabb+jXrx/Ozs4v3T969Ghq1qzJoEGD6N27N2ZmZly6dIng4GAWLFiAo6MjhoaG/Pjjj/Tv358LFy4wZcqULMUghBBCFBRJqUmM3j+aPRF7UKDg65pfazPs5yUVilbAs4gnl59d5s/rf9K9fPc3HqPWqPnq4FfcirmFjakNM31mYqDM+lPAUdVGcfj+YY49PMaO2zto4tzkHc5AZIdnSc/oH9yfy88uY2FoweKGi/Eq5pVt9RcxLkIt+1rUsq9Ft3LdOPv4LCsvrWT3nd0ce3iMYw+P4WjhSEfPjrR2a52t+QE0Gg0nH50k6GIQ++/u126vVKwS3ct3x7ekb7YN9T9zJ4rvt1+hRCFTvBysqFiyEB62FhgbZP9UAo1Gw5mI56w9HsE/5+6TkJIGgL5SQaOyNrSv5kC90sXQU6bfVOtTz4WFe8P5dsslfMoUy3JMpgam9PPqx9RjU1lybgktSrX4YB7avol0/sUb+fn5kZiYiIeHBzY2NtrtPj4+xMbGapcEBJg+fTpqtZouXboQGxtL1apV2bFjB4ULF37r9szNzdm2bRv+/v4EBASwdevWl04TeBVDQ0Osra1feVe9YsWK7Nu3j3HjxlGvXj00Gg2lSpWiffv0u3rFihUjKCiIr776ivnz5+Pt7c3MmTNp2bLlW8cghBBCFATRydEM3jOYM5FnMFQa8n3972no1FDXYb2UQqGgnXs7Jh+ZzPqr6+larusbn77+fO5n9kbsxVBpyFy/uRQ1KfpObZe0KEmv8r1YFLqIGSdmUL9E/XzTmfiQPIp/RN/gvtyIvkER4yL83Ohn3Iu451h7CoWCysUrU7l4Ze7H3WfNlTVsuLaBO7F3mH58OgvOLODj0h/TwaMDDhYO79xOqjqVXbd3EXQxiItPL6a3jYIGjg3oVq7bO+W4eJ2o+BQG/HaahzFJwDP+OH0XAAM9Be62FlQsWYiKJdJvCJSxMUdf791GOUTFp7DxzD3WnrjD1Udx2u2uRc1oX82BT7xLUswi82oFA33d2HDqLhHPEvnlwA0GfVQ6y21/WvpT1lxZQ2372qRp0t4p/rxIocmvixjmspiYGKysrIiOjs40Vz0pKYmbN2/i4uIiWeBzgVqtJiYmBktLS5TK/JWh823JNVdwqFQqtm7dSrNmzTLkoBAiP5LrPW95GP+Q/sH9CY8Ox8LQgh8/+pEqNlV0HdZrJagSaLC+AXGqOH5q9BO17V8973n/3f0M2j0IDRq+qf0NH5f++L3aTkpNovVfrbkXd49e5XsxrMqwV5aVaz373Y29S5+dfbgbdxcbUxuWNl6Ki5VLrseRoErgn/B/+O3yb9yKuQWkd9T9HPzoXLYzVW2qvvW0kARVApuub2LlpZXci7sHgJGeEa3dWtOlbBecLJ2yPX6NRkOfX0+x6/IjXIua0dzLnnN3n3PubjTP4lMylTc2UFLO3ooKJay0IwRcrM1QKv93jv++3vX09Dly4ylrTkSw48JDUtLSc2kZ6SsJqGjHZ9UcqeZc+I2f0V9n7zF0zVlMDPTYM9IHO6usJx1VqVXvNNInt72uH/pf8uRfCCGEEEJkyfWo6/Tb1Y/IhEiKmxZnScMllC6c9adruc3UwJQWpVqw+spq1oWte2Xn/3bMbcbsH4MGDe3d2793xx/AWN+YMdXHMHjPYFZcWkErt1Y66XwWRDeib9BnZx8iEyIpaV6SX/x/oYR5CZ3EYmpgSnuP9rR1b8uhe4dYdXkVh+4fYk/EHvZE7MG9sDudPDvRzLUZRnqZn2pDehK/1VdWszZsLTEpMQAUNipMB48OtPdon6OrC6w8eptdlx9hqKdkfofKlC9hBaTfFLgblcj5e9GE3n3OuYhoLtyLJjY5lVO3ozh1O0pbh4WRPuVLWFHRwQqvkoUoa2vG82RYFHKDDWfuEfEsUVu2nL0ln1V3pKWXPVYmb98Rb+llz8ojtzl5O4ppW68wv0PlLJ/rh9Dxzyrp/Is8r2nTppmW63vhq6++4quvvsrliIQQQoiC69SjUwzeM5jYlFhcrVz5qdFP2JplPamWrrQr047VV1YTEhHCo/hH2JjZZNgfr4pn6J6hxKpiqVSsEqOrjc62tn1K+lCvRD0O3DvA9OPTWdJwiST/y2FXnl2hX3A/niU9o5RVKX5u/DPFTYvrOiyUCiX1StajXsl63Hh+g1WXV/F3+N+ERYUx4fAE5p6eSzv3drR3b6+dbvKyJH6OFo50K9eNlqVaYqyfs6M9Lz+I4dst6ct3j2nqoe34Q/oUB4cipjgUMaVZhfTpwGq1hhtP4jl/7zmhEdGcu/uci/djiE1O5ciNpxy58fRftesD14H0mwOtKtvzWTXHDG1khUKhYFLLcrRYcJC/Q+/TpZYT1Zx1v+SirknnX+R5v/zyC4mJiS/dV6SI/CcWQgghcsvuO7sZtW8UKeoUKhevzI8f/YiV0bt9OdcVt8JuVLGpwqlHp/jj2h8MrDRQu0+j0TD+0HjCo8MpZlKM2b6zs3WZL4VCwZjqYzj611EO3z/Mnjt7aODUINvqFxmFPg5lwK4BxKbE4lnEk58a/URh47fPQ5VbXAu5Mr7WeIZ4D+GPa3/w++XfeZTwiCWhS/jl/C80cW5CTEpM5iR+5brj65B9SfxeJzEljcGrz5CSquYjj+L0qOP8xmOUSgVuxc1xK27Ox5VLAqBKU3PtURzn7j4n9G76DYGwh7GkqjVUdSpEh+pONKtgh4nh+59T+RJWfFbNgdXHI5j090X+HlRXmxSwoJLOv8jzSpTQzbAsIYQQQvzPurB1fHfsO9QaNX4OfvxQ/4ccf9KYU9q7t0/v/F/9gz4V+2iH9wZeCCT4djD6Sn1m+86mmGmxbG/b0dKRHuV78PO5n/n+xPfULlEbE/2sz0cWr3fswTEG7xlMYmoilYtXZmGDhVgYZm0J6dxmZWRFz/I96VK2C7vv7GbVpVWcfXyWzTc2A+m5AT5y/Iju5bpnexK/N/lm80WuR8ZR3MKIGZ9WfOcRKwZ6SsraW1LW3pLP/n91xbiEJP7cuoP2rapne46LkY3d2XzuARfvx7D2RAQdazhma/0fmoKZDU0IIYQQQrwVjUbDwrMLmXJ0CmqNmk/LfMps39kfbMcfoKFjQ4oYFyEyMZJ9EfsAOHjvIPNPzwfgqxpf5WjnqneF3tiZ2fEg/gG/nP8lx9opqPbf3c/AXQNJTE2kpl1NljRckuc7/v9moDSgiXMTVjZbyeqA1bQt05bOnp355+N/mOs3N9c7/lvOPWD18QgUCpjTvhLW5i/PRfCujAz0sMih6fXW5kYMb1gGgJk7w4hOUOVMQx8I6fwLIYQQQoiXSlWnMvnIZJaELgFgoNdAJtScgL7ywx48aqBnwMdu6Un81oatJSImglH7R6FBQ5vSbWhbpm2Otm+ib8KoaqMAWH5hOXdi7uRoewXJ9lvbGbpnKCnqFPwc/FjQYMEHvaxi+aLlmVBrAqOrj86R7P1vcjcqgTEbzwEwwKcUddzebblLXepSy4nSxc15Fp/CnF1XdR2OTknnXwghhBBCZJKclswXIV/wx7U/UCqUTKg1gQGVBug8QV2SKo0+v56kw89HSVK9+/rbbd3bokDB0QdH6b+rP7EpsVQsWpGvauROIuEGjg2obV8blVrF9ye+z5U287tN1zYxev9oUjWpNHNpxizfWa/MmC/eLDVNzdA1Z4lNSqWyYyGGNyqj65DeiYGekgktygLpqxVcfRSr44h0Rzr/QgghhBAig3hVPJ/v+pw9EXswVBoy23d2jj8NfxsajYavNp0n+NIjjtx4yoZTd9+5rhLmJahboi4Ad2LvYG1szWzf2RjqGWZXuK/1IvmfvlKf/Xf3ExIRkivt5lerLq9iwuEJ2qkpU+tOzZdLteWm+buvcep2FBZG+sz/rDIGeh9u17Fe6WI0LmtDmlrD5H8uotFodB2STny4/4JCCCGEECLbRSVF0XtHb449PIaZgRlLGi2hgWPeyEj/0/4bbDx971/vw0lNU79zfZ95fAaAviI9wd9/l/3LaS5WLnQt2xWA6cenk5SalKvt5xdLzy1l+vHpAHQr240JNSfkSgb8/OxI+FN+3Ju+9N7UTyrgUOTDnTrxwtcBZTHUV3Lo+lN2XHyk63B0Qjr/Ik+YNGkSlSpV0nUYr+Xs7MzcuXO17xUKBX/++afO4hFCCCGy28P4h3Tf3p0LTy9Q2Kgwgf6BVLOtpuuwANh16RHfb78CwNimHlibGRLxLJHN5x68c531StRjbPWxLGiwAG8b7+wKNUv6VeyHjakN9+Lusfzicp3E8KG6F3ePoXuGMv9MeqLGgV4D+aLqFzqfmvKhexafwrC1Z9BooF3VkrTwstd1SNnC0dqUvvVcAfh2y6X3mjb0oZLOv3ilJUuWYGFhQWpqqnZbXFwcBgYG+Pr6ZigbEhKCQqEgPDw8l6P8X9uFCxcmKSnjHfMTJ06gUChy5JfAgwcPaNq0abbXK4QQQujC7ZjbdNvWjRvRN7AxtSGoaRDlrMvpOiwArjyMYeia9M5I55qO9PMpRc+6LgAsCrmOWv1uQ3gVCgUdPTtSp0Sd7Aw3S0wNTBlZbSQAgecDuRv77lMZCoqk1CQWhy6m1Z+t2BOxBz2FHl9W/TJP5KT40Gk0GkZtOMejmGRci5kxqWXe+BmQXQb6lcLW0pi7UYks3X9D1+HkOun8i1fy8/MjLi6OkydParcdOHAAW1tbjh07lqGjvXfvXhwdHSlVqlSW2tBoNBluLrwPCwsLNm3alGFbYGAgjo45s56nra0tRkaSREYIIcSH78qzK3Td1pX78fdxtnRmZdOVuFq56josAJ7GJdN7xUniU9Ko5WrNxBbpnZHONZ0wN9Ln6qM4dl3+sIfw+jv5U8O2Bslpyfxw4gddh5NnaTQa9t7ZS+u/WrPo7CKS05KpbludDS020LVcV12Hly+sPHqbXZcfYain5McOlTE1/LBX9vgvU0N9xjbzAGBRSDgPohN1HFHuks6/eCV3d3fs7OwICQnRbgsJCaFVq1a4uLhw9OjRDNv9/PxITk5myJAhFC9eHGNjY+rWrcuJEycylFMoFGzbto0qVapgZGTEwYMHM7UdHh6Oq6srgwYNeuuEHN26dWPZsmXa94mJiaxZs4Zu3bplKnvw4EHq1auHiYkJDg4ODBkyhPj4eO3+yMhIWrRogYmJCS4uLqxatSpTHf8d9j969GjKlCmDqakprq6ujB8/HpXqf2uJvpjasHLlSpydnbGysuKzzz4jNrbgZhwVQgihe6cenaLH9h48S3qGZxFPgpoEYWdup+uwAEhJVTPgt9PcjUrEydqURZ28tUnHrEwM6FIrfemzhSHhH3QCL4VCwdgaY9FX6LM3Yi+H7h/SdUh5zu2Y2wzcPZAhe4dwL+4eNqY2zPCZwS+Nf8GtsJuuw8sXLj+I4dstlwEY28yDcvZWOo4oZ7T0sqeqU2ESVWlM23pF1+HkKun864hGo0GdkJDrr6z+YvTz82Pv3r3a93v37sXX1xcfHx/t9sTERI4dO4afnx+jRo3ijz/+YMWKFZw+fRo3Nzf8/f159uxZhnrHjBnD9OnTuXz5MhUrVsyw79y5c9StW5eOHTuyYMGCtx6+1aVLFw4cOMCdO+lr5f7xxx84Ozvj7Z1xDl94eDhNmjShTZs2nDt3jrVr13Lw4EEGDRqkLdO9e3ciIiLYu3cvGzZsYNGiRURGRr62fQsLC4KCgrh06RLz5s1j6dKlzJkzJ1Pbf/75J5s3b2bz5s3s27eP6dOnv9X5CSGEENlt/9399AvuR5wqjio2VQj0D8TaxFrXYQHp35XG/3mB47eeYWGkT2C3qhQ2y5iJv2cdF4z0lYRGPOdI+FMdRZo9ShUqRSfPTgD8cPIHUjXZMzLyQ5egSmD+6fl8/NfHHLx3EH2lPr0r9Obv1n/TxLmJDPPPJgkpqQxefYaUVDUNPIrTvbazrkPKMQqFgkkty6FQwN+h9zl+89mbD8on8tc4jg+IJjGRMO8qud6u++lTKEzfPlunn58fw4YNIzU1lcTERM6cOYOPjw8qlYolS5YAcOTIEZKTk/H19aVPnz4EBQVp58IvXbqU4OBgAgMD+fLLL7X1fvPNNzRq1ChTe4cPH6Z58+aMGzeOL774IkvnVrx4cZo2bcqKFSsYOnQoQUFB9OzZM1O5adOm0alTJ4YNGwZA6dKlmT9/Pj4+PixevJg7d+6wbds2jh8/TrVq6UmOAgMD8fT0fG37X3/9tfbvzs7OjBw5kjVr1jBq1CjtdrVaTVBQEBYWFkD6DYvdu3fz3XffZelchRBCiPe19cZWxh0cR6omFZ+SPsz0mYmxvrGuw9JadugWa09GoFTAjx0r41bcIlOZYhZGtK/mwK9HbrMw5Dq13YrqINLs09+rP1tubiEiLoKDxgdpSUtdh6QzGo2Gnbd3MuPEDB4lpE/rqGNfhzHVx+Bs5azb4PKhKZsvcT0yjuIWRsxo65Xvb6qUL2HFZ9UcWH08gkl/X+SfwXXRU+bvcwZ58i/ewNfXl/j4eE6cOMGBAwcoU6YMxYoVw8fHRzvvPyQkBFdXV6Kjo1GpVNSp87+kOQYGBlSvXp3Lly9nqLdq1aqZ2rpz5w6NGjViwoQJWe74v9CzZ09WrFjBrVu3OHLkCJ06dcpUJjQ0lKCgIMzNzbUvf39/1Go1N2/e5PLly+jr61Olyv9uznh4eFCoUKHXtr127Vrq1KmDra0t5ubmfP3119pRCC84OztrO/4AdnZ2bxxRIIQQQmS3NVfWMObAGFI1qQS4BjDHb06e6vjvDYvkuy2XABgXUBZf9+KvLNu3viv6SgWHrj/lbMTzXIowZ5gbmvNF1fTvQPuS9nE/7r6OI9KNG89v0Ce4DyP3jeRRwiNKmJdgnt88FjdcLB3/HLDl3ANWH49AoYC57StR5D8jbPKrkY3dsTDW59KDGNaeiNB1OLlCnvzriMLEBPfTp3TSbla4ublRsmRJ9u7dS1RUFD4+PgDY29vj4ODA4cOH2bt3Lx999FGW6jUzM8u0rVixYtjb27N69Wp69uyJpaVlluoEaNq0KX379mXw4ME0b94ca+vMQxfj4uLo168fQ4YMybTP0dGRq1evZrndFzcaJk+ejL+/P1ZWVqxZs4ZZs2ZlKGdgYJDhvUKhQK1+9/WJhRBCiKzQaDT8fO5nFpxdAEAHjw6MqT4GpSLvPA+6HhnLkN/PoNZA+6oO9Kzj/NryJQub0qpSCf44fZdFe6/zc9fMDxg+JAEuAawPW8/pyNMM2TeEoCZBFDYurOuwckVcShxLQpew6vIqUjWpGCoN6VWhFz3L98yVm1MajYb4lDTMDPXy/ZPvF+5GJTBm4zkABvqW+uBHz2SFtbkRwxuW4ZvNl5ix4woBFeywMjV484EfMOn864hCocjS8Htd8vPzIyQkhKioqAxD9+vXr68dHj9gwABKlSqFoaEhhw4dwskpPQGPSqXixIkT2iH2r2NiYsLmzZtp1qwZ/v7+7Ny5M8NT8rehr69Ply5dmDFjBlu2bHlpGW9vby5duoSb28uTw3h4eJCamsqpU6e0w/7DwsJ4/vz5K9s9fPgwTk5OjBs3Trvt9u3bWYpdCCGEyElqjZqZJ2ey8tJKIH2I+UCvgXmqkxMVn0KvFSeJTU6lunMRprQu/1bxDfB1ZeOZu+y89Ihrj2IpbZO17w95iUKh4Jua39Dxn47ciL5B/139CWwciLmhua5DyzEajYYtN7cw++RsHic+BsDPwY8vq32Jg4VDrsUwduN51pyIwEhfiZ2VMXZWJtgVMtb+3b7Q/2+zMsbKxCBP/d95F6lpaoauOUtsUiqVHQsxrGEZXYeU67rUcmL18Ttci4xjzq6r+W5pw/+Szr94Iz8/Pz7//HNUKpX2yT+Aj48PgwYNIiUlBT8/P8zMzBgwYABffvklRYoUwdHRkR9++IGEhAR69er1Vm2ZmZmxZcsWmjZtStOmTdm+fTvm5ln7ZffNN9/Qr18/nJ2dX7p/9OjR1KxZk0GDBtG7d2/MzMy4dOkSwcHBLFiwAHd3d5o0aUK/fv1YvHgx+vr6DBs2DJPXjJooXbo0d+7cYc2aNVSrVo0tW7ZkWnZQCCGE0JVUdSqTDk/ir/C/ABhdbTSdy3bWcVQZqdLUDFx1mttPEyhZ2ITFnb0x1H+7EQluxS3wL2vL9osPWRwSzuz2lXI22Bxmb25PD/MerEhZwaWnlxi0ZxCLGy7GRD9rIzg/BGHPwph6bCqnI08D4GjhyJjqY6hXsl6uxvH99jDW/P/Q7+RUNbeeJnDracIry5sY6GFXyBh7KxNsrYyxtzLGrpBJhpsGlsZ5+ynyvN3XOHU7CgsjfeZ/Vlm7kkZBYqCnZGKLcnQOPMbKo7fpUN0Rd9sP9+bhm0jnX7yRn58fiYmJeHh4YGNjo93u4+NDbGysdklAgOnTp6NWq+nSpQuxsbFUrVqVHTt2ULjw2w9XMzc3Z9u2bfj7+xMQEMDWrVtfOk3gVQwNDbG2tn7l3diKFSuyb98+xo0bR7169dBoNJQqVYr27dtryyxfvpzevXvj4+ODjY0N3377LePHj39lmy1btmT48OEMGjSI5ORkAgICGD9+PJMmTXrruIUQQoickJyWzKh9o9gTsQc9hR7f1PmGlqXyViI5jUbDpL8vcuTGU8wM9QjsVg1rc6Ms1THQrxTbLz7kr9D7DG9UBociH8YIy1cppleMhX4L6be7H6cenWJEyAjm+83HQC9vdyjfVkxKDAvPLGRN2BrUGjUm+ib0rdiXrmW7YqiXu3POAw/eZMm+cACmf1KB2qWK8iA6kQfRSdyPTuTB8yQeRCdptz2LTyFRlcaNx/HceBz/ynpLFDJhpH8ZWnmVQJnHkskdCX/Kgr3XAZj6SYUP/v/L+6hbuiiNy9qw89Ijvtl8kd961fjgR3W8ikLzIS+KmofExMRgZWVFdHR0prnqSUlJ3Lx5ExcXF4yN804ynfxKrVYTExODpaUlSmXBu4MJcs0VJCqViq1bt9KsWbNMOSWEyG/kes+6eFU8Q/YM4fjD4xgqDZnhM4OPHLOWpyc3/HrkFhP+uohCAUu7VKVhWZs3H/QSXQKPceDaE7rUdGJK6/LZHGXu+fe1fiHqAv2C+5GYmkhjp8b8UP8H9JR6ug7xvdyNvUuXbV14kvgEAH9nf0ZWHYmtmW2ux/LX2XsMXXMWgC/93fnc7+XTQv8tSZX2v5sBz9P/vB+dxMPoJO4/T79BEJ2o0pav5FCIiS3KUtkxb+RueBafQtN5+3kUk0z7qg58/2nFNx+Ug/LCz/Y7TxNoOGcfKalqlnSuQpPyuX8tvqvX9UP/S578CyGEEELkQ1FJUQzcNZALTy9gqm/Kjx/9SHW76roOK5MD1x4z+Z/0zP6jm3i8c8cfYKCvGweuPWHtyQgGN3CjuMWHfwO8cvHKzPWdy6A9g9h5eydmR8yYVHtSnkrSmBUajYbJRybzJPEJTpZOfF3za2ra1dRJLAeuPWbk+lAAutd2ZqBvqbc6zthAD5eiZrgUffXI1LjkVH49cosFe65zNuI5Hy86zCeVSzC6qQc2lrq7LjUaDaM2nONRTDKuxcyY2LKszmLJSxytTelbz5UFe6/z7ZZL+LoXw9jgw77J9jIf5k8NUaA0bdo0w7J8/35NnTpV1+EJIYQQec7D+Id0396dC08vUMioEMv8l+XJjv+Nx3F8vuo0aWoNn3iXoF991/eqr6ZrESo7FiIlVc2yg7eyJ8g8oHaJ2vxQ/weUCiWbrm9ixokZfKiDd/8K/4ujD45ipGfEogaLdNbxP383mv4rT6FK09C8oh0TmpfN1qHe5kb6DPR1I2SkL59WKQnAxjP38JsZwsK910lSpWVbW1mx8uhtdl1+hKGekh87VMbUUJ4FvzDQrxS2lsbcjUpk6f4bug4nR0jnX+R5v/zyC2fPnn3pq3///roOTwghhMhTHsU/otu2btyIvoGNqQ0rmqygXNG8l8E6OkFF7xUniUlKxduxEFM/rvDenS+FQsHnvunDtn87epvoBNUbjsg+arWGozeekpiSM526hk4N+ab2NwD8dvk3FocuzpF2ctKTxCfMODEDgM8rfY6jpaNO4rj1JJ7uy48Tn5JGHTdrZrXzyrE5+cUtjZnZ1ou/Pq+Dt2MhElLSmLEjjIaz97Ht/INcuYmj0Wg4cesZYzee59vNlwH4qpkH5eytcrztD4mpoT5jm3kAsCgknPvPE3UcUfaTWz0izytRooSuQxBCCCE+CBqNhilHp3A//j5Olk783Ohn7M3tdR1WJqlpagatPs2NJ/HYWxnzU5eq2TbE9iOP4njYWnDlYSy/HrnF4Aals6Xe19FoNEz4+wK/Hb2DV0kr1vev/dYrFWRFK7dWxKvimXZ8GotDF2NmYEa3ct2yvZ2cMu3YNGJSYihrXZYuZbvoJIbI2CS6LjvO0/gUytlbsqRzFYz0c354t5dDIf4YUJu/Q+8zfdsV7kYlMmDVaWq4FGFCi7I50hG/+SSeTafvsunsPSKe/a8j26yCLd1qO2d7e/lBSy97fjt6mxO3opi27Qo/dqis65CylTz5F0IIIYTIJ3bc2sG+u/vQV+oz13dunuz4A3y75TIHrj3BxECPpd2qUswia5n9X0epVDDg/+duLz98i4SU1Gyr+1UCD97kt6N3AAi9G830bVdyrK2Onh0ZUnkIADNPzuSPq3/kWFvZac+dPey8vRM9hR6Ta09GX5n7zyBjk1T0WH6CO88ScChiwvIe1bDIxeX4FAoFrSqVYPcXPgxpUBojfSXHbj6j+Y8HGbvxPE/jkt+7jWfxKfx65BatFx7Cb2YI8/dcJ+JZImaGenxapSS/967Bgg7e+Tab/ftSKBRMbFEOhQL+Cb3P8ZvPdB1StpLOvxBCCCFEPvA86TnTjk8DoG+FvrgVfnPWcl1Ydew2QYdvATCnvVeOPPEMqGCHYxFTnsWnsOZ4RLbX/287Lz7ku63pQ6lbeKXfbFl26CY7Lj7MsTZ7V+hNj/I9AJh8ZDLbb27PsbayQ2xKLN8d/Q6AHuV74FHEI9djSE5No9/KU1y8H4O1mSEre9bQWUJIU0N9RjQqw+4vfGhe0Q6NBlYfv4PvzBB+OXCDlFR1lupLUqWx9fwDeq84SfXvdjHhr4ucjXiOUgE+ZYox77NKnPy6ETPbelHbrWieW3YwrylfworPqqVPSZn490XS1B9mfo2XkWH/QgghhBD5wIyTM3iW9IxSVqXoVaGXrsN5qcPhT5j410UARjYuQ5PydjnSjr6ekv4+pfhq03mWHrhB55pOOTIM//zdaIauOYtGA51qOPJt6/LYWRnz8/4bfLk+lLJ2ljmyfrpCoWC493DiU+JZd3UdYw+MxdTAlPol62d7W9lh9qnZRCZG4mzpTH+v3M/XpFZrGLEulMPhTzEz1COoR3WcX5OpP7eULGzKgo7edK31jG82X+TCvRi+3XKZ34/dYXzzsvh5FH/lsWq1hpO3o9h05i5bzj0gJul/I1zK2VvyceUStKxkny9WvNCFkY3LsPncfQz0FDyNS6a4DldoyE7S+RdCCCGE+MAdvn+Yv8P/RoGCSbUnYahnqOuQMrn9NJ6Bq06TqtbQ0sv+rdZTfx9tqpRg7q6rPIhO4s8z92hXzSFb67//PJFeK06QqEqjfpliTG5ZDoVCwZf+7py49Ywzd54z6PfTOTb/X6FQMK7mOOJUcWy9uZURISNY3HAx1WyrZXtb7+PEwxNsuLoBgIm1JmKkl31TPN6GRqPhm82X2HLuAQZ6CpZ0qUKFknkr0V11lyL89Xld/jh1lx92XOHGk3h6BJ3Ap0wxxjf3xK24hbbsjcdxbDpzj01n7nE36n/z+O2sjGlVqQSfeJegjI3Fy5oRWWBtbsTGAbUpVcw8X42UkM6/EEIIIcQHLEGVwDdH0rPAd/DoQKXilXQb0EvsvRLJlxtCeZ6gwqukFT98WjHH5xwb6evRp54r3229zOJ94bSpUhK9bPoSH5ecSs+gE0TGJuNuY8HCjpXR10vv4BvoKVnQ0Ztm8w5o5/9PaJEza6krFUq+rfstCakJhESEMGj3IAL9AylftHyOtJdVSalJTDo8CYB2ZdpR1bZqrsewKCRcO81kZlsv6pUulusxvA09pYJ21RxoWsGWBXuus+zQTfZdfcyhuU/oUssJZ2szNp65R2jEc+0xZoZ6NK1gxyeVS1DT1TpfdVLzgtL58CaKzPkXOuHr68uwYcNypG5XV1cWL/7wlr8RQggh3sXCswu5F3cPWzNbhngP0XU4GSSp0pj090V6BJ3gSVwKHrYW/Nw1+zL7v0mHGo5YmRhw80k82y9kzxz81DQ1g38/zZWHsRQ1NyKwe9VMSeNKFDJhVlsvIOfn/xsoDZjpM5MadjVISE2g/67+XIu6lmPtZcWi0EXcib1DcdPiDK8yPNfbX3cyghk7wgAY37wsrSrl/RWkLIwNGNvMk53DfWjoaUOqWsPyQ7eY+PdFQiOeo6dU4Osu8/jFu5HOv3it7t27o1AoUCgUGBgY4OLiwqhRo0hKSnqr40NCQlAoFDx//jzD9o0bNzJlypQciDhrnJ2dUSgUrFmzJtO+cuXSh+8FBQXlfmBCCCHEW7jw5AK/Xf4NgAk1J2BmoPt5zC9ceRhDqwWHtE9du9d25s/P62CTi3NnzY306f7/S5ot3Hs9W9ZUn7L5EnvDHmNsoCSwW1VKFn75nP6GZW3oU88FgC/XhxLxLOG9234VIz0j5vvNp2KxikQnR9M3uC93Yu7kWHtv49LTS/x68VcAxtccj7mhea62v/vyI8ZuPA9APx9XetV1ydX235dLUTN+6VaVlb2qU825MJUcCjG+eVmOjm1AUI/qtKpUAhPD3LmJJvIP6fyLN2rSpAkPHjzgxo0bzJkzh59++omJEye+V51FihTBwuLVQ2lSUlLeq/6scHBwYPny5Rm2HT16lIcPH2Jmlne+RAkhhBD/plKrmHh4ImqNmmYuzahXsp6uQwLS51gvP3STlgsOEfYolqLmhizvUY1JLcvl2hP/f+te2xlTQz0uPYhh39XH71XX8kM3WXHkNgBz21fCy6HQa8uPauJBZcdCxCSlMmj1mSxncc8KUwNTFjVYRJnCZXiS+IQ+O/vwMD7nRhy8zotrM02TRhPnJvg6+OZq+6duR/H576dJU2v4xLsEY5rk/uoC2aVe6WKs71+bPz+vQ6+6Ltm6LKYoeKTzL97IyMgIW1tbHBwcaN26NQ0bNiQ4OBgAtVrNtGnTcHFxwcTEBC8vLzZsSE/qcuvWLfz8/AAoXLgwCoWC7t27A5mH/Ts7OzNlyhS6du2KpaUlffv2BeDgwYPUq1cPExMTHBwcGDJkCPHx8drjIiMjadGiBSYmJri4uLBq1aosn1+nTp3Yt28fERH/Wwpo2bJldOrUCX39jGkxnj9/Tu/evSlWrBiWlpZ89NFHhIaGaveHh4fTqlUrbGxsMDc3p1q1auzatStDHc7OzkydOpWePXtiYWGBo6MjP//8c5bjFkIIUbAFXQjiatRVChkVYnT10boOB4DHscn0CDrB5H8ukZKqxs+9GNuH1cfP/dVZy3NaYTNDOlZPX7Zr0d7wd65n9+VHTNl8CYAxTT3eaqUCAz0lP3aojJWJAaERz/l++5V3bv9tWBlZ8VOjn3CydOJ+/H36BvflWVLur1O+4uIKrjy7gpWRFWOqj8nVtq9HxtJrxQmSVGp83YvxfZuczy8hxIdCOv86otFoUCWn5frrfYe7XbhwgcOHD2NomJ5FeNq0afz6668sWbKEixcvMnz4cDp37sy+fftwcHDgjz/+ACAsLIwHDx4wb968V9Y9c+ZMvLy8OHPmDOPHjyc8PJwmTZrQpk0bzp07x9q1azl48CCDBg3SHtO9e3ciIiLYu3cvGzZsYNGiRURGRmbpnGxsbPD392fFihUAJCQksHbtWnr27JmpbNu2bYmMjGTbtm2cOnUKb29vGjRowLNn6b9Y4+LiaNasGbt37+bMmTM0adKEFi1acOdOxqF3s2bNomrVqpw5c4aBAwcyYMAAwsLCshS3EEKIgutm9E2WhC4BYFS1URQxLqLjiNKT+jWdt5+QsMcY6iuZ3LIcy7pXo6i57p9U9q7niqGekuO3nnHiVtY7wxfuRTN49RnUGvismgP96ru+9bElC5tq5/8HHrzJzhyc/w9Q1KQoSxstxdbMlpvRN+kf3J+YlJgcbfPfbkXfYvHZ9NxLo6qNwtrEOtfafhCdSNfA4+mJJR0KsaiTNwZ60t0R4gXJ9q8jqSlqfh66L9fb7TvPBwOjrA2527x5M+bm5qSmppKcnIxSqWTBggUkJyczdepUdu3aRa1atYD0ZHsHDx7kp59+wsfHhyJF0r+MFC9enEKFCr22nY8++ogvvvhC+75379506tRJO0KgdOnSzJ8/Hx8fHxYvXsydO3fYtm0bx48fp1q19GVtAgMD8fT0zNL5AfTs2ZMvvviCcePGsWHDBkqVKkWlSpUylDl48CDHjx8nMjISI6P0LzIzZ87kzz//ZMOGDfTt2xcvLy+8vLy0x0yZMoVNmzbx999/Z7hp0axZMwYOHAjA6NGjmTNnDnv37sXd3T3LsQshhChY1Bo1kw5PIkWdQh37OjR3ba7TeJJUaUzfdkU7t9/D1oJ5n1XG3TbvZMq2tTKmTZWSrD5+h0V7r7O8R/W3PvZhdBK9VpwgISWNum5FmdK6fJafJL+Y/7/0wE1Grg9li50lDkVenisgO9iZ27G00VK6be/G5WeX+XzX5/z40Y8UMi6UY23C/1+bR9Kvzdr2tWnh2iJH2/u36AQV3ZYd5350Eq7FzFjevRqmhtLVEeLf5FaYeCM/Pz/Onj3LsWPH6NatGz169KBNmzZcv36dhIQEGjVqhLm5ufb166+/Eh6e9WF1VatmXP4lNDSUoKCgDHX7+/ujVqu5efMmly9fRl9fnypVqmiP8fDweONNhpcJCAggLi6O/fv3s2zZspc+9Q8NDSUuLg5ra+sMMd28eVN7vnFxcYwcORJPT08KFSqEubk5ly9fzvTkv2LFitq/KxQKbG1tszxiQQghRMG04eoGTkeexkTfhAm1Juh0SPN/k/r1qJOe1C8vdfxf6O/jilIBe8Mec/F+9FsdE5+cSq8VJ3gUk0zp4uYsfI8nybk5/x/A2cqZnxv9jIWhBWcfn+XTfz7l1KNTOdrmhqsbOPXoVK5fm0mqNHr/eoKrj+IobmHErz2rU8TMMFfaFuJDIrfDdETfUEnfeT46aTerzMzMcHNzA9Lnwnt5eREYGEj58ulryG7ZsoUSJTIunfLiyXhW2/m3uLg4+vXrx5AhmZctcnR05OrVq1lu41X09fXp0qULEydO5NixY2zatClTmbi4OOzs7AgJCcm078UNh5EjRxIcHMzMmTNxc3PDxMSETz/9NFMCQwODjEsCKRQK1Oqc/RIghBDiw/co/hFzTs0BYEjlIdib2+skDo1GQ9DhW0zbdoWUVDVFzY2Y0baiTuf2v4mTtRnNK9rzd+h9FoWEs7Cj92vLp6k1DF1zhov3Y7A2M2RZ92pYmRi89pjXeTH/P2D+Qe38//HNy75zfW/DvYg7y/2XM3LfSG7F3KLnjp4M8BpAnwp90FNmb/LF/16bJcxzZ1m91DQ1g1ef4cStKCyM9VnRs/orV2AQoqDLM0/+p0+fjkKhyJAELikpic8//1z7pLVNmzY8evQow3F37twhICAAU1NTihcvzpdffklqamqGMiEhIXh7e2NkZISbm9tLl25buHAhzs7OGBsbU6NGDY4fP54Tp6mlUCgwMNLL9df73oFVKpV89dVXfP3115QtWxYjIyPu3LmDm5tbhpeDgwOANjdAWlpaltvy9vbm0qVLmep2c3PD0NAQDw8PUlNTOXXqf3exw8LCMi0r+LZ69uzJvn37aNWqFYULF35pPA8fPkRfXz9TPEWLFgXg0KFDdO/enY8//pgKFSpga2vLrVu33ikeIYQQ4t80Gg3fHvuWOFUcFYtWpINHB53E8fKkfvXydMf/hQG+pQDYev4BNx7Hvbbsd1sus+tyJEb6SpZ2q5otw/RLFjZlZi7O/4f0GwBrm6+lZamWqDVqFp5dSN/gvkQmZN+IQ11dm9cj42j70xGCLz3CUF/J0q5V8bSzzJW2hfgQ5YnO/4kTJ/jpp58yDIUGGD58OP/88w/r169n37593L9/n08++US7Py0tjYCAAFJSUjh8+DArVqwgKCiICRMmaMvcvHmTgIAA7dD1YcOG0bt3b3bs2KEts3btWkaMGMHEiRM5ffo0Xl5e+Pv7yzDsV2jbti16enr89NNPjBw5kuHDh7NixQrCw8M5ffo0P/74ozZ5npOTEwqFgs2bN/P48WPi4l7/i/bfRo8ezeHDhxk0aBBnz57l2rVr/PXXX9q58+7u7jRp0oR+/fpx7NgxTp06Re/evTExMXmn8/L09OTJkyeZlv17oWHDhtSqVYvWrVuzc+dObt26xeHDhxk3bhwnT54E0vMSbNy4kbNnzxIaGkrHjh3lib4QQohsEXw7mJCIEPQV+kyqPSnbn9y+jX8n9TPSV/JNq7yT1O9teNpZ0sCjOBoN/LTvxivLrTxyi2WHbgIwu10lvB0zPxR4V43K2tD7/9ecH7k+lIhnCdlW96uYGpjyXd3v+K7ud5jom3D84XHa/tOWA3cPZEv9O27vSL82lfpMrj05x6/NNLWGn/aF02z+Ac7ceY6FkT4LO3pT0zX3kgsK8SHSeec/Li6OTp06sXTp0gxPW6OjowkMDGT27Nl89NFHVKlSheXLl3P48GGOHj0KwM6dO7l06RK//fYblSpVomnTpkyZMoWFCxdqh1kvWbIEFxcXZs2ahaenJ4MGDeLTTz9lzpw52rZmz55Nnz596NGjB2XLlmXJkiWYmpqybNmy3P0wPhD6+voMGjSIH374gbFjxzJ+/HimTZuGp6cnTZo0YcuWLbi4pP9SK1GiBJMnT2bMmDHY2NhkSHr3JhUrVmTfvn1cvXqVevXqUblyZSZMmIC9/f+GOC5fvhx7e3t8fHz45JNP6Nu3L8WLv/uTB2tr61fePFAoFGzdupX69evTo0cPypQpw2effcbt27exsbEB0q+lwoULU7t2bVq0aIG/vz/e3q8fViiEEEK8SXRyNFOPTQWgV4VelC5cOlfbT1KlMenvi/QIOsGTuBQ8bC34Z3BdutZy/uCWURvolz6VceOZuzyITsy0f29YJBP/vgjAl/7uBFR885J+WTWqiQeVHNLn/w/Ohfn/L7Qs1ZJ1zdfhUcSDZ0nPGLh7ILNOzkKVpnrnOp8nPWfasWkA9KnQB7fCbtkV7ktdj4ylzeLD2ikn9csUY8fw+jQqa5Oj7QqRHyg077v223vq1q0bRYoUYc6cOfj6+lKpUiXmzp3Lnj17aNCgAVFRURkSuDk5OTFs2DCGDx/OhAkT+Pvvvzl79qx2/82bN3F1deX06dNUrlyZ+vXr4+3tzdy5c7Vlli9fzrBhw4iOjiYlJQVTU1M2bNhA69atM8T1/Plz/vrrr5fGnZycTHJysvZ9TEwMDg4OPHnyBEvLjMONkpKSiIiI0E4rEDlLo9EQGxuLhYXFB/eFJLskJSVx69YtHBwc5JrL51QqFcHBwTRq1ChTLgkh8puCfL1PPjqZv278hbOlM2uarsFQL/eSmYU9jGXE+vNcjUwfvdetliNfNiqNkUHujzzILp0CT3D8VhTdazkyrpmHdvuVh7F8tvQ48SlpfOpdgqmty+bYd4l7zxNpufAIMUmp9KztxNim/1vxJ6ev9eS0ZOadmceaq2sAKG9dnql1plLSvGSW65p4ZCL/3PwHVytXfm/ye45dm6lpapYdvs28PeGkpKoxN9Lnq6bufOptX2C/7+UXBflne3aIiYmhaNGiREdHZ+qH/pdOE/6tWbOG06dPc+LEiUz7Hj58iKGhYabM7TY2Njx8+FBb5sUT13/vf7HvdWViYmJITEwkKiqKtLS0l5a5cuXKK2OfNm0akydPzrR9586dmJpmnBOmr6+Pra0tcXFxmRK/iZwTGxur6xB0JiUlhcTERPbv358pB4bIn4KDg3UdghC5pqBd7+GqcP6K/wsFChqpG7Frx65ca/vMEwW/XVeSqlFgYaChUyk1ntxgd/Crh8x/CKqYKDiOHr8fu01p1Q3MDSA6BWaf1yM+RUFpSzW1DG6zbdvtHI2jnZOCX8L0WHb4NsqnN6hQJOMzuZy81stTno6mHdmUuIkLTy/Q9u+2tDZtTQXDCm9dxzXVNf6J/wcFChqmNcyxa/NhAvwersftuPROvmchNZ+5JmH2KJRt20JzpE2R+wraz/bskpDw9lOHdNb5j4iIYOjQoQQHB3+QTybHjh3LiBEjtO9fPPlv3LjxK5/8m5ubf5Dn+qF58eT/n3/+YcCAAS8t4+TkxPnz53M5styTlJSEiYkJ9evXl2sun5O75aIgKYjXe2JqIku2LgGgbem2DKj28t9rOWFv2GN+O3aWVI0GnzJF+f7jclh/IHP736SpRsOBJce4cD+G++Zl6FvPmU6BJ3meEoNrUTNW963+Xpn931YzQL0tjGWHb7PuthGdAmpRsrBJrl3rzWhGp/hOjDs8jrOPz7I2YS0pdimMrDISE/3X51BKUCWwaOsiAD4r8xn9q/bP9vhS09QEHrrNvOPXUaVpsDBOf9rfprI87c9PCuLP9uwUExPz1mV11vk/deoUkZGRGeZDp6WlsX//fhYsWMCOHTtISUnh+fPnGZ7+P3r0CFtbWwBsbW0zZeV/sRrAv8v8d4WAR48eYWlpiYmJCXp6eujp6b20zIs6XsbIyOily9kZGBhkumjT0tJQKBQolUqUSp2nWcj3XiTYa9myJbVq1XppGQMDg3z9b6FUKtNXlHjJ9SjyJ/m3FgVJQbrefwz9kbtxd7ExtWF41eG5dt5Hbzxl8JpQUtUaWlWyZ067SiiV+auz9bmfGwNWnWbl0TtceRjHhfsxFDEzJKhHdYpa5t5ScWOaleVURDShEc8Zvv486/rV4sU/c25c646FHFneZDmLzi7il/O/sCl8E+efnmdG/Rmvnb+/5MwS7sffx97MnmFVh2V7nFcfxfLl+lBC70YD4OdejKmfVMDO6t0SO4u8ryD9bM9OWfnMdNb7adCgAefPn+fs2bPaV9WqVenUqZP27wYGBuzevVt7TFhYGHfu3NF26GrVqsX58+czZOUPDg7G0tKSsmXLasv8u44XZV7UYWhoSJUqVTKUUavV7N69+5UdR/FhsLCweOkygW5ubjg5Oek6PCGEEOK1Lj29xIpL6avnjK85HnND81xp99zd5/RecZLkVDUNPYszs61Xvuv4A/iXs6VUMTNiklLZfSXy/5eKq4Kjde6uEW+or2RBh8pYGutzNuI5P2x/9bTTnKKv1GeI9xB+bvwzRU2Kcv35dTps6cCGqxt4WXqwc4/PseryKgAm1JqAqUH2fWapaWoW7r1O8/kHCb0bjYWxPjPberGsezXp+AvxnnTW+bewsKB8+fIZXmZmZlhbW1O+fHmsrKzo1asXI0aMYO/evZw6dYoePXpQq1YtatasCUDjxo0pW7YsXbp0ITQ0lB07dvD111/z+eefa5/K9+/fnxs3bjBq1CiuXLnCokWLWLduHcOHD9fGMmLECJYuXcqKFSu4fPkyAwYMID4+nh49eujksxFCCCFEwaZSq5h4eCJqjZqmzk3xcfDJlXavPYql27LjxCWnUtO1CAs6emOglz9HyimVCgb4/u/J9oxPK1LFqYhOYnEoYsrMtl4A/HLwJrsu62a56Zp2NVnfYj217WuTlJbE5COTGbV/FLEp/8ujpEpLvzY1aGjh2oI6JepkW/thD2P5ZPFhZuwIIyVNzUcexQke7sOnVUrKMH8hsoFOE/69yZw5c1AqlbRp04bk5GT8/f1ZtGiRdr+enh6bN29mwIAB1KpVCzMzM7p168Y333yjLePi4sKWLVsYPnw48+bNo2TJkvzyyy/4+/try7Rv357Hjx8zYcIEHj58SKVKldi+fXumJIBCCCGEELnh14u/cuXZFayMrBhdfXSutBnxLIHOgceISlDhVdKKX7pVw/gDzuj/NlpXsif8cRylipnTqlIJncbSuJwtveq6EHjwJqM3XmB4Wd3EUdSkKIsbLiboYhA/nv6R7be2c+HJBWb4zKB80fL8cuEXrj+/ThHjIoyqNipb2kxNU/PT/hvM23WNlDQ1Fsb6TGxRjjbeJaTTL0Q20vlSf/lFTEwMVlZWL11iISkpiZs3b+Li4iLJ13KBWq0mJiYGS0vLfD2v/3Xkmis4VCoVW7dupVmzZjJPTuR7BeV6vx1zmzZ/tyE5LZnv6n5Hy1Itc7zNyJgk2v50hNtPEyhd3Jx1/WpR2Cz3lhMU6VJS1bT96QihEc9xMtew9YtGmJnoLsli6ONQRu8fzb24e+gr9OlSrgsrL60kVZ3KD/V/oKlL0/du48rDGL5cf47z99Ln9n/kUZypH1fA1kq+vxQUBeVne055XT/0vwpmz0gIIYQQIg/SaDRMPjKZ5LRkatnVooVrixxv83lCCl0Cj3P7aQIORUz4rXcN6fjryL/n/9+OU9Dz11NExiTpLB6vYl6sa7GORk6NSNWksvzCclLVqfiU9KGJc5P3qluVpubH3ddo8eNBzt+LxtJYn9ntvAjsVlU6/kLkEOn8CyGEEELkERuvbeTEwxOY6JswodaEHB/yHJ+cSvflJwh7FEtxCyNW9aqJjaV0vHTJoYgpc9tVxFCp4djNKJrNP8jh6090Fo+loSWzfGYxvuZ4DJWGWBlZ8XXNr9/r2oyKT6HN4sPMCr6KKk1DA4/iBI/w4RNvmdsvRE6Szr/QCV9fX4YNG5Yjdbu6urJ48eIcqftdTJo0iUqVKmnfd+/endatW+ssHiGEEHnT44THzDo5C4BBlQZR0qJkjraXpEqj78qTnI14TiFTA1b2qpHrme7Fy9UrXZSRFdNwtzHnSVwynQKPMW/XNdLUupmtq1AoaOfejuC2wfzV6i9szV69HPabqNUahq09y7m70ViZGDCnvRe/dKsqN52EyAXS+Rev1b17dxQKhXbNeBcXF0aNGkVS0tsNQQsJCUGhUPD8+fMM2zdu3MiUKVNyIOKscXZ2RqFQsGbNmkz7ypUrh0KhICgoKFvbnDdvXrbXKYQQ4sP2POk5k49MJlYVS3nr8nTy7JSj7aWmqRmy+gyHrj/FzFCPoB7Vcbe1yNE2RdbYmMD6vjVoX9UBjQbm7LpKt2XHeRKXrLOYihgXwdrE+r3qWLD3OvuuPsZIX8nqPjX5uLI87Rcit0jnX7xRkyZNePDgATdu3GDOnDn89NNPTJw48b3qLFKkCBYWr/6SkZKS8l71Z4WDgwPLly/PsO3o0aM8fPgQMzOzbG/PysqKQoUKZXu9QgghPiwajYZTj04x5sAYGqxvwL67+9BX6DOp9iT0lDmXZV+t1jDqj3PsvPQofW37blWp5FAox9oT787EUI/vP63IrLZemBjocfD6E5rNO8DRG091Hdo7OXjtCXN2XQXg29blKWv/+uRkQojsJZ1/8UZGRkbY2tri4OBA69atadiwIcHBwUB6Zv1p06bh4uKCiYkJXl5ebNiwAYBbt27h5+cHQOHChVEoFHTv3h3IPOzf2dmZKVOm0LVrVywtLenbty8ABw8epF69epiYmODg4MCQIUOIj4/XHhcZGUmLFi0wMTHBxcWFVatWZfn8OnXqxL59+4iIiNBuW7ZsGZ06dUJfP+NqmM+fP6d3794UK1YMS0tLPvroI0JDQzOUmT59OjY2NlhYWNCrV69MoyT+O+x/+/bt1K1bl0KFCmFtbU3z5s0JDw/X7r916xYKhYKNGzfi5+eHqakpXl5eHDlyJMvnKoQQQveik6NZeWklrf9qTfft3dlyYwsp6hQ8i3gy23c27kXcc6xtjUbDN5svsfH0PfSUChZ29KZ2qaI51p7IHm2qlOTvQXVwK25OZGwyHZceZeHe66h1NA3gXTyITmTImjNoNNC+qgNtqzroOiQhChzp/OuIRqNBlZSU66/3XdnxwoULHD58GEPD9CzA06ZN49dff2XJkiVcvHiR4cOH07lzZ/bt24eDgwN//PEHAGFhYTx48IB58+a9su6ZM2fi5eXFmTNnGD9+POHh4TRp0oQ2bdpw7tw51q5dy8GDBxk0aJD2mO7duxMREcHevXvZsGEDixYtIjIyMkvnZGNjg7+/PytWrAAgISGBtWvX0rNnz0xl27ZtS2RkJNu2bePUqVN4e3vToEEDnj17BsC6deuYNGkSU6dO5eTJk9jZ2bFo0aLXth8fH8+IESM4efIku3fvRqlU8vHHH6NWqzOUGzduHCNHjuTs2bOUKVOGDh06kJqamqVzFUIIoRsajYYzkWf46sBXNFjfgB9O/MCN6BuY6JvQpnQb1gSsYW3ztfg5+uVoHHN2XSPo8C0AZratSKOyNjnansg+pW0s+HtQHT7xLoFaAzN2hNEj6ATP4nNvtOS7UqWpGfT7GZ7Fp1DWzpLJrcrpOiQhCiT9NxcROSE1OZn53T7N9XaHrNiAQRbXfd+8eTPm5uakpqaSnJyMUqlkwYIFJCcnM3XqVHbt2kWtWrWA9GR7Bw8e5KeffsLHx4ciRYoAULx48TcOdf/oo4/44osvtO979+5Np06dtCMESpcuzfz58/Hx8WHx4sXcuXOHbdu2cfz4capVqwZAYGAgnp6eWTo/gJ49e/LFF18wbtw4NmzYQKlSpTIk6YP0UQjHjx8nMjISI6P0NXdnzpzJn3/+yYYNG+jbty9z586lV69e9OrVC4Bvv/2WXbt2vTZHQps2bTK8X7ZsGcWKFePSpUuUL19eu33kyJEEBAQAMHnyZMqVK8f169fx8PDI8vkKIYTIHdHJ0Wy+sZkNVzdw/fl17Xb3wu60LdOWANcAzA3NcyWWXw7cYP7uawB806ocH1fO2YSCIvuZGuozq60XNV2sGf/XBfZdfUzA/AP82KEyVZ2L6Dq8V/p+2xVO3Y7CwlifxZ29MTbIuWktQohXk86/eCM/Pz8WL15MfHw8c+bMQV9fnzZt2nDx4kUSEhJo1KhRhvIpKSlUrlw5y+1UrVo1w/vQ0FDOnTuXYSi/RqNBrVZz8+ZNrl69ir6+PlWqVNHu9/DweKf59AEBAfTr14/9+/ezbNmylz71Dw0NJS4uDmvrjIluEhMTtcP0L1++TP/+/TPsr1WrFnv37n1l29euXWPChAkcO3aMJ0+eaJ/437lzJ0Pnv2LFitq/29nZAenTHqTzL4QQeYtGoyH0cSjrr65nx60dJKelJ2gz0TehiXMT2pZpS/mi5XM1ydm6ExF8u+UyAF/6u9O1lnOutS2yl0KhoF01ByqUtOLzVae58SSe9j8fZZS/O33quaJU5q3kedvOP+CXgzcBmNnWCyfr7M+nJIR4O9L51xF9IyOGrNigk3azyszMDDc3NyD9qbSXlxeBgYHajumWLVsoUaJEhmOM3rGdf4uLi6Nfv34MGTIkU1lHR0euXr2a5TZeRV9fny5dujBx4kSOHTvGpk2bMpWJi4vDzs6OkJCQTPveJ4FfixYtcHJyYunSpdjb26NWqylfvnympIcGBgbav7/4wvjfqQFCCCF0JyYlhs3hm9lwbQPXoq5pt5cuXJq2ZdrS3LU5Foa5n1F/6/kHjNl4DoC+9V0Z6Fsq12MQ2c/TzpK/B9flq43n+Tv0PtO2XeH4zWfMaudFIVNDXYcHwM0n8Xy54X/Xnn+5d18iUAjx/qTzryMKhSLLw+/zAqVSyVdffcWIESO4evUqRkZG3LlzBx8fn5eWf5EbIC0tLctteXt7c+nSJe2Nh//y8PAgNTWVU6dOaYf9h4WFZVpW8G317NmTmTNn0r59ewoXLvzSeB4+fIi+vj7Ozs4vrcPT05Njx47RtWtX7bajR4++ss2nT58SFhbG0qVLqVevHpA+vUAIIcSHQaPRcO7JOdaHpT/lT0pLn+ZlrGeMv7M/bd3bUrFoRZ0tZbbv6mOGrjmDWgOfVXNgbFMPWVYtHzE30mfeZ5Wo4VqEyf9cYveVSALmH2RBx8pUdsz8XSY3JaakMeC3U8Qlp1LNuTBf+udcIkshxNuRzr/IsrZt2/Lll1/y008/MXLkSIYPH45araZu3bpER0dz6NAhLC0t6datG05OTigUCjZv3kyzZs0wMTHB3Pzt5jaOHj2amjVrMmjQIHr37o2ZmRmXLl0iODiYBQsW4O7uTpMmTejXrx+LFy9GX1+fYcOGYWJi8k7n5enpyZMnTzA1NX3p/oYNG1KrVi1at27NDz/8QJkyZbh//z5btmzh448/pmrVqgwdOpTu3btTtWpV6tSpw6pVq7h48SKurq4vrbNw4cJYW1vz888/Y2dnx507dxgzZsw7xS+EECJ3RSVF8eX+Lzn24Jh2m1shNz4t8yktSrXA0lC3y5idvPWMfitPokrTEFDRju8+riAd/3xIoVDQqYYTXiULMej309x6mkC7n44wpqknPes46+zffMJfF7jyMJai5oYs6OiNgZ7kGRdC1+R/ocgyfX19Bg0axA8//MDYsWMZP34806ZNw9PTkyZNmrBlyxZcXFwAKFGiBJMnT2bMmDHY2NhkyNT/JhUrVmTfvn1cvXqVevXqUblyZSZMmIC9vb22zPLly7G3t8fHx4dPPvmEvn37Urx48Xc+N2tr61fePFAoFGzdupX69evTo0cPypQpw2effcbt27exsUnPlty+fXvGjx/PqFGjqFKlCrdv32bAgAGvbE+pVLJmzRpOnTpF+fLlGT58ODNmzHjn+IUQQuSOm9E36bS1E8ceHMNQaUjLUi35temvbGy5kU6enXTe8b94P5oeQSdIUqnxdS/GnHaV0Mtjc8FF9ipfwoq/B9elWQVbVGkapmy+RP/fThGdqMr1WNadiGD9qbsoFTC/Q2VsLD+80a5C5EcKzfuu/SYAiImJwcrKiujoaCwtM/7CT0pK4ubNm7i4uGD8AQ71/9Co1WpiYmKwtLREqSyY97fkmis4VCoVW7dupVmzZhnyQgiRH+WV6/3og6OMCBlBbEosJcxLsOCjBbgVfvkUNV2IeJZA64WHeBqfQjXnwvzaswYmhpJd/UPyPte6RqPh1yO3+W7LZVLS1DgUMWFhR28qliyUM8H+x8X70Xyy6DDJqWq+9Hfnc7+8839D5E155Wf7h+p1/dD/Kpg9IyGEEEKId7Dh6gYGBA8gNiUWr2JerGq2Kk91/JNUaQxYdYqn8SmUs7cksHs16fgXMAqFgm61ndkwoBYORUyIeJZIm8WHmR18lSRV1nMwZUV0ooqBq06TnKrGz70YA3wkuaQQeYl0/kW+tWrVKszNzV/6KleunK7DE0II8QFJU6cx88RMJh+ZTKomlaYuTQn0D8TaxPrNB+eibzZf4sK9GAqbGrC0a1UsjeUpWkFVsWQhNg+uR5Ny6dMA5u++RrN5BzgS/jRH2tNoNHy5PpTbTxMoUciEOe0r5bllB4Uo6CThn8i3WrZsSa1atV66T4YUCSGEeFsJqgRGHxhNSEQIAAO9BtLfq3+eS57355l7/H7sDgoFzP2sMvaF3i0Brsg/rEwMWNzZm20XHjLp74vceBJPh6VHaVe1JF8188zWJQF/OXCTnZceYainZHFn7zyz3KAQ4n+k8y/yLQsLC6ysrHQdhhBCiA/Yw/iHDN4zmCvPrmCoNGRKnSk0c22m67AyufYolrEbzwMw+KPS+JQppuOIRF6hUChoVsGOuqWL8sP2K/x29A7rTt5l9+VIJrQoS0sv+/e+kXXi1jOmb78CwPgWZXMtv4AQImtk2L8QQgghxEtcfHqRTls6ceXZFYoYFyHQPzBPdvzjk1MZsOo0iao06roVZWiD0roOSeRBlsYGfNu6An8MqEUZG3OexqcwdM1Zui47zp2nCe9c7+PYZD5fdZo0tYZWlezpXMMxG6MWQmQn6fznIrVaresQRAEhi3gIIcT72X17Nz229yAyMZJSVqVY1WwVlYpX0nVYmWg0Gr7adJ7rkXHYWBox9zNZ0k+8XhWnImweXI+RjctgqK/kwLUnNJ67j8Uh4ajSsvZdNU2tYcjqM0TGJuNW3JypH1fIc9NhhBD/I8P+c4GhoSFKpZL79+9TrFgxDA0N5QdjDlKr1aSkpJCUlFQgl/rTaDQ8fvwYhUIhuQ2EECKLNBoNyy8uZ+6puWjQUMe+DjN8ZmBhaKHr0F5q1bE7/HX2PnpKBQs6elPU3EjXIYkPgKG+kkEflSagoj1fbTzPkRtP+X77Ff46e4/pbSpSyaHQW9UzJ/gqR248xdRQjyWdvTEzkq6FEHmZ/A/NBUqlEhcXFx48eMD9+/d1HU6+p9FoSExMxMTEpMDeZFEoFJQsWRI9PVneSQgh3pYqTcWUo1PYdH0TAJ+5f8bo6qPRV+bNr0vn7j7nm38uATC6iTvVnIvoOCLxoXEpasbvfWrwx+l7fLflElcexvLxokN0q+XMF43LYPGa1SL2XHnEgr3XAZjepiJuxfPmDTIhxP/kzd9m+ZChoSGOjo6kpqaSlpaza6wWdCqViv3791O//v+xd9/hTdVdAMe/SZruRXehpWxooey9dxkiCLgVBEHByVJEEQeCiFtfBMUtoCKCyt57r7J3oXvvnXXfP4JVXNA2adpyPs+Tp83Nzf2dtLdpzv2N0/227fnWarWS+AshRClkF2czZccUDiUdQq1S83y753kw9EFbh/WvsgvM9dR1RhP9w/wZ362erUMSVZRKpWJkmyB6NfZlztpzrDwez9f7rrHhdBKvDW1KRNOAvz0nLrOAyT+eAGBUpxDubFGzosMWQpSBJP8V6Pdh2LdrQlpRNBoNBoMBR0dH+VkLIYS4qeicaJ7a+hTXcq7hbOfM2z3epntQd1uH9a8URWHqTyeIyyyktpczb9/d4rYd6SYsx9vVgffubcnw1kG89MspotMLePy7o/QP8+e1oU0J9DCXjiw2GHli6TGyC/W0CPLgpcGhNo5cCHGrbr8J0UIIIYQQ1x1OOswDax/gWs41Al0C+W7Qd5U68Qf4bFcUW84lY2+n5pMHW+PhJBe6heV0bejDxkndeaJnfezUKjadTabfe7v4Zt81jCaFN9ac42RcNp7OWhY82BoHOxlpKERVIT3/QgghhLgtrbq0itcPvI7BZCDcJ5yPen+Ej5OPrcP6Twej0pm/8QIArw5pSrNaHjaOSFRHjloNzw9owp0tazJj5SmOx2Txym9n+Hb/Na6k5gPw/r0tCarhbONIhRClIT3/QgghhLitmBQT7x99n1n7ZmEwGYioE8GXEV9W+sQ/NbeYp78/jtGkcFerWtzfPtjWIYlqrkmAOysmdGb20Ka4OtiVJP5P925Ar8Z+No5OCFFa0vMvhBBCiNvKB8c+4KvTXwHwWPPHeLLlk6hVlbs/xGhSePYHcz31hn6uzLmrmczzFxVCo1bxcKc69AsL4P3NF3Gy1zCpbyNbhyWEKANJ/oUQQghx28guzuaH8z8A8EqnVxjZaKSNI7o1H2y5yL4r5nrqCx9qjbO9fIQTFSvAw5G3Rja3dRhCiHKo3Je5hRBCCCEs6JfLv1BoKKRRjUaMaDjC1uHckh0XUvh4m7me+pvDw6WeuhBCiDKR5F8IIYQQtwWjycj3578H4MHQB6vEsPn4rEIm/xgJwEMdazO0ZS3bBiSEEKLKkuRfCCGEELeFnXE7ic+Lx8PBg0F1B9k6nJvSGUw8ufQYmQV6mgd58PIdYbYOSQghRBUmyb8QQgghbgvLzi0DYGTDkTjaOdo4mpt7c/05ImOzcHe0Y8EDUk9dCCFE+UjyL4QQQohq71LmJQ4mHUSj0nBv43ttHc5NrTuVyFd7rwHw3j0tCfaSeupCCCHKR5J/IYQQQlR7y86be/171+5NoGugjaP5b1GpeTy/4iQAE3rUp2+Yv40jEkKIqkExmVAUxdZhVFpSJ0YIIYQQ1Vp2cTZrrqwB4IEmD9g4mv9WpDfyxNJj5BUbaF/Xi2n9pZ66EOL2oeh0GPPyMOXmYszJxZR3/WtuDsbcvD++5uRgzM017/eXrw4NGhD0yQLsg4Nt/XIqHUn+hRBCCFGtrbq0iiJjEY1rNKaNfxtbh/OfZv16mvNJufi42vO/+1thp5FBmkKI6smYlUXezp1kb9pMvcOHufLqqyiFReU+bvGlS8Q8Oo46y5Zi5+NjgUirD0n+hRBCCFFtVaXyfsuPxLL8SBxqFXx0fyv83Cv/ooRCCFEa+uRkcrdsIXfLFgoOHQajETAnpX8erK92cUHt5obGze2Pr+7uaNxcUbv9w1d3836YTMROmIg+JoaY8Y8R8u03aNzcbPJaKyNJ/oUQQghRbe2I20FCfgKeDp4MrDvQ1uH8TV6xgXWnEll5LI4DURkATOnXiM71pbdKCFE9FEddLUn4i06evOExh0aNcO7VixMaNd2GDMHBywu1qysqTdmrm9T+4nOuPfgQxefOEffEkwR/vhi1g0N5X0a1IMm/EEIIIaqtkvJ+jSpPeT+jSWH/lXR+PhbHhtNJFOrNPV8qFYxsHcQTPRvYOEIhhCg7RVEoOn2mJOHXXbnyx4MqFU4tW+LWty9ufftgHxKCXq+naN06tEFBaLTacrdvHxJC7c8+JXrUaAoOHyZ+6lSCPvgAlZ2kvvITEEIIIUS1dDHzIoeSDlWa8n5XUvP4+Wgcq47Hk5j9x7zWej4ujGgTxLBWtajl6WTDCIUQomwUg4GCI0fI3byF3K1bMSQl/fGgVotLhw7mhL9Pb+x8fa0ej2NYGEGfLCB23Hjytmwl8dVXCZw9u1JP/aoIkvwLIYQQolr6vde/T+0+BLgE2CSG7AI9v51M4OejcUTGZpVsd3e0Y0iLmoxoE0SrYM/b/gOpEKLqMRUVkb93L7mbt5C3fTvG7OySx1TOzrh264Zb37649uxhk3n3Lu3bU+u9d4l75lmyV/yMXY0a+E2dWuFxVCaS/AshhBCi2skqymJt1FrAvNBfRdIbTey6mMrPx+LYcjYFndEEgEatokcjX0a0DqJPqB+O2rLPaRVCCFvK272H+EmTMOXnl2zT1KiBa+9euPXti0unTqgdbT/Vyq1vXwJnv07iSzNJX/w5mhpeeI8dY+uwbEaSfyGEEEJUOysvr6TIWESoVyit/FpVSJtnE3L4+Vgcv0bGk5anK9neJMCNkW2CuLNlTfzcbP9hWAghysOUn0/izJmY8vOxqxl4ff5+X5xbt66U8+o9R4zAkJFB6rvvkTJ/PhqvGngOG2brsGyi8v12hBBCCCHKwWAy8MP5HwC4v8n9Vh1Sn5mv4+djcfx8LJ5ziTkl231c7RnashYjWgcRVtPdau0LIURFS1u0CENyMtrgYOqtWV0lVtL3HjcOY0YmGV99ReJLM9G4e+DWu5etw6pwkvwLIYQQolrZGbuTxPxEajjUYFC9QVZr52h0Bo9/d7Skl99eo6ZvmB8jWgfRvZEvWo3aam0LIYQtFEddJf3rbwDwf3FGlUj8AVQqFX7PTcOYmUn2L78QP3kytb/8Auc2bWwdWoWS5F8IIYQQ1crS80sBc3k/B411Ppj+dCSWl1adRmc0Ud/XhUe61GVI80A8ne2t0p4QQtiaoigkz5kDej2uPXrg1qtq9Zyr1GoCZ7+OMSuLvB07iJ0wkZAl3+HYuLGtQ6swcklaCCGEENXGhYwLHE46jEal4Z7G91j8+EaTwtx153huxUl0RhMDmgaw+umuPNwxRBJ/IUS1lrd1K/l796LSavF/cYatwykTlVZLrQ/ex6lNG0y5ucSMG4cuNtbWYVUYSf6FEEIIUW18f/57APqG9LV4eb/cIj3jvz3CZ7uiAHimdwM+ebA1zvYykFIIUb2ZiopInvsmAF6PjsU+JMTGEZWd2tGR4IWf4NCoEcbUNGIeHYchLc3WYVUISf6FEEIIUS1kFWWxJmoNYPnyfjHpBQz/ZB/bzqfgYKfm4/tbMaV/Y9Rq6y0mKIQQlUX6Z4vRJyRgFxiIz2OP2TqcctO4uxP8+WK0QUHoY2KIGf8YxtxcW4dldZL8CyGEEKJa+PnSzxQbiwn1CqWlb0uLHXf/lXSGLtjDpZQ8/NwcWP54J4a0qGmx4wshRGWmi40l/fPPAfB/4QXUzs42jsgytH5+1P7iczQ+PhSfO0fcE09iKi62dVhWJcm/EEIIIao8g8nADxfM5f0eDH3QYuX9lh2M4eEvDpJZoKd5kAe/PdWVFsGeFjm2EEJUBclvzkPR6XDp3Am3/v1sHY5F2YeEUPuzT1G7ulJw+DDxU6eiGAy2DstqJPkXQgghRJW3PXY7SflJeDl6MaDugHIfz2A08epvZ3hx1SkMJoUhLWqy/PFOBHg4WiBaIYSoGvJ27iRv2zaws8P/pZcsdmG1MnEMCyPokwWo7O3J27KVxFdfRVEUW4dlFZL8CyGEEKLKW3ZuGQAjGo4od3m/7AI9Y74+zNf7rgEwrX8jPrqvJY5aTXnDFEKIKsOk05E0dy4AXqNG4VC/vo0jsh6X9u2p9d67oFaTveJnUt97z9YhWYUk/0IIIYSo0i5kXOBI8hE0Kg33Nr63XMeKSs3jrk/2svtSGk5aDYseasNTvRtWy94uIYT4LxlffY0+OgY7X198npho63Cszq1vXwJnvw5A+uLPSf/yKxtHZHlSm0YIIYQQVdqy8+Ze/34h/fB38S/zcXZfSuXJpcfIKTJQ08ORxaPb0rSmh6XCFEKIKkOfkEDaokUA+D3/HBpXVxtHVDE8R4zAkJFB6rvvkTJ/PhqvGngOG2brsCxGev6FEEIIUWVlFmWyNmotUPbyfoqi8M2+azzy1WFyigy0ru3Jr091lcRfCHHbSp7/NkphIU5t2+B+xx22DqdCeY8bh9eYMQAkznwZXVy8jSOyHOn5F0IIIUSV9Xt5vzDvMFr4tij18/VGE6/8doZlB2MAGN66Fm8OD8fBTub3CyFuT/n795O7YQOo1QS8/PJtN+1JpVLh99w0THm5OLdti31QLVuHZDGS/AshhBCiSjKYDPxwvuzl/TLzdUxcepQDURmoVDBjYBPGd6t3233QFUKI3yl6PUlvzAGgxgMP4Ni4sY0jsg2VWk3g7Nm2DsPiJPkXQgghRJW0LWYbyQXJ5vJ+dUpX3u9ici7jvjlCTEYBrg52fHhfS/qEln29ACGEqA4ylixFd+UKGi8vfJ952tbhCAuT5F8IIYQQVdLSc0sBuLvR3dhr7G/5efuvpDP+2yPkFRsI9nLii9HtaOTvZq0whRCiStCnpJD2v/8B4Dd1Chp3dxtHJCxNkn8hhBBCVDnnM85zLOUYdio77ml8zy0/z2hSmLHyJHnFBjrU9WLhQ23wcrn1CwdCCFFdpbzzDqb8fBybN8fjrrtsHY6wAkn+hRBCCFHlLDv3R3k/P2e/W37e5rPJXEsvwMNJy5ePtMPFQT4KCSFEwZEj5Py2GlQqAl6eiUotReGqI/mtCiGEEKJK+XN5vwdCHyjVcxfvjgLg4Y4hkvgLIQSgGAwkzX4DAM+RI3EKD6/gABTsDblg1Fdsu7ch+a8nhBBCiCpl1ZVV6Ew6mno3LVV5v6PRGRyNzsReo2ZU5xArRiiEuN0pRiNKcTFqZ2dbh3JTmT/+SPGFC6g9PPCdMrliG489hN3aqQxMOgmnngRHT3DxBVc/cPExf/9PN1dfcHAHqc5SKpL8CyGEEKLKMCpGfrr0E1D68n6f7TL3+t/VqhZ+bo5WiU8IIXQxMcQ+8QT6uHj8pk2jxgP3V9ph9IaMDFI//AgAv0nPYlejRsU0nJcCW16FyKXc8C5elGW+pV+6+TE09tcvBviAi98f39dsCU2Hy4WBfyDJvxBCCCGqjHP6cyXl/SLqRNzy866m5bPpbDIA47rVtVZ4QojbXMGRI8Q99TTGrCwAkt94g7zt2wmcOwetf+UrJ5r6/vuYcnJwCA3F855bXzy1zIwGOLwYts+F4hwATC0eZJOxI336RaDVZZkvDOSnQn7a9a8pf3yfd/17XS4YdZATb7791cmfYNgn4Oxl/ddUhUjyL4QQQogqY3/xfgDuaXxPqcr7fbEnCkWB3k38aChl/YQQVpD1yy8kvjwL9Hocw8NxHxBB6kcfk793L1F3DiXwlVm4Dxpk6zBLFJ48SdaKnwHMi/xpNNZt8OpuWP88pJw13w9sCYPfxejfguJ168yJuoc/+Da++bH0hdcvCPzlwkB2HBz/Di6uh0VdYcTnENLZqi+rKrHp+JOFCxfSvHlz3N3dcXd3p1OnTqxfv77k8Z49e6JSqW64TZgw4YZjxMTEMHjwYJydnfHz8+O5557DYDDcsM+OHTto3bo1Dg4ONGjQgK+//vpvsSxYsIA6derg6OhIhw4dOHTokFVesxBCCCHK5lzGOaKN0ebyfo1uvYcqPa+Yn47EAfBY93rWCk8IcZtSTCZS3v+AxBdmgF6PW0QEId9+g/ejj1J31UocmzXDlJ1N/JSpxE97DmN2tq1DRjGZSHp9NigKHkOH4ty6tfUay46HFWPhmzvMib+TFwz5EMZvg6C2ZTum1gk8g6FWG2gUAa0egm5T4I73YNwW8KpvHhHw9WDY+TaYjJZ9TVWUTZP/oKAg5s2bx9GjRzly5Ai9e/dm6NChnDlzpmSf8ePHk5iYWHKbP39+yWNGo5HBgwej0+nYt28f33zzDV9//TWzZs0q2efq1asMHjyYXr16ERkZyaRJkxg3bhwbN24s2efHH39kypQpvPLKKxw7dowWLVoQERFBSkpKxfwghBBCCHFTP1z8AYB+tfvh6+x7y89bciCGYoOJ5kEedKgrQ0CFEJZjKiwkftJk0j/9FADvCY9T6/33UDs5AeBQrx51vl+GzxNPgEZDzpo1RA0dRv7+/bYMm6yff6bo9GnUrq74TZtqnUYMOtjzPvyvHZz+GVRqaDcOnj4KbR4BtZVGGgS2gMd3QvP7QDHB9jfgu2GQm2Sd9qoQmyb/Q4YMYdCgQTRs2JBGjRoxZ84cXF1dOXDgQMk+zs7OBAQElNzc3d1LHtu0aRNnz55lyZIltGzZkoEDBzJ79mwWLFiATqcDYNGiRdStW5d3332X0NBQnnrqKUaOHMn7779fcpz33nuP8ePHM2bMGMLCwli0aBHOzs58+eWXFffDEEIIIcS/yijKYOM184X7+xrfd8vPK9Ib+Xb/NQDGd6tXqgUChRDiv+hTUoh+eBS5mzaBVkvgvDfxmzTpb4v7qbRafJ95mjpLl6ANqY0hKYmYMWNJfvNNTEVFFR63MSuL1HffA8D36aew8731i6m37PIWWNjJvKifPh+CO8BjO2DwuxUzD9/BDYZ/CsMWgtYZru6ChV3Mcd3GKs2cf6PRyE8//UR+fj6dOnUq2b506VKWLFlCQEAAQ4YM4eWXX8b5esmM/fv3Ex4ejv+fFs+IiIhg4sSJnDlzhlatWrF//3769u17Q1sRERFMmjQJAJ1Ox9GjR5kxY0bJ42q1mr59+7L/P67IFRcXU1xcXHI/J8e8YIVer0evlxqVtvT7z19+D+J2IOe7uB3E5cUxc99MdCYdtTS1aOLR5JbP+eWHY0nP11HL05G+jb3lb0VUCfLeXvkVnz9P4lNPY0hORu3pSeAH7+PUps1//s7smjYlePly0t59l5zlP5Hxzbfk7dmL/5tzcQgNrbDYUz/4EGNWFvYN6uN6992WPc+yYtBsnon64joAFBc/jL1fQQm/x7z6/j+0ZdXzvend4N8Su1XjUKWcgSUjMHZ6BlOPGaDRWr49GyjNz83myf+pU6fo1KkTRUVFuLq6smrVKsLCwgB44IEHCAkJoWbNmpw8eZLp06dz4cIFVq5cCUBSUtINiT9Qcj8pKek/98nJyaGwsJDMzEyMRuM/7nP+/Pl/jfvNN9/ktdde+9v2TZs2lVycELa1efNmW4cgRIWR811UR4qicFx/nLUFaymmGAccGOA04JbPd5MCH0dqABXtPfPZtHGDdQMWwsLkvb1ycjl7lsDvf0Ct01Hs60vCmEc4n5wM69bd2gHatMHFxQX/FT/DlSvE3Hc/6f36kdGzB1i5JKBDQgK1f/wRFXCld29OW+gcU5t0NEheR6Pk1agVPSbURPn240LgXRjinCFu/U2PYc3zXR04mWamZdRN24Zm/0dkn1zHkTpPUGjvY7U2K0pBQcEt72vz5L9x48ZERkaSnZ3NihUrGD16NDt37iQsLIzHHnusZL/w8HACAwPp06cPV65coX79+jaMGmbMmMGUKVNK7ufk5BAcHEz//v1vmJogKp5er2fz5s3069cPrbZ6XNET4t/I+S6qq+zibOYcmsOWWPMQzVa+rXil3Suc3nf6ls/3LedSSD0QibujHa881BsXB5t/7BHilsh7e+WkKApZ335L+rffgaLg1LEjdd99h6Zl+ew/aBDGMWNImT2b/M1b8Nm4kaDkZPznzkEbHGz54AFDWjpJU6ZQpCi4DhhAr6efLv9BFQXVpQ1oNs9GlRUNgCmkK8aIeYT4NiHkFg5Rcef7MAznV6NZ8yxe+Zfpd+U1jIM/RGlyhxXbtL7fR6DfCpv/F7S3t6dBgwYAtGnThsOHD/Phhx/y6fVFM/6sQ4cOAFy+fJn69esTEBDwt1X5k5PNNXwDAgJKvv6+7c/7uLu74+TkhEajQaPR/OM+vx/jnzg4OODg4PC37VqtVt6kKwn5XYjbiZzvojrZn7CfmXtmklKYgp3KjidbPcmYpmMwGU2c5vQtn+9f7jN/EH2oYwierk7WDlsIi5P39spD0etJemMOWcuXA+B5770EzHwJVTl+P1o/P4I/+oic334jafYbFEVGEjPybvxfmI7n3XeXa40SxWik+PJlCo8fp/D4cQqOR6KPiQFA5eREwAvTy39upV+B9dPh8vUee7eaEDEHddO7UJch9go538OHQ1AbWDEWVfwR7H5+BNqNh/5vgNbRum1bSWl+ZjZP/v/KZDLdMJf+zyIjIwEIDAwEoFOnTsyZM4eUlBT8/PwA83ARd3f3kqkDnTp1Yt1fhuBs3ry5ZF0Be3t72rRpw9atWxk2bFhJDFu3buWpp56y9MsTQgghxL8oNhbz0bGP+PbstwDUca/DvG7zaOrTFACT0XTLxzoWk8nha5loNSoe6VzHGuEKGzDpdOTv3k3O+g2o7OzwHj8OBxuPBhXVnzE7m7hnJ1Fw4ACoVPi/MJ0ao0ZZZAFRlUplLrXXti0JL8yg4PBhkma9Qt627QS+MRs7n1sblm7MzaXwxMmSZL/wxAlM+fl/bQyHBvXxnTQJ7X90ct6SUyvgl4lg1IFaC52fgm7TwMG1fMetCDVCYOwG2DYb9n4IhxdDzAG4+yvwaWjr6KzKpsn/jBkzGDhwILVr1yY3N5dly5axY8cONm7cyJUrV1i2bBmDBg3C29ubkydPMnnyZLp3707z5s0B6N+/P2FhYTz88MPMnz+fpKQkZs6cyZNPPlnSKz9hwgT+97//8fzzzzN27Fi2bdvG8uXLWbt2bUkcU6ZMYfTo0bRt25b27dvzwQcfkJ+fz5gxY2zycxFCCCFuN5cyLzF993QuZV4C4J5G9zC17VSctWVbR2fxrigAhrWshZ971ezNEWaKyUTB4SPkrFlNzsZNmP40xDV79Wpq3HsvPk8/hV2NGjaMUlRXuuhoYh+fgO7aNVTOztR69x3cevWyeDvaWrWo/c3XZHz9Danvv0/ejh1E3TmUwNdfw+0vi5crioI+OpqCyEgKj0dSePw4xZcugaLcsJ/a2Rmnli1watkKp1atcGrRHI0lpidf3Q2rJoBJD/V7w8C3wadB+Y9bkTRa6Pc61OkOqx6H5FPwaQ9zNYKW99s6OquxafKfkpLCqFGjSExMxMPDg+bNm7Nx40b69etHbGwsW7ZsKUnEg4ODGTFiBDNnzix5vkajYc2aNUycOJFOnTrh4uLC6NGjef3110v2qVu3LmvXrmXy5Ml8+OGHBAUF8fnnnxMREVGyz7333ktqaiqzZs0iKSmJli1bsmHDhr8tAiiEEEIIyzIpJpadW8b7R99HZ9Lh5ejF651fp0dwjzIfMzo9nw1nzAv/ju9ez1KhigqkKApFZ8+Ss2YtOevWYfjT9Ew7Pz/cBw1CFxtL3tatZC5bRvbq1fhMmECNhx9CbW9vw8hFdVJw+DBxTz2NMTsbu8BAghd+gmOTJlZrT6VW4z12DC5dupDw/PMUX7hA3FNP4zFiOB5Dh1J08iQFx8w9+8bMzL89XxscjFOrlji3Mif7Dg0botJoLBtk6kX48UFz4h82FEZ+bfVFCq2qYV+YsAdWjodru+GXCXB1Jwx6p2qMYigllaL85RKRKJOcnBw8PDzIzs6WBf9sTK/Xs27dOgYNGiTz5ES1J+e7qMpSClJ4ee/L7EvYB0D3oO681vk1fJz+eZjrrZ7vs349zbf7o+nV2JevxrS3SuzCOnTR0WSvXUvO6jXorl4t2a52d8c9oj/ug+/AuV3bkoQm/8BBkt96i+Jz5wBz8uM3bRpu/ftZZEi2rch7u+1lrVxF4iuvgF6PY3g4QQv+h/b6NOOKYNLpSPv4Y9I//+JvPfoAKnt7HJs1w6llS3PC37Ildr6+1g0qLxU+7wNZ0RDUDkavBm3511OpFOe7yQi734Udb4JiAu+G5mkAAeG2iacUSpOHVro5/0IIIYSo/rZGb+XV/a+SVZyFo8aRaW2ncU/je8qdsGXm61h+JBaQXv+qwpCaSs769WSvWUvRyZMl21UODrj26oXHkDtw6dbtH3v0XTp2oO6Kn8j+9TdS338ffWws8c8+i1ObNvi/MB2n8Mr/wV1ULorJROr7H5C+eDEAbgMGUHPem6gdK3b6kNreHr+pU3Ht0YOk2W9gzMy8nui3wrlVSxzCwip2lIu+EH6435z4e4bAfd9bJPGvNNQa6PE81OkKKx6F9EuwuA9EzIF246AKX0z8M0n+hRBCCFFhCvQFzDs0j1WXVwEQ6hXKvO7zqOdhmUT9uwPRFOlNNKvlTqd63hY5prA8Y24uuZu3kLNmDfkHDoDp+mKOajUunTvjfsdg3Pr2ReN682G3Ko0Gz+F34R7Rn/QvvyL9iy8oPHqUa3ffg/udQ/CbPBnt9cWiRfWkKAoYjSgmk/mr0fjv9w2GP7abTCgGg/n8u34/46uvyb1eb9574gR8n34alQ2HtTu3bUu9X3+xWfuA+eez6nGIOwyOnvDgCnC18igDWwnpDBP3wi9PwMX1sHkWNBoAntYpv1jRJPkXQgghRIU4kXqCGbtnEJsbiwoVj4Y/yhMtnkCrscwwzyK9kW/2XQNgfLd6VXrYd3Vkys8nb98+clavIW/HDhSdruQxpxYtcL/jDtwHDrjl1c3/Su3igu/TT+F590hSP/iQ7F9+Iee31eRu3ITX2DH4jBuH2sXFUi9HVBK5O3YQP3kKSmGhxY6p0moJfGM2HkOHWuyYVdrWV+Hsr+ZV/e9bCr6NbB2RdTl7wf3fw8FF4OhRbRJ/kORfCCGEEFZmMBlYfHIxn578FKNiJNAlkLld59I2oK1F21l1PJ70fB21PJ0YFC49vbak6PUUX7pE4clTFJ46SdHJUxRfufJHDz9gX78+HkPuwH3wYOyDLffhWhsQQM15b1LjoYdImTePgiNHSF+4iKwVK/B79lk87rrL8ougCZswpKaSOOPFmyf+Go35d67RmHvx7ezMX0vua1CpNaBRY1fDC7/npuHcpk3FvIjK7shX5nJ4AEMXmIfF3w5UKug40dZRWJwk/0IIIYSwmticWF7Y8wInU81zuQfXG8yLHV7E3d6yi+OaTAqLd5vL+43tWhetpgqvPl3FKIqCPjaWwpOnKDp10vz17FmU4uK/7autVQu3ARF43HEHDk2aWHV0hlOzptT+7ltyt2wh5e130MfEkDjzZTK+W4L/C9Nx6dTJam0L61MUhcSZL2PMzMQhNJTany9GZW//R1L/52S/ghn1Jk7uiKMwV0eHIfXQaKvo+9GlLbB2qvn7njOgxb22jUeUmyT/QgghhLCKK1lXeHDdg+Tr83HTujGz40wG1Rtklba2nU8hKjUfN0c77m1XfYZoVkaGjAyKTp26oVffmJX1t/3Ubm44hYfj2Dwcp+bNcWzWrEJXSwdQqVS49+uHW48eZCxbRtonCym+cIGYMWNx7dULv+eew6Fe3QqNSVhG1vKfyNu5E5W9PbXmv4Wdd+VY4yP2bAa7frxIVnIBYF6ov8uIBjaOqgySTsNPj4BihBb3Q4/pto5IWIAk/0IIIYSwOEVRePPgm+Tr82nu05y3e7xNTdeaVmvvs13mXv8HO4Tg6iAfbyxFMRopPHGCwhMnS3r19XFxf9tPpdXiEBqKU3g4Ti2a4xgejn1IiE0XSvszlb093o88gsfQoaR9spDM778nb/t28nbvpsa99+I97lFZFLAK0UVHkzxvHgC+Uybj0LChjSOCvMxi9q64xOWjKQA4umgpytcTuTmG2qFeBId52TjCUshJhGX3gC4X6nSDIR9Vm9Xub3fy31EIIYQQFrclZgsHkw7ioHFgfo/5Vk38j8dkcuhaBlqNikc617FaO7eT4qtXyV71C9m//IIhJeVvj9vXq3dDr75D48YVW3asjOxq1CDgpRepcf/9pLzzDnnbtpG5dCmZS5di5++PU/PmOLVsYR6p0LQpamdnW4cs/kIxGEh4fjpKYSHOHTrgNWqUTeMxGk2c2h7HodVX0RcbUakgvFcQ7YfUY/+qK5zZFc+Wb85y38vtcXKt/H8jFOeZE/+cePBpBPd+B3ZVIG5xSyT5F0IIIYRFFRoKefvw2wCMaTaGWq61rNre57uvAnBni1oEeFRsLe7qxJiXT+7GDWStXEXh0aMl29UeHji3bftHr37TpmjcLbtmQ0VzqFeX4E8WkH/gAKkffkThiRMYkpPJ3by5pMwbGg0OjRqZLwi0aIFTi+bY161baUYz3K7SFy+m8MQJ1G5u1Hxzrk1/HwmXs9j1/QXS4/MBCKjnTvf7G+Mb7AZAl5ENSLiYSWZSAdu+Pc+gieGVuwqJ0QArxkLSSXD2gQeWg1MNW0clLEiSfyGEEEJY1NenvyYxP5EAlwDGNhtr1bZi0gtYfzoRgMe617NqW9WRoigUHj1K1s8rydm4EaXAPE8ZtRqXbl3xvGs4rr17VYle/bJw6dgRl44dMeXnU3jmDEUnT1J44qT5YkBKCsXnzlF87hxZP/4I/Gkdgxa/XxBogV0NSY4qSuGp06Qu+ASAgFkvo61pvRFF/6UgR8f+VZc5vz8JMA/x7zS8PqGdAlGpVWDUw5730aZfod89z7Hik1iunUzjzO4EmnW37sXQMlMU2PACXNoIdo7wwI/gJethVDeS/AshhBDCYhLyEvji9BcATGs7DSc7J6u29+Xeq5gU6NHIl8YBblZtqzrRJyWR/cuvZK1aiT46pmS7fUgIHiNG4DH0TrT+/jaMsGKpXVxwad8el/btS7bpk5JKLgQUnjxB0ekzmHJzyd+3j/x9+0r20wYHmy8EXJ8y4BgWhspOPmJbmqmwkITp08FgwG3gANzvuKPiYzApnN2TwIFfrlBcYAAgrGtNOg2rj6Or1rxTdry59zz2AAC+F9bRqd3H7N3vzt6fLlGzgSdeNV0qPPabOvAJHF4MqGD4ZxBk2VKsonKQdyYhhBBCWMw7R96h2FhMu4B29A/pb9W2MvN1/Hg4FpBe/1th0unI27aNrJ9Xkr93L5hMAKicnXEfOADP4cNxat26cg9LrkDagAC0AQG4R5jPY0Wvp/jSJQpPnqQw8gSFJ0+ii4pCHxuLPjaWnDVrANB4e+PWvx/uAwbi3LaNueScKLeUd99DFxWFna8vga+8UuHnaUp0DjuXXSAlOhcAn2BXetzfmIB6Hn/sdGkzrHwMCjPAwR286kFiJC2iHiGmxkfEZgax6csz3D29beUq/3duNWx8yfx9v9chbKht4xFWI8m/EEIIISziYOJBNkdvRq1S80L7F6z+4XzpwWgK9UbCAt3pXL9ylPmqjIrOnTMP61+9GmN2dsl2p7Zt8Bw+AveI/qhdKmFPZCWj0mpxDAvDMSyMGvfdB4AxJ8dc8vDkCYpOnKQgMhJjejpZ3/9A1vc/oPH1wb1/BO6DBuLUqpWsF1BGeXv3krlkCQCBc+ei8fSssLaL8vUc/DWK07vjQQF7Rw0dhtanWY9aqNXX3+OMBtg+B/a8Z74f2ALu/ho8Q2Dvh6i2z6WP3Sx+UH9Iehzs/+UKXe+2fYUCAOKOws/jAQXajoXOT9s6ImFFkvwLIYQQotwMJgPzDplLb93b+F4a1Whk1faK9Ea+3hcNmHv9pbf6RobMTHLWrCVr5UqKz50r2W7n74/HsGF43jUM+zp1bBdgNaFxd8e1axdcu3YBzKMD8g8cJGfDenI3b8GYmnZDNQH3ARG4DRiAU8uWcs7eImNWFokzXgSgxoMP4tqta4W0qygKFw4ksW/lZQpz9QA06uBP5+ENcPFw+GPHnARY8SjEXJ8K0m48RMwBu+v7dJsCDfvhsmoCffQfsTbrJU5sjaV2Awdqt6pdIa/lX2VGw/f3gqEQGvSDgW9X+ZJ+xYUGFJOCo4vW1qFUSpL8CyGEEKLcfrzwI5ezLuPp4MmTLZ+0enu/RsaTlldMTQ9HBjeX+ux/lrNxEwnTp6MUFQHmHmvXPn3wHDEcl86dZRi6Fam0Wly7dcW1W1eUV14hf/9+ctatJ3frVgzJyWR88y0Z33yLXc1A3AcMxH3gABybNZMLAf8h6fXZGFJSsK9bF79pUyukzfT4PHZ+f4HEy+aRMjUCnOlxf2NqNf7L4o6Xt5qH+Rekgb0b3PkRNBv+9wMGhMP4bdTZMY9m69ZzumAgWz8/yn0TLuMU3rsCXtE/KMyCpXdDfir4h8PdX4GmaqaGuiID106mcelwMjFnM7DTqhn5QltqBMiIpr+qmr9hIYQQQlQaGUUZLIhcAMDTrZ7Gw8HjJs8oH5NJYfH18n5ju9ZFq5Gh1L/L+vlnEl+eBSYTDo0b4zlyJO53DJYV6W1AZW+Pa48euPbogUmnI3/PHnLWbyBv61YMCYlkfPklGV9+iTYoCPeBA3AfOBCH0FC5EPAn2WvWkrNuHWg01Jz/Fmon6y4gqi82cmh1FCe2xaGYFOzs1bQbXJcWfYLR2P3pfcZkhB1vwq53AMWc3N/9DXjX//eD2zlA31foUu8g8R9eIbM4gG2fH2ZQv3Wo+r8G9hWYqBp0sPxhSLsAboHmlf0dqtaCqUa9iegz6Vw6ksy1E2kY9KaSx3RGI1u/Ocfw59r8MTVDAJL8CyGEEKKcPj7+Mbm6XJp4NWFEwxFWb2/HpTQup+Th5mDHve2Crd5eVZH+5VekzJ8PgOfdIwl49VXp5a8k1Pb2uPXujVvv3piKisjbtYvcDRvI3b4DfVwc6Ys/J33x59iHhOA2cADO/fqZS6/dxvSJiSS9/joAPk9MxCk83Optbv7yDFdPpAFQr5UvXe9uiJuX44075SbBz+Pg2m7z/bZjIeJN0P5lv39hV68D/SfVY8XbkVwrbsfpXZ8SHtUV7voUgtvf/ADlpSiwZhJc3QX2rvDAcvCopOUH/8JkNBF/IYuLR5KJOp6KrtBQ8piHrxMN2/lTs5EnGxadIvlqDpGbY2gdEWLDiCsfSf6FEEIIUWZn08/y88WfAZjRfgYatfWTzS/2XAPggQ61cXOUeZ2KopD64YekL/oUAK9Hx+I3bZr0IFdSakdH3Pv3x71/f0wFBeTt2kXOuvXk7dyJLjqa9EWfkr7oU0L8/MgFagwdetv9LhWTiYQXX8SUk4Nj8+b4PP641du8diqNqyfSUKtVDJwQTp3mPn/fKWqHOfHPTzUnzkM+hPCRpW7Lp64vnUY0Yc9Pl9ibO4aaydPw/jICukyCnjPAzr7cr+cfmUyw622IXAoqNYz8CgKbW6ctC1EUhaSoHC4dTuby0eSS9RcAXDwdaNDWj0bt/PGt7Vbyd9Ll7oZs/+48B1dHERLujXdNV1uFX+lI8i+EEEKIMlEUhTcPvomCwqC6g2jt39rqbUbnwaFrmdipVTzSpY7V26vsFJOJ5DfmkLlsGQC+kyfj/dj42y5ZrKrUzs64DxiA+4ABmPLzyd2+g5wN68nftRuHlBSSX5hBzg8/4v/iDJyaV+4kzZIylyyhYP8BVE5O1HxrHio766YsRr2JPcsvAdC8T/DfE3+TEXbOh51vAQr4NzOv5u9T9hX7m/cOIuZsOjFnMthc/Doj7R7Dbs975nKBdy2CgGZlf0G/0xVA/FGIPQCxh8y3oizzY4PehkbWLcdaVoqikBaXx+UjyVw6nEJuRlHJY44uWuq39jX38jfwRPUPw/pDOwcSdTyV6NPpbP36HCOmt0Ej08MASf6FEEIIUUZrotYQmRqJk50TU9pMqZA2tyeYP8Dd2aImgR7Wnf9b2Sl6PQkvvUTOb6tBpSJg1svUuP9+W4clykjt4oLHHYPxuGMwRRkZHH7tNXx37aYwMpJr99yLx9A78Z0yBa2/v61Dtariy5dJeeddAPynP49D3bpWbzNyawzZqYU4u9vTblCdGx/MTYaV48zD5AFaj4aBb4G2fO8/KpWKPqPD+GH2QdJzPdnfYAndsidC8in4rCf0fgk6PwOlGU2VkwAxvyf6ByDpFJgMN+5j5wTdp0K7ceWK3xqyUwq5GhnHpcPJZCYVlGzXOmio29KHhm39CQ7zumkir1Kp6PVQE75//SCpMbkc3xhN20HWP4+qAkn+hRBCCFFq+fp83j/6PgCPNX8MfxfrJyRxmYVEppt7ecZ3r2f19iozU1ER8ZOnkLd9u3kxtHnz8Bhyh63DEhaicXMjo3dv2j7/PJkf/4/sX34h+9ffyNm0Ge/x4/AeM8bqi9/ZgqLTEf/88yg6HS7du+F5771WbzMvs4gj664B0HlEA+yd/pQeRe28Psw/BbQuMOQDaH6Pxdp2dren96hQ1i44yclIe2qP20LIpZlwYR1seRUurIdhC/95IUGTEZLPQOzBPxL+7Ji/7+dWE2p3gODrt4Bw0FSu6VJJV7JJ3uvMj+uPlGzT2KkJCfemYVt/6oR7Y2dfuillLp4OdLu3EVu+Osvhtdeo09wHn6CqtaihNUjyL4QQQohS++zkZ6QWphLsFszDYQ9XSJtf7YtGQUXXBt6EBrpXSJuVkTEvj7iJT1Bw+DAqBwdqffA+br162TosYQV2fn7UnPcmNR58kOQ336Tw2DHSPvqYrJ9W4DdtKu6DBlWrKR6pCz6h+Ow5NJ6eBL7xRoW8tn0/X8agMxFY34NG7a9fxDQZzSv575wHign8wsyr+fs2snj7dcJ9CO8ZxKkdcWxdnsh9L32Nc5MVsH66ObFf1BX6z4bwuyHuiHlb7EHz97q8Gw+mUoN/UwjuCLU7mhcQ9AiGSnyO6IuNbP7yHPocDSo1BDfxomE7f+q29MXBqXypaqP2/lw5lsLVE2ls+focd7/Q9saqDbehcv1Ei4qKcHS8tZUthRBCCFE9ROdE8+3ZbwF4vt3zOGgcrN5mVoGOFcfiAXj0Np7rb8jMJHb8YxSdPo3axYWghZ/g0r4CVggXNuUU3oyQpUvIXb+e5HfewZCQSMLUaWQuWWpeD6ACVsK3toJjx0lfvBiAgNdfQ+vnZ/U24y9kculICqig272NzBcb8lLNw/yjdph3avUQDHwb7J2tFkfn4fWJv5hJRkI+2747z+AnH0BVtxv88oS5qsDaqebbX9m7QXA7c7If3B6C2la5kn0ntsZSmKNH42TigZc74e5luZKHKpWKng82IfHyQdLj8jiy7hod7ry9R42V+tKHyWRi9uzZ1KpVC1dXV6KiogB4+eWX+eKLLyweoBBCCCEql/mH52MwGehSqws9gnpYvb3LKXmM/fowBTojNZ0VutT3snqblZE+OZnohx6m6PRpNJ6e1P7mG0n8byMqlQr3QYOov24dvs8+g8rJicLjx7l29z0kTH8BfXKyrUMsM1N+PgnTp4PJhMewYbj3t/5CdCajid3LLwLQrFstfINc4Oyv5p72qB2gdYZhi2DoAqsm/gB29hr6P9oUjZ2a6NPpnNoRB561YdRvMGAe2F3vbPUMgeb3wuB3YcJeeCEaHl4FPadD/V5VLvEvytNzfFM0AB6NinFys3yVA2d3e7rfbx6xcXRDNCnRORZvoyopdfL/xhtv8PXXXzN//nzs7f/4BTVr1ozPP//cosEJIYQQonLZFbeLXXG7sFPbMb3ddKsOyzUYTSzaeYVBH+3mWEwWLg4ahtcxVathzrdKFx1N9P0PoLtyBTt/f0KWLsGpWVNbhyVsQO3oiM/EidTfsB6PoUMByP71V64MGEjawoWYiopucoTKJ3neW+hjY7GrGYj/Sy9WSJund8WTHp+Pg4sdHeqfgIWdYPkoyEsC3yYwfju0rLgFNL1rudJ5hHlu/76fr5AenwdqNXScCM9dhqkXYdJJGP6ZebG+gGalWwywEjqy4Rq6IiPeQS44BRpu/oQyatjWnwZt/FBMClu+PodBb7RaW5VdqZP/b7/9ls8++4wHH3wQjeaPE65FixacP3/eosEJIYQQovLQGXXMPzwfgIdDH6auh/VWT76YnMuIhfuYt/48OoOJHo18Wf90Fxp6KFZrs7IqunCBaw8+hD4hAW1IbeosW4pD/X9YAEzcVrT+/tR8ax51flqOU6tWKIWFpH74EVcGDSJn3ToUpWr8reRu207WTz+BSkXNefPQuFm/97ogR8fB38yjlzu6LcNx/XhIPQ8O7tBtKozfBn5NrB7HX4X3DCKkmTdGg4lNX5zBoLuepDq4gVv1qvKQk15oHuEAtL+zrtWXJeh+fyOc3LRkJuZzeM1V6zZWiZU6+Y+Pj6dBgwZ/224ymdDr9RYJSgghhBCVz5JzS4jOicbHyYfHmj9mlTb0RhP/23aJOz7aw4m4bNwc7Xh7ZHO+HtOOQI/bb52hguPHiX54FMa0NByaNKHO0qVoa9WydViiEnEKDydk2VJqvvsOdoGBGBISiZ8ylegHHqTw1Clbh/efDOnpJL78MgBeY8ZUzDQWXT4HFq9BV2jE1+4KYcqP4OwNvV+Gyaehzyywt9y889JQqVT0HhWKk5uWjIR89q26YpM4KsLh1VcxGRRqNfYkqImn1dtzcrWn54PmCzrHN8WQFJVt9TYro1In/2FhYezevftv21esWEGrVq0sEpQQQgghKpeUghQ+PfEpAJPbTMbV3tXibZxLzGHYgr28s+kiOqOJPk382DKlB3e3Db4th/rn7d1LzNhHMeXk4NSqFSHffoOdj4+twxKVkEqlwmPwYOqvW4vPM0/fuB7ACzPQJ6fYOsS/URSFxFmvYExPx6FRI3wnPWvdBguzYNfbJM+7k3OXPAHoFrAK9YA5MOkUdJ8Gjh7WjeEWOLvb02d0GACntsdx7VSajSOyvPT4PM4fTAKg07AGFfb+Xq+lL406+KMosPWbc+h1t9/w/1Kv9j9r1ixGjx5NfHw8JpOJlStXcuHCBb799lvWrFljjRiFEEIIYWMfHP2AAkMBzX2bc0c9y9aT1xlMLNh+mQXbL2MwKXg4aXn1zjCGtax1Wyb9ADkbNxE/bRro9bh06ULQxx+hdrbuomOi6lM7OeH7xBN4Dh9O6vvvk/3rb2T/8gs5mzbhN2kSNR58AJWmcswTz165krytW1FptdR8ez5qe8sv9gZAfhoc+AQOLUYpymVXxlsANG6YR+Czq8DO+tVKSiukmTfNewVxcnsc2749x70z2+PiUfniLKsDv0aBAvVb+eJf171CR493u6cRceczyUou4OCvUXS9u2GFtV0ZlLrnf+jQoaxevZotW7bg4uLCrFmzOHfuHKtXr6Zfv37WiFEIIYQQNhSZEsnqqNWoUDGj/QzUKsvVST4dn82d/9vDh1svYTApRDT1Z/OU7tzVKui2Tfyzfv6Z+MmTQa/HLSKCoIWfSOIvSkUbEEDNt96izvIfcWrRAqWggOS5c4l+4EGKL1+2aWyKyUTWylUkz5kLgO+kZ3Fs3NjyDWXHw/oX4P1msPtdKM7hnN0DpOgbonXU0GlcRKVM/H/XaXh9vGu5UJirZ9u351BMVWMNh5tJuJzFtZNpqNQqOgyt+LJ7ji5aej1kHv5/YlssCZeyKjwGWypVz7/BYGDu3LmMHTuWzZs3WysmIYQQQlQSRpORNw+9CcBdDe+imU8zixy32GDk462XWbjzCkaTgpeLPa/d2ZQ7mgfetkk/QPpXX5Pylrln0mPkCAJfe63S9NSKqsepeXNCvl9G1o8/kvLOuxSeOEHUXcPxefxxfB4bj8pave3/ovDkSZLemEPRyZMAOHfqiNcjj1i2kYwo2PMBRC4D0/Ue5cCWFHeYxoElnoCe9nfUrfQ96XZaDf0ebcpPbx4h5kwGu3+8iG+IG3ZaDXb2auzsNddvarT2f96mRmOnrpTvo4qicOD6OgahnQOpEWCbtRXqhPsQ2jmQc/sS2frNWe6d2R57x1IPiK+SSvUq7ezsmD9/PqNGjbJWPEIIIYSoRH65/Atn08/iqnXlmVbPWOSYkbFZPL/iBBeT8wAYHB7Ia0Ob4uNauT+MW4tiNFJ0/jzZv/5K5rffAeA1dix+z02rlB/gRdWiUqupcf/9uPbqRdKrr5G3Ywdp//sfuRs3EDh7Nk4tW1o9BkNaGinvvU/2ypUAqF1c8HniCbwefshyF7dSzsHu9+D0ClBM5m21O0P3qVC/D4eWX6IwL44aAc6E9wqyTJtW5l3TlS4jGrDrh4uc2hl/609UgZ29Bq29+i8XC9TYO9qVVBWoaNdOpZN4JRs7rZp2g61XLeZWdLm7IbHnMshJK+LAqit0v98Ko08qoVJf4ujTpw87d+6kTp06VghHCCGEEJVFji6HD499CMATLZ/A26l8HxaL9Ebe33KRxbuiMCng42rP7KHNGBgeaIlwqwyTTkfRqVMUHDlKwZEjFB47hik/v+Rx30mT8H78MUn8hUVpAwIIWvgJuevXk/TGHIovXeba/Q9Q46GH8Jv0LGoXy/fCKjodGUuWkvbJJ5jyzBf7PO66C78pk7Hz9bVMI7nJsG4qnFv9x7YGfc0l+0I6A+YF5n5Pnrvd2wiNxnJTl6ytWY9aKIpCwqUsDHoTBp0Rg878Va+78b7JeH1qgAKGYiOGYiPw9/n0seczGD6tDf513CvsdZhMCgd+Mff6N+8djGsN217sdXCyo/fDofz2USSndsZTt5UvwU28bBpTRSh18j9w4EBeeOEFTp06RZs2bXD5yxvFnXfeabHghBBCCGE7CyMXklmcST2PetzX5L5yHetodAbPrThJVKo5yR3asiavDGmKl0vFDju2BVN+PgWRkeZE/8hRCk+cQNHpbthH7eaGU+tWeA4bhvvAgTaKVFR3KpUK90GDcO7UiZR5b5lHm3z3HXlbtxLw2mu4dutqsbbydu8hee5cdFfNNdUdw8MJmPkSTi1aWKwNinNhyQhIvl7SMHSIOemv+UcFMkVR2PXDRRSTQv1WvgSHVq0ET6VS0bxXMM17Bd90X6PRhFFnQv+nCwJ/XCgwf39+fyLRp9PZ8Okp7nmpHU6uFfMefOFAEhkJ+Tg429E6onaFtHkzwWFeNO1eizO74tn27Tnuf7kD9k7Ve/h/qV/dE088AcB77733t8dUKhVG4+1XMkEIIYSobi5nXub7898DML39dLRqbZmOU6gz8s6mC3y59yqKAr5uDsy9K5x+Yf6WDLdSMWZlUXDsGAWHj1Bw5AhFZ8/CXz4faby9cW7TBue2bXFu1xaHRo1kbr+oMHY1alDzrXm433EHSa+8gj4hgdjx4/EYeid+L7yAXY0aZT62LiaG5HlvkbdtG2A+1/2mTMHjrmGo1BbscTfqYfkoc+Lv4gsPr4KA8L/tdvloCgmXsrDTquk8soHl2q+ENBo1Gif1fyawwWFe/PTmYbJTCtn0+RmGPNMStdq6o4wMeiOHVkcB0HpACA7OZft/Yg2dh9cn5kw6uelF7P35csligNVVqZN/k8lkjTiEEEIIUUkoisK8w/MwKkb61O5D55qdy3SclJwi7vvsAFFp5t7+4a1rMeuOMDydq1dvvz45mYIjR0p69osvXfrbPtqaNXFu1xanNm1wbtsO+7p1ZFi/sDnXbl2pt/o3Uj/6iIxvvyP719/I270H/5dexH3QoFKdo6b8fNI+W0zGl1+i6PVgZ4fXQw/h8+QTaNzcLBu4osDqSXBlG2id4YHl/5j464oM7F1hrm7QekAI7t5Olo2jCnJwsmPg4+GseOsIceczObQ6io5D61u1zdM748nLLMa1hgPNe1au9RbsHe3oMyqUX94/ztk9CdRr5UtI04pfD6GiVO9xDUIIIYQota0xWzmYeBB7tT3T2k4r83Fm/XqGqLR8/N0deHN4OL2bVK/efmNWFvHTniN/z56/PWZfr15Jr75zmzZoa9a0QYTVlKJAwnHQ5UHtTqCpPL2IVZHaxQX/GTNwHzSIxJkvU3zpEglTp5Gzeg0Br8xCG/jfa3IoikLO2nWkvP02huRkAFw6d8b/pRdxqG+lpHLnfIhcAio1jPwKarX+x92ObogmP6sYdx9HWvWvHEPNKwPvWq70eqgJm788y9H10fjXcaduCwutwfAXxYUGjqy/BkC7O+piZ1/5RjjValyD5r2COLk9ju3fnef+We0r1egESypT8p+fn8/OnTuJiYlB95c5a888Y5mVgIUQQghR8aKyoph3aB4AY5qNIcitbL00G88kseFMEnZqFV+PaU9oYMUtLFURdDExxD4+wTyfWa3GoUljc7Lf1pzs23lX354jm9EXwZmVcPBTSIw0b3PygrA7oelwqNMV1JUvsagqnFq0oO7PK0hbvJi0RZ+St2MHUYcP4zt1CjXuu+8fh+wXnT1L0py5FB49CoA2KAj/GS/g2ru39Ua2HF8KO+aavx/8LjQe8I+7ZSUXELklBoAuIxtip5Vz488atQ8g6WoOp7bHseXrc9w9wwVPP2eLt3N8UzTF+QZqBDjTpGOAxY9vKR3vqk/0mXSyUwrZs/wSfR4Js3VIVlHq5P/48eMMGjSIgoIC8vPz8fLyIi0tDWdnZ/z8/CT5F0IIIaqoDdc2MGvvLAoNhQS7BTO22dgyHSe3SM+sX08DML57vWqX+BccP07cE09izMzELjCQ4EWLcGzcyNZhVV85CXDkSzjyFRSkmbfZOYKDG+SnwtGvzTdXfwgbBs2GQ1B7sOT88tuEyt4e3yefxD0igsSZL1MYGUny67PJWbuOwNmv41CvHgCGzExSP/iQrOXLQVFQOTnh8/hjeI0Zg9rBiqu4X9kGq6/nGl0nQ9t/f4/a89MlTAaF2k29qNvCx3oxVWFdRjQgNTqHpKgcNnx6mhHT26C1YM98fnYxJ7bGAtBxWH3UlbjKgtZeQ5/RYax85yjnDyRRr5Wv1UZD2FKpfwOTJ09myJAhZGZm4uTkxIEDB4iOjqZNmza888471ohRCCGEEFakN+mZf3g+z+18jkJDIe0D2vPdwO9w1patF2j+hgsk5xRTx9uZZ/s0tHC0tpWzYSMxj4zBmJmJY1gYdX74QRJ/a1AUiDkIP42BD8Jh19vmxN89CPq8ApPPwtQLMOo3aD0anGpAXjIc+hS+jDA/Z+NLEH/MfCxRKg4NGhCybCn+M2eidnam8OhRrg4dRtrChWQsWcqViAFk/fgjKArugwdTf/06fCZMsG7in3QKfhwFJgOE3w29Z/3rrtdOphF9Oh21RkW3exrJ+hr/QmOnJmJ8OE5uWtLj89i59AKKBf9ejqy9hkFnIqCee5W4ABNY34OWfc3TQ7YvvUBR3t/LJFZ1pe75j4yM5NNPP0WtVqPRaCguLqZevXrMnz+f0aNHM3z4cGvEKYQQQggrSCtMY+qOqRxLOQbA2GZjebrV09ipy7Ys0NHoDJYcjAZg7l3hOFaTobaKopDx5ZekvG3u6HDt2ZNa775jldrot7WSof2LIPHEH9tDukCHx6HxYND86dys18N8G/wuRO2A0z/D+bWQEwf7/2e+1ahrHg3QbAT4hYEkgrdEpVbj9dCDuPXuReKrr5K/azepH35U8rhDkyYEvPQizu3aWT+Y7HhYeg/ocqFONxi64F9Hdhj0RnYvvwhAiz7BePpbfih7deJaw4GIcc349cNILhxMIqCeO816lH9RvqzkAs7sSQCg0131q8wFmA531iX6VBqZSQXs+vEi/R9tauuQLKrU/9m1Wi3q639sfn5+xMTEEBoaioeHB7GxsRYPUAghhBDWcSz5GNN2TiO1MBUXrQtzusyhT0ifMh9PZzDxws+nUBQY2SaIzg0qf0/PrVAMBpLeeIOsH34EoMaDD+L/4gwpzWdJOQlw+Avz8P0/D+0Pv9uc9P/DSu430GihYT/zTV8El7eYLyJcWA+ZV2H3u+abT2PzRYBmw8Gneo1KsRZtzZoEf/opOWvWkjx3LphM+E56Fs977qmYv4GibFg6EnITwLcJ3LsE7P59hEHk5lhy0opw8bCn7aA61o+vGqjVuAadhtVn38rL7F5+CZ9gNwLqeZTrmAd/i0IxKYQ086Zmw7KXjqxodloNfR4J4+f5R7l0OJn6rXyp39rP1mFZTKmT/1atWnH48GEaNmxIjx49mDVrFmlpaXz33Xc0a9bMGjEKIYQQwoIURWHpuaW8e+RdDIqBBp4NeL/n+9TxqFOu4y7aeYVLKXl4u9jz0qBQywRrY8a8fOKnTCZ/125QqfB/YTo1Ro2qMr1YlZqiQOxB8wJ+534zD+cG89D+do+ah/O7lGHhRK0jhN5hvuny4eIGOL0SLm2GtAvmxeJ2zDVfUGg2ApreBTXqgMkEhkLzxQN9ARiuf9UXXd9+/faP269/byg2X4iwcwLtn252juaSdNrfvzr9wz5/2reSUalUeAy5A7eI/gCo7SuoXKdBBz8+DClnwTUAHlwBTp7/untuRhFHr68s33lEA+wdpbDZrWrZL5jkq9lcOZ7KxsWnuXtGO5zdy/Z7TonO4fLRFFCZ5/pXNf513GndvzZHN0SzY9kFAht4lvlnUdmU+i9i7ty55ObmAjBnzhxGjRrFxIkTadiwIV9++aXFAxRCCCGE5RToC3h136usv7YegIF1BvJq51fLPL//d5dT8vjfNnM97VlDwqjhUvU/KOmTkoidMJHi8+dROTpS6523cevb19ZhVX2lHdpfHvYu13v6R5h7kM+vM7d9ZZt5DnnSKdjyKmgcwFhsmTYtwM7Okf4qJ9Te16DTk5b7eZRThSX9YL449NvTcHUn2LvCg8vBM/g/n7J3xWUMehOBDTxo2K56lRa1NpVKRe9RoaQn5JOVXMCmL85w5zMtyrRI3/5VVwBo1N4fnyBXS4daIdoNrkv0mXSCQ72wd6o+o7xu6Z3kt99+Y+DAgWi1Wtq2bVuy3c/Pjw0bNlgtOCGEEEJYzrXsa0zeMZnLWZexU9kxrd00HmjyQLl7sU0mhRdXnkJnNNGjkS93tqj6Ne2Lzp0j9vEJGFJS0Hh7E7xoIU7hNxl6Xp0oirm39cJ6iD1k3qbRmm9q7V++tzcnpxr76/f//P3vN3tQ20HKOTj6FRSkm49ZmqH95eXoAS3vN98KMsyjDU6vhGu7/574axz+6KW3c/x77/3v20p67K8/prE3j2D4fZTAX0cQ6AtvHEXw5/vGP8pnqwxFOFEEW2bBmZ9hyEdQs6V1fz6VzfY5cPIHUGng7m8gsMV/7h53PoMrx1JQqaD7fbLIX1nYO9kx8PFwfnrrCPEXMjn421U63VW6nvvYcxnEnc9Ebaeiw5B6VorU+jRaNSOfb4tGW3krFJTFLSX/d911F0lJSfj6+qLRaEhMTMTPr/rMfRBCCCGqu63RW3lp70vk6/PxdfLl3Z7v0sqvlUWO/eORWA5dy8BJq+GNYc2q/IfuvF27iJ80GVNBAfb16xP86afYB9WydVjWZyg2J8IXNsDFjZAdY722yju0v7ycvaDNI+ZbYaZ5esDvSbydk23KBJqMJdMK9IU5nPn1I1qkrkSVeAIW94KOT0DPGeBQNXtSS+XoN+YKDwBDPoCG/z3ixmg0sevHSwA0614LnyA3KwdYfXnVdKH3w03Y9PkZjm2Mxr+uO/Va3lrJO8WklPT6N+teC3cfJ2uGanXVLfGHW0z+fX19OXDgAEOGDEFRlCr/T10IIYS4XRhMBj4+/jFfnjZPzWvj34Z3eryDj5NlFuNLySli7rpzAEzt34hgr6q9snbmDz+QNPsNMBpx7tiRoI8+ROPubuuwrCcvFS5tNM+Lv7IddHl/PGbnCPV6Qv3e5l5tkx6MBnMPtUkPxuu3P39/s8fsXc0975Yc2l9eTjXMN1tTa8yJvYMr2HsQ7dOLpsOnod3ysnmqwv7/wdlfzZUNGkXYOlrrubQZ1kw2f9/9eWg96qZPOb0jnszEfBxdtbS/s+r2NlcWDdv6kxyVw4ltsWz9+ixeM9rdUtWEy8dSSI3JReuooe3AOtYPVJTaLb3rTpgwgaFDh6JSqVCpVAQEBPzrvkaj0WLBCSGEEKLs0gvTeX7X8xxKMg/bHhU2ikltJqFVay3Wxqurz5BbZKB5kAdjutS12HErmmIykfLuu2R8Yb5I4nHXXQS+9iqqipzjXBH+PJz/4gaIOwL8qa63a4A5sWw8EOr2APuqfTGnynP1h7u/gpYPwJop5tEYy+4xL1I44C1wq2bz2hMiYfloUIzQ4n7o9eJNn1KQo+PQ6igAOg6th6OL5d7fbmedRtQnJSaHxMvZrP/0FCOnt0Xr8O9z341GEwd/Nf8eWvWrjZNbNXvvrCZuKfl/9dVXue+++7h8+TJ33nknX331FZ6enlYOTQghhBBldSL1BFN2TCGlIAUnOyde7/I6A+oMsGgbm88ms+5UEhq1ijeHh6NRV82RgaaiIhKmv0Duxo0A+D77DN4TJlSfkY43G84f2AIaDYTGAyCghW2GvIv/1rAfPHkAts+FAwvhzCq4vA36vWaeOlEdfmdZ1y9s6PPNI06GfAQ3+RtUTArbvj2HrsiIX4gboV2q/nojlYVGoyZifDOWzzlMRkI+25ecp9/YsH99Xzy3J4Hs1EKc3LS06PPfCzMK27nl8VZNmjShSZMmvPLKK9x99904O8uVYCGEEKKyURSF5ReWM+/wPAwmA3U96vJBzw+o52nZobC5RXpm/XoagHHd6tK0ZvlqQtuKISODuIlPUHjiBCqtlsC5c/AYMsTWYZXfrQznbxQBjQaAuyRMVYK9C0TMgeb3wG/PQGIkrJkEJ36AIR+CXxNbR1h2hZmwZCTkJYNfU7jnW7C7ec/xsU3RRJ9OR6NV0+vhUNRV9AJkZeXi4UDE+Gb88v5xLh1OJqCeB817Bf1tP32xkcNrrwHQdlBdKbFYiZX6N/PKK69YIw4hhBBClFOhoZDZ+2ezOmo1AP1C+jG7y2xctC4Wb+udjRdIzC6itpczk/o0svjxK0JxVBSxj09AHxuL2sODoI8/wqV9e1uHVT4mI+z90NxDbNL/sV2G81cfgS1g/DY49BlsnQ2xB2BRV+g6GbpNNS9aWJUYiuGHhyDtArjVhAd/MldmuIn4i5klw8y739eoypaUq+xqNvSk8/D67F1xmb0/XcK3thuB9W/8/ZzYGktBjg53H0eadpOLiZXZLSX/rVq1uuWhb8eOHStXQEIIIYQovdicWCbtmMTFzItoVBomt5nMqLBRVhm6fjQ6k28PRAMw565mONlXvRrI+YcOEff0M5iys9EGBxP86ac41Ku6axYAkB0Pqx43D/EHc+m8xoPNSX9gy+oxNFyYqTXQcSI0uQPWTTOP8Ng137ww4B0fQN1uto7w1phM8MsTEL0HHNzNib/HzStrFOTo2PTFGRQFGncMILRzYAUEe/tq0SeY5Ks5XD6awsbPTnHPS+1xdjePzCjK03N8k/n/QYeh9dDYyftMZXZLyf+wYcOsHIYQQgghyupa9jUe2fAI6UXpeDl68U6Pd2gX0M4qbekMJl5ceQpFgeGta9Gt4a2VgKpMcrdsIW7yFNDrcWrRgqCFn2Dn5WXrsMrn7G/w29NQlAVaFxg0H1o+eNM506KK8wyG+38wVwFYPx3SL8M3d0DLh6D/bHNJw8ps2+twegWo7cxD/QOa3fQpJpPC5i/PUJCto0agCz3ub1x91ueopFQqFb0ebkJ6fB6ZSQVs+vw0dz7bErVGzZEN19AVGfEJdqVhm2q2AGU1dEvJvwz1F0IIISqnuNw4Ht30KOlF6TSu0ZgFfRbg72K9D2Cf7brCheRcvFzsmTk4zGrtWIsxL5/EWa+AXo9bRAQ135qH2rGKDZP+M10+bHwRjn5tvl+zFYz4Arzr2zQsUYFUKmg6DOr3gi2vwZEvIHKJeTTAgDch/O7KeRHo8Bew533z93d+bI7/FhxZd42485nY2asZML7Zf65ALyzH3tGOgRPC+enNI8RfzOLAL1E061mLUzviAOg0rD4qWXOh0ivTuIysrCw+//xzZsyYQUZGBmAe7h8fH2/R4IQQQgjx75Lykxi3aRwpBSnU96jPZ/0/s2riH5Wax0fbLgPw8h2heLlUvVJOGV9+iTEjA/uQEGq983bVTvwTT8JnPa8n/iroMgnGbpLE/3bl6AF3vGc+B3xDoSANVo6HJcMh46qto/uDvhA2vWyergDQ6yVzKcNbEHsug8Nrza+l54NN8Kpp+fVMxL+rEeBC71GhABzfHMP6RacwGRRqNfYkOKySjzIRQBmS/5MnT9KoUSPeeust3nnnHbKysgBYuXIlM2bMsHR8QgghhPgHqQWpjNs0jvi8eGq71WZx/8V4OVrvw5eiKMxYeQqdwUT3Rr4Ma3nzebmVjSE1lfSvvwbAd/JkVNoqWg/cZIL9C+DzPpB2EdwCYdQv5rJvt7BCuqjmaneAx3dB75dB4wBXtsEnHWHn26Avsm1sMdcXJ9z3ESgmaP84dH/ulp6an1XM5i/PgAJhXWvSuEOAlYMV/6RBGz9a9jWX8kuLNVcR6TSsgUy9qCJKnfxPmTKFRx55hEuXLuH4p6vlgwYNYteuXRYNTgghhBB/l1GUwfhN44nOiaamS02+iPgCX2frzr1ffiSWg1czcNSqmTOsWZX8oJf6yScoBQU4Nm+OW0R/W4dTNrnJsHSkeai/UWde0G/CXnPpPiF+Z2cP3afBE/uhbncwFMH2N8wXAS5trvh4dPmw/gX4coB5XQK3QPNaBYPm39KUBJPRxMbPT1OYq8c7yJVu9zSsgKDFv+l0V31qNvQEoH4rX/zruts2IHHLSl3q7/Dhw3z66ad/216rVi2SkpIsEpQQQggh/ll2cTaPb36cK9lX8HP24/OIzwlwsW4PWEpuEXPWngNgSr9GBHtVvTJxxVevkrX8JwD8pk2tkhcvuLgJfploHs5t5wgRc6Ht2Mo5n1tUDt71YdRvcPpn2PgSZF41Xzxqcof5/KkRYv0Yru6G356CzGvm+y0fgog54OR5y4c4uPoqiZez0TpqGDC+GXZVsMJIdaLWqBk0MZyLh5Jp2E4W+atKSp38Ozg4kJOT87ftFy9exNe36q34K4QQQlQVebo8Jm6ZyPmM83g5evF5/88Jdgu2eruvrz5LTpGBZrXcGdulapbDS33/AzAace3RA5f27W0dTunoi2DzLDh0vfPFv5l5UT+/JraNS1QNKhWEjzSXfNwxDw4ugvNr4PJW6D4VOj8Ddg6Wb7c4Fza/Yl6AEMA9CO78EBr0LdVhrp1K49gGcym53g+H4ulf9S4+VkcOzlrCewbZOgxRSqUe9n/nnXfy+uuvo9frAXPph5iYGKZPn86IESMsHqAQQgghoEBfwJNbn+RU2ik8HDxY3H8xdT2sn4hvO5/MmpOJaNQq5g1vjp2m6tVwLoyMJHfTJlCr8Z06xdbhlE7KOVjc+4/Ev+MTMG6rJP6i9BzczD3uE/ZAnW5gKIRtv08F2GLZtq5sg086/5H4txljnoJQysQ/N6OILV+fBSC8ZxAN2vhZNk4hbjOl/g/+7rvvkpeXh5+fH4WFhfTo0YMGDRrg5ubGnDlzrBGjEEIIcVsrNhbz7PZnOZZyDDetG5/2+5RGNRpZvd28YgMzV50G4NGudWlWy8PqbVqaoigkv/MOAB7DhuHYyPo/N4tQFDi02Lyaf8oZcPGFB1eYS7dpq3CFAmF7fqEwerV59IhrAGREwdIR8MODkBVTvmMXZcNvT8N3d0F2DHjWNk87GPIBOJZuXrjRYGLj4tMU5xvwC3Gjy4gG5YtNCFH6Yf8eHh5s3ryZPXv2cPLkSfLy8mjdujV9+5buSp4QQgghbk5v1DNlxxQOJB7Ayc6JT/p+QlPvphXS9jsbL5CQXURQDScm9a2aC2zl7dhB4ZGjqBwc8H36KVuHc2vy081zpC+sM99v0BeGLQRX6fUUFvL7VICG/WHnW3Bg4Z+mAkyDzk+XfirAxU2w+lnITTDfb/849JkFDq5lCnH/qiskX83BwdmOiPHN0Gir3qgjISqbUif/RUVFODo60rVrV7p27WqNmIQQQggBGEwGpu+ezq64XThoHFjQZwEt/VpWSNuRsVl8s/8aAHPvCsfZvtQfGWxOMRpJfe89ALwefghtYKCNI7oFV7bDqgmQlwQae+j3ujmJUkviI6zA0d08FaDlg7DuOYjeA9tmQ+Qy80r8tzJMvyDDXH3ixPfm+171YOgCCOlc5rCijqdyYmssAH1Gh+Lu41TmYwkh/lDq/+Senp60b9+eHj160KtXLzp16oSTk/xBCiGEEJZkNBmZuXcmm6M3o1Vr+bDXh7QLaFchbeuNJl74+SSKAne1qkX3RlVzQd/sX36h+NJl1B4eeI8fb+tw/lt+Oux+Bw58Yr7v0xhGfgEB4baNS9we/MPgkTVwagVsegkyrsCSERA6BCLeBM9/WVj03BpYOwXykkGlNq9J0eslsC/7onzZqYVs/dZcXaRl32Dqtqia7z9CVEalTv63bNnCrl272LFjB++//z4Gg4G2bdvSo0cPevbsSb9+/awRpxBCCHHbMCkmZh+Yzdqotdip7Hi3x7t0qdWlwtr/bFcU55NyqeGsZebg0Apr15JMRUWkfvQxAD6PP47Go5KuV5AdB/v+B8e+AX2BeVvbsdB/TrkSKCFKTaWC5nebqwL8PhXg3GrzYoA9noNOT/0xFSA/HdY/Zy4hCODTCIZ+AsHlu0Bp0BvZuPg0ukIDAfXc6XhX/XK+KCHEn5U6+f99uP+LL76IwWDg8OHDfPrpp8yfP5958+ZhNBqtEacQQghxW1AUhXmH5vHzpZ9Rq9S82f1NetXuVSFtp+cV886mi/xw2Lzo18zBYXi7WqEEWAXI+O47DMnJ2NUMpMaDD9g6nL9LuwR7PoCTP4LJXEGJwJbmXtNG/W0Zmbjd3TAVYBpE74Wtr8PxpTDobSjOgbXToCANVBro8iz0mG6RhSj3rrhMakwuji5a+o9rhqYKVhcRojIr0wS+ixcvsmPHjpJbcXExd9xxBz179rRweEIIIcTtQ1EU3j/6Pt+f/x4VKmZ3mc2AOgOs3q7BaGLJgWje23yRnCIDAPe3r83w1rWs3rY1GDIzSf9sMQC+zzyD2qESXcBIiIQ978HZ3wDFvK1ON+g2Ber1Mve+ClEZ+IfBI2vh1E+waeb1qQDD/3jcrykMWwA1W1mkuUuHkzm9Mx6AvmPDcPOSqhZCWFqpk/9atWpRWFhIz5496dmzJ9OnT6d58+ao5J+VEEIIUS4LTyzkqzNfAfByp5e5s/6dVm9z3+U0Xlt9lgvJuQCEBrrz2p1NaV/Xy+ptW0v6p59hys3FoXFjPIYMsXU45rJ90Xth93twZesf2xsPgq5Tyj1UWoh/k59VzJ4Vl4i/kImdvQZ7Rzvsna5/ddSgdbIr+f7Gx+zQXv/eofZQtOP7ot33NqpDn5ovUHWbCt2mgZ29ReLMTMpn+5LzALQZGEJIU2+LHFcIcaNSJ/++vr6cP3+epKQkkpKSSE5OprCwEGfn0s9LW7hwIQsXLuTatWsANG3alFmzZjFw4EDAXFlg6tSp/PDDDxQXFxMREcEnn3yCv79/yTFiYmKYOHEi27dvx9XVldGjR/Pmm29iZ/fHS9uxYwdTpkzhzJkzBAcHM3PmTB555JEbYlmwYAFvv/02SUlJtGjRgo8//pj27duX+jUJIYQQZfHFqS9YeGIhANPbTefuRndbtb24zALmrjvHulNJANRw1jItojH3tauNRl11L+jr4uLJXLoUAL9pU1FpNLYLRlHg4kbY/S7EHTJvU2nMJda6TDL3rAphBYpJ4ezeBPatvIKu0HB9q758B1X1w94hAjdPO/zjfQg4lEZAPQ88/Z3L1Qlo0Jnn+euLjdRs6En7O+qWL04hxL8qdfIfGRlJVlYWu3btYufOnbz44oucPXuWli1b0qtXL+bMmXPLxwoKCmLevHk0bNgQRVH45ptvGDp0KMePH6dp06ZMnjyZtWvX8tNPP+Hh4cFTTz3F8OHD2bt3LwBGo5HBgwcTEBDAvn37SExMZNSoUWi1WubOnQvA1atXGTx4MBMmTGDp0qVs3bqVcePGERgYSEREBAA//vgjU6ZMYdGiRXTo0IEPPviAiIgILly4gJ+f1NQVQghhXUvPLeWDYx8A8GzrZ3ko7CGrtVWoM7Jo5xUW7bxCscGEWgUPdwxhcr9GeDpbphfPltI+/ghFr8e5Y0dcbFWS2GiAs7+Ye/pTzpi3aRyg1UPQ5RmoUcc2cYnbQlZKATuWnCf+YhYAfiFudB7RAI1Wjb7QiK7IYL6VfG/+qi/843vdX/ZTTAoooCsykZ6kIz0pgbN7EgBwcLEjoJ4HAXU9CKjnjl8dd+wdbz3F2PXjRdLj83Fy09J/XFPUMs9fCKtRKYqilPXJ6enp7Nixg19//ZXvv/8ek8lU7gX/vLy8ePvttxk5ciS+vr4sW7aMkSNHAnD+/HlCQ0PZv38/HTt2ZP369dxxxx0kJCSUjAZYtGgR06dPJzU1FXt7e6ZPn87atWs5ffp0SRv33XcfWVlZbNiwAYAOHTrQrl07/ve//wFgMpkIDg7m6aef5oUXXriluHNycvDw8CA7Oxt3d/dy/QxE+ej1etatW8egQYPQarW2DkcIq5LzvepbcXEFr+1/DYDHmz/OU62esko7iqKw/nQSc9aeIz6rEICO9bx4ZUhTQgOrxv+tm53vRefPc/Wu4aAo1PnpJ5zCm1VwgEVwYhns/RAyr5m32btBu7HQ8Ulw8//Ppwvxu7K8t5uMJiK3xHJozVWMehN29mo63FmP5r2DUZdjNI+iKBj1JvOFgUIDGYn5JEVlkxSVTUp0Lka96Yb9VSrwDnI1Xwyob74g4O7j9I+jA87vT2TrN+dABUOfbUlQk6o73UiUnXyWKZ/S5KGl7vlfuXJlyUJ/Z8+excvLi65du/Luu+/So0ePMgdtNBr56aefyM/Pp1OnThw9ehS9Xk/fvn1L9mnSpAm1a9cuSf73799PeHj4DdMAIiIimDhxImfOnKFVq1bs37//hmP8vs+kSZMA0Ol0HD16lBkzZpQ8rlar6du3L/v37//XeIuLiykuLi65n5OTA5hPXr2+nMOqRLn8/vOX34O4Hcj5XrVtjtnM6/tfB+Dh0Id5rOljVvldXkzOZfba8xy4mglAoIcjMwY0YkBTf1QqVZU5f252vie//TYoCq4DBmDXpHHFva7iXNTHv0F94BNU+SkAKM7emNo9hqnNo+DkyfXAKyYeUeWV9r09LTaPncsukh6XD0CtJp50u7ch7j6OGI0Gyl2MSwVaJxVaJy0uXp4EN/UEwGgwkR6fT/LVHJKv5pByNZe8zGLSYvNIi83j9C7zAn5Oblr86rjjX9cN/7ru+NZ2JSetiB3LLgDQdlAI/vXdqsx7kbAs+SxTPqX5uZU6+Z8wYQLdu3fnscceo0ePHoSHh5f2EDc4deoUnTp1oqioCFdXV1atWkVYWBiRkZHY29vj6el5w/7+/v4kJZnnJyYlJd2Q+P/++O+P/dc+OTk5FBYWkpmZidFo/Md9zp8//69xv/nmm7z22mt/275p06YyrX8gLG/z5s22DkGICiPne9WTZcri45yPUVDoYN+BRgmNWJ+43qJtFBhgfayaPUkqTKjQqhR611LoWzMPJeYY62Ms2lyF+afz3enyZYL37kPRaDjVPJxj69ZZPxDFRP2UDTRKXo3GaE66CrVeXPYbRLR3D4w5DrB9n/XjENXWzd7bFSPkXLYn96o9KCpUWgXPJkVQK5c9h2IrKMrr/MHTH9yKVBRnatBlXb9lqynM1RN9Kp3oU+nmfVUKKg0oBhUOPgYSjadZt+70fx9fVHvyWaZsCgoKbnnfUif/KSkppX3Kf2rcuDGRkZFkZ2ezYsUKRo8ezc6dOy3ahjXMmDGDKVOmlNzPyckhODiY/v37y7B/G9Pr9WzevJl+/frJ0CFR7cn5XjWZFBNPbn+S4pxiwr3D+bjfx9ipy1R99x8ZTQo/HY3nvS2XyCww9whEhPnxwoDGBNVwslg7Fe3fznfFZCLu/gcoBjzvvZd+Dz9s/WCKc9H89gTqBPMFG8W7AcZOz2DXbCRNNPY0sX4Eohq7lff2hEtZ7Pr+ErmpRQDUa+VD55H1cXavXGt3GPQm0uPySI7KIflaDslRuRTk6FAM4Oxhz4gpHXByq1wxi4oln2XK5/cR6LfCcp80ysje3p4GDRoA0KZNGw4fPsyHH37Ivffei06nIysr64be/+TkZAICAgAICAjg0KFDNxwvOTm55LHfv/6+7c/7uLu74+TkhEajQaPR/OM+vx/jnzg4OODwD3WDtVqtnLSVhPwuxO1Ezveq5fvz33Mw6SCOGkfmdpuLk4PlEvIj1zJ45bcznEkwfxho6OfKq3c2pUsDH4u1YWt/Pd+z166l+OxZ1C4u+D31JHbW/ltIvQA/PAjpl0BjDwPfQtV6NHZqG1YWENXSP723Fxfo2bfySsmCey4e9vR4oDF1W/jaIsSb0mohqJEDQY3M5fsURSE3o4i0mDx8Q9xw83K0cYSispDPMmVTmp9ZpVtO02QyUVxcTJs2bdBqtWzd+kc93AsXLhATE0OnTp0A6NSpE6dOnbphNMLmzZtxd3cnLCysZJ8/H+P3fX4/hr29PW3atLlhH5PJxNatW0v2EUIIISwlOiea9468B8CkNpOo41HHIsdNzili0g/HGbloP2cScnBztOOVIWGse7ZbtUr8/0rR6Uj94EMAvB4di52XlRcMO7caFvc2J/7utWDsBmg7FiTxFxUgKjKVZa8dLEn8m3aryf2vdqy0if8/UalUuHs7Ua+VryT+QlQwm/b8z5gxg4EDB1K7dm1yc3NZtmwZO3bsYOPGjXh4ePDoo48yZcoUvLy8cHd35+mnn6ZTp0507NgRgP79+xMWFsbDDz/M/PnzSUpKYubMmTz55JMlvfITJkzgf//7H88//zxjx45l27ZtLF++nLVr15bEMWXKFEaPHk3btm1p3749H3zwAfn5+YwZM8YmPxchhBDVk9Fk5KU9L1FkLKJDQAfub3K/RY4bn1XIyIX7SMwuQqWC+9oFM61/Y7xd/z5CrbrJ/OFH9LGxaHx98H7kEes1ZDLC9jmw+13z/TrdYORX4Fp1ki5RdeVnF7P7x4tcOZYKgKe/M70eakzNhjVsHJkQoiqxafKfkpLCqFGjSExMxMPDg+bNm7Nx40b69esHwPvvv49arWbEiBEUFxcTERHBJ598UvJ8jUbDmjVrmDhxIp06dcLFxYXRo0fz+uuvl+xTt25d1q5dy+TJk/nwww8JCgri888/JyIiomSfe++9l9TUVGbNmkVSUhItW7Zkw4YNf1sEUAghqotiYzGXMy9zNuMs59LPcS79HMkFyTzf7nkG1B1g6/Cqra/PfM2J1BO4aF14vcvrqFXlH4CXnlfMw58fJDG7iHq+Lnx4byvCgzwsEG3lZ8zLI23hQgB8n3wKtbUW3C3IgJ/HwZXrowQ7Pgn9XgeNzWdPimpOURTO7k1g38+XKS4woFKraNW/Nu0G18FOK6NNhBClY9P/Wl988cV/Pu7o6MiCBQtYsGDBv+4TEhLCupus6NuzZ0+OHz/+n/s89dRTPPWUdWorCyGELRXoC7iYeZGz6Wc5l2FO9K9kXcGgGP627wu7X0Cr0dKndh8bRFq9Xcy8yIJI8/+z6e2mU9O1ZrmPmVuk55GvDhOVlk8tTyeWjutAoEfVXdCvtNK/+AJjZib2dergOXKEdRpJOmWe358VDXZOcOfH0Pxu67QlxJ8YClSs+99p4i9mAeBb241eDzfBN9jNtoEJIaqsciX/8+bNY8KECX8rxyeEEMI2cnQ5XMi4cEOifzX7KgrK3/b1dPAkzDuMUK9QQr1D2RG7gzVRa3hu53N83PtjutTqUvEvoJrSG/W8uPtF9CY9PYN6MqzBsHIfs0hv5LFvj3IqPhsvF3u+fbT9bZX461NSyPj6GwB8p0xGZWeF/oyTP8FvT4OhEDxD4L6lEFC+EsdC3ExxgZ5jm6JJ3u2CYspCo1XTfkhdWvYJRq2pdMt1CSGqkHL9p5w7dy733HOPJP9CCGEjJ1JPsLNoJzv37OR85nlic/+5rrOfkx+h3uYkP9QrlDDvMPyd/VGpVCX79KndB51Rx6boTTy7/VkW9l1Iu4B2FfVSqrVFJxdxIfMCng6evNL5lRt+7mVhMJp45vvj7I9Kx8Vewzdj2lPf19VC0VYNaf9bgFJYiFPLlrhdny5oMUY9bJ4FB65PNazfB0Z8Ds5WXkxQ3NaKCw2c3BZL5JZYdIUGQEXNhh70ejgUTz8rTWkRQtxWypX8K8rfe5KEEEJUjO/Ofsf8w/PNd2L+2F7LtVZJb/7vX32cbr7au53ajnnd5lFsLGZn3E6e3Poki/svpoVvCyu9gtvDqdRTfHHKPM1tZseZt/S7+C+KovDiqlNsOpuMvZ2axaPb3jZz/H+ni7pK1s8/A+D33LRyX0y5QV4q/PQIRO8x3+82FXq9JKv5C6vRFRk4uS2OyC0xFBeYp2PVCHRG5Z/O4LFdsbe3t3GEQojqotxj5Cz6D1cIIcQtOZl6sqRcXBO7JkQ0i6CZXzNCvULxcCh7IqjVaHm357s8tfUpDiQeYOLmiXwR8QWh3qGWCv22UmQo4sU9L2JUjAysO5CIOhE3f9JNzNtwnuVH4lCr4OP7W9G5fvUt4/dv0j/6CIxGXHv3xrlNG8sdOO4oLH8YcuLB3hXuWgShQyx3fCH+RFdk4NSOOCI3x1KUrwegRoAz7e6oS0h4DdZvWC+fs4UQFlWq5L9Xr143vAkVFhbywAMP4OT0xxzDbdu2WS46IYQQf5NdnM1zO5/DoBjoV7sf3bO7MzhsMFqt1iLHd9A48GGvD5m4ZSLHUo7x+ObH+WrAV9T3rG+R499OPjz2IddyruHr5MtLHV4q9/EW7bzCpzujAJg3ojkRTQPKfcyqxvFaNPlbt4Jajd+UyZY78LFvYe1UMOrAu6F5fr9vY8sdX4jr9Dojp3fEc2xTNEV55qTf09+ZdoPr0KCtP2q1Cr1eb+MohRDVUamS/0f+VD9XURT279/P8OHD8fPzs3RcQggh/oGiKLy892US8hMIcg1iZvuZ7N6y2+LtOGudWdBnAeM2jeNM+hnGbRrH1wO+JsQ9xOJtVVeHEg+x5NwSAF7t/Gq5RmQA/Hg4hnnrzwPw4qAm3NM2uNwxVjWKouC73lzhx2P4XTg0aFD+gxqKYf10OPqV+X7jweYef0f38h9biD8x6Iyc3hXPsY3RFOaak3t3XyfaD65Dw3b+spifEMLqSpX8jx49+ob7Tz/9NCNGjKBevXoWDUoIIcQ/W3puKdtjt6NVa3mn5zu42Vuv5JOrvSuf9vuUsRvHcjHzIuM2jeObAd9YpERddZeny+PlvS8DMKLhCLoHdS/X8TacTmLGylMATOhRn8e6356jMPK378DpWjQqR0d8n366/AfMSYDloyDuMKAyz+3vNhXUkoQJyzHojZzZncCxDdEU5OgAcPdxpO2gujTuIEm/EKLilGvOv8xDEkKIinM67TTvHn0XgGltp9HUu6nVh4Z6OHjwWb/PeGTDI1zLuVYyAsDPWUZ8/Ze3j7xNQn4CtVxr8Vy758p1rH2X03jm++OYFLi3bTDTB9yeQ9EVg4H0Dz4AwPOhB9H6+5fvgNH7zYl/fgo4esCIL6ChhasGVAOFuTrO7EmgTrgPPkG3V0WJ8jLqTZzdm8DRDdHkZxUD4OblSNvBdWjcMQCNJP1CiAomq/0LIUQVkKPLYdrOaRhMBvrW7sv9Te6vsLa9nbz5vP/njN4wmtjcWMZvGs9XA77Cy1HKnv2TXXG7WHlpJSpUzO4yGxetS5mPdTIui/HfHkFnNDGgaQBz7mp2W114V4xGCk+cJG/HDvK2b0d/9SpGZ2c8x44t34FPLodfJoLJAH5N4b4l4CWjGP/J9iXnuXoijYO/RdG4QwDth9TF3dvp5k+8jRkNJs7tS+To+mvkZZqTftcaDrQZWIfQzoFo7CTpF0LYRrmS/7Nnz1Kzpgz/FEIIa1IUhVf2vkJ8Xjy1XGvxWpfXKjwB9Hfx5/P+n/PIhkeIyo7isU2P8UXEF+Wex17dZBVl8cq+VwB4KOwh2gW0K/OxLqfk8chXh8nXGelc35sP7muJ3W3QU2jMySF/zx5yd+wgf9dujFlZfzyo0ZBy5xAau5Vjukv6FVj9rDnxbzYC7vwY7Mt+gaY6S4/P4+qJNPMdBS4cSOLSkWTCewTRZmAITq5Sgu7PFJPCuf2JHFl7jdyMIgBcPOxpM7AOYV1qotFW/79fIUTlVq7kPzj49ltsSAghKtr3579nS8wW7NR2vNPjHdztbbMQWZBbUMkFgAuZF3hiyxN81v+zcvVsVzdzDs4hrTCNeh71eKbVM2U+TkJWIaO+OEhGvo7mQR58NqotjtrqWWdeURR0V6+St30HeTt3UnD0KBiNJY+r3d1x7doV1149cejYkYv79pW9MZPR3OOvL4C63WH45zK//z8c2xgNQP3WvrTqH8L+VZeJv5DFia2xnNubQKuIEFr0DkbrUD3PzdLat+oKkZtjAHB2t6fNwBDCutbErpr+7Qohqp5yJf9CCCGs62z6Wd458g4AU9tMpZlPM5vGU8ejDov7L2bMxjGcTDvJk1ufZGHfhTjZyTDgDVc3sOHaBjQqDXO6zsHRzrFMx8nI1/HwFwdJyC6inq8LXz3SDleH6vXv2qTTUXD4MHk7d5K3Yyf6mJgbHrevXx/Xnj1w69kTp1atUNmZX3+517jY9zHEHgR7Nxi6QBL//5CdWsilw8kAtBlQB9/abgyd1IrYsxns/+UKabF5HPw1ilM74mh/R11COwfe1gvXnd+fWJL4dxxWjxa9g7Gzl6RfCFG5VK9PE0IIUY3k6nKZtnMaepOe3sG9eTD0QVuHBEDDGg35tN+njNs4jqPJR5m0fRIf9/4Ye83tOwQ4tSCVNw6+AcC48HFlvkiTV2xgzFeHuJKaT00PR5Y82gFvVwdLhmozhtRU8nbtIm/HTvL37sVUUFDymEqrxbl9e1x79sS1Zw/srTGyMPkMbJ9j/n7gPPCsbfk2qpFjm6JRFKjd1Bvf2uZpFiqVitpNvQkO9eLSkWQO/BpFbnoRO5ZeIHJLLB2H1qNeK9/bal0KgKSobLYvNZfhbDuoDm0G1LFtQEII8S8k+RdCiEpIURRe3fcqsbmx1HSpyetdXq9UH6ibejdlYd+FPLb5MfYl7GPqzqm81/M9tGqtrUOrcIqi8Or+V8kuzibUK5THmz9epuMUG4w8/t0RTsRlU8NZy7ePdqCmZ9UeUaEYDGR8+x0569dTdOrUDY9pfH1w7WHu3Xfp1Am1ixWnjxh0sGoCGHXQaAC0rBwX0iqrvMxizu9PBKDNwJC/Pa5Sq2jUPoD6rfw4vTueI+uukZVcwIbPTuNXx53Ow+tTq1GNig7bJvIyi1i36BQmg0LdFj60v6OurUMSoso5vv43otesYk92Ks17R+AdJFPLrUWSfyGEqISWX1jOpuhN2KnseLvH25VyYb2Wfi35uPfHPLHlCXbE7uDF3S8yr9s8NOrba6jrqsur2BW3C61ay5yuc9BqSn8BxGhSmPRDJHsvp+Nir+HrMe1p4Ff1y6qlLVxE2oIFJfcdmzW73rvfE8ewUFQVNex+19uQdBKcasCQj6ASXUirjCK3xGAyKNRs6EnNBp7/up9Gq6ZF72BCOwVyfEsMkVtiSbmWwy/vHSekmTcdh9Wv1uUB9Toj6xaeojBHh3ctF/qOCUOllnNLiNJIuRbFnu+/QTGZOLb2F46t/YXARk1o1rMfjTt1w8HZ2dYhViuS/AshRCVzPuM88w/PB2BSm0k0921u44j+XYfADrzf632e3f4sG65twEHjwOtdXketqlxzfzOLMtlwbQNatZYWvi2o71nfIjHG58Xz1qG3AHi61dM0rNGw1MdQFIWZv5xi/ekk7DVqPhvVlhbBnuWOzdYKT5wgbdEiAHwnPYvH8OFo/fwqPpD4o7D7XfP3g98DN/+Kj6EKKczTcWZ3PABtBvy91/+f2DvZ0WFIPZp1r8WRddc4uzuB6NPpRJ9Jp3H76+UBfar2KJa/UhSFbd+eIzUmF0dXLYMmNsfeUT5WC1EaJpORzYv/h2Iy4eQfSEDNIK6dOErixfMkXjzP9m8+o1GHLjTr1Y+g0Nur1K213NK71PDhw2/5gCtXrixzMEIIcbvL0+Uxbec0dCYdPYN6MipslK1DuqnuQd2Z330+03ZO49crv+Jo58hLHV6qFP+kL2deZsm5JayJWkOxsbhku5vWjea+zWnh14IWvi1o7tMcV/vS9VCaFBMz98ykwFBAK79WZf5dvb3xAt8fikWtgo/ub0mXBj5lOk5lYiooIOH56WA04j54MD4TJtgmEH0hrJoIihGaDodmt/555nZ1clscBp0J39puBId5leq5Lh4O9Li/MS16B3PwtyguH03hwsEkLh2tfuUBj66P5vKRFNRqFQMea1btLm4IURFObF5P0uWL2Ds549+pF0NG3k1xXi5nd23j9I4tZCbEcXbXNs7u2oanfyBNe/alaY8+uHlX/f+TtnJLyb+Hxx/DTRVFYdWqVXh4eNC2bVsAjh49SlZWVqkuEgghhLiRoii8vv91onOiCXAJ4I2ub1SKBPpW9Avpxxtd3uClPS/x44UfsdfY83Srp21SBcCkmNiXsI/vzn7HvoQ/ysKFeoXiZu/GqbRT5Opz2Zuwl70JewFQoaJhjYa08G1BS7+WtPRtSbBb8H/+/JedW8aR5CM42TnxRpc3yjTd4eu9V/lkxxUA5t4VzoBmgaU+RmWUPH8+uuho7AICCJj1su0C2fYGpF0AV38Y/K7t4qgidIUGTm6PA8xz/cv6/uPp70zE+Ga06p/DvpVXiL+QWVIesEWfYOo098EnyLXKVgeIikzl4G9RAHS/v9Fts76BEJaUm5HGnu+/AaDzPQ8Rp1cAcK3hRfuhI2l35wgSL53n9PbNnN+3m6zkRPb++B17ly+hTvNWNOvVj/ptO2Knvf3WGiqPW0r+v/rqq5Lvp0+fzj333MOiRYvQaMwfdIxGI0888QTu7rapPS2EENXBiksrWH9tvXmef/fKOc//vwypP4RiYzGv7X+N785+x4qLK+haqyt9a/ele1D3Uvesl1ahoZDVV1az5NwSrmZfBUCtUtM7uDcPhT1Ea7/WqFQqDCYDlzIvEZkaSWRKJCdSTxCfF8/FzItczLzITxd/AsDL0YsWvi1KLgg09W5aUr4vKjuKD459AJhLMNZ2L/3K8Qej0pm99hwAzw9ozH3tq8fq83k7d5L1w48A1HxzLhoPG53H1/bC/uvrDdz5MTiXrhf7dnRqZxy6QgM1Apyp18K33MfzC3Fn6KSWxJ7LYP8qc3nAw2uvcXjtNbQOGgLquRPYwJPABp7413VHWwVK46XH57H5q7MAhPcMomm3WjaOSIiqaftXn6ErLCSwQWPC+0QQt2HDDY+rVCpqNgqlZqNQeo1+jIsH93J6x2bizp7m2oljXDtxDEdXN0K79qRZr3741alno1dStZR6ctKXX37Jnj17ShJ/AI1Gw5QpU+jcuTNvv/22RQMUQojbwYWMCyVzx59p/Qwt/VraNqAyGtloJBqVhkUnFpGQn8Dm6M1sjt6MVq2lc83O9A3pS6/gXha9sJGcn8z3579nxaUVZBdnA+CidWF4w+E80OQBgtyCbtjfTm1HqHcood6h3N/kfsBcqu9E6gkiUyKJTI3kbPpZMooy2B67ne2x283PU5mf18K3BUeTj1JsLKZTYCfuaXxPqWNOySniqe+PYzQpDGtZk4k96pfzp1A5GDIzSXhpJgBeo0fh0qmTbQIpzoVfJgIKtHoYGkXYJo4qRK8zcmJrLGCe62+phetUKhW1w7wJbuLFpaPJXDyYTOKVbHSFBmLPZRJ7LhMAtVqFb4gbgQ08qdnAg8D6nji6Vq4evcJcHWs/OYmh2EitxjXocncDW4ckKrH0uBhy0lKp06J1lRnFV1EuHznIpUP7UGs09HvsqZsu/qp1dKRpjz407dGHzKQEzuzYypmdW8jLSOf4htUc37Aa3zr1aNazH6Fde+DkJh3S/6bUyb/BYOD8+fM0btz4hu3nz5/HZDJZLDAhhLhd5OvzmbZzGsXGYrrV6sbopqNtHVK53NXwLoY1GMbZjLNsid7ClugtXMu5xs64neyM24lGpaFdQDv6hfSjd+3e+DiVbe7e6bTTfHf2OzZd24RBMQBQy7UWD4U+xLAGw0o10sDX2Ze+IX3pG9IXAJ1Rx9n0szdcEEgrTONU2ilOpZlL1rlp3cpUglFvNPHE0mOk5hbTJMCNucPDq8UHQ0VRSJo1C2NaGvYN6uM7ebLtgtn0MmRFg0dtiJhruziqkHN7EyjM1ePm7UiDdpZfFFGlVtGoXQCN2gVgMilkJOSTeDmLxMtZJFzOJj+rmOSrOSRfzSFys/k5NQJdCGzgQc0GngTW98DN29FmfytGg4kNn50mN70Id18nBjzWDE0VnbYgrEtRFI6t+5VdS7/GZDTQsH1n+j3+NE6ubrYOrVLQFRWy7UvzYrBt7rgL35C66PX6W35+jYCadL3vYTrf8wAxJyM5tWMLVw7vJ/VaFNu//pRdS74guGlzPAMCcffxw93XHw9fP9x9/XBy96gW/2/Lo9TJ/5gxY3j00Ue5cuUK7du3B+DgwYPMmzePMWPGWDxAIYSozhRFYfaB2VzLuYafsx9zus6pdCvll4VKpaKpd1OaejflmVbPcCXrCptjNrMlegsXMy9yIPEABxIP8MaBN2jl14p+If3oG9KXAJeA/zyuwWRgW8w2vjv7HZGpkSXb2/q35aGwh+gZ1NMipQbtNfbmuf9+LRnddDSKopCQn2C+EJASyeWsy4xpNuam8f6TuevOcSQ6EzdHOxY91AZn++qxQnj2ql/I3bwFtFpqzZ+P2tHRNoFc3gJHr09XHLYAHKUH6GaMBhPHN8UA0DoixOpJrVqtwifIFZ8gV8J7BqEoCrnpRSUXAhIvZ5GZVEBmYj6Zifmc3Z0AgGsNB/M0gfoe1GzoiVegS4WU1lMUhV0/XiThUhZaRw2DJzbH0aVyjUoQlUNhbg4bPnmfqGOHS7ZdOrSPpCuX/s/efYdHUX0NHP/ubja990pCCIRQQ+8d6R1RqoIVBBXpAjaUJgoIUgQVUUBF6b230Ak1QEILpPfet8z7x/KL8toSsptNwv08D7qZ3X/M4GAAAOf/SURBVJk5Cctmztxzz6XX25PxDqpnxOgqhtO/biA7NRk7VzdaDR761MeRyxX4BTfBL7gJ+dlZ3A45QdjxQyQ/fMDDa5fh2l/3MTE1w9bZBVtXN93//3RjwNbFDSs7+/JbgtZISn3F8cUXX+Du7s6XX35JfHw8AB4eHkydOpXJkyfrPUBBEISqbNu9bex5sAeFTMGi9otwMK96jaNkMhkBDgEEOAQwruE4orKiOBylqwi4kXKDy0mXuZx0mYUXF1LPqR5dfbvynO9zT8yjzy7KZuvdrWy6vYm4XF0iYCI3oadfT0bWGUkdpzoG/x68rL3wsvait3/vpz7OjquxrDv9EIDFLwTj52ylpwiNqygmhsS5cwFwefttzOsY9u/jH+Wnw44JusctxkL19saJo5K5cyGBnPRCLO1Mqd2q9De0ykomk2HrbIGtswWBLXVNL/Ozi4i/n1l8QyAlKpuc9ELuXkzk7sVEAKwdzWjZz59azd0NehMg7ESs7gaEDLq9WhdHz6rx71bQr5jwm+xZtoic1BQUSiUdX3od9xo12bPsczIS4tn8yUxaPT+MFoNeQK6Hm9SVUeKDe1zZtwuArq++hdJMPzeJLWxsadyzL4179iXp4QMS7t0hKyWJzKREslKSyUpOJCc9DXVRIWlxMaTFxfztcRQmJti6uGLj7Pr4poAbti6uBLXpUGVuCpQ6+ZfL5UybNo1p06aRlZUFIBr9CYIgPIW76XeZf34+ABMaTaCxW2MjR1Q+qtlW45V6r/BKvVdIyE3g8KPDHHp0iCtJVwhLDSMsNYyll5dSy6EWXX27klGQwfZ728lT5wHgYObAkMAhDA0ciotl2ZuSlZeIhGxmbNFNGRjfqQbP1aka681LGg1x02egzc3FokkTnF59xXjB7JsO2fHgFABdPjJeHJWIVisRuv8RAMFdq2GirBhJiYWNKf7BLvgH6/6Nqwo1JEZmFlcGJERmkZNWyOEfbnPtaAxthwTgWVP/N0+jw9M4tfkuAK0G1MCvvlhiTHiSVqvhwvbfOfPbRiStFgcPL/pMnF7cgG7Ugq848t0qbp06xpnfNhIVdo1eb0955par02o0HFyzHEnSUrtNB/yCmxjkPK5+/n/b/E+jVpGdkkJmciJZKUlkJf/xJzM5kZzUVDRqNenxcaTHxxXvZ2phSVDbjgaJ1RjKVGsokn5BEISnk6fKY/KJyRRoCmjj1YZX6hkxYTIidyt3RtYZycg6I0nJT+Fo1FEOPzrMhYQLxd33/yfAPoBRdUbRq3qv4q77lUVWgYqxG0LJV2loG+DMpOcC/3unSiL1++/JDw1FbmmJ58IFyBRGSh5v7YTrv4JMDgNWg6mlceKoZO5fTiIzKR8zKxPqtvM0djj/SGmmwLu2I961das2qIs0XDsaTej+RyRHZbPtyytUb+hM60EB2Lvp5+8+MzmPA2vCkLQSgS3cadStaqzIIehPbkY6e7/+kqgbVwEIateJrq+9han5H8vcmlpY0nPCZHwbNOLwd6uIuR3Gj9PepvvYdwlo1tJIkZe/K/t3kxR5HzMrKzq+9Fq5n19hosTe3QN7979fUlejVpOTllp8Y0BXNZCETCavUn0CSp38JyYmMmXKFI4cOUJSUhKSJD3xvEaj0VtwgiAIVdXc83OJzIzE1cKVeW3nVYl5/mXlbOHMC4Ev8ELgC2QWZuo67UcdQyFXMKTWEFp6tKyUv4AlSWLK5mtEpuTiZW/BsmGNUJTDPOXyUHD7NsnLlgPgNmsWpt7e/7GHgeQkw+6JusdtJoJPM+PEUclI0h+j/g07+2BqXnn6T5iYKmjSw4+g1p5c2B3JrVOxRF5L4dGNVOp19KJZ7+plmpdflK9mz4rrFOapcfWzpePIwEr5+SMYzqPrV9n79RfkZWZgYmZGl1fGUbdDl398n9Rp3xmPmoHsWbaIxAf32PHFZwR3702Hka9iYmpaztGXr6yUJE7/+hMA7UeMwcq+4k1xVJiYYOfqhp1r1ajK+yel/pQfPXo0UVFRfPDBB3h4eIgPQkEQhFLafm87O+/vRC6Ts7D9QhzNjb/+eHaBikepedTxsEVeARJTOzM7BgQMYEDAAGOHUmarTzzg4K1ETBVyVo5ojKNV1bjI0xYWEjdtGqhUWHftgt2ggcYJRJJ0iX9eKrjVg44zjBNHJfQoLJXUmByUZgrqdzTSjZsysrQ1pePwQOp39OLMlvtE3Uzl+tEYIs4l0LSXH/U7eKNQlu7mqlYrcfD7m6Qn5GFlZ0qvcfUrzHQIwfi0Gg1nftvE+e2bQZJw9vGlz8QZOHn7/Oe+Dh5eDPt0Ead+/pHQ3du4emAPMbdv0ufdaTh5l09lSWFeLqbmFuU2h12SJI58vxpVYQFetetQv1O3cjmv8PdKnfyHhIRw6tQpgoODDRCOIAhC1fQw82HxmvFXk64CMD54PE3dmxolHrVGy7WYDE7dTSHkbgpXozNQayW6BrmxdGgw1maVZwSwIjt9L4VFB8IB+KR/XRr62Bs3ID1KXryEwrv3UDg74zGn9Ese6s31XyF8N8iVMHA1mJgZJ45KRpIkQvc9BKBeB69K373eydOavm83JPpWGqe33CU1NpfTv9/jxvEYWg8KwL+RS4nfo+d33OfRjVQUSjm93mqAlZ14Twk62akp7Fn2ObHhtwBo0KUHHUe/jtK05O8RhYmSjqNexbd+MPtXLiEl6iEb3n+PTqNfp37n7gb5LM3NSCfibAgRZ08RF3ELr9p16Td5Jpa2dno/1/9378JZHoReQK4w4bnXJ1SZxnmVVamv7nx8fP5S6i8IgiA8SStpuZ58vTjhj8yMfOL5ntV78lr98pvzJkkSkSm5hNxL4dTdFM7dTyW7UP3Ea2QyOHw7kcErz/Dty03xcRRzpssiLiOft3++glaCIU28Gdrsv0eFKovcs2dJW78eAI/PPsXE0UjVK5mxsHea7nHHGeBe3zhxVEJxdzJIeJCFwkROwy5V573pU8eRF2o3J/xsPOd3PCArpYD9a8LwCLCjzeCauFX/935VEecTuHxAt+xh55dq4+or+lsJOvdDL7B/5RIKcrIxtbDgudcnULtNh6c+XvXgJrz0+XL2rVjMo+tXOLTmax5dv8pzb0zA3Mq6zPHmZWVy9/wZIs6cJPp2mK5K6rHY8Jv8/MEUBk7/GEdPrzKf658U5uVydN1qAJr3H1xu1Q3CPyt18r906VJmzJjBN998g5+fnwFCEgRBqJwK1AWcjz/PsehjHI8+TmpBavFzJjITmrk3o1O1TnTy6fRU68OXVnpuEafvp3DqTgoh91KIzch/4nk7CyVtApxoG+BCu5rOpOQU8sZPoUQkZtN/xWlWjWhMC38ng8dZFRWqNYzbeJm03CLqetry6YB6VWaanCYri7j3ZwJg/+KL2HTsaJxAJAl2ToDCTPBqopvrL5TYpcej/nXaeFS5kW25XEadNp4ENHHlyqEorh6MIv5eJr8vvETNZm60HOCPrZPFX/ZLiMzk2E+6Sp3GPXyp1az8lz0UKh6NWsWpTesJ3bMdADf/AHq/Ow0H97I3yLSyd2Dw+59wafc2Qn75kTvnQki4f4deb0/FKzCo1McryMnh7sUzRJw5RVTYNSSttvg5j5qBBLZqj6tfdfav+oqMhHh+/mAK/SfPwrtOvTJ/L38n5JcfyUlPw97dgxYDXzTIOYTSKXXy/+KLL5KXl0eNGjWwtLREqXyyTCwtLU1vwQmCIFR06QXpnIw5ybHoY5yJO0O++o8E21ppTTuvdnSq1om2Xm2xMbUxaCyFag2hD9M5dU9Xyh8Wl/nnG/0oFTKa+DrQrqYLbQOcqedl90TjOR9HS3ZOaMPrP14iLDaLkd+d59P+9RjaXNypL605u25xLToDOwslq0c2wbwKzRdOmPMp6oQElL7VcJs+zXiBXPoe7h8FE3Ndd3+FmKpSUomRWcSEpyOXywiuwh3sTc1NaNHXn7ptPTm/4wHh5xO4ezGRB1eSadjFhyY9fDG10L1vctIL2bf6Bhq1Fr8GzrTs99elwoRnT0ZiAnu+WkjCfd1yj4179qPdiDGYKPU3TUYml9Os32C869Rjz7JFZCYm8OvH02k9ZATNBzyPXP7vvz8K8/K4H3qeiDMneXjtClrNH1V9rtVrULt1ewJbtcPWxbV4+/DPvmD7ok9JuHeH3z6bTfdx71KnXSe9fU8A8XcjuHpwLwBdXxtf5ZsaVhZPNfIvCILwLIvKiiou57+SdAWt9MeddXcrdzp6d6RTtU40c2uGUmHYebT3k3M5Gifj9/WhXHyUToFK+8TzgW42tK3pTNuazrSo7oil6b9/7HvYWfDbm62Z8vs19lyPZ8bWG0QkZjOrVxAmCjFPryR+D41h4/koZDJYOjS4Sk2fyNyzh6zdu0GhwOvzz5FbGul7S4+Egx/oHnf9GFxqGSeOSip0/0MAajV3+9sR8KrG2sGcLqPr0KCzD6e33CU2IoPLBx5x+0wczftUp1YLd/atvk5eZhGOnlY890odZBWg8algXHfOhXBg9TKK8vMwt7Km+7iJBl2azyMgkFELlnH42xWEnz7B6V9/IirsGj0nTMLG0fmJ16oKCrh/+QIRZ04RefUSGpWq+Dnnan4EtmpHYKu2OHj8fUm/lb0DL3w4j30rFnP3/Bn2ff0lGQnxtHp+mF6q1DRqNYfWLAdJok77zvjWDy7zMQX9KHXy//LLLxsiDkEQhAotJjuGrXe3cjTqKPcz7z/xXKBDYHE5f5BjULmVd/96MYoZW28gSQpAN8XAxcaMdgG6ZL9tgDOutualPq6FqYKvhzUi0M2GxYfusO70Q+4l5fD18MbYWVTupmCGdjMuk1nbbgAwsUstOgW6/scelYcqMZGET+YA4Pzmm1g0bGicQCQtil1vgyoX/NpB8zeNE0cllRqbQ+S1FJDpStufJS7VbOg/sREPb6RyZss9MhLzOPHzHc5su4+qQIO5lZJe4xpUqiUPBf1TFxVx/MdvuXZIN2rtUas2fd6dhq2z4T/PzSwt6fX2FPwaNubId6uIvnmdH6e9Q49xE6lWvyEPr4QSfvYUDy5fQF1YWLyfg6c3ga3aUbt1uxLPq1eamdN34gxO/byeizu3cPb3TWQmxvPcm++UubLh8t4dJEc9xNzGlg6jXi3TsQT9KtOnW0FBAUVFRU9ss7UVjVEEQahaMgszGb5nOOmF6YBu/n4T9yZ08ulER5+OeFkbrlnOP7kQmcbs7WFIEtS01TKkTRAdAt2o5Watl5sPMpmMd7rUpKarNZM2X+PU3RQGrjzNty81xd+l7I2IqqLMPBVjN4RSqNbSKdCFtzsHGDskvZG0WuLfn4k2Kwvz+vVxHjfWaLHUSDqAPO4cmFpD/xUgOkeXyuUDjwCo0cgFB3crI0dT/mQyGdUbOFOtriM3T8ZxcXckBbkq5HIZPd6oh51L1a+EEP5ZSvQj9i5bRHLUQwCa93+e1i+MRGFSfjeEZDIZdTt0waNmIHu+WkTSw/ts/3wOSjNzVIUFxa+zc3Uj8HFJv4tv9af63S+Ty2k/Ygz2bh4c/m4lt04dIys1mX6TZ2Fh/XRTFTOTEjjz2yYAOox8pVxWFBBKrtTv5NzcXKZPn87mzZtJTU39y/MajUYvgQmCIFQU31z/hvTCdKrZVOOt4Ldo69UWOzPj/TKLTstj7IZQVBqJnnXd6G4TS+/Wvn/pwaIPPet74ONoyRs/XuJBci4DVpxmxYjGtKvpovdzVWZarcTEX68QnZaPj6MFS19shLwKlQ2nb9hI7pkzyMzN8Vy4EJkB3mslkhxOUPzvusfd54HDszVyXVaZyXncvZgIQJMefsYNxsgUCjkNOnkT2MKNWyHxOHlZ4RXoYOywBCMpys/j7JZfuLx3B1qNBgtbO3qNn4RfcBOjxeTo6c2wz77g1KYfuLx3B6rCAmycXKjVqi21W7XDrUZNvVUaNujaA1sXV3YtmU/MrTB+nj2FQTM+xt7do1THkSSJw9+tQl1UiE+d+tTt0EUv8Qn6U+rkf9q0aRw7doxVq1YxatQoVqxYQWxsLN988w0LFiwwRIyCIAhG8yjrET+H/wzArBazaO3V2qjx5Baqef3HS8Vd5BcOqsexw7EGPWc9Lzu2T2jD2J9CuRyVweh1F/mgdxAvt/arMh3sy2r50Xsci0jGzETOqhFNsLOsOtMjCu/dI+nLLwFwnTYVM//qxglEo0KxczxySYW2RlfkjV8yThyV2OWDUUgSVKvrhEs1wzYgrSzMLJU0qsJND4V/J0kSEWdPceLHb8lJ1zUtr9G0BV1ffQtrR+OvdmOiVNLp5dcJatMBrVaLR0AtZAaqdvJr2JhhcxaxdeEnpMfHsmn2ZPpPmY1X7TolPkbE2VM8vBqKwsSErq+PF9cIFVCp3z27du1i5cqVDB48GBMTE9q1a8fs2bOZN28eGzduNESMgiAIRrMkdAlqrZq2Xm2NnvhrtRKTNl8lPCEbZ2sz1r7UFAvT8uki72pjzs9vtGRQYy80WomPd91i5rYwitTa/965ijsWkcTSI3cAmDuwPvW8qk6Jo1RURNy06UiFhVi1a4fDsGHlH0TqfTjyKXzVEHnCNYoUVmh6LwFxUVkqOemFhJ+NB6BpT1ExIQipMdH8/tks9nz1OTnpadi5uTNw+kcMmPpBhUj8/8w9oBaetWobLPH/H+dqfgz/7Evc/APIz87it89mEX76RIn2LcjJ4dgPawBoMfBFHD29DRmq8JRKPfKflpaGv79u+RNbW9vipf3atm3LuHHj9BudIAiCEV1MuMiRqCMoZAqmNJ1i7HBYevgOB24mYqqQ882oJnjaW6D6U4dfQzMzUfDlkIbUdrdh/r5wfr4QxYPkHFaNbIKj1bO5hE90Wh4Tf7mKJMGIFtV4vknVuthJXrGSglu3UNjZ4TH3s/IbxSnMgVs74OpGeHS6eLNkbs9lz1doYlO6UlQBrh6OQquW8Kxpj0eAvbHDEQSjKSrI59yWXwjdsx2tRoOJ0pTmA4bQrN9gsRwdYO3gyIsfLWDP8i+4f+kce5YtIiMxgRYDX/jX3wGnNv1AXmYGjp7eNOv/fDlGLJRGqZN/f39/IiMjqVatGrVr12bz5s00b96cXbt2YW9vb4AQBUEQyp9W0rLo4iIAnq/1PDXsaxg1nt3X41h29B4A8wbVp4mvceamymQy3mhfgwBXa975+SrnI9PovyKE715uRi23iltGnFOoZs/1ONRaCT8nK3ydLPGws0BRhnn5BSoN4zaGkpmvoqGPPR/2LXlpZGWQd/kyqWvXAuA+Zw5KVwN3upYkiDoHVzfAze1QlPP4CRnU6AyNRqCu0Y3Eg0cNG0cVlJ9TxM1TuulBTcSov/CMkiSJu+dPc+zHb8lJTQHAv3EzOo1+E3s3dyNHV7Eozc3pN/l9Tm5YR+ie7Zz+9ScyEuN57vXxKEz+Oq0tNvwW14/sB+C51yeUebUAwXBKnfyPGTOGa9eu0aFDB2bMmEHfvn35+uuvUalULF682BAxCoIglLvdD3ZzO+021kprxjU0blVTWGwmU367BsDr7apXiNHlzrXd2PpWa15bf4motDwGrjjNsmGN6BLkZuzQnpCQWcC6M5FsOh9FdoH6iedMFXJ8HC0e3wzQ3RDwdbLEz8kKLwcLlIp/Lq+UJIkPtocRFpuFo5Upq0Y0xsykfKZglAdNTi5x02eAVotd//7Ydu9muJNlxcG1n+HKRkj70zKaDtWh0QhoOAzsHr/ny7HSpSq5fjQGdZEWl2o2+AQ5GjscQSh3aXExHF33DY+uXwF0nfI7jX6DGk1aGDmyiksuV9Dxpdewd/Pg6LpvuHn8MNkpSfSdNBNzqz9W/dGoVRxa+zUA9Tp1w7tOPWOFLJRAqZP/9957r/hx165dCQ8PJzQ0lICAABo0aKDX4ARBEIwhX53PV5e/AuC1+q/hZGG8uX9J2QW8/uMlClRaOga6MKNnkNFi+f9qudmwY3wbxm0M5dyDNF778RLTe9Tmzfb+Rm/yE5GQzZqTD9h5LRaVRgKghosVfk5WPEzNJTotnyKNlvvJudxPzv3L/gq5DG8HC3ydrPBzsnzi/z6OFmy9HMtvoTHIZbB8WCM87avO8mCqxCSSFi5AFR2N0tMTt9mz9H8SdSFE7NUl/PePgPS4d4TSCuoOgEYjoVorMa9fDwrz1Vw/FgNA056iSafwbFEVFHBu269c2rUNrUaNQqmkWb/naT7geZSmZsYOr1II7t4bW1dXdi/9nKiw6/z8wVQGzfgIO1ddtcSlXdtIjYnCwtaO9iPHGDla4b+UedFKX19ffH1FCZkgCFXH+pvrScpLwtPKk5F1RhotjgKVhjd/CiU+swB/FyuWDWtUpjJ1Q3CwMuWnV1vw0c6bbDofxYJ94dxJyGbeoPqYK8t3JFySJM7eT+Wbkw84cSe5eHvz6o680c6fzrVdi5ff02gl4jPzeZSax8PUXN3/U3T/f5SWS4FKq3ucmsfJ/3cemQz+97cwpXsgbQKcy+cbNCBNdjbZBw+RuXsXeefO60rwZTI8FsxHYaPH6Rzx13QJ/43NkJ/+x/ZqrSB4hC7xN6u400cqo7ATMRTlq3Fwt6R6w8r/XhWEkpAkiXsXznJs/VqyU3W/D6o3akrn0W+Wevk6AfwbNWPoJwvZtvAT0mKj2ThrMgOmfoCFrS1nt+hWROr00mtYWIvP74quzMm/IAhCVZKUl8T3Yd8D8F6T9zBTGGdkQJIkZm0L40pUBrbmJnz3cjNszSvmHDqlQs7cAfWo7W7DJ7tusfVKLHeSshnSxIdWNZyo6Wpt0NFGtUbLnhvxrD31gLDYLADkMuhRz53X2/nTqNpf+yPoRvYt8Xaw/EvyrtVKJGUX8jA1l6g/3xxIzeVhSi65RRokoEddd8Z1MG4viLLQFhWRe/Ikmbt2k3PsGFJRUfFzFo0a4fjKGKyaNy/7iXJT4cZvcGUDJN74Y7uNJzQcqkv6nQPKfh7hL1RFGq4diQagSQ9fZBXs5qEgGEJ6fCxH133Dw2uXAbB1caXTy29Qo2kLUflSBq5+/gyf+yXbF35K0sP7/DZnJvbuHmhUKnwbNKJ2247GDlEoAZH8C4Ig/MnXV74mX51PA5cGdPfrbrQ4vj0VyZbLMSjkMlaMaEx1ZyujxVISMpmMl1r54e9szVsbQwmLzSIs9iYAztamtPB3opW/E61qOOHvbKWXC7DcQjW/Xozmu5BIYjPyATBXynmhqQ+vtq2Or9PT/czkchnudua425nT0v/JKR+SJJGaW0RCZgG13W0q3YWkpNWSd+kSWbt2k3XgANqsrOLnTGvUwK5vH2z79MHUW099JWJC4cf+UJSt+1phCrV7Q/BIqNEJ5FWnT0JFdPt0HPnZKmyczKnZrGL14xAEfVMVFnB+229c2rUFjVqNwsSEZv0G03zAEJRm5sYOr0qwcXTmxU8WsOerz3lw+SIp0Y8wUZrS9dW3Kt3vw2eVSP4FQRAeC08LZ/u97QBMazbNaL/IjkUkMX/fbQBm9w6iXU0Xo8TxNNrWdGbfxPZsvxLLuQepXHyYRkpOEXuux7Pnum6NcTdbM1r6O9G6hhOt/J3xcbQo1c86KauAH848ZMO5R2Q9buLnZGXKy639GNXSFwcDLjsok8lwtjbD2bpyzRUtiIgga9cuMvfsRR0fX7zdxNUV2969sevbB7OgIP2+5/Mz4PfRusTfpTY0fRXqPw+WouFcedCotVw5GAVA4+6+yP+lgaUgVGaSJHHv0jmOr19LVnISAH4NG9N5zJs4eHgZObqqx9Tcgv5TZ3Pix++4dmgv7UeOEVMpKhGR/AuCIKC7ePji4hdISPT060lDl4ZGieNeUjbvbLqCVoKhzXwY3drPKHGUhZe9BeM7BTC+UwCFag3XojM5ez+Vsw9SuByVQWJWITuuxrHjalzx61s+rgpoVcMJr39onnc3MZu1px6w/UocRRpdgzh/Zytea+fPoMZe5d5joKJTxcWRuXsPWbt2UXj3bvF2ubU1Nt27Yde3L5bNmiFTGODnJkmweyJkRIF9NXjlAFjY6/88wj+KOJ9ATnohlnam1G4lljETqp6s5CRunTzKrVNHSY/X/T6xcXah08uvE9CslRiJNiC5XEGn0W/QfuSYv136T6i4Sp38//DDD4wePfov29VqNR988AHz58/XR1yCIAjl6kTMCc4nnMdUbsq7Td41SgwZeUW8tv4S2YVqmvs5Mqd/vUp/8WJmoqB5dUeaV3fkXWpSoNJw+VE6Zx+kcvZ+KlejM4jNyGfL5Ri2XNZ1JK/maKmrCqihmyrwICWXNScfcDQ8qfi4TX0deL29P88FuRU38RNAk5FB1v4DZO7eRf6l0OLtMqUS644dsO3TF+uOHZCbGbhy4fKPcHMbyE1g8Pci8S9nqkINlw88AiC4azVMxI0xoYooys/jzvkz3DpxhOhbf/QQUZqZ07hXP1oMeAGluSjxLy8i8a98Sp38v/POO+zZs4c1a9bg4KBrohQREcHw4cNJTU0Vyb8gCJWOSqviy0tfAjCyzki8rMu/TFCt0TJh0xUepubhZW/BqpGNMTWpemW65koFrQOcaf24yV5ekZpLD/+4GXAjNpOotDyi0vL45WL0E/vKZNCtjhtvtK9BE9+/NvF7lqmSkkhevITMPXtApdJtlMmwbNYM2759sO3WDYWdXfkEk3Qb9k3XPe78Afg0K5/zPsM0Ki2JDzOJCU8nJiKdxMgstBoJMysT6rbzNHZ4glAmWq2G6LAb3Dx5hLsXzqAuLNQ9IZNRrW596rTvQs0WrTE1rzpLrgqCoZQ6+b9y5QojR46kfv36rFu3jjt37jBt2jQGDBjAypUrDRGjIAiCQf0W8RsPsx7iaO7Ia/VfM0oMn+25Tci9FCxNFXz7clOcKtmc8qdlaWpC+1outK+l62uQXaDi4sO0x9MEUrkZl4WpQs7zTbx5rZ1/hW98WN4klYq0nzaQsmIF2txcAMxq19Y17uvdG6V7OZd7q/LhtzGgzocanaH1O+V7/meEVqMlOSqHmIg0YiPSib+XiVqlfeI11o5mtH+xFqbmYoanUDmlxkY/Lus/Rk5qSvF2Bw8v6nboQlC7jtg6uxoxQkGofEr9G6FGjRqcPn2aiRMn0qNHDxQKBevXr2fYsGGGiE8QBMGgMgszWXVtFQDjg8djY1r+a9T+ciGKH848BGDxC8EEediWewwVhY25ks613ehcW9eZPKtAhYlchqWpSGD+v5zTp0mcO4+iBw8AMG/QAPdZM7FoaJx+FQDsfx+Sb4OVKwz8BuRVr3rFGCStRFp8bvHIftzdDIry1U+8xsJGiXegA961HfEKdMDW2bzSTxsSnj352VlEnDnFzZNHSLh3p3i7uZU1ga3bU6d9ZzxqBor3tiA8pae6mtqzZw+//PILrVq14s6dO3z33Xd06NABT09RWiYIQuWy9vpaMgozqGFXg0E1B5X7+S9EpvHBjjAAJj1Xix71RGOuP7M1F/MJ/z9VbCyJCxaSfegQAApHR1wnT8Zu4ABkxky2b26D0HWADAatAWsxIve0JEkiMzmf2Ahdsh8bkU5+tuqJ15hZmuBZ0x7v2g54BTrg6KGfJTQFobxp1Goir4Zy68QR7odeQKvR3diSyeVUD25C3Q5d8G/SAhOl+H0gCGVV6uT/zTffZP369cydO5dJkyaRmJjIK6+8Qv369Vm1ahUvvPCCIeIUBEHQu+isaDaGbwRgSrMpmMjLd3Q5Oi2PsRtCUWkkejfw4O3OAeV6fqFy0RYUkPrdd6SuWYtUWAgKBQ4jhuMyYQIKWyNXi6Q/hJ2PG2W2fQ9qdDJqOJWJRqMlJ62ArJQCslLySbifSUxEOjnphU+8zsRUjmeAPV6BDnjXdsDZx0Y0uxQqteRHkdw4dpDwkBPkZ2cVb3fx86du+y7UbtMeK3vR30UQ9KnUV7qnT5/m/PnzNHxcVuju7s7evXtZsWIFr7zyikj+BUGoNJZcXoJaq6aNZxvaerUt13PnFqp5/cdLpOUWUc/Lli+ebyhG7YS/JUkSOUePkjhvPqrYWAAsmzfHbdYszANrGTk6QKOC31+Fwkzwbg6dZho7ogpF0krkZhbqkvvUfLJSCshOyScrVfd1bnohkvTX/eQKGe7+drpkP9ABt+q2KKpgE1Dh2XT1wB6OrFvN/978lnb2BLXtSN0OXXDxrW7k6ASh6ip18h8aGorZ3ywRNH78eLp27aqXoARBEAztcuJlDj06hFwmZ3LTyeV6bq1W4r1frxKekI2ztRlrRjXFwlQsxSX8VeGDSBLnzSM3JAQAE3d33KZNxaZnz4pzs+joZxB7CcztYPC3oHi2SnMlSaIgR/Wn5D6f7NQCXXKfkk92WgFa9d9k93+iUMqxdTLHxskCZ28rvAId8AiwRyk+F4QqRpIkzm/9ldObNwDg36Q5DZ/riV+DxsgV4v0uCIZW6uT/7xL//wkMDCxTMIIgCOVBK2lZdHERAINqDqKmQ81yO3dOoZplR+5y8FYipgo5a15qgqe9WJ5IeJImJ5fU1atIXf8jqFTIlEocX3kF5zffQG5paezw/nDvCJxeqnvcbzk4+Bo1nPJWmK9m3+obxEak/+vr5HIZ1o5m2DhZYOtsju3//u9sgY2TOZa2phXnZo4gGIik1XL8p++4vHcHAK2eH0ar54eL974glKOnmuD6+++/s3nzZqKioigqKnriucuXL+slMEEQBEPZG7mXsNQwLE0sGR883qDn0molbsVnceJOMifvJBP6KB21VjcKOG9QfRpXE/MZhT9IkkTW7j0kLVqEOikJAKsO7XGfORNT3wqWWGcnwrY3dY+bvgp1+hs3nnJWkKti17KrJD3KBhlY2Zlh62yOjdOfknsnC2yczbG2N0OuECX7wrNLq9Fw8Jvl3DxxGIBOL79O417P1meGIFQEpU7+ly1bxqxZsxg9ejQ7duxgzJgx3L9/n4sXLzJ+vGEvogVBEMoqX53P0tClALze4HWcLZz1fo6UnEJC7qZw4k4yp+4mk5Lz5E1SXydLXmlTneebeOv93ELlVRAeTsJnn5F/KRQAZbVquL0/A5tOFbB5nlYL296A3GRwrQvd5xo7onJVkKNix1dXSInOwdxaSf+JwTh7l/8yoYJQGaiLitiz7HPuXTyHTC6n+9h3qduhi7HDEoRnUqmT/5UrV7JmzRqGDRvGDz/8wLRp0/D39+fDDz8kLS3NEDEKgiDozU+3fiIxLxEPKw9GBo3UyzFVGi2XH6Vz8m4yJ+4kExab9cTzlqYKWtdwon0tF9rXdMHP2Uov5xWqBk1GBsnLlpP+yy+g1SIzN8d57Js4jhmD/F+m2hnV6aXw4DiYWMCQdaB8dqau5GcXsWPpVVJjc7CwUdJ/YiOcvKyNHZYgVEhF+XlsX/QZ0Tevo1Aq6TNxBgFNWxg7LEF4ZpU6+Y+KiqJ169YAWFhYkJ2dDcCoUaNo2bIlX3/9tX4jFARB0JOU/BS+vfEtABMbT8TcxPypjxWdlldcyn/mfio5heonng/ysKVDLRfa13Kmqa8jpqJLt/A3ckJOEzd1Kpp03Zxxmx49cJs2FaWnp5Ej+xfRF3RN/gB6fQ4uz06/n7ysInYsvUJaXC6Wtqb0f68Rjh7iZp4g/J28rEy2zv+YxAd3MbWwYMDUD/Cp28DYYQnCM63Uyb+7uztpaWn4+vpSrVo1zp07R8OGDYmMjET6u7VqBEEQKoivr3xNvjqfBs4N6Fm9Z6n2LVBpOHs/tTjhf5CS+8TzDpZK2tV0oUMtF9rVcsbV5ulvLAjPhqKYGGLfew9tdjamATVwnz0bq5YtjR3Wv8vP0C3rJ2mg3mBoNMrYEZWb3MxCdiy5QnpCHlZ2usTfwV0k/oLwd7JTU/j9s9mkxcVgYWPL4JlzcPMPMHZYgvDMK3Xy37lzZ3bu3EmjRo0YM2YM7733Hr///juXLl1i0KBBhohREAShzCLSIth2bxsAU5tNLVV34bwiNYNWniE8Ibt4m0Iuo3E1e9rXdKFDoAv1PO2Qy0XHYqFkpKIiYidNRpudjUXDhvj+9CMyU1Njh/XvJAl2vg2ZUeDgB32WwDPSpTsnvZAdS6+QkZiHtYMZ/d9rhL1rBVp1QRAqkLS4WH6fO5vslGSsnZx5ftanOHn5GDssQRB4iuR/zZo1aLVaAMaPH4+TkxNnzpyhX79+vPnmm3oPUBAEoawkSeKLS1+glbR08+1GsGtwqfb/fH8E4QnZ2Fko6VXfgw61nGkd4Iyt+bO1nrmgP0mLl1Bw/TpyOzu8Fn9Z8RN/gNB1cHsnyE3g+e/B3M7YEZWL7LQCti+5QlZyPjaO5gyY1Ahb52enx4EglEZi5H22zPuQ/KxMHDy8eH72p9g6uxo7LEEQHit18h8TE4OPzx9374YOHcrQoUORJIno6GiqVaum1wAFQRDK6lTsKc7Fn0MpVzKxycRS7Xvmfgo/nHkIwLJhjehQy0X/AQrPlOyjx0j74QcAPOfNRenlZdyASiLxJux/X/e468fg1cSo4ZSXrJR8ti+5QnZqAbbO5vR/rxG2TiLxFwwvPT6W1GsXCclIQq5Q6KrVZDJkoPu/TK4rvNH953ERjuzx60DG49c/rs6xsLWlRpMWWNkbbnnZmNthbFs4h6L8PFz9ajB45idY2tkb7HyCIJReqZP/6tWrEx8fj6vrk3fx0tLSqF69OhqNRm/BCYIglJVKq+KLS18AMDJoJD42JS89zC5QMfW36wAMb1FNJP5Cmani44l/X5dEO7w0CpsulWC5q6Jc+G0MqAsg4Dlo+Wws65uZnMf2JVfISSvEzsWCAZMaYe0genkIhnfnXAj7Vy1FVVBA+s2rejvuYflKfBs0IqhtRwKatcTUXH83sh5cvsiuxfNRq4rwDqrHgGkfYGYpemIIQkVT6uRfkqS/nSubk5ODubn4pSgIQsWy5c4WIjMjcTBz4LUGr5Vq33l7bxObkY+3gwUzewUZKELhWSGp1cROnoImMxPzunVxnTLF2CGVzP4ZkBIB1u4wYBXIq/7KFRmJusQ/N6MQezdLBrzXCCv7CrrsolBlaDUaTm76gdDduv405i5uBDVriVwmAyQkCZAkJCSQeNxo+4/tusePn9O9QLcZiZToRyTcu8PDq6E8vBqKiZkZAU1bEtS2I74NGqEwKXVKUOx2yHH2r1yCVqPBv3Ez+rw3A6Wp+PciCBVRif+lT5o0CQCZTMYHH3yApeUfjW40Gg3nz58nODhY7wEKgiA8reyibFZeXQnAW8FvYWtqW+J9j0ck8fOFaAC+GNIQa7OnvzASBIDkZcvJv3wZubU1XksWI68M8/xv/A6XfwRkMGgNWFf96pf0hFy2L7lCXmYRDh5W9J8YjJWdSGQEw8rNSGf30oXE3A4DoHHvAWTaONGuTx+USv30l0mPj+V2yAnCTx8nPT6O8NMnCD99AgsbW2q1akdQ24541qpdqoa4Vw7s5ui6b0CSCGrbke7jJpbpRoIgCIZV4n+dV65cAXR3GW/cuIHpny5aTE1NadiwIVMqyyiGIAjPhFXXVpFemI6/nT/P13q+xPtl5qmYvkVX7j+mjR8t/Z0MFaLwjMg5FULqmjUAeHw6B9PK0B8nLRJ2TdQ9bj8F/DsYNZzykBqXw46lV8nPKsLJy4p+7zbC0rYS3KQRKrXY8FvsWrqA3PQ0TC0s6D5uItUbN2fv3r16PY+Dhxethwyn1fPDSLx/l9shxwk/c5K8zAyuHdzDtYN7sHN1o3abjgS17YiT9z9Pk5MkiXNbf+HM5o0ABHfvQ+fRbyB7BiqDBKEyK3Hyf+zYMQDGjBnDV199ha1tyUfQBEEQytvZuLNsuLUBgClNp2AiL/lIxCe7bpKYVUh1Zyumda9tqBArFG1REUUPHmBWq5a4eNMzVVIScdOnA2A/9EVse/Y0ckQloC6C31+BomzwaQkdZhg7IoNLiclh51dXyM9W4eRtTf+JwVhYi8RfMBxJkriybycnNnyPVqPBybsa/SbPxNHTG5VKZbDzymQy3ANq4R5Qiw6jXiUq7Bq3Q45z98JZMpMSOb/tV85v+xVXvxoEte1AYJv22Dg6/xG3Vsvxn77j8t4dALQcPIzWQ4aXqmJAEATjKHVdzrp16wwRhyAIgt6kFaQxM2QmEhJDag2hnXe7Eu974GYCW6/EIpfpyv0tTBUGjNT4iqKiyNi8mYwtW9Gkp2MRHIz7Jx9jHhho7NCqBEmjIW7qNDRpaZgFBuI2oxIk0epCODAL4i6DuT0M/hYUVbuMNzk6m51Lr1KQq8Klmg393g3G3Eos5SkYTlFBPge/WU7EmZMABLZqR7ex7+i1CV9JyBUK/Bo2xq9hY7q+VsD9S+e5HXKch9cuk/TwPkkP73Ni4zqq1a1P7bYdCWjakhM/fcfNE0cA6PTy6zTu1b9cYxYE4ekZdXhn/vz5NGvWDBsbG1xdXRkwYAARERFPvKZjx47IHi9V8r8/Y8eOfeI1UVFR9O7dG0tLS1xdXZk6dSpqtfqJ1xw/fpzGjRtjZmZGQEAAPzxeZunPVqxYgZ+fH+bm5rRo0YILFy7o/XsWBMGwtJKW2SGzSclPIcA+gKnNppZ437TcImZtuwHAG+1r0MTXcEsiGZOkUpF14CBRr7zC/W7dSf32OzTp6QDkX71K5KDBJC5ahDYvz8iRVn4pq1aTd/48MktLvJYsQV6RG+PmJMPxhbCkHlxcq9vWfwXYl3yFjMoo6VEWO5ZcoSBXhauvSPwFw0uLi2HTrMlEnDmJXKGg08uv0/vdaeWe+P9/SjNzarfpwMDpH/Hm6h/p8upbeAbWAUkiKuw6B1cvY+XrI7h54ggyuZweb70nEn9BqGSMeiv/xIkTjB8/nmbNmqFWq5k5cybdunXj1q1bWFn9sTzI66+/zpw5c4q//v/NBnv37o27uztnzpwhPj6el156CaVSybx58wCIjIykd+/ejB07lo0bN3LkyBFee+01PDw86N69OwC//vorkyZNYvXq1bRo0YKlS5fSvXt3IiIi/rKsoSAIFdfG2xs5FXsKM4UZn7f/HAuTkl1MSZLE7O03SMkpopabNe89V9PAkZY/VWws6b/9RsaWLWiSU3QbZTKs2rXF4cUXMQusTdLChWQfOkTad9+TtW8f7rM/wKZzJ+MGXknlnjtPyooVAHh8/BFm/tWNHNE/SAiDc6vgxm+gKdRts/GEjtMhqI9xYzOwhMhMdi27RlG+Gnd/W/q8HYyZRdWuchCM6+75M+xftYSi/HysHBzpM3E63rXrGjusv7C0tSO4Wy+Cu/UiMymR8NMnuB1ynNSYKBRKJX0mziCgaQtjhykIQikZ9Tfc/v37n/j6hx9+wNXVldDQUNq3b1+83dLSEnd39789xsGDB7l16xaHDx/Gzc2N4OBgPv30U6ZPn87HH3+Mqakpq1evpnr16nz55ZcABAUFERISwpIlS4qT/8WLF/P6668zZswYAFavXs2ePXv4/vvvmVEZyjQFQeBW6i0Why4GYGrTqdR0KHkCv+t6PHtvJGAil7H4hWDMTKpGub+kVpNz8iTpv/xC7qmQx8tBgcLZGfvBg7EfMgRTb6/i13svX0b2sWMkfvoZqrg4Yt56C5vnuuI2axbKf/gcFv5KnZpK3NSpIEnYDRqEXb9+xg7pSVot3D0A51ZC5Mk/tns1gZZvQZ3+oKjao9/x9zPZtfwqqgINHgF29JnQEFNzkfgLhqHVaAj55Ucu7twCgHdQPfpMnI6VfcWvMLNzdaPFwBdoPmAIqdGPMDE1w97dw9hhCYLwFCrUb7nMzEwAHB0dn9i+ceNGNmzYgLu7O3379n1iqcGzZ89Sv3593Nzcil/fvXt3xo0bx82bN2nUqBFnz56la9euTxyze/fuTJw4EYCioiJCQ0N5//33i5+Xy+V07dqVs2fP/m2shYWFFBYWFn+dlZUFgEqlMmiTFuG//e/nL/4eni15qjymnpiKWqumk3cnBvoPLPF7ICm7kA+365ZXequDP4GulpXm/fNP73d1QgKZW7eStWUrmqSk4u0WLVtiN+R5rDp1QvZ4+aj/v69527b4bNtK2upvyPjxR7IPHSbn9BmcJozHbtgwZGIZp38labXETZ2GOjkZ0xo1cJo+reK8n4pykF/7BfnFb5ClRwIgyRRIQX3RNh+L5NVU9zotoK0gMf+Jvj7fEx5ksm/lTVSFGjxq2tHjzbrIFFLF+XsSqpS8zAz2r/iSmFu63zONevaj9YujUJiY/ON7rqJey9h56G4WV7S4hMqtor7fK4vS/NzKdAVna2vL1atX8ff3L8thANBqtUycOJE2bdpQr1694u3Dhw/H19cXT09Prl+/zvTp04mIiGDr1q0AJCQkPJH4A8VfJyQk/OtrsrKyyM/PJz09HY1G87evCQ8P/9t458+fzyeffPKX7QcPHnxiWoJgPIcOHTJ2CEI52pK7hShVFLYyW1pltWLfvn0l2k+SYG2EnIx8Od5WEn55EezdG/HfO1Ywhw4dAq0Wyzt3sT9/Dqvb4cgej/KrrazIatqEzObNUTk7g1oNJfn3UTsQ07ffxm3rViyiokj5fBExGzaSNGggBT5Vex54WTgcO47LmTNolUru9OtH2PHjxg4Ji6IU/JMP4Zt6AoVG18uhSGHJI6dORLp0Id/UGa4lwTX9Li1mKGX5fNeqIfGUFZpCOWZOamTVYzh0JEaP0QnCH/KTE0kIOYwmPw+ZiRK3lu3JdnDjwMGDJdpfXMsIzxLxfn86eaXo0VSm5F96fGGpD+PHjycsLIyQkJAntr/xxhvFj+vXr4+HhwddunTh/v371KhRQ2/nL63333+fSZMmFX+dlZWFj48P3bp1E8sgGplKpeLQoUM899xzKJVVu2xV0NkbuZcrZ68gl8lZ3GUxjV0bl3jfLZdjuXnuJkqFjG/GtKKWm40BI9U/lUrF0S1baJKeQc727ajj4oqfM2/aFLshz2PdtSsy06dfskwaM5qsrVtJXbwE87g4qq1Yid2LL+L4ztsobCrXz8vQ8q9cIfbxxYv77FnUGjTIeMFIErKYC8gvfIMsYjcySavb7FgDbbM3kTV4ET9TK/yMF2Gp6ePz/cyW+8QVxGHjZM7z7zdGaVY1pvgIFYskSVw/tI9TR/ei1ahx8PSi97vTcfQq2Y1TcS0jPEvE+71s/leBXhIVonZzwoQJ7N69m5MnT+Lt7f2vr23RQtdc5N69e9SoUQN3d/e/dOVPTEwEKO4T4O7uXrztz6+xtbXFwsIChUKBQqH429f8U68BMzMzzMzM/rJdqVSKN20FIf4ung3RWdHMvzQfgLENxtLCq+QNiOIy8pn7eJR/0nOB1PV2/I89KpaCiDukfP01/keOkKHVJXZyW1vsBw7A/oUXMNPjDVLnYcOw79aNxIULydq5i8xffiH3yBHcZr6PTY8eYn1nQJ2eTuK06aDRYNu3L44vvGCcn4u6CG7tgHMrIO7KH9v9O0HLt5AFdEUhl1OZU96n/XxPfJhF2AndDbKOwwOxtK7Aqy8IlZaqoIDDa7/mdshxAGq1bEv3se9galH6ylBxLSM8S8T7/emU5mdWpuR/5MiRZRrlliSJt99+m23btnH8+HGqV//vTshXr14FwMND12ikVatWzJ07l6SkpOKu/IcOHcLW1pY6deoUv2bv3idLGQ8dOkSrVq0AMDU1pUmTJhw5coQBAwYAumkIR44cYcKECU/9/QmCYFgqjYppJ6eRq8qlsWtjXm/weon3lSSJ6Vuuk12oplE1e95oX/bpS+VFFRdH8rLlZO7YoRvdBcyDg3EY+iK2PXoYbDk5EycnvD7/HPuBA0n4+BOKHj0i9r1JWG3dhvuHH2D6DE8FkCSJ+Pdnok5IwNTXF/ePPir/xD8vDS59Dxe/hex43TaFGTR8EVqMA7c65RtPBaPRaDm2IRwkqNXcjWp1nYwdklAFpcfHsvPLeaREP0Iml9N+xBia9B4gbpAKglAhlCn5X7VqVZlOPn78eDZt2sSOHTuwsbEpnqNvZ2eHhYUF9+/fZ9OmTfTq1QsnJyeuX7/Oe++9R/v27WnQoAEA3bp1o06dOowaNYrPP/+chIQEZs+ezfjx44tH5seOHcvXX3/NtGnTeOWVVzh69CibN29mz549xbFMmjSJl19+maZNm9K8eXOWLl1Kbm5ucfd/QRAqnuVXlxOWGoatqS0L2y/ERF7yj7SN56M4dTcFc6WcL4c0RCGv+BdmmsxMUtasIf2nDUhFRQBYd+tGWJ0gur76arndLbdq1YrqO3eQumYtqWvWkHvqFA/69MV53DicXhlTpikGhqLJzCRl5Srk1tbYdO+GWc2aer0YT1u/npzjx5GZmuK1dAkKa6v/3klfCjLh7Eo4uwKKsnXbrN2g2evQdAxYOZdfLBXYtSPRpMbkYGZlQpvnq95SnoLx3Q89z97lX1KUn4elnT19J87Au069/95REAShnBi17P9/Nw86duz4xPZ169YxevRoTE1NOXz4cHEi7uPjw+DBg5k9e3bxaxUKBbt372bcuHG0atUKKysrXn75ZebMmVP8murVq7Nnzx7ee+89vvrqK7y9vfn222+Ll/kDePHFF0lOTubDDz8kISGB4OBg9u/f/5cmgIIgVAxnYs+wLmwdAHNaz8HdquTL0EWl5jFv720ApnWvjb+LtUFi1BdtYSHpGzaSsmYN2serolg2a4br1CmYBAVxeW/5N2mTm5nh8vYEbPv0JuGTOeSdO0fy0qVk7tqFx8cfYdmsWbnH9E/yw24SO3EiqhhdU7eUFSswrV4dmx7dse3eHbPAwDLdCMi/fp2kL3VLTLq9PwPzoCC9xP2finLhwho4/RXkp+u2udWH1m9D3YFgUvFuwhhLVko+F3fpVjdoMzgAS1vxsxH0R9JqObvlZ87+/jMAnoF16DtxOtaOorpEEISKxajJ/381DPTx8eHEiRP/eRxfX9+/lPX/fx07duTKlSv/+poJEyaIMn9BqARS8lOYGTITgBcDX6SLb5cS76vVSkz5/Rp5RRpaVHdkdGs/A0VZdpJGQ+auXSR/tQx1vK6M26xmTVwmT8K6QwdkMpnRl8Uxq16dauu+J2vXLhIXLKTo/n0ejXoJu0GDcJs2FYW9vdFikySJjF83kzh3LpJKhdLbG7OaNckNCaEoMpLUVatJXbUapW81bLv3wKZ7N8zr1CnVjQBNVhax700ClQqb7t2xHzrUgN/RY+pCCP0BTn4BuY+XcXQOhE4zIagfyOWGj6ESkSSJE5siUKu0eNWyp3YrsT65oD+FebnsXf4FDy5fBKBRj750GPUqCrEkqiAIFZD4ZBIEoVLRSlpmh8wmtSCVAPsApjSdUqr91515yIXINCxNFXwxpCHyCljuL0kSuadOkfTlYgojdA0JTdzdcXnnHez690OmqFit2mQyGXb9+mHdoQNJXy4mY/NmMrduJefkSdw//ADbbt3KPSZtXh7xH39M1s5dAFh37ozn/Hko7OzQ5OSQc+w4WQf2k3vyFKpHUaSuWUPqmjUofXyw7d4Nm+7dMa9X719vBEiSRPzsD1DFxqL09sbjs08NO69Xo4arG+HE55D1eGk6e1/o+D40eAHkFet9UVHcvZhI1K00FCZyOo6oLeZeC3qTGhPFji8+Iz0+DoVSyXOvT6Buh5LfjBYEQShvpUr+1Wo1mzZtonv37qIcXhAEo/jp1k+cjjuNmcKMRe0XYW5S8uZ295Nz+Hx/OACzegfh41j6zsuGln8jjKQvviDv/HkA5DY2OL/5Bg4jRxqskZ++KOzs8JjzCXYD+hM/+wOKHjwg9p13yerRA/fZszBxLp+554UPHhDzzjsU3bsPCgWuk97D8ZVXipM+hbU1dn37YNe3D5qcXHJOHCf7wEFyTp5EFR1N6rffkfrtdyg9PbHp3h3b7t0wb9jwL0lj+qZNZB88CEolXksWG27ZQ60WwrbA8XmQ9kC3zcYD2k+FRqNEef+/KMhVEfLbXQCa9vLF3q3i/ZsXKqc750+zf+VSVAX52Di70H/yLNz8A4wdliAIwr8qVfJvYmLC2LFjuX37tqHiEQRB+Ec3U26y9PJSAKY1m0aAQ8kvtNQaLZM3X6NQraVdTWeGN69moCifTlFUFMlLl5K1dx8AMqUSh5EjcX7zDaOWzj8Ny8aNqb5tKykrV5H67bdk799P3tmzuM2ehW2fPgYdec3cs4f4Dz5EysvDxMUFryWLsWza9B9fr7C2wq53b+x690abl0fOyZNkHThAzvETqOLiSFu3jrR16zDx8MC223PYdO+ORXAwheHhJC1YCIDblMlY1K+v/29GkiB8DxybC0m3dNssnaHdJGj6Cigt9H/OKubMlnvkZ6tw8LCiUTdfY4cjVAFarYbTv27gwvbfAPCp24A+E6djaWtn5MgEQRD+W6nL/ps3b87Vq1fx9RW/RAVBKD+5qlymnZyGWqvmOd/nGFJrSKn2/+bkA65GZ2BjbsLnzzeoMKW/6rQ0UlauIv3XX0GlApkMu359cXnnHZReXsYO76nJzcxwfW8iNt2eI37WbArDw4mbOo2s3Xtw/+RjlO4lb9BYEtqiIpIWLCR90yYALFu0wOvLL0pVbSC3tMS2Rw9se/RAm59PzqlTuoqAY8dQx8eTtv5H0tb/iMnjZWUllQrrzp1xeOklvX4vSBLcPwJHP4O4x71qzOygzdu6JfvMKnaDyooiNiKd22d0vTI6jayNwkT0QhDKJj8nm73LFvHw2mUAmvQZSPvho5FXsKlYgiAI/6TUyf9bb73FpEmTiI6OpkmTJlhZPbmc0f+W4BMEQdCnuefmEpUdhbuVOx+1Kt0a6uEJWSw9fAeAj/rWxcPO+COm2rw80tavJ/Xb79Dm5gJg1bYtrlMmY167tpGj0x+LunWp/ttmUr/7jpQVK8k5cYIHffriOm0q9kOG6OUmTFFMLLHvvUfBjRsAOI19E5e33y5TbwS5hQW23bph260b2sJCckNCdBUBR4+hTtI12TPx8MBz3lz93kh6dAaOfApRZ3RfK62g5VhdB38LB/2dp4pTqzQc36Trl1G3vRceNcSorFA2SQ8fsPPLuWQmJWJiaka3se8Q1KaDscMSBEEolVIn/0MfdzJ+5513irfJZDIkSUImk6HRaPQXnSAIArDr/i52PdiFXCZnYbuF2JmV/EK+SK1l0q/XUGkkuga5MbixcUfTJa2WjC1bSFm2HHVyMgDmdergOnUKVq1aGTU2Q5EplTiPHYtN167EzZpFwbXrJHz4EVl79+Hx6RxMfXye+tjZx48TN30G2sxM5HZ2eH2+EOsO+r0gl5uZYdOlCzZduqAtKiL39GnyLl7CfuAA/U3JiA2Fo3N1I/4ACjNo9iq0nQTWLvo5xzMkdN8jMhLzsLQzpdUAf2OHI1Ryt0+f4ODqZaiLCrFzdaPf5Fm4+on3lSAIlU+pk//IyEhDxCEIgvC3HmU94rNznwEwruE4Grs1LtX+Xx+7x634LOwtlcwb9O/d2w1NlZBA/MyZ5J45C4DS2xuX9yZi27MnsmdgeTazgAD8Nm0i7cefSP7qK/LOneNBv/64vjcRhxEjSjVSL6nVJC9bTuqaNQCY16+P99IlBp8qITc1xaZTJ2w6ddLPATOiYP/7EL778QlMdE382k8Fu8o77cOY0uJyuXzgEQDtX6yFmaXSyBEJlZVWo+HkxnWE7tkOgG+DRvR+dxoW1gZq7ikIgmBgpU7+xVx/QRDKi0qjYtrJaeSp82jq1pTX679eqv1vxGSy4tg9AD4bUA9XG+N0y5ckiazdu0mY8yna7Gxk5ua4vPsujiOGIzN9tjq1yxQKnMaMxqZzJ+Jnf0DexYskzptP1r79eMz9DDP//x5NUycnEzt5CnkXLgDgMGIErtOnIa9sP8vMGFjXCzKjARk0eBE6TgdHMaL4tCStxPGN4Wg1En4NnPFvJKomqiKtRkPEmZNkp6XiGRiEe41amCj1e5MnLyuTPV8tJCrsOgDNBwyhzYsjkYslNQVBqMRKnfwD/PTTT6xevZrIyEjOnj2Lr68vS5cupXr16vTv31/fMQqC8Iz66vJX3Eq9hZ2ZHfPbzUdRiouuzHwVb/98GY1WoncDD/o08DRgpP9MnZ5OwidzyN6/HwDzBg3wXLAAM//qRomnojD19aXa+h/I2LyZpM8XkX/lCpEDBuI8YQJOr4xBZvL3v57yLl4kZtIkNMkpyC0t8fjsU2x79Srn6PUgNwV+HKBL/J0C4MWN4Fp1ej0Yy82QOOLvZ6I0U9B+aK0K09hT0J+H1y5z4qfvSIl+VLzNRGmKR81AvILq4VOnHh41A1GaPf3N3sQH99jx5VyyU5JRmpnT462J1GrZVh/hC4IgGFWpk/9Vq1bx4YcfMnHiRObOnVs8x9/e3p6lS5eK5F8QBL0IiQ1h/a31AMxpPQd3q5J3h9dqJSb9epWHqXl42VvwWf96hgrzX+WcPEn8rNm6uf0mJji/NQ7nN974x8T2WSOTy3EYOhTr9u2J/+hjck+dInnxYrL378dj3twnGh9KWi1p339P0pKloNFgVjMAr6++KlGlQIVTkAkbBkHqXbD1hlHbwf7p+x4IOrmZhZzddh+AFv39sXE0TqWPYBgp0Y84seF7Hl4NBcDcyhqvoHrE3w0nLzOD6Fs3iL51g3NbQK4wwb1GTbyD6uJdpz6etYIws7Qs0XlunjjCobVfo1GpcPDwpN/kWTj7iKpXQRCqhlJfgS5fvpy1a9cyYMAAFixYULy9adOmTJkyRa/BCYLwbErJT2FWyCwAhgYOpXO1zqXa/6sjdzkSnoSpiZzVI5vgYFW+5eDa3FwSFy0i45dfATD198dz4UIs6hvnJkRFp/T0xGfNN2Ru30HiggUU3LpF5PNDcH7jdZzGjkXKzyduxvvkHDsGgG2/vnh8/DHyEl7MVyhFebBpKMRfA0tneGm7SPz15NSvdynKV+Pqa0P9jt7GDkfQk7zMDM78tpHrhw8gSVrkCgXB3fvQcvBQLKxtkCSJtLgYYm/fJPrWDWJuh5GTlkrcndvE3bnNhR2/I5PJca1eo/hmgFftOn+Zt69Rqzn+47dcPaDrv+HfuBk9J0zG3EosrSkIQtXxVA3/GjVq9JftZmZm5D5erkoQBOFpaSUtM0/NJK0gjZoONZnSrHQ3FQ/fSuSrI3cBmDewPvW9y3eJr7wrV4ibPgNVVBQADi+NwnXSJOTmYhTy38hkMuwHDsC6bRsS5swh+9BhUlauIvvQIbR5+ahiY5EplbjNno39C/pZIrDcqYtg80u6ZfzM7GDUVnCuaeyoqoSH11O4fzkJmVxGx5G1kcsr4ftDeIK6qIjQvTu4sH0zRfn5AAQ0a0X7EaNx8PijGaZMJsPJywcnLx8adO2BJElkJiUSczuMmFthxISHkZmYQOKDuyQ+uKtr3ieT4eLji1dQPbyD6uHk7cPhb1cSG34TgJaDh9H6+WHPRCNWQRCeLaVO/qtXr87Vq1f/0vhv//79BAUF6S0wQRCePSqtivnn53M2/izmCnO+aP8FZgqzEu//IDmH9369CsDLrXx5vkn5jf5JRUUkr1hJ6tq1oNVi4u6O5/x5VXb5PkMxcXHBa9kysg8cIGHOpxTe1TVsVHp74/XVUizq1jVyhE9Jq4Ftb8K9Q2BiASM2g0dDY0dVJRQVqDnxcwQAwV19cPERndgrM0mSCD9zkpCf15OVnASAm38AHUe9hned/66ekslk2Lu5Y+/mTr2OXQHITk3542bA7TDS4mJIjnpIctTD4pF+AFMLC3pOmEJA0xaG+eYEQRCMrNTJ/6RJkxg/fjwFBQVIksSFCxf4+eefmT9/Pt9++60hYhQE4RmQXpDO5BOTuZhwERkyZrecjb99yedz5xSqefOnULIL1TTzc2B2nzoGjPZJBXfuEDd9BoW3bwNg178fbrNmobC1LbcYqhKZTIZtjx5YtmhB8rJloFbjOmUKCrvyreLQG0mC3e/Bza0gV8LQDVCtpbGjqjIu7IwkJ70QW2dzmvV5thtpVnaxEbc58eO3xN/T3cyxdnSi3bCXCWrbsUyj8DZOzgS17UhQ244A5GakExt+k+hbYcTeDiM56iEu1fzo894MHD3FlBFBEKquUif/r732GhYWFsyePZu8vDyGDx+Op6cnX331FUOHDjVEjIIgVHF30+/y9tG3ic2JxdLEkoXtF9LRp2OJ95ckiWm/X+NuUg5utmasGNEYpcLw5ZqSRkPa+h9JXrIESaVCYW+P+yefYNu9m8HP/SwwcXDA46OPjB1G2UgSHPoALq8HmRwGr4WArsaOqspIepTF9WPRAHQYFojSVCzDVhllJCZwatMP3DkXAoDSzJzm/Z+nSZ8BZera/0+s7B2o1bJtcQd/VVEhStOSV5kJgiBUVk/VcnrEiBGMGDGCvLw8cnJycHV11XdcgiA8I45GHeX9U++Tp87D29qb5Z2XE+AQUKpjrD7xgL03ElAqZKwc0QRXG8PPry+KiSV+xgzyLl0CwLpDBzw++xQTF7GuuPAnp76EM8t1j/sug7oDjRtPFaLVaDm2IRxJglrN3ahW18nYIQmlVJCbw/ltm7mybycatRpkMup3eo7WL4zE2sGx3OIQib8gCM+KUif/nTt3ZuvWrdjb22NpaYnl427LWVlZDBgwgKNHj+o9SEEQqh5Jklh7Yy3Lr+gSo+buzfmyw5fYm9uX6jin7iaz6EA4AB/3q0sTXwd9h/oESZLI3LqNxHnz0ObmIrO0xG3GdOyHVNImdABaLYT9Drd3QsPhENgTKuv3UpFcWAtHP9U97j4PGo8ybjxVzLUjMaRE52BmZUKb50XjxMpEo1Zz/ch+zvy2iYLsLACq1Q+mw8hXcPWrhMt3CoIgVBKlTv6PHz9OUVHRX7YXFBRw6tQpvQQlCELVlq/O58PTH7L/4X4AhtUextRmU1HKlaU6TnRaHm//fAWtBC829WF482qGCLeYOjWV+A8/IufIEQAsGjfGc8F8TKsZ9rwGFX0R9s+AWF0FA7d3gX8n6LEAXGsbN7bK7NqvsPfxShXtp0Gr8caNp4rJSingwq4HALQZHIClbfku5yk8HUmSeHD5Iic2fE96XAwAjp7edHjpVaoHN628N1AFQRAqiRIn/9evXy9+fOvWLRISEoq/1mg07N+/Hy8vr7/bVRAEoVhCbgLvHH2H22m3MZGZMLPlTIbUGlLq4+QXaXjzp1Ay8lQ09Lbjk/51DXrhmHPiBHHvz0STlgZKJS7vvI3TK68gU1TSOcaZMXD4Y7jxm+5rU2vdiP+tHfDgGKxqDc1eg44zwLL8ym+rhPC9sH2c7nHzN6HTTOPGU8VIEpzefA+1SotXLXtqt/IwdkjPDEmrpaggn8K8XApzc3X///Pj3FwK8/MozM2hMC/v8bY/Pc7LRaNSAWBhY0vrISOo36U7CpOnmoUqCIIglFKJP22Dg4ORyWTIZDI6d+78l+ctLCxYvny5XoMTBKFquZp0lYnHJpJakIqDmQOLOy6mqXvTUh9HkiRmbrvBrfgsnKxMWTWyCeZKwyXheZcuET1+AqjVmNWqhefnCzGvXUlHxYty4fRXcHoZqPMBGTQaCZ0/ABs3XaJ68AMI3w0XvoEbm6HTLGgyBhTiAv0/RZ6E30aDpIGGw3QVFGI0U6/y401Iu52OwkROxxG1xWixAeVlZXJ5704izpwkPzuLwvw83d2XMlAolTTu2Y8WA1/AzNJKT5EKgiAIJVGiK7msrCwePNCV1/n7+3PhwgVc/tTUytTUFFdXVxSVdQRMEASD23FvB5+c/QSVVkUth1os67wML+unqxb64cxDtl2JRSGXsWJEYzztLfQc7R9UsbHEvPMuqNXYdOuG5xeLkJtWwhJjrVaXyB/+GLLjddt82+jmonsG//E6R38YuhHuH4P970PybV35+qXvdYmsfwdjRF85xITCz8NAUwi1+0C/r6EMy5MJf1WQqyLjtq45W9Nevti7WRo5oqopKyWZ0N3buH7kAOqiwr88rzAxwczKGjNLK8wsLXWPLSwxs7LC1NIKc0srzKysdM9bWWFm8cfXFnZ2osGeIAiCkZQo+XdwcCA+Ph5XV1c6dOhAQEAA9vb2Bg5NEISqQK1VsyR0CT/e+hGALtW6MK/tPCyVT3fRfv5BKp/tuQ3AzF5BtPQ3XIdvbV4e0eMnoElLw6xOEJ4L5lfOxD/qvG5ef9xl3df2vtDtUwjq98+j0jU6wdgQCF0Hx+ZC0i34sZ8uqe32GTiK9dSfkHgLNg6Gohyo3gEGfycqJQzg/I5ItEVyHNwtadTN19jhVDnp8bFc2LGFWyePotWoAXDzr0mzfoNx8fV7nOxbYVIZPwcFQRCEkiX/1tbWpKam4urqysmTJ1E9nq8lCILwb7KKsph2Yhqn404DMLbhWMY1HIdc9nSjofGZ+YzfdBmNVqJ/sCevtPHTY7RPkiSJuPdnUhgejsLJCZ+vv0ZuWclGGTOi4NBHcHOr7mtTG2g/GVqMA2UJlkNUmEDz16HeYDi+AC5+q5sOcPcgtJoA7SaDmbVhv4fKIC0SfhoI+eng1RSGbirZz1cosey0Am6eiiXibCIA7YYFoDARVRX6kvTwARe2/8adc6eRJC0APnXq03zgC/jWDxZTKwRBEKqIEiX/Xbt2pVOnTgQFBSFJEgMHDsT0H+76iqX+BEEAiMyM5J2j7/Aw6yHmCnM+a/sZ3f26P/XxCtUaxm24TEpOEUEetiwY1MCgF6Qpq1aRfeAAKJV4L/sKpaenwc6ld4U5ELIEzn4N6gJApltmrtNs3bz+0rJ0hF6fQ9MxugqCB8chZDFc3QRdP4YGLz675e1Z8fBjf8hJANe6MOI3cUNET7QaLY9upnHzVCxRYanFU82tqhXh7m9n3OCqiNiI21zYvpkHly8Wb/Nv3IzmA17AKzDIiJEJgiAIhlCi5H/Dhg2sX7+e+/fvc+LECerWrYtlZRsBEwSh3JyOPc3UE1PJVmXjbuXOsk7LCHIq24XkxztvcjU6AzsLJd+MbIKFqeF6jGQdOkTKMl0DU/cPP8CySRODnUuvtFq4/gsc/kSXjAL4tdPN6/doUPbjuwbBqO0QsQ8OzIT0SNg+Fi6uhZ6fg3fpmzdWanlp8NMAyHgEDtVh1DaxMoIeZKcVcOt0HLdPx5Ob8cd8c69AewJbuRGRcMmI0VV+kiTx6PoVzm/fTMytMABkMjm1WrWlef/ncfXzN3KEgiAIgqGUKPm3sLBg7NixAFy6dImFCxeKOf+CIPyFJEn8eOtHFocuRitpCXYJZkmnJThbOJfpuD9fiOLnC9HIZLBsWCOqORnu5mNBxB3ips8AwGHkSByGlH4ZQmOQRZ+DQ7Mh/qpug4Ofbm5+7T767TYvk0HtXhDQBc6tgpOLIDYUvu0CDYbqKgFsn4Gl1wqzYcNgSA4HG094acfTVVUIwONR/rBUbobEPTHKb26tpHYrD+q29cTezRKVSsWdvcaNtbKStFruXTzH+e2bSXxwDwC5woS6HTrTrN9gHDzEcs2CIAhVXam7ER07dswQcQiCUMkVaYqYc3YOO+7vAGBgwEBmt5yNqaJsjaGuRKXz0Y6bAEzpFkiHWi7/scfTU6enEzN+PFJeHpatWuI2Y7rBzqU3GVE0jfwakysXdF+b2kCHqdBiLJgYsKO2iRm0nahbzu7IHLi6QVd1cHsXtJuk6wlQmee9S5JuykRhtu5PQeYfjwuz4cpPugaKFo7w0nZwEM3nnsa/jfLXbeeFf0MXFMpndEqJnmjUaiLOnOT89t9Ii40GwMTUjAZde9C0z0BsnMp2c1YQBEGoPJ6qFXFMTAw7d+4kKiqKoqKiJ55bvHixXgITBKHyyCrK4q3Db3Et+RpymZxpzaYxvPbwMs/JT84uZNyGyxRptPSo685bHWvoKeK/klQqYt+diComBqWPD16LFyMzqcDd2tMewJnlmFzZiJemEEkmR9b4Jeg0C6xdyy8OGzcYsAKavQL7ZkDMBTj6KVxer4ul/hCQV4BlYDVqXaPCjEePE/isJ5P54j9/2q5V//sxTW1g1FZwCSyf76GKKB7lPxXHo5up8KdR/qBWHtR5PMovlI26qIiw44e5uHMLWcm6RolmllY06tGHRj37YWkr+iYIgiA8a0p9ZXvkyBH69euHv78/4eHh1KtXj4cPHyJJEo0bNzZEjIIgVGCSJPHh6Q+5lnwNG1MbvujwBa09W5f5uCqNlvEbL5OQVUCAqzVfvNDQoA3+EucvIO/CBeSWlvisXIGJg4PBzlUmCTcgZKmug7+kRQYkWwdhP3QVSu9GxovLqwm8ehBu/A6HPtStNLDtTV3jwU6zIKivfqcflJRGDTc2w8kvIO3+UxxABma2YGbz5B9LR2j5Fnga8WdeyWSnFXArJI7bp+PIzfxj4MAr0IG67TzFKL8eSJJE0sMH3D51jNshx8nLzADA0s6eJr0H0PC5XpiJnk2CIAjPrFIn/++//z5Tpkzhk08+wcbGhi1btuDq6sqIESPo0aOHIWIUBKEC23B7A0eijqCUK1n73FrqOtfVy3Hn7rnNhYdp2JiZ8M2oJlibGW4UPv3XzaRv2gQyGZ5fLMKsZk2DneupPTqjS6TvHvxjW0BX1C3f5kxYBr3c6hkvtv+RyaDBEF1PgAtrdDcpksNh8yjwCIYuH0CNLuVzE0Cjguu/6pL+9EjdNgsH8O/4RzJvbvfXpP7/J/pKq2d3JQM9kCSJRzdSCTsZK0b5DSgrJYnbISe4feoYqTFRxdttnF1o1m8w9To9h9LUgNOABEEQhEqh1FfTt2/f5ueff9btbGJCfn4+1tbWzJkzh/79+zNu3Di9BykIQsV0Lfkaiy/ppvpMbTZVb4n/tisx/HDmIQCLXwymhovhlk7Lu3iRhE8/BcDl3Xex6dzZYOcqNUmCOwd0SX/0Od02mRzqDNDNt/doiKRSwc0K1gHN1AravgdNxsDZFXBupa4R4YbBUK217iaAb9mrQ/6WRqVbgvDUl7oSfwBLJ2j9NjR7TZfQC+WiKF/N8Y3h3L2UVLxNjPLrT2FeLnfOneb2qWNE37pRvF2hVFKjSQuC2nWienATFBV5+pIgCIJQrkr9G8HKyqp4nr+Hhwf379+nbl3dBX9KSop+oxMEocLKKMhgyokpqCU13f26MzRwqF6OeyEyjRlbdBey73QO4Lk6huugroqNJeadd0GtxrZXT5zefMNg5yoVjVpX1h+yBJJu6bYpTCF4OLR+B5wM1/tAryzsofMsaPG4/P/CWog6A+t6QkBX6Dxbf2Xz6iK4uhFOLYbMxyOfls7Q5h1o+iqYGe4GkvBXydHZHFgbRmZSPjK5jAadvanXzkuM8peRRq0i8uplbp86xv3Q82hUquLnfOrUJ6h9J2q1aIOZpZURoxQEQRAqqlIn/y1btiQkJISgoCB69erF5MmTuXHjBlu3bqVly5aGiFEQhApGK2mZGTKThNwEfG19+bjVx2Wej6/VSqw99YDPD0Sg0Up0CnRhYtdaeor4b86Xl0f0+Alo0tMxqxOEx9y5Bu0pUCKqfLiyAc4s082ZBzC1hqav6OaXV9Yl9Kycoftc3fdwcpGuU/69w7o/Qf10PQFcaz/dsdWFup9ZyBLIjH58Pldo8y40HaOrQhDKjSRJ3DwVR8jmu2jUWqwdzOj2Wj08aojmck9LkiTi74Zz69RxIs6eoiA7q/g5J+9qBLXrRFDbDtg6l2OjT0EQBKFSKnXyv3jxYnJycgD45JNPyMnJ4ddff6VmzZqi078gPCPWha3jVOwpTOWmfNnhS6xNyzaqmp5bxJTfrnEkXFce3K+hJ/MH1UcuN0wyLkkSce/PpDA8HIWTEz4rViC3sDDIuUokPwMufQfnVkFusm6bpRO0HKcrVbeooM0HS8vOC/ou1Y3GH18A1zfD7Z0QvhsavAgdZ4CDX8mOpSrQ3UQIWQJZsbpt1u666RCNXwZTMcJc3ory1RzbGM69x2X+vvWd6PpyHcytlUaOrHJKj4/ldshxbp86TkZifPF2K3sHarfpQJ32nXHxrW78m5aCIAhCpVHq5N/f37/4sZWVFatXr9ZrQIIgVGyhiaEsv7IcgPdbvE+gY9mWObsclc6EjZeJyyzA1ETOx33rMqy5j0EvaFNWrSL7wAFQKvFevgylh5FG1LMTdfPhL32vW2IOwM5HV9rfaGTVTWAd/WHQGmgzEY7N1SX/137WrRTQ+CVoP/WfqxxU+XD5R13Sn/04IbLx0PUYaPwSKI14E+cZlhz1uMw/OR+5XEbLATUI7uqDzEA38KqqvKxMIs6e4vapY8TfjSjerjQzp2bzVgS170y1eg2QV4TlMwVBEIRKR3SBEQShxFLzU5l2YhoaSUMf/z4Mrjn4qY8lSRLfnopk4f5w1FqJ6s5WrBjemDqetnqM+K+yDh0iZZnu5oXHRx9iaYwlStMewJnlcGUjaAp121xq6xLYeoNB8YyMlLrVgaEbIfYyHP0M7h/RVUBc3QjNX4c274GVk+61qny4tA5OfwU5Cbpttl66n1mjUaA0N9738QyTJImbJ2MJ+e1ecZl/99fr4e4vyvxLo6ggn4s7t3Jp91bUhbrPBJlMjm/DRtRp25GAZq1Qmov3uCAIglA2IvkXBKFENFoNM0NmkpSfRHW76nzQ8oOnHp3PyNOV+R++rSsP7vu4zN+Qy/kBFETcIW76DAAcRo3C/vnnDXq+v0gI041Y39wKkla3zbsZtJ0EtXo8u0vKeTWGUVvh4Wk4+ilEndXdHLn0A7Qar+vQf/oryH3cNd7O53HSPxJMxPJlxlKUr+bYhnDuher+XvwaONPl5SDMrZ6Rm1d6oNVquHn8CKd//YncjHQAXPz8qdu+C7XbtMfKvopM+REEQRAqBJH8C4JQImtvrOVM3BnMFeYs7rAYS+XTlaRfiUpnwqYrxGbkY2oi58M+dRjRoprB562q09OJeestpLw8rFq3wm36NIOe7wlR5yFkMdzZ/8e2Gl2g3STwbVM+695XBn5tYMw+XSPAI3Mg4TqcWPDH8/bVoN1kaDgcTEyNF6dAclQ2+9eGkfW4zL/VoBo07GLY6TpVzcPrVzj503ckRz0EwN7Ng3YjRlOzeWvxcxQEQRAMQiT/giD8p/Px51l1bRUAs1vOJsAhoNTHkCSJ70IiWbBPV+bv52TJ18MbU8/L8OXBkkpF7LsTUcXGoqxWDa/Fi5EZeu1rSdKVsZ9aAo9CHm+UQZ3+ulFrz2DDnr+yksmg5nO6myO3d8KJhbqO/m0nQsNhz86UiApKkiTCTsQS8vtdtGoJa0czur8myvxLIyX6ESc2fM/Dq6EAmFlZ0WrwMBp2642JUry/BUEQBMMRyb8gCP8qOS+Z6Seno5W0DAwYSP+A/qU+Rmaeiim/X+PQrUQAetf3YMHg+tiYl8+FbuL8+eRduIDcygqfFV+jsLc33Mm0Gri9SzfSH39Nt02uhIYv6hrcOdc03LmrErkc6g7Q/REqhMJ8Ncd+us39y7oVKUSZf+nkZqRz5reN3DhyEEnSIleYENy9Ny0HD8XC2sbY4QmCIAjPgBIn/9u3b8fb25umTZv+7fNZWVlMnDiR77//Xm/BCYJgXGqtmumnppNakEpNh5q83+L9Uh/janQG4zde1pX5K+R80CeIkS19y62sNf2XX0nf9DPIZHguWoRZTQMl3+oiuLEZQpZC6l3dNqUlNBmtm7du522Y8wpCOUiOymb/mhtkpRSIMv9SUhUVcnnPDs5v/w1VQT4ANZu3pt2I0Ti4exo5OkEQBOFZUuLkf/r06axfv7746wULFjB27FjsH4+g5efns379epH8C0IVsuraKi4mXMTSxJIvO3yJhUnJl1GTJIl1px8yf99tVBqJao6WrBjemPre5VcenHv+AgmffQaAy8SJ2HTupP+TFOXplp47sxyyYnTbzO2g+ZvQYuwf3eoFoRL6/2X+No7mdHu9Lu7VRZn/f5G0Wm6HHOfULz+Sk5oCgHuNmnQY9SreQfWMHJ0gCILwLCpx8h8dHY2n5x93qOfNm8cLL7xQnPwLglC1nI49zdrrawH4qNVHVLerXuJ9M/NVTPv9Ggdu6sr8e9ZzZ+HzDbAtpzJ/gOwjR4idPAXUamx79cLpjdf1e4L8dLjwLZxfBXmpum3WbrpR/iZjwNywSxYKgqH9/zL/6g2d6fySKPMviehbNzjx03ckPrgHgI2TC+2GvUTtNh2QPauregiCIAhGV+Lk38PDg1OnTjFixAhANxogyv0EoWpKyE3g/VPvIyHxQq0X6OXfq8T7XovOYMLPl4lOy0epkDG7dx1ealV+Zf4AaT9tIHHePJAkrNq3w2PuZ/o7f3YinFsBF7+HomzdNntfaPMuBI8Q680LRiFJEpf2PuTupSQUJjIUJnJMlHIUSvmTj5UKTEz+91iOwkSGiVLxl9dpNRJnt93TlfkrZLQeFECDzt7i9/5/SIuL5eTGddy/dA4AUwsLmg94gca9+qE0FctSCoIgCMZV4uR/3LhxvPTSS3zyySdYW1tTUFBA3759MTXVLbekVqsNFqQgCOVHpVUx7eQ00gvTCXIMYlrzki2JJ0kS6888ZO5eXZm/j6MFK4Y3poG3vWED/nMMWi1Ji74gbd06AOyHDMH9ow/109k/IxpClsCVDaAp1G1zrQNtJ0HdgaAQ/VMF47m45yEXd0fq/bg2TuZ0f70ebn6ikuXf5GVlcm7LL1w7tBetRoNMLqdBlx60HjIcSzt7Y4cnCIIgCEApkv8pU6bQtGlTLl26RE5ODjdv3qRLly44OjoCkJ2dzc2bNw0WqCAI5WP5leVcSbqCtdKaLzt8iZniv0er8os0TNp8lX1hCQB0r+vG5883xM6i/MqDtYWFxE2fQfb+/YBujr/Tm2/oZ6QyKRzW9dCV+gN4N9OtN1+zu64rvSAY0c1TscWJf4v+/rj62qBRaVGrtGjU2j8eP/66+LFKi1r9p8cqLRq1pvixazUbWg8OwMxSlPn/m7Djhzm+fi2FebkA+DduRvsRY3DyrmbkyARBEAThSaUaqurYsSMdO3YE4Pfff2fKlCn4+PgAkJCQwOLFi/UeoCAI5edE9AnWhelGzee0mYOPrc9/7qPRSrz7yxUO3kpEqZDxfs8gxrTxK9fyYHV6OjHjJ5B/+TIolXjO/Qy7fv30c/D0R/DTAF3i714fus8Hv7a69egFwcgir6dwYlMEAE16+tK0p59xA3rGxN+N4ODqZUiSFhff6nQY+Sq+DYKNHZYgCIIg/K2nrlMNCwt74mtXV1ciI/VfcigIpXU34y552jxjh1HpxOXEMTNkJgAjgkbwnO9zJdrvsz23OHgrEVOFnPWvNKdVjfLtbl8UHU30G29SFBmJ3MYG7+XLsWrZQj8Hz0nSJf7Z8eBSG17aCZaO+jm2IJRRwoNMDq4NQ5KgdmsPWvTzN3ZIzxR1URH7Vy5BkrTUbtOBnhMmIZcrjB2WIAiCIPwjvU1Slcvl+Pr66utwglBqcTlxfH7xc45EHcEcc1QRKobXGY6JXMzF/i8qjYopJ6aQVZRFfef6TG4yuUT7fR8SybrTDwH48oWG5Z7459+4QfTYcWhSUzHx8KDamm8wq1lTTwfPgJ8GQdoDsK8Go7aJxF+oMNITctmz4jpqlZZqdZ3oOCJQNOMrZ6c3byAtLgYrewc6vzJWJP6CIAhChScmqwqVXpGmiDXX19B/e3+ORB0BoIACFoUu4oXdL3Ax4aKRI6z4Focu5kbKDWxMbVjUYRFKxX/P8d0flsCne24BML1Hbfo29PyPPfQr++hRHo16CU1qKmZBQfj98ov+Ev+iPPh5KCTeACtXGLUdbMv3+xOEf5KbUciuZdcoyFXh6mtDjzfqoVCIX+flKe5OOKG7twPw3BsTsLC2MW5AgiAIglAC4mpBqNRCYkMYuGMgy68sp0BTQFO3pvzS8xf6W/TH3syeu+l3eeXAK0w7OY3E3ERjh1shHX50mA23NwAwt81cvKy9/nOfK1HpTPz1CpIEw1tUY2yH8i03Ttu0iZgJbyMVFGDVti2+P/2E0s1VPwfXqOC3lyHqLJjZwait4FRDP8cWhDIqzFez6+trZKcVYOdiQZ8JDVGaiRHn8qQqKmT/qqVIkpY67TpRo4mephkJgiAIgoGJ5F+olOJy4ph4bCLjDo8jKjsKFwsXFrRbwPfdv6eWQy2amTVjW59tvBj4IjJk7IvcR9/tffk+7HtUGpWxw68worOi+eD0BwCMrjuaTtU6/ec+Ual5vLb+EgUqLZ0CXZjTr265lRtLWi1JX3xB4pxPQavF7vnB+KxaicLaSj8n0Gph+zi4exBMLGD4r7omf4JQAWhUWvatvkFqTA4WNkr6vhOMhY2pscN65pz+dQPpcTFYOTjSafSbxg5HEARBEEpMJP9CpfL/S/wVMgUv1XmJnQN20tu/9xNJqJ2ZHbNbzuaXPr/Q0KUh+ep8loQuYdDOQZyJPWPE78L4CjWF7H2wl/FHx5OjyiHYJZh3Gr/zn/tl5BUx+ocLpOYWUdfTlq+HN8aknMqNtYWFxE2ZQuq33wHg8u47eHz6KTKlnpYhkyTYNw1u/AZyE3jxJ/BtpZ9jC0IZSVqJI+tvERuRjtJMQd+3g7FzsTB2WM+c2IjbhO7ZDkC3N97G3NrauAEJgiAIQimITmhCpRESG8L88/OJyo4CoKlbU2a2mElNh3+f513HqQ4/9vyR3Q92s/jSYh5mPeTNw2/StVpXpjabiqf1szOXOyItgq13t7L7wW6yirIAcDR31M3zl/97El2g0vDGj6E8SM7F086c70c3w8qsfD5CNBkZxEx4m7xLl8DEBI/PPsV+wAD9nuTYPLi4FpDBwG+gZslWOxCE8nB66z3uXkpCLpfR8836uFQTc8zLm6qokAOrloIkUbdDF/wbNzN2SIIgCIJQKiL5Fyq8P3fxB3CxcGFy08n0qt6rxOXmcpmcfjX60cmnE6uurWLT7U0cjjrMqdhTvFb/NcbUG4OZwsyQ34bR5BTlsDdyL9vubiMs9Y8lOj2sPBgYMJDBtQbjavnv8+W1Wompv1/nwsM0bMxMWDemOW625oYOHYCimFii33iDogcPkFtb4718GVat9Dwif24VnPxc97j3F1D/ef0eXxDK4OrhKK4djgag88tB+NQRq04Yw+lffiI9PhZrB0c6vvy6scMRBEEQhFITyb9QYRVpivjh5g+svb6WAk0BCpmCEUEjGNdwHNamT1dqaWNqw7Rm0xgUMIj5F+ZzIeECK66uYMe9HUxvPp0O3h2qxHJZkiRxNfkqW+5s4eCjg+Sr8wEwkZvQ2aczg2oOoqVHSxQlXJpq0cEIdl2Lw0QuY/WoJgS6l8+oY/6NMKLHjUOTkoKJuzs+33yDeWAt/Z7k6s+wf4bucefZ0Ow1/R5fEMrgzsUETv9+D4BWA2sQ2MLdyBE9m2LCbxK6dwcA3d58B3MrUe4vCIIgVD4i+RcqpKct8S+pAIcAvu32LQceHWDRxUXE5MTw9tG3aefVjunNp+Nr66uX85S31PxUdt3fxZa7W3iY9bB4u7+dP4NqDqJvjb44mpdu1HDT+ShWHb8PwILBDWgT4KzPkP9R9rFjxE6ajJSfj1lgID5rvkHp5qbfk4TvhR3jdY9bjod2U/R7fEEog+jwNI78cBuABp28adStmpEjejapCgv+KPfv2JXqjZoaOyRBEARBeCoi+RcqFH2U+JeUTCajh18P2nu1Z+2Ntfxw8wdOxZ7i3I5zjK47mtfqv4al0lKv5zQEjVbDmbgzbL27lePRx1FLagAsTCzo4deDQTUH0dCl4VP9/I5FJPHBDt1UgXe71OT5Jt76DP0fpf/yKwlz5oBWi1Xr1ngt+wqFvhtrRZ6C30aDpIGGw6HbZ1AFqj6EqiE5Opt9q2+g1UgENHGl7ZCaVaIqqTIK+eUnMhLisXZ0ouNLojJIEARBqLxE8i9UCIYo8S8pS6Ul7zZ+l/41+rPg4gJOx55m7Y217Ly/k6nNptLNt1uFvOiOzYll291tbL+3ncS8xOLtDZwbMLDmQHr49SjTz+5mXCYTNl5Go5UY3NibiV31U3Xxb1SJiSQt+oKs3bsBsBs0CI9PPtZfR///ibsCPw8DTSEE9oZ+y0EuFj8RKoaslHx2L7+GqkCDVy17uo6ug0xe8T6DngUxt8O4vG8nIMr9BUEQhMpPJP+C0cXnxPPWkbe4l6Gb16rvEv+S8rPzY1WXVRyLPsbnFz8nNieWKSemEGAfoCuZ9++Lvbl9ucb0/+Wr8zkWdYzt97ZzLv4cEhKgW9awr39fBtYcSC2Hss+Jj8vI55UfLpJbpKF1DSfmD6pv0Bsg2qIi0tavJ2XVaqS8PJDJcB4/Hufxb+n/vMl3YMNgKMoGv3bw/PegEB+FQsWQn1PEruXXyMsqwsnLip7jGqBQihtTxqAqKODAqq9AkqjXqRvVg5sYOyRBEARBKBNxxSsY1f2M+7x56E0S8xJxMndiarOpBinxLymZTEbnap1p7dmadWHrWHdzHfcy7vH5xc9ZErqErtW6MqjWIJq7N0cuK58Lco1Ww8XEi+y6v4vDjw6Tp84rfq6lR0sG1xxMp2qd9LZaQVaBijHrLpKYVUgtN2tWjWyCqYnhvteckydJnDuPokePALBo2BC32bOxqF9P/yfLiIafBkJeKng2gmE/g7J8Vi0QhP+iKtKwZ8V1MhLzsHY0o8+EYMwsxK9pYzn1y3oyEuOxdnKm40uvGjscQRAEQSgzcVUhGM215GuMPzKezMJM/O38+ea5b3C3qhidrM1NzBkXPI6RdUayL3Ifv9/5ndtpt9n3cB/7Hu7Dx8aHQTUH0b9Gf1wsXQwSQ0RaBLsf7Gbvg70k5ScVb/ey9qKPfx8GBAzA20a/c/BVGi1vbbhMRGI2rjZmrBvTHDsLPZfcP1b06BGJ8xeQc/w4AApnZ1wnT8aufz9khijBz03RJf5ZMeBcC0ZsATOxVrpQMWg1Wg6uDSMxMgszSxP6vh2MtUPVXH60Moi+dYMr+3YB0P2NtzGztDJyRIIgCIJQdiL5F4zidOxp3jv+HvnqfBo4N2BFlxVGL6n/OzamNrwQ+AIvBL7ArdRbbL27lT0P9hCdHc1Xl7/i6ytf0967PYNrDqaNVxtM5GX7J5WQm8DeyL3sfrCbu+l3i7fbmtrSw68HfWr0Idgl2CCVEZIk8f7WG4TcS8HSVMH3o5vhZW+h9/No8/JI+WYNad9/j6RSgYkJjqNG4Tz+Lf039fufgizYMAhS74KdD4zaBlZOhjmXIJSSJEmc2BTBwxupKJRyer/VAEcPkWwai6qggAOrvwKgfpfu+Ilyf0EQBKGKEMm/UO72Re5jZshM1Fo1rT1bs6TjkkrRVb+OUx3qONVhUpNJHHp0iC13t3Al6QrHoo9xLPoYrpauDAwYyMCaA/Gy9irxcXOKcjj06BB7HuzhQsKF4nn8SrmSDt4d6FOjD+282mGqMDXUtwbAsiP3+D00BoVcxorhjannZafX40uSRPa+fSR+vgh1QgIAVq1b4zZrJmY1auj1XE9Q5eua+8VfA0tnGLUd7Mpn1QJBKImLuyO5dToemQy6vVoXjwB7Y4f0TDu56QcyExOwcXahw0hR7i8IgiBUHSL5F8rVptubWHBhARISPf16MrftXJQK/ZaVa7WSXo/3/1kqLekf0J/+Af15kPGALXe3sPP+TpLykvjm+jesub6GVp6tGFRzEJ19Ov/t96fSqjgbd5Zd93dxLPoYhZrC4ucauzamT40+dPPthp2ZfhPwf7IlNIYlh+8AMKd/XTrVdtXr8QsiIkj8bC55Fy8CoPTywu39GVh36WLY/g4aNfz+CjwKATNbGLkFnAMMdz5BKIWMxDyuHYkm7GQsAO2HBeIfbJhpRELJRN+8ztUDutVGur35DmaWFf/GtCAIgiCUlEj+hXIhSRIrr61k9bXVAAwNHMr7Ld7Xa9M8jVbip7MPWXzoDnYKBQrfRHo18EJuwCWy/O39mdpsKu82fpej0UfZcmcL5+LPcSbuDGfizuBg5kC/Gv0YVGsQ1W2rE5YSxq4Hu9gfuZ/0wvTi4/jZ+tG3Rl96+/cuVdWAPpy5l8KMrdcBGNuhBiNa+Ort2JrMTJKXLSf9559Bq0VmZobTG6/j9OqryM0N3GivKA+2vQkRe8HEHIb9Ap7Bhj2nIPwHSZKIvp3G9aMxPApLLd7etLcf9dqX77994UlFBfnF5f4NuvTAr0EjI0ckCIIgCPolkn/B4DRaDfMvzOfXiF8BeKvhW4xtOFavI75hsZnM3HaD6zGZAGQhY8Iv16h59D4TOgfQu74HJgrDdaw3VZjSw68HPfx6EJMdw9a7W9lxbwdJ+Umsv7We9bfW42zhTEp+SvE+juaO9Kreiz41+lDHsY5RVji4k5jNmxtCUWkk+jTwYFr3QL0cV9JoyNiyheQlS9Gk625y2HTrhtv0aSi9yiHByYp7XOp/FeRKGPID+LUx/HkF4R8UFai5cz6B68diSE94vGKHDPzqOdGgsw8+QY7GDVDg5MYfyExKxNbFlQ6jXjF2OIIgCIKgdyL5FwyqSFPEzJCZHHh4ABkyZraYydDaQ/V2/JxCNV8ejGD9mYdoJbAxM2Fi1wAuXL3FmVRT7ibl8O4vV1ly6A5vdQxgYGMvlAa8CQDgbePNO43f4a3gtwiJDWHLnS2cjD1JSn4K5gpzOlfrTB//PrTybFXmBoFPQ6OVuBCZxt4b8ey6Hkd2gZpmfg58MaShXqok8q5cIfGzuRTcvAmAaUAN3GfNwqpVqzIfu0RiQ+Hn4ZCTABaO8OIGkfgLRpOVks+N4zHcOh1PUb4aAKW5gqDWHtTv6I29qygrrwiiwq5x7eAeQFfub2oh/l4EQRCEqseoyf/8+fPZunUr4eHhWFhY0Lp1axYuXEhg4B+jjwUFBUyePJlffvmFwsJCunfvzsqVK3Fzcyt+TVRUFOPGjePYsWNYW1vz8ssvM3/+fExM/vj2jh8/zqRJk7h58yY+Pj7Mnj2b0aNHPxHPihUrWLRoEQkJCTRs2JDly5fTvHlzg/8cqqo8VR7vHnuXc/HnMJGbML/dfHr49dDLsSVJ4sDNBD7eeYuErAIA+jTw4MM+dXCwUOCcFsa8l9vx86VYvguJ5GFqHtO2XOerI3cZ27EGQ5p4Y65U6CWWf2IiN6GjT0c6+nQkMTeR+xn3aejaECtl+Xfx/nPCvy8sgZScP3oMBLrZsGZU0zL/PNTJySR98SWZO3YAILe2xuXtCTgMH45MaZjlAv8ibAtsfwvUBeBSW1fq71i9fM4tCI9JkkTcnQyuHY3m4fUUpMdtSOxcLGjQ2ZvaLT0wtRD33isKXbn/MgAaPtcT3/rBxg1IEARBEAzEqFcfJ06cYPz48TRr1gy1Ws3MmTPp1q0bt27dwspKlyC999577Nmzh99++w07OzsmTJjAoEGDOH36NAAajYbevXvj7u7OmTNniI+P56WXXkKpVDJv3jwAIiMj6d27N2PHjmXjxo0cOXKE1157DQ8PD7p37w7Ar7/+yqRJk1i9ejUtWrRg6dKldO/enYiICFxd9dv87FmQXpDOW4ffIiw1DAsTC5Z2Wkprz9Z6OXZMeh4f7bjJkfAkAKo5WvLpgHp0qKVrlKVSqQCwtVAyoXNNxrSpzqbzUXxz8gGxGfl8sD2M5Ufu8kZ7f4a3qIalqeH/GbhZueFm5fbfL9Sj/yX8e27EsT8s8YmE385CSbc6bvRu4EGbAOcyV0PknD5N7LsT0ebk6I4/eBCukyZh4lROy+lptXBiIZxYoPu6ZjcY/B2Y25bP+QUBUBdpuHMxketHY0iNzSne7lPHkQadvPGt64TMgD1IhKdzcsM6spJ15f7tR4wxdjiCIAiCYDAySZIM2xq9FJKTk3F1deXEiRO0b9+ezMxMXFxc2LRpE88//zwA4eHhBAUFcfbsWVq2bMm+ffvo06cPcXFxxdUAq1evZvr06SQnJ2Nqasr06dPZs2cPYWFhxecaOnQoGRkZ7N+/H4AWLVrQrFkzvv76awC0Wi0+Pj68/fbbzJgx4z9jz8rKws7OjszMTGxtn+2EIz4nnjcOvcHDrIfYm9mzsstK6rvUL/NxVRot34dEsvTwXfJVGpQKGW+2r8GEzgFPjFqrVCr27t1Lr169UP5pxLlApWHzpWhWH79PXKauWsDRypRX21bnpVa+2JiX0+i0AWm0EucjU9l7I/5vE/7udd3oVd+D1jWcMTXRz/SHrAMHiZ0yBVQqzOvVw/3DD7Bo0EAvxy6RojzYPg5ubdd93WoCPDcH5Iat7Kgo/un9LpSfnPQCbpyI5dapOApydTcfTUzl1G7pQf1O3jh6lH+1T1Wl7/f7oxtX+f2z2QAM+WAu1eo1LPMxBUEfxGe78CwR7/eyKU0eWqHqDjMzdc3aHB11jY9CQ0NRqVR07dq1+DW1a9emWrVqxcn/2bNnqV+//hPTALp37864ceO4efMmjRo14uzZs08c43+vmThxIgBFRUWEhoby/vvvFz8vl8vp2rUrZ8+e/dtYCwsLKSz8I7HKysoCdG/e/408P4seZD5g/LHxJOYl4mbpxopOK/C38y/zz+RKdAYf7rhFeKJuNK2prz1z+tWhpqs1oEWl0ha/9n/n+v/nVADDmnoxONiDHdfiWHUikuj0fBYdiOCbE/d5uVU1Xmrpi71l5frQ0WglLj5MZ9/NBA7cTCI1t6j4OTsLE54LcqNnPTda+Tv+McIvaVCpNGU+d9a2bSR9/AlotVh364bbgvnIlMry+zeQFY/it5HIE64hyZVoen6BFDwCNFrdn2fAP73fBcOSJInEyCzCjscReS0F6fHbzcbRjLrtPQls5YbZ488S8XejP/p8vxfl/9Hdv37XHngE1hF/V0KFIT7bhWeJeL+XTWl+bhUm+ddqtUycOJE2bdpQr149ABISEjA1NcXe3v6J17q5uZGQkFD8mj8n/v97/n/P/dtrsrKyyM/PJz09Hc3/tXff4VGVaR/HvzOT3nuDFCD0TuhSRJAiogh2196Ftb32Xtfe67prWV17Q0VBIygghN47CQlJgCSkkZ5MOe8fA6NZQClJJuX3ua65MnOeZ865T3gyzH3OU+z2w9bZunXrYeN94oknePjhhw/Z/tNPP+HXRtcFzrHl8H7l+1Qb1USaI7nY42K2Lt7KVg7/OzwaVTaYnW1mSb4JAxN+HgZnJjoYHFnIjpUL2fEn701NTT1imT9wS1dYXWgidbeZ/Gobr/yyk7cWZDAixmBMnIPAZnwNwGFARpmJNUUm1hWbqLD+3pXYz2LQO8ygf4RBlyAbFvMuKnbsIvXPflnHIXThQiK//wGA0sGD2T7mZPiT33lDC6ncyZCdL+JpK6XWEsCKjjdStCcU9vzQZDE0J3/W3uXE2evAVmHBWm7GWmGmrsSCtfz33iXeYTYCkqz4RJWTW1tI7q/ui7UtaIj2XrB8EeWF+/DwD6QyNIYffmibnx3SvOmzXdoStffjU1VVddR1m03yP2PGDDZu3Mhvv/3m7lCOyt13382tt97qel1WVkZ8fDzjx49vk93+l+xZwmOLHqPGqKFXeC9ePvllQrxDjnt/hmEwe0Mez83ZRmGF8072Wf3juHNCF8L9vf70vVarldTUVE499dS/7Do0BbjfYfDj5nxeX5DJ1rxy5u0xsXifB+cNbM9VI5KICWrk9eiPwa6iKv67LJvvNuQd9g7/ab2iGfrHO/yNwDAMil95hZIDiX/I5ZfT6Zabm3SpQtPmr7F89yQmWw1GZDfM537IkJDEJjt+c3Is7V3+Wm2VlZK9VRTvraIkr4qSvZWU7K2iuvzQq+oWTzPJAyPpNSqO8PYBboi27WmI9m44HGxdspD0dOeF6TNuuoP2PXo1ZJgiJ0yf7dKWqL2fmIM90I9Gs0j+Z86cyezZs1m4cCHt27d3bY+JiaGuro7S0tJ6d//z8/OJiYlx1Vm+fHm9/eXn57vKDv48uO2PdYKCgvD19cVisWCxWA5b5+A+/pe3tzfe3t6HbPf09GxzjXZO5hzu+e0ebA4bw+OG88LJL+Dnefy9H7IKK7n/m40s2lEIQKdIfx6b2pthnY5t8rhj+bc4o388U/q1Z/7WAl6en866nFL+k5bNx8tzmdQ7hvMGxjO0Y3iDLIV3rAzD4Lf0Qt5dnMUv2wpcM4eH+HkyoUcMp/WJZXin8EZfwhCcX5rzHn2U0o8/ASDy1luJuObqRj+ui8PhnNRvwVPO150nYJr+bzw1sV+b/Ow5EbXVNor3VFK8p4LivZXO53srqdpfd8T3BIb7EBbnT1isP2Fx/iT2Csc34M8vRkrjOJ72XltVxaZfU1nz42xK8/YC0G/C6XTo278xQhRpEPpsl7ZE7f34HMvvzK3Jv2EY/P3vf+frr7/m119/pUOH+ktypaSk4Onpybx585g+fToA27ZtIzs7m2EH1gwfNmwYjz/+OAUFBa5Z+VNTUwkKCqJHjx6uOv/bnS81NdW1Dy8vL1JSUpg3bx5Tp04FnMMQ5s2bx8yZMxvt/FuDj7d+zBPLnsDAYGLSRP4x4h94Wo7vj7bWZuefC3by6i/p1NkceHmY+fuYZK4Z3RFvj8afvM1kMjG2ezSndIvit/RCXpmfzvLMYr5Zu4dv1u4hIcyPc1Lac/bA9sQG+zZ6PJW1Nr5as5v/LMkiveD3mcPHdI3k4mGJjOwc2SQJ/0GG1cqeu+6m7PvvwWQi5sEHCT3/vCY7vnNiv+tgs3MpwbY2sZ+cmOqKOtb/kkt+ZhnFeyqpLK09Yt2AMG/CYgPqJfqhMX54+TSL6+VyjIr37Gbtj7PZ+OvPWGuqAfD286fPuIkMP+ciN0cnIiLSdNz6TWbGjBl89NFHfPPNNwQGBrrG6AcHB+Pr60twcDBXXnklt956K2FhYQQFBfH3v/+dYcOGMXToUADGjx9Pjx49uPjii3n66afJy8vjvvvuY8aMGa4789dddx2vvvoqd9xxB1dccQXz58/ns88+4/vvv3fFcuutt3LppZcycOBABg8ezIsvvkhlZSWXX65lf47k7Q1v8+LqFwE4r+t53D34bizHmYgt21nEPV9vIGNfJQAjO0fw6Jm9SIpo+lmyTSYTIztHMrJzJOtySvl0ZQ7frd1DdnEVz6Vu54WftzOqSyTnDoxnXPfoBps1/6DsoireT8vi05U5lNfYAAjw9uDslPZcMiyRjpFN373YUV1N7s03U7lgIXh40O7ppwg67bSmC6BsD3x8AexdC2ZPOP0FGHBx0x1fWixbnZ1183NYPXcXdTX1J7kMCPUmLNaf0D8k+WGx/kryWwHD4WDX+jWsnvMtmWtXubaHtYtnwKQpdB85Bi+fxr+IKyIi0py49RvOG2+8AcDJJ59cb/u7777LZZddBsALL7yA2Wxm+vTp1NbWMmHCBF5//XVXXYvFwuzZs7n++usZNmwY/v7+XHrppTzyyCOuOh06dOD777/nlltu4aWXXqJ9+/b8+9//ZsKECa465513Hvv27eOBBx4gLy+Pfv36MXfu3EMmARSnFXkreGm1c5bk6/tez/V9rz+uMd82u4MXft7O679mYBgQEeDF/af34Iy+cU06hvxI+saH0Dc+hPsn92DOxr18uiKHZZnF/LptH79u20eYvxdn9W/HeYPi6RIdeNzHMQyDJRlFvLs4i3lb811d+ztE+HPpsESmp7R321KE9vJycq6/nuqVqzD5+ND+5ZcIGDWq6QLYvQo+vhAq8sAvHM77LyQOb7rjS4vkcBhsX5bHsm93UlHivMsfER9Ar1HtCG8XQGisP96+SvJbm7qaajYtmMeaubMp2ZPr3Ggy0bH/QPpPOoPE3v2axf8tIiIi7uD2bv9/xcfHh9dee43XXnvtiHUSExP/cpbek08+mTVr1vxpnZkzZ6qb/1HYX7ufe367BwODs5LP4oZ+NxzXfnJLqrjpk7Ws2lUCwLkD23PvaT0IboZL7fl6WZg2oD3TBrQnq7CSz1bm8MWqXArKa3n7t0ze/i2TfvEhnDcontP7xB51ol5VZ+PrA137t+f/3rV/VJdILh+exOgukW6ZZ+AgW1ER2VddTe2WLZgDA4l/8w38UlKaLoCNX8KsG8BWA5Hd4cJPIDSp6Y4vLVL25iKWfJVBUa7zbyogzJuhZ3aiy6BoTG78e5LGU5qfx9ofv2PD/FTqqp2zHnv5+tLr5FPpN/F0QmPi3ByhiIiI++m2hxwTwzB4fOnj5FXmER8Yz12D7zqu/czduJc7vlhPWY2NQG8Pnpjem9P7NMyXM3tJCdhPfA37I0mK8OeOid249dQuLNi+j09X5DB/awFrc0pZm1PKI99t5rTesZw3KJ5BSaGHvcuUU1zFf5fu4pMVOeyvds4i7udlOdC1P4nkKPfPHG7ds4fsK66kLisLS3g4Cf/+Fz7duzfNwQ8zsR/T/w2a2E/+RGFuOUu+yiBnczEAXr4epExKpM+Y9nh4am6I1sYwDLI3rmPN3O/IWLWcg12mQmPj6D9xCj1Hj8XLt20uvSsiInI4Sv7lmMzeOZs5WXOwmCw8OfLJY57Vv8Zq57HvN/PfpdmAs1v9qxf0Jz7sxL6gGYZB9Zo1FL3zDhXz5pMYFUVd3754dup0Qvv9Mx4WM2O7RzO2ezT7ymv5anUun67MYee+Sr5cncuXq3PpGOHPOQPjmZ7SjsgAb5buLOa9JZmkbs7HcaDjS0KYH5cOT+Kcge0JclPX/v9Vu3Mn2VdciS0vD4+4WBLefhvv/5mQs9HUVTrv9m+e5Xytif3kL5QX17Ds251sW5YHBpgtJnqf3J6Bk5LwCWgef1PScBw2Gxvn/8S6n76nKDfbtT2pXwoDJk4hqe8ATOammwxVRESkpVDyL0cttzyXx5c9DsB1fa+jT2SfY3p/ekE5Mz9aw9a8cgCuHd2R28Z3PaEZ6w27nfLUnyl69x1q1q13bffOzyf3/Ato98ILBIw46bj3f7QiA725dnQnrhnVkdXZJXy6IofZ6/eys7CSp+Zu5dmfthEX4kNOcbXrPSM7R3DZ8CRO7hqFpRl1Ra7euImcq6/GXlKCV8eOJLzzNp5HWPKywaX/DLNvgdJs58R+U16E/n9rmmNLi1NbZWX1j7tYNy8Xu80BQOdB0Qw9syNBEZrMrbWpLC1h+bdfkpU6h511znkcPL196HnyWPpNOJ3wdvFujlBERKR5U/IvR8XmsHHPb/dQaa2kf1R/rup91VG/1zAMPl+Zy4PfbqLaaiciwIvnzu3H6C6Rxx2Po7KS0q++pvg//8Ga65zUyeTpSdCZZxBw2mTSH3oI3+xscq65hqg7bifs0kubZJInk8lESmIYKYlhPDClJ9+v38OnK3JYnV1KTnE1vp4Wpg1ox2XDk+h8AhMENpbK5cvJvf4GHJWV+PTsSfy/3sIjLKwJDlwIc++GDZ85XwfHw7S3NLGfHJbd5mDjgt2s/CGLmkrnsJm4ziEMn55MdJKGhrQ2tVWVrPzuK1Z+PwtbrTPpD4qKZsDEKfQacyrefk2/KoyIiEhLpORfjsq/N/ybNQVr8Pf05x8j/oGH+eiaTnmNlXu/3si36/YAMCI5gufP60tUoM9xxWEtKKDkvx9S8umnOPbvB8ASHEzIhRcQduGFeERGYrVayb32GgasWEn5rFkUPPkUtVu2EvPIw5gPLP/YFAK8PThvUALnDUpgR345OwoqOKlTRLOc0BCg/Jdf2H3zLRi1tfgNGkT7N17HEtDIcw8YBqz/1Jn4VxeDyQxDroMx94K3++c9kObFMAzSVxWwdFYGZYU1AITG+DF8WjKJvcM1i3srY6urY+1P37Ns1ufUlJcBEN2pM+Z2HZh+1TV4ex/f/yMiIiJtlZJ/+Uvr963nzXVvAnDvkHtpH9j+qN63LqeUv3+8huziKixmE/83vgvXjep0XLPX12zfTvG777F/9mywOu/0eSYmEH7ZZQRPnYrZt34XX8PDg6hHHsavZ0/yn3yS/d98Q+3OnbR/9RU83bB8Y+fowGZ5p/+g/d99x5677ga7nYAxY2j3wvOYfRr5i3VJFnx3M+z8xfk6qiec8Qq0b8LVBKTF2LOjhMVfpFOwyzlsyC/Ii8FTOtB9eCzmExg6JM2Pw25n88L5LPn8I8qL9gEQFteeERdcQmK/gcyZMwez5gARERE5Zkr+5U9VWau4a9Fd2A07k5ImcXrH0//yPQ6Hwdu/ZfLU3K3YHAbtQnx5+YL+pCSGHtOxDcOgKi2NonfepfK331zbfQcMIOzyywg85RRMliN/ATSZTIRd/De8kzux++ZbqNmwgcyzz6b9yy/j17//McXSmhV/+CH5jz4GQNAZU4h7/HFMno3YO8Fug2VvwC//AGsVWLzh5Dth+I1gaZ69IqTp2W0OKktrKSuqYd28HLLWFwLg6W2h//gE+o1LwNNbCWBrYhgG6SuX8tvH71O8OweAgPAIhp9zIT1HjcVssWA9cPFXREREjp2Sf/lTTy5/kpzyHGL8Y7hv2H1/2a22sKKW2z5fx6/bnHdrJvWK4cnpfQj2Pfqkzqiro2zOHIreeZfabducG81mAk89lfDLL8O3X79jOgf/YcNI+uJzcm+YQe2OHWRfcikxDz1EyPRpx7Sf1saw2Sh8/Q0KX38dgNCLLiL63nsad5bsvevg2xth71rn66SRcPqLEJHceMeUZsdudVC5v5aKkhoqSmr/8KihsrSW8pJaqsvq6r3HZDbRc0Qcg07vgF+Ql5sil8aSs3kDiz56j707nJ/5PgGBDJl6Dn0nTMbTq+mGa4mIiLRmSv7liFJ3pfJ1+teYMPGPEf8gyOvPJ9Jakl7IzZ+upaC8Fm8PMw9M6cGFgxOOehyuvayM0s8+o/j9D7AVFABg8vUlZPp0wi69BK/445/J2Ss+nqRPPmbPXXdRnvoze++9l5qtW4m+4/bGvcvdTFUs+o38p56kLj0DgIgbbiDi7zMbb8x0XRUseBKWvAqGHXyCYfxj0P9i0DjtVqe6vI7ivZVUlNRSWVpLRXENFaW/J/jV5Ud399bsYSIgxJvopCAGnd6B0BhN7NbaFGTtZNHH/yFr7SoAPLy9STltKoPOmKaJ/ERERBqYkn85rPzKfB5a8hAAV/S6gkExg45Y12Z38OLPO3jt13QMA5KjAnj1wv50izm6WbcNq5V9r75GyQcf4KiqAsASGUHY3y4m9LxzsYSEnOjpAGD296fdSy9R+MYbFL7yKiUffEDtjh20e+F5PEKPbUhCS1WbkUH+U09RuXARAJaQEKJuv42Q6dMb76A7f4XvbnKO8QfoMRUmPQ2BTT/3gjS86oo69u0qpyC7/MDPMiqKa//yfRYPM/6h3gSGeuMf6k1AiA8Bod4HHj74h3jjG+ipSfxaqdK8vSz+7L9sXbwAALPFQu+xExk67TwCQptghREREZE2SMm/HMJhOLh38b2U1ZXRI7wHM/rNOGLd3aXV3PTxGlbuKgHggsHxPHB6T3y9jm4srr20lNybb6Fq6VIAvDsnE3b5FQSdPhmzV8N37TWZzUTOmIFP167sueNOqpYuJeucc2n/2mv4dO3S4MdrLmwlJRS+9jolH38Mdjt4eBD2t78Rcf11WIKDG+egVcXw032w9kPn66B2MPk56DqpcY4nja6m0upK8PftKqdgVznlxTWHrRsU4UNgmI8zkQ/1JiDEm4AwnwM/vfHxV2LfFlWWlpD25SdsmDcXh90OQLeTRjP83IsIjYlzc3QiIiKtm5J/OcQHmz9g2d5l+Hr48uTIJ/E8wiRsv2wr4KaP11BWYyPQ24N/TOvNlL5H/+WtNiODnOtvwJqdjcnPj7jHHiVw0qQmSQgCx40j8ZOPyZ0xE2tODlkXXEDcE08QNGF8ox+7KRlWKyUff8K+115zLY0YcMopRN1+G94dOjTSQQ3Y+CXMuROqCgETDLoKxj4APlqDvaWoqbSyL7ucfdnlFOwqY192uWt5vf8VHOVLVGIQkQmBRCUEEpEQiLev/nuR39VWVbLi269Y9cMsbLXOniFJ/VIYcf4lRHfo5OboRERE2gZ9O5N6thVv46XVLwFw+6Db6RB8+ARxW1451/93FTVWB33jQ3jl/P4khPsd9XEqFi5k963/h6OiAs+4ONq/8To+Xbs2yDkcLZ8uXejw+WfsvvVWKpeksfumm6i94QYiZs5o3EnvmoBhGFQsWEDBU09Tl5kJgHfnzkTffRf+w4c33oFLc+D7W2HHT87Xkd2cy/fFD268Y0qDqK22sfm3PRRklVGwq+zIiX6kL5GJgUQlBBGZGEikEn35E3ablTVzZ7Ps68+oqXAu0xib3JWRF15KfM8+bo5ORESkbdE3NnGpsdVw58I7sTqsjIkfw9mdzz5svcpaG9d/6Ez8R3aO4O1LB+HlcXTJsmEYFL/7HgXPPgsOB74DU2j/8st4hLlnjKclJIT4t96i4JlnKP7P+xS+/jo127YR99RTWAJa5mRTtTt2kP/kU1QuXgyAJSyMyBtvJOTs6Zg8GulP3mGH5f+CeY+AtRIsXjDyNhhxC3hoZvbmzlpr59sX11Cwq7ze9qAIn9/v6B9M9P3a3gSZcnx2bVjLvHfepGRPLgBh7eIZcf7FJA8apiEfIiIibqDkX1yeX/U8GfsziPCN4KHhDx32y5lhGNzz9QZ27qskJsiHF8/rd9SJv6OujrwHH2L/118DEHLO2cTcfz+mRhjbfyxMHh5E33033l27kffgg1TMm8euC86n/Wuv4ZWQ4NbYjoWtpITCV16h5JNPweEAT0/CLrmYiOuuwxIY2HgHLtwB38yAnGXO1wnDYMpLENm0PTnk+DjsDn7890YKdpXj4+9Jv1PjXQm/j78SfTl25UWF/PrB22xPc04s6hccwojzL6Hn6LGYLUc3H4yIiIg0PCX/AsDC3IV8vPVjAB496VHCfA5/J/6j5dl8s3YPFrOJVy/sT3jA0a2/bCssJPfvN1K9Zg2YzUTfdRehF/+tWd39CZl2Ft6dOpI78+/U7kgn85xzaf/C843bTb4BGHV1FH/4EYWvv46j3HnnNvDUcUTddhteiYmNd2CHHZa+DvMfA1sNeAXCqQ9DyuXQwodNtBWGYbDwk+3s2lCExdPM5Bl9iOnYSBNASqtnt1lZ/cO3pH3xMdbaGkwmM/0mTmb4ORfh4x/g7vBERETaPCX/QlF1Efcvvh+Ai7pfxIh2Iw5bb+Pu/Tz87WYA7pzYlYFJR9dVv2bLFnJumIFt717MgYG0e+EFAkac1DDBNzDfvn1J+uILcm/8OzXr1pN91dUET51KyLSz8E1JaVYXKwzDoOKXX8h/6imsu7IB8O7enei77sJ/SCOPsd+3Hb65AXJXOF93OgWmvAwh8Y17XGlQq3/cxaZFe8AE46/oqcRfjlv2xnXMe+dNinfnABDXpTtjr7yeqKSObo5MREREDlLy38YZhsGDSx6kuKaY5JBkbkm55bD19ldbueHD1dTZHYzrHsXVI4/uC13ZTz+x5867MKqr8UpKov3rr+PdsZFmmW8gntFRJL7/PnkPPcz+r79m/1dfsf+rr/BMSCDkrKkEn3kmnnHuXZKqZts28p98kqo05xKJlogIom6+ieCzzsLUmN1qHXZIexXmPw72WvAOggmPQ/+LoRldGJG/tm1ZHktn7QRgxDmd6dg/0s0RSUtUXlzIgg/eYduShQD4BgUz6qLL6TnqlBY/caqIiEhro+S/jft8++csyF2Ap9mTJ0c+ibfl0G78hmFwxxfryC6uon2oL8+d0+8v74AbhkHhG29Q+PIrAPgPH067F55vvDXlD7JbMW2fi19twQntxuztTew/Hifk7OmUfvUV5XPmYs3OZt9LL7Pv5VfwHzaU4LPOInDcOMy+vg0U/JEZhoF11y4qly6l4rffqJj/CzgcmLy8CLv0UsKvvQZLQCN3qy3Y6rzbv3uV83XyOOfY/uD2jXtcaXC520qY//4WAPqOi6fvKeqxIcfGbrOxZs63LPniY6w11ZhMZvqOn8RJ516MT2N/FomIiMhxUfLfhu3cv5NnVjwDwC0pt9A17PATtL2zOIsfN+XjaTHx2oUDCP6L2b4d1dXsueceyufMBSD0kouJvuOOxptpHsBaA2s/hMUv4lGazRizN2wOhr7nHvcuTSYTfikp+KWk4Lj3Xsp++on9X8+iatkyKpekUbkkDbO/P0GnTSL4rGn49v/riyLHwlZURGXaUirTllCZloZtz9565YETJxJ12//h1b6Rk2+7DZa8DL8+AfY68A6GiU9Avwt1t78FKtpdwZw3N+CwG3QaEMVJ05LdHZK0MDmb1jPvnTcpynUON4rt3JWxV1xPdEe1JRERkeZMyX8bZbVbuWvhXdTYaxgWO4yLul902Hqrs0t44gfnHcL7Jvegb3zIn+83L4/cGTOp2bQJPD2JeeB+Qs85p6HD/11dJax6Dxa/DBV5ABgWLzzstfD11bB3rXMSOsuJzVpu9vMjZOpUQqZOpS53N/u/mcX+r2dhzc2l9PMvKP38C7wSEwk+6yyCp56JZ0zMMR/DUVVF1cqVzgsLaWnUbttWv4KnJ379+uE/fBgBo0fj06PHCZ3TUcnf7Lzbv2eN83XnCTDlRQhy77AHOT6VpbXMfnUdddU2YpODGXd5d0xmXcCRo1NRUsyCD95m6+IFAPgGBjHyosvoNXqcuviLiIi0AEr+26hX1r7CluIthHiH8NiIxzCbDv3iVlJZx8wPV2NzGEzuHcslw/585vjqdevImTkT+75CLKGhtH/5JfwGDWqcE6jZ71xXfunrUFXk3BbUDk66GVuvc8h8fyZd8mfD0tecFwDOfhcCoxvk0F7t2xE5YwYR119P1cqV7P96FmU//kjdrl3se/FF9r30Ev7Dhx8YFjAWs4/PYfdj2GxUb9hAZVoaVUvSqFq3DqzWenW8u3XDf9gw/IcPwy8lBbOfX4Ocw1+y22Dxi7DgKefdfp9gmPgU9D1fd/tbqLpqG9+9uo6KklpCov047fo+eHhq2TX5a3abjbU/zmbJ5x9SV10NJhN9x03ipPMvxjegEZcRFRERkQal5L8NWpG3gvc2vgfAQ8MfIsov6pA6DofBrZ+tZc/+GpLC/Xhyeu8/7dK+/9tv2Xvf/Rh1dXh36UL711/Hq327hg++sgiWvQHL3oLa/c5toR1g5K3Q53zw8AKrlS1x59JxxDl4fDcTdi2Gt0bDOf+BhCENForJbMZ/8GD8Bw8m5r57KfvxJ/Z//TVVK1ZQuXgxlYsXYw4MJOi00wg5ayo+fftSt3On685+1fLlOCoq6u3TMy4O/5OG4z9sGH5DhuARHt5g8R61/E0w6wbnRROALpPg9BcgKLbpY5EGYbc7mPvWBopyK/AN8mLK3/vi439ivWGkbcjdvJF577xBYc4uAGKSuzD2iuuJ6dTZzZGJiIjIsVLy38bsr93P3YvuxsBgeufpjE0Ye9h6by7M4Jdt+/DyMPP6RSkE+hw+UTAcDva98CJF//oXAAGnnELc009jCfBv2MDL82DJK7DyXbBWOrdFdoORt0HPs8ByaFM2uk2G2J7w6d9g31Z47zSY8AQMvrrB716b/f0JmXYWIdPOoi4nh/1fz2L/rFlY9+yh9NNPKf30U8x+fjiqquq9zxIcjN/Qoa67+57x8e5bTtBuhd9egAVPg8MKPiFw2jPQ+xzd7W/BDMPg1/9uJWdLCR5eZk6f0YegiMafpFJaJsMwsNbWUFFczNKvPmHLol8A8AkMYuQFl9J7zKnq4i8iItJCKflvQwzD4NGlj5JflU9iUCJ3DLrjsPWW7izi2R+d480fOaMnPeKCDlvPXlHJnttvp+IX55fD8GuuIfLmmxr2i2FpNix+CVZ/4FxaDiC2L4y6HbpOhr86VkRnuGoefPt32PQVzLnduTb9lBfBq4EvUBzgFR9P5I1/J2LmDKqWr2D/119T9tNPOKqqMHl745cyAL9hw/AfNhyf7t0ad2m+o5W3wXm3P2+983W302Hy8w02VELcZ8XsTLam5WEywYSrexGVePi/Z2ld7DYbtZUVVFeUU1tZQU1FBTWVFdRUlB94Xk6ta9uB7QeeO+y233dkMtFn7ARGnH8JvoFqOyIiIi2Zkv82ZmjsUJbsXsKTI5/Ez/PQ8eP7ymu58eM1OAyY1r8d5w06/BJghtVKztVXU71mDSYvL2Iff5zgKac3XKCF6c670Os/AceBL6LxQ2HUbc4l5o7lTrR3AJz9DrQfBD/dBxs+c3ZtP+8DCO/UcDH/D5PZjP/QIfgPHUL0/fdTl5WFd+dkzN6HLqfoNrY6+O15WPiM8/fsG+a8299ruu72twJbluxhxfdZAIy6oCtJvSPcG5A0Gofdzm+fvM/WJQupqajAWlN9QvszWzyISe7CmEuuIia5SwNFKSIiIu6k5L8NMZlMnN3lbCYmTSTA69B1mO0Og5s/XUNBeS2dowJ47KxeR+yCvu+116heswZzYCAJb/8b3z59GibI/E2w6DnY9DUYDue2jic77/QnnnT8CanJBMNucPYa+PwyKNgEb42Baf+ErpMaJvY/YQnwx7dXz0Y/zlGzW2HjV87Ef99W57buU5x3+wMOnQNCWp7szUX8+l9nD54BExPpNaoR5uCQZsFWV8f3Lz9N+oqlh5R5+/njExCAt38APgGBzoe//4GfAX/4+cc6AXh6+7hvCJKIiIg0CiX/bdDhEn+Al+btYHF6Eb6eFt742wD8vA7fPCqXLafon28BEPvIww2T+O9ZAwuegW3f/76tyyTnnf72A098/wclnQTXLoTPL4WcZfDx+c4LCyffDeZm0P2+sdVWwOr3Ie01KMt1bvMLh9Oedc6doC/7rcK+nHLm/nMjDodBl8HRDD2zo7tDkkZSU1nBN888Ru6WjVg8PTn16pnEde2Oj38A3v7+mNvC55qIiIgcFSX/AsDC7ft4Zf4OAP4xrRfJUYdfvslWUsKeO+4AwyB4+jSCJp3gXfPSbJj3CGz4/MAGE/ScCiP/D2J6n9i+jyQoFi6d7RwCsPyfzi7vu1fD9H+DX1jjHNPdKgpg2T9hxb+hptS5zT8Khl4HA68A31C3hicNp7y4htmvrsNaa6dd1xBOuaS77uC2UhXFRXz5xIMUZmfh5evH1DvuJ75HI31uioiISIun5F/I21/DzZ+uxTDggsEJnNW//WHrGYZB3gMPYMvPxyspiZh77jn+g9bsh0XPw9I3DkzkZ4I+5zpn749sgvGlHl5w2tPOXgXf3ggZ85zLAZ77AcT1a/zjN5XCdEh7BdZ+/PuEieHJMPxG6HMeePq4Nz5pULVVVma/uo6q/XWExfkz6dreWDw0M3trVLxnN1/+4wHK9uXjHxLKtLsfJipJPTxERETkyJT8t3FWu4O/f7ya4so6esQG8eCUHkesW/rpZ5Sn/gyensQ99yxm/+OYLd9uhVXvwa9PQFWRc1vSSJjwuHM8flPrcy5E9XAuB1iSCW+Ph9Ofh/5/a/pYGlLuSlj8ImyZDRjObe0HwUk3Q9fT/nqVBGlx7FYHc9/cRPGeSvyDvTh9Zl+8/Q6/RKe0bHnp2/nqyYeoLi8jJCaWs+99lOCoGHeHJSIiIs2ckv827tmftrEiq4QAbw9ev2gAPp6HHx9am55O/pNPAhB1yy349jzGyesMA7bPhdQHoHC7c1tEFzj1Uegywb1jzWN6wTW/wtfXwfY58M0M53KAk54Gj2Y0M/9fcTggPdW5NOKuxb9v7zIJTroJEoZqTH8rZRiw4KPt7N5eiqePhdP/3pfAMPXqaI2y1q/h22cfx1pbQ3THZKbd9RB+wSHuDktERERaACX/bdjPm/P554KdADx9dh+SIg5/J99RW8vu/7sNo6YG/5NOIuyyS4/tQHvXwY/3QtYi52u/cOcEeymXgaWZ3Jn0DYHzP4LfnoP5jzt7J+xdD+e+DyGHX+6w2bDVOedMWPIK7Nvi3Gb2dHbrH/53iOrm3vik0ZVt92L3zn2YzSYmXdObiPaHn7NDWrYtixcw97UXcNhtJPbpzxm33o2X76FLtoqIiIgcjpL/NiqnuIr/+3wdAJcNT+K03rFHrFvw7HPUbtuGJSyMuCefwHS0Xcb374b5j8G6jwEDLN7O5fZG3AI+wQ1wFg3MbHbO/B/XH768Cvashn+OgkFXQvxQ5/wAviHujvJ3NWXOixRL34DyPc5tXoEw8HIYej0Exbk1PGkam3/bS/lOZw+Vk//WjfgerXTSyjZu9Q/f8Mt//gVAt5NGM/GGm7F4NJOLpyIiItIiKPlvg+psDmZ+tJr91Vb6xodwz2ndj1i3/NdfKfngAwDinvgHHpGRf32A2nJn1/Mlr4Kt2rmt9zkw9gEISWiIU2hcyePgmgXw2cXOXgsLn/m9LLI7xA+G+CHOR3inpu1KX1cFxRmw4QtY+Q7Uljm3B8Q4L6ykXNY8L6xIg7PW2lk1J4vVP+4CIOW0BLoPP/JFPGmZDMPgt4//w/JvvgCg/6QpjLnk6qO/CCsiIiJygJL/NugfP2xhXe5+gn09ee3C/ngdYTZwa0EBe++5F4DQiy8mYPToP9+x3QZr/+vsNl9Z4NyWMAzGPw7tUxryFBpfaCJc8RNs+Ax2pUHOMmfSvW+L87H6P856fuEHLgQcuCAQ1x88fU/s2A4HlOVC4Q4oSv/9Z1E67M+pXzeiK5x0o/PiSkuan0COm2EY7Fy7j98+20FFiXMFB//4OgZMbAEX1uSYOOx2fnrrFTb9+jMAIy64lMFnnq2lG0VEROS4KPlvY75fv5f3lmQB8Py5fWkfevjxoobDwd6778FeXIx3t25E3fZ/f77jHT9D6v1QsNn5OqwjnPoIdDu95U4y5+kDAy5xPgAqC50XAXKWQc5y2L3auWLBth+cDwCzh3PVgoM9A+KHQNAR7sZWl0BRxoHk/mCin+68yGCrOXJcPiHO5QiHXAedJ2jm/jakNL+KhZ9uJ2dzMQCBYT4Mm9aBTbnLlRC2MtbaGma/+BQ7V6/AZDJz6rUz6T1mvLvDEhERkRZMyX8bYhgG/0nLAuC60Z0Y2z36iHWL3/sPlYsXY/Lxod2zz2D2PsJd5fxN8NN9kDHf+do3FEbfCQOvBA+vBj4DN/OPgG6TnQ9wTrS3d90fLggsg4p82L3K+Vj6urNecIKzZ0BkVyjN/v1uflXhkY9l9nReQAlPhohkCO8MEZ2dr/3CW+4FFTku1lo7K3/IYu3P2TjsBhYPM/3HJzBgYiKYHGze7e4IpSFVV5Qz6+lH2bNtMx6eXky++U6SBw5xd1giIiLSwin5b0NMJhPvXzGY/yzJ4soRHY5Yr3rTJgpeeAGA6Lvuwjs5+fAVf30KFjwJhsOZrA65Fkbd5rwA0BZ4eEH8IOeDmc711kqz618MyN8E+7Odj8MJjHUm9OHJB5L7zs55BEISwaI/z7bOMAwyVu9j8Re/d/FP7BXOiHM7ExLl7LVjtTrcGaI0sPKiQr78xwMU5Wbj7e/P1DseoH23Y1xaVUREROQwlF20MT6eFq4d3emI5Y7KSvb8321gtRJ46jhCzjv38BW3zYFf/+F83mMqjHsIwo58QaFNMJmccwWEJkKfA7+32nLIXekcJlCS5Zzw8OAd/PBO4K0l2eTwSvIqWfjJdnK3lgAQGO7DyHM7k9QnQl38W6mi3By+/McDlBftIyA0jOn3PEJEQpK7wxIREZFWQsm/1JP3j39Ql5WFR3Q0MY88cvgko2wvzLrB+XzYTJjweNMG2ZJ4B0KnMc6HyFGoq7Gx8ocs1s3LcXXxHzAhgQETEvHwsrg7PGkke3ds46snH6KmopzQuPacfc8jBEVGuTssERERaUWU/ItL2Zw57P/yKzCZiHv6aTxCD9N93+GAr6+F6mKI6eNcvk9ETphhGKSvKmDxF+lUljq7+Cf1iWDEOZ0JjjzBFSSkWctcs5JvX3gCW20tMcldOOvOB/EL0pKdIiIi0rCU/AsA1t272fvAgwCEX3sN/kMGH77ikpchcwF4+sHZ72h5OZEGULynkoWfbmf3NmcX/6AIH0ae14Wk3hFujkwai91mI3fzRnasSGPDvLk47HaS+qVwxi134+nj4+7wREREpBVS8i8YNhu7b78DR3k5Pn37EDljxuEr7l4N8x91Pp/4pHPsuogct7oaGytmZ7J+fi4Oh4HF00zKxET6j0/Aw1Nd/Fub2qoqstatIn3FUjLXrKS2qtJV1n3kGCZcdxMWD/23LCIiIo1D3zKEwjf/SfXq1Zj9/Wn37LOYPD0PrVRbAV9eCQ4b9DgTBlzS9IGKtBKGYbBjZT6Lv0inan8dAB36Orv4B0Woi39rUlFcRMaqZaSvWEr2xvU47DZXmV9wCJ1SBtN58HCS+qVoIkcRERFpVEr+27iqVasofN25Hn3MQw/hFR9/+Ipz7oDinRDUHqa8pHXmRY5DaX4VWRsKSV9VQH5mGQDBkb6MPK8Lib3C3RydNATDMCjKzSZj5TLSVy4lL317vfLQ2HYkDxpKp4FDie3cBbNZPTxERESkaSj5b8PsZWXsvv12cDgIPvMMgqecfviKG76AtR+CyQzT/wW+h5kIUKQZ2rYsjx0r84lMCCQuOYSYjsF4ejddsmW3Otizo5SsjYXs2lDE/n3VrjIPTzMpk5Lod2q8uvi3cA6HnT3bt5K+YikZK5dSmre3Xnls5650GjiU5EFDCW93hAusIiIiIo1MyX8bZRgGex98ENuevXgmJBB9/xFm7S/ZBbNvcT4feRskDm+6IEVOwNqfs1n8RToAuzYUAWAym4iMDyC2cwhxySHEJgfjG+DVoMet3F/Lro1F7NpQRM6WYqy1dleZ2WIirnMISb0j6DQgioBQTZjZUllra9i1YR3pK9LYuXoF1WX7XWUWDw8SevcjeeBQOqYMJiA0zI2RioiIiDgp+W+j9n/1NeVz5oKHB+2efQZLgP+hlew2+OpqqC2D9oNh9J1NH6jIMTIMg5U/ZLH8u0wAug6NwWE32JteSkVJLQW7yinYVc66n3MACI3xI65zCLHJIcR1DiEw7NhmWjccBgW7yl139/dll9cr9wvyIrFXOIm9w4nvHoaXjz52W6qSvD1krV1F5tpV5GzagK2u1lXm7e9Px/6DSB40lKS+A/Dy9XNjpCIiIiKH0rfQNqg2M5O8xx8HIPLGG/Ht0+fwFRc+DTnLwDsIpv8bLGou0rwZhsGSL9NZeyCxH3JGR1ImJbomUisrqmZv+n72pJeyd0cpJXlVrsemRXsACAjzPtArwNk7IDTW75CJ2OqqbWRvLmbXxkJ2bSqmuqyuXnlUYiCJvSNI6h1OZHwgJrPmyGiJrLU15GzaQObaVWStXUVpfv3u/IERkSQf6M7frltPzdQvIiIizZq+qbQxRl0de/7vNoyqKvyGDiX8qisPX3HXElj4jPP56S9AaGLTBSlyHBwOgwUfb2PzgSR+xDmd6Tu2/vjqoHBfgsJ96TokBoDqirp6FwP25VRQUVzL9uX5bF+eD4CPvyexycHEJodgMkHWhiL27ijF4TBc+/X0sZDQPYzE3uEk9AzHP1jd+VsiwzAo3p1L1jrn3f3cLRuxW62ucrPFQruuPUjql0KHfilEJCRphn4RERFpMZT8tzEFL75EzebNWEJCiHvqSUxm86GVqkvgy6vBcEDfC6H32U0fqMgxsNsdzHtvCztW5IMJxvytGz1OivvL9/kGeNGxXyQd+0UCUFdjIz+zzHkxIL2U/J1l1FRayVxXSOa6wnrvDYn2c3Xnj0sOweJxmL8lafbqqqvI3riezLUryVq3mrJ9BfXKAyMi6dAvhaR+KST26qvu/CIiItJiKflvQwzDAIcDgNjHH8MzOvpwleC7m6AsF8I6wmlPN3GUIsfGZrXz0783kbmuELPZxLgretB54GHa9lHw8vEgvnsY8d2dE7TZbQ72ZZcfuBiwH4fdIKFHGIm9wgmJVhLYEhmGQWHOLjLXOJP93Vs347DbXOUWDw/a9+hNUt8BdOg3kLB27XV3X0RERFoFJf9tiMlkIvquOwk5ezreycmHr7TmA9j8DZg9nOP8vQObNkiRY2CttfPDG+vJ3VqCxcPMxGt7kdQ7osH2b/EwE9MxmJiOwTC+wXYrblCydzervp9FxqrlVBQX1SsLiY51deWP79EbT59jm/RRREREpCVQ8t8GHTHxL9wBcw7M6H/K/dAupemCEjlGtVVWZr+6nryd+/HwtjD5hj607xrq7rCkmSnKzWbpV5+ybckiDMPZ88nDy5v4nr1J6ptCh/4phMb89RARERERkZZOyb842WrhiyvAWgUdRsPwG90dkcgRVZfX8e3LaynMqcDbz4PTZ/Z13p0XOaAgayfLvvqU7cuXOIczAR0HDKLfhNNp36MXnl6alFFERETaFiX/4jTvEchbD75hcNY/4XATAYo0AxUltXz70hpK8qrwDfTkjJv6EdFew1PEKS9jB0u/+oSMlctc2zoPHs6QaecR3aGTGyMTERERcS8l/wLpP0Paq87nU1+HoFj3xiNyBGWF1Xzz4hrKCmsICPXmjJv6ERrj7+6wpBnYvW0LS7/6hKy1q5wbTCa6DhvJ0LPOJSIhya2xiYiIiDQHSv7buop98PX1zueDroauk9wbj8gRFO+t5NsX11C5v46gSF/OvKkfQRG+7g5L3MgwDHI3b2DpV5+QvXE9ACazme4jTmbIWecSFtfezRGKiIiINB9K/tsyw4BvboDKAojqAeMfdXdEIoe1L7ucb19eS02FlbA4f864qR/+wRqz3VYZhsGu9WtY+tUn7N66GQCzxULP0WMZfOY5hMSo95KIiIjI/1Ly35Yt+yfs+Aks3jD9bfDUXVRpfvZm7Gf2q+uoq7YRmRDIlBv74hvg5e6wxA0Mw2Dn6hUs++pT9qZvA8Di4UGvUyYw+MzpBEVEuTlCERERkeZLyX9blbcBUu93Pp/wOET3cG88IoeRs6WYH95Yj63OQWxyMKfP6IuXrz622hrD4SB9xVKWfvUpBVkZgHO5vj7jJjJoyjQCwsLdHKGIiIhI86dv0W1RXRV8cSXY66DLJBh0lbsjEjlE5rp9zP3XRhw2g/geYUy6rjeeXhZ3hyVNqK66ih3L01j53VcU5uwCwNPbh34TJpMyeSr+IaFujlBERESk5VDy3xb9eA8UboOAGDjzNTCZ3B2RSD3bV+Tx87tbMBwGHftFMv7Knlg8tfxkW2CtqyVzzUq2LV7IztUrsFnrAPDy9WPApCkMOO1MfAOD3ByliIiISMuj5L+t2fIdrHoXMMG0f4K/ustK82C3Oti1qYjty/PJWFMABnQdEsMpl3TDbFHi35rZbTayN6xl6+IFpK9cSl11tassNLYdPUadQr8Jk/HxD3BjlCIiIiItm5L/tsQwYMmrzucn3QgdT3ZrOCKGw2D3jlJ2LM8jY80+aqtsrrLeo9sx8rwumMzqmdIaORx2dm/ZxNYlC9m+bAk15WWussDwSLoOH0m3k0YTldQRk3oniYiIiJwwJf9tickEF38FS9+A4Te6OxppowzDoDCngu3L89ixsoDK0lpXmX+wF50HRdNlcAyRCYFujFIag2EY5KVvdyb8aYuoKCl2lfkFh9Bl6Ai6nTSauM5dMZnV20NERESkISn5b2u8/GHUbe6OQtqg/fuq2LEin+3L8ynJq3Jt9/bzoFP/SDoPjiGucwhm3elvVZwXe3axdfECti1ZyP6CfFeZt78/nQefRLfho4jv2RuzRRM6ioiIiDQWJf8i0miqyupIX+VM+PMzf+/WbfEwk9QnnC6DY0jsGa7J/Fqhkrw9bFu8kK1LFlKUm+3a7uHtTfLAoXQ7aRSJfQbg4enpxihFRERE2g63fuNeuHAhU6ZMIS4uDpPJxKxZs+qVX3bZZZhMpnqPiRMn1qtTXFzMRRddRFBQECEhIVx55ZVUVFTUq7N+/XpGjhyJj48P8fHxPP3004fE8vnnn9OtWzd8fHzo3bs3P/zwQ4Ofr0hbUFdjY+vSvXz38lreu2sxiz7dQX5mGSYTxHcPZeyl3bnimRFMvKY3HftFKvFvZar2l/LNs4/xzk3XsPiz/1KUm43Fw4PkQUOZfNMd3PDWh0y+8XY6pQxR4i8iIiLShNx657+yspK+fftyxRVXMG3atMPWmThxIu+++67rtbe3d73yiy66iL1795KamorVauXyyy/nmmuu4aOPPgKgrKyM8ePHM27cON588002bNjAFVdcQUhICNdccw0AS5Ys4YILLuCJJ57g9NNP56OPPmLq1KmsXr2aXr16NdLZi7QeDofBro1FbF+WR+b6QuxWh6ssKimILoOiSR4YhX+w95/sRVq6natX8OObL1G1vxST2UxCr750O2k0yYOGaqZ+ERERETdza/I/adIkJk2a9Kd1vL29iYmJOWzZli1bmDt3LitWrGDgwIEAvPLKK5x22mk8++yzxMXF8eGHH1JXV8c777yDl5cXPXv2ZO3atTz//POu5P+ll15i4sSJ3H777QA8+uijpKam8uqrr/Lmm28e9ti1tbXU1v4+UVlZmbNLs9VqxWq1HtsvQhrUwd+//h0an63OzvblBayfn0vZvhrX9uAoX5IHRpI8MIrgSF/Xdv2bNLzm0N6ttbX89vF7bPh5LgDh7ROYcMMtRCQk/V5H//bSAJpDexdpCmrr0paovZ+YY/m9Nfsx/7/++itRUVGEhoZyyimn8NhjjxEe7lybPi0tjZCQEFfiDzBu3DjMZjPLli3jrLPOIi0tjVGjRuHl5eWqM2HCBJ566ilKSkoIDQ0lLS2NW2+9td5xJ0yYcMgwhD964oknePjhhw/Z/tNPP+Hn53eCZy0NITU11d0htFqOOqjI9qJilyeOOme3fZOngX87K35xVjyDysk3CshfscnNkbYd7mrvNcWF5C/5BWtZKQDBXXsR3G8Qyzduho2b3RKTtH76fJe2Qm1d2hK19+NTVVX115UOaNbJ/8SJE5k2bRodOnQgIyODe+65h0mTJpGWlobFYiEvL4+oqKh67/Hw8CAsLIy8vDwA8vLy6NChQ7060dHRrrLQ0FDy8vJc2/5Y5+A+Dufuu++ud8GgrKyM+Ph4xo8fT1BQ0Amdt5wYq9VKamoqp556Kp4aU9ygyotq2PDLbram5WGrc3btDwj1ps8p7eg6LAZPb83W3tTc1d4dDjurv/+Gpanf4bDb8A8J5dRrbyShd78mi0HaHn2+S1uhti5tidr7iTnYA/1oNOvk//zzz3c97927N3369KFTp078+uuvjB071o2ROYcj/O/8AwCenp5qtM2E/i0azr7sctakZpO+qgDDYQAQER9A/1MT6JQShcWiSfvcrSnbe1lhAXNee57czRsB6Dx4OKdeMxPfQF34lKahz3dpK9TWpS1Rez8+x/I7a9bJ///q2LEjERERpKenM3bsWGJiYigoKKhXx2azUVxc7JonICYmhvz8/Hp1Dr7+qzpHmmtApC0wDIPcrSWs+WkXOVtKXNvbdwtlwPhE2ncPxWQyuTFCcYctv/3KvLffoLaqEk8fX0657Bp6njxObUFERESkmWtRyX9ubi5FRUXExsYCMGzYMEpLS1m1ahUpKSkAzJ8/H4fDwZAhQ1x17r33XqxWq+uqSGpqKl27diU0NNRVZ968edx8882uY6WmpjJs2LAmPDuR5sFhd5C+uoA1P2VTmONcNtNkNpGcEkX/UxOITAh0c4TiDjWVFcx7+w22Ll4AQGznrpw28zZCYmLdHJmIiIiIHA23Jv8VFRWkp6e7XmdmZrJ27VrCwsIICwvj4YcfZvr06cTExJCRkcEdd9xBcnIyEyZMAKB79+5MnDiRq6++mjfffBOr1crMmTM5//zziYuLA+DCCy/k4Ycf5sorr+TOO+9k48aNvPTSS7zwwguu4950002MHj2a5557jsmTJ/PJJ5+wcuVK3nrrrab9hYi4kbXWzubFe1g3L4fyIufM/R5eZnqcFEffsfEERfj+xR6ktcrZvIE5rz1PeeE+TGYzQ6edz9Bp52G2aI4HERERkZbCrcn/ypUrGTNmjOv1wQn0Lr30Ut544w3Wr1/Pf/7zH0pLS4mLi2P8+PE8+uij9cbaf/jhh8ycOZOxY8diNpuZPn06L7/8sqs8ODiYn376iRkzZpCSkkJERAQPPPCAa5k/gOHDh/PRRx9x3333cc8999C5c2dmzZpFr169muC3IHJsDMPAWmPHZDFhtpgwm00n1OW6qqyODb/msmFBLrWVNgB8Az3pfXJ7eo9uj0+Axl61VXablSWffcjyb78EwyA4OobTZv4fcV26uzs0ERERETlGbk3+Tz75ZAzDOGL5jz/++Jf7CAsL46OPPvrTOn369GHRokV/Wuecc87hnHPO+cvjibiT3e7gu5fXsntbab3tZrMJs4cJs8XsvCBw4GFxvf6f7R7O1wC7t5ditzpn7g+K9KX/qQl0GxqDh5fu6rZlRbtz+OGVZynIzACg15hTGXPp1Xj5ailTERERkZaoRY35F2nrVn6fdUjiD+BwGDjqDMBxXPuNSgxkwIREOvSLxGzWxG1tmWEYrEudw4IP3sZWV4tPQCDjr/k7nYcMd3doIiIiInIClPyLtBC7t5ewck4WAKde2YOk3hE47MaBh8P13P6H5w7bEbY7HDhszuehMX7EdArWbO1CZWkJP/3zZXauXgFAYp/+TLz+ZgLCwt0cmYiIiIicKCX/Ii1ATaWVn9/dDAZ0Hx5Ll0FahlIaVtb6NfzwyrNUl+3H4unJqAsvo//EKZjMZneHJiIiIiINQMm/SDNnGAa/fLCVipJaQqL9GHFuZ3eHJK2IYRismfMtv77/NobhICIhidP+fhuRCUnuDk1EREREGpCSf5FmbtOiPexcuw+zxcT4K3vi5aM/W2kYNquVeW+/zsZfUgHoOXoc4666AQ8vLzdHJiIiIiINTVmESDNWvKeSxZ/vAGDo1E5EJgS6OSJpLSpLS/j2+SfYs20zJpOZ0RdfwYDTztTcDyIiIiKtlJJ/kWbKZrXz09sbsVkdxPcIo9/YeHeHJK1EQdZOZj39KOVF+/D282fyTXfQoV+Ku8MSERERkUak5F+kmVryVQZFuyvxDfRk7KXdMWkJPmkA25f+xpzXX8BWW0tobDum3nE/YXHt3R2WiIiIiDQyJf8izVDW+kI2/JILwNhLe+Af7O3miKSlMxwO0r78mLQvPgYgqe8AJt94Bz4BAW6OTERERESagpJ/kWamcn8t897fAkDfU+JJ7KU11uXE1NVUM/e1F9ixfAkAKZOnMuqiyzFbLG6OTERERESaipJ/kWbEcBj8/O5maiqsRMQHMOysTu4OSVq4sn0FzHr6EfZlZ2Hx8GDcVTPoNeZUd4clIiIiIk1Myb9IM7ImNZvcrSV4eJkZf2VPLJ5md4ckLVju1k18+9w/qC7bj19wCGf8372069rd3WGJiIiIiBso+RdpJvKzylj2zU4ARp7bhdAYfzdHJC3Z+nk/Mu/tN3DYbUQldeLM2+8jKCLS3WGJiIiIiJso+RdpBupqbPz09iYcDoNOAyLpflKsu0OSFspht/Pr+/9mzdzvAOgydAQTr78ZTx8fN0cmIiIiIu6k5F+kGVj4yXbK9lUTEObNyRd1w2TSsn5y7Korypn94lNkb1gLwEnn/o0h085TexIRERERJf8i7rZ9eR7bluZhMsGpV/TEx9/T3SFJC1S8O4fZLzxBad5ePL19mDTzVjoPHu7usERERESkmVDyL+JG+/dV8+tH2wAYeFoScckh7g1IWqTK3dl8+tV/sdZUExQZxdTb7ycysYO7wxIRERGRZkTJv4ib2O0OUt/ZhLXGTmynYAaeluTukKSFsdXVsXL21+xd8CMA7bv3Ysqtd+MXFOzmyERERESkuVHyL3IYZUXVrPg+i/RVBYTH+dNtWCydB0bh7ddwXfJXfJdJfmYZXr4ejLuiB2aLlvWTv1ZZWsLO1SvYuXo5u9avxVpbA0CvMeMZd9X1WDw0bEREREREDqXkX+QPqsrqWDUni42LduOwGQDkZ5aRn1nGb5/toEPfCLoOjSGhR9gJJeu520pY9eMuAE6+qCtB4b4NEr+0PoZhsG9XJhmrlrFz9Qry0rfXK/cPDcMvuTtjrrhOib+IiIiIHJGSfxGgtsrKmp+yWTc/B1udA4B2XUNJmZBIYW4FW5fupXhPJemrCkhfVYBfkBddhsTQbWgM4e0CjulYNRVWfn53MxjQfXgsnQdGN8YpSQtmraslZ9N6dq5aTsbqFVQUFdYrj+7YmU4pg+k4YBCh7ROYM2eOZvQXERERkT+l5F/aNGutnfW/5LDmp2xqq2wARCUFMXRqR+K7hQEQ3yOMfqfGU5hTwZa0vexYnk9VWR1rU7NZm5pNZEIgXYfG0GVwNL4BXn96PMMwmP/BFipLawmJ9mPkeV0a/RylZagoKWbn6uXsXL2CXRvWYqutdZV5eHmT2KcfHQc4E/6A0DBXmdVqdUe4IiIiItLCKPmXNsluc7Bp0R5WzsmiuqwOgLA4f4ac0ZEOfSMOuYtqMpmITAgkMiGQk6Yns2tjEVvT9rJrQxH7ssvZl13Oki/TSewVTrdhsST2CsficeiwgE2L9pC5rhCzxcT4K3vi6W1pkvOV5scwDAoyM8hYtZydq5eTvzO9XnlAeASdBgymY8og4nv2wdPL202RioiIiEhroORf2hSHw2D7sjyWz86kvMg5UVpQhA+Dp3Sk86BozOa/7jpt8TDTsV8kHftFUl1Rx44V+WxNy2NfdjmZ6wrJXFeIT4AnXQZF021YLBHxAZhMJor2VPDb5zsAGHZWJyITAhv1XNs6u83KrvVrKdm7m9jO3Yjp1Bmzxb0XW2qrKsneuI7MtavIXL2CipLieuUxyV0OJPyDiUzsoK78IiIiItJglPxLm2AYBjvX7mPZNzspyasCwC/Yi0GnJdH9pLjD3qU/Gr4BXvQZE0+fMfEU7a5g69I8ti/Lo6qsjvW/5LL+l1zC4vzpNjSWbcv2Yrc6SOgRRt9T4hvy9OQAh91OzuYNbFuykB3LllBTWeEq8/bzJ6FXXxL79CexT39ComMaPR7D4aAgaydZ61aTuXYVe7ZvwXA4XOWe3j4k9ulPx5RBdOw/CP+Q0EaPSURERETaJiX/0qoZhkHulhKWfpNBwa5yALz9PBgwIZHeY9rj6dVwd4LD2wVw0vRkhk3tSM6WErYu3Uvm2kKK91Sy5Ctnl27fQE/GXtYD01H0MJCjYzgc7N6+hW1LFrJ96WKq9pe6yvxDQonq0Ik927dQW1nJjuVL2LF8CQAh0bHOCwF9+5PQsw/efv4NEk9V2X52rVtN1rrVZK1fUy8egNDYdiT1G0CHfgOJ79EbD68/nydCRERERKQhKPmXVis/s4yVs3exe3spAB7eFvqNjaffqQl4+zZe0zdbzCT2CiexVzi1VVbSVxWwNS2PkrxKTr28J35BSvZOlGEY5O9MZ+uShWxLW1RvNnyfgEC6DDmJrsNH0b5HT8xmCw6Hnfyd6exat4as9WvYu2Mrpfl7KU3dy7rUHzCZzcQmd3X1CohN7nLUQwQcdjt7d2wja90qMteuJj8zHQzDVe7p40tCr7506DeApL4DCI5q/B4HIiIiIiL/S8m/tDpFuyspXOXLN3PWAWD2MNF7VHsGTExs8sTb28+TniPb0XNkuyY9bmtVmJ3F1iWL2LZkIaX5e13bvXz9SB40lG7DR5HQux8Wj/ofbWazhdjkrsQmd2Xo9POpq64iZ/MGstatYdf6NZTs3c2e7VvYs30LaV98hJevn2uIQFKf/oTExNbbX1nhPued/XWryN6wjtqqynrlkUkd6dDXmezHde2OxcOz8X4pIiIiIiJHQcm/tBrlxTUs+3Yn25blgeGByQzdh8UycHIHAsN83B2eHKfiPbvZlraQbUsWUZSb7dru4e1NpwGD6XrSKDr0TTmm7vNevn50ShlCp5QhAJTtKyBrvfNCQPbGddRUlJO+Io30FWkABEfHkNi7H57ePmStW10vDnD2Nkjs058O/VJI7NO/3lJ8IiIiIiLNgZJ/afFqq6ysmruL9fNzsduck6n5xliZctVQItsHuzk6OR5l+wrYlraIrUsWUpCZ4dpu8fCgQ/+BdB0+ik4DBuPp0zAXdYIio+gzdgJ9xk7A4bBTsDPDeTFgwxr2bNvC/vw81ufPddU3mczEdO5Ch74pJPUbQHTHZMxmLdsoIiIiIs2Xkn9psexWBxsW5LJyTha1lTYA2nUJYfCZSazYuIiQaD83RyhHyzAM9u3KJGPlMjJWLau35r3JbCaxT3+6DR9F8qChDTYx35GYzRZikrsQk9yFodPOOzBEYCO7NqzBXmcloXdfEnr3wzdASzWKiIiISMuh5F9aHMNhsGNVPktn7aS8qAaAsDh/hp3VicRe4dhsNtjo5iDlL9ltNnI3byRjlTPhL9tX8HuhyUR8j950HTaSzkOG4xfkvh4cziECg+mUMthtMYiIiIiInCgl/9Ki5G4rYcmX6ezLdi7b5x/sxeAzOtJtWCxmLZ/X7NVWVZK5ZiXpK5eRtXZVvYnyPLy8SezTn04DB9NpwGD8gkPcF6iIiIiISCuj5F9ahKLdFaR9ncGujUUAePpYGDA+kb5j4/H01ljr5qxsXwEZq5aRvnIZuZs34LDbXWV+wSF0HDCY5EFDSOjVF09vTcwoIiIiItIYlPzLccvbuZ89O0oJifYjMiGQgFBvTKaGvfteUVLDsu8y2Zq2Fwwwm030HNWOgaclNfmyfXJ0DMOgIDOD9APj9/dl7axXHtYunk4Dh5A8cAgxyV00UZ6IiIiISBNQ8i/HzHAYrJyTxfLZmWD8vt3H35OI+AAiEwKJjA8kIj6AkCg/TMfRHb+22saaH3exbl4ONqtzBv9OA6IYemZHTeTnJobDga2uDmtdLba6ugOP35/XVlWwa8M6MlYto6Ko0PU+k8lMXNfuJA8cQqeBQwiNbefGsxARERERaZuU/Msxqam08vN7m9m1wdn9vl3XUGoqrBTvraSm0kru1hJyt5a46nt6W4hoH0DEgYsBkQmBhMX6Y/EwH3b/dpuDTYt2s+L7LGoqrADEJgczfFoyMR21bB84x83n78zAYbNit9tx2G3YbTYcdjuOAz/tNuuBnwe2/08du92O40Adm9X6h0T+8Im9ra4Wu8121DF6eHuT1GcAyYOG0qH/QLdO2CciIiIiIkr+5Rjsyy5n7lsbKCusweJhZtQFXehxUhwANqud4j2V7MsuZ19OBYU55RTlVmCttbM3Yz97M/a79mP2MBEW6+/qIRCZEEhYnD/Zm4pJm5VB2b5qAEJj/Bh2VieS+kQ0+HCClipz7SrmvPoc1eVlbo3DbPHAw8sLDy8vPL298fDyxsPLi6gOnUgeOJSEXn3x8NKwDBERERGR5kLJvxyVLUv2sOCj7dhtDoIifJh4TW8iE35f59zD00JUYhBRiUGubQ67g5L8KgpzKtiXU07hgQsDddU2CnMqKMypYAt7DzmWb5AXQ6Z0oPvwWMyWw/cQaGscdjuLP/2A5d98AUBAaBi+wSFYLBbMHp4HfnpgtlgwWzywHHhu+d9tf3x94D0enp6u5N35+OvnGqcvIiIiItKyKPmXP2Wz2ln06Q42/7YHgMTe4Yy7rAc+/p5/+V6zxUx4XADhcQF0HRIDOCeDKy+qOdBDoNx5YSC7nKqyOjy8LQwYn0DfsfF4+ahpHlRWuI/vX36GPds2A9BvwmRG/+1K3VkXEREREZGjpgxLjqissJq5b21kX3Y5mGDIlA6kTEw6rgn8DjKZTARF+BIU4UunAVGu7VVldXh6W7Rs3//YuXoFc157npqKcrx8/Zhw3Y10GTrC3WGJiIiIiEgLo+RfDmvXpiJS39lEbaUNH39PTr2yBwk9whvteFq2rz67zcZvn7zPyu++AiC6Y2dOv/lOQqJj3ByZiIiIiIi0REr+pR7DYbDihyxWfO9cxi8qMZAJ1/QiKNzX3aG1GWX7Cpj94lPsTd8GwIBJZzDyosvx8PzroRYiIiIiIiKHo+RfXGoqraS+s4nsTcUA9BwZx8hzu2Dx1KR7TSV9xVLmvvECtZWVePv7M+H6m+k8aJi7wxIRERERkRZOyb8AULCrjLn/3Eh5cQ0WTzMnX9iVbsNi3R1Wm2G3WVn433dZPedbAGKTuzL5pjsIjop2c2QiIiIiItIaKPkXNv+2h4WfHFjGL9KXSdf2IqJ94F+/URrE/oI8Zr/4FHkZOwBIOf0sRl5wCRYPdfMXEREREZGGoeS/DbPV2Vn4yXa2LNkLQFKfCMZd1h1vPyWdTWXHsiX8+OZL1FZV4hMQyMQbbqZTyhB3hyUiIiIiIq2Mkv82av++aua+tYHCnApMJhh8RkdSJiSe0DJ+cvRsVisLPnibtT/OBiCuS3cm33Q7QRFRf/FOERERERGRY6fkvw3K2lDIz+9uprbKhk+AJ+Ov7El89zB3h9VmlOTtYfaLT1GQmQHAoDOmc9J5F2Px0J+jiIiIiIg0DmUbbYhhGCyfncnK77MAiO4QxISrexEY5uPewNqQrUsWkvrWK9RVV+MTGMSkGbfQsf8gd4clIiIiIiKtnJL/NsRkMlFTYQWg1+h2jDi7s5bxOwEOhx2HzY7DbsNhd+Cw27Dbbc5t9crsOOx2Ni34mXWpcwBo160Hk2+8g8DwCDefhYiIiIiItAVK/tuYEWd3JqFnOB36KOk8EsMwKMjMYPOiX8hcs4K6mhocNmcSb7fbMOx27HY7GMax79xkYsjUcxh+zkWYLZaGD15EREREROQwlPy3MRZPsxL/IygvKmTLb7+yeeF8inKzj2sfZosFs9mC2cOC2eLhfG1xPvcNDGLE+ReT1HdAA0cuIiIiIiLy55T8S5tWV13F9mVL2LJoPtmbNrju5ls8Pek0cCjdTxpNUGSUK4G3HCapN1vMrm0mk1ZLEBERERGR5kfJv7Q5DrudXRvWsnnhfNJXLMVWV+sqa9+9F91HjqHL0JPw8Q9wY5QiIiIiIiINR8m/tAmGYbBvVyabF85n6+IFVJaWuMpCY9vRY9QpdB9xMsFR0W6MUkREREREpHEo+ZdWrby4kC2LfmXLol8ozNnl2u4bGETX4aPoMWoMMZ26qLu+iIiIiIi0akr+pdWpq6mmbOd2vn5iGTmb/zCO38ODTilD6DH6FJL6pmDxUPMXEREREZG2QdmPtAqVpSXsXL2C9JVL2bV+LXZrnausXbce9Bh1Cl2GjtA4fhERERERaZOU/EuLZBgGxbtzSF+5jIyVS9mbvt11hx/AMyCIlAmT6XXyWIKjYtwYqYiIiIiIiPsp+ZcWw2G3s3vbZjJWLiNj5TJK8/fWK4/u2JnkgUNI7JfCsg2bGDx5Mp6enm6KVkREREREpPlQ8i/NWl11FVnrVpOxchk716ykpqLcVWbx8CChV186DRxCx5TBBIZFAGC1WjFt3OyukEVERERERJodJf9y3CpLSyjIzMDTxwcvX78DD1+8/fyweBz/Hffy4kIyVi4nY9Uycjauw26zucp8AgLpOGAQnQYOIalPf7x8/RriVERERERERFo1Jf9yzGx1daz6fhbLvv4Ma23NYetYPD3x8vXD29cPT19fvA9cGPDy9cPbz+8PFwsObvelKCebjFXLyN+ZXm9fITGxdBo4lOSUIcR17Y7ZYmmK0xQREREREWk1lPzLUTMMg4xVy1nw/r9d4+2Do2Mwmy3UVVdRW12FrbYWALvVSrV1P9Vl+4/9QCYTcZ270WngEDqlDCGsXXtMJlNDnoqIiIiIiEibouRfjkrR7hx+/c+/yFq3GgD/0DBGX3Q53UacXC8xd9jt1NVUU1ddRV1VFbXVB55XV1F34HltVZVrm6u8qgq/4GA6pgymY/9B+IeEuutURUREREREWh0l//KnaqsqSfviY9bM/Q6H3Y7Fw4OUyVMZcta5hx1vb7ZY8PEPwMc/wA3RioiIiIiIyOEo+ZfDMhwONi2Yx6KP/0PV/lIAOqYM5uRLriI0Js69wYmIiIiIiMgxMbvz4AsXLmTKlCnExcVhMpmYNWtWvXLDMHjggQeIjY3F19eXcePGsWPHjnp1iouLueiiiwgKCiIkJIQrr7ySioqKenXWr1/PyJEj8fHxIT4+nqeffvqQWD7//HO6deuGj48PvXv35ocffmjw820p9u7Yxkf3/R8/vvkSVftLCY1tx7S7HuKsOx5Q4i8iIiIiItICuTX5r6yspG/fvrz22muHLX/66ad5+eWXefPNN1m2bBn+/v5MmDCBmprfZ5i/6KKL2LRpE6mpqcyePZuFCxdyzTXXuMrLysoYP348iYmJrFq1imeeeYaHHnqIt956y1VnyZIlXHDBBVx55ZWsWbOGqVOnMnXqVDZu3Nh4J98MVZQUM/f1F/jovv8jL2MHXr6+jP7bFVz67Kt06D/Q3eGJiIiIiIjIcXJrt/9JkyYxadKkw5YZhsGLL77Ifffdx5lnngnA+++/T3R0NLNmzeL8889ny5YtzJ07lxUrVjBwoDM5feWVVzjttNN49tlniYuL48MPP6Suro533nkHLy8vevbsydq1a3n++eddFwleeuklJk6cyO233w7Ao48+SmpqKq+++ipvvvlmE/wm3Mtus7L6h29J+/ITrDXVAPQcPY6RF16qifdERERERERagWY75j8zM5O8vDzGjRvn2hYcHMyQIUNIS0vj/PPPJy0tjZCQEFfiDzBu3DjMZjPLli3jrLPOIi0tjVGjRuHl5eWqM2HCBJ566ilKSkoIDQ0lLS2NW2+9td7xJ0yYcMgwhD+qra2l9sCyduDsYQBgtVqxWq0nevpNJmvtKhb+9x1K8/YAEN2pM6MvvoqY5C4ALepcDjoYc0uMXeRYqb1LW6L2Lm2F2rq0JWrvJ+ZYfm/NNvnPy8sDIDo6ut726OhoV1leXh5RUVH1yj08PAgLC6tXp0OHDofs42BZaGgoeXl5f3qcw3niiSd4+OGHD9n+008/4ed36Cz4zU1d2X4KV6dRtScHAIuPL+H9BhPQoTOrt6fD9nQ3R3jiUlNT3R2CSJNRe5e2RO1d2gq1dWlL1N6PT1VV1VHXbbbJf3N399131+stUFZWRnx8POPHjycoKMiNkf25uupqVnzzOWvmfIfDbsNssdBvwukMmnou3i3gosXRsFqtpKamcuqpp+Lp6enucEQaldq7tCVq79JWqK1LW6L2fmIO9kA/Gs02+Y+JiQEgPz+f2NhY1/b8/Hz69evnqlNQUFDvfTabjeLiYtf7Y2JiyM/Pr1fn4Ou/qnOw/HC8vb3x9vY+ZLunp2ezbrSfP3I3e7dvBSCpXwonX3IV4e3i3RxV42ju/xYiDUntXdoStXdpK9TWpS1Rez8+x/I7c+ts/3+mQ4cOxMTEMG/ePNe2srIyli1bxrBhwwAYNmwYpaWlrFq1ylVn/vz5OBwOhgwZ4qqzcOHCemMhUlNT6dq1K6Ghoa46fzzOwToHj9OapJw2lZDoWKbe8QDT7nqo1Sb+IiIiIiIi8ju33vmvqKggPf33seWZmZmsXbuWsLAwEhISuPnmm3nsscfo3LkzHTp04P777ycuLo6pU6cC0L17dyZOnMjVV1/Nm2++idVqZebMmZx//vnExTnXo7/wwgt5+OGHufLKK7nzzjvZuHEjL730Ei+88ILruDfddBOjR4/mueeeY/LkyXzyySesXLmy3nKArUWXoSfRaeAQPHRVTUREREREpM1wa/K/cuVKxowZ43p9cAz9pZdeynvvvccdd9xBZWUl11xzDaWlpYwYMYK5c+fi4+Pjes+HH37IzJkzGTt2LGazmenTp/Pyyy+7yoODg/npp5+YMWMGKSkpRERE8MADD7iW+QMYPnw4H330Effddx/33HMPnTt3ZtasWfTq1asJfgtNy2QyKfEXERERERFpY9ya/J988skYhnHEcpPJxCOPPMIjjzxyxDphYWF89NFHf3qcPn36sGjRoj+tc84553DOOef8ecAiIiIiIiIiLVCzHfMvIiIiIiIiIg1Dyb+IiIiIiIhIK6fkX0RERERERKSVU/IvIiIiIiIi0sop+RcRERERERFp5ZT8i4iIiIiIiLRySv5FREREREREWjkl/yIiIiIiIiKtnJJ/ERERERERkVZOyb+IiIiIiIhIK6fkX0RERERERKSVU/IvIiIiIiIi0sop+RcRERERERFp5ZT8i4iIiIiIiLRySv5FREREREREWjkl/yIiIiIiIiKtnJJ/ERERERERkVZOyb+IiIiIiIhIK6fkX0RERERERKSVU/IvIiIiIiIi0sop+RcRERERERFp5ZT8i4iIiIiIiLRySv5FREREREREWjkPdwfQWhiGAUBZWZmbIxGr1UpVVRVlZWV4enq6OxyRRqX2Lm2J2ru0FWrr0paovZ+Yg/nnwXz0zyj5byDl5eUAxMfHuzkSERERERERaUvKy8sJDg7+0zom42guEchfcjgc7Nmzh8DAQEwmk7vDadPKysqIj48nJyeHoKAgd4cj0qjU3qUtUXuXtkJtXdoStfcTYxgG5eXlxMXFYTb/+ah+3flvIGazmfbt27s7DPmDoKAgfYBIm6H2Lm2J2ru0FWrr0paovR+/v7rjf5Am/BMRERERERFp5ZT8i4iIiIiIiLRySv6l1fH29ubBBx/E29vb3aGINDq1d2lL1N6lrVBbl7ZE7b3paMI/ERERERERkVZOd/5FREREREREWjkl/yIiIiIiIiKtnJJ/ERERERERkVZOyb+IiIiIiIhIK6fkX5qlhQsXMmXKFOLi4jCZTMyaNateeX5+PpdddhlxcXH4+fkxceJEduzYUa9OXl4eF198MTExMfj7+zNgwAC+/PLLenWKi4u56KKLCAoKIiQkhCuvvJKKiorGPj2RehqivWdkZHDWWWcRGRlJUFAQ5557Lvn5+fXqqL2Luz3xxBMMGjSIwMBAoqKimDp1Ktu2batXp6amhhkzZhAeHk5AQADTp08/pC1nZ2czefJk/Pz8iIqK4vbbb8dms9Wr8+uvvzJgwAC8vb1JTk7mvffea+zTE6mnodr7jTfeSEpKCt7e3vTr1++wx1q/fj0jR47Ex8eH+Ph4nn766cY6LZHDaoj2vm7dOi644ALi4+Px9fWle/fuvPTSS4ccS5/vx0/JvzRLlZWV9O3bl9dee+2QMsMwmDp1Kjt37uSbb75hzZo1JCYmMm7cOCorK131LrnkErZt28a3337Lhg0bmDZtGueeey5r1qxx1bnooovYtGkTqampzJ49m4ULF3LNNdc0yTmKHHSi7b2yspLx48djMpmYP38+ixcvpq6ujilTpuBwOFz7UnsXd1uwYAEzZsxg6dKlpKamYrVaGT9+fL3P7ltuuYXvvvuOzz//nAULFrBnzx6mTZvmKrfb7UyePJm6ujqWLFnCf/7zH9577z0eeOABV53MzEwmT57MmDFjWLt2LTfffDNXXXUVP/74Y5Oer7RtDdHeD7riiis477zzDnucsrIyxo8fT2JiIqtWreKZZ57hoYce4q233mq0cxP5Xw3R3letWkVUVBT//e9/2bRpE/feey933303r776qquOPt9PkCHSzAHG119/7Xq9bds2AzA2btzo2ma3243IyEjjX//6l2ubv7+/8f7779fbV1hYmKvO5s2bDcBYsWKFq3zOnDmGyWQydu/e3UhnI/Lnjqe9//jjj4bZbDb279/vqlNaWmqYTCYjNTXVMAy1d2meCgoKDMBYsGCBYRjOduvp6Wl8/vnnrjpbtmwxACMtLc0wDMP44YcfDLPZbOTl5bnqvPHGG0ZQUJBRW1trGIZh3HHHHUbPnj3rHeu8884zJkyY0NinJHJEx9Pe/+jBBx80+vbte8j2119/3QgNDXW1f8MwjDvvvNPo2rVrw5+EyFE60fZ+0A033GCMGTPG9Vqf7ydGd/6lxamtrQXAx8fHtc1sNuPt7c1vv/3m2jZ8+HA+/fRTiouLcTgcfPLJJ9TU1HDyyScDkJaWRkhICAMHDnS9Z9y4cZjNZpYtW9Y0JyPyF46mvdfW1mIymfD29nbV8fHxwWw2u+qovUtztH//fgDCwsIA510fq9XKuHHjXHW6detGQkICaWlpgLMt9+7dm+joaFedCRMmUFZWxqZNm1x1/riPg3UO7kPEHY6nvR+NtLQ0Ro0ahZeXl2vbhAkT2LZtGyUlJQ0Uvcixaaj2vn//ftc+QJ/vJ0rJv7Q4Bz8o7r77bkpKSqirq+Opp54iNzeXvXv3uup99tlnWK1WwsPD8fb25tprr+Xrr78mOTkZcM4JEBUVVW/fHh4ehIWFkZeX16TnJHIkR9Pehw4dir+/P3feeSdVVVVUVlZy2223YbfbXXXU3qW5cTgc3HzzzZx00kn06tULcLZTLy8vQkJC6tWNjo52tdO8vLx6if/B8oNlf1anrKyM6urqxjgdkT91vO39aBzN34RIU2qo9r5kyRI+/fTTekMU9fl+YpT8S4vj6enJV199xfbt2wkLC8PPz49ffvmFSZMmYTb/3qTvv/9+SktL+fnnn1m5ciW33nor5557Lhs2bHBj9CLH5mjae2RkJJ9//jnfffcdAQEBBAcHU1payoABA+r9TYg0JzNmzGDjxo188skn7g5FpNGpvUtb0hDtfePGjZx55pk8+OCDjB8/vgGja9s83B2AyPFISUlh7dq17N+/n7q6OiIjIxkyZIirS3NGRgavvvoqGzdupGfPngD07duXRYsW8dprr/Hmm28SExNDQUFBvf3abDaKi4uJiYlp8nMSOZK/au8A48ePJyMjg8LCQjw8PAgJCSEmJoaOHTsCqL1LszJz5kzXpJPt27d3bY+JiaGuro7S0tJ6d4fy8/Nd7TQmJobly5fX29/B2aL/WOd/Z0zPz88nKCgIX1/fxjglkSM6kfZ+NI7U3g+WiTSlhmjvmzdvZuzYsVxzzTXcd9999cr0+X5idEtIWrTg4GAiIyPZsWMHK1eu5MwzzwSgqqoK4JC7nhaLxTX7+bBhwygtLWXVqlWu8vnz5+NwOBgyZEgTnYHI0TtSe/+jiIgIQkJCmD9/PgUFBZxxxhmA2rs0D4ZhMHPmTL7++mvmz59Phw4d6pWnpKTg6enJvHnzXNu2bdtGdnY2w4YNA5xtecOGDfUuZqWmphIUFESPHj1cdf64j4N1Du5DpCk0RHs/GsOGDWPhwoVYrVbXttTUVLp27UpoaOiJn4jIUWio9r5p0ybGjBnDpZdeyuOPP37IcfT5foLcPOGgyGGVl5cba9asMdasWWMAxvPPP2+sWbPG2LVrl2EYhvHZZ58Zv/zyi5GRkWHMmjXLSExMNKZNm+Z6f11dnZGcnGyMHDnSWLZsmZGenm48++yzhslkMr7//ntXvYkTJxr9+/c3li1bZvz2229G586djQsuuKDJz1fathNt74ZhGO+8846RlpZmpKenGx988IERFhZm3HrrrfXqqL2Lu11//fVGcHCw8euvvxp79+51Paqqqlx1rrvuOiMhIcGYP3++sXLlSmPYsGHGsGHDXOU2m83o1auXMX78eGPt2rXG3LlzjcjISOPuu+921dm5c6fh5+dn3H777caWLVuM1157zbBYLMbcuXOb9HylbWuI9m4YhrFjxw5jzZo1xrXXXmt06dLF9f/Fwdn9S0tLjejoaOPiiy82Nm7caHzyySeGn5+f8c9//rNJz1fatoZo7xs2bDAiIyONv/3tb/X2UVBQ4Kqjz/cTo+RfmqVffvnFAA55XHrppYZhGMZLL71ktG/f3vD09DQSEhKM++67r94SN4ZhGNu3bzemTZtmREVFGX5+fkafPn0OWfqvqKjIuOCCC4yAgAAjKCjIuPzyy43y8vKmOk0RwzAapr3feeedRnR0tOHp6Wl07tzZeO655wyHw1Gvjtq7uNvh2jlgvPvuu6461dXVxg033GCEhoYafn5+xllnnWXs3bu33n6ysrKMSZMmGb6+vkZERITxf//3f4bVaq1X55dffjH69etneHl5GR07dqx3DJGm0FDtffTo0YfdT2ZmpqvOunXrjBEjRhje3t5Gu3btjCeffLKJzlLEqSHa+4MPPnjYfSQmJtY7lj7fj5/JMAyj8foViIiIiIiIiIi7acy/iIiIiIiISCun5F9ERERERESklVPyLyIiIiIiItLKKfkXERERERERaeWU/IuIiIiIiIi0ckr+RURERERERFo5Jf8iIiIiIiIirZySfxEREREREZFWTsm/iIiIiIiISCun5F9EREQahGEYjBs3jgkTJhxS9vrrrxMSEkJubq4bIhMREREl/yIiItIgTCYT7777LsuWLeOf//yna3tmZiZ33HEHr7zyCu3bt2/QY1qt1gbdn4iISGul5F9EREQaTHx8PC+99BK33XYbmZmZGIbBlVdeyfjx4+nfvz+TJk0iICCA6OhoLr74YgoLC13vnTt3LiNGjCAkJITw8HBOP/10MjIyXOVZWVmYTCY+/fRTRo8ejY+PDx9++KE7TlNERKTFMRmGYbg7CBEREWldpk6dyv79+5k2bRqPPvoomzZtomfPnlx11VVccsklVFdXc+edd2Kz2Zg/fz4AX375JSaTiT59+lBRUcEDDzxAVlYWa9euxWw2k5WVRYcOHUhKSuK5556jf//++Pj4EBsb6+azFRERaf6U/IuIiEiDKygooGfPnhQXF/Pll1+yceNGFi1axI8//uiqk5ubS3x8PNu2baNLly6H7KOwsJDIyEg2bNhAr169XMn/iy++yE033dSUpyMiItLiqdu/iIiINLioqCiuvfZaunfvztSpU1m3bh2//PILAQEBrke3bt0AXF37d+zYwQUXXEDHjh0JCgoiKSkJgOzs7Hr7HjhwYJOei4iISGvg4e4AREREpHXy8PDAw8P5VaOiooIpU6bw1FNPHVLvYLf9KVOmkJiYyL/+9S/i4uJwOBz06tWLurq6evX9/f0bP3gREZFWRsm/iIiINLoBAwbw5ZdfkpSU5Log8EdFRUVs27aNf/3rX4wcORKA3377ranDFBERabXU7V9EREQa3YwZMyguLuaCCy5gxYoVZGRk8OOPP3L55Zdjt9sJDQ0lPDyct956i/T0dObPn8+tt97q7rBFRERaDSX/IiIi0uji4uJYvHgxdrud8ePH07t3b26++WZCQkIwm82YzWY++eQTVq1aRa9evbjlllt45pln3B22iIhIq6HZ/kVERERERERaOd35FxEREREREWnllPyLiIiIiIiItHJK/kVERERERERaOSX/IiIiIiIiIq2ckn8RERERERGRVk7Jv4iIiIiIiEgrp+RfREREREREpJVT8i8iIiIiIiLSyin5FxEREREREWnllPyLiIiIiIiItHJK/kVERERERERauf8HMryKxGlGFx0AAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"## now add some tends"
],
"metadata": {
"id": "Mv1FLjwdxH-J"
}
},
{
"cell_type": "markdown",
"source": [
"\n"
],
"metadata": {
"id": "yW3ves9XxKPV"
}
},
{
"cell_type": "code",
"source": [
"start_value_work = data[data[\"Year\"] == 1977][\"Work_Mean\"].iloc[0]\n",
"end_value_work = data[data[\"Year\"] == 2007][\"Work_Mean\"].iloc[0]\n",
"\n",
"# Calculate the average annual growth rate for Work_Mean\n",
"average_growth_rate_work = ((end_value_work / start_value_work) ** (1 / (2007 - 1977))) - 1\n",
"\n",
"# Calculate the average annual change (linear growth rate) for Work_Mean\n",
"linear_growth_rate_work = (end_value_work - start_value_work) / (2007 - 1977)\n",
"\n",
"# Create the linear trend line for Work_Mean\n",
"data[\"Linear_Trend_Work\"] = start_value_work + linear_growth_rate_work * (data[\"Year\"] - 1977)\n",
"\n",
"# Create the \"Trend\" column based on the growth rate\n",
"data[\"Trend\"] = start_value * (1 + growth_rate) ** (data[\"Year\"] - 1977)\n",
"\n",
"# Create the \"Trend_Work\" column based on the growth rate\n",
"data[\"Trend_Work\"] = start_value_work * (1 + average_growth_rate_work) ** (data[\"Year\"] - 1977)\n"
],
"metadata": {
"id": "y1BIPpL_xW52"
},
"execution_count": 11,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"now some pictures"
],
"metadata": {
"id": "7CFXWYhMxfGl"
}
},
{
"cell_type": "code",
"source": [
"# Plot Work_Mean and its linear trend line with finalized labels\n",
"plt.figure(figsize=(10, 6))\n",
"plt.plot(data[\"Year\"], data[\"Work_Mean\"], label=\"Working Households\", linestyle='-', marker='o')\n",
"plt.plot(data[\"Year\"], data[\"Linear_Trend_Work\"], label=\"1977-2007 Trend\", linestyle='--')\n",
"\n",
"# Add updated labels\n",
"plt.xlabel(\"Year\")\n",
"plt.ylabel(\"Mean Household Disposable Income\")\n",
"\n",
"# Add title and subtitle\n",
"plt.suptitle(\"Average Income of UK Working Households\", fontsize=18, y=0.98) # Bigger title, positioned higher\n",
"plt.title(\"Inflation Adjusted to 2022/23 Prices, Based on ONS Data\", fontsize=12, y=1.00) # Smaller subtitle, positioned lower\n",
"\n",
"# Add legend and grid\n",
"plt.legend()\n",
"plt.grid(True)\n",
"\n",
"# Save the plot as a PNG file\n",
"plt.savefig(\"working_households_income_trend_improved.png\", dpi=300, bbox_inches=\"tight\")\n",
"\n",
"# Show the plot\n",
"plt.show()\n",
"\n",
"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 622
},
"id": "Ybwexix04_YB",
"outputId": "dc4ebee7-aabf-4c9b-9ff4-8324b1c05a7e"
},
"execution_count": 12,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAJJCAYAAADFrfSUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FNXXwPHvpjeSEEilJKEovUsIvQRCVaQX6UURpAkKitIEBAFBQSIiHUSa/BQQCCFIMfTeeyd0CCGk3/ePfXfMkmwKBJZyPs+zD+zMnZkzs3c3e/beuVenlFIIIYQQQgghhHjhLMwdgBBCCCGEEEK8qSQhE0IIIYQQQggzkYRMCCGEEEIIIcxEEjIhhBBCCCGEMBNJyIQQQgghhBDCTCQhE0IIIYQQQggzkYRMCCGEEEIIIcxEEjIhhBBCCCGEMBNJyIQQQgghhBDCTCQhE0IIYRZJSUlMnjyZsmXL4ujoiE6nQ6fTsWrVKnOHJp6wefNm7fXJqs6dO6PT6ejcuXP2ByZeSiNGjECn01GzZs0XfuxnqavZsb0QT0MSMvHGu3fvHvb29toH8OnTp80dkjDBz89Pvti9Rvr378+nn37KgQMHSExMxNPTE09PT+zs7DK1veE9O2LEiAzLGr4gpvUla+7cudq6CxcumNzH+vXrtcSxePHiXL16NcPjTps2DZ1Oh4WFBbdu3TJZbsiQIZk6n8jISK3czz//nOHxxbOpWbNmphOLzNYjIYR4kiRk4o23aNEiYmNjteezZ882YzRCvBkePnyoJRQTJkwgNjaWyMhIIiMjqV+/vpmjS23p0qW8++67xMTEULFiRbZs2UKePHky3K5WrVoAKKX4559/TJYLDw/X/r958+ZMlatdu3YmIjc/b29v3n77bby9vc0dihBCvJQkIRNvvF9//RWATz75BIB58+aRlJRkzpCEeO2dOHGChIQEAHr16vVSdw/65ZdfaNu2LfHx8dSpU4ewsDBy5cqVqW2LFy+Oh4cHYDrRevjwIfv27cPJyQknJyd27Nhh9CNRSoZ95MmTh8KFC2f5XMxh3LhxnDhxgnHjxpk7FCGEeClJQibeaPv27ePAgQO4uroyYcIE/P39uX79OmvXrjV3aEK81mJiYrT/Ozk5mTGS9I0fP56ePXuSnJzM+++/z5o1a7Icr6G7W8rWrZS2bdtGYmIiVapUoXLlysTFxREREZFmWcM+DC1vQgghXn2SkIk3mqF1rHXr1tjZ2dGxY0cg7W6L33//PTqdDk9PTxITE03uUyml3es0evToVOvj4+P56aefqFWrFrlz58bGxgYvLy/ee+89/v77b5P7NdybsHnzZm7evMnAgQN56623cHBwMGpdiImJ4bfffqNjx46UKVMGd3d3bG1t8fHxoWnTpukew+Dw4cO0bt0aLy8v7OzsKFCgAJ988gk3b97M1A3PDx8+5NtvvyUwMBA3NzdsbW3Jly8fbdq0MflF81k9OXDA8uXLqVmzJm5ubjg4OFCmTBmmTp1KcnJyuvu5fPkyn332GWXKlMHFxQV7e3sKFizIe++9x/z589NsuUhKSmL27NnUrl2b3LlzY2trS548eWjZsmW63c8M96eMGDGCxMREvv/+e8qWLYuTkxMeHh40bdqUgwcPauVjYmL45ptvKFGiBI6OjuTKlYvWrVtz9uzZdM/paetcZmT13A332aS8J8dQn8w1CIApQ4YMYciQIQB07dqVZcuWYWtrm+X9GJKnY8eOpXkfmeE61axZkxo1ahgtS+natWvaPa5pJWQrV66kcePGeHp6YmNjg6enJ40bN+aPP/4wGVvK941SilmzZlG1alVy5cqFTqdj7ty5mTrHO3fuEBgYiE6nw9/fn1OnTqV5jCelfA8opfjll18ICAjA2dmZHDlyEBgYyMKFC9M9dkJCApMnT6ZMmTI4Ojri5uZGzZo1Wb58eapjmFtsbCxTpkyhcuXK5MyZEzs7O3x9fenYsSMHDhwwuV3Kz39T0jvPx48fM3HiRAIDA8mZMyfW1ta4u7tTrFgxOnXqxIoVK0zu98iRI/Ts2ZPChQvj4OCAk5MTpUqV4ssvv+T27duZOu+wsDAaNWqEu7s7dnZ2FC1alJEjR5psCTbYv38/HTt2xNfXFzs7O3LmzEnlypWZMmUKcXFxmTp2Wk6cOEH79u1T/Y27ceNGhtvu3LmT9u3b4+/vj52dHY6Ojvj6+lKjRg1Gjx7NlStXnjou8QZTQryhHj9+rFxdXRWgtm/frpRS6uzZs0qn0ykrKysVGRlpVD4yMlJZWloqQK1evdrkfjdv3qwApdPp1Pnz543WXbhwQRUvXlwBWhkXFxftOaA++uijNPdrWP/LL78oT09PBSg7OzuVI0cOlfKtPGfOnFT7d3BwMDrGp59+ajL+lStXKmtra62sk5OTsrOzU4Dy9vY22n9a9u/fr/LmzauVsbS01GI0xDR27FiTx0+Pr6+vAlSnTp1SrevUqZO2rnfv3gpQFhYW2mtseHTs2NHk/ufPn6+dK6BsbGxUrly5lJWVlbZs//79Rtvcv39f1axZ0+h8XV1dlU6n05YNGjQozePVqFFDAeqLL75QderU0Y7p6OhodP13796tbt++rcqWLau97vb29loZDw8PdfHixTSP8Sx1LiNPc+5LlixRnp6eKmfOnFoZT09P7fH+++9n+viG7YcPH55h2eHDh5ustynr9Pnz51VSUpLq2bNnpt4vmXHixAltX0uXLk21vmLFigpQ//77r9q2bZsCVPXq1VOVW7Rokbafc+fOacvj4uJU69attXUWFhYqZ86cysLCQlvWtm1bFR8fn2qfhvdNx44dVfPmzVNtP2fOHKWUUuHh4Sav34ULF1SRIkUUoEqXLq2uXbuW5jHSet8a3gPDhg1T7733ngKUlZWVcnZ2NqqjX3/9dZrXNjo6WlWvXt2oDubMmVOrg0OHDtWOkZl6Yiq+GjVqZFj2yXr0pCtXrqgSJUpoZaytrY3eixYWFuqHH35Ic9+GMuHh4RnG+uR5RkVFqdKlSxt9Bri6uhp9rvn6+qa5z/HjxxvVIwcHB2VjY6M99/b2Vvv27Uu1neH9VqNGDTVhwgSl0+m046b8fKhVq5ZKTExM89iTJ082Kuvi4mL0t6lUqVKp6ppS6ddVpZT6+++/la2trcm/cbNnzza5/dy5c41isrW1TVVXDe8ZIbJCEjLxxlq4cKECVKFChYyWV6tWTQFqwoQJqbZp0KCBAlTr1q1N7rdbt25pfqGKjo7WvrTUrFlTbd68WcXGxiql9F9sJ0+erJycnBSgpkyZkmq/Kf94vP322yosLEwlJSUppZQ6efKkVm7VqlVq0KBBatu2berRo0fa8mvXrqmRI0dqf9D+97//pTrG2bNnteStXLlyas+ePUoppZKTk1VoaKjy9fU1+iL9pGvXrikPDw8FqGbNmqk9e/ZoXwJv3LihvvrqK+1LwB9//GHyGpqSmYQsZ86cysbGRk2ePFk9ePBAKaXU7du3Vffu3bW4w8LCUm2/evVq7Q9tlSpV1NatW7XrGxcXp7Zu3ap69Oihjh49arSd4UusjY2N+uGHH7Rrfv36ddW1a1ftmDNmzEh1TMMXKFdXV5UrVy61bNkyFR8fr5KTk9WuXbtUgQIFFKAqV66s3n//feXn56fWr1+vkpKSVFJSktq4caNyd3dXgGrfvn2q/T9rncvIs5x7Rl+aMuN5JGSnTp1SrVq10p6PGTPmqeNLydvbWwGqV69eRsujoqKUlZWVcnR0VAkJCSouLk7Z29srW1tbFRMTY1TWUIef/PL86aefal+0v/rqK3Xv3j2llFJ3795VX3zxhXYun3/+eaq4DO8bJycnZWVlpSZOnKi9bx4+fKh94TX1eh08eFD5+PhoX64N26Z1jPQSspw5cyoXFxc1d+5c7bwvX76smjRpoiUrp06dSrX9hx9+qK0fP368evjwoVJKqVu3bqm+fftq7y9zJ2SJiYkqICBASywWLlyo4uLilFL6z93GjRtrr+HatWtT7ftZErLRo0crQLm5uakVK1ZonwFJSUnq6tWrav78+apHjx6p9jdr1iytbowZM0Zdv35dO5c9e/ao2rVrK0DlzZtXu+4Ghvebq6ursrCwUEOHDlW3bt1SSin14MED9fXXX2vn9Ouvv6Y69l9//aWtf++997QfIOLi4tT8+fO1H/kqV66cKqFL77Pl8uXLWgJVqlQptXPnTu1a/P333ypv3rxGP+Kl9OjRI+24H3zwgTpz5oy2Ljo6Wu3Zs0cNHjxYrVmzJvWLI0QGJCETb6xatWopQI0aNcpo+S+//KIAVaRIkVTb/Pbbbwr0LRRpffF4/Pix9ovnrFmzjNaNGjVK+8Oe1i/VSulbpwCVO3dulZCQYLTO8AfC2dlZXb58Oaunq/nuu+8UoOrUqZNqnSGZ9PDwUHfu3Em1/sSJE0a/LD7J8CW8Xbt2Jo8/efJkBfpf0rMqMwlZer9Qli9fXgGqe/fuRssTEhKUv7+/AlTVqlW1L0oZ2bFjh3bMn3/+Oc0yhqQld+7c6vHjx0brDF+gALV169ZU24aFhWnr7e3t1enTp1OV+fXXX7X1T9arZ61z6XnWc39ZE7Jy5cppX/BDQkKeOrYntWvXTgGqaNGiRsvXrl2rAFW3bl1tmeGL7pM/HBQqVEgBqnPnztqyK1euaD9yDB06NM1jDxw4UIG+RcZU6xVgsnVGqbRfr82bN2ufdy1bttS+6D8pMwkZoDZt2pRqfWxsrJbwffPNN0brLl68qLXejB49Ot1jP2tCZm1tbdSSm9YjZUvJkwnZkiVLtHXr169PdZyEhAQtYStRokSq9c+SkBl+SMxKz4SoqCgtMVm3bl2aZRISErTP1O+//95oXcr3m6nr3qxZMwWooKCgVOuKFi2qAFWtWrU0W9D+/PNPbf/Lli0zWpfeZ0uvXr0UoHLlyqVu3LiRav3hw4eNWuFS2rlzpwK0H0+EyE6SkIk3kqFrYlrdCh88eKB1BzN0ZTSIiYnR/ug+mXAppdTvv/+uJWz37983WmdIJtJqmTJITk7W9r9jxw6jdYY/EL17987i2Ro7duyYAn3Xk5R/6JKTkzP1S3KHDh3S/GP1+PFjrdvHwYMHTW5/+/Ztbfsnu4VmJDMJWb58+VRycnKa248cOVIBqmLFikbLN2zYoMW0e/fuTMczYMAA7RdiQ2vakwzXG1B//vmn0TrDF6iqVaumuW1iYqKWAHfo0CHNMleuXNH2/2Tr3bPWufQ867m/rAmZ4dGoUaOnjisthh96nqz3gwcPVmDcEmeop8OGDdOWXb58Wdt+3rx52vKpU6em+yORUvqWMkM9ejLpStmynN4PEU++XsuWLdP22adPH5N1IOUx0kvIqlSpYnL7Ll26KEC1atXKaLnhxx0HBwcVHR2d5rZnzpzJloQsq48n/668//77ClCBgYEmj2VIzgF16NAho3XPkpC1bdtWAeqTTz7J9Hkb3hNly5ZNt9zEiRMVoOrXr2+03PB+s7W1TdV6ZjBv3jwF+h8AUzp48GC6yauBoatvs2bNjJab+mxJTk5Wbm5uClBffvmlyf0arteT2588eVJLzrP6t0uIjMigHuKNNGfOHJRSVKtWDT8/P6N1zs7ONG3aFPhv0A8De3t7WrRoAcCCBQtS7dew7L333sPFxUVbfvXqVS5evAhAt27d8PLySvPh7e1NdHQ0gFb+SVWqVMnw/G7cuMHw4cMJDAwkV65cWFlZaTeFFytWDNAPEHHv3j1tm3PnznH//n0AbWCBtJgadGHv3r3aDdr16tUzeY7FixfXtjF1js/inXfeMTngiI+PDwB37941Wv7vv/8C4OXlRYUKFTJ9rD179gD6ARYsLNL+OC1atKg2X5Wh/JMqVqyY5nJLS0ty584N6M8rLZ6entr/U76e2Vnn0pJd5/6yqVy5MgBr1qzh008/zbb9pnzfpByYwfD/lO+5tAb2SPn/lAN6GK7rO++8g7Ozc5rHzpkzp1avTb0O77zzDjY2NhmeB8D06dNp3bo1cXFxjBkzhh9//NFkHcisgIAAk+tMvW/37dsHQIUKFXB0dExz24IFC5IvX75nig30r4nS/4ht8jFnzhyT2xuue1BQkMkytWrVwtLS0qh8dmjcuDGgn6S8bdu2rFq1KsPBOLZv3w7A8ePHTX52eHl5MWrUKMD0Z0fx4sVNjkpq6nU1nLuVlVW6f4vq1q1rVD4j58+f146V3hx+ptYVLFiQIkWKkJCQQEBAAOPHj+fAgQMyTY7IFpKQiTdOcnKyNnKYYVTFJ3Xq1AnQTwZr+LJqYNhmy5YtRn+Ebt26xbp169Lc77Vr17T/3759mxs3bph8GEYBTDkseEqGOY1MiYiIoEiRIowaNYodO3Zw9+5d7O3t8fDwwNPTU/uCD/Do0SOj+A0MfyjTYmoy3JTnmN75pRzFytQ5PoscOXKYXGdlZQWgzX9lEBkZCYCvr2+WjnXz5k3A9DUxyJs3r1H5J2UmZlNlDOvB+Lyys86lJbvO/WUzd+5cmjVrBsDkyZMZMGBAtuy3UKFC2rUwJFeG+cccHByMkvKAgABsbW3ZtWsXjx8/NtqmUKFCRglGdr0OGX2upNSnTx+Sk5Pp3bs3X3zxRaa3S8/TvG8Nn1npfV5BxtfmRcjM62RnZ6d9Pmfn+6Vdu3b069cPnU7HkiVLeP/993F3d6dw4cL07t2bvXv3ptrG8PkRGxub7mdHVFQUYPqzIzOv65OjFhvO3TBqqylZ/WxJWS6918Gw3ydZWlqyZMkS/P39uXjxIkOGDKFs2bI4OztTt25dZsyY8Vz+pok3gyRk4o2zfv16bVja7t27Gw25bXjUr18fgOjoaJYuXWq0ffXq1fH19UUpZTQc85IlS0hMTMTT05N69eoZbZPyF7Tjx49n+EurUirNIaIB7RfUtCQmJtK2bVvu379PmTJlWLt2LVFRUTx8+JAbN24QGRnJjh07tPJKqTT38zST9KY8x8ePH2fqHF+WIc5f5kmJn1Z21rmXlZ2dHYCWtKTH8EXJsI0p1tbW/P7771pL+JQpU+jfv/+zBfr/DC1bhrnEtm7dSlJSEoGBgVhbW2vl7OzsCAgIID4+XmupeN7zj6X3ufKkDz74ANBPmP3XX389l3iy4nV8/2a3KVOmcPLkScaOHUuDBg1wdXXlzJkz/PTTT1SoUCFVHTd8frRu3TpTnx0XLlx48SdlBqVLl+bEiROsWLGCnj17UqJECR4/fszGjRv5+OOPKVKkCIcPHzZ3mOIVJAmZeOM82Q0xq+V1Op32hSRlt0XD/9u2bWvUagH6rnAGz6ObnkFERAQXL17E0tKS1atX06BBg1S/UBpag57k7u6u/T9l68qTrl69mubyF3WOz4Mh9qzGbWhVyGjeGcP6rLRCPKvn/Xq8DOduaE0wVSdTMpRJWc9NsbKy4rfffqNVq1YATJ06lb59+z5DpHqGZOrkyZNERkYazT/2pJTdFi9fvsy5c+eM9mFgjtdh3rx5dOrUifj4eJo3b86qVaueeZ9Pw/Bapvd5BZmrH89bZl6n2NhY7ty5Y1TewJAwpzdv14MHD9KNoVChQgwdOpS1a9dy584dIiIitO75U6dO5c8//9TKPu1nYnYwnPvt27fTnWssq3U6Zbn06kRG9cXGxoZmzZrx888/c/jwYW7dukVISAhubm5cvnxZ62EjRFZIQibeKLdu3dL+6CxfvpyHDx+afOzatQvQ31908uRJo/0YuiSePHmS3bt3a/+mXJeSn5+f1kXief6ifPnyZUD/RcVUl4yNGzemubxAgQK4uroCaU9Ka2BqXcp7UF6GX82zwnDfUGRkZJbu3TDclxMeHm5ywukTJ05of+BN3Qf2PDzvOvcynHv58uWB/+53MUUppZUxbJMRKysrFi9eTJs2bQD48ccf6dOnzzNEa5xMhYeHp3n/mIFhWXh4uNY6BqmTt5T3hpn6Qn7//n2je82elYWFBbNnz6Zr164kJCTQqlWrdCcWfl7KlSsH6M89ZffrlM6dO6d9LpqT4XUKCwszWWbz5s1a970nX6ecOXMCmDyXhw8fcvz48UzHY2FhQaVKlVi+fDn58+cHIDQ0VFtvuFd57969XL9+PdP7zQ6Ga5WYmMg///xjspzhb1lm67S/vz9ubm4ARu+pJ23atCmzoQKQK1cuPvzwQ8aPHw/oJ7M2JNZCZJYkZOKNsmDBAhISEnBxcaFJkyY4OTmZfLzzzjsUKVIESN1K9tZbb2k3oc+fP19rHStRogRly5ZN89g9evTQ9rV///5043zyJufMMgwk8uS9WgZXrlzhhx9+SHNbnU6n3TsTEhJiNECEwenTp1N14TRwdHSkXbt2AIwfP55Lly6lG+vTnuPzUKtWLQoUKADAgAEDiI+Pz9R2hi/rV69eZdasWWmW+frrrwF9a056N/Q/D8+zzr0M5966dWsALly4wG+//Way3JIlS7Rf+g2tXplhaWnJwoULtXo9ffp0Pv74Y5NdfTPi5+enDSL0119/sW/fPuzt7dMc0MLQjXH37t2sXbsWgCJFiuDt7W1Urnnz5lhZWREbG6t9IXzS2LFjiYuLw9ramubNmz9V7E+ysLBg1qxZ9OzZk4SEBNq0aWPys+F5adasGRYWFjx69IipU6emWWbMmDEvNCZTDO+XiIgINmzYkGp9YmKiNkBGiRIlKFGihNH60qVLA5hMfCdOnGiyNSm9ViZLS0vth7SUA7O0bNkSV1dXEhISGDhwYLp1Pjk5WRsQKjuUKlVKG3zqm2++SXPQjLVr17Jz505A3yslM3Q6nfb+DwkJSXNgk2PHjrF8+fI0t0/vOoJ+0C+DZx3kRryBsnvYRiFeZsWKFVOA6tixY6bKf/XVVwpQnp6eqeYdmTZtmgL9HEuG4cXHjx9vcl8PHz5UJUuWVKCfGPTHH39Ut2/f1tbfu3dPrV27VnXo0EEVK1Ys1fZkYtjj+/fvK0dHRwX6iakNE0YnJiaqdevWqYIFC6pcuXKZHJr59OnT2pD/FSpUUPv27VNK6YcLDgsLU/7+/hlODG2YM8jHx0fNnz9fRUVFaetv3rypli9frpo2barq1atn8jxMycyw92mtMzAM5fzkxLpK6YecNkwMXbVq1VQTQ4eHh6v27dunOzH0jz/+aDQ5csrJqNObGDq94bgN52xqbjWlTNeNZ61zGXmWc8+OYe9Tzt1kZ2enJk6cqG7evKmtv3Hjhpo4caI2PHtAQECacxqlN6GvUvpJYz/44AOtzIcffmhyaoWMGIZwt7S0VKCfTNmUypUrG5V9clJpg5QTQ3/99dfaxND37t1Tw4YN0+JOb2Lo9N43SqU/lPjHH3+sxbl48eIsHSMz7wHDEOppTc7co0cP7djfffedNsT67du3takZXsaJoRctWqTNDXju3Dn17rvvatumNTG0YZJmQH399dfaFAe3bt1SQ4cOVRYWFibPs3Tp0uqTTz5R4eHhRtMDXL16VfXp00fb75Pzjc2dO1db16BBA7Vjxw7tMzEpKUkdO3ZMTZw4URUpUkQtWLDAaNv0XjOD9D4DUk4M3bRpU21i6Pj4eLVw4UJtqo6sTgx98eJFbXLnMmXKaNOcJCcnq/Xr16v8+fObnBh67ty5qnLlyiokJESdPXtWW274+5o3b94MpzYQwhRJyMQbIyIiQvuQ/euvvzK1zaFDh7RtVq1aZbTu9u3bysbGRltvYWGhrl69mu7+rl69qipVqqRto9PplKurq9GEooAqVKhQqm0zk5AppdSMGTOM9uXk5KTND5Y7d26jCTXT+vK5bNkybaJZQOXIkUM5ODgoQOXJk0f70mFra5vm8Y8dO6beeusto+vi5uamJYqGR1qTgWbkeSZkSunnxUk58bWtra3KlSuX0fXYv3+/0Tb37983mqvIyspK5cyZU0vuADVo0KA0j/e8EzKlnq3OZeRZzj07EjKl9D8CGL7oGh7Ozs6pzi8gIEBdv349zX1klJAppf8C2rFjR61cjx49niopmz9/vlFcI0eONFl26NChRmWXLl2aZrm4uDjVqlUro/dczpw5tUmTAdW2bds0Jwd/1oTM4JNPPtESoye/nD/PhOzhw4eqatWqWmyWlpZGdXDYsGGqevXqClDjxo1L9xzTkl0JmVL6OQOLFy+ulbGxsTH68m9hYaGmTp2a5r4TExNVrVq1jN7HhvPU6XTqu+++M3ktDZ8hKd//T34eDxgwIM3jzpgxw+jvnOEzMeXkyYBauHCh0XbPmpAppZ9nLuVniaurq1EsJUuWTPNvbkb7Xb16tdHnfI4cObQfIr29vdXs2bPT3P7J+QoN1yLl+8zHx0cdP37c5DkLYYq0qYo3hqHboYuLS6pREE0pWbIkRYsWNdreIFeuXDRs2FB7XqdOnQyHX/bx8WHbtm389ttvvPvuu3h7exMTE0N8fDx+fn40adKEKVOmsGXLlqycmpGPPvqINWvWULNmTZycnEhMTCRPnjx88sknHDx4kJIlS6a7fYsWLdizZw8tW7bE3d2duLg4PD096devH/v379e6RRruN3tS0aJFOXToED///DP16tUjd+7cREVFoZSiUKFCtGzZkpkzZ77w7k2Z0bFjR06cOEH//v0pVqwYVlZWPH78GF9fX5o2bcqCBQu0+mDg4uJCWFgYv/76KzVr1iRHjhxER0fj5eVF8+bNCQ8P57vvvjPTGT3fOvcynLu3tzfbtm1j8eLFvPfee+TNm5f4+Hji4+PJmzcv7733HosXL2bbtm1GA51klYWFBXPmzNFGovzll1/o0aNHlrsvPjkoR3rzLKVcp9PpTI5KamNjw++//87y5ctp0KABuXLl4uHDh+TKlYsGDRqwcuVKFi9ebDSSY3b74YcfGDBgAElJSXTq1EmbWuR5c3JyIiwsjO+++45SpUphY2ODUooaNWqwcuVKRo8erXWnM/WZ9aLkyZOHPXv2MHnyZCpVqoS9vT0xMTHky5ePDh06sHfvXpODx1haWrJmzRpGjhxJkSJFsLGxQafTUa9ePUJDQxk0aJDJ4y5ZsoSRI0dSp04d/P39iY+PJyEhAV9fX1q3bk1YWBiTJ09Oc9uPPvqIkydPMmjQIEqXLo2trS3379/HycmJChUq8MknnxAaGprpboNZMWDAAPbs2cMHH3xAvnz5iImJwd7enkqVKvH999+ze/fuDP/mpqVRo0bs27ePNm3a4OHhQXx8PJ6envTp04f9+/fj7++f5nbvvvsu8+fPp0uXLpQuXRoXFxcePHhAjhw5qFixIqNHj+bo0aParQ5CZIVOZfWviRDijfbll18yduxYateune4N6kIIYW7R0dHkypWL+Ph4tmzZQrVq1cwdkhBCpCItZEKITLt165Y2gINhrjYhhHhZTZ48mfj4eNzc3F7oKKdCCJEVkpAJIYz88MMPfPvtt5w5c0YbgjkuLo61a9dSvXp1bt68ibu7O127djVzpEKIN93Dhw9p06YN69atMxrp7+LFiwwePJgRI0YA0L9//wwnBRdCCHORLotCCCP9+/fXhpC2tLTExcWFqKgoLTlzcXFh1apVJu9nEUKIF+X+/fvaHF0AOXLkAPSJmkHz5s1ZsmQJVlZWLzw+IYTIDPl0EkIY6dSpE5aWlmzZsoWrV69y584d7O3t8ff3Jzg4mH79+pmcdFoIIV4kJycnpk2bRmhoKEeOHOHWrVs8fvwYb29vKlSoQMeOHWnevDk6nc7coQohhEnSQiaEEEIIIYQQZiL3kAkhhBBCCCGEmUhCJoQQQgghhBBmIgmZEEIIIYQQQpiJJGRCCCGEEEIIYSaSkAkhhBBCCCGEmUhCJoQQQgghhBBmIgmZEEIIIYQQQpiJJGRCCCGEEEIIYSaSkAkhhBBCCCGEmUhCJoQQQgghhBBmIgmZEEIIIYQQQpiJJGRCCCGEEEIIYSaSkAkhhBBCCCGEmUhCJsQbJDo6mu7du+Pl5YVOp6N///5cuHABnU7H3Llzs/VYfn5+dO7cOVv3+aLMnTsXnU7HhQsXtGU1a9akZs2aZovpaW3evBmdTsfmzZvNHYp4zuS1fjFGjBiBTqczdxhCiNeIJGRCvEIMicKePXueavuxY8cyd+5cevXqxYIFC+jQocMzxfPvv/8yYsQI7t+//0z7eV5++ukndDodAQEB5g4lQ2PHjmXVqlVmO/7zei3DwsLo2rUrb731Fg4ODhQoUIDu3btz/fp1k3FUrVoVBwcHvLy86Nu3L9HR0UZldu/eTZ8+fShevDiOjo7kz5+fVq1acerUKaNyycnJzJ07l3fffZd8+fLh6OhIiRIl+Oabb4iNjTUZc/PmzWnYsGGW4x87diyVKlXC3d0dOzs7ChcuTP/+/bl161amrpVOp9MeFhYW+Pj4UK9evdc2wfLz8zM6Z8M1Gzx4MHfv3jV3eK8UpRQLFiygevXquLq64uDgQMmSJRk1ahSPHj1KVb5mzZrodDqaNGmSap3hR7qJEyemWt6lSxcKFiyInZ0dXl5eVK9eneHDh2cYnyGJNTwcHBzInz8/TZo0Yc6cOcTFxT31ua9du5YRI0Y89fZCvAyszB2AEOLF2bRpE5UqVTL6A5qyFSir/v33X0aOHEnnzp1xdXU1Wnfy5EksLMz7m8+iRYvw8/Nj165dnDlzhkKFCj31vjZs2JCNkaU2duxYWrRoQdOmTZ/rcUxJ77V8Fp9//jl3796lZcuWFC5cmHPnzjFt2jRWr17NgQMH8PLy0soeOHCAOnXqULRoUSZPnsyVK1eYOHEip0+f5u+//9bKjR8/nu3bt9OyZUtKlSpFZGQk06ZNo1y5cuzYsYMSJUoAEBMTQ5cuXahUqRIfffQRHh4eREREMHz4cMLCwti0aVOqlo6EhARCQ0MZN25cluPfu3cvZcqUoU2bNuTIkYPjx4/zyy+/sGbNGg4cOICjo2OG16tu3bp07NgRpRTnz5/np59+onbt2qxZs4YGDRqku2316tV5/PgxNjY2Gb8wL4kyZcrw6aefAhAbG8vevXuZMmUK//zzD7t27TJzdK+GpKQk2rVrx9KlS6lWrRojRozAwcGBrVu3MnLkSJYtW8bGjRvx9PRMte3q1avZu3cv5cuXT/cYZ86c4Z133sHe3p6uXbvi5+fH9evX2bdvH+PHj2fkyJGZinXGjBk4OTkRFxfH1atXWb9+PV27dmXKlCmsXr2afPnyZfn8165dy/Tp0yUpE682JYR4ZcyZM0cBavfu3U+1vb+/v2rUqJHRsvPnzytAzZkzJ8v7++677xSgzp8//1TxPE/nzp1TgFq5cqVyd3dXI0aMyPS2huv8Is/L0dFRderUKdv3Gx4ergAVHh6ebrnn9Vr+888/KikpKdUyQH355ZdGyxs0aKC8vb3VgwcPtGW//PKLAtT69eu1Zdu3b1dxcXFG2546dUrZ2tqq9u3ba8vi4uLU9u3bU8U0cuRIBajQ0NBU68LCwoyuQ1biT8vy5csVoH777bcMywKqd+/eRssOHTqkAFWvXj2T2z1+/DhVjK8CX1/fVJ9HSik1aNAgBahTp06ZIaqMDR8+XL1MX5/Gjh2rADVo0KBU6/78809lYWGh6tevb7S8Ro0aKn/+/CpnzpyqSZMmRusMfxO+++47bdnHH3+srKys1IULF1Id48aNGxnGaLhmt27dSrVu4cKFysLCQgUEBGS4n7T07t37pXo9hHga0mVRiFdc586dcXJy4urVqzRt2hQnJyfc3d0ZNGgQSUlJwH/3lpw/f541a9Zo3UZMtY4dOnSIzp07U6BAAa1rSteuXblz545WZsSIEQwePBgAf3//VPtM6x6yc+fO0bJlS9zc3HBwcKBSpUqsWbPGqIwh1qVLlzJmzBjy5s2LnZ0dderU4cyZM5m+LosWLSJnzpw0atSIFi1asGjRojTLHT16lNq1a2Nvb0/evHn55ptvSE5OTlXuyXvI0rrPLGX8KbuZnT59mubNm+Pl5YWdnR158+alTZs2PHjwANB3VXv06BHz5s3TrmPKa3f16lW6du2Kp6cntra2FC9enNmzZ6eK8cqVKzRt2hRHR0c8PDwYMGBAproCZfRaJiYmMnr0aAoWLIitrS1+fn588cUXmdp39erVU7WUVq9eHTc3N44fP64ti4qKIjQ0lA8++ABnZ2dteceOHXFycmLp0qXassqVK6dqBSpcuDDFixc32qeNjQ2VK1dOFdP7778PYFTWYM2aNRQrVgw/P78sxW+KYT9P2xW0ZMmS5M6dm/PnzwP/1a8lS5YwbNgw8uTJg4ODA1FRUSbvIdu5cycNGzYkZ86cODo6UqpUKaZOnWpU5sSJE7Ro0QI3Nzfs7OyoUKECf/75p1GZhIQERo4cSeHChbGzsyNXrlxUrVqV0NDQpzo3UwytjlZW/3XiycxnEsDDhw/p378/fn5+2Nra4uHhQd26ddm3b59RuZ07d1K/fn1cXFxwcHCgRo0abN++PVUs27Zt45133sHOzo6CBQvy888/Z+lcli1bRvny5bG3tyd37tx88MEHXL161ahMZj7DTXn8+DHfffcdb731ltaqm1KTJk3o1KkT69atY8eOHUbrcuTIwYABA/jrr79SXZ8nnT17lrx58+Lr65tqnYeHR7rbZqR9+/Z0796dnTt3GtWlrVu30rJlS/Lnz4+trS358uVjwIABPH78WCvTuXNnpk+fDhh3+TWYOHEilStXJleuXNjb21O+fHmWL1/+TPEK8TxIl0UhXgNJSUkEBwcTEBDAxIkT2bhxI5MmTaJgwYL06tWLokWLsmDBAgYMGEDevHm1LkLu7u5p3t8SGhrKuXPn6NKlC15eXhw9epSZM2dy9OhRduzYgU6no1mzZpw6dYrffvuN77//nty5c2v7TMuNGzeoXLkyMTEx9O3bl1y5cjFv3jzeffddli9frn1JNvj222+xsLBg0KBBPHjwgAkTJtC+fXt27tyZqWuyaNEimjVrho2NDW3btmXGjBns3r2bd955RysTGRlJrVq1SExMZMiQITg6OjJz5kzs7e0zdYzMiI+PJzg4mLi4OD755BO8vLy4evUqq1ev5v79+7i4uLBgwQK6d+9OxYoV6dmzJwAFCxYE9NetUqVK6HQ6+vTpg7u7O3///TfdunUjKiqK/v37A/ovZnXq1OHSpUv07dsXHx8fFixYwKZNmzKMMaPXsnv37sybN48WLVrw6aefsnPnTsaNG8fx48f5448/snxNoqOjiY6O1o4DcPjwYRITE6lQoYJRWRsbG8qUKcP+/fvT3adSihs3blC8ePEMjx8ZGQlgdHyDtWvX0rhx4yzHnzKOO3fukJiYyOnTpxkyZAiWlpZPPSDMvXv3uHfvXqrutqNHj8bGxoZBgwYRFxdnsptiaGgojRs3xtvbm379+uHl5cXx48dZvXo1/fr1A/Q/SlSpUoU8efJo74OlS5fStGlTVqxYob03R4wYwbhx47S6GhUVxZ49e9i3bx9169Z9qvNLSEjg9u3bgL7L4v79+5k8eTLVq1fH39/f6Dwy+kwC+Oijj1i+fDl9+vShWLFi3Llzh23btnH8+HHKlSsH6LtuN2jQgPLlyzN8+HAsLCyYM2cOtWvXZuvWrVSsWBHQ18l69erh7u7OiBEjSExMZPjw4Wl2/UvL3Llz6dKlC++88w7jxo3jxo0bTJ06le3bt7N//36jrsEZfYabsm3bNu7du0e/fv2MEtiUOnbsyJw5c1i9ejWVKlUyWtevXz++//57RowYkSoBT8nX15eNGzeyadMmateunanzz4oOHTowc+ZMNmzYoNWlZcuWERMTQ69evciVKxe7du3ixx9/5MqVKyxbtgyADz/8kGvXrhEaGsqCBQtS7Xfq1Km8++67tG/fnvj4eJYsWULLli1ZvXo1jRo1yvbzEOKpmbuJTgiReWl1WezUqZMC1KhRo4zKli1bVpUvX95oWVpdhNLqshgTE5Pq2L/99psC1JYtW7Rl6XVz8/X1NeqC179/fwWorVu3assePnyo/P39lZ+fn9blytDFrmjRokbd0qZOnaoAdfjw4TSujLE9e/YYdUlLTk5WefPmVf369TMqZ4hp586d2rKbN28qFxeXVOdVo0YNVaNGDe25qW6NT3YR3L9/vwLUsmXL0o3ZVJfFbt26KW9vb3X79m2j5W3atFEuLi7aazVlyhQFqKVLl2plHj16pAoVKvRMXRYPHDigANW9e3ej5YZuZZs2bUp3v2kZPXq0AlRYWJi2bNmyZanql0HLli2Vl5dXuvtcsGCBAtSvv/6a4fGDgoKUs7OzunfvntFyQzfXjK5VWvEbXL9+XQHaI2/evOr333/PMCal9F0Wu3Xrpm7duqVu3rypdu7cqerUqaMANWnSJKXUf/WrQIECqd6nT9a9xMRE5e/vr3x9fVOda3Jysvb/OnXqqJIlS6rY2Fij9ZUrV1aFCxfWlpUuXTrNLoZPy9fX1+haGR5VqlRJVd8z+5nk4uKSqttnSsnJyapw4cIqODjY6BrExMQof39/VbduXW1Z06ZNlZ2dnbp48aK27NixY8rS0jLDLnLx8fHKw8NDlShRQj1+/Fhbvnr1agWor7/+WluWlc/wJxne93/88YfJMnfv3lWAatasmbasRo0aqnjx4kqp/7rw7t27VymVdpfFI0eOKHt7ewWoMmXKqH79+qlVq1apR48epRufQXpdFpVS6t69ewpQ77//vrYsrdd83LhxSqfTGb0m6XVZfHIf8fHxqkSJEqp27dqZiluIF0W6LArxmvjoo4+MnlerVo1z58491b5SthDFxsZy+/Zt7ZfVjLq2mLJ27VoqVqxI1apVtWVOTk707NmTCxcucOzYMaPyXbp0MfrVv1q1agCZOqdFixbh6elJrVq1AH1XltatW7NkyRKjLkBr166lUqVK2i/ioG8Vat++/VOdY1pcXFwAWL9+PTExMVnaVinFihUraNKkCUopbt++rT2Cg4N58OCB9nqsXbsWb29vWrRooW3v4OCgtbg9rbVr1wIwcOBAo+WGVtYnu5xmZMuWLYwcOZJWrVoZ/dJu6IZka2ubahs7OzujbkpPOnHiBL179yYwMJBOnTqle/yxY8eyceNGvv3221SDl6xZswYXFxejOprZ+A3c3NwIDQ3lr7/+YtSoUeTOnTvVKJHp+fXXX3F3d8fDw4OAgAC2b9/OwIEDtZZQg06dOmXYkrt//37Onz9P//79U52roUXp7t27bNq0iVatWvHw4UOtft25c4fg4GBOnz6tdbFzdXXl6NGjnD59OtPnk5GAgABCQ0MJDQ1l9erVjBkzhqNHj/Luu+8aveaZ/UxydXVl586dXLt2Lc3jHThwgNOnT9OuXTvu3Lmjne+jR4+oU6cOW7ZsITk5maSkJNavX0/Tpk3Jnz+/tn3RokUJDg7O8Lz27NnDzZs3+fjjj7Gzs9OWN2rUiCJFiqT5vnmaz/CHDx8C+u6HphjWRUVFpbm+X79+5MyZM92BOYoXL86BAwf44IMPuHDhAlOnTqVp06Z4enryyy+/pBtjZjg5OQH/nQ8Yv+aPHj3i9u3bVK5cGaVUhi3mae3j3r17PHjwgGrVqj313zEhnhdJyIR4DdjZ2aXqKpgzZ07u3bv3VPu7e/cu/fr1w9PTE3t7e9zd3bXuQ4b7nrLq4sWLvP3226mWFy1aVFufUsovQaA/HyDDc0pKSmLJkiXUqlWL8+fPc+bMGc6cOUNAQAA3btwgLCzMKKbChQun2kdacT4tf39/Bg4cyKxZs8idOzfBwcFMnz49U9fx1q1b3L9/n5kzZ+Lu7m706NKlCwA3b97UzqVQoUKpRg181nO5ePEiFhYWqbrMeXl54erqmup1S8+JEyd4//33KVGiBLNmzTJaZ/jilNZ9abGxsSaTj8jISBo1aoSLiwvLly/H0tLS5PF///13hg0bRrdu3dLsBrZmzRrq1atnsutXevEb2NjYEBQUROPGjfnqq6+YPn063bp1Y/Xq1SbjSum9994jNDSUjRs3snPnTm7fvs2kSZNS3ceWsjufKWfPngXQRp1My5kzZ1BK8dVXX6WqY4bRWA11bNSoUdy/f5+33nqLkiVLMnjwYA4dOpSp8zIld+7cBAUFERQURKNGjfjiiy+YNWsW//77r9E1zuxn0oQJEzhy5Aj58uWjYsWKjBgxwiipMSSTnTp1SnW+s2bNIi4ujgcPHnDr1i0eP3781J8PhvdFWmWLFCmS6n3ztJ/hhmQrZSLzpIySNhcXF/r378+ff/6ZbqLz1ltvsWDBAm7fvs2hQ4cYO3YsVlZW9OzZk40bN6YbZ0YMP1qkjPHSpUt07twZNzc37b66GjVqAJn/O2TopmlnZ4ebmxvu7u7MmDHjqf+OCfG8yD1kQrwG0vsS+jRatWrFv//+y+DBgylTpgxOTk4kJydTv379NAe8eB5MnZNSKt3tNm3axPXr11myZAlLlixJtX7RokXUq1fvmeMzNTFsWjfhT5o0ic6dO/O///2PDRs20LdvX8aNG8eOHTvImzevyWMYrvUHH3xgsuWnVKlSTxF91j3rRLiXL1+mXr16uLi4sHbt2lRfDr29vQHSnN/r+vXr+Pj4pFr+4MEDGjRowP3799m6dWuaZQxCQ0Pp2LEjjRo1IiQkJNX6mJgYNm/ezIwZM54qflMqV66Mt7c3ixYtyvDeNIC8efMSFBSUYbnsus/RUMcGDRpksuXHkIxXr16ds2fPavV41qxZfP/994SEhNC9e/dsiQegTp06gL418pNPPgEy/5nUqlUrqlWrxh9//MGGDRv47rvvGD9+PCtXrqRBgwZa2e+++44yZcqkeXzDsOwv0tN+hht+0Dp06JDJKTMMSXOxYsVM7sdwL9nIkSOZMmVKhrGWLFmSkiVLEhgYSK1atVi0aFGm6q0pR44cAf6ra0lJSdStW5e7d+/y+eefU6RIERwdHbl69SqdO3fO1N+hrVu38u6771K9enV++uknvL29sba2Zs6cOSxevPipYxXieZCETAhh5N69e4SFhTFy5Ei+/vprbXla3ZSy8iXd19eXkydPplp+4sQJbX12WLRoER4eHtrIWymtXLmSP/74g5CQEOzt7fH19U3zvNKK80mGFrsnR88z1WJk+AIzbNgw/v33X6pUqUJISAjffPMNkPa1dHd3J0eOHCQlJWX4ZcfX15cjR46glDLaV2bOxdTxDftNTk7m9OnT2pc/0A82cv/+/Uy9bnfu3KFevXrExcURFhamJV8plShRAisrK/bs2UOrVq205fHx8Rw4cMBoGehbzZo0acKpU6fYuHFjul82d+7cyfvvv0+FChVYunRpmi1gmzZtIi4uLs25vjITf3piY2PN8ou8YWCYI0eOmKw/BQoUAMDa2jpTX6jd3Nzo0qULXbp0ITo6murVqzNixIhsTcgSExOB/1pNsvKZBPrk/uOPP+bjjz/m5s2blCtXjjFjxtCgQQPtmjg7O6d7vu7u7tjb2z/154PhfXHy5MlUXVtPnjyZbZ93VatWxdXVlcWLF/Pll1+mmdjNnz8fIN0fBAytZCNGjMiw229KhkF4TE30nlmGATkMPwocPnyYU6dOMW/ePDp27KiVS2tET1OfXStWrMDOzo7169cbdYWeM2fOM8UqxPMgXRaFEEYMf9CfbIlK61dTw0S3mRnSu2HDhuzatYuIiAht2aNHj5g5cyZ+fn7pfqHOrMePH7Ny5UoaN25MixYtUj369OnDw4cPtdHEGjZsyI4dO4wmoL1165bJIfJTMnyx27Jli7YsKSmJmTNnGpWLiorSvmAalCxZEgsLC6Nf4R0dHVNdR0tLS5o3b86KFSu0X5BTSjlCZsOGDbl27ZrRkM4xMTGp4jHF1GvZsGFDIPXrP3nyZIAMRyp79OgRDRs25OrVq6xduzbNLmCg/0IYFBTEwoULjbpfLViwgOjoaFq2bKktS0pKonXr1kRERLBs2TICAwNNHv/48eM0atQIPz8/Vq9ebbJlae3atVSoUCHVCHqZjf/Ro0dp3iO4YsUK7t27l2r0yBehXLly+Pv7M2XKlFSvq+H97eHhQc2aNfn555/T/FKdso49OcS8k5MThQoVyvbWpL/++guA0qVLA5n/TEpKSkqV+Hp4eODj46PFWL58eQoWLMjEiRPTvLfPcL6WlpYEBwezatUqLl26pK0/fvw469evz/AcKlSogIeHByEhIUbX5++//9bqZHZwcHBg0KBBnDx5ki+//DLV+jVr1jB37lyCg4NTjbD4JMO9hqNGjUq1buvWrSQkJKRabrjH9Fm6Ri9evJhZs2YRGBiotY6m9ZorpVJN1wCmP7ssLS3R6XRGvRYuXLjAqlWrnjpWIZ4XaSETQhhxdnamevXqTJgwgYSEBPLkycOGDRu0eZBSKl++PABffvklbdq0wdramiZNmmh/IFMaMmQIv/32Gw0aNKBv3764ubkxb948zp8/z4oVK1LdI/M0/vzzTx4+fMi7776b5vpKlSrh7u7OokWLaN26NZ999hkLFiygfv369OvXTxv23tfXN8N7Y4oXL06lSpUYOnQod+/exc3NjSVLlqRKvjZt2kSfPn1o2bIlb731FomJiSxYsEBLtgzKly/Pxo0bmTx5Mj4+Pvj7+xMQEMC3335LeHg4AQEB9OjRg2LFinH37l327dvHxo0buXv3LgA9evRg2rRpdOzYkb179+Lt7c2CBQtwcHDI1LUz9VqWLl2aTp06MXPmTO7fv0+NGjXYtWsX8+bNo2nTptrAKaa0b9+eXbt20bVrV44fP240d5eTk5NRN6sxY8ZQuXJlatSoQc+ePbly5QqTJk2iXr161K9fXyv36aef8ueff9KkSRPu3r3LwoULjY75wQcfAPp7Z4KDg7l37x6DBw9ONZBCwYIFtWRu7dq12n15TxP/6dOnCQoKonXr1hQpUgQLCwv27NnDwoUL8fPz04aYf5EsLCyYMWMGTZo0oUyZMnTp0gVvb29OnDjB0aNHtcRi+vTpVK1alZIlS9KjRw8KFCjAjRs3iIiI4MqVKxw8eBDQd3mrWbMm5cuXx83NjT179mhDzBtcuHABf39/OnXqxNy5czOM8erVq9rrFx8fz8GDB/n555/JnTu31l0xs59JDx8+JG/evLRo0YLSpUvj5OTExo0b2b17N5MmTdKuyaxZs2jQoAHFixenS5cu5MmTh6tXrxIeHo6zs7OWEI4cOZJ169ZRrVo1Pv74YxITE/nxxx8pXrx4hp8P1tbWjB8/ni5dulCjRg3atm2rDXvv5+fHgAEDMvEKZs6QIUPYv38/48ePJyIigubNm2Nvb8+2bdtYuHAhRYsWZd68eRnux8XFhX79+qU5uMf48ePZu3cvzZo107pJ79u3j/nz5+Pm5pZq0BlTli9fjpOTE/Hx8Vy9epX169ezfft2SpcurQ1lD/r77AoWLMigQYO4evUqzs7O2o8bTzJ8dvXt25fg4GAsLS1p06YNjRo1YvLkydSvX5927dpx8+ZNpk+fTqFChZ753kchsp2ZRncUQjwFU8PeOzo6piprGGY4pcwOe3/lyhX1/vvvK1dXV+Xi4qJatmyprl27pgA1fPhwo+1Hjx6t8uTJoywsLIyGTX9y2HullDp79qxq0aKFcnV1VXZ2dqpixYpq9erVRmUMQ3c/OUx8WnE+qUmTJsrOzi7doZg7d+6srK2ttWG1Dx06pGrUqKHs7OxUnjx51OjRo9Wvv/6a4bD3hvMJCgpStra2ytPTU33xxRcqNDTUaOjxc+fOqa5du6qCBQsqOzs75ebmpmrVqqU2btxotK8TJ06o6tWra0NLp7x2N27cUL1791b58uVT1tbWysvLS9WpU0fNnDnTaB8XL15U7777rnJwcFC5c+dW/fr1U+vWrcvUUO5KmX4tExIS1MiRI5W/v7+ytrZW+fLlU0OHDjUaJt0UU0ObA8rX1zdV+a1bt6rKlSsrOzs75e7urnr37q2ioqKMytSoUcPkPlPWeUOdMfUwXOMjR44oQO3ateup479165bq2bOnKlKkiHJ0dFQ2NjaqcOHCqn///iaH+n4SkO6Q7UqZfn+kXPfka71t2zZVt25dlSNHDuXo6KhKlSqlfvzxR6MyZ8+eVR07dlReXl7K2tpa5cmTRzVu3FgtX75cK/PNN9+oihUrKldXV2Vvb6+KFCmixowZo+Lj47Uyhw8fVoAaMmRIhuf75LW1sLBQHh4eqm3bturMmTNGZTPzmRQXF6cGDx6sSpcurZ1r6dKl1U8//ZTq2Pv371fNmjVTuXLlUra2tsrX11e1atUq1VQG//zzjypfvryysbFRBQoUUCEhIWl+tpry+++/q7JlyypbW1vl5uam2rdvr65cuWJUJiuf4aYkJSWpOXPmqCpVqihnZ2dlZ2enihcvrkaOHKmio6NTlU857H1K9+7d06b9SDns/fbt21Xv3r1ViRIllIuLi7K2tlb58+dXnTt3VmfPns0wPsO5GB52dnYqb968qnHjxmr27NlpfpYcO3ZMBQUFKScnJ5U7d27Vo0cPdfDgwVR/BxITE9Unn3yi3N3dlU6nM7pmv/76qypcuLCytbVVRYoUUXPmzMnSdRXiRdEplcEd8kIIIahWrRq2trbPPJqYePlMmDCByZMnc/369WcevORN99NPP/HZZ59x9uzZTE+gLIQQbzq5h0wIITLh+vXr5M6d29xhiOfAz8+P77//XpKxbBAeHk7fvn0lGRNCiCyQFjIhhEjHv//+y8qVK5k0aRIzZ86kR48e5g5JCCGEEK8RSciEECIdXbp04e+//6Zt27Z89913JicNFkIIIYR4GpKQCSGEEEIIIYSZyD1kQgghhBBCCGEmkpAJIYQQQgghhJnIzRDZJDk5mWvXrpEjRw4ZqUsIIYQQQog3mFKKhw8f4uPjg4VFBm1gZpsB7f9duXJFtW/fXrm5uSk7OztVokQJo0lvk5OT1VdffaW8vLyUnZ2dqlOnjjp16pTRPu7cuaPatWuncuTIoVxcXFTXrl3Vw4cPjcocPHhQVa1aVdna2qq8efOq8ePHp4pl6dKl6u2331a2traqRIkSas2aNZk+j8uXL6c7Aak85CEPechDHvKQhzzkIY8363H58uUM8wiztpDdu3ePKlWqUKtWLf7++2/c3d05ffo0OXPm1MpMmDCBH374gXnz5uHv789XX31FcHAwx44dw87ODoD27dtz/fp1QkNDSUhIoEuXLvTs2ZPFixcDEBUVRb169QgKCiIkJITDhw/TtWtXXF1d6dmzJ6Af2rpt27aMGzeOxo0bs3jxYpo2bcq+ffsoUaJEhueSI0cOAC5fvoyzs3N2X6o3RkJCAhs2bKBevXpYW1ubOxzxBpA6J14kqW/iRZM6J140qXN6UVFR5MuXT8sR0mPWhGz8+PHky5ePOXPmaMv8/f21/yulmDJlCsOGDeO9994DYP78+Xh6erJq1SratGnD8ePHWbduHbt376ZChQoA/PjjjzRs2JCJEyfi4+PDokWLiI+PZ/bs2djY2FC8eHEOHDjA5MmTtYRs6tSp1K9fn8GDBwMwevRoQkNDmTZtGiEhIRmei6GborOzsyRkzyAhIQEHBwecnZ3f6DexeHGkzokXSeqbeNGkzokXTeqcsczcymTWQT3+/PNPKlSoQMuWLfHw8KBs2bL88ssv2vrz588TGRlJUFCQtszFxYWAgAAiIiIAiIiIwNXVVUvGAIKCgrCwsGDnzp1amerVq2NjY6OVCQ4O5uTJk9y7d08rk/I4hjKG4wghhBBCCCFEdjNrC9m5c+eYMWMGAwcO5IsvvmD37t307dsXGxsbOnXqRGRkJACenp5G23l6emrrIiMj8fDwMFpvZWWFm5ubUZmULW8p9xkZGUnOnDmJjIxM9zhPiouLIy4uTnseFRUF6H8VSEhIyNJ1EP8xXDu5huJFkTonXiSpb+JFkzonXjSpc3pZOX+zJmTJyclUqFCBsWPHAlC2bFmOHDlCSEgInTp1MmdoGRo3bhwjR45MtXzDhg04ODiYIaLXS2hoqLlDEG8YqXPiRZL6Jl40qXPiRXvT61xMTEymy5o1IfP29qZYsWJGy4oWLcqKFSsA8PLyAuDGjRt4e3trZW7cuEGZMmW0Mjdv3jTaR2JiInfv3tW29/Ly4saNG0ZlDM8zKmNY/6ShQ4cycOBA7bnhxr169eqZvIdMKUVSUhJJSUkopdIs86ZLTEzk33//pXLlylhZyawMrzKdToelpSWWlpYv9VQQCQkJhIaGUrduXenrLp47qW/iRZM6J140qXN6ht5zmWHWb7xVqlTh5MmTRstOnTqFr68voB/gw8vLi7CwMC0Bi4qKYufOnfTq1QuAwMBA7t+/z969eylfvjwAmzZtIjk5mYCAAK3Ml19+SUJCglYxQkNDefvtt7URHQMDAwkLC6N///5aLKGhoQQGBqYZu62tLba2tqmWW1tbp1n54uPjuX79epay5TeRUgovLy+uX7/+Un+JF5nn4OCAt7e30T2cLyNT710hngepb+JFkzonXrQ3vc5l5dzNmpANGDCAypUrM3bsWFq1asWuXbuYOXMmM2fOBPS/sPfv359vvvmGwoULa8Pe+/j40LRpU0Dfola/fn169OhBSEgICQkJ9OnThzZt2uDj4wNAu3btGDlyJN26dePzzz/nyJEjTJ06le+//16LpV+/ftSoUYNJkybRqFEjlixZwp49e7RYnkVycjLnz5/H0tISHx8fbGxsJNkwITk5mejoaJycnDKeRE+81JRSxMfHc+vWLc6fP0/hwoXlNRVCCCGEeIJZE7J33nmHP/74g6FDhzJq1Cj8/f2ZMmUK7du318p89tlnPHr0iJ49e3L//n2qVq3KunXrtDnIABYtWkSfPn2oU6cOFhYWNG/enB9++EFb7+LiwoYNG+jduzfly5cnd+7cfP3119qQ9wCVK1dm8eLFDBs2jC+++ILChQuzatWqTM1BlpH4+HiSk5PJly+f3F+WgeTkZOLj47Gzs5Mv768Be3t7rK2tuXjxova6CiGEEEKI/5j9Jp3GjRvTuHFjk+t1Oh2jRo1i1KhRJsu4ublpk0CbUqpUKbZu3ZpumZYtW9KyZcv0A34GkmCIN5HUeyGEEEII0+SbkhBCCCGEEEKYiSRk4qUxYsQIypUrZ3L93LlzcXV1fXEBvQI2b96MTqfj/v37z7QfnU7HqlWrTK6/cOECOp2OAwcOPNNxhBBCCCGEMUnIXjFJyYqIs3f434GrRJy9Q1Ly8xs+PyQkhBw5cpCYmKgti46Oxtrampo1axqVNSQGZ8+efW7xtG7dmlOnTj23/Rukl/hllLgIIYQQQgiRFWa/h0xk3roj1xn51zGuP4jVlnm72DG8STHql/BOZ8unU6tWLaKjo9mzZw+VKlUCYOvWrXh5ebFz505iY2O1QRrCw8PJnz8/BQsWzPJxDPOzZcTe3h57e/ss718IIYQQQoiXlbSQvSLWHblOr4X7jJIxgMgHsfRauI91R65n+zHffvttvL292bx5s7Zs8+bNvPfee/j7+7Njxw6j5bVq1QIgLi6Ovn374uHhgZ2dHVWrVmX37t1GZXU6HX///Tfly5fH1taWbdu2pTr+2bNnKVCgAH369EEplarlasSIEZQpU4YFCxbg5+eHi4sLbdq04eHDh1qZhw8f0r59exwdHfH29ub777+nZs2aRvPNPYvDhw9Tu3Zt7O3tyZUrFz179iQ6Olpbn9axmjZtSufOnbXnP/30E4ULF8bOzg5PT09atGihrUtOTmbcuHH4+/tjb29P6dKlWb58eao49u7dS4UKFXBwcKBy5cqp5vebMWMGBQsWxMbGhrfffpsFCxake167du2ibNmy2NnZUaFCBfbv32+0/t69e7Rv3x53d3fs7e0pXLgwc+bMyehyCSGEEEKIJ0hCZiZKKWLiEzP1eBibwPA/j5JW50TDshF/HuNhbEKG+1Iqa10ca9WqRXh4uPY8PDycmjVrUqNGDW3548eP2blzp5aQffbZZ6xYsYJ58+axb98+ChUqRHBwMHfv3jXa95AhQ/j22285fvw4pUqVMlp36NAhqlatSrt27Zg2bZrJedvOnj3LqlWrWL16NatXr+aff/7h22+/1dYPHDiQ7du38+effxIaGsrWrVvZt29flq6BKY8ePSI4OJicOXOye/duli1bxsaNG+nTp0+m97Fnzx769u3LqFGjOHnyJOvWraN69era+nHjxjF//nxCQkI4evQoAwYM4IMPPuCff/4x2s+XX37JpEmT2LNnD1ZWVnTt2lVb98cff9CvXz8+/fRTjhw5wocffkiXLl2MXteUoqOjady4McWKFWPv3r2MGDGCQYMGGZX56quvOHbsGH///TfHjx9nxowZ5M6dO9PnLYQQQggh9KTLopk8Tkii2Nfrs2VfCoiMiqXkiA0Zlj02KhgHm8y/7LVq1aJ///4kJiby+PFj9u/fT40aNUhISCAkJASAiIgI4uLiqFWrFo8ePWLGjBnMnTuXBg0aAPDLL78QGhrKr7/+yuDBg7V9jxo1irp166Y65s6dO2nbti1ffvkln376abrxJScnM3fuXHLkyAFAhw4dCAsLY8yYMTx8+JB58+axePFi6tSpA8CcOXO0CcPT8+DBA5ycnNIts3jxYmJjY5k/fz6Ojo4ATJs2jSZNmjB+/Hg8PT0zPM6lS5dwdHSkcePG5MiRA19fX8qWLQvoWxrHjh3Lxo0bCQwMBKBAgQJs27aNn3/+mRo1amj7GTNmjPZ8yJAhNGrUSOtSOnHiRDp37szHH38M6JPUHTt2MHHiRC2JfvK8kpOT+fXXX7Gzs6N48eJcuXKFXr16GcVdtmxZKlSoAICfn1+G5yqEEEIIIVKThEykq2bNmjx69Ijdu3dz79493nrrLdzd3alRowZdunQhNjaWzZs3U6BAAfLnz8+hQ4dISEigSpUq2j6sra2pWLEix48fN9q34ct8SpcuXaJZs2Z88803DBgwIMP4/Pz8tGQMwNvbm5s3bwJw7tw5EhISqFixorbexcWFt99+O8P95siRI82WtMKFC2v/P378OKVLl9aSMYAqVaqQnJzMyZMnM5WQ1a1bF19fXwoUKED9+vWpX78+77//Pg4ODpw5c4aYmJhUSWt8fLyWtBmkbGH09tbfT3jz5k3y58/P8ePHjSZBN8Q5derUNGMytFimnMTZkBAa9OrVi+bNm7Nv3z7q1atH06ZNqVy5cobnK4QQQgghjElCZib21pYcGxWcqbK7zt+l85zdGZab2+UdKvq7ZXjcrChUqBB58+YlPDyce/fuaa0wPj4+5MuXj3///Zfw8HBq166dpf0CRomMgbu7Ox4eHixZsoRu3brh7Oyc7j6sra2Nnut0OpKTk7Mcy5MsLCwoVKhQtuznyW6iCQkJ2v8Nid/mzZvZsGEDX3/9NSNGjGD37t3avWhr1qwhT548RvuwtbU1ep7yOhi6d2bHdTClQYMGXLx4kbVr1xIaGkqdOnXo3bs3EydOfG7HFEIIIYRIV8JjsH71BoCTe8jMRKfT4WBjlalHtcLueLvYkfZdVKBDP9pitcLuGe7L1L1Y6alVqxabN29m8+bNRsPdV69enb///ptdu3ZpXd8MA0ds375dK5eQkMDu3bspVqxYhseyt7dnyZIl2NnZERwcbDRAR1YVKFAAa2trowFFHjx4kG1D5xctWpSDBw/y6NEjbdn27duxsLDQWuHc3d25fv2/AVeSkpI4cuSI0X6srKwICgpiwoQJHDp0iAsXLrBp0yaKFSuGra0tly5dolChQkaPfPnyZSnOlK+HIU5Tr0fRokU5dOgQsbH/DSCTcgAXA3d3dzp16sTChQuZMmUKM2fOzHRMQgghhBDZJuo6rOgOcxvDc/xB+nmRhOwVYGmhY3gT/ZfnJ9Mpw/PhTYphaZH1ZCszatWqxbZt2zhw4IDRfUs1atTg559/Jj4+XkvIHB0d6dWrF4MHD2bdunUcO3aMHj16EBMTQ7du3TJ1PEdHR/766y+srKxo0KCB0aiFWZEjRw46derE4MGDCQ8P5+jRo3Tr1g0LC4unSkyf1L59e+zs7OjUqRNHjhwhPDycTz75hA4dOmjdFWvXrs2aNWtYs2YNJ06coFevXkaTOK9evZoffviBAwcOcPHiRebPn09ycjJvv/02OXLkYNCgQQwYMIB58+Zx9uxZ9u3bx48//si8efMyHefgwYOZO3cuM2bM4PTp00yePJmVK1emGqjDoF27duh0Onr06MGxY8dYu3Ztqpavr7/+mv/973+cOXOGo0ePsnr1aooWLZr1iyiEEEII8SweXIFpFeDwMri6F67sMndEWSYJ2SuifglvZnxQDi8XO6PlXi52zPig3HOZh8ygVq1aPH78mEKFChndF1WjRg0ePnyoDY9v8O2339K8eXM6dOhAuXLlOHPmDOvXrydnzpyZPqaTkxN///03SikaNWpk1AqVFZMnTyYwMJDGjRsTFBRElSpVKFq0qNH9UU/LwcGB9evXc/fuXd555x1atGhBnTp1mDZtmlama9eudOrUiY4dO1KjRg0KFChgNJCGq6srK1eupHbt2hQtWpSQkBB+++03ihcvDsDo0aP56quvGDduHEWLFqV+/fqsWbMGf3//TMfZtGlTpk6dysSJEylevDg///wzc+bMSTW5t4GTkxN//fUXhw8fpmzZsnz55ZeMHz/eqIyNjQ1Dhw6lVKlSVK9eHUtLS5YsWZKFqyeEEEIIkQ1c8kKBmpCnAvQMh/yVzB1RlulUVsdBF2mKiorCxcWFBw8epLrvKTY2lvPnz+Pv7//MiUBSsmLX+bvcfBiLRw47Kvq7PbeWMXNITk4mKioKZ2dnLCyy//eCR48ekSdPHiZNmpTpFjvxbLKz/j8PCQkJrF27loYNG6a6J1GI7Cb1TbxoUufEi/bc69yDK7BpDASNgBz/31AQGwU2TvAcvjs+rfRygyfJoB6vGEsLHYEFc5k7jFfG/v37OXHiBBUrVuTBgweMGjUKgPfee8/MkQkhhBBCiExLjIOI6bDlO0iI0S97f4b+X7v0E56XnSRk4rU3ceJETp48iY2NDeXLl2fr1q0yibEQQgghxKvi9Eb4+zO4e1b/PH8gBH5s3piykSRk4rVWtmxZ9u7da+4whBBCCCFEVt27COu/gBOr9c+dPKHuaCjVCrJhgLaXhSRkQgghhBBCiJfPrpn6ZExnCZV6QY3PX/nuiWmRhEwIIYQQQgjxcoiLBlsn/f9rfKYfxKPmEPB4fafXkYRMCCGEEEIIYV53zsK6oRAfDZ3X6Lsk2rlAq8zPvfqqkoRMCCGEEEIIYR7xMbBtMmyfCknxYGENN46AV0lzR/bCSEImhBBCCCGEeLGU0t8ftu4LeHBJv6xALWj4HeQubN7YXjBJyIQQQgghhBAvzqM7sLI7nN2kf+6SD4LHQtEmr9XoiZn18kxnLYR4bnQ6HatWrTJ3GEIIIYQQ+nvDHkaCpQ1UGwS9d0Gxd9/IZAwkIRMZ2LJlC02aNMHHx8fkl/obN27QuXNnfHx8cHBwoH79+pw+fVpbf+HCBXQ6XZqPZcuWATB37lx0Oh2WlpbkzJkTS0tLrczNmzdNxvfLL79QrVo1cubMSc6cOQkKCmLXrl1GZZRSfP3113h7e2Nvb09QUJBRfAB3796lffv2ODs74+rqSrdu3YiOjtbWjxgxIs34HR0d04zLVPmUDyGEEEKIN4JScGINJMbpn1tawfsh8PEOqPMV2DiYNz4zk4RMpOvRo0eULl2a6dOnp7leKUXTpk05d+4c//vf/9i/fz++vr4EBQXx6NEjAPLly8f169eNHiNHjsTJyYkGDRoA0Lp1a65fv87Vq1c5ceIEV69eJTg4mBo1auDh4WEyvs2bN9O2bVvCw8OJiIggX7581KtXj6tXr2plJkyYwA8//EBISAg7d+7E0dGR4OBgYmNjtTLt27fn6NGjhIaGsnr1arZs2ULPnj219YMGDUp1DsWKFaNly5ZpxvVk+bx58zJq1CijZSnFx8dn8EoIIYQQQryCbp6A+e/Cknbw74//LfcuDbkKmi+ul4jcQybS1aBBAy1pSsvp06fZsWMHR44coXjx4gDMmDEDLy8vfvvtN7p3746lpSVeXl5G2/3xxx+0atUKJyf9PBP29vbY29uTnJyMg4MDcXFxbNq0iV9//TXd+BYtWmT0fNasWaxYsYKwsDA6duyIUoopU6YwbNgw3nvvPQDmz5+Pp6cnq1atok2bNhw/fpx169axe/duKlSoAMCPP/5Iw4YNmThxIj4+Pjg5OWmxAhw8eJBjx44REhKSZlxPlre0tCRHjhzadahZsyYlSpTAysqKhQsXUrJkScLDwzly5AiDBw9m69atODo6Uq9ePb7//nty586tbVeqVCns7OyYNWsWNjY2fPTRR4wYMcLoNenWrRu7du2iQIECTJ06Nd1rKIQQQgiR7eIewqZJsDMEkhPByg4sJPVIi7SQmVv8I9OPhNgslH2ccdnnIC5O3/RsZ2enLbOwsMDW1pZt27aluc3evXs5cOAA3bp1M7nfBQsW4ODgQIsWLbIUT0xMDAkJCbi5uQFw/vx5IiMjCQoK0sq4uLgQEBBAREQEABEREbi6umrJGEBQUBAWFhbs3LkzzePMmjWLt956i2rVqmUpvpTmzZuHjY0N27dvJyQkhPv371O7dm3Kli3Lnj17WLduHTdu3KBVq1aptnN0dGTnzp1MmDCBUaNGERoaCkBycjLNmjXDxsaGnTt3EhISwueff/7UMQohhBBCZIlS5L37L1YhlSBimj4Ze7sR9N4JVfubO7qXkqSp5jbWx/S6wvWg/bL/nn9XCBJi0i7rWxW6rPnv+ZSSEHPHuMyIB08fpwlFihQhf/78DB06lJ9//hlHR0e+//57rly5kqpbnsGvv/5K0aJFqVy5ssn9zp49m3bt2mFvb5+leD7//HN8fHy0BCwyMhIAT09Po3Kenp7ausjIyFTdIq2srHBzc9PKpBQbG8uiRYsYMmRIlmJ7UuHChZkwYYL2/JtvvqFs2bKMHTtWWzZ79mzy5cvHqVOneOuttwAoVaoUw4cP1/Yxbdo0wsLCqFu3Lhs3buTEiROsX78eHx993Ro7dmy6rZxCCCGEENnFYvM3lL/4/z2I3ApAgwlQuK55g3rJSQuZeCbW1tasXLmSU6dO4ebmhoODA+Hh4TRo0AALi9TV6/HjxyxevDjd1rFdu3Zx/PhxozKXLl3SugE6OTkZJS0G3377LUuWLOGPP/4warHLbn/88QcPHz6kU6dOz7Sf8uXLGz0/ePAg4eHhRudZpEgRAM6ePauVK1WqlNF23t7e2sAnx48fJ1++fFoyBhAYGPhMcQohhBBCZFZy6XbEWzqSVPNL/aAdkoxlSFrIzO2La6bX6SyNnw8+k07ZJ5Kf/oefPqYsKl++PAcOHODBgwfEx8fj7u5OQECAURdAg+XLlxMTE0PHjh1N7m/BggWUKVPGKGHx8fHhwIED2nNDl0SDiRMn8u2337Jx40ajhMVwz9aNGzfw9vbWlt+4cYMyZcpoZZ4cyTExMZG7d++muvcN9N0VGzdunKrVLaueHKExOjqaJk2aMH78+FRlU8ZubW1ttE6n05GcnPxMsQghhBBCZFlyMhz8De6chqAR+mVuBdlQfArBVd7H0so63c2FniRk5maT9rDpL7RsNnFxcQH0g0rs2bOH0aNHpyrz66+/8u677+Lu7p7mPqKjo1m1alWqFjArKysKFSqU5jYTJkxgzJgxrF+/PlUS6O/vj5eXF2FhYVoCFhUVxc6dO+nVqxegb0G6f/8+e/fu1ZLATZs2kZycTEBAgNH+zp8/T3h4OH/++WcGVyPrypUrx4oVK/Dz88PK6unemkWLFuXy5ctcv35dS+J27NiRnWEKIYQQQsC1A7B2MFzZBeig2HvgUxaAJEtbs4b2qpEuiyJd0dHRHDhwQGudOn/+PAcOHODSpUtamWXLlrF582Zt6Pu6devStGlT6tWrZ7SvM2fOsGXLFrp3727yeL///juJiYm0b98+U/GNHz+er776itmzZ+Pn50dkZCSRkZHaHGI6nY7+/fvzzTff8Oeff3L48GE6duyIj48PTZs2BfRJTP369enRowe7du1i+/bt9OnThzZt2hh1/QP9PV3e3t7P5Z6s3r17c/fuXdq2bcvu3bs5e/Ys69evp0uXLiQlJWVqH0FBQbz11lt06tSJgwcPsnXrVr788stsj1UIIYQQb6iYu7B6AMysqU/GrB2h7kjwKG7uyF5ZkpCJdO3Zs4eyZctStqz+F4+BAwdStmxZvv76a63M9evX6dChA0WKFKFv37506NCB3377LdW+Zs+eTd68eVMlainNmTOHxo0b4+rqmqn4ZsyYQXx8PC1atMDb21t7TJw4USvz2Wef8cknn9CzZ0/eeecdoqOjWbdundF9ZosWLaJIkSLUqVOHhg0bUrVqVWbOnGl0rOTkZObOnUvnzp2xtHyiO2k28PHxYfv27SQlJVGvXj1KlixJ//79cXV1TfN+vLRYWFjwxx9/8PjxYypWrEj37t0ZM2ZMtscqhBBCiDdMchLsnQs/loc9swEFJVrAJ3ugSj+wsjF3hK8snVJKmTuI10FUVBQuLi48ePAAZ2dno3WxsbGcP38ef3//5zrYxOsgOTmZqKgonJ2dM52EiJfby17/ExISWLt2LQ0bNkx1f54Q2U3qm3jRpM6JbPP4HvxQDh7fBfei0PA78E89/Y/UOb30coMnyT1kQgghhBBCiNQe3wM7V9DpwD4n1B+n77JYsQdYvrnJVnaTJgghhBBCCCHEf5KTYNcvMLU0HE8xkFnpNhD4sSRj2UwSMiGEEEIIIYTepZ0wswasHQSxD+BA6nEBRPaSLotCCCGEEEK86aJvQuhwOLhY/9zOBWp/BRW6mjeuN4AkZEIIIYQQQrzJDi2DNQMhLkr/vGwH/UTPjrnNGtabQhKyF0gGtBRvIqn3QgghxEvOMZc+GfMpCw0nQd7y5o7ojSIJ2QtgGPIzJiYGe3t7M0cjxIsVExMD8EYPfSuEEEK8VKKuQ+RheOv/54YtWBs+WAEFaoFF9s+1KtJn1oRsxIgRjBw50mjZ22+/zYkTJwCoWbMm//zzj9H6Dz/8kJCQEO35pUuX6NWrF+Hh4Tg5OdGpUyfGjRuHldV/p7Z582YGDhzI0aNHyZcvH8OGDaNz585G+50+fTrfffcdkZGRlC5dmh9//JGKFStmy3laWlri6urKzZs3AXBwcECn02XLvl83ycnJxMfHExsbK/OQveKUUsTExHDz5k1cXV2fy2TaQgghhMiCpATYMQP+Ga9/3mcPOHvr/18oyHxxveHM3kJWvHhxNm7cqD1PmUgB9OjRg1GjRmnPHRwctP8nJSXRqFEjvLy8+Pfff7l+/TodO3bE2tqasWPHAnD+/HkaNWrERx99xKJFiwgLC6N79+54e3sTHBwMwO+//87AgQMJCQkhICCAKVOmEBwczMmTJ/Hw8MiW8/Ty8gLQkjKRNqUUjx8/xt7eXpLW14Srq6tW/4UQQghhJuc2w9rP4PZJ/fM8FSA+2qwhCT2zJ2RWVlbpfllzcHAwuX7Dhg0cO3aMjRs34unpSZkyZRg9ejSff/45I0aMwMbGhpCQEPz9/Zk0aRIARYsWZdu2bXz//fdaQjZ58mR69OhBly5dAAgJCWHNmjXMnj2bIUOGZMt56nQ6vL298fDwICEhIVv2+TpKSEhgy5YtVK9eXbq4vQasra2lZUwIIYQwpwdXYP2XcGyV/rlDbqg7Ekq3A+mN9FIwe0J2+vRpfHx8sLOzIzAwkHHjxpE/f35t/aJFi1i4cCFeXl40adKEr776Smsli4iIoGTJknh6emrlg4OD6dWrF0ePHqVs2bJEREQQFGTcBBscHEz//v0BiI+PZ+/evQwdOlRbb2FhQVBQEBEREdl+vpaWlvIFNR2WlpYkJiZiZ2cnCZkQQgghxLOIjYIZlfXzieks4J0eUOsLsHc1d2QiBbMmZAEBAcydO5e3336b69evM3LkSKpVq8aRI0fIkSMH7dq1w9fXFx8fHw4dOsTnn3/OyZMnWblyJQCRkZFGyRigPY+MjEy3TFRUFI8fP+bevXskJSWlWcZwL1ta4uLiiIuL055HRemHCU1ISJAWsGdguHZyDcWLInVOvEhS38SLJnXuDWdpj0WZD9Bd3UtS8LfgWUK//DnWB6lzelk5f7MmZA0aNND+X6pUKQICAvD19WXp0qV069aNnj17autLliyJt7c3derU4ezZsxQsWNAcIWvGjRuXakAS0HejTHmfm3g6oaGh5g5BvGGkzokXSeqbeNGkzr0Z7ONuUeLaEk56vkuUgy8AuuTyqFwVYe8l4NILi+VNr3OGUaYzw+xdFlNydXXlrbfe4syZM2muDwgIAODMmTMULFgQLy8vdu3aZVTmxo0bwH+DaHh5eWnLUpZxdnbG3t5e60KYVpn07m0bOnQoAwcO1J5HRUWRL18+6tWrh7OzcybPWDwpISGB0NBQ6tatK10WxQshdU68SFLfxIsmde4NkRiLRcSPWByeii4xFi8XG5Ja/M8soUid0zP0nsuMlyohi46O5uzZs3To0CHN9QcOHADA21s/PGdgYCBjxozh5s2b2miIoaGhODs7U6xYMa3M2rVrjfYTGhpKYGAgADY2NpQvX56wsDCaNm0K6IdeDwsLo0+fPiZjtbW1xdbWNtVya2vrN7ryZRe5juJFkzonXiSpb+JFkzr3Gju5DtZ9Dvcu6J/7VcOi4XdYmPn1ftPrXFbO3awJ2aBBg2jSpAm+vr5cu3aN4cOHY2lpSdu2bTl79iyLFy+mYcOG5MqVi0OHDjFgwACqV69OqVKlAKhXrx7FihWjQ4cOTJgwgcjISIYNG0bv3r21ZOmjjz5i2rRpfPbZZ3Tt2pVNmzaxdOlS1qxZo8UxcOBAOnXqRIUKFahYsSJTpkzh0aNH2qiLQgghhBBCvFTunoO/h8Dp9frnOXwg+Bso3gxk6qBXilkTsitXrtC2bVvu3LmDu7s7VatWZceOHbi7uxMbG8vGjRu15Chfvnw0b96cYcOGadtbWlqyevVqevXqRWBgII6OjnTq1Mlo3jJ/f3/WrFnDgAEDmDp1Knnz5mXWrFnakPcArVu35tatW3z99ddERkZSpkwZ1q1bl2qgDyGEEEIIIV4KZ8L0yZiFNQT2huqDwdbJ3FGJp2DWhGzJkiUm1+XLl49//vknw334+vqm6pL4pJo1a7J///50y/Tp0yfdLopCCCGEEEKYjVLw6DY4ueufl+8Ct05CwIeQu7B5YxPPRGaDE0IIIYQQ4mV2+zQsbAa/BkFCrH6ZpRU0mijJ2GvgpRrUQwghhBBCCPH/4qJhy3cQMR2SE8DSBq7sAv/q5o5MZCNJyIQQQgghhHiZKAVH/4ANwyDqqn5Z4XpQ/1vIZd65eEX2k4RMCCGEEEKIl0X8I/itDZzfon/u6gsNxsNb9WX0xNeUJGRCCCGEEEK8LGwcwdoRrOyg6kCo0hes7c0dlXiOJCETQgghhBDCXJSCw8ugQK3/RlBs+B2oJMjpZ9bQxIshoywKIYQQQghhDpFHYE5DWNkDNo74b7lrPknG3iDSQiaEEEIIIcSL9Pg+hI+F3b+ASgZrB/1gHUrJfWJvIEnIhBBCCCGEeBGSk+HgYggdDjG39cuKvQf1xuhbxcQbSRIyIYQQQgghXoSIaRD6lf7/ud+CBhOgYC3zxiTMThIyIYQQQgghXoRyHWHPr1ChKwT0Aisbc0ckXgKSkAkhhBBCCJHdkpNg33w4txlaztXfG2bvCn32gqV8BRf/kdoghBBCCCFEdrqyF9Z+Ctf265+f/BuKNNT/X5Ix8QSpEUIIIYQQQmSHR7chbCTsWwAosHWGWl9A4Xrmjky8xCQhE0IIIYQQ4lkkJ8Ge2bBpNMQ+0C8r3RaCRkIOT/PGJl56kpAJIYQQQgjxLFQy7J6lT8a8SkLDiZC/krmjEq8ISciEEEIIIYTIquibYOeqHynR0hoaTYKbx/UjKFpYmjs68QqxMHcAQgghhBBCvDKSEmHHDPixPOyY/t9yv6pQsYckYyLLJCETQgghhBAiMy5sg5+rwbohEBcFpzeCUuaOSrzipMuiEEIIIYQQ6Ym6DhuGwZHl+uf2OaHOcP1EzzqdeWMTrzxJyIQQQgghhDDl2J+wqhfERwM6/T1itYeBg5u5IxOvCUnIhBBCCCGEMMWjKCTGQd539KMn+pQxd0TiNSMJmRBCCCGEEAYPrsDZTfruiAC5C0P3UPAqDRYy/ILIfpKQCSGEEEIIkRgHEdNgy0RIeKyfT8ynrH6d4V8hngNJyIQQQgghxJvt9Eb4+zO4e1b/PH8gWNmbNybxxpCETAghhBBCvJnuXYT1X8CJ1frnTp5Q7xso2VJGTxQvjCRkQgghhBDizZOUALPrw8NroLOESr2gxudg52zuyMQbRhIyIYQQQgjx5lBK3/plaQ3VB8HRP6Dhd/rRFIUwAxkqRgghhBBCvP7unoNFreDEmv+Wle8Cnf6SZEyYlbSQCSGEEEKI11d8DGybDNunQlI83DkDbzfUD2Evw9iLl4AkZEIIIYQQ4vWjlH6wjnVfwINL+mUFaum7J0oiJl4ikpAJIYQQQojXy+0z+mHsz4bpn7vkg+CxULSJjJ4oXjqSkAkhhBBCiNfLvQv6ZMzSBqr0g6oDwcbB3FEJkSZJyIQQQgghxKtNKf2gHbkK6p8XDoI6w6HYe/8tE+IlJR1ohRBCCCHEq+vmcZjXBGbWhIc3/ltebaAkY+KVIAmZEEIIIYR49cRGwfovIaQqXNiqH0Hx6h5zRyVElkmXRSGEEEII8epQCg4thdCvIPr/W8SKNNYP2pHT17yxCfEUJCETQgghhBCvhuQkmP+evkUMwK0gNJigv2dMiFeUJGRCCCGEEOLVYGEJXiXh6l6oPggC+4CVrbmjEuKZSEImhBBCCCFeTsnJcHAx+JQFz+L6ZTWHQmBvcMlr3tiEyCaSkAkhhBBCiJfPtQOwdhBc2Q35K0OXtfpJne2c9Q8hXhNmHWVxxIgR6HQ6o0eRIkW09bGxsfTu3ZtcuXLh5ORE8+bNuXHjhtE+Ll26RKNGjXBwcMDDw4PBgweTmJhoVGbz5s2UK1cOW1tbChUqxNy5c1PFMn36dPz8/LCzsyMgIIBdu3Y9l3MWQgghhBDpiLkLqwfoh7G/shtsnODtBqCSzR2ZEM+F2Ye9L168ONevX9ce27Zt09YNGDCAv/76i2XLlvHPP/9w7do1mjVrpq1PSkqiUaNGxMfH8++//zJv3jzmzp3L119/rZU5f/48jRo1olatWhw4cID+/fvTvXt31q9fr5X5/fffGThwIMOHD2ffvn2ULl2a4OBgbt68+WIughBCCCHEmy45CfbMgR/Lw57ZgIISLaDPHqjSV3//mBCvIbN3WbSyssLLyyvV8gcPHvDrr7+yePFiateuDcCcOXMoWrQoO3bsoFKlSmzYsIFjx46xceNGPD09KVOmDKNHj+bzzz9nxIgR2NjYEBISgr+/P5MmTQKgaNGibNu2je+//57g4GAAJk+eTI8ePejSpQsAISEhrFmzhtmzZzNkyJAXdCWEEEIIId5gh5fD6v76/3sUg4bfgV9Vs4YkxIvwVAnZ/fv3Wb58OWfPnmXw4MG4ubmxb98+PD09yZMnT5b2dfr0aXx8fLCzsyMwMJBx48aRP39+9u7dS0JCAkFB/w1jWqRIEfLnz09ERASVKlUiIiKCkiVL4unpqZUJDg6mV69eHD16lLJlyxIREWG0D0OZ/v37AxAfH8/evXsZOnSott7CwoKgoCAiIiJMxh0XF0dcXJz2PCoqCoCEhAQSEhKydA3EfwzXTq6heFGkzokXSeqbeNFe+jqnlP6+MIAi72KZbzaqSBOSy3cFS2t4WeMWJr30de4Fycr5ZzkhO3ToEEFBQbi4uHDhwgV69OiBm5sbK1eu5NKlS8yfPz/T+woICGDu3Lm8/fbbXL9+nZEjR1KtWjWOHDlCZGQkNjY2uLq6Gm3j6elJZGQkAJGRkUbJmGG9YV16ZaKionj8+DH37t0jKSkpzTInTpwwGfu4ceMYOXJkquUbNmzAwcEhcxdAmBQaGmruEMQbRuqceJGkvokX7aWrcyoZ/9ubyHd3G9sKf0myhbV+ea5ecFsH61+yeEWWvXR17gWLiYnJdNksJ2QDBw6kc+fOTJgwgRw5cmjLGzZsSLt27bK0rwYNGmj/L1WqFAEBAfj6+rJ06VLs7e2zGtoLNXToUAYOHKg9j4qKIl++fNSrVw9nZxn552klJCQQGhpK3bp1sba2Nnc44g0gdU68SFLfxIv2MtY53eWdWK4fgu7GYQAaet8luXwXM0clssvLWOfMwdB7LjOynJDt3r2bn3/+OdXyPHnyaK1ST8vV1ZW33nqLM2fOULduXeLj47l//75RK9mNGze0e868vLxSjYZoGIUxZZknR2a8ceMGzs7O2NvbY2lpiaWlZZpl0rq3zcDW1hZb29QTEVpbW7/RlS+7yHUUL5rUOfEiSX0TL9pLUece3oCNw+Hgb/rndi5Q+yssK3TFUgbseO28FHXOjLJy7lkeZdHW1jbNjO/UqVO4u7tndXdGoqOjOXv2LN7e3pQvXx5ra2vCwsK09SdPnuTSpUsEBgYCEBgYyOHDh41GQwwNDcXZ2ZlixYppZVLuw1DGsA8bGxvKly9vVCY5OZmwsDCtjBBCCCGEeErJyRDxE0yr8P/JmA7KdYRP9kHFHjJ6onjjZTkhe/fddxk1apR2o5pOp+PSpUt8/vnnNG/ePEv7GjRoEP/88w8XLlzg33//5f3338fS0pK2bdvi4uJCt27dGDhwIOHh4ezdu5cuXboQGBhIpUqVAKhXrx7FihWjQ4cOHDx4kPXr1zNs2DB69+6ttV599NFHnDt3js8++4wTJ07w008/sXTpUgYMGKDFMXDgQH755RfmzZvH8ePH6dWrF48ePdJGXRRCCCGEEE9Jp4OzmyAuCnzKQvcwePdHcMxt7siEeClkucvipEmTaNGiBR4eHjx+/JgaNWoQGRlJYGAgY8aMydK+rly5Qtu2bblz5w7u7u5UrVqVHTt2aC1t33//PRYWFjRv3py4uDiCg4P56aeftO0tLS1ZvXo1vXr1IjAwEEdHRzp16sSoUaO0Mv7+/qxZs4YBAwYwdepU8ubNy6xZs7Qh7wFat27NrVu3+Prrr4mMjKRMmTKsW7cu1UAfQgghhBAiE6Kug5UtOLjpE7IG4+F8I33LmLSICWEkywmZi4sLoaGhbNu2jUOHDhEdHU25cuVSDS2fGUuWLEl3vZ2dHdOnT2f69Okmy/j6+rJ27dp091OzZk3279+fbpk+ffrQp0+fdMsIIYQQQoh0JMbDzhnwzwQo0UzfEgaQq6D+IYRI5aknhq5atSpVq8pkfUIIIYQQAjgbDn9/BrdP6Z/fOqlP0KxszBuXEC+5p0rIdu/eTXh4ODdv3iQ5Odlo3eTJk7MlMCGEEEII8Qp4cAXWfwHH/qd/7pAb6o6C0m3BIsvDFQjxxslyQjZ27FiGDRvG22+/jaenJzrD7Opg9H8hhBBCCPGaOxMGv38ACTGgs4CKPaHmULB3NXdkQrwyspyQTZ06ldmzZ9O5c+fnEI4QQgghhHhl+JQFKzvwLg0NJ4JXCXNHJMQrJ8sJmYWFBVWqVHkesQghhBBCiJfZvQtwcAnU+Fw/eqKDG/QIg5z++udCiCzLcsfeAQMGpDvqoRBCCCGEeM0kPIbN38L0ANg8Do7/+d86twKSjAnxDLLcQjZo0CAaNWpEwYIFKVasGNbW1kbrV65cmW3BCSGEEEIIM1IKTv4N64bA/Yv6ZX7VIPfb5o1LiNdIlhOyvn37Eh4eTq1atciVK5cM5CGEEEII8Tq6cxbWDYXT6/XPc/hA8DdQvJm0iAmRjbKckM2bN48VK1bQqFGj5xGPEEIIIYQwN6VgWSeIPAwW1hDYG6oPBlsnc0cmxGsnywmZm5sbBQvKTOtCCCGEEK8VpfQPCwt9C1jd0fDvD1B/PLi/Ze7ohHhtZXlQjxEjRjB8+HBiYmKeRzxCCCGEEOJFu30aFrwPEdP+W1awFnT4Q5IxIZ6zLLeQ/fDDD5w9exZPT0/8/PxSDeqxb9++bAtOCCGEEEI8R3HRsOU7iJgOyQkQeQgq9gBre3NHJsQbI8sJWdOmTZ9DGEIIIYQQ4oVRCo6sgA1fwcNr+mWFg6H+OEnGhHjBspyQDR8+/HnEIYQQQgghXoTbZ2B1f7iwVf88p5/+PrG365szKiHeWFlOyAz27t3L8ePHAShevDhly5bNtqCEEEIIIcRzopLgUgRY2UG1T6FyX7C2M3dUQryxspyQ3bx5kzZt2rB582ZcXV0BuH//PrVq1WLJkiW4u7tnd4xCCCGEEOJpKYXu6j7wC9A/d38b3psO+QMhp695YxNCZH2UxU8++YSHDx9y9OhR7t69y927dzly5AhRUVH07dv3ecQohBBCCCGexo0jVD09Bst59eH6of+Wl24jyZgQL4kst5CtW7eOjRs3UrRoUW1ZsWLFmD59OvXq1cvW4IQQQgghxFN4fB/Cx2K1+xdyqWSUtQPcOgnepcwdmRDiCVlOyJKTk1MNdQ9gbW1NcnJytgQlhBBCCCGeQnIyHFwMocMh5jY64KrrO3h0mIV1Lj9zRyeESEOWuyzWrl2bfv36ce3aNW3Z1atXGTBgAHXq1MnW4IQQQgghRBb81hr+1xtibkPut0hst4I9/p+Acx5zRyaEMCHLCdm0adOIiorCz8+PggULUrBgQfz9/YmKiuLHH398HjEKIYQQQojMKFwPbJyg7mj4aDvKv4a5IxJCZCDLXRbz5cvHvn372LhxIydOnACgaNGiBAUFZXtwQgghhBDChOQk2DcfXPJB4f//Hla+CxRtAjm89M8TEswXnxAiU55qHjKdTkfdunWpW7dudscjhBBCCCEycmUPrB0E1/aDqy/03qWfS8zS6r9kTAjxSshyl8W+ffvyww8/pFo+bdo0+vfvnx0xCSGEEEKItDy6Df/rA7Pq6JMxW2eo1Assnuo3diHESyDLCdmKFSuoUqVKquWVK1dm+fLl2RKUEEIIIYRIISkRdv0CP5aD/Qv0y0q3g0/26hMyS0nIhHhVZfnde+fOHVxcXFItd3Z25vbt29kSlBBCCCGESOHidn0XRQCvUtBwIuQPMG9MQohskeUWskKFCrFu3bpUy//++28KFCiQLUEJIYQQQrzxklIMyFGgBpRuq0/Eem6WZEyI10iWW8gGDhxInz59uHXrFrVr1wYgLCyMSZMmMWXKlOyOTwghhBDizZKUoO+euOMn6LEJnDz0y98PMW9cQojnIssJWdeuXYmLi2PMmDGMHj0aAD8/P2bMmEHHjh2zPUAhhBBCiDfG+a3w92dw85j++Z7ZUHOIeWMSQjxXT3UHaK9evejVqxe3bt3C3t4eJyen7I5LCCGEEOLNEXUNNgyDIyv0z+3dIGg4lJUfu4V43T3TkDzu7u7ZFYcQQgghxJspYjqEj4X4aEAHFbpC7WHg4GbuyIQQL0CWB/W4ceMGHTp0wMfHBysrKywtLY0eQgghhBAiC+5d1Cdjed/RD9jReLIkY0K8QbLcQta5c2cuXbrEV199hbe3Nzqd7nnEJYQQQgjxerp/GZITwO3/R6eu9QX4lIVSrcEiy7+VCyFecVlOyLZt28bWrVspU6bMcwhHCCGEEOI1lRgH//4AWyZB3grQ6S/Q6cDeFcq0NXd0QggzyXJCli9fPpRSzyMWIYQQQojX0+lQ/eiJd8/pnycnQewDfTImhHijZbldfMqUKQwZMoQLFy48h3CEEEIIIV4j9y7Ab+1gUQt9MubkCc1+gS5rJRkTQgBP0ULWunVrYmJiKFiwIA4ODlhbWxutv3v3brYFJ4QQQgjxyrq8G+Y1hsRYsLCCgI+gxudg52zuyIQQL5EsJ2RTpkx5DmEIIYQQQrxmfMpATj9w8oAGE8CjqLkjEkK8hLKckHXq1Ol5xCGEEEII8Wq7cxYipkH98WBlA5bW0HkNOOTSD94hhBBpyHRCFhUVlalyzs7SDC+EEEKIN0h8DGydpB9BMSkeXPND1QH6dY65zRubEFmQlKzYdf4uNx/G4pHDjor+blhayI8Jz1umEzJXV9d05xxTSqHT6UhKSsqWwIQQQgghXmpKwfE/Yf2X8OCyflnB2lCksXnjEuIprDtynZF/HeP6g1htmbeLHcObFKN+CW8zRvb6y/Qoi+Hh4WzatMnkw7D+aX377bfodDr69++vLatZsyY6nc7o8dFHHxltd+nSJRo1aoSDgwMeHh4MHjyYxMREozKbN2+mXLly2NraUqhQIebOnZvq+NOnT8fPzw87OzsCAgLYtWvXU5+LEEIIIV4PScmKiLN3+N+Bq0ScvUNS8v9P/XPrFCx4H5Z21CdjLvmh9UL4YCXkLmzeoIXIonVHrtNr4T6jZAwg8kEsvRbuY92R6889BpPvtTdAplvIatSo8dyC2L17Nz///DOlSpVKta5Hjx6MGjVKe+7g4KD9PykpiUaNGuHl5cW///7L9evX6dixI9bW1owdOxaA8+fP06hRIz766CMWLVpEWFgY3bt3x9vbm+DgYAB+//13Bg4cSEhICAEBAUyZMoXg4GBOnjyJh4fHcztvIYQQQry80m0xOPQVnAsHS1uo0k/fRdHGIZ29CfFySkpWjPzrGGmlPwrQASP/OkbdYl7Prfvim946l+V5yLJbdHQ07du355dffiFnzpyp1js4OODl5aU9Ut6jtmHDBo4dO8bChQspU6YMDRo0YPTo0UyfPp34+HgAQkJC8Pf3Z9KkSRQtWpQ+ffrQokULvv/+e20/kydPpkePHnTp0oVixYoREhKCg4MDs2fPfv4XQAghhBAvndQtBgpb4rUWgy3+/fRdE3vvgNpfSjImXlm7zt9N1TKWkgKuP4hl1/nnM7XVy9A6Z25ZHmUxu/Xu3ZtGjRoRFBTEN998k2r9okWLWLhwIV5eXjRp0oSvvvpKayWLiIigZMmSeHp6auWDg4Pp1asXR48epWzZskRERBAUFGS0z+DgYK1rZHx8PHv37mXo0KHaegsLC4KCgoiIiDAZd1xcHHFxcdpzw6AnCQkJJCQkZP1CCADt2sk1FC+K1DnxIkl9ezUkJStG/HlUazEorLvCSKu5nFfefJnYDR3w+eYYwgfO0bcYvMSvp9Q5kZHr9x9lulxCQsaD92Wlzj35Xkvpv9a5o9QsnOuVG1wkK+85syZkS5YsYd++fezevTvN9e3atcPX1xcfHx8OHTrE559/zsmTJ1m5ciUAkZGRRskYoD2PjIxMt0xUVBSPHz/m3r17JCUlpVnmxIkTJmMfN24cI0eOTLV8w4YNRt0qxdMJDQ01dwjiDSN1TrxIUt9ebqcf6IiMssSJGPpbraCz5XqsdMmUVmeZlNiSuzhz/UEc035fR2GXV+M+F6lzwpRzD3SAZYblwnccQHd5P5nNizJT5wzvNVP0rXOv1nvNICYmJtNlzZaQXb58mX79+hEaGoqdnV2aZXr27Kn9v2TJknh7e1OnTh3Onj1LwYIFX1SoaRo6dCgDBw7UnkdFRZEvXz7q1asnQ/8/g4SEBEJDQ6lbty7W1tbmDke8AaTOiRdJ6tur4a+D13j/xAy+sF6Mu+4BAOuTKjA6sQN3+e9vfIHiZWhY6uW+v0XqnMhIUrJi+aQtREbFpVvur8uWHH3sQMdAX94v442DTeo0IilZsePsLTZF7KV2YHkqFXRPs2XrRlQsfx2KZOXRi0D6x4VX4732pMxOGQbPkJCdOXOGs2fPUr16dezt7bVh7zNr79693Lx5k3LlymnLkpKS2LJlC9OmTSMuLg5LS+OMOSAgQDt2wYIF8fLySjUa4o0bNwDw8vLS/jUsS1nG2dkZe3t7LC0tsbS0TLOMYR9psbW1xdbWNtVya2tr+cDLBnIdxYsmdU68SFLfXmJ3zxO0qzvNbPYAcC7ZixGJndiSXDpVUW9Xx1fmdZQ6J0yxBqoWys3yfVdTrdOhb6WqU8SDXefvcu52DCP+Os7k0NO0rZifjpX9yONqDzw5MIcl808fMBqYIyY+kfVHI1m57yrbz9wmK4MovkrvNYOsxJvlhOzOnTu0bt2aTZs2odPpOH36NAUKFKBbt27kzJmTSZMmZWo/derU4fDhw0bLunTpQpEiRfj8889TJWMABw4cAMDbW58hBwYGMmbMGG7evKmNhhgaGoqzszPFihXTyqxdu9ZoP6GhoQQGBgJgY2ND+fLlCQsLo2nTpgAkJycTFhZGnz59MndRhBBCCPF6sHMhx8OzxChbfkx8n1+TGhCP8RcrHeDlop80V4hX3cnIh/x5UD9whrOdNVGx/9375JUioYqOS2T5nsvM+fcCF+/E8POWc8zadp7g4p4U83Zm0oZTqe4Fi3wQy0cL9xHg78bhqw+Iif9vvuIKvjl5r6wP0zad4WZUXJr3kYF+tMXX/b2W5YRswIABWFlZcenSJYoWLaotb926NQMHDsx0QpYjRw5KlChhtMzR0ZFcuXJRokQJzp49y+LFi2nYsCG5cuXi0KFDDBgwgOrVq2vD49erV49ixYrRoUMHJkyYQGRkJMOGDaN3795a69VHH33EtGnT+Oyzz+jatSubNm1i6dKlrFmzRjvuwIED6dSpExUqVKBixYpMmTKFR48e0aVLl6xeHiGEEEK8SpKT4WwYFAoCnQ5ln5Ofc3/JvNO2XCdXmpsoYHiTYq/cIANCPCkuMYn+vx8gPimZ2kU8mNmhPLsv3OPmw1g8cugTIUM9d7K1onMVfzoG+hF+8iazt59n+5k7rD0cydrDkWnu35Bk7fz/ERrzuznQrFwe3i+bB99cjgC4O9nSa+E+rTXuSR0q+b7277UsJ2QbNmxg/fr15M2b12h54cKFuXjxYrYFZmNjw8aNG7XkKF++fDRv3pxhw4ZpZSwtLVm9ejW9evUiMDAQR0dHOnXqZDRvmb+/P2vWrGHAgAFMnTqVvHnzMmvWLG0OMtAnk7du3eLrr78mMjKSMmXKsG7dulQDfQghhBDiNXJtP6wdDFd2Q+tFULQxkzacYtppHywtdHxSsyDL915JNRz3W55OBBc3fVuDEK+K70NPc/x6FG6ONnzbvCRWlhYEFkz7hwgDCwsddYp6UqeoJycioxi/9gThp25leKyR7xajY6Bfqluc6pfwZsYH5VLNQ2ZvbcnjhCSW771Clyr+2NtkPPDIqyrLCdmjR4/SHEXw7t27ad5TlRWbN2/W/p8vXz7++eefDLfx9fVN1SXxSTVr1mT//v3plunTp490URRCCCHeBDF3IWwU7J0LKLBxgtj7LN55iWnhZwAY935JWr2Tj/5Bb7Hr/F1uPozFQqdj4O8HOHUjmu1n7lC1cG6znoYQz2LX+bv8vOUsAGPfL4lHjrQH2UtPES9nmpbLk6mEzNXBxuR4E/VLeFO3mJf2XvPIYcfbnjlo8MMWzt1+xHfrT/J1k2JZju9VkeWJoatVq8b8+fO15zqdjuTkZCZMmECtWrWyNTghhBBCiGyTnAR7ZsOP5WDvHEBByZbQZw/h9vX46n9HAOhbpzCt3skHgKWFjsCCuXivTB6alPbhg0BfAL5bfwKlXq1huIUweBibwMClB1AKWpbPS/0ST9/im9lELqNyKd9rgQVz4eZkw/jm+tuUZm8/T8TZO08d48suywnZhAkTmDlzJg0aNCA+Pp7PPvuMEiVKsGXLFsaPH/88YhRCCCGEeHYre8DqAfD4HngUh85rofksDkc50HvxPpKSFS3K52VAUGGTu/i4ZiHsrS05eOUBG47dMFlOiJfZqL+OceXeY/LmtH/mlqeK/m54u9hh6i4vHU8/MEfNtz1oW1H/48jg5QeJjkt8+kBfYllOyEqUKMGpU6eoWrUq7733Ho8ePaJZs2bs37/f7HODCSGEEEKYVKYd2DpD/fHw4Rbwq8LluzF0mbubmPgkqhXOzbhmJdOdxsc9hy1dq/oBMHnDKZKyMna3EC+BdUciWbb3CjodTG5Vhhx2zzacvKWFjuH/n9Q9+c4xPH+WQXC+bFSMvDntuXLvMWPXHn/6QF9iTzUPmYuLC19++WV2xyKEEEIIkT2SEvXdEi2soML/j5pcKAj6HwZ7VwDux8TTac4ubkfHUdTbmZ/al8PaMuPfqntWK8iCiIucvPGQvw5eo2nZPM/nFJKV0T01KUe8E+Jp3HwYyxd/6Ked+rB6wWwbTt7UwBwph81/Wk62VkxoUYp2v+xk8c5LBBf3osZb7tkR9ksjUwnZoUOHMr1Dw5D0QgghhBBmcWkHrBkENw7rW8SKNAIn/XylhmQsNiGJHvP3cO7WI7xd7JjT+Z1MtxS4OFjzYY2CfLf+JJNDT9GolHemErmsMJ5kV887G77cijeXUoohKw5z91E8Rb2dGVDXdNfcp2EYmCPizE02bN1JvWoBBBbyyJYfESoXzE3nyn7M/fcCny8/xPr+1XFxeLUmik5PphKyMmXKoNPpMrx5VafTkZSUlG4ZIYQQQojn4mEkhA6HQ0v0z+1coc5X4GA8jHdysuLTZQfZfeEeOeysmNulIl4uWRthrnNlP+ZsP8+luzEs23OFdgH5s+kk9MlYr4X70pxkt9fCfcz4oJwkZSLLftt1mU0nbmJjacGU1mWwtcr+YeQtLXQE+Ltx57giIJtbdD+vX4R/Tt3i/O1H/B979x0eVbX1cfw7M+khCQRIoYUAUkLoCMSCoBQBUQRfvTawXxBUQAW5Ioi9VxDsqFhQsSE1dJEAEkB6D0VICDUJgbSZ8/4xZiSmkAmTTMrv8zw85pyz58w6wzZkZe+99qTZW3njlrYuu7e7FSshS0hIKO04RERERErGmg1rP4ClL0JWGmCC9oPhmongn39PpRfnbWfOpkQ8LSbev7MDzcICnH5Lf28PhndvwqTZ23hn8W4Gtq+Lj+fF/4BrtRlMmr2twA1yDexrcibN3kbPqDBNX5Ri2388nWd/3QbAmGublajPu5uvl4XX/q8N/zdtFT9sOEzv6LBKsx9gsRKyiIiI0o5DREREpGRO7oOFT4FhhTrtoe9rUK8DkH8d1rbEFD78zf6L5ldvasNljUu+l9htnRvw4Yp9HEnJYMbqA9x3ZaOLfpS1CSfzbUR9PgNITMlgbcLJC27gKwKQY7Ux6tuNnMu2EtOoJvdcHunukEqsQ0QNHujamGnL9/Lkj5vpGFGDmtUubh/k8qBERT127tzJu+++y/bt9konLVq04KGHHqJZs2YuDU5ERESkQJlnwLua/evazeCqsRAQCu0Gg9m+nqugdVi5Hu/d7KKLcXh7WHikxyWMnbWZ95bt5T+dGlDNu0Q/WjkkpxWejJWknTivshVTmbpsLxsOnibA24PXbm6DuQI/C8ConpewZMdRdh09w1M/b2HKbe2LrIxaETi9AnXWrFlER0cTHx9PmzZtaNOmDevXryc6OppZs2aVRowiIiIidjlZsPIteCMKkrb8c77bWOhwV55kbNiM9YWONjWq5e+ScAa1r0dkLX9OpmfxycqLX+Lhqk12pWTmb0nkipeXcOuHq3nkm43c+uFqrnh5CfO3JLo7tBLZ9Ndp3l68G4BnBrSkbnVfN0d08bw9LLxxc1s8zCbmbk5i9qaK+XdzPqcTsjFjxjBu3Dji4uJ44403eOONN1i1ahX/+9//GDNmTGnEKCIiIgJ7l8DUy2DRRMhMgfWfF9isqHVYYF+H9cyv21yyh5iHxcyonk0B+HDFPk6fzbqo+3WKDCbIt+jqcSXdZFeKVlgSn1tMpbhJmdVmELf3BD9vPEzc3hNlulfd+e+9fGcyI7/ZQI7NoF+rcAa0LZ3tGdwhum4QI65uAsBTP20hObVijxg7Pa6emJjI4MGD852/4447ePXVV10SlIiIiIjD6UOw4H+w/Rf7sX9t6DEJ2txaYPOyXod1Xatw3lu6hx1JaUxbvo8n+jQv8b1+WP8XKeeyi2xz7xWRFXoKXXnkqmIq7tyuoLApuoE+Hjw3ILrCT+v7t+Hdm7Bo+1G2HE7liR828/GQjhX2GZ0eIevWrRu//fZbvvMrV67kyiuvdElQIiIiIgCsngaTL7UnYyYLdB4GI9ZBu9sd0xP/razXYZnNJh7rZV9HP31VQol/Wz/zj4OMmWXf+7Vr01qEBeadlujtYX/eL9ccJC2j6KRNnFPcJP6V+Tv4Y/9JjqVl5tsOylUjbCVR1BTd1Iwc1iScKLX3dhdPi5k3bm6Ll8XMkh3JzFx3yG0jkxerWCNkv/zyi+Pr66+/nrFjxxIfH0+XLl0AWL16Nd999x2TJk0qnShFRESk6so5Bw0ug76vQlj0BZsfOX2uWLd15Tqsa1qE0K5BdTYcPM2UpXuYdMOF4zzfV2sO8r8fNwMwJCaCp69vic0gT3GJS0Kqcf3klSQcT+eJWZuZfFu7CjsiUN4UNzl/f8U+3l+xD4Bq3h40rOVHw5r+NAj248s1B92yXUFxpuhW1q0SmoYGMLpXU16at4Nxszbn+Qwq0kbqxUrIBgwYkO/ce++9x3vvvZfn3PDhwxk6dKhLAhMREZEq6NR+SD/hKFvPpfdBUF1ofh1cIPnIyLby0rwdTF+1v8h2JiDMxeuwTCYTj/duxm0fruGrtQe578pG1A/2K9Zrv4jbz1M/bwXg7ssbMuG6KEwmExYT+aZUTr69Pbe8H8eczYl0igtmyGUNXfYMVVlNf69itWtVN5BTZ7M5fPocZzJz2HI4lS2HUy/4utLcrqCqb5XQoIb9/7OKvJF6saYs2my2Yv2xWq2lHa+IiIhURtnnYNlLMKUz/HAf5GTaz1s8oEX/CyZjW4+k0P/dlY5krHuz2piwJ1/nyz2e2D/K5aMFlzWuxeVNapJtNRyV7S7k098THMnY/VdGOpKxwrRvUINxfVoA8NycbWw8dPqi467qElPO8faiov++TNhHXH4afgUrx17NjmevZdHornw4uCNP9m3BZcVMdA6cTHdBxP9ITsvg23WHit22srHaDJ6ds63Aa7kJ2qTZringU5oubrMMERERkYthGLBzHsx/Ak4fsJ8LqgfnTkFA2AVfbrMZfLRyH68u2Em21aBWNW9e+7/WdGsWUmCRg7BSnsb0WK9m/L5nFT+s/4uhVzWmSUi1Qtt+9Ns+nptj39N16FWNGXtts2JNQbz78ob8sf8k87YkMfzL9cx5+Aqq+xVvhEfyWrojmdHfbuTU2Wx8PMxk5NgwkXe0paAk3tvDQpOQAJqEBAD2qn+r9l54ndb4H7eweHsy17UOp0eLUPwL2LfuQvugncnMYcGWJH7aeJjf9xynuLlGZdwqobKMDpYoIUtPT2f58uUcPHiQrKy85V0ffvhhlwQmIiIildyJvTBvLOyJtR8H1oXez0PUgAuOiIF9rdij3/5J3D77D8I9o0J5aWAralbzBuDa6HB6RoWV6Sa/7RrUoGdUKLHbjvJm7C6m3N6+wHbvL9/Li/N2ADC8e2Me61W8ZAzs0yNfvqk12xJTOXDiLI9++ycfDu5Y4Tf8LUvZVhuvLdjpWA8WXTeQybe2Z0dSaomS+E6RwYQH+ZCUklHoWi4Ps4kcm0HstqPEbjuKj6eZa1qE0r91ON2aheDjaSm0SuOT/Vrg62nhxw2HWbT9KBnZNsf1dvWD2HssndSMnALftzSm6JYXlWUjdacTsg0bNtC3b1/Onj1Leno6wcHBHD9+HD8/P0JCQpSQiYiIyIUd3wNTY8CaBWZPuOwhuPJR8M4/olTQiMG8LYn874fNpGbk4OtpYUL/KP5zaf18SY3FbCrz34w/2qspi7YfZc7mRIYdTiG6blCe6+8t28Mr83cC8PA1lzCqxyVOF+cI9PHkvdvbc+N7q1i8I5kPftvH0Ksau+wZKrO/Tp3loa83sOHgaQDuuqwh4/o2x9vDQsNa/iVK4i1mExP7RzFsxvpCR9jevbUdkbX9+fXPRGZvOsKBE2eZsymROZsSqebtQcs6gaxJOJnv3okpGYz4akOec41q+TOgXV1uaFuHiJr+jiqLFPLepTFFtzyoLBupO52QjRo1iv79+zNt2jSCgoJYvXo1np6e3HHHHTzyyCOlEaOIiIhUNjUbQ6NuYLNCn1egVpMCmxU0YuDraebc3yMEbeoF8dZ/2hFZy78soi6W5mGBXN+mDj9vPMJrC3bw36uaOH64X5twgjf/Xq80qkdTHulxSYnfp2WdICZd35JxP2zm1QU7aVe/Op0bld9pWeXBwq1JPP79JlLOZRPg48GrN7XON/JV0iT+2uhwpt7R/oIjbM3DAnm0V1O2HE5l9qYj/PrnEY6kZBSYjJ3PbILBMQ0Z2L4ureoG5Unii/velc2FRiYryuig0wnZxo0bef/99zGbzVgsFjIzM2nUqBGvvPIKQ4YMYeDAgaURp4iIiFRkx3bBkmfhujfBv5Z9SuL/TQdPv0KnJ+b+1v/fP2jlJmN9o8N4+9Z2eFqc3la11I3q0ZTZfx5h2a7jLNt1PN/1x3s3Y3j3gpNQZ/zn0vr8kXCSHzYc5qGvNzD3kSup9feUzars36OqbetX59UFO/nk9wQA2tSvzuRb2xW7EmZxFXearMlkolW9IFrVC+KJa5vzxer9TPyl4OIUuWwG9G4ZRut61S/qvSuT4oxMVoTRQacTMk9PT8x/b8QYEhLCwYMHadGiBUFBQRw6VLwqLyIiIlJFZKbB8ldg9XtgywG/mtD/Lfs1r8JHtS60txLAhkOnMZfTfbh2JKUWWWyhcW3XjOiZTCaeuzGazYdT2J18hke+2cDn93Qu9z+AlqaCRlU9LSayrfa/kPuuiGTMtc3x8iidRN7ZETaz2VTsoiwXWgvljim67lYZRgedTsjatWvHH3/8wSWXXMJVV13FhAkTOH78OF988QXR0c5tgigiIiKVlGHAllmwcDykJdrPNb0WLi/eWvMLVU+D8ls9LTeZLIyrN+r18/Jg6h3t6f/u7/y+5wRvL97N6J5NL/q+FVFho6q5ydiwqxoztk/zsg/sAirLWih3qeijg07/auCFF14gPNyeaT7//PPUqFGDYcOGcezYMT744AOXBygiIiIVTPJ2+Kw/zLrXnozVaAi3zoTbZkJwo+LdogJXT3OmFLerNAkJ4MWBrQB4d8luVuw65rJ7VxTFGVX9aePhcrknVe5aqMLSh9x90Mr7Wih3yh0dvKFtXWIa16wwyRiUICHr2LEj3bt3B+xTFufPn09qairx8fG0adPG5QGKiIhIBfPHx7D/N/Dwge5PwoNroNm1xX75uSwrP204XKy25XHEwF3J5IB2dbmtcwMMA0bO3Mhfp86yJuEk8cdNrEk4WS4TEVdyZlS1vMldCwVlu5m5lA9OT1k8d+4chmHg52dfBHngwAF+/PFHoqKi6NWrl8sDFBERkXLOMCAjBXyr24+7/w+yzkC3cVAjwqlbbU9M5aGvN7An+UyR7cpz9TR3Tj+bcF0Ufx46zdYjqXR/bdnfU/UsfL57HeEVaE2Ns/YeO8Pbi3YVq215HFWFyrEWSkrG6YTshhtuYODAgQwdOpTTp0/TqVMnvLy8OH78OG+88QbDhg0rjThFRESkPEraDHMfBw9vuPMne8VEv2C4cZpTtzEMgy9WH+C5OdvJyrEREuDNbZ0a8PZie4n4ilQ9zZ2luH08Lfzn0vo89fNWx7qpXEkpGQybsZ6pd7SvND/cbzx0mmnL9rJgWxJGMQcAy+Ooaq6KvhZKSsbpKYvr16/nyiuvBOD7778nLCyMAwcO8Pnnn/POO++4PEAREREph86dtidi73eFg3FwaC2c2FuiW51Kz+KBL+KZ8PNWsnJsXNM8hPkjuzKyZ1Om3tGesKC8P0CHBfmU66TCndPPrDaD95YV/PeQm69Mmr2t3E9ftNoM4vae4OeNh4nbeyJPvIZhsHzXMW79YDUDpvzO/K32ZOya5iHU9Peq8OuwKvJaKCkZp0fIzp49S0BAAAALFy5k4MCBmM1munTpwoEDB1weoIiIiJQjNhts/BIWPQ1n/95fq+WN0Os5CKrn9O3W7DvByJkbSUzJwMti5ok+zbn78oaOTW8r6oiBu6afOVNQpLxVp8xVUNn68CAfxvdrgdWAacv2si0xFQAPs4kb2tZl6FWNuCQ0wFFlsSLvSSVVj9MJWZMmTfjpp5+48cYbWbBgAaNGjQIgOTmZwMBAlwcoIiIi5UTqEZh5JxxeZz+u1Qz6vgKNuhX5sn9v0tspMhjDMHh3yR7eXbIbmwGNavnzzq3tiK4blO/1FXVvJXckkxW5OiUUXrY+MSWD4V9tcBz7elq4tVMD7r0ykrrVfR3ntQ5LKiKnE7IJEyZw2223MWrUKK6++mpiYmIA+2hZu3btXB6giIiIlBN+tSAzFbyqQbcnoPNQsHgW+ZKCRjtqB3gT5OPJnmP2wh3/16EeT1/fEn9vp38sKffKOpmsyPtZFadsvckED199CXdd1pAa/gVvplxRR1Wl6nL6O99NN93EFVdcQWJiYp4y99dccw033nijS4MTERERN7JZYfP39imJHl72P4M+hmohEBB2wZcXNtpxLC2TY2mZ+HiYefmm1tzQtm7pxF8FXaigCICXxcwlIdXKNK7iKE7ZesOALo1qFpqM5aqoo6pSNTld1AMgLCyMdu3aceTIEf766y8AOnXqRPPm5W/ncxERESmBQ3/Ah1fDjw/AmvMqJoa3LlYyVpzRjkBfT65rXefiYxWHogqK5Mqy2hg0bRV7ktPKLrBiqOjTLUVKyumEzGaz8cwzzxAUFERERAQRERFUr16dZ599FpvNVhoxioiISFk5cwx+Hg4f94DEjeAdCN4BTt+mOKMdyWmZ5XKT3ooudx3Vv6tThgf58NR1UdSr4cuBE2e5ccoqlu865qYo86vI0y1FLobTUxaffPJJPv74Y1566SUuv/xyAFauXMnTTz9NRkYGzz//vMuDFBERkVJmzYF1n8DS5+ybPAO0vR16PG2fougkjXa4V+46qrg9ySz8bQ29ruxMTJMQLGYTA9rWYeiMeP7Yf4q7P13LU9dFcddl/1S2dJdOkcEEeHuQlplT4PXyvBm4yMVwOiH77LPP+Oijj7j++usd51q3bk3dunV58MEHlZCJiIhURPPGwLqP7V+HtYa+r0GDziW+nUY73M9iNtE5MpgT2w06n1fUomY1b2bc15nxP27hu/i/mDR7G7uOnuGZG1riaSnRahaXWLojuchkDFS2Xionp/+vO3nyZIFrxZo3b87Jk5p2ICIiUiF1/i/417YnYg8su6hkDOyjHTX8Cq/AWFE26a2svD0svHJTa57s2wKTCb5ee5A7P17DqfQst8Sz62gaj3xjL2t/5SW1CK9gm4GLXAynR8jatGnD5MmTeeedd/Kcnzx5cp6qiyIiIlJOWbNh7QeQfsw+JRGgdjMYuQU8XTNitffYGc5mWQu8ptGO8sFkMnF/10Y0qu3Pw19vYPW+kwx473c+HtKRJiEBBe4fVxp/X6fSs7jvs3WkZ1npHBnMx0MuxWI2qWy9VBlOJ2SvvPIK/fr1Y9GiRY49yOLi4jh06BBz5851eYAiIiLiQgm/wdzH4dh2MJmh9S0Q0sJ+zUXJWO4P2Jk5NpqGViP1XA5Jqdqkt7y6pkUoPzx4Ofd+9oej2Mddlzfk+/i/8hRmCS+Fv7dsq43hX63n4Mmz1Kvhy9Q7OuDlYZ/ApbL1UlU4nZBdddVV7Nq1iylTprBjxw4ABg4cyIMPPkidOipdKyIiUi6lHoGFT8GW7+3HvsH20bFazVz6NjlWGyO+/ucH7G8eiCHI11OjHeVcs7AAfh5+OcNmrGft/pO8u2RPvjZJKRkMm7HepVMHn5+znVV7T+DnZeGjIR0JvsD+YiKVkdMJGUCdOnVUvENERKQiyMmCNVNh+SuQdQYwwaX3Qvcnwc/167eem7Od3/fk/wFbox3lX81q3nx2TyfaPxvLuez8000N7NNNJ83eRs+osItOqr9ee5Dpq/YD8OYtbWkeFnhR9xOpqEpUSufUqVO89tpr3Hvvvdx77728/vrrF13Q46WXXsJkMjFy5EjHuYyMDIYPH07NmjWpVq0agwYN4ujRo3led/DgQfr164efnx8hISE8/vjj5OTkrdCzbNky2rdvj7e3N02aNGH69On53n/KlCk0bNgQHx8fOnfuzNq1ay/qeURERMqFzFT47XV7Mlavk71gR7/XSyUZm/nHPz9gv3GzfsCuiDYeOl1gMpbLABJTMi56/7g1+07w1E9bAHi0Z1N6t7zwZuMilZXTCdmKFSto2LAh77zzDqdOneLUqVO88847REZGsmLFihIF8ccff/D+++/TunXrPOdHjRrF7Nmz+e6771i+fDlHjhxh4MCBjutWq5V+/fqRlZXFqlWr+Oyzz5g+fToTJkxwtElISKBfv350796djRs3MnLkSO677z4WLFjgaDNz5kxGjx7NxIkTWb9+PW3atKF3794kJyeX6HlERETc6sx5m/3614JrX4YBU+GeBVCnbam85br9Jxn/9w/Yo3o05dpo/YBdEZXF/nF/nTrLsC/Xk2Mz6Nc6nBFXNynxvUQqA6cTsuHDh3PLLbeQkJDADz/8wA8//MC+ffv4z3/+w/Dhw50O4MyZM9x+++18+OGH1KhRw3E+JSWFjz/+mDfeeIOrr76aDh068Omnn7Jq1SpWr14NwMKFC9m2bRszZsygbdu29OnTh2effZYpU6aQlWUv2zpt2jQiIyN5/fXXadGiBSNGjOCmm27izTffdLzXG2+8wf3338/dd99NVFQU06ZNw8/Pj08++cTp5xEREXGbnExY8Sq81Qp2zvvnfNtboe1tYC6dPaYOnz7H0BnxZFsN+rYK4yH9gF1hFXdfuCDfwrc0KEp6Zg73fbaOk+lZtKwTyGs3tXH7htQi7ub0GrI9e/bw/fffY7FYHOcsFgujR4/m888/dzqA4cOH069fP3r06MFzzz3nOB8fH092djY9evRwnGvevDkNGjQgLi6OLl26EBcXR6tWrQgNDXW06d27N8OGDWPr1q20a9eOuLi4PPfIbZM7NTIrK4v4+HjGjRvnuG42m+nRowdxcXGFxp2ZmUlmZqbjODU1FYDs7Gyys7Od/hzELvez02coZUV9TspSafY3055YLAv/h+lUAgC2LT9gbdTjAq+6eOeyrNz/2R8cP5NF87AAXhwQhdWag7XwWW9Shpztc+3qBRAW6M3R1EyMItqN+f5PxvZuRv/WYcVOqGw2g9Ez/2RHUho1/b2YeltbPEw2srNtxXq9VAz6d9XOmed3OiFr374927dvp1mzvFWZtm/f7vQ+ZN988w3r16/njz/+yHctKSkJLy8vqlevnud8aGgoSUlJjjbnJ2O513OvFdUmNTWVc+fOcerUKaxWa4FtcqtIFuTFF19k0qRJ+c4vXLgQPz+/Ql8nxRMbG+vuEKSKUZ+TsuTK/uaXmUz04S8JT7FvqpvhUZ0tdf/DYUsMlPJ2NIYBn+02s+2EGX8Pg1vqnGLZooWl+p5SMs70ub5hJj5JzR1NPT/Zsqdo1TwgOS2LR7/fzOQFmxjY0EqDahe+77xDZhb8ZcZiMrgz8iwbfl/ChuI/glQwVf3f1bNnzxa7rdMJ2cMPP8wjjzzCnj176NKlCwCrV69mypQpvPTSS2zatMnR9t9rws536NAhHnnkEWJjY/Hxcc2+J2Vp3LhxjB492nGcmppK/fr16dWrF4GBWsRcUtnZ2cTGxtKzZ088PUs2HULEGepzUpZc3d/M8Z9gjn0KkzUTw+yBrdN/sVzxGG28A3DuV6QlM3X5Pjac2IOH2cQHQzrSqaHrC4XIxSlJn+sLtN96lOfm7iAp9Z/ZQOFBPjzZpzndmtbik1UHmLYigYQ0K69v9mBguzo82vMSQgK8AbDaDNYdOEVyWiYhAd4cT8tkftxmAJ69IZr/61DX5c8q5YP+XbXLnT1XHE4nZLfeeisAY8aMKfCayWTCMAxMJhPWIuYrxMfHk5ycTPv27R3nrFYrK1asYPLkySxYsICsrCxOnz6dZ5Ts6NGjhIXZFwqHhYXlq4aYW4Xx/Db/rsx49OhRAgMD8fX1xWKxYLFYCmyTe4+CeHt74+3tne+8p6dnle58rqLPUcqa+pyUJZf1t+BIsGZCZFdMfV7FEtIcy4Vf5RKLth3lzcX2vaom3dCSyy8JvcArxJ2c7XPXta1Hn9Z1C90/7uEezbilUwQvz9/BD+sP88OGIyzYepQRV19CvRo+vDB3R55NpXPdc3kkt3Vp6KrHknKsqv+76syzO52QJSQkOPuSAl1zzTVs3rw5z7m7776b5s2bM3bsWOrXr4+npyeLFy9m0KBBAOzcuZODBw8SExMDQExMDM8//zzJycmEhIQA9uHRwMBAoqKiHG3m/mvKRmxsrOMeXl5edOjQgcWLFzNgwAAAbDYbixcvZsSIES55VhEREZc4sReO74JmfezHTXvBXXMh4jIoxcIIVpuR5wfz6n6ePPLNBgwD7uwSwe2dI0rtvcV9LGZTkfvHhQb68MbNbbmzSwRPz97Gn4dO8/L8wpd7AHSIqO7iKEUqPqcTsogI13zTDQgIIDo6Os85f39/atas6Th/7733Mnr0aIKDgwkMDOShhx4iJibGMVWyV69eREVFceedd/LKK6+QlJTE+PHjGT58uGP0aujQoUyePJkxY8Zwzz33sGTJEr799lvmzJnjeN/Ro0czZMgQOnbsSKdOnXjrrbdIT0/n7rvvdsmzioiIXJSsdPjtDVj1Dnj4wkPrwL+2PQlreHmpvvX8LYlMmr0tz2iHxWzCajPo0iiYCf2jSvX9pfxr16AGPw67jB/W/8WYWZuwFVINxIR94/Bro8MvelNpkcrE6fq3n332WZ5kZsyYMVSvXp3LLruMAwcOuDS4N998k+uuu45BgwbRtWtXwsLC+OGHHxzXLRYLv/76KxaLhZiYGO644w4GDx7MM88842gTGRnJnDlziI2NpU2bNrz++ut89NFH9O7d29Hmlltu4bXXXmPChAm0bduWjRs3Mn/+/HyFPkRERMqUYcC2n2FyJ/jtNbBmQb2O9vL2ZVAqfP6WRIbNWJ9v6pn175+4B7Wvh6eldErpS8ViNpuoW8Ov0GQMXLeptEhl4/QI2QsvvMDUqVMBiIuLY/Lkybz11lv8+uuvjBo1Kk/C5Kxly5blOfbx8WHKlClMmTKl0NdERETkm5L4b926dWPDhqLr+IwYMUJTFEVEpPw4tgvmjYF9S+3HQQ3g2heheb8yScasNoNJs7cVWfr8jdhdDGxfT6MdApTNptIilZHTCdmhQ4do0sS+4eNPP/3ETTfdxAMPPMDll19Ot27dXB2fiIhI1ZN+HN6/EnIywOINV4yEy0eCV9ltq7I24WSBRRnOlzvaUdQ6I6k6irupdHHbiVQVTs8zqFatGidOnADse2717NkTsI9mnTt3zrXRiYiIVEX+taD9EGh6LQxfDd3/d9HJmNVmELf3BD9vPEzc3hOOaYcFSU7N4IcNfxXrvhrtkFydIoMJD/KhsPFSE/bS+Z0itT2CyPmcHiHr2bMn9913H+3atWPXrl307dsXgK1bt9KwYUNXxyciIlL5Hd0GC/5nn5IY0sJ+rvcLYHH6n+kCFVSYIzzIh4n9o7g2OhyAhOPpLNiaxIKtSWw4eLrY99Zoh+SymE1M7B/FsBnrMUGe6a65SdrE/lGa4iryL05/p58yZQrjx4/n0KFDzJo1i5o17dMU4uPjHXuUiYiISDFkpMCyl2HNNDCssPApuON7+zUXJmPDZqzPtxYsKSWDoTPW0yc6jD3JZ9idfCbP9Tb1gth3LJ20zJwC72sCwjTaIf9ybXQ4U+9on+8XAGH/+gWAiPzD6e/21atXZ/LkyfnOT5o0ySUBiYiIVHqGAX9+Y0/A0pPt55pfZx8Vc6GiCnPknpu3JQkAj7/3nOrVMoyeLUIJC/JxJHPntweNdkjRro0Op2dUWKGbSotIXsVKyDZt2kR0dDRms5lNmzYV2bZ169YuCUxERKQyCjx7EMvn18Ffa+wnajaBPi9Dkx4uf6/iFOYAGN69MQ9c2ZggP8885zXaISV1oU2lReQfxUrI2rZtS1JSEiEhIbRt2xaTyYRh/PO7stxjk8mE1WottWBFREQqutpntmI+vAY8/eGqx6HLg+DhXSrvVdyCG01DA/IlY7k02iEiUrqKlZAlJCRQu3Ztx9ciIiJSTDYbpCVCUF0A9tXuSYt6NbBcNsJxrrTsPXbmwo24cGEOjXaIiJSeYiVkERERBX4tIiIiRTi8HuY+DhmnYdgqwIxh8sDW4xksngWPSLnC8TOZTPh5C3M3JxXZToU5RETcz+miHkuWLOGHH35g//79mEwmIiMjuemmm+jatWtpxCciIlLxnD0JiydB/GeAAV7VIGkLhJbuOmvDMPh1UyITft7CqbPZeJhN9GoZxrzNifbr57VVYQ4RkfLBqYRs6NChfPDBB9SoUYOmTZtiGAarVq1iypQpPPjgg7z77rulFaeIiEj5Z7NC/HRY8iycO2U/1/oW6PkMBIRBdnapvfWxtEye+mkL87faR8WahwXw2v+1IbpuUIH7kKkwh4hI+VDshOzHH3/k008/5ZNPPmHIkCGYTPbfptlsNqZPn86wYcPo2bMn119/fakFKyIiUm6dOw2fXw+Jf9qPQ6Oh76sQcZlLbm+1GQUW1jAMg9mbEpl43qjY8O5NGN69CV4eZkCFOUREyrNiJ2Sffvopo0eP5q677spz3mw2c88997Bz504+/vhjJWQiIlI1+QSBXy3wDoKrn4SO97p0c+d/j3CFB/kwskdTlu5IdoyKtQgP5LX/a03LOkH57qHCHCIi5VOx/6VYv34948ePL/T6wIEDGTRokEuCEhERKfesORD/KUQPAr9gMJmg/9v2EvbVQlz2NrmbM/97c+fElAzGzrLvDephNjHi6iY82O2fUTEREakYip2QHT9+nHr16hV6vV69epw4ccIlQYmIiJRrB+Ls1ROPboajW6H/W/bz1eu79G2sNoNJs7flS8bO52E28eODl9OqXv5RMRERKf+KnZBlZWXhWUSJXg8PD7KyslwSlIiISLmUdhRiJ8Cmb+zHPtUhvE2pvd3ahJN5pikWJMdmcCYzp9RiEBGR0uXU5PannnoKPz+/Aq+dPXvWJQGJiIiUO9ZsWPsBLH0RstIAE7QfDNdMBP/SW5eVnFZ0MuZsOxERKX+KnZB17dqVnTt3XrCNiIhIpbPiNVj+kv3rOu2h72tQr0Opv21IgI9L24mISPlT7IRs2bJlpRiGiIhIOWMY9kIdAJ3/C1tmwWUPQbs7wVw2hTM6RQYTHuRT6LRFE/b9xDpFBpdJPCIi4noqxSQiInK+nCxY+RZ8N8SelIG9iuLwtdBhSJklY2AvVT+xf1SB13J3EJvYP0r7iYmIVGCu2SBFRESkMti7BOaOgRO77ccJy6FRN/vXZZiInS/Qp+CCWmFBPkzsH8W10eFlHJGIiLiSEjIREZHTh2DB/2D7L/Zj/9rQ8xlo6N610TabwYvzdgBwR5cG9GtVh+S0DEIC7NMUNTImIlLxKSETEZGqKycTVr0DK16HnHNgskCnB6D7OPBx/75eszcdYfPhFPy9LIzs0ZRa1bzdHZKIiLiYEjIREanaNn5tT8YiLoe+r0JoS3dHBEBmjpVXF9irGw+9qrGSMRGRSqpYCdmmTZuKfcPWrVuXOBgREZFSd+oABNYBiyd4eMN1b8KZZGh10z9VFcuBL+IO8Nepc4QEeHPvlZHuDkdEREpJsRKytm3bYjKZMAwD0wX+sbJarS4JTERExKWyz9mrJ658E3pMhJjh9vONrnJrWAVJOZvNu0v2ADC6Z1P8vDShRUSksipWyaiEhAT27dtHQkICs2bNIjIykvfee48NGzawYcMG3nvvPRo3bsysWbNKO14RERHnGAbsmANTOtk3d7ZmwoFV7o6qSO8t30PKuWwuCanGTR3quTscEREpRcX6lVtERITj6//7v//jnXfeoW/fvo5zrVu3pn79+jz11FMMGDDA5UGKiIiUyIm9MG8s7Im1HwfWhd7PQ9QAt4ZVlMOnz/Hp7/sBeKJPczws2jJURKQyc3oOxObNm4mMzD+XPTIykm3btrkkKBERkYu28SuY/QhYs8DsCZc9BF0fAy9/d0dWpNcX7iQrx0bnyGCubh7i7nBERKSUOf1rtxYtWvDiiy+SlZXlOJeVlcWLL75IixYtXBqciIhIiYW3BZsVGl8DD662rxsr58nY1iMp/LjhMADj+ra44LptERGp+JweIZs2bRr9+/enXr16joqKmzZtwmQyMXv2bJcHKCIiUizHdsKB36HjPfbj0CgYuhJCWpSr6olFeWneDgwDrmsdTtv61d0djoiIlAGnE7JOnTqxb98+vvzyS3bs2AHALbfcwm233Ya/f/n+zaOIiFRCmWmw/BVY/R4YNqjXCcKi7ddCo9wbmxNW7DrGb7uP42kx8XjvZu4OR0REykiJ6uj6+/vzwAMPuDoWERGR4jMM2DILFo6HtET7uaZ9wDvAvXGVgM1m8OI8+y857+gSQURN/YJTRKSqKFZC9ssvvxT7htdff32JgxERESmWo9tg3hjY/5v9uEYk9HkZmvZ2b1wl9NPGw2xPTCXA24OHrr7E3eGIiEgZKlZCVtxS9iaTSRtDi4hI6co+B9P7wbmT4OELVz5qr6Do6ePuyEokI9vKawt2AjCse2OC/b3cHJGIiJSlYiVkNputtOMQEREpnGH8U5jD0xeuGgsHVkLvF6B6A/fGdpE+W7WfIykZhAf5cM/l+beVERGRyk27TYqISPmWuAk+uRZ2LfznXOf/wi0zKnwydvpsFlOW7gHg0V7N8PG0uDkiEREpayVKyJYvX07//v1p0qQJTZo04frrr+e3335zdWwiIlKVnTsFcx6DD66CQ6th8TP2kTKoMGXsL2TK0j2kZuTQPCyAG9vVdXc4IiLiBk4nZDNmzKBHjx74+fnx8MMP8/DDD+Pr68s111zDV199VRoxiohIVWKzwfrP4d0O8MeH9lL2LQfCbTMrTSIGcOjkWT5bdQCwbwJtMVeeZxMRkeJzuuz9888/zyuvvMKoUaMc5x5++GHeeOMNnn32WW677TaXBigiIlVI4p/w6yg4HG8/rt0c+rwCja5yb1yl4PWFO8my2riiSS26XlLL3eGIiIibOD1Ctm/fPvr375/v/PXXX09CQoJLghIRkSoq5bA9GfMKgF7Pw9CVlSYZs9oM1iScJP64iW/+OMRPG48A8ESf5pgq0cifiIg4x+mErH79+ixevDjf+UWLFlG/fn2n7jV16lRat25NYGAggYGBxMTEMG/ePMf1bt26YTKZ8vwZOnRonnscPHiQfv364efnR0hICI8//jg5OTl52ixbtoz27dvj7e1NkyZNmD59er5YpkyZQsOGDfHx8aFz586sXbvWqWcREZESsFkhefs/x836QK/n4KF1cNkIsHi6LzYXmr8lkSteXsIdn6zj890WnvrF/sydIoOJrhvk5uhERMSdnJ6y+Oijj/Lwww+zceNGLrvsMgB+//13pk+fzttvv+3UverVq8dLL73EJZdcgmEYfPbZZ9xwww1s2LCBli1bAnD//ffzzDPPOF7j5+fn+NpqtdKvXz/CwsJYtWoViYmJDB48GE9PT1544QUAEhIS6NevH0OHDuXLL79k8eLF3HfffYSHh9O7t30D0ZkzZzJ69GimTZtG586deeutt+jduzc7d+4kJCTE2Y9IRESK49AfMPdROLUfHloP/rXsa8Que8jdkbnU/C2JDJuxHqOAa2sTTjJ/SyLXRoeXeVwiIlI+OJ2QDRs2jLCwMF5//XW+/fZbAFq0aMHMmTO54YYbnLrXv6c+Pv/880ydOpXVq1c7EjI/Pz/CwsIKfP3ChQvZtm0bixYtIjQ0lLZt2/Lss88yduxYnn76aby8vJg2bRqRkZG8/vrrjlhXrlzJm2++6UjI3njjDe6//37uvvtuAKZNm8acOXP45JNPeOKJJ5x6JhERuYAzx2Dx07Bhhv3YOwiOboFG3dwZVamw2gwmzd5WYDIGYAImzd5Gz6gwFfUQEaminE7IAG688UZuvPFGlwZitVr57rvvSE9PJyYmxnH+yy+/ZMaMGYSFhdG/f3+eeuopxyhZXFwcrVq1IjQ01NG+d+/eDBs2jK1bt9KuXTvi4uLo0aNHnvfq3bs3I0eOBCArK4v4+HjGjRvnuG42m+nRowdxcXGFxpuZmUlmZqbjODU1FYDs7Gyys7NL/kFUcbmfnT5DKSvqc2XIloM5fjrmFS9iykixn2p9K9buT0G1EKiEfwdrEk6SmJJR6HUDSEzJIG5PMp0jg8suMKky9D1Oypr6nJ0zz1+ihAzsiUxycjI2my3P+QYNnNukc/PmzcTExJCRkUG1atX48ccfiYqKAuC2224jIiKCOnXqsGnTJsaOHcvOnTv54YcfAEhKSsqTjAGO46SkpCLbpKamcu7cOU6dOoXVai2wzY4dOwqN+8UXX2TSpEn5zi9cuDDPtEopmdjYWHeHIFWM+lzpMtly6LrrGaqf2w/Aad+GbKp/J6csl8CKde4NrhTFHzcBF97seeFvazixvbBxNJGLp+9xUtaqep87e/Zssds6nZDt3r2be+65h1WrVuU5bxgGJpMJq9Xq1P2aNWvGxo0bSUlJ4fvvv2fIkCEsX76cqKgoHnjgAUe7Vq1aER4ezjXXXMPevXtp3Lixs6G71Lhx4xg9erTjODU1lfr169OrVy8CAwPdGFnFlp2dTWxsLD179sTTs3Is5pfyTX2u7Jjnr8TY+gO2bk/i324wMeYLJyoVmWEY7Fm6F3bvu2DbXld21giZlAp9j5Oypj5nlzt7rjicTsjuuusuPDw8+PXXXwkPD7/oUr1eXl40adIEgA4dOvDHH3/w9ttv8/777+dr27lzZwD27NlD48aNCQsLy1cN8ejRowCOdWdhYWGOc+e3CQwMxNfXF4vFgsViKbBNYWvXALy9vfH29s533tPTs0p3PlfR5yhlTX3OxazZsPYDaNIDajezn+sxEa4ej8W/ZjHGjCq2+AOneH7ONtYfPF1kOxMQFuRDTJMQrSGTUqXvcVLWqnqfc+bZnU7INm7cSHx8PM2bN3f2pcVis9nyrM3693sDhIfbq1HFxMTw/PPPk5yc7KiGGBsbS2BgoGPaY0xMDHPnzs1zn9jYWMc6NS8vLzp06MDixYsZMGCAI4bFixczYsQIVz+eiEjll7AC5o6BY9th90K48yd79UTf6u6OrNQdOJHOy/N3MHezfdq8r6eFq5uHMHdzIkCe4h656dfE/lFKxkREqjCnE7KoqCiOHz/ukjcfN24cffr0oUGDBqSlpfHVV1+xbNkyFixYwN69e/nqq6/o27cvNWvWZNOmTYwaNYquXbvSunVrAHr16kVUVBR33nknr7zyCklJSYwfP57hw4c7Rq+GDh3K5MmTGTNmDPfccw9Llizh22+/Zc6cOY44Ro8ezZAhQ+jYsSOdOnXirbfeIj093VF1UUREiiHlMCwcD1vt63zxqwnRg9wbk4tZbQZrE06SnJZBSIAPnSKDsZhNnErP4t0le/hi9X6yrQYmE9zcoT6jezUlNNCH+VsSmTR7W54CH2FBPkzsH6WS9yIiVVyxErLz50C+/PLLjBkzhhdeeIFWrVrlG45zZv1UcnIygwcPJjExkaCgIFq3bs2CBQvo2bMnhw4dYtGiRY7kqH79+gwaNIjx48c7Xm+xWPj1118ZNmwYMTEx+Pv7M2TIkDz7lkVGRjJnzhxGjRrF22+/Tb169fjoo48cJe8BbrnlFo4dO8aECRNISkqibdu2zJ8/P1+hDxERKUBOFqyeAstfhex0MJmh473Q/X/gV3nWRRWYVAV6c3mTWsRuO0pqRg4AVzWtzbi+zWke9s+/h9dGh9MzKoy4Pcks/G0Nva7srGmKIiICFDMhq169ep61YoZhcM011+RpU5KiHh9//HGh1+rXr8/y5csveI+IiIh8UxL/rVu3bmzYsKHINiNGjNAURRGRktjwBSx62v51/c7Q91UIb+PWkFytsM2dk1IzmbX+MADNwwL4X98WdG1au8B7WMwmOkcGc2K7Qee/R9ZERESKlZAtXbq0tOMQEZGKxGYDs9n+dbs7YeuP0PZ2aPMf+3qxSuRCmzsDBPl68suIK/DyMJdZXCIiUjkUKyG76qqrSjsOERGpCLIzYNW7sONXuDcWPLzsf+761d2RlZq1F9jcGSDlXDbxB04R07hmGUUlIiKVRYl+lffbb79xxx13cNlll3H4sH2qxhdffMHKlStdGpyIiJQjuxbAe11g6XOQuNE+KlYFJKcVnYw5205EROR8Tidks2bNonfv3vj6+rJ+/XpHifqUlBReeOEFlwcoIiJudjIBvvoPfHUznEqAamEw6GNofbO7IysTIQE+Lm0nIiJyPqcTsueee45p06bx4Ycf5qmwePnll7N+/XqXBiciIm5kzYGlL8CUzrBrHpg94LKH4aF10OqmSrdWrDCdIoOp5l34VtYmIDzIXgJfRETEWU7vQ7Zz5066du2a73xQUBCnT592RUwiIlIemC1wcDVYMyHyKnv1xNrN3B1VmYvbe4IzmQVXENbmziIicrGcTsjCwsLYs2cPDRs2zHN+5cqVNGrUyFVxiYiIO5zYa987zLeGfQSs72uQvBWiBlSZEbHzJadmMHKmfduUK5rUYu+xM9rcWUREXMrphOz+++/nkUce4ZNPPsFkMnHkyBHi4uJ47LHHeOqpp0ojRhERKW1Z6bDiNYibDO2HQL/X7OdrN7X/qYKsNoNHvtnI8TNZNA8L4KMhHfG0mFmbcJLktAxCAuzTFDUyJiIiF8PphOyJJ57AZrNxzTXXcPbsWbp27Yq3tzePPfYYDz30UGnEKCIipcUwYNvPsOBJSP3Lfu70QbBZ7VMWq7B3Fu8mbt8J/LwsTLm9PT6e9s9Dpe1FRMSVnE7ITCYTTz75JI8//jh79uzhzJkzREVFUa1atdKIT0RESsuxnTBvDOxbZj+u3gCufQma9a2S0xPPt2rPcd5ZshuA52+MpnFt/RsnIiKlw+mELJeXlxdRUVGkpqayaNEimjVrRosWLVwZm4iIlJZtP8P394AtByzecMUouGIkePq6OzK3O5aWySMzN2IYcEvH+tzYrp67QxIRkUrM6bL3N998M5MnTwbg3LlzXHrppdx88820bt2aWbNmuTxAEREpBRGXg5c/NO0Dw9dA93FKxrCvGxs1cyPH0jJpFhrA09e3dHdIIiJSyTmdkK1YsYIrr7wSgB9//BGbzcbp06d55513eO6551weoIiIuMDRbbDkOfuaMQD/WjAsDm77BoIj3RtbOfLe0j2s3HMcX08LU25vh69X1V5HJyIipc/phCwlJYXgYPvml/Pnz2fQoEH4+fnRr18/du/e7fIARUTkImSkwLwnYNoVsOJV2DX/n2tBdd0XVzm0et8J3ly0C4BnB0TTJCTAzRGJiEhV4PQasvr16xMXF0dwcDDz58/nm2++AeDUqVP4+Pi4PEARESkBmw02zYTYCZCebD/Xoj+EagpeQY6fyeThrzdgM2BQ+3rc1EHrxkREpGw4nZCNHDmS22+/nWrVqhEREUG3bt0A+1TGVq1auTo+ERFxVuImmPsYHFpjP655CfR5GZpc4964yinb3+vGktMyaRJSjWcHKGkVEZGy43RC9uCDD9KpUycOHTpEz549MZvtsx4bNWqkNWQiIu5ms9mrJ57YDZ7+cNUY6PIgeHi5O7Jya+ryvfy2+zg+nmam3NYeP68SFyAWERFxWon+1enYsSMdO3bMc65fv34uCUhERJxkswGGfSNnsxl6vwB/fg29ntM6sQv4Y/9J3oi1rxt75vpomoVp3ZiIiJQtpxOye+65p8jrn3zySYmDERERJx1eb5+e2Opm6DLUfq5pL/sfycdqM1ibcJLktAx8PS089dMWrDaDG9vV5f86at2YiIiUPacTslOnTuU5zs7OZsuWLZw+fZqrr77aZYGJiEgRzp6Exc9A/HTAgLSjcOm9YPF0d2Tl1vwtiUyavY3ElIw850MDvXluQDQmk8lNkYmISFXmdEL2448/5jtns9kYNmwYjRs3dklQIiJSCJvVnoQteRbO/f0Lsta3QM9nlIwVYf6WRIbNWI9RwLWjqZn8tvsY10aHl3lcIiIiTu9DVuBNzGZGjx7Nm2++6YrbiYhIQZI2w4fdYc5oezIWGg13z4OBH0BAmLujK7esNoNJs7cVmIwBmIBJs7dhtRXWQkREpPS4JCED2Lt3Lzk5Oa66nYiI5GOyJ2XeQdDnFXhgOURc5u6gyr21CSfzTVM8nwEkpmSwNuFk2QUlIiLyN6enLI4ePTrPsWEYJCYmMmfOHIYMGeKywEREqjxrDvz1B0TE2I/DomHghxB5FVSr7d7YKpDktMKTsZK0ExERcSWnE7INGzbkOTabzdSuXZvXX3/9ghUYRUSkmA6sgrmPQ/J2GPY7hLSwn291k3vjqmBOnMlkVvxfxWobEuBTytGIiIjk53RCtnTp0tKIQ0REANKSIHYCbJppP/apDqf2/5OQSbHYbAbf/HGIl+fvIOVcdpFtTUBYkA+dIoPLJjgREZHzlGhjaIBjx46xc+dOAJo1a0bt2po+IyJSYtZsWPM+LHsJstIAE3QYAldPAP+a7o6uQtl6JIXxP21hw8HTAESFB3Jd63BeXWD/N+v80h25he4n9o/CYlbZexERKXtOJ2Tp6ek89NBDfP7559hsNgAsFguDBw/m3Xffxc/Pz+VBiohUaoYBn/aFv9baj+t2gL6v2v8r+Zy/uXNIgH1ky2I2kZaRzRuxu/hs1X5sBlTz9mB0z6YMjonAw2KmUW3/fPuQhQX5MLF/lErei4iI25SoqMfy5cuZPXs2l19+OQArV67k4Ycf5tFHH2Xq1KkuD1JEpFIzmaDlADi5F3o8DW3vALPLiuBWKgVt7hwW5EO/VuHM/vMIyWmZAFzXOpynrosiNPCfdWHXRofTMyqswGRORETEXZxOyGbNmsX3339Pt27dHOf69u2Lr68vN998sxIyEZELycmC1VMgvA00vtp+rtMD0PY28K3h3tjKscI2d05KyeDjlQkANKzpxzM3RNO1acHT6C1mEzGNNQVURETKD6cTsrNnzxIaGprvfEhICGfPnnVJUCIildaexTBvDJzYAzWbwLBV4OENFk8lY0W40ObOYJ+iOOfhK/H3LvHyaBERkTLn9JyYmJgYJk6cSEbGP9NFzp07x6RJk4iJiXFpcCIilcbpgzDzDpgx0J6M+YfAlY+BxcvdkVUIF9rcGeBMZg6b/kopo4hERERcw+lfI7799tv07t2bevXq0aZNGwD+/PNPfHx8WLBggcsDFBGp0LIzYNW78NvrkHMOTBbo/F/o9gT4BLk7ugpDmzuLiEhl5XRCFh0dze7du/nyyy/ZsWMHALfeeiu33347vr6+Lg9QRKRCS1gOS5+zfx1xub16YmhL98ZUAdX0L95IojZ3FhGRiqZEE+39/Py4//77XR2LiEjlkJ0Bnn8nBpf0gra324t3RA+yV1QUp5xKz2LK0j1FttHmziIiUlEVOyH75ZdfitXu+uuvL3EwIiIVWvY5WPkmrP/cXqzDL9iegA14z92RVVg7k9K4//N1HDx5Fi8PM1k5Nkxoc2cREak8ip2QDRgwIM+xyWTCMIx856xWq0sCExGpMAwDdsyBBePsxTsA/vwaYoa7N64KbsHWJEbP3Eh6lpX6wb58OLgj+4+na3NnERGpVIqdkNlstjzHAQEB/PnnnzRq1MjlQYmIVBgn9trL2O9ZZD8OrAe9n4eoG9wbVwVmsxm8u2QPby7aBcBljWsy5bb21PD3onlYoDZ3FhGRSkWbtYiIlIRhwNLn4fe3wZplL19/2UNw5aPg5e/u6Cqs9MwcHvvuT+ZtSQLgrssa8mS/Fnha/tmlRZs7i4hIZaKETESkJEwmSD9uT8aa9IA+r0DNxu6OqkI7dPIs93++jh1JaXhaTDw3IJpbLm3g7rBERERKlRIyEZHiOrbTPhIWHGk/vmYCXNITmvVV9UQnWG1GvimHaxNO8uCX8Zw6m02tat68f2d7OkSoYqKIiFR+5gs3KZjJZMJ0kT+ATJ06ldatWxMYGEhgYCAxMTHMmzfPcT0jI4Phw4dTs2ZNqlWrxqBBgzh69Gieexw8eJB+/frh5+dHSEgIjz/+ODk5OXnaLFu2jPbt2+Pt7U2TJk2YPn16vlimTJlCw4YN8fHxoXPnzqxdu/aink1EKpHMNFg4HqZeBnMetU9XBHsVxeb9lIw5Yf6WRK54eQm3friaR77ZyK0frqbdMwu5/aPVnDqbTau6Qfwy4nIlYyIiUmUUOyGrUaMGwcHBjj9nzpyhXbt2ec4FBzv3D2i9evV46aWXiI+PZ926dVx99dXccMMNbN26FYBRo0Yxe/ZsvvvuO5YvX86RI0cYOHCg4/VWq5V+/fqRlZXFqlWr+Oyzz5g+fToTJkxwtElISKBfv350796djRs3MnLkSO677z4WLFjgaDNz5kxGjx7NxIkTWb9+PW3atKF3794kJyc79TwiUskYBmz6Dt7tCKveBVsOeHhD9ll3R1Yhzd+SyLAZ6/NUSARIzcjBZsClDWvw3dAY6lT3dVOEIiIiZa/YUxbfeustl795//798xw///zzTJ06ldWrV1OvXj0+/vhjvvrqK66++moAPv30U1q0aMHq1avp0qULCxcuZNu2bSxatIjQ0FDatm3Ls88+y9ixY3n66afx8vJi2rRpREZG8vrrrwPQokULVq5cyZtvvknv3r0BeOONN7j//vu5++67AZg2bRpz5szhk08+4YknnnD5c4tIBXB0K8x9HA78bj+uEWlfJ9a0l3vjqqCsNoNJs7dhFNHmr1Pn8hTvEBERqQqKnZANGTKkNOPAarXy3XffkZ6eTkxMDPHx8WRnZ9OjRw9Hm+bNm9OgQQPi4uLo0qULcXFxtGrVitDQUEeb3r17M2zYMLZu3Uq7du2Ii4vLc4/cNiNHjgQgKyuL+Ph4xo0b57huNpvp0aMHcXFxhcabmZlJZmam4zg1NRWA7OxssrOzL+qzqMpyPzt9hlJWCupzpoTlWL6+GZNhxfDwxXb5KGxdHgQPHzivndVmsO7AKZLTMgkJ8KZjRA2VXy/EmoST+UbG/i0xJYO4Pcl0jqy80xX1PU7KmvqclDX1OTtnnt/tRT02b95MTEwMGRkZVKtWjR9//JGoqCg2btyIl5cX1atXz9M+NDSUpCR7OeSkpKQ8yVju9dxrRbVJTU3l3LlznDp1CqvVWmCbHTt2FBr3iy++yKRJk/KdX7hwIX5+fsV7eClUbGysu0OQKub8Pme2ZdPdqzapvvXZUvdWzqXWgoVL8rT/84SJH/abOZ31TwJW3ctgYEMbbWoWNQ5UNcUfNwGWC7Zb+NsaTmyv/J+fvsdJWVOfk7JW1fvc2bPFX97g9oSsWbNmbNy4kZSUFL7//nuGDBnC8uXL3R3WBY0bN47Ro0c7jlNTU6lfvz69evUiMDDQjZFVbNnZ2cTGxtKzZ088PT3dHY5Uclabweq9x9i2/Adu9F1HjZvfw+LpZb/Yoxu1fYLoXsDrFmw9yqdxf+abfpeSZeLTXRbe/U8bercMLeCVVVfNhJN8vnvdBdv1urJzpR8h0/c4KUvqc1LW1OfscmfPFYfbEzIvLy+aNGkCQIcOHfjjjz94++23ueWWW8jKyuL06dN5RsmOHj1KWFgYAGFhYfmqIeZWYTy/zb8rMx49epTAwEB8fX2xWCxYLJYC2+TeoyDe3t54e3vnO+/p6VmlO5+r6HOU0jZ/SyJv/LKW289+wX8ti7CYDN56vQbNbxzLtdHh4FmrwNdZbQbPz9tZ4FooAzABz8/bSZ/WdTV98TxdGtfG19PCuWxrgddNQFiQDzFNQqrE56bvcVLW1OekrFX1PufMs5e71dM2m43MzEw6dOiAp6cnixcvdlzbuXMnBw8eJCYmBoCYmBg2b96cpxpibGwsgYGBREVFOdqcf4/cNrn38PLyokOHDnna2Gw2Fi9e7GgjIpXL/M2HWfr163ydOZwhHrFYTAazrV2Ymd6eYTPWM39LYp72ZzJz2PTXaX7acJjHv9tY5FooA/taqLUJJ0v5KSqWKUv3FpmMAUzsH1UlkjEREZHzuXWEbNy4cfTp04cGDRqQlpbGV199xbJly1iwYAFBQUHce++9jB49muDgYAIDA3nooYeIiYmhS5cuAPTq1YuoqCjuvPNOXnnlFZKSkhg/fjzDhw93jF4NHTqUyZMnM2bMGO655x6WLFnCt99+y5w5cxxxjB49miFDhtCxY0c6derEW2+9RXp6uqPqoohUHta/1lP/hwd42XM3ALtsdZmYcxdxtpaONmO+38TyXcfYf/wse4+dITkts7DbFSo5regCFlXJrPi/eHPRLgBu61SfpTuP5Ulqw4J8mNg/yj4yKSIiUsU4nZBZrVamT5/O4sWLSU5Oxmaz5bm+ZMmSQl6ZX3JyMoMHDyYxMZGgoCBat27NggUL6NmzJwBvvvkmZrOZQYMGkZmZSe/evXnvvfccr7dYLPz6668MGzaMmJgY/P39GTJkCM8884yjTWRkJHPmzGHUqFG8/fbb1KtXj48++shR8h7glltu4dixY0yYMIGkpCTatm3L/Pnz8xX6EJGK78yv/6OlsZs0w5e3cgbymbU3Of/6VpiakcPXaw/lOVermjeNavtTzdvCkh3HLvg+IQE+Lo27olq15zhjZ20CYOhVjXmiT3OsNoO1CSdJTssgJMCHTpHBGhkTEZEqy+mE7JFHHmH69On069eP6OhoTKaS/yP68ccfF3ndx8eHKVOmMGXKlELbREREMHfu3CLv061bNzZs2FBkmxEjRjBixIgi24hIBWSzgjULPO2bDcdHPcGpw6/xUvZ/OEaNQl/WMyqEa1uG0zikGpG1/Anytc8Ft9oMrnh5CUkpGYXuqRXk60mnSlyYorh2HU3jvzPiybEZXNc6nDG9mwFgMZuIaVzTzdGJiIiUD04nZN988w3ffvstffv2LY14RERc59BamPsYNIiBPi8D4Fu3FfdkD7vgS++5vFGBSYPFbGJi/yiGzViPCQpMylLOZfPsr9sY368FHlV0o+PktAzu/vQP0jJyuLRhDV77vzaYNQomIiKSj9M/KZxfFVFEpFw6cwx+Gg4f94TEP2HTt5CRAsClDWvg61X4flgmIDzIp8gRrmujw5l6R3vCgvJOSwwP8qF/a/s6qOmr9jPk07WcSs+6+OepYNIzc7h3+joOnz5HZC1/PrizIz6eF96DTEREpCpyeoTs0Ucf5e2332by5MkXNV1RRMTlrDmw7mNY8jxk2hMw2t4BPSaCTxCGYfDivB2cy7r4an/XRofTMyqswLVQ/VonMfrbjfy+5wQD3vudDwd3pGlogAsftPyy2gwe/noDmw+nEOzvxfS7L6WGv5e7wxIRESm3nE7IVq5cydKlS5k3bx4tW7bMV2P/hx9+cFlwIiLFlrwdZt0HR7fYj8PbQN/XoH4nR5M3F+3m45UJANzZJYJF249eVLW/wtZCXRsdRsNal3HfZ+s4cOIsN075nbf/044eUeWnUFBpFNYwDINJs7eyeEcy3h5mPhzckYia/i6KWEREpHJyOiGrXr06N954Y2nEIiJScn614PQh8KkO10yADneB+Z9pctOW7+WdxfZS90/3j+KuyyN5+vqWxO1JZuFva+h1ZWeXbkrcPCyQX0ZcwbAZ8axJOMn9X6zjsV7NeLBbY7fPLpi/JZFJs7flSUbDXVB6/qPfEvg87gAmE7x1S1s6RBReNEVERETsnE7IPv3009KIQ0TEOdZs2DkPoq63H1erDbd8AaHR4J931OqLuP28NG8HAI/3bsZdl0cC9hGuzpHBnNhu0LkUSq8H+3sx477OPDN7G1+sPsCrC3ayPTGVV29qg5eH2S2l3+dvSWTYjPX5ipEkpWQwbMZ6pt7RvkRJ2dzNiTw/dzsAT/ZtQZ9W2lNMRESkONy6MbSISIkkrIC5j8OxHXDbt9D0730FG12Vr+n38X/x1M9bARjevTHDu5dtUSJPi5lnB0TTLCyAp3/Zyq+bEvnzr9NkZtvybDjtihGqC7HaDCbN3lZgZUgD+xq6SbO30TMqrMjk8N/THS1mE6NmbgRgSEwE914RWRrhi4iIVEolSsi+//57vv32Ww4ePEhWVt4KYuvXr3dJYCIi+aQchoVPwtYf7cd+NSH7XKHN525OZMz3fwJw12UNeaxXs7KIskB3dImgSUg17vtsHYdO5o/5YkeoimNtwsk80xT/zQASUzJYm3Cy0H3CCpruaDKBYUCPFiFM6N/S7VMyRUREKhKny96/88473H333YSGhrJhwwY6depEzZo12bdvH3369CmNGEWkqsvJhN/egMkd7cmYyQyX3g8j1kHLAQW+ZOmOZB7+egM2A27pWJ8J10W5PVG4tGFwoSX3c0etJs3ehtVW2JbTJZdyNptf/jxcrLYvzN3GG7G7mLs5kb3HzjjiyZ3u+O+kzvg73P5t6pTJtEsREZHKxOkRsvfee48PPviAW2+9lenTpzNmzBgaNWrEhAkTOHnyZGnEKCJV3Te3wZ5F9q/rd4a+r9qrKBZi1d7jDJ0RT47NoH+bOrwwsFW52JR4bcJJjp03TfHfckeoft9zjK5NQ4q8V3GqJKZn5rBo+1Fm/3mE5buOkW0tXqK3+XAqmw+nOo59PM00qV2NvcfSC5zumOuleTu4rrWSMhEREWc4nZAdPHiQyy67DABfX1/S0tIAuPPOO+nSpQuTJ092bYQiIpfeB4mboOcz0PoWMBc+uB9/4BT3fbaOzBwbPVqE8MbNbcpNgpCcVvh0wfPdM30dnSKDiWlUk5jGNWldrzpeHv88c1FVErs1C2HZzmPM/vMIi3ccJSPb5mjTLLQah09ncCYzp9D3Dvb3Yli3xuw+msaOpDR2HU0jI9vGliOphb4m14WmO4qIiEh+TidkYWFhnDx5koiICBo0aMDq1atp06YNCQkJGIbrp9mISBWTnQGr3oFqodBhiP1csz7w8Abwrpan6b9Hify9Ldz16VrOZlm5okktJt/WHk+L0zOzS01IgE+x2uXYDFbtPcGqvScgFnw9LXRsWMOe6Bjw6oKd+UaqElMyGDpjPT4eZjJy/knCGtb04/o2dbiuTR2ahgY4ph0Cee6Rm7K+cGN0njVsVpvBwZNnmRG3n49/33/B2IubdIqIiIid0wnZ1VdfzS+//EK7du24++67GTVqFN9//z3r1q1j4MCBpRGjiFQVuxbAvLFwKgF8gqBFf/ALtl/7VzJW0CiR2QQ2AzpG1OCDwR3w8Sx4vZa7dIoMJjzIh6SUjAKn/pmwb049/e5LWZtwklV7T7B63wlOnc3mt93H+W338Qu+R0aOjbBAb65vW5f+resQXTcwz9q5a6PDmXpH+3yfXWGbYlvMJiJr+dMjKqxYCVlxk04RERGxczoh++CDD7DZ7L99HT58ODVr1mTVqlVcf/31/Pe//3V5gCJSBZxMgPlPwK759uOAcOj1HPgWvLFwYXtp5dbCuK1zA/y8yt+uHhaziYn9oxg2Yz0mCh6hmtg/imZhgTQLC+TOmIbYbAY7j6YRt/cEczYnEn/g1AXf542b23JZk1qFXr82OpyeUWFO7YNW3GSyU2TwBeMTERGRfzj9E4vZbMZ83vqN//znP/znP/9xaVAiUkVkn4OVb8LKt8CaCWYP6PIgXDUGvAMKfElRe2mBPTF4dcFObmhbt9ysHTufsyNUZrOJFuGBtAgPpGY1r2IlZMfOFF44JJfFbHJqrVdxk8ny+JmLiIiUZyX6FfJvv/3G+++/z969e/n++++pW7cuX3zxBZGRkVxxxRWujlFEKqsTezBWvIrJsHGsdhcOxzxDq7adCv2h3jAMftp4+KL30nK3koxQQfGnA5bWtEFnk0kRERG5MKcTslmzZnHnnXdy++23s2HDBjIz7b+JTUlJ4YUXXmDu3LkuD1JEKpFzp8G3OgDzj9fioPlmNpwLZd6hTnDoOOELljh+uLfaDHYmpbE24QRr959kbcJJjp/JKvL2ucp7cQlnR6igfEwbLGkyKSIiIgVzOiF77rnnmDZtGoMHD+abb75xnL/88st57rnnXBqciFQiWemw4jVY8z48sJT5RwP/Xgd2fZ5mudUCW9UN5MCJs6Rm5C3R7mE2kVOMjZMrY3GJ8jJtsCTJpIiIiBTM6YRs586ddO3aNd/5oKAgTp8+7YqYRKQyMQzY9hMseBJSDwNg2/Qtk9ZeVuQmw7kbE/t7WejYMJhOkfY/LesEcs3ry6tscQlNGxQREalcSrQP2Z49e2jYsGGe8ytXrqRRo0auiktEKoNjO2Hu45Cw3H5cvQFc+xJrPDqTGLvmgi9/YUA0N19aH49/7SVWHkaJ3EnTBkVERCoPpxOy+++/n0ceeYRPPvkEk8nEkSNHiIuL47HHHuOpp54qjRhFpCJa9hKseBVsOWDxhitGwRUjwdOX5I2Hi3ULfx+PfMkYaJQING1QRESksnA6IXviiSew2Wxcc801nD17lq5du+Lt7c1jjz3GQw89VBoxikhF5OlnT8aa9YXeL0BwpOOSK6oFapRIREREKgOnEzKTycSTTz7J448/zp49ezhz5gxRUVFUq1atNOITkYri6Fb7vmL1OtqPuwyDsFbQuHu+pu0bVMfTYiLbWvAqsuKuA9MokYiIiFR0JdqHDMDLy4uoqChXxiIiFVFGin164pr3IbgRDFsFHl5g8SwwGQOYsmxvkckYVP51YCIiIiLgREJ2zz33FKvdJ598UuJgRKQCsdlg00yInQDpyfZzIS0g6wx4FD6y9cf+k0xeshuAe6+IZO7mxCq7DkxERESk2AnZ9OnTiYiIoF27dhjGhfcAEpFKLHETzH0MDv1dKbHmJdDnZWhyTZEvSzmXzchvNmIzYGD7ujx1XRT/69tC68BERESkyip2QjZs2DC+/vprEhISuPvuu7njjjsIDq6c+/yISBES/4QPuoFhA09/uOpx6DLcPk2xCIZhMP6nLRw+fY4GwX48c0M0oHVgIiIiUrXlryddiClTppCYmMiYMWOYPXs29evX5+abb2bBggUaMROpSsJaQ2RXaDkQRvxhL2d/gWQM4If1h5n95xEsZhNv/6ct1bxLvIRVREREpNIodkIG4O3tza233kpsbCzbtm2jZcuWPPjggzRs2JAzZ86UVowi4k6H18OMm+DsSfuxyQS3zoT/+xSC6hbrFgdOpDPh5y0AjOpxCe0a1CitaEVEREQqFKcSsjwvNJsxmUwYhoHVanVlTCJSHqSfgNmPwIdXw55YWP7KP9c8i7ePGEC21cbD32wkPctKp8hghnVrUgrBioiIiFRMTiVkmZmZfP311/Ts2ZOmTZuyefNmJk+ezMGDB7UPmUhlYbPCHx/D5A4QPx0woPUtcMXIEt3u7UW7+fPQaQJ9PHjzlrYq2CEiIiJynmIv4njwwQf55ptvqF+/Pvfccw9ff/01tWrVKs3YRKSsHVprr56Y+Kf9ODQa+r4KEZeV6HZr9p1gyrI9ALwwsBV1q/u6KlIRERGRSqHYCdm0adNo0KABjRo1Yvny5SxfvrzAdj/88IPLghORMrbhC3sy5h0EVz8JHe8FS8mKb6SczWbUzI0YBvxfh3pc17qOi4MVERERqfiK/ZPW4MGDMZk01UikUrHmQGYq+P29hcU1T4PFC656AqrVLvFtDcPgfz9u5khKBg1r+vH09S1dE6+IiIhIJePUxtAiUokcWAVzH4eAcLj9O3v1RP+a0O/1i771d/F/MWdzIh5mE2//px3+KnEvIiIiUiD9lCRS1aQlwcKnYPO39uPUw/Y/QfVccvuE4+k8/ctWAEb3akqb+tVdcl8RERGRykgJmUhVYc2GNe/DspcgKw0wQYchcM3Ef6YsluS2NoO1CSdJTssg2M+LVxbs4GyWlS6Ngvlv18aui19ERESkElJCJlIVnEyAr/8Dx3bYj+t2tFdPrNv+om47f0sik2ZvIzElI895Py+LStyLiIiIFIMSMpGqILAOWLPAryb0mARtbwdzifeFB+zJ2LAZ6zEKuHY2y8qfh04THqQy9yIiIiJFubifyESkfMrJgnWf2KsoAnh4w81fwEPx0P7Oi07GrDaDSbO3FZiMAZiASbO3YbUV1kJEREREQCNkIpXPnsUwbwyc2AM5mdBlmP18WLTL3mJtwsl80xTPZwCJKRmsTThJTOOaLntfERERkcrGrSNkL774IpdeeikBAQGEhIQwYMAAdu7cmadNt27dMJlMef4MHTo0T5uDBw/Sr18//Pz8CAkJ4fHHHycnJydPm2XLltG+fXu8vb1p0qRJgWX8p0yZQsOGDfHx8aFz586sXbvW5c8sUmpOHYBvbocZA+3JmH8IVAsplbdKTis8GStJOxEREZGqyq0J2fLlyxk+fDirV68mNjaW7OxsevXqRXp6ep52999/P4mJiY4/r7zyiuOa1WqlX79+ZGVlsWrVKj777DOmT5/OhAkTHG0SEhLo168f3bt3Z+PGjYwcOZL77ruPBQsWONrMnDmT0aNHM3HiRNavX0+bNm3o3bs3ycnJpf9BiFyM7AxY/gpM6Qw7fgWTBbo8CA+tg+hBpfKWIQE+Lm0nIiIiUlW5dcri/Pnz8xxPnz6dkJAQ4uPj6dq1q+O8n58fYWFhBd5j4cKFbNu2jUWLFhEaGkrbtm159tlnGTt2LE8//TReXl5MmzaNyMhIXn/dvuFtixYtWLlyJW+++Sa9e/cG4I033uD+++/n7rvvBmDatGnMmTOHTz75hCeeeKI0Hl/ENWY/Apu+sX8dcYW9emJoVKm+ZafIYAJ9PEjNyCnwugkIC/KhU2TJy+mLiIiIVAXlag1ZSkoKAMHBeX+I+/LLL5kxYwZhYWH079+fp556Cj8/PwDi4uJo1aoVoaGhjva9e/dm2LBhbN26lXbt2hEXF0ePHj3y3LN3796MHDkSgKysLOLj4xk3bpzjutlspkePHsTFxRUYa2ZmJpmZmY7j1NRUALKzs8nOzi7hJyC5n50+Qyd0fhCP/SuxXv0URtRAMJmglD+/OZuTikzGAJ7s0wybNQebtVRDuWjqc1KW1N+krKnPSVlTn7Nz5vnLTUJms9kYOXIkl19+OdHR/xQfuO2224iIiKBOnTps2rSJsWPHsnPnTn744QcAkpKS8iRjgOM4KSmpyDapqamcO3eOU6dOYbVaC2yzY8eOAuN98cUXmTRpUr7zCxcudCSLUnKxsbHuDqFcMtuyuOTor5iNHLbXudlx3tToWYwDFjgwr9Rj2H7KxIc7zYCJ5kE2ks6ZOJ31z35jQV4GAxvasB6IZ+6BUg/HZdTnpCypv0lZU5+TslbV+9zZs2eL3bbcJGTDhw9ny5YtrFy5Ms/5Bx54wPF1q1atCA8P55prrmHv3r00bty4rMN0GDduHKNHj3Ycp6amUr9+fXr16kVgYKDb4qrosrOziY2NpWfPnnh6ero7nPLDMDDtmocl9hlMKQcxTBYiB06A4EZlGsb6g6cZO30dVsNGv1ZhvH5TKwDWHThFclomIQHedIyoUaE2hFafk7Kk/iZlTX1Oypr6nF3u7LniKBcJ2YgRI/j1119ZsWIF9erVK7Jt586dAdizZw+NGzcmLCwsXzXEo0ePAjjWnYWFhTnOnd8mMDAQX19fLBYLFoulwDaFrV3z9vbG29s733lPT88q3flcRZ/jeY7vgfljYc8i+3FgPUy9n8czpKl9emIZ2Z6Yyv1frCcj28ZVTWvz5i3t8PKw1wW6omnoBV5d/qnPSVlSf5Oypj4nZa2q9zlnnt2tVRYNw2DEiBH8+OOPLFmyhMjIyAu+ZuPGjQCEh4cDEBMTw+bNm/NUQ4yNjSUwMJCoqChHm8WLF+e5T2xsLDExMQB4eXnRoUOHPG1sNhuLFy92tBEpc1npsGgSTI2xJ2MWL7jyURixFloOKNNk7MCJdO78eC2pGTl0jKjBtDs6OJIxERERESk5t46QDR8+nK+++oqff/6ZgIAAx5qvoKAgfH192bt3L1999RV9+/alZs2abNq0iVGjRtG1a1dat24NQK9evYiKiuLOO+/klVdeISkpifHjxzN8+HDHCNbQoUOZPHkyY8aM4Z577mHJkiV8++23zJkzxxHL6NGjGTJkCB07dqRTp0689dZbpKenO6ouipS5zDPwx0dgzYImPaHPy1Cz7KfpHk3N4I6P13D8TCbNwwL4+K5L8fWylHkcIiIiIpWRWxOyqVOnAvbNn8/36aefctddd+Hl5cWiRYscyVH9+vUZNGgQ48ePd7S1WCz8+uuvDBs2jJiYGPz9/RkyZAjPPPOMo01kZCRz5sxh1KhRvP3229SrV4+PPvrIUfIe4JZbbuHYsWNMmDCBpKQk2rZty/z58/MV+hApVSl/QdDf03YDQqHPK+ATCM36lumIWK7TZ7O48+M1HDp5joiafnx+byeCfKvu9AMRERERV3NrQmYYRpHX69evz/Llyy94n4iICObOnVtkm27durFhw4Yi24wYMYIRI0Zc8P1EXC4zDZa/DKunwq0zock19vNt/uOWRAwgPTOHuz79g11HzxAa6M2Meztro2cRERERFysXRT1EqizDgM3fw8LxcMY+ZZc9sfaEzE2JGEBmjpWhM+LZeOg01f08+eLeztQP1nYOIiIiIq6mhEzEXY5ug7mPw4G/t3qoEWlfJ9a0d9GvczGrzWBtwkmS0zIICfChQ0QNRs3cyG+7j+PnZeHTuy6laWhAmcYkIiIiUlUoIRNxh5VvwuJnwbCChy90fRRiHgLPsp0SOH9LIpNmbyMxJcNxztfTwrlsK14WMx/c2ZF2DWqUaUwiIiIiVYkSMhF3qHmJPRlrcT30fh6qNyjzEOZvSWTYjPX8eyXnuWwrAHddFsEVl9Qq87hEREREqhJtJCRSFhL/hB3/bLNA835w/xK45Qu3JGNWm8Gk2dvyJWPnm70pEaut6MI7IiIiInJxlJCJlKazJ2HOo/BBN/h5uP0Y7AU76nZwW1hrE07mmaZYkMSUDNYmnCyjiERERESqJk1ZFCkNNhts+AIWT4KzJ+znGnUHW4574/pbclrRyZiz7URERESkZJSQibja4fUw9zE4HG8/rt0c+r4KkV3dG9d5gv28itVO+46JiIiIlC4lZCKulHIYPu5pHwnzCoDu46DTA2DxdHdkDusPnuKZX7cW2cYEhAX50CkyuGyCEhEREamilJCJXCzD+GcT56C60H4IZKVDz0kQEObe2M6TnpnDawt3Mn3VfgwDqnl7cCYzBxPkKe6Rux31xP5RWMzu25xaREREpCpQQiZyMQ6thQX/gwFTodYl9nN9XwNz+aqXs2LXMcb9sJnDp88BMLB9XZ7qF8WahBP59iELC/JhYv8oro0Od1e4IiIiIlWGEjKRkjhzDBZNhI1f2o8XP2MvYQ9uScasNoO1CSdJTssgJMA+1dBiNnEqPYtn52zjh/WHAahb3ZcXBrbiqqa1Abg2OpyeUWEFvlZERERESp8SMhFnWHPgj49g6QuQmWI/1+4OuOZpt4U0f0tigaNc/VqF8/PGwxw/k4XJBHdd1pDHejXD3zvv//YWs4mYxjXLOmwRERERQQmZSPEdWAVzHoPkvwtihLeBvq9D/UvdFtL8LYkMm7E+3wbPSSkZfLwyAYCmodV4aVBr2jeoUfYBioiIiEiRlJCJFNehNfZkzLcGXDPBXrzDbHFbOFabwaTZ2/IlY+er5u3Bz8OvwNfLfXGKiIiISOGUkIkUxpoNqUegRoT9uMtwe/XELg+Cn/vLwa9NOJlnmmJBzmTmsPHQaU1JFBERESmnlJCJFGTfcpj7uL2c/dCV9n3EPLzg6vHujswhOa3oZMzZdiIiIiJS9pSQiZwv5S9YOB62/mg/9qsJx3dDaJR74ypASICPS9uJiIiISNlTQiYCkJMJcVNgxauQfRZMZrj0Puj+P/uasXKoRXgAnhYT2daCV5GZsFdb7BTp/umVIiIiIlIwJWQiaUdhel84scd+XL8L9H0Vwlu7N64inM3K4f7P1xWZjAFM7B+lPcVEREREyrGy38FWpDwxDKgWAgHh4B8CN74P98wv18lYRraV+z5bxx/7TxHo48H/+jQnPCjvtMSwIB+m3tGea6PD3RSliIiIiBSHRsik6snOgDXToMOQf6YjDpgKPoHgE+Te2C4gM8fK0BnxrNp7An8vC5/d04l2DWpw75WNWJtwkuS0DEIC7NMUNTImIiIiUv4pIZOqZdcCmDcWTiXYS9r3fcV+vnp998ZVDNlWGw9/vYFlO4/h42nmk7supd3fmz1bzCaVthcRERGpgJSQSdVwMgHmPwG75tuPA8KhQWf3xuQEq81g9Ld/smDrUbw8zHw0+FI6N1ICJiIiIlLRKSGTyi3rLPz+Fqx8C6yZYPawb+x81RjwDnB3dMVisxmMnbWJ2X8ewdNiYtod7bniklruDktEREREXEAJmZQbVpvBmoSTxB83UTPhJDFNQi5+HdSyF2DVu/avG3WDPq9C7aYXHWtZMQyDCb9s4fv4v7CYTbzzn3Zc3TzU3WGJiIiIiIsoIZNyYf6WRCbN3kZiSgZg4fPd6wgP8mFi/yjnKwUaBpj+TuQuewT2LrWPiLW4/p/zFYBhGDw/ZzszVh/EZILX/68NfVqpaqKIiIhIZaKy9+J287ckMmzG+r+TsX8kpWQwbMZ65m9JLN6NstJh0dPw7eB/zlWrDUNXQtQNFSoZA3gjdhcfrUwA4KWBrRjQrq6bIxIRERERV9MImbiV1WYwafY2Ctre2MC+wfGk2dvoGRVW+PRFw4CtP8LC8ZB62H7u0Fqo38n+dQVIxKw2I0/Z+nUHTvLuEvtG1c/c0JJbLm3g5ghFREREpDQoIRO3WptwMt/I2PkMIDElg7UJJwsu6568A+Y9Dgkr7MfVG8C1L0O9S0sn4FKQd7pmXv/r25zBMQ3LPigRERERKRNKyMStth5JKVa7AyfS8yZkWemw9AX7Bs+2HLB4wxWj4IqR4OlbOsGWgtzpmgWNEAI0CPYr03hEREREpGwpIRO32HI4hanL9zJ3U/HWhz09eyv7jqdz7xWRhAb6gMkCO361J2PN+kLvFyA4spSjdq2ipmtCMadrioiIiEiFpoRMXOrfa6E6RQY7kgnDsJe1f2/ZXlbsOuZ4jbeHmcwcW6H39DCbyMi2seS3FXz++x5uaBfBA1c1onH/tyEnC5r2uuB7l7aSvHfstqSLm64pIiIiIhWeEjJxmYLWQoUH+fBUvyg8Pcy8t2wPGw6eBsBsgv5t6jD0qsYcOJHOsBnrAfKMFuWmM1MHNab5zsnU2TWDp7MH88W6Xnwbf4heUaEMvaox7Yp47xKVzXfRc//7vQ3DYO+xdGK3HWXR9qPEHzhVrPsnpxWetImIiIhIxaaETFyisLVQiSkZPPjVesexl4eZmzvW44ErG9Ogpn19VIvwQKbe0T5/UhPoxbTWu2m95BFIt4+oPRJ1lsScUBZtP8qCrfY/TUOrsevomXwx5ZbNn3pH+1JLygp77tz3nnxbO2pV82bR9qMs2p5MwvF0p98jJMDHNcGKiIiISLmjhEwu2oXWQoF9tOuBqxpx7xWRBSYY10aH0zMqjLg9ySz8bQ03tgyg7ZYXMK1ba29Q8xLo8zK1mlzDR8Duo2m8v2IfP67/q8BkDJwom19CFyrZDzDi6w0Y5zXwspiJaVyTHlGhdG9Wm/+bFkdSSkaB9zABYUH26Y8iIiIiUjkpIZOLdqHS9WBPULo1DSlytMdiNtE5MpjAFQtoteArTIYNPP3hqjHQ5UHw8HK0vSQ0gNf+rw3dmtZmxNcbinzf0lqHVaznNsDf20LvqDB6RIXStWltqnn/87/dxP5RDJuxHhMFT9ec2D9KBT1EREREKjElZHLRirvGqbjtTvg3s38RPQh6PQeBdQptazWKGpf7x9zNR4gKDyTIz7PwezlRmCMj28qyXcnFeu/nbojmxvb1Crx2bXR4gdM1w8po/ZuIiIiIuJcSMrlo57KsxWpX6OjY4Xg4vB463Q9Aql8EOUNX4xnarOT3/JcvVh/kq7WH6NQwmJ5RofSMCqX+eXt8Xagwh2EY7DuezvKdx1i26xhr9p0osjLk+cKCit4XLXe6prsqRIqIiIiI+yghkxIzDINPf9/Pi3O3F9mu0LVQ6Sdg8SRY/zmYLdDwSqjR2H4tuFGxYugUGUx4kE+h67AAqnl7UCfIh13JZ4jbd4K4fSd45tdtNA8LoFdUKP7eHrw0b0eBhTmGzlhP16a1SDiezqGT5/JcDw/05nRGTqEJqTNrwCxmk0rbi4iIiFRBSsikRI6lZfL493+ybKe9+mHrukFsPpwCFGMtlM0K8Z/C4mch47T9XPRN4FvD6TgsZtMF12G99n+tuTY6nIMnzrJwWxKx247yx/6T7EhKY0dSWqH3zr3Xil3HAXtBjk6RwXRrVpurmtamSUg1FmxNKrJkv9aAiYiIiEhRzO588xdffJFLL72UgIAAQkJCGDBgADt37szTJiMjg+HDh1OzZk2qVavGoEGDOHr0aJ42Bw8epF+/fvj5+RESEsLjjz9OTk5OnjbLli2jffv2eHt706RJE6ZPn54vnilTptCwYUN8fHzo3Lkza9eudfkzVwbLdibT5+3fWLbzGN4eZp4dEM3PIy5n6h3tCQvKO4UwLMgnb9n5Q2vhg24w51F7MhbaCu6eDwPfh4DQEsWTuw7rQu/doKYf913ZiJn/jSF+fE9e/782XNqweEng472bsnFiT2bc15n7rmzEJaEBmEymYr+3iIiIiEhB3DpCtnz5coYPH86ll15KTk4O//vf/+jVqxfbtm3D398fgFGjRjFnzhy+++47goKCGDFiBAMHDuT3338HwGq10q9fP8LCwli1ahWJiYkMHjwYT09PXnjhBQASEhLo168fQ4cO5csvv2Tx4sXcd999hIeH07t3bwBmzpzJ6NGjmTZtGp07d+att96id+/e7Ny5k5CQEPd8QOVMZo6VV+bv5OOVCQA0DwvgnVvb0TQ0ACjGWqiMVJgxCDJTwScIrn4KOtwNlovvhs6uw6rh78WgDvXwsJj4Y/+FN2iuV8MPP6+C49QaMBEREREpKbcmZPPnz89zPH36dEJCQoiPj6dr166kpKTw8ccf89VXX3H11VcD8Omnn9KiRQtWr15Nly5dWLhwIdu2bWPRokWEhobStm1bnn32WcaOHcvTTz+Nl5cX06ZNIzIyktdffx2AFi1asHLlSt58801HQvbGG29w//33c/fddwMwbdo05syZwyeffMITTzxRhp+KexVWaXBPchoPfb2R7YmpANx1WUOe6NMcH09LntfnWwtls+GYwOcTCN2egORtcM3TUK22S2MvyTqs4hYFuVA7rQETERERkZIoV2vIUlLsa5CCg+1FEOLj48nOzqZHjx6ONs2bN6dBgwbExcXRpUsX4uLiaNWqFaGh/0x36927N8OGDWPr1q20a9eOuLi4PPfIbTNy5EgAsrKyiI+PZ9y4cY7rZrOZHj16EBcXV2CsmZmZZGZmOo5TU+2JSnZ2NtnZ2RfxKbjPgq1HeW7uDpJS/3musEBvujWtzU9/HiEj20YNP09eHhhN92a1ARvZ2YVXGjQdXIVlwRNYr3kGo1E3+8mOD/zToIDPKfezK6vPsF29AMICvTmamlnE5szetKsXUGH/XqVoZd3npGpTf5Oypj4nZU19zs6Z5y83CZnNZmPkyJFcfvnlREdHA5CUlISXlxfVq1fP0zY0NJSkpCRHm/OTsdzrudeKapOamsq5c+c4deoUVqu1wDY7duwoMN4XX3yRSZMm5Tu/cOFC/Pz8CnhF+fbnCROf7MpdUvjPVLuk1Ay+WfcXAM2CbNze5Bzn9v7B3L2F38sn+xRRh2dS/9QqAFJ+GcfKpk85FU9sbKxT7S9G3zATn6Tmf3YwMIA+oWdZMH9emcUj7lGWfU5E/U3KmvqclLWq3ufOnj1b7LblJiEbPnw4W7ZsYeXKle4OpVjGjRvH6NGjHcepqanUr1+fXr16ERgY6MbInGe1Gbz4+gogs4Cr9gQlwMeDH0d2w9OjiDow1mzMf3yA+bdXMGWlY2DC1m4wgd2epK/fhUu/g/23CbGxsfTs2RNPz8I3cXalvkD7AkYHw4N8eLJPc3q3LFmxEakY3NHnpOpSf5Oypj4nZU19zi539lxxlIuEbMSIEfz666+sWLGCevXqOc6HhYWRlZXF6dOn84ySHT16lLCwMEebf1dDzK3CeH6bf1dmPHr0KIGBgfj6+mKxWLBYLAW2yb3Hv3l7e+Pt7Z3vvKenZ4XrfOv2nsiTiBQkLSOHP4+cKXyd1IFVMHskHP+7Smbdjpj6vYalTjssBb+iSGX9OV7Xth59WtdVYY4qrCL+vysVl/qblDX1OSlrVb3POfPsbi17bxgGI0aM4Mcff2TJkiVERkbmud6hQwc8PT1ZvHix49zOnTs5ePAgMTExAMTExLB582aSk5MdbWJjYwkMDCQqKsrR5vx75LbJvYeXlxcdOnTI08Zms7F48WJHm8osOS3j4tulH7MnY3414frJcG8s1GnnogjLRm5hjhva1iWmcU0lYyIiIiJS6tw6QjZ8+HC++uorfv75ZwICAhxrvoKCgvD19SUoKIh7772X0aNHExwcTGBgIA899BAxMTF06dIFgF69ehEVFcWdd97JK6+8QlJSEuPHj2f48OGOEayhQ4cyefJkxowZwz333MOSJUv49ttvmTNnjiOW0aNHM2TIEDp27EinTp146623SE9Pd1RdrMxKVGkwJ8uegIW1sh+3uB76vAKtby7RBs8iIiIiIlWRWxOyqVOnAtCtW7c85z/99FPuuusuAN58803MZjODBg0iMzOT3r1789577znaWiwWfv31V4YNG0ZMTAz+/v4MGTKEZ555xtEmMjKSOXPmMGrUKN5++23q1avHRx995Ch5D3DLLbdw7NgxJkyYQFJSEm3btmX+/Pn5Cn1URp0ig6nh58mpswVXg7FXGrRP4QNgz2KYNwbOnoSH4sEvGEwm6PzfsgtaRERERKQScGtCZhgFFRrPy8fHhylTpjBlypRC20RERDB37twi79OtWzc2bNhQZJsRI0YwYsSIC8ZU2Ww8dIq0jJwCr+VO2pvYPwpLykFY8D/Y8av9pH8InNhrT8hERERERMRp5aKoh7jP7qNp3DN9HTk2g+i6gRxPyyIp9Z+1YmFBPkzq25heJ76An16HnAwwWaDzUOg2FnyC3Bi9iIiIiEjFpoSsCktMOcfgT9aSci6bdg2q89V9XfDyMOetNFjPB8v7V8DJffYXRVwBfV+F0Cj3Bi8iIiIiUgkoIauiUs5mM+STtSSmZNC4tj+fDLkUXy97gfp8pe0bXgnZ56DXcxA9yL5eTERERERELppby96Le2RkW7nv8z/YdfQMoYHefH5vZ2r4e9kvZp2FpS/Y14bl6vkMjPgDWt2kZExERERExIU0QlbF5FhtjPhqA3/sP0WAjwef3dOJutV9wTBgxxyYPw5SDsLheLj9e3sC5lvd3WGLiIiIiFRKSsiqEMMwGP/TFhZtP4qXh5mPBnekeVggHN9jL2O/9++NsQPrQfvB7g1WRERERKQKUEJWhbwZu4tv/jiE2QTv/Kcdnet6w6KnYdVksGWDxQsuexiuHA1e/u4OV0RERESk0lNCVkV8sfoA7yzZA8CzA6K5NjoM4qbAyjftDZr0hD4vQ83GboxSRERERKRqUUJWBczbnMiEn7cAMKp7JLd3jrBfuPQ+2B0Lne6HZn1VsENEREREpIwpIatkrDYjzz5ihmHwyDcb8TfO8l69RVyZsA2sS8HiAR7eMPgnd4csIiIiIlJlKSGrROZvSWTS7G0kpmQ4zpkwuN78O5P8Z1L9+An7yV3zocV1bopSRERERERyKSGrJOZvSWTYjPUY551rZjrIM57T6WzeAVagRiT0eQWa9nJXmCIiIiIich4lZJWA1WYwafY2RzLmRTbjPL7iTkssHiYb5wwvPvO4ifuHvYHFy9etsYqIiIiIyD+UkFUCaxNO5pmmmIUHUeYDeJhszLV24rnsOziSWYs2h84S01gJmYiIiIhIeaGErBJITsv41xkT47PvIdR0ipW2VkW0ExERERERd1JCVgmEBPjkO7fbqMduo94F24mIiIiIiPuY3R2AXLxOkcGEB/lQ2C5iJiA8yIdOkcFlGZaIiIiIiFyAErJKwGI2MbF/FEC+pCz3eGL/KCxmbfwsIiIiIlKeKCGrJK6NDmfqHe0JC8o7LTEsyIepd7Tn2uhwN0UmIiIiIiKF0RqySuTa6HB6RoWxNuEkyWkZhATYpylqZExEREREpHxSQlbJWMwmYhrXdHcYIiIiIiJSDJqyKCIiIiIi4iZKyERERERERNxECZmIiIiIiIibKCETERERERFxEyVkIiIiIiIibqKETERERERExE2UkImIiIiIiLiJEjIRERERERE3UUImIiIiIiLiJkrIRERERERE3EQJmYiIiIiIiJsoIRMREREREXETJWQiIiIiIiJu4uHuACoLwzAASE1NdXMkFVt2djZnz54lNTUVT09Pd4cjVYD6nJQl9Tcpa+pzUtbU5+xyc4LcHKEoSshcJC0tDYD69eu7ORIRERERESkP0tLSCAoKKrKNyShO2iYXZLPZOHLkCAEBAZhMJneHU2GlpqZSv359Dh06RGBgoLvDkSpAfU7KkvqblDX1OSlr6nN2hmGQlpZGnTp1MJuLXiWmETIXMZvN1KtXz91hVBqBgYFV+n9iKXvqc1KW1N+krKnPSVlTn+OCI2O5VNRDRERERETETZSQiYiIiIiIuIkSMilXvL29mThxIt7e3u4ORaoI9TkpS+pvUtbU56Ssqc85T0U9RERERERE3EQjZCIiIiIiIm6ihExERERERMRNlJCJiIiIiIi4iRIyERERERERN1FCJi63YsUK+vfvT506dTCZTPz00095rh89epS77rqLOnXq4Ofnx7XXXsvu3bvztElKSuLOO+8kLCwMf39/2rdvz6xZs/K0OXnyJLfffjuBgYFUr16de++9lzNnzpT240k55Io+t3fvXm688UZq165NYGAgN998M0ePHs3TRn1OAF588UUuvfRSAgICCAkJYcCAAezcuTNPm4yMDIYPH07NmjWpVq0agwYNytefDh48SL9+/fDz8yMkJITHH3+cnJycPG2WLVtG+/bt8fb2pkmTJkyfPr20H0/KGVf1t4cffpgOHTrg7e1N27ZtC3yvTZs2ceWVV+Lj40P9+vV55ZVXSuuxpBxzRZ/7888/ufXWW6lfvz6+vr60aNGCt99+O9976XucnRIycbn09HTatGnDlClT8l0zDIMBAwawb98+fv75ZzZs2EBERAQ9evQgPT3d0W7w4MHs3LmTX375hc2bNzNw4EBuvvlmNmzY4Ghz++23s3XrVmJjY/n1119ZsWIFDzzwQJk8o5QvF5fq2fMAAAuxSURBVNvn0tPT6dWrFyaTiSVLlvD777+TlZVF//79sdlsjnupzwnA8uXLGT58OKtXryY2Npbs7Gx69eqV53vYqFGjmD17Nt999x3Lly/nyJEjDBw40HHdarXSr18/srKyWLVqFZ999hnTp09nwoQJjjYJCQn069eP7t27s3HjRkaOHMl9993HggULyvR5xb1c0d9y3XPPPdxyyy0Fvk9qaiq9evUiIiKC+Ph4Xn31VZ5++mk++OCDUns2KZ9c0efi4+MJCQlhxowZbN26lSeffJJx48YxefJkRxt9jzuPIVKKAOPHH390HO/cudMAjC1btjjOWa1Wo3bt2saHH37oOOfv7298/vnnee4VHBzsaLNt2zYDMP744w/H9Xnz5hkmk8k4fPhwKT2NVAQl6XMLFiwwzGazkZKS4mhz+vRpw2QyGbGxsYZhqM9J4ZKTkw3AWL58uWEY9r7j6elpfPfdd44227dvNwAjLi7OMAzDmDt3rmE2m42kpCRHm6lTpxqBgYFGZmamYRiGMWbMGKNly5Z53uuWW24xevfuXdqPJOVYSfrb+SZOnGi0adMm3/n33nvPqFGjhqP/GYZhjB071mjWrJnrH0IqlIvtc7kefPBBo3v37o5jfY/7h0bIpExlZmYC4OPj4zhnNpvx9vZm5cqVjnOXXXYZM2fO5OTJk9hsNr755hsyMjLo1q0bAHFxcVSvXp2OHTs6XtOjRw/MZjNr1qwpm4eRCqE4fS4zMxOTyZRnE0sfHx/MZrOjjfqcFCYlJQWA4OBgwP6b4ezsbHr06OFo07x5cxo0aEBcXBxg70+tWrUiNDTU0aZ3796kpqaydetWR5vz75HbJvceUjWVpL8VR1xcHF27dsXLy8txrnfv3uzcuZNTp065KHqpiFzV51JSUhz3AH2PO58SMilTuf/Djhs3jlOnTpGVlcXLL7/MX3/9RWJioqPdt99+S3Z2NjVr1sTb25v//ve//PjjjzRp0gSwrzELCQnJc28PDw+Cg4NJSkoq02eS8q04fa5Lly74+/szduxYzp49S3p6Oo899hhWq9XRRn1OCmKz2Rg5ciSXX3450dHRgL2veHl5Ub169TxtQ0NDHX0lKSkpTzKWez33WlFtUlNTOXfuXGk8jpRzJe1vxVGcPilVj6v63KpVq5g5c2aeaf76HvcPJWRSpjw9Pfnhhx/YtWsXwcHB+Pn5sXTpUvr06YPZ/E93fOqppzh9+jSLFi1i3bp1jB49mptvvpnNmze7MXqpiIrT52rXrs13333H7NmzqVatGkFBQZw+fZr27dvn6Zci/zZ8+HC2bNnCN9984+5QpApQf5Oy5oo+t2XLFm644QYmTpxIr169XBhd5eHh7gCk6unQoQMbN24kJSWFrKwsateuTefOnR1Twfbu3cvkyZPZsmULLVu2BKBNmzb89ttvTJkyhWnTphEWFkZycnKe++bk5HDy5EnCwsLK/JmkfLtQnwPo1asXe/fu5fjx43h4eFC9enXCwsJo1KgRgPqc5DNixAhHcZd69eo5zoeFhZGVlcXp06fz/Ab56NGjjr4SFhbG2rVr89wvt0LZ+W3+XSnv6NGjBAYG4uvrWxqPJOXYxfS34iisv+Vek6rHFX1u27ZtXHPNNTzwwAOMHz8+zzV9j/uHfvUrbhMUFETt2rXZvXs369at44YbbgDg7NmzAPlGJiwWi6PiXUxMDKdPnyY+Pt5xfcmSJdhsNjp37lxGTyAVTWF97ny1atWievXqLFmyhOTkZK6//npAfU7+YRgGI0aM4Mcff2TJkiVERkbmud6hQwc8PT1ZvHix49zOnTs5ePAgMTExgL0/bd68OU+SHxsbS2BgIFFRUY42598jt03uPaRqcEV/K46YmBhWrFhBdna241xsbCzNmjWjRo0aF/8gUmG4qs9t3bqV7t27M2TIEJ5//vl876Pvcedxc1ERqYTS0tKMDRs2GBs2bDAA44033jA2bNhgHDhwwDAMw/j222+NpUuXGnv37jV++uknIyIiwhg4cKDj9VlZWUaTJk2MK6+80lizZo2xZ88e47XXXjNMJpMxZ84cR7trr73WaNeunbFmzRpj5cqVxiWXXGLceuutZf684n4X2+cMwzA++eQTIy4uztizZ4/xxRdfGMHBwcbo0aPztFGfE8MwjGHDhhlBQUHGsmXLjMTERMefs2fPOtoMHTrUaNCggbFkyRJj3bp1RkxMjBETE+O4npOTY0RHRxu9evUyNm7caMyfP9+oXbu2MW7cOEebffv2GX5+fsbjjz9ubN++3ZgyZYphsViM+fPnl+nzinu5or8ZhmHs3r3b2LBhg/Hf//7XaNq0qeN7Zm5VxdOnTxuhoaHGnXfeaWzZssX45ptvDD8/P+P9998v0+cV93NFn9u8ebNRu3Zt44477shzj+TkZEcbfY/7hxIycbmlS5caQL4/Q4YMMQzDMN5++22jXr16hqenp9GgQQNj/PjxecrsGoZh7Nq1yxg4cKAREhJi+Pn5Ga1bt85XBv/EiRPGrbfealSrVs0IDAw07r77biMtLa2sHlPKEVf0ubFjxxqhoaGGp6encckllxivv/66YbPZ8rRRnxPDMArsa4Dx6aefOtqcO3fOePDBB40aNWoYfn5+xo033mgkJibmuc/+/fuNPn36GL6+vkatWrWMRx991MjOzs7TZunSpUbbtm0NLy8vo1GjRnneQ6oGV/W3q666qsD7JCQkONr8+eefxhVXXGF4e3sbdevWNV566aUyekopT1zR5yZOnFjgPSIiIvK8l77H2ZkMwzBKb/xNRERERERECqM1ZCIiIiIiIm6ihExERERERMRNlJCJiIiIiIi4iRIyERERERERN1FCJiIiIiIi4iZKyERERERERNxECZmIiIiIiIibKCETERERERFxEyVkIiIiBTAMgx49etC7d+9819577z2qV6/OX3/95YbIRESkMlFCJiIiUgCTycSnn37KmjVreP/99x3nExISGDNmDO+++y716tVz6XtmZ2e79H4iIlL+KSETEREpRP369Xn77bd57LHHSEhIwDAM7r33Xnr16kW7du3o06cP1apVIzQ0lDvvvJPjx487Xjt//nyuuOIKqlevTs2aNbnuuuvYu3ev4/r+/fsxmUzMnDmTq666Ch8fH7788kt3PKaIiLiRyTAMw91BiIiIlGcDBgwgJSWFgQMH8uyzz7J161ZatmzJfffdx+DBgzl37hxjx44lJyeHJUuWADBr1ixMJhOtW7fmzJkzTJgwgf3797Nx40bMZjP79+8nMjKShg0b8vrrr9OuXTt8fHwIDw9389OKiEhZUkImIiJyAcnJybRs2ZKTJ08ya9YstmzZwm+//caCBQscbf766y/q16/Pzp07adq0ab57HD9+nNq1a7N582aio6MdCdlbb73FI488UpaPIyIi5YimLIqIiFxASEgI//3vf2nRogUDBgzgzz//ZOnSpVSrVs3xp3nz5gCOaYm7d+/m1ltvpVGjRgQGBtKwYUMADh48mOfeHTt2LNNnERGR8sXD3QGIiIhUBB4eHnh42P/ZPHPmDP379+fll1/O1y53ymH//v2JiIjgww8/pE6dOthsNqKjo8nKysrT3t/fv/SDFxGRcksJmYiIiJPat2/PrFmzaNiwoSNJO9+JEyf4/3bumFaBKIqi6MkogNChASTQjgdKahoGG+MADGCBZiqoCAJIwAIOJkEDzb/8ZC0Fp925L+/xeOR4PGa1WiVJLpfLX88E4B/wZBEAvrTdbvN+v7Ner3O73fJ6vXI+n7PZbDKOY6bTaWazWQ6HQ57PZ4ZhyH6/r54NwA8SZADwpfl8nuv1mnEc07ZtlstldrtdJpNJmqZJ0zQ5nU653+9ZLBbpui5931fPBuAH+WURAACgiAsZAABAEUEGAABQRJABAAAUEWQAAABFBBkAAEARQQYAAFBEkAEAABQRZAAAAEUEGQAAQBFBBgAAUESQAQAAFBFkAAAART6T/ASfN2I6qQAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"# Plot Work_Mean and its compounding growth trend line with finalized labels\n",
"plt.figure(figsize=(10, 6))\n",
"plt.plot(data[\"Year\"], data[\"Work_Mean\"], label=\"Working Households\", linestyle='-', marker='o', color='red')\n",
"plt.plot(data[\"Year\"], data[\"Trend_Work\"], label=\"1977-2007 Compounding Trend\", linestyle='--', color='black')\n",
"\n",
"# Add shaded regions for recessions\n",
"# Add precise recession markers at the bottom\n",
"plt.fill_betweenx([0, 10000], 1980 + 0/4, 1981 + 1/4, color='gray', alpha=0.5, linewidth=0) # 1980 Q1 to 1981 Q1\n",
"plt.text(1981.4, 1000, \"Recession\", fontsize=10, color=\"gray\", va=\"center\") # Label for 1980-1981 recession\n",
"\n",
"plt.fill_betweenx([0, 10000], 1990 + 2/4, 1991 + 3/4, color='gray', alpha=0.5, linewidth=0) # 1990 Q3 to 1991 Q3\n",
"plt.text(1991.8, 1000, \"Recession\", fontsize=10, color=\"gray\", va=\"center\") # Label for 1990-1991 recession\n",
"\n",
"plt.fill_betweenx([0, 10000], 2008 + 1/4, 2009 + 2/4, color='purple', alpha=0.5, linewidth=0) # 2008 Q2 to 2009 Q2\n",
"plt.text(2009.6, 1000, \"Financial Crisis\", fontsize=10, color=\"purple\", va=\"center\") # Label for 2008-2009 recession\n",
"\n",
"plt.fill_betweenx([0, 10000], 2020 + 0/4, 2020 + 1/4, color='green', alpha=0.5, linewidth=0) # 2020 Q1 to 2020 Q2\n",
"plt.text(2020.5, 1000, \"COVID\", fontsize=10, color=\"green\", va=\"center\") # Label for 2020 recession\n",
"\n",
"# Add updated labels\n",
"plt.xlabel(\"Year\")\n",
"plt.ylabel(\"Mean Household After Tax and Welfare £\")\n",
"\n",
"# Add title and subtitle\n",
"plt.suptitle(\"Average Income of UK Working Households\", fontsize=18, y=0.98) # Bigger title, positioned higher\n",
"plt.title(\"Inflation Adjusted to 2022/23 Prices, Based on ONS Data\", fontsize=12, y=1.00) # Smaller subtitle, positioned lower\n",
"\n",
"# Add legend and grid\n",
"plt.legend()\n",
"plt.grid(True)\n",
"\n",
"# Save the plot as a PNG file\n",
"plt.savefig(\"final.png\", dpi=300, bbox_inches=\"tight\")\n",
"\n",
"# Show the plot\n",
"plt.show()\n",
"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 573
},
"id": "mwXM1yDu6hyE",
"outputId": "1013486a-a08e-4cc3-df97-7aafc3d12f64"
},
"execution_count": 15,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAJJCAYAAADFrfSUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYE9nXB/Bv6E2qVFHAtiKKKCqCBVAEsWLBuitiWwv2sro27A2xrAUrdl37KlZU7IgNu6AoNgQrvQXIff/gzfwISSAoEJTzeZ48ysydmTOTyWRO7p17eYwxBkIIIYQQQggh5U5B3gEQQgghhBBCSGVFCRkhhBBCCCGEyAklZIQQQgghhBAiJ5SQEUIIIYQQQoicUEJGCCGEEEIIIXJCCRkhhBBCCCGEyAklZIQQQgghhBAiJ5SQEUIIIYQQQoicUEJGCCGEEEIIIXJCCRkhhBC5yMvLQ2BgIBo3bgxNTU3weDzweDwcO3ZM3qGRQi5dusS9PyU1aNAg8Hg8DBo0qPQDIxWSv78/eDweXFxcyn3bP3KulsbyhHwPSshIpZeYmAh1dXXuAvzixQt5h0SksLS0pBu7X8j48eMxadIk3L9/H7m5uTA2NoaxsTHU1NRkWl74mfX39y+2rPAGUdJN1vbt27l5r1+/lrqOs2fPcomjjY0N4uLiit3u2rVrwePxoKCggM+fP0stN23aNJn2JyEhgSu3cePGYrdPfoyLi4vMiYWs5xEhhBRGCRmp9Pbs2YOsrCzu723btskxGkIqh9TUVC6hWLZsGbKyspCQkICEhAR06NBBztGJO3DgALp27YqMjAw0b94cV65cQbVq1YpdztXVFQDAGMPly5ellgsLC+P+f+nSJZnKtW3bVobI5c/U1BS//fYbTE1N5R0KIYRUSJSQkUpv69atAIAxY8YAAHbs2IG8vDx5hkTILy8qKgo5OTkAgJEjR1bo5kGbN29Gv379wOfz0a5dO1y4cAEGBgYyLWtjYwMjIyMA0hOt1NRU3Lt3D1paWtDS0sLNmzdFfiQqSLiOatWqoU6dOiXeF3lYvHgxoqKisHjxYnmHQgghFRIlZKRSu3fvHu7fvw9dXV0sW7YMVlZWiI+Px6lTp+QdGiG/tIyMDO7/WlpacoykaEuXLsXw4cMhEAjQvXt3nDx5ssTxCpu7FazdKujatWvIzc1Fy5Yt4eTkhOzsbISHh0ssK1yHsOaNEELIz48SMlKpCWvH+vTpAzU1NQwcOBCA5GaLK1euBI/Hg7GxMXJzc6WukzHGPes0f/58sfl8Ph/r16+Hq6srqlatChUVFZiYmKBbt244ffq01PUKn024dOkSPn36hIkTJ6Ju3brQ0NAQqV3IyMjAvn37MHDgQNjZ2cHQ0BCqqqowMzODl5dXkdsQevToEfr06QMTExOoqamhZs2aGDNmDD59+iTTA8+pqalYsmQJHB0doa+vD1VVVVSvXh19+/aVeqP5owp3HHDo0CG4uLhAX18fGhoasLOzw+rVqyEQCIpcz7t37zB16lTY2dlBR0cH6urqqFWrFrp164adO3dKrLnIy8vDtm3b0LZtW1StWhWqqqqoVq0avL29i2x+Jnw+xd/fH7m5uVi5ciUaN24MLS0tGBkZwcvLCw8ePODKZ2RkYMGCBWjQoAE0NTVhYGCAPn364OXLl0Xu0/eec7Io6b4Ln7Mp+EyO8HySVycA0kybNg3Tpk0DAAwePBgHDx6EqqpqidcjTJ6ePn0q8Tky4XFycXGBs7OzyLSCPnz4wD3jKikhO3LkCDp37gxjY2OoqKjA2NgYnTt3xtGjR6XGVvBzwxjDli1b0KpVKxgYGIDH42H79u0y7ePXr1/h6OgIHo8HKysrPH/+XOI2Civ4GWCMYfPmzXBwcIC2tjaqVKkCR0dH7N69u8ht5+TkIDAwEHZ2dtDU1IS+vj5cXFxw6NAhsW3IW1ZWFlatWgUnJyfo6elBTU0NFhYWGDhwIO7fvy91uYLXf2mK2s/MzEwEBATA0dERenp6UFZWhqGhIerXrw8fHx8cPnxY6nofP36M4cOHo06dOtDQ0ICWlhZsbW0xY8YMfPnyRab9vnDhAjp16gRDQ0OoqanB2toac+fOlVoTLBQZGYmBAwfCwsICampq0NPTg5OTE1atWoXs7GyZti1JVFQUBgwYIPYd9/Hjx2KXjYiIwIABA2BlZQU1NTVoamrCwsICzs7OmD9/Pt6/f//dcZFKjBFSSWVmZjJdXV0GgF2/fp0xxtjLly8Zj8djSkpKLCEhQaR8QkICU1RUZABYSEiI1PVeunSJAWA8Ho/FxsaKzHv9+jWzsbFhALgyOjo63N8A2IgRIySuVzh/8+bNzNjYmAFgampqrEqVKqzgRzk4OFhs/RoaGiLbmDRpktT4jxw5wpSVlbmyWlpaTE1NjQFgpqamIuuXJDIykpmbm3NlFBUVuRiFMS1atEjq9otiYWHBADAfHx+xeT4+Pty80aNHMwBMQUGBe4+Fr4EDB0pd/86dO7l9BcBUVFSYgYEBU1JS4qZFRkaKLJOUlMRcXFxE9ldXV5fxeDxu2uTJkyVuz9nZmQFgf//9N2vXrh23TU1NTZHjf/v2bfblyxfWuHFj7n1XV1fnyhgZGbE3b95I3MaPnHPF+Z59379/PzM2NmZ6enpcGWNjY+7VvXt3mbcvXH7OnDnFlp0zZ47U87bgOR0bG8vy8vLY8OHDZfq8yCIqKopb14EDB8TmN2/enAFgN27cYNeuXWMAWJs2bcTK7dmzh1vPq1evuOnZ2dmsT58+3DwFBQWmp6fHFBQUuGn9+vVjfD5fbJ3Cz83AgQNZz549xZYPDg5mjDEWFhYm9fi9fv2a1atXjwFgjRo1Yh8+fJC4DUmfW+FnYObMmaxbt24MAFNSUmLa2toi5+js2bMlHtu0tDTWpk0bkXNQT0+POwenT5/ObUOW80RafM7OzsWWLXweFfb+/XvWoEEDroyysrLIZ1FBQYGtWbNG4rqFZcLCwoqNtfB+pqSksEaNGolcA3R1dUWuaxYWFhLXuXTpUpHzSENDg6moqHB/m5qasnv37oktJ/y8OTs7s2XLljEej8dtt+D1wdXVleXm5krcdmBgoEhZHR0dke8mW1tbsXONsaLPVcYYO336NFNVVZX6Hbdt2zapy2/fvl0kJlVVVbFzVfiZIaQkKCEjldbu3bsZAFa7dm2R6a1bt2YA2LJly8SW8fT0ZABYnz59pK53yJAhEm+o0tLSuJsWFxcXdunSJZaVlcUYy7+xDQwMZFpaWgwAW7Vqldh6C355/Pbbb+zChQssLy+PMcZYdHQ0V+7YsWNs8uTJ7Nq1ayw9PZ2b/uHDBzZ37lzuC+2///4T28bLly+55K1Jkybszp07jDHGBAIBCw0NZRYWFiI30oV9+PCBGRkZMQCsR48e7M6dO9xN4MePH9msWbO4m4CjR49KPYbSyJKQ6enpMRUVFRYYGMiSk5MZY4x9+fKFDR06lIv7woULYsuHhIRwX7QtW7ZkV69e5Y5vdnY2u3r1Khs2bBh78uSJyHLCm1gVFRW2Zs0a7pjHx8ezwYMHc9vcsGGD2DaFN1C6urrMwMCAHTx4kPH5fCYQCNitW7dYzZo1GQDm5OTEunfvziwtLdnZs2dZXl4ey8vLY+fPn2eGhoYMABswYIDY+n/0nCvOj+x7cTdNsiiLhOz58+esd+/e3N8LFy787vgKMjU1ZQDYyJEjRaanpKQwJSUlpqmpyXJyclh2djZTV1dnqqqqLCMjQ6Ss8BwufPM8adIk7kZ71qxZLDExkTHG2Ldv39jff//N7ctff/0lFpfwc6OlpcWUlJRYQEAA97lJTU3lbnilvV8PHjxgZmZm3M21cFlJ2ygqIdPT02M6Ojps+/bt3H6/e/eOdenShUtWnj9/Lrb8n3/+yc1funQpS01NZYwx9vnzZzZ27Fju8yXvhCw3N5c5ODhwicXu3btZdnY2Yyz/utu5c2fuPTx16pTYun8kIZs/fz4DwPT19dnhw4e5a0BeXh6Li4tjO3fuZMOGDRNb35YtW7hzY+HChSw+Pp7blzt37rC2bdsyAMzc3Jw77kLCz5uuri5TUFBg06dPZ58/f2aMMZacnMxmz57N7dPWrVvFtn3ixAlufrdu3bgfILKzs9nOnTu5H/mcnJzEErqiri3v3r3jEihbW1sWERHBHYvTp08zc3NzkR/xCkpPT+e2+/vvv7OYmBhuXlpaGrtz5w6bMmUKO3nypPibQ0gxKCEjlZarqysDwObNmycyffPmzQwAq1evntgy+/btY0B+DYWkG4/MzEzuF88tW7aIzJs3bx73xS7pl2rG8munALCqVauynJwckXnCLwhtbW327t27ku4uZ/ny5QwAa9eundg8YTJpZGTEvn79KjY/KipK5JfFwoQ34f3795e6/cDAQAbk/5JeUrIkZEX9Qmlvb88AsKFDh4pMz8nJYVZWVgwAa9WqFXejVJybN29y29y4caPEMsKkpWrVqiwzM1NknvAGCgC7evWq2LIXLlzg5qurq7MXL16Ildm6dSs3v/B59aPnXFF+dN8rakLWpEkT7gY/KCjou2MrrH///gwAs7a2Fpl+6tQpBoC1b9+emya80S38w0Ht2rUZADZo0CBu2vv377kfOaZPny5x2xMnTmRAfo2MtNorAFJrZxiT/H5dunSJu955e3tzN/qFyZKQAWAXL14Um5+VlcUlfAsWLBCZ9+bNG672Zv78+UVu+0cTMmVlZZGaXEmvgjUlhROy/fv3c/POnj0rtp2cnBwuYWvQoIHY/B9JyIQ/JJakZUJKSgqXmJw5c0ZimZycHO6aunLlSpF5BT9v0o57jx49GADm5uYmNs/a2poBYK1bt5ZYg3b8+HFu/QcPHhSZV9S1ZeTIkQwAMzAwYB8/fhSb/+jRI5FauIIiIiIYAO7HE0JKEyVkpFISNk2U1KwwOTmZaw4mbMoolJGRwX3pFk64GGPs33//5RK2pKQkkXnCZEJSzZSQQCDg1n/z5k2RecIviNGjR5dwb0U9ffqUAflNTwp+0QkEApl+Sf7jjz8kflllZmZyzT4ePHggdfkvX75wyxduFlocWRKy6tWrM4FAIHH5uXPnMgCsefPmItPPnTvHxXT79m2Z45kwYQL3C7GwNq0w4fEGwI4fPy4yT3gD1apVK4nL5ubmcgnwH3/8IbHM+/fvufUXrr370XOuKD+67xU1IRO+OnXq9N1xSSL8oafweT9lyhQGiNbECc/TmTNnctPevXvHLb9jxw5u+urVq4v8kYix/Joy4XlUOOkqWLNc1A8Rhd+vgwcPcuv08/OTeg4U3EZRCVnLli2lLu/r68sAsN69e4tMF/64o6GhwdLS0iQuGxMTUyoJWUlfhb9XunfvzgAwR0dHqdsSJucA2MOHD0Xm/UhC1q9fPwaAjRkzRub9Fn4mGjduXGS5gIAABoB16NBBZLrw86aqqipWeya0Y8cOBuT/AFjQgwcPikxehYRNfXv06CEyXdq1RSAQMH19fQaAzZgxQ+p6hcer8PLR0dFccl7S7y5CikOdepBKKTg4GIwxtG7dGpaWliLztLW14eXlBeB/nX4Iqauro1evXgCAXbt2ia1XOK1bt27Q0dHhpsfFxeHNmzcAgCFDhsDExETiy9TUFGlpaQDAlS+sZcuWxe7fx48fMWfOHDg6OsLAwABKSkrcQ+H169cHkN9BRGJiIrfMq1evkJSUBABcxwKSSOt04e7du9wD2u7u7lL30cbGhltG2j7+iGbNmkntcMTMzAwA8O3bN5HpN27cAACYmJigadOmMm/rzp07API7WFBQkHw5tba25sarEpYvrHnz5hKnKyoqomrVqgDy90sSY2Nj7v8F38/SPOckKa19r2icnJwAACdPnsSkSZNKbb0FPzcFO2YQ/r/gZ05Sxx4F/1+wQw/hcW3WrBm0tbUlbltPT487r6W9D82aNYOKikqx+wEA69atQ58+fZCdnY2FCxfin3/+kXoOyMrBwUHqPGmf23v37gEAmjZtCk1NTYnL1qpVC9WrV/+h2ID894Tl/4gt9RUcHCx1eeFxd3Nzk1rG1dUVioqKIuVLQ+fOnQHkD1Ler18/HDt2rNjOOK5fvw4AePbsmdRrh4mJCebNmwdA+rXDxsZGaq+k0t5X4b4rKSkV+V3Uvn17kfLFiY2N5bZV1Bh+0ubVqlUL9erVQ05ODhwcHLB06VLcv3+fhskhpYISMlLpCAQCrucwYa+Khfn4+ADIHwxWeLMqJFzmypUrIl9Cnz9/xpkzZySu98OHD9z/v3z5go8fP0p9CXsBLNgteEHCMY2kCQ8PR7169TBv3jzcvHkT3759g7q6OoyMjGBsbMzd4ANAenq6SPxCwi9KSaQNhltwH4vav4K9WEnbxx9RpUoVqfOUlJQAgBv/SighIQEAYGFhUaJtffr0CYD0YyJkbm4uUr4wWWKWVkY4HxDdr9I85yQprX2vaLZv344ePXoAAAIDAzFhwoRSWW/t2rW5YyFMroTjj2loaIgk5Q4ODlBVVcWtW7eQmZkpskzt2rVFEozSeh+Ku64U5OfnB4FAgNGjR+Pvv/+WebmifM/nVnjNKup6BRR/bMqDLO+Tmpoad30uzc9L//79MW7cOPB4POzfvx/du3eHoaEh6tSpg9GjR+Pu3btiywivH1lZWUVeO1JSUgBIv3bI8r4W7rVYuO/CXlulKem1pWC5ot4H4XoLU1RUxP79+2FlZYU3b95g2rRpaNy4MbS1tdG+fXts2LChTL7TSOVACRmpdM6ePct1Szt06FCRLreFrw4dOgAA0tLScODAAZHl27RpAwsLCzDGRLpj3r9/P3Jzc2FsbAx3d3eRZQr+gvbs2bNif2lljEnsIhoA9wuqJLm5uejXrx+SkpJgZ2eHU6dOISUlBampqfj48SMSEhJw8+ZNrjxjTOJ6vmeQ3oL7mJmZKdM+VpQuzivyoMTfqzTPuYpKTU0NALikpSjCGyXhMtIoKyvj33//5WrCV61ahfHjx/9YoP9PWLMlHEvs6tWryMvLg6OjI5SVlblyampqcHBwAJ/P52oqynr8saKuK4X9/vvvAPIHzD5x4kSZxFMSv+Lnt7StWrUK0dHRWLRoETw9PaGrq4uYmBisX78eTZs2FTvHhdePPn36yHTteP36dfnvlBw0atQIUVFROHz4MIYPH44GDRogMzMT58+fx6hRo1CvXj08evRI3mGSnxAlZKTSKdwMsaTleTwed0NSsNmi8P/9+vUTqbUA8pvCCZVFMz2h8PBwvHnzBoqKiggJCYGnp6fYL5TC2qDCDA0Nuf8XrF0pLC4uTuL08trHsiCMvaRxC2sViht3Rji/JLUQP6qs34+KsO/C2gRp52RBwjIFz3NplJSUsG/fPvTu3RsAsHr1aowdO/YHIs0nTKaio6ORkJAgMv5YYQWbLb579w6vXr0SWYeQPN6HHTt2wMfHB3w+Hz179sSxY8d+eJ3fQ/heFnW9AmQ7P8qaLO9TVlYWvn79KlJeSJgwFzVuV3JycpEx1K5dG9OnT8epU6fw9etXhIeHc83zV69ejePHj3Nlv/eaWBqE+/7ly5cixxor6TldsFxR50Rx54uKigp69OiBjRs34tGjR/j8+TOCgoKgr6+Pd+/ecS1sCCkJSshIpfL582fuS+fQoUNITU2V+rp16xaA/OeLoqOjRdYjbJIYHR2N27dvc/8WnFeQpaUl10SiLH9RfvfuHYD8GxVpTTLOnz8vcXrNmjWhq6sLQPKgtELS5hV8BqUi/GpeEsLnhhISEkr07IbwuZywsDCpA05HRUVxX/DSngMrC2V9zlWEfbe3twfwv+ddpGGMcWWEyxRHSUkJe/fuRd++fQEA//zzD/z8/H4gWtFkKiwsTOLzY0LCaWFhYVztGCCevBV8NkzaDXlSUpLIs2Y/SkFBAdu2bcPgwYORk5OD3r17FzmwcFlp0qQJgPx9L9j8uqBXr15x10V5Er5PFy5ckFrm0qVLXPO9wu+Tnp4eAEjdl9TUVDx79kzmeBQUFNCiRQscOnQINWrUAACEhoZy84XPKt+9exfx8fEyr7c0CI9Vbm4uLl++LLWc8LtM1nPaysoK+vr6ACDymSrs4sWLsoYKADAwMMCff/6JpUuXAsgfzFqYWBMiK0rISKWya9cu5OTkQEdHB126dIGWlpbUV7NmzVCvXj0A4rVkdevW5R5C37lzJ1c71qBBAzRu3FjitocNG8atKzIyssg4Cz/kLCthRyKFn9USev/+PdasWSNxWR6Pxz07ExQUJNJBhNCLFy/EmnAKaWpqon///gCApUuX4u3bt0XG+r37WBZcXV1Rs2ZNAMCECRPA5/NlWk54sx4XF4ctW7ZILDN79mwA+bU5RT3QXxbK8pyrCPvep08fAMDr16+xb98+qeX279/P/dIvrPWShaKiInbv3s2d1+vWrcOoUaOkNvUtjqWlJdeJ0IkTJ3Dv3j2oq6tL7NBC2Izx9u3bOHXqFACgXr16MDU1FSnXs2dPKCkpISsri7shLGzRokXIzs6GsrIyevbs+V2xF6agoIAtW7Zg+PDhyMnJQd++faVeG8pKjx49oKCggPT0dKxevVpimYULF5ZrTNIIPy/h4eE4d+6c2Pzc3Fyug4wGDRqgQYMGIvMbNWoEAFIT34CAAKm1SUXVMikqKnI/pBXsmMXb2xu6urrIycnBxIkTizznBQIB1yFUabC1teU6n1qwYIHETjNOnTqFiIgIAPmtUmTB4/G4z39QUJDEjk2ePn2KQ4cOSVy+qOMI5Hf6JfSjndyQSqi0u20kpCKrX78+A8AGDhwoU/lZs2YxAMzY2Fhs3JG1a9cyIH+MJWH34kuXLpW6rtTUVNawYUMG5A8M+s8//7AvX75w8xMTE9mpU6fYH3/8werXry+2PGTo9jgpKYlpamoyIH9gauGA0bm5uezMmTOsVq1azMDAQGrXzC9evOC6/G/atCm7d+8eYyy/u+ALFy4wKyurYgeGFo4ZZGZmxnbu3MlSUlK4+Z8+fWKHDh1iXl5ezN3dXep+SCNLt/eS5gkJu3IuPLAuY/ldTgsHhm7VqpXYwNBhYWFswIABRQ4M/c8//4gMjlxwMOqiBoYuqjtu4T5LG1uNMennxo+ec8X5kX0vjW7vC47dpKamxgICAtinT5+4+R8/fmQBAQFc9+wODg4SxzQqakBfxvIHjf3999+5Mn/++afUoRWKI+zCXVFRkQH5gylL4+TkJFK28KDSQgUHhp49ezY3MHRiYiKbOXMmF3dRA0MX9blhrOiuxEeNGsXFuXfv3hJtQ5bPgLALdUmDMw8bNozb9vLly7ku1r98+cINzVARB4bes2cPNzbgq1evWNeuXbllJQ0MLRykGQCbPXs2N8TB58+f2fTp05mCgoLU/WzUqBEbM2YMCwsLExkeIC4ujvn5+XHrLTze2Pbt27l5np6e7ObNm9w1MS8vjz19+pQFBASwevXqsV27doksW9R7JlTUNaDgwNBeXl7cwNB8Pp/t3r2bG6qjpANDv3nzhhvc2c7OjhvmRCAQsLNnz7IaNWpIHRh6+/btzMnJiQUFBbGXL19y04Xfr+bm5sUObUCINJSQkUojPDycu8ieOHFCpmUePnzILXPs2DGReV++fGEqKircfAUFBRYXF1fk+uLi4liLFi24ZXg8HtPV1RUZUBQAq127ttiysiRkjDG2YcMGkXVpaWlx44NVrVpVZEBNSTefBw8e5AaaBcCqVKnCNDQ0GABWrVo17qZDVVVV4vafPn3K6tatK3Jc9PX1uURR+JI0GGhxyjIhYyx/XJyCA1+rqqoyAwMDkeMRGRkpskxSUpLIWEVKSkpMT0+PS+4AsMmTJ0vcXlknZIz92DlXnB/Z99JIyBjL/xFAeKMrfGlra4vtn4ODA4uPj5e4juISMsbyb0AHDhzIlRs2bNh3JWU7d+4UiWvu3LlSy06fPl2k7IEDBySWy87OZr179xb5zOnp6XGDJgNg/fr1kzg4+I8mZEJjxozhEqPCN+dlmZClpqayVq1acbEpKiqKnIMzZ85kbdq0YQDY4sWLi9xHSUorIWMsf8xAGxsbroyKiorIzb+CggJbvXq1xHXn5uYyV1dXkc+xcD95PB5bvny51GMpvIYU/PwXvh5PmDBB4nY3bNgg8j0nvCYWHDwZANu9e7fIcj+akDGWP85cwWuJrq6uSCwNGzaU+J1b3HpDQkJErvNVqlThfog0NTVl27Ztk7h84fEKhcei4OfMzMyMPXv2TOo+EyIN1amSSkPY7FBHR0esF0RpGjZsCGtra5HlhQwMDNCxY0fu73bt2hXb/bKZmRmuXbuGffv2oWvXrjA1NUVGRgb4fD4sLS3RpUsXrFq1CleuXCnJrokYMWIETp48CRcXF2hpaSE3NxfVqlXDmDFj8ODBAzRs2LDI5Xv16oU7d+7A29sbhoaGyM7OhrGxMcaNG4fIyEiuWaTwebPCrK2t8fDhQ2zcuBHu7u6oWrUqUlJSwBhD7dq14e3tjU2bNpV78yZZDBw4EFFRURg/fjzq168PJSUlZGZmwsLCAl5eXti1axd3Pgjp6OjgwoUL2Lp1K1xcXFClShWkpaXBxMQEPXv2RFhYGJYvXy6nPSrbc64i7LupqSmuXbuGvXv3olu3bjA3Nwefzwefz4e5uTm6deuGvXv34tq1ayIdnZSUgoICgoODuZ4oN2/ejGHDhpW4+WLhTjmKGmep4Dwejye1V1IVFRX8+++/OHToEDw9PWFgYIDU1FQYGBjA09MTR44cwd69e0V6cixta9aswYQJE5CXlwcfHx9uaJGypqWlhQsXLmD58uWwtbWFiooKGGNwdnbGkSNHMH/+fK45nbRrVnmpVq0a7ty5g8DAQLRo0QLq6urIyMhA9erV8ccff+Du3btSO49RVFTEyZMnMXfuXNSrVw8qKirg8Xhwd3dHaGgoJk+eLHW7+/fvx9y5c9GuXTtYWVmBz+cjJycHFhYW6NOnDy5cuIDAwECJy44YMQLR0dGYPHkyGjVqBFVVVSQlJUFLSwtNmzbFmDFjEBoaKnOzwZKYMGEC7ty5g99//x3Vq1dHRkYG1NXV0aJFC6xcuRK3b98u9jtXkk6dOuHevXvo27cvjIyMwOfzYWxsDD8/P0RGRsLKykricl27dsXOnTvh6+uLRo0aQUdHB8nJyahSpQqaN2+O+fPn48mTJ9yjDoSUBI+V9NuEEFKpzZgxA4sWLULbtm2LfECdEELkLS0tDQYGBuDz+bhy5Qpat24t75AIIUQM1ZARQmT2+fNnrgMH4VhthBBSUQUGBoLP50NfX79cezklhJCSoISMECJizZo1WLJkCWJiYrgumLOzs3Hq1Cm0adMGnz59gqGhIQYPHiznSAkhlV1qair69u2LM2fOiPT09+bNG0yZMgX+/v4AgPHjxxc7KDghhMgLNVkkhIgYP34814W0oqIidHR0kJKSwiVnOjo6OHbsmNTnWQghpLwkJSVxY3QBQJUqVQDkJ2pCPXv2xP79+6GkpFTu8RFCiCzo6kQIEeHj4wNFRUVcuXIFcXFx+Pr1K9TV1WFlZQUPDw+MGzdO6qDThBBSnrS0tLB27VqEhobi8ePH+Pz5MzIzM2FqaoqmTZti4MCB6NmzJ3g8nrxDJYQQqaiGjBBCCCGEEELkhJ4hI4QQQgghhBA5oYSMEEIIIYQQQuSEEjJCCCGEEEIIkRNKyAghhBBCCCFETighI4QQQgghhBA5oYSMEEIIIYQQQuSEEjJCCCGEEEIIkRNKyAghhBBCCCFETighI4QQQgghhBA5oYSMEEIIIYQQQuSEEjJCCCGEEEIIkRNKyAghhBBCCCFETighI4QQQgghhBA5oYSMkEokLS0NQ4cOhYmJCXg8HsaPH4/Xr1+Dx+Nh+/btpbotS0tLDBo0qFTXWV62b98OHo+H169fc9NcXFzg4uIit5i+16VLl8Dj8XDp0iV5h0LKGL3X5cPf3x88Hk/eYRBCfiGUkBHyExEmCnfu3Pmu5RctWoTt27dj5MiR2LVrF/74448fiufGjRvw9/dHUlLSD62nrKxfvx48Hg8ODg7yDqVYixYtwrFjx+S2/bJ6Ly9cuIDBgwejbt260NDQQM2aNTF06FDEx8dLjaNVq1bQ0NCAiYkJxo4di7S0NJEyt2/fhp+fH2xsbKCpqYkaNWqgd+/eeP78uUg5gUCA7du3o2vXrqhevTo0NTXRoEEDLFiwAFlZWVJj7tmzJzp27Fji+BctWoQWLVrA0NAQampqqFOnDsaPH4/Pnz/LdKx4PB73UlBQgJmZGdzd3X/ZBMvS0lJkn4XHbMqUKfj27Zu8w/upMMawa9cutGnTBrq6utDQ0EDDhg0xb948pKeni5V3cXEBj8dDly5dxOYJf6QLCAgQm+7r64tatWpBTU0NJiYmaNOmDebMmVNsfMIkVvjS0NBAjRo10KVLFwQHByM7O/u79/3UqVPw9/f/7uUJqQiU5B0AIaT8XLx4ES1atBD5Ai1YC1RSN27cwNy5czFo0CDo6uqKzIuOjoaCgnx/89mzZw8sLS1x69YtxMTEoHbt2t+9rnPnzpViZOIWLVqEXr16wcvLq0y3I01R7+WP+Ouvv/Dt2zd4e3ujTp06ePXqFdauXYuQkBDcv38fJiYmXNn79++jXbt2sLa2RmBgIN6/f4+AgAC8ePECp0+f5sotXboU169fh7e3N2xtbZGQkIC1a9eiSZMmuHnzJho0aAAAyMjIgK+vL1q0aIERI0bAyMgI4eHhmDNnDi5cuICLFy+K1XTk5OQgNDQUixcvLnH8d+/ehZ2dHfr27YsqVarg2bNn2Lx5M06ePIn79+9DU1Oz2OPVvn17DBw4EIwxxMbGYv369Wjbti1OnjwJT0/PIpdt06YNMjMzoaKiUvwbU0HY2dlh0qRJAICsrCzcvXsXq1atwuXLl3Hr1i05R/dzyMvLQ//+/XHgwAG0bt0a/v7+0NDQwNWrVzF37lwcPHgQ58+fh7GxsdiyISEhuHv3Luzt7YvcRkxMDJo1awZ1dXUMHjwYlpaWiI+Px71797B06VLMnTtXplg3bNgALS0tZGdnIy4uDmfPnsXgwYOxatUqhISEoHr16iXe/1OnTmHdunWUlJGfGyOE/DSCg4MZAHb79u3vWt7Kyop16tRJZFpsbCwDwIKDg0u8vuXLlzMALDY29rviKUuvXr1iANiRI0eYoaEh8/f3l3lZ4XEuz/3S1NRkPj4+pb7esLAwBoCFhYUVWa6s3svLly+zvLw8sWkA2IwZM0Sme3p6MlNTU5acnMxN27x5MwPAzp49y027fv06y87OFln2+fPnTFVVlQ0YMICblp2dza5fvy4W09y5cxkAFhoaKjbvwoULIsehJPFLcujQIQaA7du3r9iyANjo0aNFpj18+JABYO7u7lKXy8zMFIvxZ2BhYSF2PWKMscmTJzMA7Pnz53KIqnhz5sxhFen2adGiRQwAmzx5sti848ePMwUFBdahQweR6c7OzqxGjRpMT0+PdenSRWSe8Dth+fLl3LRRo0YxJSUl9vr1a7FtfPz4sdgYhcfs8+fPYvN2797NFBQUmIODQ7HrkWT06NEV6v0g5HtQk0VCfnKDBg2ClpYW4uLi4OXlBS0tLRgaGmLy5MnIy8sD8L9nS2JjY3Hy5Emu2Yi02rGHDx9i0KBBqFmzJtc0ZfDgwfj69StXxt/fH1OmTAEAWFlZia1T0jNkr169gre3N/T19aGhoYEWLVrg5MmTImWEsR44cAALFy6Eubk51NTU0K5dO8TExMh8XPbs2QM9PT106tQJvXr1wp49eySWe/LkCdq2bQt1dXWYm5tjwYIFEAgEYuUKP0Mm6TmzgvEXbGb24sUL9OzZEyYmJlBTU4O5uTn69u2L5ORkAPlN1dLT07Fjxw7uOBY8dnFxcRg8eDCMjY2hqqoKGxsbbNu2TSzG9+/fw8vLC5qamjAyMsKECRNkagpU3HuZm5uL+fPno1atWlBVVYWlpSX+/vtvmdbdpk0bsZrSNm3aQF9fH8+ePeOmpaSkIDQ0FL///ju0tbW56QMHDoSWlhYOHDjATXNychKrBapTpw5sbGxE1qmiogInJyexmLp37w4AImWFTp48ifr168PS0rJE8UsjXM/3NgVt2LAhqlatitjYWAD/O7/279+PmTNnolq1atDQ0EBKSorUZ8giIiLQsWNH6OnpQVNTE7a2tli9erVImaioKPTq1Qv6+vpQU1ND06ZNcfz4cZEyOTk5mDt3LurUqQM1NTUYGBigVatWCA0N/a59k0ZY66ik9L9GPLJckwAgNTUV48ePh6WlJVRVVWFkZIT27dvj3r17IuUiIiLQoUMH6OjoQENDA87Ozrh+/bpYLNeuXUOzZs2gpqaGWrVqYePGjSXal4MHD8Le3h7q6uqoWrUqfv/9d8TFxYmUkeUaLk1mZiaWL1+OunXrcrW6BXXp0gU+Pj44c+YMbt68KTKvSpUqmDBhAk6cOCF2fAp7+fIlzM3NYWFhITbPyMioyGWLM2DAAAwdOhQREREi59LVq1fh7e2NGjVqQFVVFdWrV8eECROQmZnJlRk0aBDWrVsHQLTJr1BAQACcnJxgYGAAdXV12Nvb49ChQz8ULyFlgZosEvILyMvLg4eHBxwcHBAQEIDz589jxYoVqFWrFkaOHAlra2vs2rULEyZMgLm5OddEyNDQUOLzLaGhoXj16hV8fX1hYmKCJ0+eYNOmTXjy5Alu3rwJHo+HHj164Pnz59i3bx9WrlyJqlWrcuuU5OPHj3ByckJGRgbGjh0LAwMD7NixA127dsWhQ4e4m2ShJUuWQEFBAZMnT0ZycjKWLVuGAQMGICIiQqZjsmfPHvTo0QMqKiro168fNmzYgNu3b6NZs2ZcmYSEBLi6uiI3NxfTpk2DpqYmNm3aBHV1dZm2IQs+nw8PDw9kZ2djzJgxMDExQVxcHEJCQpCUlAQdHR3s2rULQ4cORfPmzTF8+HAAQK1atQDkH7cWLVqAx+PBz88PhoaGOH36NIYMGYKUlBSMHz8eQP6NWbt27fD27VuMHTsWZmZm2LVrFy5evFhsjMW9l0OHDsWOHTvQq1cvTJo0CREREVi8eDGePXuGo0ePlviYpKWlIS0tjdsOADx69Ai5ublo2rSpSFkVFRXY2dkhMjKyyHUyxvDx40fY2NgUu/2EhAQAENm+0KlTp9C5c+cSx18wjq9fvyI3NxcvXrzAtGnToKio+N0dwiQmJiIxMVGsue38+fOhoqKCyZMnIzs7W2ozxdDQUHTu3BmmpqYYN24cTExM8OzZM4SEhGDcuHEA8n+UaNmyJapVq8Z9Dg4cOAAvLy8cPnyY+2z6+/tj8eLF3LmakpKCO3fu4N69e2jfvv137V9OTg6+fPkCIL/JYmRkJAIDA9GmTRtYWVmJ7Edx1yQAGDFiBA4dOgQ/Pz/Ur18fX79+xbVr1/Ds2TM0adIEQH7TbU9PT9jb22POnDlQUFBAcHAw2rZti6tXr6J58+YA8s9Jd3d3GBoawt/fH7m5uZgzZ47Epn+SbN++Hb6+vmjWrBkWL16Mjx8/YvXq1bh+/ToiIyNFmgYXdw2X5tq1a0hMTMS4ceNEEtiCBg4ciODgYISEhKBFixYi88aNG4eVK1fC399fLAEvyMLCAufPn8fFixfRtm1bmfa/JP744w9s2rQJ586d486lgwcPIiMjAyNHjoSBgQFu3bqFf/75B+/fv8fBgwcBAH/++Sc+fPiA0NBQ7Nq1S2y9q1evRteuXTFgwADw+Xzs378f3t7eCAkJQadOnUp9Pwj5bvKuoiOEyE5Sk0UfHx8GgM2bN0+kbOPGjZm9vb3INElNhCQ1WczIyBDb9r59+xgAduXKFW5aUc3cLCwsRJrgjR8/ngFgV69e5aalpqYyKysrZmlpyTW5Ejaxs7a2FmmWtnr1agaAPXr0SMKREXXnzh2RJmkCgYCZm5uzcePGiZQTxhQREcFN+/TpE9PR0RHbL2dnZ+bs7Mz9La1ZY+EmgpGRkQwAO3jwYJExS2uyOGTIEGZqasq+fPkiMr1v375MR0eHe69WrVrFALADBw5wZdLT01nt2rV/qMni/fv3GQA2dOhQkenCZmUXL14scr2SzJ8/nwFgFy5c4KYdPHhQ7PwS8vb2ZiYmJkWuc9euXQwA27p1a7Hbd3NzY9ra2iwxMVFkurCZa3HHSlL8QvHx8QwA9zI3N2f//vtvsTExlt9kcciQIezz58/s06dPLCIigrVr144BYCtWrGCM/e/8qlmzptjntPC5l5uby6ysrJiFhYXYvgoEAu7/7dq1Yw0bNmRZWVki852cnFidOnW4aY0aNZLYxPB7WVhYiBwr4atly5Zi57us1yQdHR2xZp8FCQQCVqdOHebh4SFyDDIyMpiVlRVr3749N83Ly4upqamxN2/ecNOePn3KFBUVi20ix+fzmZGREWvQoAHLzMzkpoeEhDAAbPbs2dy0klzDCxN+7o8ePSq1zLdv3xgA1qNHD26as7Mzs7GxYYz9rwnv3bt3GWOSmyw+fvyYqaurMwDMzs6OjRs3jh07doylp6cXGZ9QUU0WGWMsMTGRAWDdu3fnpkl6zxcvXsx4PJ7Ie1JUk8XC6+Dz+axBgwasbdu2MsVNSHmhJouE/CJGjBgh8nfr1q3x6tWr71pXwRqirKwsfPnyhftltbimLdKcOnUKzZs3R6tWrbhpWlpaGD58OF6/fo2nT5+KlPf19RX51b9169YAINM+7dmzB8bGxnB1dQWQ35SlT58+2L9/v0gToFOnTqFFixbcL+JAfq3QgAEDvmsfJdHR0QEAnD17FhkZGSValjGGw4cPo0uXLmCM4cuXL9zLw8MDycnJ3Ptx6tQpmJqaolevXtzyGhoaXI3b9zp16hQAYOLEiSLThbWshZucFufKlSuYO3cuevfuLfJLu7AZkqqqqtgyampqIs2UCouKisLo0aPh6OgIHx+fIre/aNEinD9/HkuWLBHrvOTkyZPQ0dEROUdljV9IX18foaGhOHHiBObNm4eqVauK9RJZlK1bt8LQ0BBGRkZwcHDA9evXMXHiRK4mVMjHx6fYmtzIyEjExsZi/PjxYvsqrFH69u0bLl68iN69eyM1NZU7v75+/QoPDw+8ePGCa2Knq6uLJ0+e4MWLFzLvT3EcHBwQGhqK0NBQhISEYOHChXjy5Am6du0q8p7Lek3S1dVFREQEPnz4IHF79+/fx4sXL9C/f398/fqV29/09HS0a9cOV65cgUAgQF5eHs6ePQsvLy/UqFGDW97a2hoeHh7F7tedO3fw6dMnjBo1Cmpqatz0Tp06oV69ehI/N99zDU9NTQWQ3/xQGuG8lJQUifPHjRsHPT29IjvmsLGxwf379/H777/j9evXWL16Nby8vGBsbIzNmzcXGaMstLS0APxvfwDR9zw9PR1fvnyBk5MTGGPF1phLWkdiYiKSk5PRunXr7/4eI6SsUEJGyC9ATU1NrKmgnp4eEhMTv2t93759w7hx42BsbAx1dXUYGhpyzYeEzz2V1Js3b/Dbb7+JTbe2tubmF1TwJgjI3x8Axe5TXl4e9u/fD1dXV8TGxiImJgYxMTFwcHDAx48fceHCBZGY6tSpI7YOSXF+LysrK0ycOBFbtmxB1apV4eHhgXXr1sl0HD9//oykpCRs2rQJhoaGIi9fX18AwKdPn7h9qV27tlivgT+6L2/evIGCgoJYkzkTExPo6uqKvW9FiYqKQvfu3dGgQQNs2bJFZJ7wxknSc2lZWVlSk4+EhAR06tQJOjo6OHToEBQVFaVu/99//8XMmTMxZMgQic3ATp48CXd3d6lNv4qKX0hFRQVubm7o3LkzZs2ahXXr1mHIkCEICQmRGldB3bp1Q2hoKM6fP4+IiAh8+fIFK1asEHuOrWBzPmlevnwJAFyvk5LExMSAMYZZs2aJnWPC3liF59i8efOQlJSEunXromHDhpgyZQoePnwo035JU7VqVbi5ucHNzQ2dOnXC33//jS1btuDGjRsix1jWa9KyZcvw+PFjVK9eHc2bN4e/v79IUiNMJn18fMT2d8uWLcjOzkZycjI+f/6MzMzM774+CD8XksrWq1dP7HPzvddwYbJVMJEprLikTUdHB+PHj8fx48eLTHTq1q2LXbt24cuXL3j48CEWLVoEJSUlDB8+HOfPny8yzuIIf7QoGOPbt28xaNAg6Ovrc8/VOTs7A5D9e0jYTFNNTQ36+vowNDTEhg0bvvt7jJCyQs+QEfILKOom9Hv07t0bN27cwJQpU2BnZwctLS0IBAJ06NBBYocXZUHaPjHGilzu4sWLiI+Px/79+7F//36x+Xv27IG7u/sPxydtYFhJD+GvWLECgwYNwn///Ydz585h7NixWLx4MW7evAlzc3Op2xAe699//11qzY+tre13RF9yPzoQ7rt37+Du7g4dHR2cOnVK7ObQ1NQUACSO7xUfHw8zMzOx6cnJyfD09ERSUhKuXr0qsYxQaGgoBg4ciE6dOiEoKEhsfkZGBi5duoQNGzZ8V/zSODk5wdTUFHv27Cn22TQAMDc3h5ubW7HlSus5R+E5NnnyZKk1P8JkvE2bNnj58iV3Hm/ZsgUrV65EUFAQhg4dWirxAEC7du0A5NdGjhkzBoDs16TevXujdevWOHr0KM6dO4fly5dj6dKlOHLkCDw9Pbmyy5cvh52dncTtC7tlL0/few0X/qD18OFDqUNmCJPm+vXrS12P8FmyuXPnYtWqVcXG2rBhQzRs2BCOjo5wdXXFnj17ZDpvpXn8+DGA/51reXl5aN++Pb59+4a//voL9erVg6amJuLi4jBo0CCZvoeuXr2Krl27ok2bNli/fj1MTU2hrKyM4OBg7N2797tjJaQsUEJGCBGRmJiICxcuYO7cuZg9ezY3XVIzpZLcpFtYWCA6OlpselRUFDe/NOzZswdGRkZcz1sFHTlyBEePHkVQUBDU1dVhYWEhcb8kxVmYsMaucO950mqMhDcwM2fOxI0bN9CyZUsEBQVhwYIFACQfS0NDQ1SpUgV5eXnF3uxYWFjg8ePHYIyJrEuWfZG2feF6BQIBXrx4wd38AfmdjSQlJcn0vn39+hXu7u7Izs7GhQsXuOSroAYNGkBJSQl37txB7969uel8Ph/3798XmQbk15p16dIFz58/x/nz54u82YyIiED37t3RtGlTHDhwQGIN2MWLF5GdnS1xrC9Z4i9KVlaWXH6RF3YM8/jxY6nnT82aNQEAysrKMt1Q6+vrw9fXF76+vkhLS0ObNm3g7+9fqglZbm4ugP/VmpTkmgTkJ/ejRo3CqFGj8OnTJzRp0gQLFy6Ep6cnd0y0tbWL3F9DQ0Ooq6t/9/VB+LmIjo4Wa9oaHR1date7Vq1aQVdXF3v37sWMGTMkJnY7d+4EgCJ/EBDWkvn7+xfb7LcgYSc80gZ6l5WwQw7hjwKPHj3C8+fPsWPHDgwcOJArJ6lHT2nXrsOHD0NNTQ1nz54VaQodHBz8Q7ESUhaoySIhRITwC71wTZSkX02FA93K0qV3x44dcevWLYSHh3PT0tPTsWnTJlhaWhZ5Qy2rzMxMHDlyBJ07d0avXr3EXn5+fkhNTeV6E+vYsSNu3rwpMgDt58+fpXaRX5Dwxu7KlSvctLy8PGzatEmkXEpKCneDKdSwYUMoKCiI/AqvqakpdhwVFRXRs2dPHD58mPsFuaCCPWR27NgRHz58EOnSOSMjQyweaaS9lx07dgQg/v4HBgYCQLE9laWnp6Njx46Ii4vDqVOnJDYBA/JvCN3c3LB7926R5le7du1CWloavL29uWl5eXno06cPwsPDcfDgQTg6Okrd/rNnz9CpUydYWloiJCREas3SqVOn0LRpU7Ee9GSNPz09XeIzgocPH0ZiYqJY75HloUmTJrCyssKqVavE3lfh59vIyAguLi7YuHGjxJvqgudY4S7mtbS0ULt27VKvTTpx4gQAoFGjRgBkvybl5eWJJb5GRkYwMzPjYrS3t0etWrUQEBAg8dk+4f4qKirCw8MDx44dw9u3b7n5z549w9mzZ4vdh6ZNm8LIyAhBQUEix+f06dPcOVkaNDQ0MHnyZERHR2PGjBli80+ePInt27fDw8NDrIfFwoTPGs6bN09s3tWrV5GTkyM2XfiM6Y80jd67dy+2bNkCR0dHrnZU0nvOGBMbrgGQfu1SVFQEj8cTabXw+vVrHDt27LtjJaSsUA0ZIUSEtrY22rRpg2XLliEnJwfVqlXDuXPnuHGQCrK3twcAzJgxA3379oWysjK6dOnCfUEWNG3aNOzbtw+enp4YO3Ys9PX1sWPHDsTGxuLw4cNiz8h8j+PHjyM1NRVdu3aVOL9FixYwNDTEnj170KdPH0ydOhW7du1Chw4dMG7cOK7bewsLi2KfjbGxsUGLFi0wffp0fPv2Dfr6+ti/f79Y8nXx4kX4+fnB29sbdevWRW5uLnbt2sUlW0L29vY4f/48AgMDYWZmBisrKzg4OGDJkiUICwuDg4MDhg0bhvr16+Pbt2+4d+8ezp8/j2/fvgEAhg0bhrVr12LgwIG4e/cuTE1NsWvXLmhoaMh07KS9l40aNYKPjw82bdqEpKQkODs749atW9ixYwe8vLy4jlOkGTBgAG7duoXBgwfj2bNnImN3aWlpiTSzWrhwIZycnODs7Izhw4fj/fv3WLFiBdzd3dGhQweu3KRJk3D8+HF06dIF3759w+7du0W2+fvvvwPIf3bGw8MDiYmJmDJlilhHCrVq1eKSuVOnTnHP5X1P/C9evICbmxv69OmDevXqQUFBAXfu3MHu3bthaWnJdTFfnhQUFLBhwwZ06dIFdnZ28PX1hampKaKiovDkyRMusVi3bh1atWqFhg0bYtiwYahZsyY+fvyI8PBwvH//Hg8ePACQ3+TNxcUF9vb20NfXx507d7gu5oVev34NKysr+Pj4YPv27cXGGBcXx71/fD4fDx48wMaNG1G1alWuuaKs16TU1FSYm5ujV69eaNSoEbS0tHD+/Hncvn0bK1as4I7Jli1b4OnpCRsbG/j6+qJatWqIi4tDWFgYtLW1uYRw7ty5OHPmDFq3bo1Ro0YhNzcX//zzD2xsbIq9PigrK2Pp0qXw9fWFs7Mz+vXrx3V7b2lpiQkTJsjwDspm2rRpiIyMxNKlSxEeHo6ePXtCXV0d165dw+7du2FtbY0dO3YUux4dHR2MGzdOYuceS5cuxd27d9GjRw+umfS9e/ewc+dO6Ovri3U6I82hQ4egpaUFPp+PuLg4nD17FtevX0ejRo24ruyB/OfsatWqhcmTJyMuLg7a2trcjxuFCa9dY8eOhYeHBxQVFdG3b1906tQJgYGB6NChA/r3749Pnz5h3bp1qF279g8/+0hIqZNT746EkO8grdt7TU1NsbLCboYLkrXb+/fv37Pu3bszXV1dpqOjw7y9vdmHDx8YADZnzhyR5efPn8+qVavGFBQURLpNL9ztPWOMvXz5kvXq1Yvp6uoyNTU11rx5cxYSEiJSRth1d+Fu4iXFWViXLl2YmppakV0xDxo0iCkrK3Pdaj98+JA5OzszNTU1Vq1aNTZ//ny2devWYru9F+6Pm5sbU1VVZcbGxuzvv/9moaGhIl2Pv3r1ig0ePJjVqlWLqampMX19febq6srOnz8vsq6oqCjWpk0brmvpgsfu48ePbPTo0ax69epMWVmZmZiYsHbt2rFNmzaJrOPNmzesa9euTENDg1WtWpWNGzeOnTlzRqau3BmT/l7m5OSwuXPnMisrK6asrMyqV6/Opk+fLtJNujTSujYHwCwsLMTKX716lTk5OTE1NTVmaGjIRo8ezVJSUkTKODs7S11nwXNeeM5IewmP8ePHjxkAduvWre+O//Pnz2z48OGsXr16TFNTk6moqLA6deqw8ePHS+3quzAARXbZzpj0z0fBeYXf62vXrrH27duzKlWqME1NTWZra8v++ecfkTIvX75kAwcOZCYmJkxZWZlVq1aNde7cmR06dIgrs2DBAta8eXOmq6vL1NXVWb169djChQsZn8/nyjx69IgBYNOmTSt2fwsfWwUFBWZkZMT69evHYmJiRMrKck3Kzs5mU6ZMYY0aNeL2tVGjRmz9+vVi246MjGQ9evRgBgYGTFVVlVlYWLDevXuLDWVw+fJlZm9vz1RUVFjNmjVZUFCQxGurNP/++y9r3LgxU1VVZfr6+mzAgAHs/fv3ImVKcg2XJi8vjwUHB7OWLVsybW1tpqamxmxsbNjcuXNZWlqaWPmC3d4XlJiYyA37UbDb++vXr7PRo0ezBg0aMB0dHaasrMxq1KjBBg0axF6+fFlsfMJ9Eb7U1NSYubk569y5M9u2bZvEa8nTp0+Zm5sb09LSYlWrVmXDhg1jDx48EPseyM3NZWPGjGGGhoaMx+OJHLOtW7eyOnXqMFVVVVavXj0WHBxcouNKSHnhMVbME/KEEELQunVrqKqq/nBvYqTiWbZsGQIDAxEfH//DnZdUduvXr8fUqVPx8uVLmQdQJoSQyo6eISOEEBnEx8ejatWq8g6DlAFLS0usXLmSkrFSEBYWhrFjx1IyRgghJUA1ZIQQUoQbN27gyJEjWLFiBTZt2oRhw4bJOyRCCCGE/EIoISOEkCL4+vri9OnT6NevH5YvXy510GBCCCGEkO9BCRkhhBBCCCGEyAk9Q0YIIYQQQgghckIJGSGEEEIIIYTICT0MUUoEAgE+fPiAKlWqUE9dhBBCCCGEVGKMMaSmpsLMzAwKCkXXgVFCVko+fPiA6tWryzsMQgghhBBCSAXx7t07mJubF1mGErJSUqVKFQD5B11bW1vO0fy8cnJycO7cObi7u0NZWVne4ZBKgM45Up7ofCPljc45Ut7onMuXkpKC6tWrczlCUSghKyXCZora2tqUkP2AnJwcaGhoQFtbu1J/iEn5oXOOlCc630h5o3OOlDc650TJ8igTdepBCCGEEEIIIXJCCRkhhBBCCCGEyAklZIQQQgghhBAiJ/QMWTlijCE3Nxd5eXnyDqXCysnJgZKSErKysug4kXJR0c45RUVFKCkp0fAZhBBCSCVBCVk54fP5iI+PR0ZGhrxDqdAYYzAxMcG7d+/ohpSUi4p4zmloaMDU1BQqKiryDoUQQgghZYwSsnIgEAgQGxsLRUVFmJmZQUVFpcLc+FU0AoEAaWlp0NLSKnYQPUJKQ0U65xhj4PP5+Pz5M2JjY1GnTh25x0QIIYSQskUJWTng8/kQCASoXr06NDQ05B1OhSYQCMDn86GmpkY3oqRcVLRzTl1dHcrKynjz5g0XFyGEEEJ+XfK/+6hEKsLNHiGk4qNrBSGEEFJ50Lc+IYQQQgghhMgJJWSkwvD390eTJk2kzt++fTt0dXXLL6CfwKVLl8Dj8ZCUlPRD6+HxeDh27JjU+a9fvwaPx8P9+/d/aDuEEEIIIUQUJWQ/m7w84NIlYN++/H/LsJvuoKAgVKlSBbm5udy0tLQ0KCsrw8XFRaSsMDF4+fJlmcXTp08fPH/+vMzWL1RU4ldc4kIIIYQQQkhJUEL2MzlyBLC0BFxdgf798/+1tMyfXgZcXV2RlpaGO3fucNOuXr0KExMTREREICsri5seFhaGGjVqoFatWiXejnB8tuKoq6vDyMioxOsnhBBCCCGkoqKE7Gdx5AjQqxfw/r3o9Li4/OllkJT99ttvMDU1xaVLl7hply5dQrdu3WBlZYWbN2+KTHd1dQUAZGdnY+zYsTAyMoKamhpatWqF27dvi5Tl8Xg4ffo07O3toaqqimvXrolt/+XLl6hZsyb8/PzAGBOrufL394ednR127doFS0tL6OjooG/fvkhNTeXKpKamYsCAAdDU1ISpqSlWrlwJFxcXjB8/vlSO0aNHj9C2bVuoq6vDwMAAw4cPR1paGjdf0ra8vLwwaNAg7u/169ejTp06UFNTg7GxMXr16sXNEwgEWLx4MaysrKCuro5GjRrh0KFDYnHcvXsXTZs2hYaGBpycnBAdHS0yf8OGDahVqxZUVFTw22+/YdeuXUXu161bt9C4cWOoqamhadOmiIyMFJmfmJiIAQMGwNDQEOrq6qhTpw6Cg4OLO1yEEEIIIaQQSsjkhTEgPV22V0oKMHZs/jKS1gMA48bllytuXZLWUQRXV1eEhYVxf4eFhcHFxQXOzs7c9MzMTERERHAJ2dSpU3H48GHs2LED9+7dQ+3ateHh4YFv376JrHvatGlYsmQJnj17BltbW5F5Dx8+RKtWrdC/f3+sXbtW6rhtL1++xLFjxxASEoKQkBBcvnwZS5Ys4eZPnDgR169fx/HjxxEaGoqrV6/i3r17JToG0qSnp8PDwwN6enq4ffs2Dh48iPPnz8PPz0/mddy5cwdjx47FvHnzEB0djTNnzqBNmzbc/MWLF2Pnzp0ICgrCkydPMGHCBPz++++4fPmyyHpmzJiBFStW4M6dO1BSUsLgwYO5eUePHsW4ceMwadIkPH78GH/++Sd8fX1F3teC0tLS0LlzZ9SvXx93796Fv78/Jk+eLFJm1qxZePr0KU6fPo1nz55hw4YNqFq1qsz7TQghhBBC8tE4ZPKSkQFoaZXOuhjLrznT0Sm+bFoaoKkp86pdXV0xfvx45ObmIjMzE5GRkXB2dkZOTg6CgoIAAOHh4cjOzoarqyvS09OxYcMGbN++HZ6engCAzZs3IzQ0FFu3bsWUKVO4dc+bNw/t27cX22ZERAT69euHGTNmYNKkSUXGJxAIsH37dlSpUgUA8Mcff+DChQtYuHAhUlNTsWPHDuzduxft2rUDAAQHB8PMzKzY/U5OToZWMe/P3r17kZWVhZ07d0Lz/4/p2rVr0aVLFyxduhTGxsbFbuft27fQ1NRE586dUaVKFVhYWKBx48YA8msaFy1ahPPnz8PR0REAULNmTVy7dg0bN26Es7Mzt56FCxdyf0+bNg2dOnVCVlYW1NTUEBAQgEGDBmHUqFEA8pPUmzdvIiAggEuiC++XQCDA1q1boaamBhsbG7x//x4jR44Uibtx48Zo2rQpAMDS0rLYfSWEEEIIIeIoISNFcnFxQXp6Om7fvo3ExETUrVsXhoaGcHZ2hq+vL7KysnDp0iXUrFkTNWrUwMOHD5GTk4OWLVty61BWVkbz5s3x7NkzkXULb+YLevv2LXr06IEFCxZgwoQJxcZnaWnJJWMAYGpqik+fPgEAXr16hZycHDRv3pybr6Ojg99++63Y9VapUkViTVqdOnW4/z979gyNGjXikjEAaNmyJQQCAaKjo2VKyNq3bw8LCwvUrFkTHTp0QIcOHdC9e3doaGggJiYGGRkZYkkrn8/nkjahgjWMpqamAIBPnz6hRo0aePbsGYYPHy5SvmXLlli9erXEmIQ1lgUHJBYmhEIjR45Ez549ce/ePbi7u8PLywtOTk7F7i8hhBBCCBFFCZm8aGjk11bJ4soVoGPH4sudOgUUaO4mdbslULt2bZibmyMsLAyJiYlcLYyZmRmqV6+OGzduICwsDG3bti3RegGIJDJChoaGMDIywv79+zFkyBBoa2sXuQ5lZWWRv3k8HgQCQYljKUxBQQG1a9culfWwQs1Ec3JyuP8LE79Lly7h3LlzmD17Nvz9/XH79m3uWbSTJ0+iWrVqIutQVVUV+bvgcRA27yyN4yCNp6cn3rx5g1OnTiE0NBTt2rXD6NGjERAQUGbbJIQQQggpSl5eHhQVFeUdRonRM2TywuPlNx2U5eXuDpib5y8jbV3Vq+eXK25d0tZRBFdXV1y6dAmXLl0S6e6+TZs2OH36NG7dusU1fRN2HHH9+nWuXE5ODm7fvo369esXuy11dXXs378fampq8PDwEOmgo6Rq1qwJZWVlkQ5FkpOTS63rfGtrazx48ADp6enctOvXr0NBQYGrhTM0NER8fDw3Py8vD48fPxZZj5KSEtzc3LBs2TI8fPgQr1+/xsWLF1G/fn2oqqri7du3qF27tsirevXqJYqz4PshjFPa+2FtbY2HDx+K9KJZsAMXIUNDQ/j4+GD37t1YtWoVNm3aJHNMhBBCCCGlhTGGJUuWwNPTU6aeuysaSsh+BoqKgLB5WeGESvj3qlX55cqAq6srrl27hvv374s8t+Ts7IyNGzeCz+dzCZmmpiZGjhyJKVOm4MyZM3j69CmGDRuGjIwMDBkyRKbtaWpq4sSJE1BSUoKnp6dIr4UlUaVKFfj4+GDKlCkICwvDkydPMGTIECgoKEjtJKQkBgwYADU1Nfj4+ODx48cICwvDmDFj8Mcff3DNFdu2bYuTJ0/i5MmTiIqKwsiRI0UGcQ4JCcGaNWtw//59vHnzBjt37oRAIMBvv/2GKlWqYPLkyZgwYQJ27NiBly9f4t69e/jnn3+wY8cOmeOcMmUKtm/fjg0bNuDFixcIDAzEkSNHxDrqEOrfvz94PB6GDRuGp0+f4tSpU2I1X7Nnz8Z///2HmJgYPHnyBCEhIbC2ti75QSSEEEII+QHp6eno06cPpk+fjtDQ0J9yvFhKyH4WPXoAhw4BhZquwdw8f3qPHmW2aVdXV2RmZqJ27doiz0U5OzsjNTWV6x5faMmSJejZsyf++OMPNGnSBDExMTh79iz09PRk3qaWlhZOnz4Nxhg6deokUgtVEoGBgXB0dETnzp3h5uaGli1bwtraWuT5qO+loaGBs2fP4tu3b2jWrBl69eqFdu3aYe3atVyZwYMHw8fHBwMHDoSzszNq1qwp0pGGrq4ujhw5grZt28La2hpBQUHYt28fbGxsAADz58/HrFmzsHjxYlhbW6NDhw44efIkrKysZI7Ty8sLq1evRkBAAGxsbLBx40YEBweLDe4tpKWlhRMnTuDRo0do3LgxZsyYgaVLl4qUUVFRwfTp02Fra4s2bdpAUVER+/fvL8HRI4QQQgj5MbGxsXBycsLBgwehrKyMoKAgkeGDfhpMjiwsLBgAsdeoUaMYY4xlZmayUaNGMX19faapqcl69OjBEhISRNbx5s0b1rFjR6aurs4MDQ3Z5MmTWU5OjkiZsLAw1rhxY6aiosJq1arFgoODxWJZu3Yts7CwYKqqqqx58+YsIiKiRPuSnJzMALDk5GSxeZmZmezp06csMzOzROuUKDeXsbAwxvbuzf83N/fH11mB5OXlscTERJaXl1cm609LS2M6Ojpsy5YtZbJ+8vMp63Pue5TqNYNUKHw+nx07dozx+Xx5h0IqCTrnSHkrr3Pu9u3bTF9fnwFgxsbG7OrVq2W6vZIqKjcoTK41ZLdv30Z8fDz3Cg0NBQB4e3sDACZMmIATJ07g4MGDuHz5Mj58+IAeBWqC8vLy0KlTJ/D5fNy4cQM7duzA9u3bMXv2bK5MbGwsOnXqBFdXV9y/fx/jx4/H0KFDcfbsWa7Mv//+i4kTJ2LOnDm4d+8eGjVqBA8PD663vgpFURFwcQH69cv/9yd8cLE8RUZGYt++fVxzvwEDBgAAunXrJufICCGEEELI96pduzYMDAzQrFkz3LlzB61atZJ3SN9NrgmZoaEhTExMuFdISAhq1aoFZ2dnJCcnY+vWrQgMDETbtm1hb2+P4OBg3Lhxg+tg4Ny5c3j69Cl2794NOzs7eHp6Yv78+Vi3bh34fD4AICgoCFZWVlixYgWsra3h5+eHXr16YeXKlVwcgYGBGDZsGHx9fVG/fn0EBQVBQ0MD27Ztk8txIaUrICAAjRo1gpubG9LT03H16lUaxJgQQggh5CfD5/O53qt1dXURGhqKK1euwNzcXM6R/ZgK0+09n8/H7t27MXHiRPB4PNy9exc5OTlwc3PjytSrVw81atRAeHg4WrRogfDwcDRs2FDkuSYPDw+MHDkST548QePGjREeHi6yDmGZ8ePHc9u9e/cupk+fzs1XUFCAm5sbwsPDpcabnZ2N7Oxs7u+UlBQA+T0KFuzWXDiNMQaBQFCmXZH/CoQfMuHx+lGNGjUS6WVRiN4HIlTa51xpEAgEYIwhJyfnp+y+l0gn/H4o/D1BSFmhc46Ut7I65969ewdvb2/88ccfGD16NID8YZjKYluloSQxVZiE7NixY0hKSsKgQYMAAAkJCVBRUYGurq5IOWNjYyQkJHBlCg++K/y7uDIpKSnIzMxEYmIi8vLyJJaJioqSGu/ixYsxd+5csennzp2DRqGxvpSUlGBiYoK0tDSu5o4U7Ue6uyfke1Skc47P5yMzMxNXrlz5KbvvJcUTNtEnpLzQOUfKW2mec0+ePMGyZcuQnJyM2NhYmJiYQF1dvdTWXxYyMjJkLlthErKtW7fC09OTy3QruunTp2PixInc3ykpKahevTrc3d3FBjPOysrCu3fvoKWlVSq9+/3KGGNITU1FlSpVSqVrekKKUxHPuaysLKirq6NNmzZ0zfjF5OTkIDQ0FO3btxcb2J6QskDnHClvpXnOMcawefNmzJkzB7m5ubC1tcWhQ4dgaWlZOsGWIWHrOVlUiITszZs3OH/+PI4cOcJNMzExAZ/PR1JSkkgt2cePH2FiYsKVuXXrlsi6Pn78yM0T/iucVrCMtrY21NXVoaioCEVFRYllhOuQRFVVFaqqqmLTlZWVxU6+vLw88Hg8KCgoQEGBRhooirDJmPB4EVLWKuI5JxwrT9L1hPwa6L0l5Y3OOVLefvScy87OxpgxY7B582YAQJ8+fbB161ZoamqWVohlqiT7XiHuPoKDg2FkZIROnTpx0+zt7aGsrIwLFy5w06Kjo/H27Vs4OjoCABwdHfHo0SOR3hBDQ0Ohra2N+vXrc2UKrkNYRrgOFRUV2Nvbi5QRCAS4cOECV4YQQgghhBBSPvLy8tC+fXts3rwZPB4PS5Yswb59+36aZKyk5F5DJhAIEBwcDB8fHygp/S8cHR0dDBkyBBMnToS+vj60tbUxZswYODo6okWLFgAAd3d31K9fH3/88QeWLVuGhIQEzJw5E6NHj+Zqr0aMGIG1a9di6tSpGDx4MC5evIgDBw7g5MmT3LYmTpwIHx8fNG3aFM2bN8eqVauQnp4OX1/f8j0YhBBCCCGEVHKKioro1q0bHj58iP3796NDhw7yDqlMyT0hO3/+PN6+fYvBgweLzVu5ciUUFBTQs2dPZGdnw8PDA+vXr+fmKyoqIiQkBCNHjoSjoyM0NTXh4+ODefPmcWWsrKxw8uRJTJgwAatXr4a5uTm2bNkCDw8PrkyfPn3w+fNnzJ49GwkJCbCzs8OZM2fEOvoghBBCCCGElI3k5GTo6OgAyK8w6dev30/Tv8SPkHtC5u7uznU7XZiamhrWrVuHdevWSV3ewsICp06dKnIbLi4uiIyMLLKMn58f/Pz8ig+YEFIqBg0ahKSkJBw7dgxA/ufUzs4Oq1atkmtc5aXw/hNCCCGVVXZ2NsaOHYsrV67g1q1bXEdblSEZAyrIM2Sk4rpy5Qq6dOkCMzMz8Hg8iTePHz9+xKBBg2BmZgYNDQ106NABL1684Oa/fv0aPB5P4uvgwYMAgO3bt4PH40FRURF6enpQVFTkyhR8RrCwzZs3o3Xr1tDT04Oenh7c3NzEOnphjGH27NkwNTWFuro63NzcROIDgG/fvmHAgAHQ1taGrq4uhgwZgrS0NG6+v7+/xPhlact8+PBhuLi4QEdHB1paWrC1tcW8efPw7du3YpetTI4cOYL58+eX2fqlnYcFz7nt27eX2fYJIYQQIu7t27do3bo1Nm3ahOjo6Eo5RAMlZKRI6enpaNSokdRaSsYYvLy88OrVK/z333+IjIyEhYUF3NzckJ6eDgCoXr064uPjRV5z586FlpYWPD09AeQ3G42Pj0dcXByioqIQFxcHDw8PODs7w8jISGp8ly5dQr9+/RAWFobw8HBu6IG4uDiuzLJly7BmzRoEBQUhIiICmpqa8PDwQFZWFldmwIABePLkCUJDQxESEoIrV65g+PDh3PzJkyeL7UP9+vXh7e1d5PGbMWMG+vTpg2bNmuH06dN4/PgxVqxYgQcPHmDXrl3FvwGViL6+PqpUqVJm6y98Hk6aNAk2NjYi51yfPn248nl5eRVmoGhCCCHkV3T+/HnY29vj9u3b0NfXx+nTp9GjRw95h1X+GCkVycnJDABLTk4Wm5eZmcmePn3KMjMz5RBZ6QHAjh49KjItOjqaAWCPHz/mpuXl5TFDQ0O2efNmqeuys7NjgwcPFpuel5fHEhMTWUJCAlNWVmY7d+4sUYy5ubmsSpUqbMeOHYwxxgQCATMxMWHLly/nyiQlJTFVVVW2b98+xhhjT58+ZQDY7du3uTKnT59mPB6PxcXFSdzO/fv3GQB25coVqbFEREQwAGzVqlUS5ycmJnL/X79+PatZsyZTVlZmdevWFdtvACwoKIh16tSJqaurs3r16rEbN26wFy9eMGdnZ6ahocEcHR1ZTEwMt8ycOXNYo0aNWFBQEDM3N2fq6urM29ubJSUlcWXy8vLY3LlzWbVq1ZiKigpr1KgRO336NDc/LCyMARCJNTIykgFgsbGxjDHGgoODmY6ODjtz5gyrV68e09TUZB4eHuzDhw/cMrm5uWzChAlMR0eH6evrsylTprCBAweybt26cWWcnZ3ZuHHjuL8tLCzYwoULma+vL9PS0mLVq1dnGzduFDku169fZ40aNWKqqqrM3t6eHT16lAFgkZGR0t4WseMjPOe2bt3KdHR02H///cesra2ZoqIii42NZVlZWWzSpEnMzMyMaWhosObNm7OwsDBuPaW1/wX9KtcMIo7P57Njx44xPp8v71BIJUHnHClvspxzeXl5bNGiRUxBQYEBYE2aNOHuK34VReUGhVENmZylp6dLfRWswSmubGZmZrFly0J2djYAiAxeq6CgAFVVVVy7dk3iMnfv3sX9+/cxZMgQqevdtWsXNDQ00KtXrxLFk5GRgZycHOjr6wMAYmNjkZCQADc3N66Mjo4OHBwcEB4eDgAIDw+Hrq4umjZtypVxc3ODgoICIiIiJG5ny5YtqFu3Llq3bi01lj179kBLSwujRo2SOF84vt7Ro0cxbtw4TJo0CY8fP8aff/4JX19fhIWFiZSfP38+Bg4ciPv376NevXro378//vzzT0yfPh137twBY0zsOciYmBgcOHAAJ06cwJkzZxAZGSkSz+rVq7FixQoEBATg4cOH8PDwQNeuXcWadBYnIyMDAQEB2LVrF65cuYK3b99i8uTJ3PwVK1Zg+/bt2LZtG65du4Zv377h6NGjxa53xYoVaNq0KRf3yJEjER0dDSB/wMUuXbqgYcOGuHfvHubPn4+//vqrRHFL2o+lS5diy5YtePLkCYyMjODn54fw8HDs378fDx8+hLe3t1iz3LLaf0IIIeRXNG/ePPz9998QCATw9fXFtWvXforBnstM2eeHlcP31pABkPrq2LGjSFkNDQ2pZZ2dnUXKVq1aVazMj4KEGjI+n89q1KjBvL292bdv31h2djZbsmQJA8Dc3d0lrmfkyJHM2tpa4jxhbYW1tTUbOXJkiWMcOXIkq1mzJnesr1+/zgCI1FYwxpi3tzfr3bs3Y4yxhQsXsrp164qty9DQkK1fv15semZmJtPT02NLly4tMhZPT09ma2tbbMxOTk5s2LBhYvEVfP8BsJkzZ3J/h4eHMwBs69at3LR9+/YxNTU17u85c+YwRUVF9v79e27a6dOnmYKCAouPj2eMMWZmZsYWLlwosu1mzZqxUaNGMcZkryEDIFI7t27dOmZsbMz9bWpqypYtW8b9nZOTw8zNzYutIfv999+5vwUCATMyMmIbNmxgjDG2YcMGZmBgIPK52rx58w/VkAFg9+/f58q8efOGKSoqitWUtmvXjk2fPr1U978gqiH7dVFtBSlvdM6R8ibLORcfH88sLS3Zpk2bmEAgKMfoyg/VkJFyo6ysjCNHjuD58+fQ19eHhoYGwsLC4OnpCQUF8dMrMzMTe/fuLbJ27NatW3j27JlImbdv30JLS4t7LVq0SGy5JUuWYP/+/Th69KhIjV1pO3r0KFJTU+Hj41NkOSal99DCnj17hpYtW4pMa9myJZ49eyYyzdbWlvu/cEiGhg0bikzLyspCSkoKN61GjRqoVq0a97ejoyMEAgGio6ORkpKCDx8+yLTt4mhoaKBWrVrc36amplxnLMnJyYiPj4eDgwM3X0lJSaRGUpqC+8zj8WBiYsKtNzo6Gra2tiLvdfPmzUsUd2EqKioi23z06BHy8vJQt25dkfPv8uXLePnyJVeurPafEEII+VUU7PHcxMQEUVFRGDZsGHg8nhyjqhjk3u19ZVewJ7/CFBUVRf4uqrfBwsnP69evfyiukrC3t8f9+/eRnJwMPp8PQ0NDODg4SLzhPHToEDIyMjBw4ECp69u1axfs7Oxgb2/PTTMzM8P9+/e5v4VNEoUCAgKwZMkSnD9/XuSG2sTEBEB+T5Cmpqbc9I8fP8LOzo4rU/jY5ubm4tu3b9zyBW3ZsgWdO3cudpy6unXr4tq1a8jJyYGysnKRZWVRcB3Ci5ekaaXZEYXwvCqYXObk5BQZmzAWWRPSokhab1l2tKGuri7yxZCWlgZFRUXcvXtX7POopaVVZJylsf+EEELIzy4nJwdTp07FqlWrsHfvXvTr1w8AoKqqKufIKg6qIZMzTU1Nqa/CtTxFlVVXVy+2bFnT0dGBoaEhXrx4gTt37qBbt25iZbZu3YquXbvC0NBQ4jrS0tJw7NgxsYHClZSUULt2be5VMCFbtmwZ5s+fjzNnzoglgVZWVjAxMcGFCxe4aSkpKYiIiICjoyOA/FqjpKQk3L17lytz8eJFCAQCkVoNIP+ZtLCwsCJr+IT69++PtLQ0kcHMC0pKSgIAWFtb4/r16yLzrl+/jvr16xe7jeK8ffsWHz584P6+efMmFBQU8Ntvv0FbWxtmZmZFblv4PsXHx3PzCybGstDR0YGpqanI83i5ubkix/t7/Pbbb3j06BH3HCMA3L59+4fWWVjjxo2Rl5eHT58+iZx/tWvXlpisS1JW+08IIYRUdAkJCWjXrh03xmhJn1GvLKiGjBQpLS0NMTEx3N+xsbG4f/8+9PX1UaNGDQDAwYMHYWhoiBo1auDRo0cYN24cvLy84O7uLrKumJgYXLlypciBvP/991/k5uZiwIABMsW3dOlSzJ49G3v37oWlpSUSEhIAgGtaxuPxMH78eCxYsAB16tSBlZUVZs2aBTMzM3h5eQHIT4g6dOiAYcOGISgoCDk5OfDz80Pfvn3FBiTctm0bTE1Nue76i+Lg4ICpU6di0qRJiIuLQ/fu3WFmZoaYmBgEBQWhVatWGDduHKZMmYLevXujcePGcHNzw4kTJ3DkyBGcP39epmNQFDU1Nfj4+CAgIAApKSkYO3YsevfuzSUTU6ZMwZw5c1CrVi3Y2dkhODgY9+/fx549ewAAtWvXRvXq1eHv74+FCxfi+fPnWLFiRYnjGDduHJYsWYI6deqgXr16CAwM5BLS79W/f3/MmDEDw4cPx7Rp0/D27VsEBAQAQKk1f6hbty4GDBiAgQMHYsWKFWjcuDE+f/6MCxcuwNbWFp06dZJpPWWx/4QQQkhFdv36dfTv3x/x8fHQ1tbGjh07uHsvIooSMlKkO3fuwNXVlft74sSJAAAfHx9uEN34+HhMnDiRaxY4cOBAzJo1S2xd27Ztg7m5uViiVlBwcDA6d+7M9UBYnA0bNoDP54v1xjhnzhz4+/sDAKZOnYr09HQMHz4cSUlJaNWqFc6cOSNSA7lnzx74+fmhXbt2UFBQQM+ePbFmzRqRdQoEAmzfvh2DBg0Sa74mzdKlS2Fvb49169YhKCgIAoEAtWrVQq9evbhn0Ly8vLB69WoEBARg3LhxsLKyQnBwMFxcXGTaRlFq166NHj16oGPHjvj27Rs6d+4sUmM3duxYJCcnY9KkSfj06RPq16+P48ePo06dOgDym+Lt27cPI0eOhK2tLZo1a4YFCxYUO/5aYZMmTUJ8fDx8fHygoKCAwYMHo3v37khOTv7ufdPW1saJEycwcuRI2NnZoWHDhpg9ezb69+9fqs8QBgcHY8GCBVxiXbVqVbRo0QKdO3eWeR1lsf+EEEJIRcQYQ0hICLZv347c3FzY2NjgyJEjqFu3rrxDq7B4jB50KBUpKSnQ0dFBcnIytLW1ReZlZWUhNjYWVlZWZdrZxK9AIBAgJSUF2traEjsFIbLz9/fHsWPHStzE8Ge2Z88e+Pr6Ijk5WawZrzQV8Zyja8avKycnB6dOnULHjh1L5dlSQopD5xwpb9evX0erVq0AAH379sWWLVvK5dGZiqao3KAwqiEjhPy0du7ciZo1a6JatWp48OAB/vrrL/Tu3VvmZIwQQgghpat58+bo1asXHB0dMWHCBOpFUQaUkBFCfloJCQmYPXs2EhISYGpqCm9vbyxcuFDeYRFCCCGVyt69e9GqVSuuf4Hff/8dHTt2pGRMRhWjfQ4hpNT5+/v/8s0Vp06ditevX3NN/FauXAkNDQ15h0UIIYRUCpmZmRg+fDgGDBiAPn36gM/nyzuknxLVkBFCCCGEEEJK5MWLF/D29saDBw/A4/HQoUMHKCoqlul4ob8qSsgIIYQQQgghMjt48CCGDBmC1NRUGBoaYs+ePWjfvj0AUEL2HajJYjmiDi0JIbKgawUhhJCKiM/nc2OapqamolWrVoiMjOSSMfJ9KCErB8JuZjMyMuQcCSHkZyC8VlAX1YQQQiqSvLw8XL58GQDw119/ISwsDNWqVZNzVD8/arJYDhQVFaGrq4tPnz4BADQ0NKjXGSkEAgH4fD6ysrIqzJhQ5NdWkc45xhgyMjLw6dMn6OrqyjwAOSGEEFIe1NXVcejQIURFRaFLly7yDueXQQlZOTExMQEALikjkjHGkJmZCXV1dUpaSbmoiOecrq4ud80ghBBC5CUnJwczZ86EtrY2ZsyYAQCoU6cO6tSpI+fIfi2UkJUTHo8HU1NTGBkZIScnR97hVFg5OTm4cuUK2rRpQ821SLmoaOecsrIy1YwRQgiRu7i4OPTt2xfXrl2DgoICevfuTYlYGaGErJwpKirSzVYRFBUVkZubCzU1tQpxc0x+fXTOEUIIIaJCQ0MxYMAAfP78GVWqVMG2bdsoGStD9JAOIYQQQgghBHl5eZgzZw48PDzw+fNn2NnZ4d69e+jVq5e8Q/ulUQ0ZIYQQQgghlRxjDF26dMHp06cBAMOHD8eqVaugrq4u58h+fVRDRgghhBBCSCXH4/Hg5eUFLS0t7N69Gxs3bqRkrJxQQkYIIYQQQkglxOfzERMTw/09bNgwREdHY8CAAXKMqvKhhIwQQgghhJBKJiYmBk5OTnBzc0NSUhKA/FoyMzMz+QZWCVFCRgghhBBCSCWyb98+NGnSBHfv3kVqaiqio6PlHVKlRgkZIYQQQgghlUB6ejqGDBmC/v37IzU1Fa1bt8aDBw/g4OAg79AqNUrICCGEEEII+cU9evQIzZo1w7Zt28Dj8TB79mxcvHgR5ubm8g6t0qNu7wkhhBBCCPnFLViwAM+ePYOpqSn27NkDV1dXeYdE/h8lZIQQQgghhPzi1q9fD01NTSxduhSGhobyDocUQE0WCSGEEEII+cXcvHkTU6dOBWMMAGBgYIBt27ZRMlYBUQ0ZIYQQQgghvwiBQICAgADMmDEDubm5aNy4Mfr16yfvsEgRKCEjhBBCCCHkFxAfH49Bgwbh3LlzAIA+ffqgY8eOco6KFIeaLBJCCCGEEPKTO378OGxtbXHu3Dmoq6tj8+bN2LdvH3R0dOQdGikGJWSEEEIIIYT8xPz9/dGtWzd8+fIFdnZ2uHv3LoYOHQoejyfv0IgMKCEjhBBCCCHkJ9amTRsoKChg0qRJuHnzJqytreUdEikBeoaMEEIIIYSQn4hAIMCzZ89gY2MDAGjbti2eP3+OWrVqyTky8j2ohowQQgghhJCfxIcPH+Dh4YEWLVogJiaGm07J2M+LEjJCCCGEEEJ+Av/99x9sbW1x/vx55OXl4fHjx/IOiZQCSsgIIYQQQgipwDIyMjBixAh4eXnh69evaNy4Me7duwcvLy95h0ZKASVkhBBCCCGEVFCRkZFo0qQJNm7cCACYPHkywsPDUa9ePTlHRkoLdepBCCGEEEJIBXXgwAFER0fDzMwMO3bsgJubm7xDIqWMEjJCCCGEEEIqqLlz50IgEGDq1KkwMDCQdzikDFCTRUIIIYQQQiqIw4cPo1OnTsjJyQEAqKioYOnSpZSM/cIoISOEEEIIIUTOkpOT4ePjg169euHUqVMICgqSd0iknFCTRUIIIYQQQuQoLCwMgwYNwtu3b6GgoIBp06bhzz//lHdYpJzIvYYsLi4Ov//+OwwMDKCuro6GDRvizp073HzGGGbPng1TU1Ooq6vDzc0NL168EFnHt2/fMGDAAGhra0NXVxdDhgxBWlqaSJmHDx+idevWUFNTQ/Xq1bFs2TKxWA4ePIh69epBTU0NDRs2xKlTp8pmpwkhhBBCSKWXlZWFiRMnom3btnj79i1q1qyJq1evYuHChVBRUZF3eKScyDUhS0xMRMuWLaGsrIzTp0/j6dOnWLFiBfT09Lgyy5Ytw5o1axAUFISIiAhoamrCw8MDWVlZXJkBAwbgyZMnCA0NRUhICK5cuYLhw4dz81NSUuDu7g4LCwvcvXsXy5cvh7+/PzZt2sSVuXHjBvr164chQ4YgMjISXl5e8PLyogH3CCGEEEJImfjzzz+xcuVKAMDw4cPx4MEDODk5yTkqUt7k2mRx6dKlqF69OoKDg7lpVlZW3P8ZY1i1ahVmzpyJbt26AQB27twJY2NjHDt2DH379sWzZ89w5swZ3L59G02bNgUA/PPPP+jYsSMCAgJgZmaGPXv2gM/nY9u2bVBRUYGNjQ3u37+PwMBALnFbvXo1OnTogClTpgAA5s+fj9DQUKxdu5ba8BJCCCGEkFI3Y8YMXLt2DWvWrEGnTp3kHQ6RE7kmZMePH4eHhwe8vb1x+fJlVKtWDaNGjcKwYcMAALGxsUhISBAZb0FHRwcODg4IDw9H3759ER4eDl1dXS4ZAwA3NzcoKCggIiIC3bt3R3h4ONq0aSNS9evh4YGlS5ciMTERenp6CA8Px8SJE0Xi8/DwwLFjxyTGnp2djezsbO7vlJQUAEBOTg7XKw4pOeGxo2NIygudc6Q80flGyhudcxVLTEwMLl26hKFDhwLIr4h4/PgxlJSUfpn3iM65fCXZf7kmZK9evcKGDRswceJE/P3337h9+zbGjh0LFRUV+Pj4ICEhAQBgbGwsspyxsTE3LyEhAUZGRiLzlZSUoK+vL1KmYM1bwXUmJCRAT08PCQkJRW6nsMWLF2Pu3Lli08+dOwcNDQ1ZDwGRIjQ0VN4hkEqGzjlSnuh8I+WNzjn5Yozh3Llz2LZtG/h8PhITE2FjYyPvsMpUZT/nMjIyZC4r14RMIBCgadOmWLRoEQCgcePGePz4MYKCguDj4yPP0Io1ffp0kRq1lJQUVK9eHe7u7tDW1pZjZD+3nJwchIaGon379lBWVpZ3OKQSoHOOlCc630h5o3NO/uLj4zFixAicPn0aAODs7IzevXvDwsJCzpGVDTrn8glbz8lCrgmZqakp6tevLzLN2toahw8fBgCYmJgAAD5+/AhTU1OuzMePH2FnZ8eV+fTpk8g6cnNz8e3bN255ExMTfPz4UaSM8O/iygjnF6aqqgpVVVWx6crKypX65CstdBxJeaNzjpQnOt9IeaNzTj4OHTqEESNG4OvXr1BVVcXixYsxbtw4KCjIvaPzMlfZz7mS7Ltcz4aWLVsiOjpaZNrz58+5XwysrKxgYmKCCxcucPNTUlIQEREBR0dHAICjoyOSkpJw9+5drszFixchEAjg4ODAlbly5YpIW87Q0FD89ttvXI+Ojo6OItsRlhFuhxBCCCGEEFmNGjUK3t7e+Pr1K+zs7HD37l1MmDChUiRjpGTkekZMmDABN2/exKJFixATE4O9e/di06ZNGD16NACAx+Nh/PjxWLBgAY4fP45Hjx5h4MCBMDMzg5eXF4D8GrUOHTpg2LBhuHXrFq5fvw4/Pz/07dsXZmZmAID+/ftDRUUFQ4YMwZMnT/Dvv/9i9erVIk0Ox40bhzNnzmDFihWIioqCv78/7ty5Az8/v3I/LoQQQggh5OfWtGlTKCgo4O+//0ZERMQv/8wY+X5ybbLYrFkzHD16FNOnT8e8efNgZWWFVatWYcCAAVyZqVOnIj09HcOHD0dSUhJatWqFM2fOQE1NjSuzZ88e+Pn5oV27dlBQUEDPnj2xZs0abr6Ojg7OnTuH0aNHw97eHlWrVsXs2bNFxipzcnLC3r17MXPmTPz999+oU6cOjh07hgYNGpTPwSCEEEIIIT+t1NRUvHr1Co0aNQIA+Pr6wsHBgRIxUiyZE7I5c+agRYsW8PT0lDj/y5cvaN68OV69elWiADp37ozOnTtLnc/j8TBv3jzMmzdPahl9fX3s3bu3yO3Y2tri6tWrRZbx9vaGt7d30QETQgghhBBSwIULFzBkyBDk5ubi8ePH0NXVBY/Ho2SMyETmJotbtmxBjRo1uL87deqE+Ph47u+8vDy8efOmdKMjhBBCCCGkgkpLS8Po0aPh5uaGN2/eQFlZGe/evZN3WOQnI3NClpycLDK+1pUrV5CZmVkmQRFCCCGEEFKRXb58Gba2tli/fj0AYOTIkXj06BEaNmwo58jIz0bmhOy3337DmjVrEB8fj+TkZAD5vwqkpKRwL0IIIYQQQn5leXl5GDt2LFxcXBAbG4saNWogNDQU69evh5aWlrzDIz8hmZ8hW7hwIfr06SPSWUbjxo25/zPGwOPxSjc6QgghhBBCKhBFRUV8/vwZADBs2DAEBARAW1tbzlGRn5nMCVmHDh0QFxeHqKgopKWloWPHjtiyZQuqVasGAPj69St1iEEIIYQQQn45mZmZyMzMhL6+PgBg7dq18PX1hbu7u5wjI7+CEnV7r6WlhaZNmwIAfHx84O7ujqpVqwLI72WxYKcfhBBCCCGE/OzCw8MxaNAgNGjQAIcOHQKPx4OBgQElY6TUfPc4ZBs2bBD5u2rVqoiNjf3hgAghhBBCCJG3rKwszJ49GytWrIBAIEBaWhoSEhJgamoq79DIL0bmTj0IIYQQQgipDCIiItC4cWMsX74cAoEAAwcOxOPHjykZI2WCEjJCCCGEEEIAZGRkYNKkSXByckJUVBRMTEzw33//YceOHdDT05N3eOQXRQkZIYQQQgghAAQCAY4cOQKBQIDff/8djx8/RteuXeUdFvnFffczZIQQQgghhPzsUlJSoKWlBQUFBWhpaSE4OBgZGRno2LGjvEMjlcR315Dx+XxER0cjNze3NOMhhBBCCCGkXISEhKB+/frYuHEjN83FxYWSMVKuSpyQZWRkYMiQIdDQ0ICNjQ3evn0LABgzZgyWLFlS6gESQgghhBBSmr58+YIBAwagS5cuiIuLw+bNmyEQCOQdFqmkSpyQTZ8+HQ8ePMClS5egpqbGTXdzc8O///5bqsERQgghhBBSWhhj2L9/P6ytrbF3714oKChg8uTJuHbtGhQUqGsFIh8lfobs2LFj+Pfff9GiRQvweDxuuo2NDV6+fFmqwRFCCCGEEFIaPnz4gJEjR+L48eMAgAYNGmDbtm1o1qyZnCMjlV2Jfwr4/PkzjIyMxKanp6eLJGiEEEIIIYRUFB8+fEBISAiUlZXh7++Pu3fvUjJGKoQSJ2RNmzbFyZMnub+FSdiWLVvg6OhYepERQgghhBDyA9LS0rj/N23aFOvWrcO9e/cwZ84cqKioyDEyQv6nxE0WFy1aBE9PTzx9+hS5ublYvXo1nj59ihs3buDy5ctlESMhhBBCCCEyy8vLw9q1azF37lxcvXoVNjY2AIARI0bIOTJCxJW4hqxVq1Z48OABcnNz0bBhQ5w7dw5GRkYIDw+Hvb19WcRICCGEEEKITB4+fAgnJyeMHz8eiYmJ2LRpk7xDIqRIJaohy8nJwZ9//olZs2Zh8+bNZRUTIYQQQgghJZKRkYF58+YhICAAeXl50NbWxrJlyzBs2DB5h0ZIkUpUQ6asrIzDhw+XVSyEEEIIIYSU2Pnz59GgQQMsXboUeXl56NmzJ549e4Y///yTurMnFV6Jz1AvLy8cO3asDEIhhBBCCCGk5B48eIDY2FiYm5vjv//+w6FDh2BmZibvsAiRSYk79ahTpw7mzZuH69evw97eHpqamiLzx44dW2rBEUIIIYQQUhhjDB8/foSJiQkAYNy4ccjNzcWoUaNQpUoVOUdHSMmUOCHbunUrdHV1cffuXdy9e1dkHo/Ho4SMEEIIIYSUmRcvXmDEiBGIi4vD/fv3oaamBiUlJfz111/yDo2Q71LihCw2NrYs4iCEEEIIIUQqPp+PgIAAzJs3D9nZ2VBTU8OdO3fQqlUreYdGyA+hpxwJIYQQQkiFFh4ejiZNmmDGjBnIzs5G+/bt8fjxY0rGyC+hxDVkAPD+/XscP34cb9++BZ/PF5kXGBhYKoERQgghhJDKjc/nY8KECdiwYQMYY6hatSpWrVqF/v37g8fjyTs8QkpFiROyCxcuoGvXrqhZsyaioqLQoEEDvH79GowxNGnSpCxiJIQQQgghlZCysjJevnwJxhh8fX2xfPlyGBgYyDssQkpViZssTp8+HZMnT8ajR4+gpqaGw4cP4927d3B2doa3t3dZxEgIIYQQQiqJV69e4evXrwDyO4zbsGEDLl68iG3btlEyRn5JJU7Inj17hoEDBwIAlJSUkJmZCS0tLcybNw9Lly4t9QAJIYQQQsivLzs7GwsWLICNjQ2mTZvGTbeysoKrq6scIyOkbJU4IdPU1OSeGzM1NcXLly+5eV++fCm9yAghhBBCSKVw4cIFNGrUCLNmzUJWVhZiY2ORk5Mj77AIKRclfoasRYsWuHbtGqytrdGxY0dMmjQJjx49wpEjR9CiRYuyiJEQQgghhPyCEhISMGnSJOzduxcAYGxsjMDAQPTr14867SCVRokTssDAQKSlpQEA5s6di7S0NPz777+oU6cO9bBICCGEEEJkEhYWhu7duyM5ORk8Hg+jR4/G/PnzoaurK+/QCClXMiVka9aswfDhw7mR0Bs2bAggv/liUFBQmQZICCGEEEJ+Pba2tlBWVkbTpk0RFBQEe3t7eYdEiFzI9AzZxIkTkZKSAiD/wcrPnz+XaVCEEEIIIeTXkpSUhLVr14IxBgAwMDDA1atXcfPmTUrGSKUmUw2ZmZkZDh8+jI4dO4Ixhvfv3yMrK0ti2Ro1apRqgIQQQggh5OfFGMPevXsxadIkfPz4ESYmJujVqxcAoF69enKOjhD5kykhmzlzJsaMGQM/Pz/weDw0a9ZMrAxjDDweD3l5eaUeJCGEEEII+flERUVh1KhRCAsLAwD89ttvMDY2lnNUhFQsMiVkw4cPR79+/fDmzRvY2tri/PnzNDAfIYQQQgiRKD09HQsXLkRAQABycnKgpqaGWbNmYdKkSVBVVZV3eIRUKDL3slilShU0aNAAwcHBaNmyJX2YCCGEEEKIRN27d0doaCgAoGPHjli7di2srKzkHBUhFVOJB4b28fGhZIwQQgghhEg1ZcoUWFpa4ujRowgJCaFkjJAiyFRDpqenJ/PgfN++ffuhgAghhBBCyM8jJSUFc+fORY0aNTBu3DgAQPv27REdHQ0VFRU5R0dIxSdTQrZq1aoyDoMQQgghhPxMGGPYvXs3pk6dioSEBGhpaeGPP/6Avr4+AFAyRoiMZErIfHx8yjoOQgghhBDyk7h//z78/Pxw/fp1AECdOnWwZs0aLhkjhMiuxM+QAcDLly8xc+ZM9OvXD58+fQIAnD59Gk+ePCnV4AghhBBCSMWRmJgIPz8/2Nvb4/r169DU1MSSJUvw6NEjdOjQQd7hEfJTKnFCdvnyZTRs2BARERE4cuQI0tLSAAAPHjzAnDlzSj1AQgghhBBSMcTHx2Pjxo0QCATo06cPoqKi8Ndff1GHb4T8gBInZNOmTcOCBQsQGhoq0ja4bdu2uHnzZqkGRwghhBBC5Ovdu3fc/+vXr4+AgABcvHgR+/fvh7m5uRwjI+TXUOKE7NGjR+jevbvYdCMjI3z58qVUgiKEEEIIIfL18eNHDB06FDVr1sT9+/e56ePGjYOrq6v8AiPkF1PihExXVxfx8fFi0yMjI1GtWrVSCYoQQgghhMgHn89HQEAA6tSpg61btyI3Nxfnzp2Td1iE/LJKnJD17dsXf/31FxISEsDj8SAQCHD9+nVMnjwZAwcOLNG6/P39wePxRF716tXj5mdlZWH06NEwMDCAlpYWevbsiY8fP4qs4+3bt+jUqRM0NDRgZGSEKVOmIDc3V6TMpUuX0KRJE6iqqqJ27drYvn27WCzr1q2DpaUl1NTU4ODggFu3bpVoXwghhBBCfmaMMZw4cQINGjTAlClTkJqaynXeMXXqVHmHR8gvq8QJ2aJFi1CvXj1Ur14daWlpqF+/Ptq0aQMnJyfMnDmzxAHY2NggPj6ee127do2bN2HCBJw4cQIHDx7E5cuX8eHDB/To0YObn5eXh06dOoHP5+PGjRvYsWMHtm/fjtmzZ3NlYmNj0alTJ7i6uuL+/fsYP348hg4dirNnz3Jl/v33X0ycOBFz5szBvXv30KhRI3h4eHA9SBJCCCGE/OoGDBiArl274sWLFzA2Nsa2bdtw69YtODk5yTs0Qn5pMidk2dnZAPIH+du8eTNevnyJkJAQ7N69G1FRUdi1axcUFRVLHICSkhJMTEy4V9WqVQEAycnJ2Lp1KwIDA9G2bVvY29sjODgYN27c4DoPOXfuHJ4+fYrdu3fDzs4Onp6emD9/PtatWwc+nw8ACAoKgpWVFVasWAFra2v4+fmhV69eWLlyJRdDYGAghg0bBl9fX9SvXx9BQUHQ0NDAtm3bSrw/hBBCCCE/o5YtW0JFRQV//fUXnj9/Dl9fXygofNcISYSQEpBpYGgA0NHRgaOjI1xdXdG2bVs4ODigRo0aPxzAixcvYGZmBjU1NTg6OmLx4sWoUaMG7t69i5ycHLi5uXFl69Wrhxo1aiA8PBwtWrRAeHg4GjZsCGNjY66Mh4cHRo4ciSdPnqBx48YIDw8XWYewzPjx4wHkt5O+e/cupk+fzs1XUFCAm5sbwsPDpcadnZ3NJakAkJKSAgDIyclBTk7ODx2Tykx47OgYkvJC5xwpT3S+kfIm7ZzLzc3Fli1bYGFhAU9PTwDA4MGD4ebmhpo1a0pchhBZ0HUuX0n2X+aELCgoCJcuXcK2bdvg7+8PdXV1ODk5oW3btnB1dUWzZs1KXEPm4OCA7du347fffkN8fDzmzp2L1q1b4/Hjx0hISICKigp0dXVFljE2NkZCQgIAICEhQSQZE84XziuqTEpKCjIzM5GYmIi8vDyJZaKioqTGvnjxYsydO1ds+rlz56ChoSHbASBShYaGyjsEUsnQOUfKE51vpLwVPOcePHiArVu34u3btzA2NsbatWuhrKzMzS/q/ocQWVX261xGRobMZWVOyAYNGoRBgwYBAF69eoVLly7h8uXLCAoKwsyZM6GpqYnWrVvj5MmTMm9c+IsMANja2sLBwQEWFhY4cOAA1NXVZV6PPEyfPh0TJ07k/k5JSUH16tXh7u4ObW1tOUb2c8vJyUFoaCjat28v8uVASFmhc46UJzrfSHkreM69efMGf/31F06cOAEA0NfXx4wZM9CpUycoKcl8S0hIkeg6l0/Yek4W3/Xpq1mzJmrWrInBgwcjNjYWW7duxT///IMzZ858z+o4urq6qFu3LmJiYtC+fXvw+XwkJSWJ1JJ9/PgRJiYmAAATExOx3hCFvTAWLFO4Z8aPHz9CW1sb6urqUFRUhKKiosQywnVIoqqqKnFUemVl5Up98pUWOo6kvNE5R8oTnW+kPGVkZGD27Nn4559/wOfzoaioiNGjR2POnDnQ19eXd3jkF1XZr3Ml2fcSP6n59u1b7NixA76+vrCysoKtrS0iIiIwefJkhIWFlXR1ItLS0vDy5UuYmprC3t4eysrKuHDhAjc/Ojoab9++haOjIwDA0dERjx49EukNMTQ0FNra2qhfvz5XpuA6hGWE61BRUYG9vb1IGYFAgAsXLnBlCCGEEEJ+VtHR0VixYgX4fD7c3d3x8OFDrF69mpIxQioImWvIBg8ejEuXLuHbt29o2bIlWrdujeHDh6NZs2bfXc09efJkdOnSBRYWFvjw4QPmzJkDRUVF9OvXDzo6OhgyZAgmTpwIfX19aGtrY8yYMXB0dESLFi0AAO7u7qhfvz7++OMPLFu2DAkJCZg5cyZGjx7N1V6NGDECa9euxdSpUzF48GBcvHgRBw4cEGlaOXHiRPj4+KBp06Zo3rw5Vq1ahfT0dPj6+n7XfhFCCCGEyNP79+9hbm4OAGjcuDFGjRoFT09PdOrUCTweT87REUIKkjmT2r59O2rUqIEZM2agXbt2aNy48Q9/oN+/f49+/frh69evMDQ0RKtWrXDz5k0YGhoCAFauXAkFBQX07NkT2dnZ8PDwwPr167nlFRUVERISgpEjR8LR0RGamprw8fHBvHnzuDJWVlY4efIkJkyYgNWrV8Pc3BxbtmyBh4cHV6ZPnz74/PkzZs+ejYSEBNjZ2eHMmTNiHX0QQgghhFRkT58+xZQpU3D16lXExMRAT08PALBq1apK3XyMkIpM5oTs2bNnCAsLw6VLl7BixQpkZ2ejVatWcHZ2houLC5o0aVLisSr2799f5Hw1NTWsW7cO69atk1rGwsICp06dKnI9Li4uiIyMLLKMn58f/Pz8iixDCCGEEFIRffr0CXPmzMHmzZuRl5cHJSUlXLlyBd26dZN3aISQYsicQf32228YMWIE9u/fj4SEBFy/fh0dO3bErVu30LlzZ+jr66Nz585lGSshhBBCCCkgKysLS5YsQe3atREUFIS8vDx0794dT58+Ra9eveQdHiFEBt/dx2n9+vVhYGAAPT096OnpYf/+/Th9+nRpxkYIIYQQQqTIzs5Gw4YNERMTAwCwt7dHYGAg2rRpI+fICCElUaKE7NOnT7h06RLXdPH58+dQUVFB8+bNMWHCBLi6upZVnIQQQgghpABVVVV4enri6NGjWLx4Mfr371/ix0cIIfInc0JmbW2N58+fQ0lJCc2aNUOvXr3g4uKCli1bQk1NrSxjJIQQQgip9GJiYjBt2jTMnDkTdnZ2AIAFCxZg6dKlUFdXl29whJDvJnNC5uXlBVdXV7Rq1QoaGhplGRMhhBBCCPl/3759w/z587Fu3Trk5OQgNTUVZ8+eBQBoa2vLOTpCyI+SOSFbvHhxWcZBCCGEEEIKyM7Oxrp167BgwQIkJiYCADp06IDly5fLOTJCSGn67k49CCGEEEJI2Thy5AgmTpyIN2/eAAAaNmyIgIAAuLu7yzkyQkhpoyc/CSGEEEIqmPj4eLx58wbVqlXDli1bEBkZSckYIb8oqiEjhBBCCJGzu3fvIjU1FS4uLgCA4cOHgzGGwYMH07P7hPziqIaMEEIIIUROXr16hX79+qFp06YYNmwY+Hw+AEBZWRl+fn6UjBFSCchUQ/bw4UOZV2hra/vdwRBCCCGEVAafP3/GggULsGHDBuTk5AAAHBwckJ6eDhUVFTlHRwgpTzIlZHZ2duDxeGCMgcfjFVk2Ly+vVAIjhBBCCPnVpKenY9WqVVi6dClSU1MBAO7u7liyZAkaN24s5+gIIfIgU5PF2NhYvHr1CrGxsTh8+DCsrKywfv16REZGIjIyEuvXr0etWrVw+PDhso6XEEIIIeSndfPmTcycOROpqalo3LgxQkNDcfbsWUrGCKnEZKohs7Cw4P7v7e2NNWvWoGPHjtw0W1tbVK9eHbNmzYKXl1epB0kIIYQQ8jNijCEmJgZ16tQBALRr1w5Dhw6Fq6sr+vbtCwUFepyfkMquxL0sPnr0CFZWVmLTrays8PTp01IJihBCCCHkZxcWFoa///4bT548wcuXL2FoaAgA2Lx5s5wjI4RUJCX+Wcba2hqLFy/megECAD6fj8WLF8Pa2rpUgyOEEEII+dncvn0b7du3R9u2bXHz5k3k5eXh1q1b8g6LEFJBlbiGLCgoCF26dIG5uTnXo+LDhw/B4/Fw4sSJUg+QEEIIIeRn8PTpU8yaNQtHjhwBkN91/Z9//okZM2bAxMREztERQiqqEidkzZs3x6tXr7Bnzx5ERUUBAPr06YP+/ftDU1Oz1AMkhBBCCKnovn37Bnt7e2RlZYHH4+GPP/6Av7+/xMc8CKmw8vKAq1eB+HjA1BRo3RpQVJR3VL+8EidkAKCpqYnhw4eXdiyEEEIIIRVLETeoKSkp0NbWBgDo6+tjyJAh+PDhA+bPnw8bGxt5Rk1IyR05AowbB7x//79p5ubA6tVAjx5lv/1KnAx+V0L24sULhIWF4dOnTxAIBCLzZs+eXSqBEUIIIYTIlZQb1MSFC7E8Kgr//PMPrl69Cjs7OwDA6tWroVhJbiDJL+bIEaBXL4Ax0elxcfnTDx0q26RM3smgnJU4Idu8eTNGjhyJqlWrwsTERGSgaB6PRwkZIYQQQn5+Em5Q0wGsef8ey3x8kPT/03bt2sUlZJSMkZ9SXl5+MlQ4GQPyp/F4wPjxQLduZVNjJe9ksAIocUK2YMECLFy4EH/99VdZxEMIIYQQIl+FblD5ADYDmA/g4/8XsVFSwsIDB9CVxl8lP7urV0VrpgpjDHj3Lr+ci0vR68rLA+/yZVS7cgU8TU3A1bXoJE7eyWAFUeJu7xMTE+Ht7V0WsRBCCCGEyF+BG1QGwAWAH/KTMSsAuwA8yM1FNz09kZZChPyU4uNlK7dlC3DvXn4SJcmRI4ClJZTat0fTwEAotW8PWFrmT5ckNxcIDpY9GfyFlbiGzNvbG+fOncOIESPKIh5CCCGEELnKi4sDD/m/WvMA9AUQC2AWgKEAVIQFZb2RJaQiMzWVrdyePfkvHZ38DjecnfNrzOzsgOPHi252eOAAYGsL3L79v1dkJJCZKdu2f/HPWokTstq1a2PWrFm4efMmGjZsCGVlZZH5Y8eOLbXgCCGEEELKi0Dwf+3dd3hUxf7H8femk4QQCCVAQhOkI9IjXUoMSBGUpoiIoAgKREW5VrwqV+5PBRVULGCnw6VDhNBDFZQmUqWGnoQSUjbn98chCyEJ7IZNI5/X8+wT9pzZOXOWYdlvZuY7KUyfPp3RI0bwDtDz2vFnMQMx75tfYO8XWZG8yjDM4Oh2/P2haVNzpCo2FhYsMB8AhQtDUlLm0w4BevTI+LyPD1y+fPvr3+X/1hwOyCZNmoSvry+rVq1i1apVac5ZLBYFZCIiIpKvpKSkMGfOHN5+4w12Xdtj9TOuB2SeGb0oKMgcJRDJr65ehUGD4Mcfrx+zWNIGTqlTcr/91kysYbXC9u2wahWsXAmrV5sB2u0YBri7Q4MG0LDh9UelSubj+PGMAzYANzcoVSqrd5kvOByQHTp0KDvaISIiIpKjDMNg/vz5vP3222zfvh2AIsBLFgvDwsJg8eLUgulfXKoUpKRkb6KBArwvk2SzEyfgkUdg0yazT33yCZQpYybQuDn1/Lhx17McurpC/frmIzzc7KNjx8K//nX7a377LfTtm/74+PHmtMaMgkHDMNeaPfCAmW2xTZs7ues8y+GkHiIiIiJ3g2effZYuXbqwfft2CmOuETtcsyZvbtqE38KF5hfAsmXTvqhkSfM3/Vu3wjPPmEFZdriWIIHWraFPH/PnrRIkiNhr82ZzdGrTJihWDJYuhRdegO7d4fBhiIyEX34xfx46dOuU866uEBJi33WDgzM+3q1bxv/WgoLgu+/MYCwmBkJD4auv7LtWPpOljaGPHTvGvHnzOHLkCImJiWnOffzxx05pmIiIiMgdu2GUyQgMxPrAA7h5ekJKCo96evIz8CLwsrs7AW+/DSNHmgEXmF8Uu3RJP0q1eDF07Qo//ADFi8P//d/1qV3OoH2ZJLv89JP5i4SEBKhRw0zGcc8918+7ut4+tf3Nmjc3g6fMph1aLLef4pvZvzVXV+jdGwYONNv+3HOwezd89JE5lfEu4fCdLF++nM6dO1OpUiX++usvatWqxeHDhzEMg3r16mVHG0VEREQcN3u2ucfRsWOsxhwBe9DPj7ffew9mzKDdmjUcAQIeeMBM6V29evo6MvqC+vDD5m/u+/WDjz82R82ctT+r9mXKfXfjVFGr1ZxWOHas+bxTJzPA8fO787pdXW897RDMaY+3ew8zCwa9vMxfflSvDq+/Dp9+Cn//DVOnmhkf7wIOT1kcNWoUL7/8Mjt27MDLy4tZs2Zx9OhRWrZsqf3JREREJG+4Nsq06tgx2gAtgdXAxLg4El98EdasweLjQ8Bnn5lfvjMKxm7lySfN39IDvPaauT7GGRzZpFeczxlTRa1WM+HFr7+aPzPbtys7ZHTt2Fjo3Pl6MPb66zB3rnOCsVS3mnbojBFdi8UMKGfOhEKFYMkScyrjwYN3Vm8e4fAI2Z49e/j111/NF7u5ER8fj6+vL++++y5dunRh8ODBTm+kiIiIiL2M5GRWPvssow2D1HzQ7sAA4HWu7SPm5QV//mlmeMuq8HA4cwb+8x8zW12xYmaihDth735Ld/m+TLnCGVNFbxiVtQkKMkeQsnuaaUbXDgwEFxcziUehQuZGzD17Zl7Hnbg27TA5MpLtixdTNywMt9atnTu62L07VKxojvDt3g2NG5v33bx5vh7ZdHiEzMfHx7ZurHTp0hw4cMB27uzZs85rmYiIiEgWfPj88zx49iyrMIOvwcB+4AsgKLXQ1atw5MidX+yDD2DAADO5R+/e5qjEnbh40b5yd/m+TDnudlNFwZwqeqvRrtSA7uYRztSALjsTsmR27ehoMxgLCIC1a7MvGEvl6orRsiXHW7TAaNkyewKievXMxCQNGsDZs2bmxaFD83USHIdHyJo0acLatWupXr06HTp04KWXXmLHjh3Mnj2bJk2aZEcbRURERDJlGAZXrlzBx8cHgMcqVOA94CngVSCT3G7OGWWyWODLL+HcOXMaWOfOZlDm6Lr648fNqWTff3/7sq6ud1VCgzzB3qmiTZtCtWpQokTaR7FiMGSIc9b+OTrSc6tgMpWnJ9x3362vm5+UKWPuhfbUUzBjBkyYkL5MPkqC4/C/5o8//phLly4BMHr0aC5dusS0adOoUqWKMiyKiIiI82XyBdUwDBYvXsy7775LhQoVmPrii/DVV9zz66+cAG67QsZZo0xubuaanbAwMxh76CFYtw6qVLn9ay9fhv/+13xcuWIea97cHM2AjPdlslrNEYAPPoCXXjKnpMmd2bTJvnIbN5oPR9249u9WWQyzMuUxIuLWwSSYo2S3u3Z+4+0NP/9srifLaGQ5HyXBcTggq3TDXGsfHx++/PJLpzZIRERExCaDL6hG2bIsfPJJ3v3tNzZv3gzAzs2bOTdtGgHXyvi5u0NSUsZ12pOG21FeXvC//5lfeLdtg/btzaCsVKmMRzusVjNz3OuvXx+pa9rUTBSSui4moy/mH3wACxeaGeZGjjRHCb7/3pySJo5JTjbTvn/2mf1TTV9+2Xyvz5xJ+zh82BwlvZ0BA6BdO3MEtV49qFXL7Dtg3xq2jh3NtY9btlx/7NhhX9vvxnWH69bdepqvvYFwLtN4t4iIiORNN31BNYB5wLvHj/P7mDEAeGOuEXslJYWAQoWgVy949lkzkEnN/pzVNNyO8vMz9yhr1gz274cmTczA68SJ62WCgsx9oObOhe3bzWMVK5oZ8Lp3v96+W+3L9Pjj5gjZiy+awVndujBtmpl1Tky3mvZ35oy5zcEXX5hf1sEcZfT0hPj4jOtLDeL/85+M+83Klebfye0cPJh2c2M3N6hZ05xOOG/erdew9epl/jk5+fbXycjduO7wLkmCo4BMRERE8p4M1sV8Cwy89mcfYAjwElCyVi0zCHviCfD3Nws0bmyOKGQ0yjRuXPatKSlVCpYtM0c/Ur/s3+jYMXjnHfPPRYrAm2+aCQk8PdOXzWxfJovFzOrYuDH06GHuydSihTl69vLLmsKY2ejiCy+YmfmmTjU3RgZzY+9Bg8wNhzdvNn8BAI4H8fZsjhwYaO5bt327OYq6das5qvbHH+bjdlJHfIsXNxNapD7uv98cXb2TjZnzK3uDzDwejCogExERkbxnzRqSjx3jJNeTcvQCPrj2MxwoDvD55/D889e/NN/oVqNM2alcuYwDrBv5+sLevWYAl1X33WdOWXv2WXMN26uvmiM1P/xgfmm3WrGsWkXZ1aux+PiYIzh5eB2NU2Q27e/YsbSbdzdoYAZoPXpcnzIYHJz1IN6ezZE//9yso1cv87lhmNf5/Xfz78yejIDjx5vtvrm/O2Nj5vzInkA4HwSjBfxXKCIiIpLXJCQk8PX331MN6IQ5VRHAF/gbMygrnlq4WLGMg7FUqaNMvXubP3PiS+maNXDq1K3LXLoEe/bc+bUKFzYTG0yaZAYWixebUxg/+AAqVMCtXTsafPwxbu3a5as04FliT7ZBb29z3dHmzebm3qnBWKpu3cz1YJGR8Msv5s9Dh+wbUXV0c2SLxQwCu3Qxgyx71KmT+S8fsnNj5rwqNRCG9O9LPgpGHR4hu3r1Kl43d95rTp48Sek8PiQoIiIiedOVK1f4eswY/jtuHMevZXQOAA4BqSnF0n1xyYvfO3J6XYvFAgMHmlMYH3vMnML4+uvpy+WjNOAOpX43DPOeJ068fbbBK1fg2n66mcpsqqg9sjoq64yRntwaEc5tqcFoTk9PdiKHA7J69erxyy+/ULdu3TTHZ82axXPPPceZM2ec1TYRERG5G9zmy3Xs+fNMGDGCT6ZO5ey1L8tlgJctFgYZBj4Z1ZmXpyLl1rqWOnXMlOxly15PoX+j/JIG3J7U79HRsHw5/Pab+bhdIHaj7E7wkJWAzp4pj/aM9NxJMJmf5fNg1OEpi61ataJJkyZ8+OGHAFy+fJmnnnqKvn378q9//cvpDRQREZF8bPZsc6pc69bQp4/5M3Xq3Jkz8OGHrK5endd/+IGziYlUAr6qWZODs2YxYvp0fCyW/DcVKXW0I7OplKlT1bIjmNy+PeNgLNWNacDzotQ1YDcHWMePm1koO3WC2rXNL9xPPAFTpphlPTzMqZr2yIujqlBwpx06S25MT3YSh0fIJk6cSMeOHXnmmWdYsGABJ0+exNfXl02bNlGrVq3saKOIiIjkR5kkWDhx7Bi7unennZsbJCfzMNDD3Z1ObdvS6+OPcatW7Xrh/DgVyVmjHVmRn9OA32oNWOqxBQuuH7v/fmjb1nw0a2YmUqlQIX8neMjnIz2SNVnKshgWFka3bt344osvcHNzY/78+QrGRERE5LoMvlwfBMYCk4HCwOHkZHzr1cMydCjTevWCQoXS15Nfv6Dm1roWe0d/pk839y0rXz572pEVa9bYN/XwrbfMJBjFi6c/dzdkGyyo0w4LMIenLB44cICQkBAWLFjA0qVLGTlyJJ07d2bkyJEkpe6PICIiIgXbDV+udwB9gXuBr4BEoDpwGuCjj6B//4yDsVT5dSrSnWTsy6rbTZdMNXcuVK4MTz2VebZHq9VMo//rr+ZPq9W5bb2ZvaN21aplHIyBpv1JvuRwQFa3bl0qVqzIH3/8Qbt27XjvvfeIjIxk9uzZNGrUKDvaKCIiIvnNyZPsBjoCdYCfACsQCqwG1nAtc2JenDrnTDkdTN4uDbjFAm+/DW3aQHIyfP891Kxprs/asuV62Vut/csOKSmwfr19ZW83CpgbgbDIHXA4IJs4cSJTp07F39/fduyBBx5g27Zt1KtXz5ltExERkfzq0iVcgMWYXzYeA7YAS4A0K3jyaoKF/Ox2o0TvvGNmJty4Ebp2Naf2zZ4NDRtCu3YwenTmiTUefdT5QdmxYxAaam6cfCuOJEPJr6OqUiA5HJD17ds3w+OFCxfm22+/zXJD/vOf/2CxWBg+fLjt2NWrVxkyZAgBAQH4+vrSvXt3Tt200eKRI0fo2LEj3t7elCxZkldeeYXk5OQ0ZVauXEm9evXw9PSkcuXKTJkyJd31J0yYQIUKFfDy8qJx48Zs2rQpy/ciIiJS0CQmJjJ58mReHzUK/vMfeP55qgETgb3AdKD+jS/IzkyDYhslSo6IYEt4OMkREelHiRo1gjlzYNcuc5NkV1czUHvnnVsn1hg+3HnTF3/91cya+Ntv5rTVZ565PpJ3o/y0BkzEQVlK6gGwe/dujhw5QuINm+tZLBY6derkcF2bN2/mq6++ok6dOmmOjxgxgoULFzJjxgyKFCnC0KFD6datG+vWrQPAarXSsWNHAgMDWb9+PSdPnuTJJ5/E3d2dDz74AIBDhw7RsWNHnnvuOX7++WeWL1/OM888Q+nSpQkNDQVg2rRphIeH8+WXX9K4cWPGjRtHaGgoe/fupWTJkll9i0RERO56Fy9e5Ouvv+bjjz/m+PHjuADPABUBGjXiuc2bzYL5NcFCfubqitGyJccvX+a+li0zf69r1DCnLo4eDSNGmOvLMnNj2vw7STxx/jw8/zxMm2Y+b9gQfvwRqlaFsLD8l1lT5E4YDjpw4IBRp04dw2KxGC4uLobFYrH92cXFxdHqjIsXLxpVqlQxIiIijJYtWxrDhg0zDMMwYmJiDHd3d2PGjBm2snv27DEAIyoqyjAMw1i0aJHh4uJiREdH28p88cUXhp+fn5GQkGAYhmGMHDnSqFmzZppr9uzZ0wgNDbU9b9SokTFkyBDbc6vVapQpU8YYM2aM3fcRGxtrAEZsbKz9Ny/pJCYmGnPnzjUSExNzuylSQKjPSU66m/rbqVOnjNdff93w9/c3AAMwSlssxlgw4nx9DWPyZMNISTGMWbMMIyjIMMyv8uYjONg8LtnO4T73yy9p/64ye/zyS9YbtXSpYZQpY9bj6moY77xjGDe3LznZMCIjzetERprPJV+4mz7n7oQjsYHDI2TDhg2jYsWKLF++nIoVK7Jp0ybOnTvHSy+9xP/93/85HBAOGTKEjh070rZtW9577z3b8a1bt5KUlETbtm1tx6pVq0a5cuWIioqiSZMmREVFUbt2bUqVKmUrExoayuDBg9m1axf3338/UVFRaepILZM6NTIxMZGtW7cyatQo23kXFxfatm1LVFRUpu1OSEggISHB9jwuLg6ApKQkZZu8A6nvnd5DySnqc5KT7pb+9ttvv9GtWzeuXr0KQFVfX165dIknDAP3pk2xfvcdSRUrmkkjOnWCDh2wrF1rS1tvNGtmjtbk8/chP3C0z1lKlLBr+lTKv/+NcewYKY88knHqfKs1/d95QgIuo0bh+sUXABhVqmCdMgWjYcPUxqato2nTGy6YYj4kz7tbPufulCP373BAFhUVxYoVKyhevDguLi64uLjQrFkzxowZw4svvsi2bdvsrmvq1Kn8/vvvbE6dznCD6OhoPDw80iQPAShVqhTR0dG2MjcGY6nnU8/dqkxcXBzx8fFcuHABq9WaYZm//vor07aPGTOG0aNHpzu+bNkyvL29M32d2CciIiK3myAFjPqc5KR819+sVgpt20axK1e4WrQoF8qXx8XFhRplyvBWTAyPXboEbm7s6dOH/V26mGnUM0ql7ucHly/D0qU5fw8FnN19zmqlfUAAXufOkVHi/NSJpy579sDIkbiOHMmFKlU48cADnAgJ4UpgIKWjoqj9zTcUOnfO9rqrRYpguLhQ6MIFAA526MDufv2wnjkDixbd2c1JnpTvPuec7MqVK3aXdTggs1qtFC5cGIDixYtz4sQJqlatSvny5dm7d6/d9Rw9epRhw4YRERGBl5eXo83IdaNGjSI8PNz2PC4ujuDgYNq3b4+fn18utix/S0pKIiIignbt2uHu7p7bzZECQH1OclJ+628pKSksffttPvnkEy4mJrIZsABGmTI0qVuXiuvXm89r1CB5yhTurVuXe3O5zZJWVvqcZeJE6NULA7DcsPbPuLb2z/rFF1iuXsUyezaWNWsoum8fRffto+b332NUrGgmD7mJZ2ys2VeKFsX6008Et2tHsDNuUPKc/PY5l11SZ8/Zw+6AbPXq1YSEhFCrVi3++OMPKlasSOPGjRk7diweHh5MmjSJSpUq2X3hrVu3cvr06TSp8q1WK6tXr+bzzz9n6dKlJCYmEhMTk2aU7NSpUwQGBgIQGBiYLhtiahbGG8vcnJnx1KlT+Pn5UahQIVxdXXF1dc2wTGodGfH09MTT0zPdcXd39wLd+ZxF76PkNPU5yUl5vb9dvXqVn376iY/eeYe/jh8HzC8Me4FqgOXECSqdOGEWDg/H8v77uOfDX64WJA71uR49wM0tXWINy7XEGm6piTWGDYPoaDMJyMyZsGIFlgyCMcA22mbx9sYtNFTJXAqAvP45l90cuXe70963bt2aCxcu8MYbb5BybQ7vu+++y6FDh2jevDmLFi3i008/tfvCbdq0YceOHWzfvt32aNCgAY8//rjtz+7u7ixfvtz2mr1793LkyBFCQkIACAkJYceOHZw+fdpWJiIiAj8/P2rUqGErc2MdqWVS6/Dw8KB+/fppyqSkpLB8+XJbGRERkXzPaoWVK8004ytXZpi2/OzZs/z73/+mfPnyDBw4kL+OH8cPeBk4iBmMpVGiBIwdCwrG7j72bq4cGAjPPWemrbdnf7Ljx80MjSJiY/cImXFtyDo1VTxA5cqV+euvvzh//jxFixbFcvOeEbdQuHBhatWqleaYj48PAQEBtuMDBgwgPDycYsWK4efnxwsvvEBISAhNmjQBoH379tSoUYO+ffsyduxYoqOjeeONNxgyZIht9Oq5557j888/Z+TIkTz99NOsWLGC6dOns3DhQtt1w8PD6devHw0aNKBRo0aMGzeOy5cv079/f7vvR0REJM+aPTvjNOLjx6f5gr1u3TreeustAIILF2b4xYs8A2Q6Ef/MmTtPfy55V+rmyvaKj7ev3MmTWWqOyN3KoTVkmQVcxYoVc0pjbvbJJ5/g4uJC9+7dSUhIIDQ0lIkTJ9rOu7q6smDBAgYPHkxISAg+Pj7069ePd99911amYsWKLFy4kBEjRjB+/HiCgoL45ptv0gSWPXv25MyZM7z11ltER0dTt25dlixZki7Rh4iISL4zezY8+mi6jX6NY8dY3707J7t25dEGDeDPP+n0xx88CnQDHr14Ebsm3OjLtaQqXdq55UQKCIthZLQVe3ouLi6EhYVluG7qRrPtGa6+C8XFxVGkSBFiY2OV1OMOJCUlsWjRIjp06FCg5x1LzlGfk5yU4/3NaoUKFdKMjFmBOcBHwAagJPAPkGbSYUAAlCsH9mROjozUCFkelqN9LrW/HT+e7hcAgLkheFCQOfVRa8juWvp/1eRIbODQCFnhwoUpVKjQHTVOREREcsiqVbZg7BIwGRiHuR4MwAPoDFxu0QKvhx+GOnXMR2CgueeTPV+umzfPgRuRfMHV1ZwG++ijZv+4sd+kzrIaN07BmMhNHArIPv30U0qWLJldbRERERFnOHAApkyBa9P8ZwLPALHXThcDhlx7lAIzKUPv3mnr0JdryYpu3cyMixmtWRw3Ln1SEBGxPyBzJGGHiIiIOJnVaibQOHnSXIPTvHnaYOjSJfOL8OTJGKtXEw94XztVHTMYqwIMA54CfG6sO7M1PfpyLVnRrRt06XLr/ioiNg5nWRQREZEcllmWxHHjzNTzkyfDjBkkXr7MdMxpidVLl+bHjz6CV16h5okTrDcMGnPTfjf2TDvUl2vJCkczNIoUYHYHZJGRkdmWTVFEREQykUmWRI4dM48DZ4GvgAmurpy8tr/YvsuXudSpE76envDoo4TcybRDfbkWEck2dm8M3bJlS9zcHFpyJiIiInfCajVHxjKZpbIbGAgEu7ryBnDSaqV06dK899577N+/H19f3+vTDsuWTfvioCDzuKYdiojkKkVYIiIiedWaNWmnKd5kHvANgNVK/fr1GTFiBI899hgeHh5pC2raoYhInqWATEREJK+6YdPli8APwD3AQ9eODQK2A0Pfeoum77xz6wRcmnYoIpIn2T1lESA5OZkffviBU6dOZVd7REREJFXp0vwNvAiUBYYC795wuhgwFWjWurWyIYuI5FMOBWRubm4899xzXL16NbvaIyIiUuClpKSwYMECHnr1VaoCn2GOkFUF+gApqQUtFggO1ubMIiL5mMNTFhs1asT27dspX758drRHRESkwHviiSf49ddfAbAADwMvAG244Tep2pxZROSu4HBA9vzzzxMeHs7Ro0epX78+Pj5ptpakTp06TmuciIhIQbBz507KlClj216ma/36LJ46lQGGwfMNGlBpxAh49VVtziwichdyOCDr1asXAC+++KLtmMViwTAMLBYL1mv7n4iIiEjmkpOTmTdvHp999hkrV67kgw8+YNSoUfD333QbO5aOhoFPw4bw22/g5wc9eypLoojIXcjhgOzQoUPZ0Q4REZECIS4ujg8//JBJkyZx9OhRAFxdXTl58iQcPgxt2uB2+jRuderAkiVmMGYWUpZEEZG7kMMBmdaOiYiIOM4wDJ5//nm+//57kpKSAChevDiDBg3iueeeI9jFxRz1OnYMqlWDiAi4NoVRRETuXg5lWUz1448/0rRpU8qUKcM///wDwLhx4/jf//7n1MaJiIjkZ/Hx8bY/WywWrl69SlJSEvXq1WPKlCkcPXqU999/n2APD2jTBg4dgnvugeXLoWTJXGy5iIjkFIcDsi+++ILw8HA6dOhATEyMbc2Yv78/48aNc3b7RERE8p09e/bw4osvEhgYyJ9//mk7/uqrrzJ27FiioqLo168fXl5ecO4ctGsHe/eaKeyXL4cyZXKx9SIikpMcDsg+++wzvv76a15//XVcb1hM3KBBA3bs2OHUxomIiOQXiYmJTJ8+ndatW1OjRg0+++wz4uLimDp1qq1M1apVuffee69v4hwbC6GhsGOHmahjxQrQ0gARkQIlS0k97r///nTHPT09uXz5slMaJSIikl9cunSJsWPH8vXXXxMdHQ2Ai4sLnTt3ZvDgwbRt29YsaLViWbWKsqtXY/HxgYYNoUMH2LoVihc3sylWrpyLdyIiIrnB4YCsYsWKGW4MvWTJEqpXr+60homIiOQHHh4eTJo0iVOnThEYGMjAgQMZOHAgwcHB1wvNng3DhuF27BgNAD7+GDw9ISEB/P3NBB41auTSHYiISG5yOCALDw9nyJAhXL16FcMw2LRpE7/++itjxozhm2++yY42ioiI5Alnz57l+++/Z/HixSxduhRXV1c8PDz48MMP8fb2pmvXrri7u6d90ezZ8OijYBhpjyckmD9few3q1s2R9ouISN7jcED2zDPPUKhQId544w2uXLlCnz59KFOmDOPHj7dtGi0iInK3MAyDVatWMWnSJGbNmkViYiIAixcv5uGHHwagX79+Gb/YaoVhw9IHYzeaMAFeflmbPIuIFFAOB2QAjz/+OI8//jhXrlzh0qVLlFRqXhERucucP3+eyZMnM2nSJP7++2/b8fr16/Pss8/SunXr21eyZo25r9itHD1qltOmzyIiBZLDWRYffPBBYmJiAPD29rYFY3FxcTz44INObZyIiEhu2bdvHy+//DJ///03vr6+PPvss2zZuJEt//d/DPT1xWfzZnMELCOnT8O338KIEfZd7ORJ5zVcRETyFYdHyFauXGmbrnGjq1evsmbNGqc0SkREJCedPXuWKVOmEB8fz5tvvglAo0aNeOKJJ2jRogW9evWicEQEdO+edsQrKAjGj4du3cxNnefOhTlzYN06SEmxvwGlSzv3hkREJN+wOyC7cWPL3bt321L7AlitVpYsWULZsmWd2zoREZFsYhgGK1euZNKkScyePZvExER8fX0ZPnw4hQsXxmKx8OOPP5qFM0vMcfy4GaSVLw///JP2XL160KULTJxojphltI7MYjGDuubNs+cmRUQkz7M7IKtbty4WiwWLxZLh1MRChQrx2WefObVxIiIiznbmzBm+//57Jk2axL59+2zHGzRowKBBg3Bzu+m/xlsl5kg99s8/ZnDVsiU88ogZiKVuD1OrlhnMWSxp60jdHHrcOCX0EBEpwOwKyOLi4jh48CAAlSpVYtOmTZQoUcJ23sPDg5IlS+Kq/1BERCSPmzBhAqNHjwbA19eXxx9/nEGDBlGvXr2MX2BPYg4wpyp26ZL+eLduMHOmGdTdPN1x3DjzvIiIFFh2BWRFixbl5MmTlCxZkpYtW1K5cmX8/f2zuWkiIiJ35tChQ0yePJlmzZrRvn17APr378/ixYt55pln6N27N76+vreuxN6EG1euZH6uWzfo0oXkyEi2L15M3bAw3Fq31siYiIjYF5D5+vpy7tw5SpYsyerVq0lKSsrudomIiGTJ1atXmTt3Lt988w3Lly8HoGPHjraArHz58mzcuNH+Co8ft6/c7RJzuLpitGzJ8cuXua9lSwVjIiIC2BmQtW3bltatW1O9enUMw+CRRx7Bw8Mjw7IrVqxwagNFRETs8ccff/Dtt9/y008/ceHCBdvxtm3bZr5x861YrfDvf8O16Y2ZUmIOERG5A3YFZD/99BPff/89Bw4cYNWqVdSsWRNvb+/sbpuIiIjdnnnmGbZs2QJAcHAw/fv3p3///lSoUMHxys6cgT594LffzOdt2kDqLxyVmENERJzIroCsUKFCPPfccwBs2bKFDz/8MMM1ZOfPn3dq40RERG5mGAarV69mypQpfPLJJ7b/jwYPHszixYsZMGAA7dq1y3qiqXXroGdPc6pioULw5Zfw5JNm6nsl5hARESdzeGPoyMjIdMeWLVvGt99+y7x584iPj3dKw0RERG505MgRvv/+e6ZMmWLL/NuoUSMGDx4MwNNPP83TTz+d9QsYBnz8Mbz6qjldsWpVMztirVrm+WuJOVizxkz0Ubq0OU1RI2MiInIHHA7IUv3zzz989913fP/991y4cIGwsDB++OEHZ7ZNREQKuPj4eGbPns3kyZNZsWIFxrXpgr6+vvTq1YsHHnjAOReKiYH+/WHuXPN5r14waRIULpy2nKsrtGrlnGuKiIjgYECWmJjI7Nmz+eabb1i3bh1t27bl2LFjbNu2jdq1a2dXG0VEpICKiYmhX79+WK1WAB588EGeeuopunXrho+Pj+MVWq3pR7j++AMeewwOHgQPD/jkExg8+Pr6MBERkWxkd0D2wgsv8Ouvv1KlShWeeOIJpk2bRkBAAO7u7toQWkRE7tjRo0f58ccfOXjwIN988w0ApUuXZtCgQQQGBvLkk09mLUFHqozWgPn7w6VLkJwMFSrAjBnQoMGd3IaIiIhD7A7IvvjiC1599VVee+01Ct88hUNERCQLrly5wty5c5kyZQq//fabbUrim2++Sfny5QGYOHHinV9o9mx49NG0GRLBnKoIZhC2bBkULXrn1xIREXGAi70Ff/zxRzZt2kTp0qXp2bMnCxYssE0hERERccSOHTsYNGgQpUuX5vHHHyciIgLDMGjVqhVTpkyhePHizruY1WqOjN0cjN3o1Cnw83PeNUVEROxkd0DWu3dvIiIi2LFjB9WqVWPIkCEEBgaSkpLC7t27s7ONIiJyFzBuCIi2bdvG119/TVxcHBUqVODtt9/m4MGDREZG0q9fv6ytD8vMmjVppylm5OhRs5yIiEgOszsgS1WxYkVGjx7N4cOH+emnn+jevTtPPPEEQUFBvPjii9nRRhERyacuXLjAV199RbNmzfjkk09sx7t168bTTz9NZGQkBw4c4J133qFixYr2VWq1wsqV8Ouv5s/MZmucOGEm6BgwwL56T560r5yIiIgTZTntvcViITQ0lNDQUM6fP88PP/zA5MmTndk2ERHJhxITE1myZAk//PAD8+fPJzExETDXi4WHhwNm2vpvv/3W8coz25x5/Hhzn7Dz52HWLPjlF1i16tbTFG9WurTj7REREblDWQ7IblSsWDGGDx/O8OHDnVGdiIjkU6+88gqTJ0/m3LlztmO1atXiySefpE+fPndWeWaJOY4fh+7doX59+PNPSEq6fu6BB6BnT/jPfyA6OuMAzWIxg7rmze+sfSIiIlnglIBMREQKphMnTlCmTBnb83/++Ydz584RGBhInz596Nu3L/fddx+WO93T61aJOVKPbd1q/rzvPujd29zc+VqmRoKCzGDOYklbR2q7xo0zN30WERHJYQ6vIRMRkYLtwoULfPPNN7Rs2ZKyZcuyZ88e27lXX32VJUuWcPToUT766CPq1q1758EY2JeYA2DyZNi+HV599XowBuZ0xpkzoWzZtOWDgszj3brdeRtFRESyQCNkIiJyW/Hx8SxYsIBffvmFRYsW2daFWSwW1q5dS/Xq1QGoX79+9jQgdfTrdjw9Mz/XrRt06WIGdydPmmvGmjfXyJiIiOQqBWQiInJL27Zto2XLlly8eNF2rHbt2vTp04fHH3+c4ODg7Lv4xo3w4YcwZ4595W+XmMPVFVq1uuNmiYiIOItdAdmff/5pd4V16tTJcmNERCR3GYbBli1bOHv2LGFhYQDUqFEDV1dXypUrR58+fejTpw+1a9fO+kWs1luPUhkGLF4MY8eamRJTeXnB1asZ16nEHCIikk/ZtYasbt263H///baft3o44osvvqBOnTr4+fnh5+dHSEgIixcvtp2/evUqQ4YMISAgAF9fX7p3786pU6fS1HHkyBE6duyIt7c3JUuW5JVXXiE5OTlNmZUrV1KvXj08PT2pXLkyU6ZMSdeWCRMmUKFCBby8vGjcuDGbNm1y6F5ERPKzv//+m3feeYeqVavSqFEjhg4datvI2dPTky1btnDo0CHGjBlzZ8HY7NlQoQK0bg19+pg/K1QwjyclwU8/mUk5OnY0gzF3d+jfH3btgp9/NgOvm9ekKTGHiIjkY3YFZIcOHeLgwYMcOnSIWbNmUbFiRSZOnMi2bdvYtm0bEydO5J577mHWrFkOXTwoKIj//Oc/bN26lS1btvDggw/SpUsXdu3aBcCIESOYP38+M2bMYNWqVZw4cYJuNyy8tlqtdOzYkcTERNavX8/333/PlClTeOutt9K0vWPHjrRu3Zrt27czfPhwnnnmGZYuXWorM23aNMLDw3n77bf5/fffue+++wgNDeX06dMO3Y+ISH5y8uRJPvnkExo2bEjVqlUZPXo0+/btw9vbm8aNG6eZonjPPffg4nKHeaBS09bfnJwjNW19mTLQty/s2AG+vvDSS3DwIHz3HdSoocQcIiJydzIc1LBhQ2PhwoXpji9cuNCoV6+eo9WlU7RoUeObb74xYmJiDHd3d2PGjBm2c3v27DEAIyoqyjAMw1i0aJHh4uJiREdH28p88cUXhp+fn5GQkGAYhmGMHDnSqFmzZppr9OzZ0wgNDbU9b9SokTFkyBDbc6vVapQpU8YYM2aM3e2OjY01ACM2NtaxG5Y0EhMTjblz5xqJiYm53RQpIO6ozyUnG0ZkpGH88ov5MznZ2c3LVgMGDDAAAzBcXV2NsLAw46effjIuXrzo/IslJxtGUJBhmBMSM3+UKGEY779vGOfP37qufPq+6zNOcpr6nOQ09TmTI7GBw0k9duzYQcWKFdMdr1ixIrt3785yYGi1WpkxYwaXL18mJCSErVu3kpSURNu2bW1lqlWrRrly5YiKiqJJkyZERUVRu3ZtSpUqZSsTGhrK4MGD2bVrF/fffz9RUVFp6kgtk7qJdWJiIlu3bmXUqFG28y4uLrRt25aoqKhM25uQkEBCQoLteVxcHABJSUkk3bgpqTgk9b3Teyg5wmrFunIlZVevxurpaSZ7sHPKm2XOHFzDw7EcP247ZpQti/XjjzEeeSSbGpw1sbGxzJs3jxkzZvDmm2/SsGFDAHr16sWuXbvo3bs33bt3p2TJkrbXOPvfoGXVKtzsSFufPHkyRvv2qY3IvGDTptf/nJJiPvIBfcZJTlOfk5ymPmdy5P4dDsiqV6/OmDFj+Oabb/Dw8ADMoGbMmDG2tMeO2LFjByEhIVy9ehVfX1/mzJlDjRo12L59Ox4eHvj7+6cpX6pUKaKjowGIjo5OE4ylnk89d6sycXFxxMfHc+HCBaxWa4Zl/vrrr0zbPWbMGEaPHp3u+LJly/D29rbv5iVTERERud0EucuVjoqi9jffUOjcORoAfPwx8QEB7HjmGU6GhNz2tQ0//DD9iePHce3Zk82vvnrbOrLb1atX2bJlC2vWrOH333+3/cfg7u7OgAEDbOVee+01ALZs2ZKt7Sm7erX5Pt/G9hUrOH7TOuC7kT7jJKepz0lOK+h97sqVK3aXdTgg+/LLL+nUqRNBQUG2jIp//vknFouF+fPnO1odVatWZfv27cTGxjJz5kz69evHqhuzauVRo0aNIjw83PY8Li6O4OBg2rdvj5+fXy62LH9LSkoiIiKCdu3a4e7untvNkbuUZc4cXMeONSfJ3cDr/Hkajh2LderUjEe5kpIgOhq3QYPMem6uFzAsFhr+/DPJ77yTKwkmLly4wAsvvMCCBQvS/GdQtWpVevbsSc+ePalSpUqOt8uSnAwff3zbcnXDwrivZcscaFHu0Gec5DT1Oclp6nOm1Nlz9nA4IGvUqBEHDx7k559/to0g9ezZkz59+uDj4+NodXh4eFC5cmXA3FB08+bNjB8/np49e5KYmEhMTEyaUbJTp04RGBgIQGBgYLpsiKlZGG8sc3NmxlOnTuHn50ehQoVwdXXF1dU1wzKpdWTE09MTzww2IHV3dy/Qnc9Z9D5KtrFazWQRNwVjAJZrx9wGDoSVK+HMGTh9+vrj/PnbVm8xDDh2DPcNG3Jkv6ukpCQOHDhAtWrVAAgICGDt2rVcuXKFSpUq0bNnT3r16kXt2rWx3JydMCcYhplw4/nnb13uWtp6t9atC0SmRH3GSU5Tn5OcVtD7nCP3nqWNoX18fBh07TfEzpaSkkJCQgL169fH3d2d5cuX0717dwD27t3LkSNHCLk2FSgkJIT333+f06dP29Y+RERE4OfnR40aNWxlFi1alOYaERERtjo8PDyoX78+y5cvp2vXrrY2LF++nKFDh2bLPYpILlqzJn2Wv5vFxcEXX2R8zmLJMJhL58QJx9tmp+TkZFauXMmMGTOYNWsWbm5uHD9+3PYLpokTJ1KmTBkaNGiQO0FYquhoMxBL3dQ5OBiOHk3/HiptvYiIFGB2BWTz5s2zu8LOnTvbXXbUqFGEhYVRrlw5Ll68yC+//MLKlStZunQpRYoUYcCAAYSHh1OsWDH8/Px44YUXCAkJoUmTJgC0b9+eGjVq0LdvX8aOHUt0dDRvvPEGQ4YMsY1ePffcc3z++eeMHDmSp59+mhUrVjB9+nQWLlxoa0d4eDj9+vWjQYMGNGrUiHHjxnH58mX69+9v972ISD5x8qR95bp2hQcfhJIloVQp82fJkvDnn9Cmze1fP3q0uYdWt25OCTJuDMJmz57N2bNnbedKlCjBgQMHuPfeewHo0qXL7Su83ebMd8Iw4McfYfhwuHAB3NzgX/8yHwsXwrBhaYPioCAzGFPaehERKYjsSdtosVjseri4uDiUDvLpp582ypcvb3h4eBglSpQw2rRpYyxbtsx2Pj4+3nj++eeNokWLGt7e3sYjjzxinDx5Mk0dhw8fNsLCwoxChQoZxYsXN1566SUjKSkpTZnIyEijbt26hoeHh1GpUiVj8uTJ6dry2WefGeXKlTM8PDyMRo0aGRs2bHDoXpT23jmUKlWy1alThhEaevvU62CmU89Iavp2i8W+eipXNoyvvjKM+Pj09TiQuv3111+3pagHjICAAGPgwIHGsmXL0n3m3dasWelT0AcFmcfv1D//GMZDD12vt149w9i+PW2ZfJy2/k7pM05ymvqc5DT1OZMjsYHFMOyZeyO3ExcXR5EiRYiNjVVSjzuQlJTEokWL6NChQ4GedyxOlpxsTkF8802Ijb112WtrmTh0KPMRo9QNjiHjqXfffguHD8Pnn19fd1aqlDliNHgwLF+e8SjR+PEkd+5MZGQkM2bMoE+fPrS6tg5t06ZNdOzYkW7duvHYY4/RqlUr3NyyMOs8te03f/Sntt2eDZYzGl2zWODrr+GVV+DiRfD0hHfegZdfNkfIBNBnnOQ89TnJaepzJkdiA/0vKSJ3t7VrYcgQc6ohQL168Nhj5vQ5yNpapm7dzMDldlPvXnkFvvnGzC549CiMGgXvvgvx8WmqSwYijx1jevfuzClcmHMXLwLm/oypAVnDhg05efLk9SDMajUTjzgy5dBqNduc0e/hDMO8/+HDoUuXWwejN993YCAEBMCuXebzkBD47ju4lmhEREREMueSlRetWrWKTp06UblyZSpXrkznzp1Zs2aNs9smInJrqUHJr7+aP63W6+eio+HJJ81A5c8/oWhRc5Rs0yZ47TUzoCpbNm19QUH2jRCBWebwYYiMhF9+MX8eOpT2tb6+ZoBz4AB8/z3UqJEmGLsKDAQCgfbAN8C5ixcpXrw4gwYNol+/frayFovlejA2ezZUqACtW0OfPubPChXM45lJTDSDpFslNDEMM3B84w347TczwLpw4XoAlzq6dnMd0dFmWQ8PMyBds0bBmIiIiJ0cHiH76aef6N+/P926dePFF18EYN26dbRp04YpU6bQp08fpzdSRCSdjEZqgoLM0ajjx+Htt81siRYLPPMMfPABFC9+vWy3btClC8mRkWxfvJi6YWGOp1x3dbUvtb27Ozz5JPElSrCrQwfbBsmewGrgHFAc6Ab0AFo+/jhunTqZQVZKCrjc8LuzzKYcHj9uHp85Ezp0gB07YOtW+P1387FjhxmU2eM//zEfqby8zFG448dvnWEyIACGDlWmRBEREQc4HJC9//77jB07lhEjRtiOvfjii3z88cf8+9//VkAmIo7JSra/zIKSY8egR4/rzxs2NNdxNWqUcT2urhgtW3L88mVzM+JsCCQuXrzIokWLmDVrFovmzcMCnAG8MDeS/hAoDLTkhg/k8ePNB5jB0D33wL33mj+//TbzKYcAvXqZ72lKSvoyPj5w+fLtG12/Ply9aqbuv3DB/POhQ7d/3cmT5t9lDuy/JiIicrdwOCA7ePAgnTp1Sne8c+fO/Ct1TYaIiD0yG+UaPz7zaYO3WgeVysUFJk6EgQPTji7lkAsXLjBv3jxmzZrFsmXLSEhIsJ0LBg4CNa4975pRBY0bm8lADh0yg6Fdu66vz7qdpCTzZ/HiZmBVr971n8HBULFi5iNdqQlNNm68HpzGx5tTEr//3kzlfzv2bisgIiIiQBYCsuDgYJYvX07lypXTHP/tt98IDg52WsNE5C5nz9S7m4Myw4D582+/sXNKClStmivBGMDEiRN54403bM8rV65M9+7d6d61Kw0efRTLiRO3DojWrTMDouRkc53avn3mY9EiWLr09g347DMzkUlGm0KPH2++v/ZuzlyokBnEtWplX0BWuvTty4iIiIiNwwHZSy+9xIsvvsj27dt54IEHAHMN2ZQpUxifOsVGRORW7Mn299xzcOaMOUp04MD1R1ycfdfIgZGaf/75h7lz5zJr1ixeeOEFHnvsMQC6devG1KlTzSCse3dq1aqFJTXg+fRT+wMiNzeoXNl8hIVBnTr2BWS1amUcjJmNsy9D5M2aNzfL3G50rXnz27dPREREbBwOyAYPHkxgYCAfffQR06dPB6B69epMmzaNLl26OL2BInIXWrPm9tn+zpwxg7KsyoaRGsMw2LlzJ3PmzGHu3Lls27bNdi4wMNAWkFWvXp0dO3ZkXElWAyJwXlB0LaGJQ2v3XF0dH10TERGR28rSPmSPPPIIjzzyiLPbIiIFhb2jV/fdZwYK99xjPipXhnLlzJTqOTxSc/nyZe677z4OHDhgO+bi4kKzZs3o1q2bY5+JWQmIwLlBkb0ZIm9ud1aDSREREclQljeGTkxM5PTp06TclMmrXLlyd9woEbnL2Tt6NW5cxkFDNo/UxMfHs3z5cvbt22fLKOvj40PRokXx9PSkffv2PPLIIzz88MOUKFEiaxfJSkAEuR8UZTWYFBERkQw5HJDt27ePp59+mvXr16c5bhgGFosF640bs4qI3CwhAX7++dZlbjfKlQ1ByYULF1i2bBlz585lyZIlXL58GXd3dwYMGICfnx9g7sNYtmxZfH19Ha7fqXI7KMpqMCkiIiLpOByQPfXUU7i5ubFgwQJKly59faG6iMjtpGZQ3LDh+rGsjnI5KSiZP38+o0ePZteuXWl+oRQUFETXrl25cuWKLSCrWrWqQ3VnKwVFIiIidwWHA7Lt27ezdetWqlWrlh3tEZG71dq1ZjB26hT4+8Ovv8KVK3c2yuVgUJKSksLWrVu55557KFasGABHjx7lzz//BKBWrVp07dqVrl27Uq9ePf3CSURERLKdwwFZjRo1OHv2bHa0RUTuRoZhbtI8fLi5r1bt2jBnjpmkA7J96l3qerB58+axYMECTp48yaRJkxg4cCBgbmq/fft2Ro4cSfXq1Z12XRERERF72BWQxd2w78+HH37IyJEj+eCDD6hduzbu7u5pyqZO7RERIT4eBg+G7783n/fqBd98Az4+18tkw9S7S5cuMW3aNObNm0dERATx8fG2c4ULF+b8+fO256lTE2/e7F5EREQkJ9gVkPn7+6eZumMYBm3atElTRkk9RCSNI0fMaYdbt4KLC4wdC+HhmW9YfAcMwyAmJoaiRYsCZhbYZ5991vZ5VK5cOTp16kTnzp1p2bIlnp6eTm+DiIiISFbYFZBFRkZmdztEJL+yWtNPOVy9Gnr0gLNnISAApk2Dm36Jc6euXr3KqlWrWLhwIfPnz6dMmTKsW7cOgGLFijFo0CBKly5N586dqVOnjtaDiYiISJ5kV0DWsmXL7G6HiORHs2enT8pRpAhcvAgpKXD//eZ6sfLlnXK5EydOsGjRIhYsWMBvv/3G5cuXbedOnz7NxYsXKVy4MAATJ050yjVFREREslOWNoZes2YNX331FQcPHmTGjBmULVuWH3/8kYoVK9KsWTNnt1FE8qLZs82siTemrAeIjTV/tmwJixdDoUJZvkRKSgouLi625y+88AKzZ8+2PS9dujQdO3akY8eOtGvXDp8b16aJiIiI5AMuty+S1qxZswgNDaVQoUL8/vvvJCQkABAbG8sHH3zg9AaKSB5ktZojYzcHYzc6eBA8PByuOjY2lhkzZvDUU08RGBjIvn37bOc6d+5Mo0aNePfdd9m6dSvHjx/n66+/pmvXrgrGREREJF9yeITsvffe48svv+TJJ59k6tSptuNNmzblvffec2rjRCSPWrMm7TTFjBw9apa7TQZFwzD4+++/WbhwIQsWLGDNmjUkJyfbzi9atIhhw4YB0K9fP/r163enrRcRERHJMxwOyPbu3UuLFi3SHS9SpAgxMTHOaJOI5HUnTzqtXEREBKGhoWmOVa1alY4dO/Lwww/TtGnTrLRQREREJF9wOCALDAxk//79VKhQIc3xtWvXUqlSJWe1S0TyqpgYmD7dvrKlSwPXR8EWL17M4sWLadq0KW+99RZgjq4XLlyYxo0b8/DDD9OxY0ftCSYiIiIFhsMB2cCBAxk2bBjfffcdFouFEydOEBUVxcsvv8ybb76ZHW0UkbzAMODXX829xE6dunVZi4UrZcoQGRfHoiFDWLx4MYcOHbKdPn36tC0g8/Hx4cyZM9obTERERAokhwOy1157jZSUFNq0acOVK1do0aIFnp6evPzyy7zwwgvZ0UYRyW1798KQIbB8ufn83nuhd294913z+Y3JPSwWDMOgWkICR7t0sR12d3enRYsWhIWFERYWlqZ6BWMiIiJSUDkckFksFl5//XVeeeUV9u/fz6VLl6hRowa+vr7Z0T4RyU3x8fDBBzB2LCQmgpcXvP46vPIKeHpysUoVVg4bxtJz59gOrAEsQUFYxo2j5Zw5rF69mg4dOhAWFsaDDz6ozwkRERGRm2RpHzIADw8PatSoQVxcHL/99htVq1alevXqzmybiOQEq9XMhnjypLnmq3lzcHU19xAbOtRMXw8QFkbKp5+yPS6OpR9/zNKlS1m/fj1JSUm2qv78+mvu698fXF35MjQUb29vLBZLLt2YiIiISN7ncEDWo0cPWrRowdChQ4mPj6dhw4YcOnQIwzCYOnUq3bt3z452ikh2mD3b3E/sxhT2pUtD+fKwYYP5vGxZGD8eunXjrTff5P33309TxT333ENoaCihoaFUadvWDOZA+4KJiIiI2MHhjaFXr15N8+bNAZgzZw4pKSnExMTw6aefah8ykfxk9mx49NF0+4klnDzJig0beBWoW6IEyz7/HLp3B4uFli1b4uvrS+fOnZkwYQL79+9n//79TJgwgc6dO+Pt7Z079yIiIiKSTzk8QhYbG0uxYsUAWLJkCd27d8fb25uOHTvyyiuvOL2BIpINrFZzZMwwMIB9wDJgKRAJXE4td+YMS1avpn3XrgC0bt2ac+fO4eHhkQuNFhEREbn7OByQBQcHExUVRbFixViyZAlTp04F4MKFC3h5eTm9gSLifNbISFyvjYz9BdS46XwpoD0Q+q9/0W7YMNtxN7csLzsVERERkQw4/O1q+PDhPP744/j6+lK+fHlatWoFmFMZa9eu7ez2iYg9MkvMcU18fDxr164lYvZsIv73P6rHxPDLtXPVgIrXHqGYgVgdrs1nrlULSpbM2XsRERERKUAcDsief/55GjVqxNGjR2nXrh0uLuYytEqVKmkNmUhuyCgxR1AQ24YNY5nVym9Ll7Jm7VoSbsiGeAIwAMu1xz7AlQyULp2dLRcREREp8LI0/6hBgwY0aNAgzbGOHTs6pUEi4oDUxByGwSnMqYYAHD/OwFdeYesNRcsC7YB2VavS5plnsHzyiTmiZhjpgzGLBYKCzJE2EREREck2DgdkTz/99C3Pf/fdd1lujIjY70x0NCsGDmSFYbAc+Ac4DxQGMAweAUpzLQgLDqbagAFY+vaFSpXMCipVMoM5iwUM43rFqfuGjRuXZtqjiIiIiDifwwHZhQsX0jxPSkpi586dxMTE8OCDDzqtYSKS3pYtW/jll19Yvnw5f/75Z5pzrsB2IHVM6/XUE599BkOGXA+0UnXrBjNnZjjdkXHjzPMiIiIikq0cDsjmzJmT7lhKSgqDBw/mnnvucUqjRAQSEhKIioqiRo0alLyWWGPjxo188skntjJ1gAeBNkALwC+jigIC0gdjqbp1gy5dbpkQRERERESyj1NyWLu4uBAeHk6rVq0YOXKkM6oUKXCsViu///47y5cvZ8WKFaxdu5b4+Hi++uorBg0aBED79u0ZOHAgbZo1o/X8+ZScOfP2Fd8uMYerK1zLlioiIiIiOctpmwodOHCA5ORkZ1UnUmAcOnSIYcOGsXr1amJjY9OcCwwMJCEhwfa8SuXKTAoNhfBwOHLk1hUrMYeIiIhInudwQBYeHp7muWEYnDx5koULF9KvXz+nNUwKIKsVy6pVlF29GouPD7RufVdNnUtJSWHnzp1ERkZSokQJ+vTpA0DRokVZuHAhKSkpFClShNatW/Pggw/Spk0bqlevjiV1uuHu3fDii7B8ufk8OBh69oSPPjKfKzGHiIiISL7jcEC2bdu2NM9dXFwoUaIEH3300W0zMIpk6tpeWm7HjtEA4OOPzdGd8ePzbXIJwzDYvXs3kZGRREZGsmrVKs6dOwfAAw88YAvI/P39+fbbb6lVqxb3338/rjcHUHFxMHo0fPopJCeDpyeMHAmvvQbe3hASosQcIiIiIvmUwwFZZGRkdrRDCrIb9tJK4/hx8/jMmfkysKhZsyZ79uxJc8zHx4dmzZrRvn37NMef6tvXTKwxffr1xBoWC/z4I7z6Kpw6ZRbs3Bk++eR66npQYg4RERGRfCzLa8jOnDnD3r17AahatSolSpRwWqOkALFazdGdm4MxMI9ZLDB8uBlw5LEAIyUlhd27d7Nq1SpWrVrFwYMH2bx5s22KYbVq1Th8+DBNmzaldevWtG7dmgYNGuDu7p62omujg2lGuEqWBH9/+Ptv83mVKuYI2UMPZdwYJeYQERERyZccDsguX77MCy+8wA8//EBKSgoArq6uPPnkk3z22Wd4e3s7vZGSj1itjo3UrFqVNhC5mWHA0aNmnbcLOBy9dhbs2bOHpUuXsmrVKtasWWObgpjq0PjxVKpbF5o3Z+LEiRQtWhRPT8/MK8xsdPD0afPh6WlOVxw+3PyziIiIiNxVXBx9QXh4OKtWrWL+/PnExMQQExPD//73P1atWsVLL72UHW2U/GL2bKhQwUzG0aeP+bNCBfP4jY4ehcmTzTKPPGJf3b17w/PPm3XdtDm5Q9d2QFJSEps2bSI+Pt52bNKkSYwYMYK5c+dy7tw5vL29aVunDv/282M1EDRihO3agevX3zoYu9XoYKqAAHj5ZQVjIiIiIncph0fIZs2axcyZM2l1w2hFhw4dKFSoED169OCLL75wZvskv7jdOrCRI+HSJfjtN7g21dUh0dHwxRfmw8UF6teHtm3Nx+nTZhB2h2vQEhIS2LJli20K4rp167h8+TLLly/nwQcfBMx9wPbu3UvLli1p2bIl9Y8cwb1XL/uuff487NwJO3aYP9euvfXoIMCJE/aNDoqIiIhIvuRwQHblyhVKlSqV7njJkiW5cuWKUxol+czt1oEBfPjh9WMuLtCoEbRrZ44m9e1rBh4Zvd5igTJl4LPPIDLSDOj27IHNm83HmDGZt8vONWgbNmzg1VdfZdOmTVy9ejXNuaJFixIdHW17HhYWRlhY2PX7fuyxW9/3U0/BV1+ZAdiJE5m39VZOnsza60REREQkz3M4IAsJCeHtt9/mhx9+wMvLC4D4+HhGjx5NSEiI0xso+cCaNbcf6QEzKHrqKXO0x9//+vFPPzVHkyyWjPfS+vRTc2pj6vTG48fNvbh++w0WLjRHnjKTugZtwQJONWnCmjVrWLNmDW3btqVTp04AeHp6snr1agBKAM2BlkDLkiWpPWECLo8+mnHdy5bd/r4vXjTLpSpfHmrVgtq1zcD0gw9u/Xow18OJiIiIyF3J4TVk48ePZ926dQQFBdGmTRvatGlDcHAw69evZ/z48Q7VNWbMGBo2bEjhwoUpWbIkXbt2tWVuTHX16lWGDBlCQEAAvr6+dO/enVOpKcCvOXLkCB07dsTb25uSJUvyyiuvkJycnKbMypUrqVevHp6enlSuXJkpU6aka8+ECROoUKECXl5eNG7cmE2bNjl0PwVSQoI5Lc8ePXtC165pgzEwp/TNnAlly6Y9HhSU8XTDsmXhySfhhx/MkbMMGMABYAowALi3a1cCAwN57LHH+PTTT5k9dixs3Qrx8dTZv5+vgT3AKWAW8CJw35kzuPToAd9/b04v/PprCA+HsDAzsOrQwb77HjAA1q+H2Fg4fBgWLDBH9t5917zH1MDzZhaLuflz8+b2XUdERERE8h2HR8hq1arFvn37+Pnnn/nrr78A6N27N48//jiFChVyqK5Vq1YxZMgQGjZsSHJyMv/6179o3749u3fvxsfHB4ARI0awcOFCZsyYQZEiRRg6dCjdunVj3bp1AFitVjp27EhgYCDr16/n5MmTPPnkk7i7u/PBtdGHQ4cO0bFjR5577jl+/vlnli9fzjPPPEPp0qUJDQ0FYNq0aYSHh/Pll1/SuHFjxo0bR2hoKHv37qVkyZKOvk35l72ZCg8eNKfiffcdnD1rX923Gum5tpdWcmQk2xcvpm5YGG6tW98+S2KZMgAkA+eA1Mm0F4DKNxW1ALUxR8A6rl0LDRqAxYKrqyvPZFT3jdMO78QTT5ibN9/M1dXc+PpWo4PjxuW5dP8iIiIi4kRGHnL69GkDMFatWmUYhmHExMQY7u7uxowZM2xl9uzZYwBGVFSUYRiGsWjRIsPFxcWIjo62lfniiy8MPz8/IyEhwTAMwxg5cqRRs2bNNNfq2bOnERoaanveqFEjY8iQIbbnVqvVKFOmjDFmzBi72h4bG2sARmxsrIN3nYfMmmUYQUGGYYYG5iMoyDxuGIaRnGwY//ufYTz0kGFYLNfLlCljGH5+aY/d+LBYDCM42Hz9bSQmJhpz5841EhMTb1kuLi7OWLZsmfH2m28abTw9DV8wWt503XpgPADGq4ULGwumTTPOL1tmGF9/bRgvvmgYrVsbRvHiGbc3o0eJEoYRGmoYw4cbxldfGcaaNYZx6pT5/tzpfWf0vgcHX3/fJVvZ2+dEnEH9TXKa+pzkNPU5kyOxgd0jZPPmzbOrXOfOnbMUGALExsYCUKxYMQC2bt1KUlISbdu2tZWpVq0a5cqVIyoqiiZNmhAVFUXt2rXTJBoJDQ1l8ODB7Nq1i/vvv5+oqKg0daSWGT58OACJiYls3bqVUaNG2c67uLjQtm1boqKisnw/+crtsiT27Anr1pnrsVK1bw+DB8PDD8O8eTky0vPGG2+wcOFC/vzzT9s+eKn2Ailcn4e7GXCxWGDKlIyzLBoGfPmlmU7/dsaPN1PvZ3T8Tu/72uhgdu+hJiIiIiJ5j90BWdeuXdM8t1gsGDd9ebdYLFit1iw1JCUlheHDh9O0aVNq1aoFQHR0NB4eHvjftOaoVKlStsx30dHR6bI+pj6/XZm4uDji4+O5cOECVqs1wzKp0zJvlpCQQEJCgu15XFwcYO5dlZSU5Mit5z6rFbcXXwTDIN1qJsPAACxTp5pPAwJI6dePlGeegcqVbWXo1AnL1Km4hodjOX78+svLlsX60UcYnTqBHe9LUlISVquVTZs2sXnzZv766y8+u2Gd2LZt29i+fTsAFSpUICQkhAceeIAH4uOpM24cLjdkMrQEBZF8m2tbqlSx6x9BcokSGBnV4aT7BqBp0+t/TkkxH5LtUv+95rt/t5Ivqb9JTlOfk5ymPmdy5P7tDshuHo0oXLgwf/zxB5UqVbK/ZbcwZMgQdu7cydq1a51SX3YbM2YMo0ePTnd82bJleHt750KLsi5gxw6a3RBM3Cw1SNvbvTt/9+xJiocH/P23+biRpyd8+ikBu3fjdeECV4sW5VyNGuZIz6JFmdZ/8eJF9u7dy969e/nrr7/Yt29fmvTzDRo0oESJEgA0btyYmjVrUr16ddtIKsBR4Ohnnzl8baxW2gcE4HXuXPpgFDM5SHzx4kTExWVeTxbvW/KWiIiI3G6CFCDqb5LT1OckpxX0PufIdmAOJ/XIDkOHDmXBggWsXr2aoKAg2/HAwEASExOJiYlJM0p26tQpAgMDbWVuzoaYmoXxxjI3Z2Y8deoUfn5+FCpUCFdXV1xdXTMsk1rHzUaNGkV4eLjteVxcHMHBwbRv3x4/Pz8H34HcZbk2unc793TpQqWbRkozdC2dfEZSUlLYvXs3lStXtm2bMGLECCZMmJCmnJ+fHyEhIYSEhPDQQw/ZRi873C6z4S2unRnLxInQq5c5EnjDqK9xbdqhx4QJdLCn3ixcW3JfUlISERERtGvXDnd399xujtzl1N8kp6nPSU5TnzPF2fn9GnI5IDMMgxdeeIE5c+awcuVKKlasmOZ8/fr1cXd3Z/ny5XTv3h2AvXv3cuTIEdueZyEhIbz//vucPn3alg0xIiICPz8/atSoYSuz6KaRioiICFsdHh4e1K9fn+XLl9umZqakpLB8+XKGDh2aYds9PT3x9PRMd9zd3T3/db5ro0+34xYcDA7eW2xsLBs3bmT9+vVERUWxceNGYmNjWbVqFS1atACgWbNmtr+PRo0akZSUxLPPPmsL2LJdjx7g5mZubn3DvmKWoCAYNw63jNafyV0nX/7blXxL/U1ymvqc5LSC3uccufdcDciGDBnCL7/8wv/+9z8KFy5sW/NVpEgRChUqRJEiRRgwYADh4eEUK1YMPz8/XnjhBUJCQmjSpAkA7du3p0aNGvTt25exY8cSHR3NG2+8wZAhQ2wB03PPPcfnn3/OyJEjefrpp1mxYgXTp09n4cKFtraEh4fTr18/GjRoQKNGjRg3bhyXL1+mf//+Of/G5KSlS83EHLdisZj7ZTmwH9Zvv/3G8OHD2b17d7q1hj4+Phy7IfDp2bMnvXr1AszfqixatAjXnE5oocQaIiIiIpILshyQWSwWLJltaGunL774AoBWrVqlOT558mSeurb30yeffIKLiwvdu3cnISGB0NBQJk6caCvr6urKggULGDx4MCEhIfj4+NCvXz/effddW5mKFSuycOFCRowYwfjx4wkKCuKbb76x7UEGZlBw5swZ3nrrLaKjo6lbty5LlixJl+jjrnH6NIwYAb/8Yj4PCIBz5xzKFnj27Fk2btzIhg0b2LBhAwMGDLAFVoULF2bXrl0A3HPPPbbphw888AC1atXCzc3thkvcWT9yGldXuKkvioiIiIhkJ7sDsqJFi6b54nzp0iXuv/9+XFxc0pQ7f/683Re/eeQkI15eXkyYMCHdGqMblS9fPt2UxJu1atWKbdu23bLM0KFDM52ieNcwDJg8GV5+GS5cABcXeOEF+Pe/ISIi3bQ9rk3bo1s3YmJi+PHHH21B2IEDB9JUfc8999gCsvvvv5+5c+cSEhJSsDbWFhERERFxgN0B2bhx47KxGeI0Vmvm0+727oXnnoOVK83ndevC119Dgwbm82vT9ozVq/lnxw42nj1L4YYNbQktkpOTefHFF9Ncrlq1ajRp0oQmTZrQsmVL23EPDw+6dOmSzTcrIiIiIpK/2R2Q9evXLzvbIc4we3bGI1z/939mMPb++5CYCN7eMHo0DB8Obm6cP3+ezZs3s2nTJtv+X6kZJ9u2bWsLyIoXL87TTz9N+fLladKkCY0aNUq3R5yIiIiIiNgvT6S9FyeYPRsefTTt+i8wg7Nr0wgB4tu149hrr1HlwQcBc9po5cqVuXDhQpqXubm5UbduXRqkjp5d8+2332ZP+0VERERECiAFZHcDq9UcGbspGLMCe4BNqY8KFdgRGUnw/v0cPHgQMBNqNGzYkEOHDtGoUSPbo27dujmXdl5EREREpIBSQHY3WLMm7TRF4DngJ+DyjQcPHwbMncMvXbqEr68vAAsWLCjQ+0SIiIiIiOQWl9sXkTzv5Ml0hyyYwZgP0BJ4BZgxbBj//PMPJ0+etAVj4NjGdSIiIiIi4jwaIbsblC6d7lA4MASoDth2D+vaFcqVy7FmiYiIiIjIrTkckFmtVqZMmcLy5cs5ffo0KSkpac6vWLHCaY0TOzVvbmZTPH7cto6syo3nLRbzfPPmudI8ERERERHJmMMB2bBhw5gyZQodO3akVq1aaTaLllzi6grjx5tZFi2WtMk9Uv9+xo27vh+ZiIiIiIjkCQ4HZFOnTmX69Ol06NAhO9ojWdWtG8ycmfE+ZOPGmedFRERERCRPcTgg8/DwoHLlytnRFrlT3bpBly5m1sWTJ821Zc2ba2RMRERERCSPcjjL4ksvvcT48eMxbt6AWPIGV1do1Qp69zZ/KhgTEREREcmzHB4hW7t2LZGRkSxevJiaNWumS5k+e/ZspzVORERERETkbuZwQObv788jjzySHW0REREREREpUBwOyCZPnpwd7RARERERESlwHF5DJiIiIiIiIs7h8AgZwMyZM5k+fTpHjhwhMTExzbnff//dKQ0TERERERG52zk8Qvbpp5/Sv39/SpUqxbZt22jUqBEBAQEcPHiQsLCw7GijiIiIiIjIXcnhgGzixIlMmjSJzz77DA8PD0aOHElERAQvvvgisbGx2dFGERERERGRu5LDAdmRI0d44IEHAChUqBAXL14EoG/fvvz666/ObZ2IiIiIiMhdzOGALDAwkPPnzwNQrlw5NmzYAMChQ4e0WbSIiIiIiIgDHA7IHnzwQebNmwdA//79GTFiBO3ataNnz57an0xERERERMQBDmdZnDRpEikpKQAMGTKEgIAA1q9fT+fOnXn22Wed3kAREREREZG7lcMBmYuLCy4u1wfWevXqRa9evZzaKBERERERkYIgSxtDr1mzhieeeIKQkBCOHz8OwI8//sjatWud2jgREREREZG7mcMB2axZswgNDaVQoUJs27aNhIQEAGJjY/nggw+c3kAREREREZG7lcMB2XvvvceXX37J119/jbu7u+1406ZN+f33353aOBERERERkbuZwwHZ3r17adGiRbrjRYoUISYmxhltEhERERERKRCytA/Z/v370x1fu3YtlSpVckqjRERERERECgKHA7KBAwcybNgwNm7ciMVi4cSJE/z888+8/PLLDB48ODvaKCIiIiIicldyOO39a6+9RkpKCm3atOHKlSu0aNECT09PXn75ZV544YXsaKOIiIiIiMhdyeGAzGKx8Prrr/PKK6+wf/9+Ll26RI0aNfD19c2O9omIiIiIiNy1HA7IUnl4eFCjRg1ntkVERERERKRAsTsge/rpp+0q991332W5MSIiIiIiIgWJ3QHZlClTKF++PPfffz+GYWRnm0RERERERAoEuwOywYMH8+uvv3Lo0CH69+/PE088QbFixbKzbSIiIiIiInc1u9PeT5gwgZMnTzJy5Ejmz59PcHAwPXr0YOnSpRoxExERERERyQKH9iHz9PSkd+/eREREsHv3bmrWrMnzzz9PhQoVuHTpUna1UURERERE5K7k8MbQthe6uGCxWDAMA6vV6sw2iYiIiIiIFAgOBWQJCQn8+uuvtGvXjnvvvZcdO3bw+eefc+TIEe1DJiIiIiIi4iC7k3o8//zzTJ06leDgYJ5++ml+/fVXihcvnp1tExERERERuavZHZB9+eWXlCtXjkqVKrFq1SpWrVqVYbnZs2c7rXEiIiIiIiJ3M7sDsieffBKLxZKdbRERERERESlQHNoYWkRERERERJwny1kWRURERERE5M4oIBMREREREcklCshERERERERyiQIyERERERGRXJKrAdnq1avp1KkTZcqUwWKxMHfu3DTnDcPgrbfeonTp0hQqVIi2bduyb9++NGXOnz/P448/jp+fH/7+/gwYMIBLly6lKfPnn3/SvHlzvLy8CA4OZuzYsenaMmPGDKpVq4aXlxe1a9dm0aJFTr9fERERERGRG+VqQHb58mXuu+8+JkyYkOH5sWPH8umnn/Lll1+yceNGfHx8CA0N5erVq7Yyjz/+OLt27SIiIoIFCxawevVqBg0aZDsfFxdH+/btKV++PFu3buW///0v77zzDpMmTbKVWb9+Pb1792bAgAFs27aNrl270rVrV3bu3Jl9Ny8iIiIiIgWe3Wnvs0NYWBhhYWEZnjMMg3HjxvHGG2/QpUsXAH744QdKlSrF3Llz6dWrF3v27GHJkiVs3ryZBg0aAPDZZ5/RoUMH/u///o8yZcrw888/k5iYyHfffYeHhwc1a9Zk+/btfPzxx7bAbfz48Tz00EO88sorAPz73/8mIiKCzz//nC+//DIH3gkRERERESmI8uwaskOHDhEdHU3btm1tx4oUKULjxo2JiooCICoqCn9/f1swBtC2bVtcXFzYuHGjrUyLFi3w8PCwlQkNDWXv3r1cuHDBVubG66SWSb2OiIiIiIhIdsjVEbJbiY6OBqBUqVJpjpcqVcp2Ljo6mpIlS6Y57+bmRrFixdKUqVixYro6Us8VLVqU6OjoW14nIwkJCSQkJNiex8XFAZCUlERSUpLd9ylppb53eg8lp6jPSU5Sf5Ocpj4nOU19zuTI/efZgCyvGzNmDKNHj053fNmyZXh7e+dCi+4uERERud0EKWDU5yQnqb9JTlOfk5xW0PvclStX7C6bZwOywMBAAE6dOkXp0qVtx0+dOkXdunVtZU6fPp3mdcnJyZw/f972+sDAQE6dOpWmTOrz25VJPZ+RUaNGER4ebnseFxdHcHAw7du3x8/Pz5FblRskJSURERFB4cKFsVgsTqmzWbNmTqlH7k6pfa5du3a4u7tnWGbt2rVOu576Y8FmT3+TgmHtGCd+rozK/HNFfU5yWmqf21F4BymWFABGNRuVy63Keamz5+yRZwOyihUrEhgYyPLly20BWFxcHBs3bmTw4MEAhISEEBMTw9atW6lfvz4AK1asICUlhcaNG9vKvP766yQlJdk+iCIiIqhatSpFixa1lVm+fDnDhw+3XT8iIoKQkJBM2+fp6Ymnp2e64+7u7vrAcwKLxeK0gEx/H2KPW/3bdVZfTL2OiP6vEEtKzn6uqM9JTkuxpNgCsoLY9xy551xN6nHp0iW2b9/O9u3bATORx/bt2zly5AgWi4Xhw4fz3nvvMW/ePHbs2MGTTz5JmTJl6Nq1KwDVq1fnoYceYuDAgWzatIl169YxdOhQevXqRZkyZQDo06cPHh4eDBgwgF27djFt2jTGjx+fZnRr2LBhLFmyhI8++oi//vqLd955hy1btjB06NCcfktERERERKQAydURsi1bttC6dWvb89QgqV+/fkyZMoWRI0dy+fJlBg0aRExMDM2aNWPJkiV4eXnZXvPzzz8zdOhQ2rRpg4uLC927d+fTTz+1nS9SpAjLli1jyJAh1K9fn+LFi/PWW2+l2avsgQce4JdffuGNN97gX//6F1WqVGHu3LnUqlUrB94FEREREREpqHI1IGvVqhWGYWR63mKx8O677/Luu+9mWqZYsWL88ssvt7xOnTp1WLNmzS3LPPbYYzz22GO3brCIiIiIiIgT5dl9yERERERERO52CshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBPJR8aNG8eGDRtyuxlSwKkfiuRPU1pNYcnwJbndjDRiDscw2jKa6O3Rdr9m7lNzmdp1ara1aVyFcWwYZ99nnCNlRTLjltsNEMlpc+fO5Y8//gDAxcUFPz8/atSoQevWrXFzy9v/JAYOHIiHh0duN0OcQP1QRLLD3Kfm8sf3f6Q73mR3E3rO7omLe976XbxfsB8vnXwJ7+LeTq3XMAx+//p3tn27jdO7TuPi5kKxysWo80Qd6g+qj7u3e6avHbh5IB4+9n3GOVJW0ou+FM37q99n4b6FHL94nJI+JakbWJfhjYfTplIbANYfXc97q98j6lgU8UnxVAmoQv+6/RnWeBiuLq7M2j2LHjN7cGT4Ecr6lU13jSqfVaHTvZ34OPRjWk1pRd3Auox7aBwAraa0YtU/qwDwcPWguHdx6pWuR/+6/elWvVuOvQ95+399kWxSuXJlunTpgtVq5eTJk8ydOxeAdu3a5W7DbsPHxye3myBOpH4oItmh8kOV6TK5CwBJSUksX74c/4r+eHp55nLL0nNxdcE30Nfp9c7pO4c9s/fQ4o0WhH0ehk8JH6L/iGbjuI34V/CnWtdq6V5jTbTi6uGKTwn7P+McKStpHY45TNPvmuLv5c9/2/2X2qVqk2RNYumBpQxZNIS/hv7FnD1z6DGzB/3r9ieyXyT+Xv78dvA3RkaMJOpYFNMfnU7nqp0JKBTA9398z7+a/yvNNVb/s5r95/cz4P4BmbZjYL2BvNv6XZJTkjkWd4w5e+bQa2Yvnqr7FJM6TcrutwFQQCYFlKurK76+5n8ARYoUoVKlShw8eBAwf6u2du1afv/9dy5dukRAQAAtWrSgRo0attefPn2a3377jX/++QeAwMBAunTpQrFixQD4/fffiYqK4sKFC/j7+9O4cWMaNmwIgNVqZenSpezZs4f4+Hh8fX2pX78+zZs3xzAMVq1axbZt27h8+TKFChWiRo0ahIWFAeZUsSZNmtCkSRMAYmNjWbx4MQcPHsRisVC5cmXCwsJs97Zy5Ur++usvQkJCiIyM5OrVq1SuXJlOnTrh6Zn3/mMuaNQP1Q9FsoOrp6styElKSsK9qDsuri5MaTWFwLqBPDTuIcCcbld/UH3O7z/P7hm78SrqRYs3WlB/UH1bXRGvRvDXnL+IOxaHb6AvtR+vTcu3WuLq7grAyndW8tfcvwh5KYTINyO5euEqlcMq0+nrTngWNv99GykG6/9vPVsnbSXuaBw+pXyo/2x9WrzegpjDMYyvOJ5ntz1LYN1AUqwpzB80n8MrDnMp+hJFyhWhwfMNaDKsid33v2v6Lnb8vIOec3tSrcv1wMu/gj9VO1clIS4BMEcTr8ZcpUzDMmyesBk3TzeGHRrGuArjaDK8CU2GNzE/D0evYtt327h86jKFAgpR49EahH0aZnsP7S0raT2/8HksWNj0zCZ8PK4HtjVL1uTp+5/mcuJlBs4fSOeqndMERs/Ue4ZSPqXoPLUz03dNp2etnvSt05cp26ekC8i+2/Ydjcs2pmbJmpm2w9vdm0DfQACC/IJoEtSEasWr8fS8p+lRswdtK7V18p2np4BMCrzTp09z9OhRihQpAsCaNWvYsWMHHTt2JCAggH/++YfZs2fj7e1NhQoViIuLY8qUKVSoUIF+/frh6enJkSNHSElJAeDPP/8kMjKSDh06EBgYSHR0NPPnz8fd3Z26deuyceNG9u7dy6OPPkqRIkWIi4sjNjYWgD179rBhwwa6d+9OyZIluXTpEtHRGc+rNwyDqVOn4uHhwVNPPUVKSgqLFi1i5syZPPXUU7ZyFy5cYO/evfTp04f4+HhmzpzJ2rVradOmTfa+seIQ9UMRyQ1RH0XR+t+taf6v5uyeuZuFgxdSvmV5ilctDoBnYU+6TulK4TKFObXjFPMHzsezsCdNRza11XHhwAX2zt1LnwV9iL8Qz8weM1n7n7W0ed/89/3bqN/4/evfCf0klHLNynHp5CXO/nU2w/YYKQZ+QX48NuMxCgUU4uj6oywYtIDCpQtTs0fmX6pvtOPnHQRUDUgTjKWyWCx4FfGyPT+0/BCefp70jeibYV17Zu1hwycb6D61OyVrluRS9CWi/8j489CRsgXd+fjzLNm/hPcffD9NMJbK38ufOXvmcC7+HC+HvJzufKeqnbg34F5+3fkrPWv1ZEC9AXy84WNW/7OaFuVbAHAp8RIzd8/kk9BPHG5fv7r9eGnZS8zeM1sBmUh2+fvvv/nggw9ISUnBarVisVgICwsjOTmZtWvX0rdvX4KDgwEoWrQoR44cYevWrVSoUIHNmzfj6elJ9+7dcXU1f0MYEBBgq3vlypW0b9+e6tWr215/5swZtm7dSt26dYmNjSUgIIBy5cphsVjw9/e3vTY2NhZfX18qVaqEq6srRYoUoWzZ9POhAQ4ePMipU6cYNmyY7Uv8I488wsSJEzl+/LjtdYZh0KVLF9tIRJ06dTh06JBz31DJEvVD9UOR7PD3gr/5wPcD23Pv+7yhQ8Zlq3SoQsPnzZHzpq82ZcMnGzgcedgWkLV4o4WtrH8Ff869fI6dU3emCciMFIMuU7rYRsTq9K3DoeWH4H1IuJjAxvEb6fB5B+r2qwtAsXuKUa5ZuQzb4+ruSuvRrW3Pi1YsyrGoY+yavsvugOzcvnO29t+Ou487nb/pjKuHa4bnY4/E4hvoS6W2lXB1d6VIuSKUbZTx56EjZQu6/ef3Y2BQrXj6oDnV3+f+BqB6ieoZnq9WvJqtTI0SNWgS1ITvtn1nC8im75qOgUGvWr0cbp+LxYV7A+7lcMxhh1+bFQrIpECqWLEiHTt2JDExkQ0bNuDi4kKNGjU4ffo0SUlJ/Pjjj2nKW61WSpcuDUB0dDTly5e3fQm+UWJiIhcuXGDevHnMnz/fdjwlJQUvL/M3cnXr1uXHH3/k888/p3Llytx7773cc889ANSoUYMNGzbw6aefcs8991ClShWqVq2Ki0v6Rdhnz56lSJEiti/BACVKlMDLy4uzZ8/avgj7+/unmRbm6+vL5cuXs/rWiROpH6ofimSHiq0r0vGLjoA5ZXHNhjWZli1Zp6TtzxaLBd9AXy6fvv5vc+e0nWz6dBPnD5wn8VIiKckpePqlnWrsX8HfFowB+Ja+XsfZPWexJlip2Kai3e3fNGET27/bTuyRWJLik7AmWgmsG2j36zHsL1qqdqlMgzGAGo/VYMO4DXxa6VPueegeqnSoQtVOVXFxS/956EjZgs4w7P9Lsrfs03WfZsTSEXwW9hmFPQvz3bbveKzGYxT2LJy1NmJgsViy9FpHKSCTAsnd3d22zqZLly58+eWX/P7775Qsaf7H1KdPH/z8/NK8JvWLr7t75pmZEhMTAejUqRNBQUFpzqX+oy5dujTDhg1j3759HDx4kBkzZlCpUiV69OhBkSJFGDp0KAcPHuTgwYMsWrSI9evX89RTT2X4xdseN3+JtlgsDn0QSvZRP1Q/FMkO7j7uFKtsfrYkJSXh/nfmnxepa8FsLOaIF8DRqKPMfnw2rUa3onJoZTyLeLJz6k6iPopK85KbMzdaLBZbHW6FHPuquXPqTiJejqD9R+0JCgnCs7An6/67juMbj9tdR8C9AZlOibyZu0/m7w1AkeAiDN07lIO/HeRgxEEWPb+I9f9dz1Ornkr33jlStqCrElAFCxb+OvtXpmXuDbgXgD1n9/BA8APpzu85s4caJa6vq+5Vqxcjlo5g+q7ptCjfgnVH1zGmzZgstc+aYmXfuX00LNMwS693lEL2m0yYMIEKFSrg5eVF48aN2bRpU243SbKZxWKhWbNmREZGUqJECVxdXYmNjaVYsWJpHqkjACVLluSff/7BarWmq8vX15fChQtz4cKFdK8vWrSorZynpye1atWic+fOPProo7bECmB+0a5atSphYWH069ePY8eOcfr06XTXKl68OLGxsbZ1PwBnzpzh6tWrlChRwtlvk2Qz9UMRyWuOrj+Kf3l/WrzegjINyhBQJYDYf2Jv/8IbBFQJwK2QmzmF0Q5H1h0h+IFgGj7fkNL3l6ZY5WJcOHDBoWvW6lOLc3+f46//pf+ybxgGV2OvOlSfeyF3qnaqStinYfRb2Y9jUcc4vSP956GjZQuyYoWKEVo5lAmbJ3A5Mf1siZirMbS/pz3FChXjo6iP0p2ft3ce+87vo3et3rZjhT0L81jNx/hu+3dM3j6ZewPupXn55llq3/d/fM+FqxfoXr17ll7vKI2Q3WDatGmEh4fz5Zdf0rhxY8aNG0doaCh79+61/cZa7k41a9YkIiKCrVu38sADD7B06VIMw6BcuXIkJCRw5MgRPD09qVu3Lo0aNWLTpk3MmjWLZs2a4enpybFjxyhbtizFixenVatWLF68GC8vLypXrkxycjInTpzg6tWrhISEEBUVha+vL6VLl8ZisbB79258fX3x8vJi+/btpKSkEBQUhLu7O3/++Sdubm5ppoOlqlSpEqVKlWL27Nk89NBDpKSksHDhQsqXL0+ZMmVy4V2UO6V+KCJ5SUCVAGKPxLJz6k7KNCzDvoX7+GtO5iMaGXHzcqPpq02JGBmBq4crwU2DuXLmCqd3nabegHoZXvPPH/5k/9L9FK1YlD9+/IMTm0/gX9Hf7mvW7FGTv+b8xazes2jxRgvuaX8P3iW8Ob3jNBs+2UCjFxplmPY+I9unbCfFmkJQ4yDcvd3586c/cSvkRpHy6T8PHSkrMKHDBJp+15RG3zTi3VbvUqdUHZJTkok4GMEXW75gz5A9fPXwV/Sa2YtB8wcxtNFQ/Dz9WH5wOa9EvMKjNR6lR80eaeoccP8Amk9uzp4ze3i16at2teNK0hWiL0WnSXv/yYZPGNxgMK0rtr59BU6ggOwGH3/8MQMHDqR///4AfPnllyxcuJDvvvuO1157LZdbJ9nJxcWFRo0asW7dOoYNG4a3tzdr167lwoULeHl5Ubp0aZo3N3/L4u3tTb9+/YiIiGDKlClYLBYCAwMpV85coFyvXj3c3d1Zv349ERERuLu7U6pUKRo3bgyAh4cH69ev59y5c7i4uFCmTBn69OljZn7y8mLt2rUsW7aMlJQUSpUqRe/evfH2Tr9hpsVioVevXixevJjJkyenSTcu+ZP6oYjkJVU7V6XJiCYsGroIa4KVKh2r0OLNFqx8Z6VD9bR8syUubi5EvhXJxRMXKVy6MPWfq59h2frP1id6WzQze87EYrFQq3ctGjzfgP2L99t9PYvFQvdfurN10la2fbeNNe+vMTeGrlKM+568j3tC77G7Li9/L9b+Zy3LwpeRYk2hVO1S9J7fG++A9J+HjpQVqFS0Er8P+p3317zPS8te4uSlk5TwLkH9MvX5ouMXADxa41Ei+0Xy/pr3aT65OVeTr1KlWBVeb/46w5sMT7fGq1m5ZlQNqMr+8/t58r4n7WrH179/zde/f42HqwcBhQKoX6Y+0x6dxiPVH3H6PWfGYmgSP2CuufD29mbmzJl07drVdrxfv37ExMTwv//975avj4uLo0iRIsTGxqZb8yH2S0pKYtGiRfj5+TltIWWrVq2cUo/cnVL7XIcOHTJdl7Vy5UqnXU/9sWCzp79JweBoUHMrrd5plek59TnJaal97g+/P0ixmFuxvNPqndxtVC5wJDbQCNk1Z8+exWq1UqpUqTTHS5UqxV9/pR+eT0hIICEhwfY8Li4OMDthUlJS9jb2Lpb63jnz9wT6+5BbSe0ft+on6o/iLPb0NykYDJec+VxRn5OcltrXXAyXdMcKEkfuWSNk15w4cYKyZcuyfv16QkJCbMdHjhzJqlWr2LhxY5ry77zzDqNHj05Xzy+//JLhtB4RERERESkYrly5Qp8+fTRC5ojixYvj6urKqVOn0hw/deoUgYHp974YNWoU4eHhtudxcXEEBwfTvn17TVm8A0lJSURERNCuXTtNrZAcoT4nOUn9TXKa+pzkNPU5U+rsOXsoILvGw8OD+vXrs3z5ctsaspSUFJYvX87QoUPTlff09EyzyWkqd3f3At35nEXvo+Q09TnJSepvktPU5ySnFfQ+58i9KyC7QXh4OP369aNBgwY0atSIcePGcfnyZVvWRREREREREWdSQHaDnj17cubMGd566y2io6OpW7cuS5YsSZfoQ0RERERExBkUkN1k6NChGU5RFBERERERcTaX2xcRERERERGR7KCATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJe45XYD7haGYQAQFxeXyy3J35KSkrhy5QpxcXG4u7vndnOkAFCfk5yk/iY5TX1Ocpr6nCk1JkiNEW5FAZmTXLx4EYDg4OBcbomIiIiIiOQFFy9epEiRIrcsYzHsCdvktlJSUjhx4gSFCxfGYrHkdnPyrbi4OIKDgzl69Ch+fn653RwpANTnJCepv0lOU5+TnKY+ZzIMg4sXL1KmTBlcXG69SkwjZE7i4uJCUFBQbjfjruHn51eg/xFLzlOfk5yk/iY5TX1Ocpr6HLcdGUulpB4iIiIiIiK5RAGZiIiIiIhILlFAJnmKp6cnb7/9Np6enrndFCkg1OckJ6m/SU5Tn5Ocpj7nOCX1EBERERERySUaIRMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBOnW716NZ06daJMmTJYLBbmzp2b5vypU6d46qmnKFOmDN7e3jz00EPs27cvTZno6Gj69u1LYGAgPj4+1KtXj1mzZqUpc/78eR5//HH8/Pzw9/dnwIABXLp0KbtvT/IgZ/S5AwcO8Mgjj1CiRAn8/Pzo0aMHp06dSlNGfU4AxowZQ8OGDSlcuDAlS5aka9eu7N27N02Zq1evMmTIEAICAvD19aV79+7p+tORI0fo2LEj3t7elCxZkldeeYXk5OQ0ZVauXEm9evXw9PSkcuXKTJkyJbtvT/IYZ/W3F198kfr16+Pp6UndunUzvNaff/5J8+bN8fLyIjg4mLFjx2bXbUke5ow+98cff9C7d2+Cg4MpVKgQ1atXZ/z48emupc84kwIycbrLly9z3333MWHChHTnDMOga9euHDx4kP/9739s27aN8uXL07ZtWy5fvmwr9+STT7J3717mzZvHjh076NatGz169GDbtm22Mo8//ji7du0iIiKCBQsWsHr1agYNGpQj9yh5y532ucuXL9O+fXssFgsrVqxg3bp1JCYm0qlTJ1JSUmx1qc8JwKpVqxgyZAgbNmwgIiKCpKQk2rdvn+YzbMSIEcyfP58ZM2awatUqTpw4Qbdu3WznrVYrHTt2JDExkfXr1/P9998zZcoU3nrrLVuZQ4cO0bFjR1q3bs327dsZPnw4zzzzDEuXLs3R+5Xc5Yz+lurpp5+mZ8+eGV4nLi6O9u3bU758ebZu3cp///tf3nnnHSZNmpRt9yZ5kzP63NatWylZsiQ//fQTu3bt4vXXX2fUqFF8/vnntjL6jLuBIZKNAGPOnDm253v37jUAY+fOnbZjVqvVKFGihPH111/bjvn4+Bg//PBDmrqKFStmK7N7924DMDZv3mw7v3jxYsNisRjHjx/PpruR/CArfW7p0qWGi4uLERsbaysTExNjWCwWIyIiwjAM9TnJ3OnTpw3AWLVqlWEYZt9xd3c3ZsyYYSuzZ88eAzCioqIMwzCMRYsWGS4uLkZ0dLStzBdffGH4+fkZCQkJhmEYxsiRI42aNWumuVbPnj2N0NDQ7L4lycOy0t9u9Pbbbxv33XdfuuMTJ040ihYtaut/hmEYr776qlG1alXn34TkK3fa51I9//zzRuvWrW3P9Rl3nUbIJEclJCQA4OXlZTvm4uKCp6cna9eutR174IEHmDZtGufPnyclJYWpU6dy9epVWrVqBUBUVBT+/v40aNDA9pq2bdvi4uLCxo0bc+ZmJF+wp88lJCRgsVjSbGLp5eWFi4uLrYz6nGQmNjYWgGLFigHmb4aTkpJo27atrUy1atUoV64cUVFRgNmfateuTalSpWxlQkNDiYuLY9euXbYyN9aRWia1DimYstLf7BEVFUWLFi3w8PCwHQsNDWXv3r1cuHDBSa2X/MhZfS42NtZWB+gz7kYKyCRHpf6DHTVqFBcuXCAxMZEPP/yQY8eOcfLkSVu56dOnk5SUREBAAJ6enjz77LPMmTOHypUrA+Yas5IlS6ap283NjWLFihEdHZ2j9yR5mz19rkmTJvj4+PDqq69y5coVLl++zMsvv4zVarWVUZ+TjKSkpDB8+HCaNm1KrVq1ALOveHh44O/vn6ZsqVKlbH0lOjo6TTCWej713K3KxMXFER8fnx23I3lcVvubPezpk1LwOKvPrV+/nmnTpqWZ5q/PuOsUkEmOcnd3Z/bs2fz9998UK1YMb29vIiMjCQsLw8Xlend88803iYmJ4bfffmPLli2Eh4fTo0cPduzYkYutl/zInt1VP3oAAAgdSURBVD5XokQJZsyYwfz58/H19aVIkSLExMRQr169NP1S5GZDhgxh586dTJ06NbebIgWA+pvkNGf0uZ07d9KlSxfefvtt2rdv78TW3T3ccrsBUvDUr1+f7du3ExsbS2JiIiVKlKBx48a2qWAHDhzg888/Z+fOndSsWROA++67jzVr1jBhwgS+/PJLAgMDOX36dJp6k5OTOX/+PIGBgTl+T5K33a7PAbRv354DBw5w9uxZ3Nzc8Pf3JzAwkEqVKgGoz0k6Q4cOtSV3CQoKsh0PDAwkMTGRmJiYNL9BPnXqlK2vBAYGsmnTpjT1pWYou7HMzZnyTp06hZ+fH4UKFcqOW5I87E76mz0y62+p56TgcUaf2717N23atGHQoEG88cYbac7pM+46/epXck2RIkUoUaIE+/btY8uWLXTp0gWAK1euAKQbmXB1dbVlvAsJCSEmJoatW7fazq9YsYKUlBQaN26cQ3cg+U1mfe5GxYsXx9/fnxUrVnD69Gk6d+4MqM/JdYZhMHToUObMmcOKFSuoWLFimvP169fH3d2d5cuX247t3buXI0eOEBISApj9aceOHWmC/IiICPz8/KhRo4atzI11pJZJrUMKBmf0N3uEhISwevVqkpKSbMciIiKoWrUqRYsWvfMbkXzDWX1u165dtG7dmn79+vH++++nu44+426Qy0lF5C508eJFY9u2bca2bdsMwPj444+Nbdu2Gf/8849hGIYxffp0IzIy0jhw4IAxd+5co3z58ka3bt1sr09MTDQqV65sNG/e3Ni4caOxf/9+4//+7/8Mi8ViLFy40FbuoYceMu6//35j48aNxtq1a40qVaoYvXv3zvH7ldx3p33OMAzju+++M6Kiooz9+/cbP/74o1GsWDEjPDw8TRn1OTEMwxg8eLBRpEgRY+XKlcbJkydtjytXrtjKPPfcc0a5cuWMFStWGFu2bDFCQkKMkJAQ2/nk5GSjVq1aRvv27Y3t27cbS5YsMUqUKGGMGjXKVubgwYOGt7e38corrxh79uwxJkyYYLi6uhpLlizJ0fuV3OWM/mYYhrFv3z5j27ZtxrPPPmvce++9ts/M1KyKMTExRqlSpYy+ffsaO3fuNKZOnWp4e3sbX331VY7er+Q+Z/S5HTt2GCVKlDCeeOKJNHWcPn3aVkafcdcpIBOni4yMNIB0j379+hmGYRjjx483goKCDHd3d6NcuXLGG2+8kSbNrmEYxt9//21069bNKFmypOHt7W3UqVMnXRr8c+fOGb179zZ8fX0NPz8/o3///sbFixdz6jYlD3FGn3v11VeNUqVKGe7u7kaVKlWMjz76yEhJSUlTRn1ODMPIsK8BxuTJk21l4uPjjeeff94oWrSo4e3tbTzyyCPGyZMn09Rz+PBhIywszChUqJBRvHhx46WXXjKSkpLSlImMjDTq1q1reHh4GJUqVUpzDSkYnNXfWrZsmWE9hw4dspX5448/jGbNmhmenp5G2bJljf/85z85dJeSlzijz7399tsZ1lG+fPk019JnnMliGIaRfeNvIiIiIiIikhmtIRMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREREREcklCshERERERERyiQIyERERERGRXKKATEREREREJJcoIBMREcmAYRi0bduW0NDQdOcmTpyIv78/x44dy4WWiYjI3UQBmYiISAYsFguTJ09m48aNfPXVV7bjhw4dYuTIkXz22WcEBQU59ZpJSUlOrU9ERPI+BWQiIiKZCA4OZvz48bz88sscOnQIwzAYMGAA7du35/777ycsLAxfX19KlSpF3759OXv2rO21S5YsoVmzZvj7+xMQEMDDDz/MgQMHbOcPHz6MxWJh2rRptGzZEi8vL37++efcuE0REclFFsMwjNxuhIiISF7WtWtXYmNj6datG//+97/ZtWsXNWvW5JlnnuHJJ58kPj6eV199leTkZFasWAHArFmzsFgs1KlTh0uXLvHWW29x+PBhtm/fjouLC4cPH6ZixYpUqFCBjz76iPvvvx8vLy9Kly6dy3crIiI5SQGZiIjIbZw+fZqaNWty/vx5Zs2axc6dO1mzZg1Lly61lTl27BjBwcHs3buXe++9N10dZ8+epUSJEuzYsYNatWrZArJx48YxbNiwnLwdERHJQzRlUURE5DZKlizJs88+S/Xq1enatSt//PEHkZGR+Pr62h7VqlUDsE1L3LdvH71796ZSpUr4+flRoUIFAI4cOZKm7gYNGuTovYiISN7iltsNEBERyQ/c3NxwczP/27x06RKdOnXiww8/TFcudcphp06dKF++PF9//TVlypQhJSWFWrVqkZiYmKa8j49P9jdeRETyLAVkIiIiDqpXrx6zZs2iQoUKtiDtRufOnWPv3r18/fXXNG/eHIC1a9fmdDNFRCQf0JRFERERBw0ZMoTz58/Tu3dvNm/ezIEDB1i6dCn9+/fHarVStGhRAgICmDRpEvv372fFihWEh4fndrNFRCQPUkAmIiLioDJlyrBu3TqsVivt27endu3aDB8+HH9/f1xcXHBxcWHq1Kls3bqVWrVqMWLECP773//mdrNFRCQPUpZFERERERGRXKIRMhERERERkVyigExERERERCSXKCATERERERHJJQrIREREREREcokCMhERERERkVyigExERERERCSXKCATERERERHJJQrIREREREREcokCMhERERERkVyigExERERERCSXKCATERERERHJJQrIREREREREcsn/A/cjWRJJosV/AAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"data.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 226
},
"id": "HssRv0w10uB2",
"outputId": "eae6a757-f22b-44d3-da13-70095993c2d1"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Year All_Mean All_Median Work_Mean Work_Median Retired_Mean \\\n",
"0 1977 17,215 15450.0 18,000 16,289 11,366 \n",
"1 1978 18,776 17092.0 19,670 17,930 12,285 \n",
"2 1979 19,644 17752.0 20,755 18,908 12,057 \n",
"3 1980 20,379 18323.0 21,465 19,442 12,704 \n",
"4 1981 19,805 17397.0 20,762 18,480 13,325 \n",
"\n",
" Retired_Median Trend \n",
"0 9,815 15450.000000 \n",
"1 10,507 15832.511100 \n",
"2 10,443 16224.492410 \n",
"3 10,805 16626.178393 \n",
"4 11,236 17037.809318 "
],
"text/html": [
"\n",
" <div id=\"df-247de9e1-267f-4ac9-a0b2-d90926460203\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Year</th>\n",
" <th>All_Mean</th>\n",
" <th>All_Median</th>\n",
" <th>Work_Mean</th>\n",
" <th>Work_Median</th>\n",
" <th>Retired_Mean</th>\n",
" <th>Retired_Median</th>\n",
" <th>Trend</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1977</td>\n",
" <td>17,215</td>\n",
" <td>15450.0</td>\n",
" <td>18,000</td>\n",
" <td>16,289</td>\n",
" <td>11,366</td>\n",
" <td>9,815</td>\n",
" <td>15450.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1978</td>\n",
" <td>18,776</td>\n",
" <td>17092.0</td>\n",
" <td>19,670</td>\n",
" <td>17,930</td>\n",
" <td>12,285</td>\n",
" <td>10,507</td>\n",
" <td>15832.511100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1979</td>\n",
" <td>19,644</td>\n",
" <td>17752.0</td>\n",
" <td>20,755</td>\n",
" <td>18,908</td>\n",
" <td>12,057</td>\n",
" <td>10,443</td>\n",
" <td>16224.492410</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1980</td>\n",
" <td>20,379</td>\n",
" <td>18323.0</td>\n",
" <td>21,465</td>\n",
" <td>19,442</td>\n",
" <td>12,704</td>\n",
" <td>10,805</td>\n",
" <td>16626.178393</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1981</td>\n",
" <td>19,805</td>\n",
" <td>17397.0</td>\n",
" <td>20,762</td>\n",
" <td>18,480</td>\n",
" <td>13,325</td>\n",
" <td>11,236</td>\n",
" <td>17037.809318</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-247de9e1-267f-4ac9-a0b2-d90926460203')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-247de9e1-267f-4ac9-a0b2-d90926460203 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-247de9e1-267f-4ac9-a0b2-d90926460203');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-295c8433-dcb9-44db-8d60-6295b37797aa\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-295c8433-dcb9-44db-8d60-6295b37797aa')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-295c8433-dcb9-44db-8d60-6295b37797aa button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "data",
"summary": "{\n \"name\": \"data\",\n \"rows\": 46,\n \"fields\": [\n {\n \"column\": \"Year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 13,\n \"min\": 1977,\n \"max\": 2022,\n \"num_unique_values\": 46,\n \"samples\": [\n 2016,\n 2002,\n 2003\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"All_Mean\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"41,350 \",\n \"36,642 \",\n \"37,081 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"All_Median\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 6265.983173488003,\n \"min\": 15450.0,\n \"max\": 35438.0,\n \"num_unique_values\": 46,\n \"samples\": [\n 33904.0,\n 29931.0,\n 30492.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Work_Mean\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"42,897 \",\n \"38,768 \",\n \"39,243 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Work_Median\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"35,376 \",\n \"32,217 \",\n \"32,502 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Retired_Mean\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"34,215 \",\n \"26,110 \",\n \"26,262 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Retired_Median\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 46,\n \"samples\": [\n \"28,276 \",\n \"21,614 \",\n \"22,275 \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Trend\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9168.287179028055,\n \"min\": 15450.0,\n \"max\": 46439.524848929555,\n \"num_unique_values\": 46,\n \"samples\": [\n 40101.43031376847,\n 28474.84831009219,\n 29179.82860455345\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 27
}
]
},
{
"cell_type": "code",
"source": [
"data.tail()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 226
},
"id": "agverc823o4E",
"outputId": "090fff9b-58f5-4d89-8ba2-ac25f1a7aa40"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Year All_Mean All_Median Work_Mean Work_Median Retired_Mean \\\n",
"41 2018 41098.0 33364.0 42919.0 34822.0 32515.0 \n",
"42 2019 42725.0 34735.0 45088.0 36813.0 30996.0 \n",
"43 2020 42481.0 35438.0 44430.0 37187.0 33205.0 \n",
"44 2021 42944.0 35335.0 44980.0 37259.0 33616.0 \n",
"45 2022 40916.0 34462.0 42758.0 35968.0 31862.0 \n",
"\n",
" Retired_Median Trend Trend_Work Linear_Trend_Work \n",
"41 27817.0 42111.673252 62899.737300 54850.8 \n",
"42 26800.0 43154.274059 64848.795326 55749.6 \n",
"43 28686.0 44222.687576 66858.248314 56648.4 \n",
"44 28234.0 45317.552875 68929.967706 57547.2 \n",
"45 28088.0 46439.524849 71065.882936 58446.0 "
],
"text/html": [
"\n",
" <div id=\"df-fc47e589-811c-4fcc-b85f-16c31e2099f9\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Year</th>\n",
" <th>All_Mean</th>\n",
" <th>All_Median</th>\n",
" <th>Work_Mean</th>\n",
" <th>Work_Median</th>\n",
" <th>Retired_Mean</th>\n",
" <th>Retired_Median</th>\n",
" <th>Trend</th>\n",
" <th>Trend_Work</th>\n",
" <th>Linear_Trend_Work</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>41</th>\n",
" <td>2018</td>\n",
" <td>41098.0</td>\n",
" <td>33364.0</td>\n",
" <td>42919.0</td>\n",
" <td>34822.0</td>\n",
" <td>32515.0</td>\n",
" <td>27817.0</td>\n",
" <td>42111.673252</td>\n",
" <td>62899.737300</td>\n",
" <td>54850.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>2019</td>\n",
" <td>42725.0</td>\n",
" <td>34735.0</td>\n",
" <td>45088.0</td>\n",
" <td>36813.0</td>\n",
" <td>30996.0</td>\n",
" <td>26800.0</td>\n",
" <td>43154.274059</td>\n",
" <td>64848.795326</td>\n",
" <td>55749.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43</th>\n",
" <td>2020</td>\n",
" <td>42481.0</td>\n",
" <td>35438.0</td>\n",
" <td>44430.0</td>\n",
" <td>37187.0</td>\n",
" <td>33205.0</td>\n",
" <td>28686.0</td>\n",
" <td>44222.687576</td>\n",
" <td>66858.248314</td>\n",
" <td>56648.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>2021</td>\n",
" <td>42944.0</td>\n",
" <td>35335.0</td>\n",
" <td>44980.0</td>\n",
" <td>37259.0</td>\n",
" <td>33616.0</td>\n",
" <td>28234.0</td>\n",
" <td>45317.552875</td>\n",
" <td>68929.967706</td>\n",
" <td>57547.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45</th>\n",
" <td>2022</td>\n",
" <td>40916.0</td>\n",
" <td>34462.0</td>\n",
" <td>42758.0</td>\n",
" <td>35968.0</td>\n",
" <td>31862.0</td>\n",
" <td>28088.0</td>\n",
" <td>46439.524849</td>\n",
" <td>71065.882936</td>\n",
" <td>58446.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-fc47e589-811c-4fcc-b85f-16c31e2099f9')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-fc47e589-811c-4fcc-b85f-16c31e2099f9 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-fc47e589-811c-4fcc-b85f-16c31e2099f9');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-1f45f986-ddfa-4025-92b8-b451da8eb77c\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-1f45f986-ddfa-4025-92b8-b451da8eb77c')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-1f45f986-ddfa-4025-92b8-b451da8eb77c button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"data\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 2018,\n \"max\": 2022,\n \"num_unique_values\": 5,\n \"samples\": [\n 2019,\n 2022,\n 2020\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"All_Mean\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 952.8119961461442,\n \"min\": 40916.0,\n \"max\": 42944.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 42725.0,\n 40916.0,\n 42481.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"All_Median\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 834.4343593117435,\n \"min\": 33364.0,\n \"max\": 35438.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 34735.0,\n 34462.0,\n 35438.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Work_Mean\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1121.8337666517264,\n \"min\": 42758.0,\n \"max\": 45088.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 45088.0,\n 42758.0,\n 44430.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Work_Median\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1025.1886167920516,\n \"min\": 34822.0,\n \"max\": 37259.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 36813.0,\n 35968.0,\n 37187.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Retired_Mean\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1047.9788642906879,\n \"min\": 30996.0,\n \"max\": 33616.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 30996.0,\n 31862.0,\n 33205.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Retired_Median\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 703.2887031653502,\n \"min\": 26800.0,\n \"max\": 28686.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 26800.0,\n 28088.0,\n 28686.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Trend\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1710.8102696610104,\n \"min\": 42111.67325232451,\n \"max\": 46439.524848929555,\n \"num_unique_values\": 5,\n \"samples\": [\n 43154.27405870556,\n 46439.524848929555,\n 44222.68757585099\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Trend_Work\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3228.1778280871813,\n \"min\": 62899.73729981405,\n \"max\": 71065.88293554114,\n \"num_unique_values\": 5,\n \"samples\": [\n 64848.79532636118,\n 71065.88293554114,\n 66858.24831406277\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Linear_Trend_Work\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1421.1275804796708,\n \"min\": 54850.799999999996,\n \"max\": 58446.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 55749.6,\n 58446.0,\n 56648.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 35
}
]
},
{
"cell_type": "code",
"source": [
"# prompt: export data as a csv\n",
"\n",
"# Export the DataFrame to a CSV file\n",
"data.to_csv('exported_data.csv', index=False)"
],
"metadata": {
"id": "NYqZ9dMbx7wH"
},
"execution_count": null,
"outputs": []
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment