Last active
May 16, 2025 21:31
-
-
Save cavedave/5cb6c262238828ee8d02232833d7604f to your computer and use it in GitHub Desktop.
popechart.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Start year | End year | Number of days of Pontificate (max) | English name | Place of birth | Age at start of papacy | Age at end of papacy | Country | Country_clean | |
---|---|---|---|---|---|---|---|---|---|
2025 | Leo XIV | Chicago | 69 | Chicago | USA | ||||
2013 | 2025.0 | 4422 | Francis I | Buenos Aires | 76 | 88 | Buenos Aires | Argentina | |
2005 | 2013.0 | 2870 | Benedict XVI | Marktl am Inn, Bavaria, Germany | 78 | 85 | Germany | Germany | |
1978 | 2005.0 | 9658 | John Paul II | Wadowice, Poland | 58 | 84 | Poland | Poland | |
1978 | 1978.0 | 33 | John Paul I | Forno di Canale, Veneto, Italy | 65 | 65 | Italy | Italy | |
1963 | 1978.0 | 5521 | Paul VI | Concesio, Brescia, Italy | 65 | 80 | Italy | Italy | |
1958 | 1963.0 | 1678 | John XXIII | Sotto il Monte, Bergamo, Italy | 76 | 81 | Italy | Italy | |
1939 | 1958.0 | 7156 | Pius XII | Rome, Italy | 63 | 82 | Italy | Italy | |
1922 | 1939.0 | 6209 | Pius XI | Desio, Lombardy-Venetia, Austrian Empire | 64 | 81 | Austrian Empire | Italy | |
1914 | 1922.0 | 2696 | Benedict XV | Genoa, Kingdom of Sardinia | 59 | 67 | Kingdom of Sardinia | Italy | |
1903 | 1914.0 | 4031 | Pius X | Riese, Lombardy-Venetia, Austrian Empire | 68 | 79 | Austrian Empire | Italy | |
1878 | 1903.0 | 9275 | Leo XIII | Carpineto Romano, Rome departement, French Empire (now Italy) | 67 | 93 | French Empire (now Italy) | Italy | |
1846 | 1878.0 | 11465 | Bd. Pius IX, O.F.S. | Senigallia, Marche, Papal States | 54 | 85 | Papal States | Italy | |
1831 | 1846.0 | 5594 | Gregory XVI, O.S.B. Cam. | Belluno, Republic of Venice | 65 | 80 | Republic of Venice | Italy | |
1829 | 1830.0 | 610 | Pius VIII | Cingoli, Marche, Papal States | 67 | 69 | Papal States | Italy | |
1823 | 1829.0 | 1960 | Leo XII | Genga or Spoleto, Papal States | 63 | 68 | Papal States | Italy | |
1800 | 1823.0 | 8554 | Pius VII, O.S.B. | Cesena, Papal States | 57 | 81 | Papal States | Italy | |
1775 | 1799.0 | 8955 | Pius VI | Cesena, Papal States | 57 | 81 | Papal States | Italy | |
1769 | 1774.0 | 1951 | Clement XIV, O.F.M. | Sant' Arcangelo di Romagna, Papal States | 63 | 68 | Papal States | Italy | |
1758 | 1769.0 | 3861 | Clement XIII | Venice, Republic of Venice | 65 | 75 | Republic of Venice | Italy | |
1740 | 1758.0 | 6464 | Benedict XIV | Bologna, Papal States | 65 | 83 | Papal States | Italy | |
1730 | 1740.0 | 3494 | Clement XII | Florence, Grand Duchy of Tuscany | 78 | 87 | Grand Duchy of Tuscany | Italy | |
1724 | 1730.0 | 2093 | Benedict XIII, O.P. | Gravina in Puglia, Kingdom of Naples | 75 | 81 | Kingdom of Naples | Italy | |
1721 | 1724.0 | 1032 | Innocent XIII | Poli, Lazio, Papal States | 65 | 68 | Papal States | Italy | |
1700 | 1721.0 | 7416 | Clement XI | Urbino, Marche, Papal States | 51 | 71 | Papal States | Italy | |
1691 | 1700.0 | 3362 | Innocent XII | Spinazzola, Kingdom of Naples | 76 | 85 | Kingdom of Naples | Italy | |
1689 | 1691.0 | 483 | Alexander VIII | Venice, Republic of Venice | 79 | 80 | Republic of Venice | Italy | |
1676 | 1689.0 | 4705 | Bd. Innocent XI | Como, Duchy of Milan | 65 | 78 | Duchy of Milan | Italy | |
1670 | 1676.0 | 2274 | Clement X | Rome, Papal States | 79 | 86 | Papal States | Italy | |
1667 | 1669.0 | 902 | Clement IX | Pistoia, Grand Duchy of Tuscany | 67 | 69 | Grand Duchy of Tuscany | Italy | |
1655 | 1667.0 | 4425 | Alexander VII | Siena, Grand Duchy of Tuscany | 56 | 68 | Grand Duchy of Tuscany | Italy | |
1644 | 1655.0 | 3764 | Innocent X | Rome, Papal States | 70 | 80 | Papal States | Italy | |
1623 | 1644.0 | 7658 | Urban VIII | Florence, Grand Duchy of Tuscany | 55 | 76 | Grand Duchy of Tuscany | Italy | |
1621 | 1623.0 | 879 | Gregory XV | Bologna, Papal States | 67 | 69 | Papal States | Italy | |
1605 | 1605.0 | 26 | Leo XI | Florence, Duchy of Florence | 69 | 69 | Duchy of Florence | Italy | |
1605 | 1621.0 | 5732 | Paul V | Rome, Papal States | 52 | 68 | Papal States | Italy | |
1592 | 1605.0 | 4777 | Clement VIII | Fano, Marche, Papal States | 55 | 69 | Papal States | Italy | |
1591 | 1591.0 | 62 | Innocent IX | Bologna, Papal States | 72 | 72 | Papal States | Italy | |
1590 | 1590.0 | 12 | Urban VII | Rome, Papal States | 69 | 69 | Papal States | Italy | |
1590 | 1591.0 | 315 | Gregory XIV | Somma Lombardo, Duchy of Milan | 55 | 56 | Duchy of Milan | Italy | |
1585 | 1590.0 | 1950 | Sixtus V, O.F.M. Conv. | Grottammare, Marche, Papal States | 63 | 68 | Papal States | Italy | |
1572 | 1585.0 | 4712 | Gregory XIII | Bologna, Papal States | 70 | 83 | Papal States | Italy | |
1566 | 1572.0 | 2305 | St. Pius V, O.P. | Bosco, Duchy of Milan | 61 | 68 | Duchy of Milan | Italy | |
1559 | 1565.0 | 2073 | Pius IV | Milan, Duchy of Milan | 60 | 66 | Duchy of Milan | Italy | |
1555 | 1555.0 | 22 | Marcellus II | Montefano, Marche, Papal States | 53 | 53 | Papal States | Italy | |
1555 | 1559.0 | 1547 | Paul IV, C.R. | Capriglia Irpina, Campania, Kingdom of Naples | 78 | 83 | Kingdom of Naples | Italy | |
1550 | 1555.0 | 1875 | Julius III | Rome, Papal States | 62 | 67 | Papal States | Italy | |
1534 | 1549.0 | 5503 | Paul III | Canino, Lazio, Papal States | 66 | 81 | Papal States | Italy | |
1523 | 1534.0 | 3953 | Clement VII | Florence, Republic of Florence | 45 | 56 | Republic of Florence | Italy | |
1522 | 1523.0 | 613 | Adrian VI Papa HADRIANUS Sextus | Utrecht, Bishopric of Utrecht, Holy Roman Empire (presently The Netherlands | 62 | 64 | Holy Roman Empire (presently The Netherlands | Netherlands | |
1513 | 1521.0 | 3187 | Leo X | Florence, Republic of Florence | 37 | 45 | Republic of Florence | Italy | |
1503 | 1503.0 | 26 | Pius III | Siena, Republic of Siena | 64 | 64 | Republic of Siena | Italy | |
1503 | 1513.0 | 7048 | Julius II | Albisola, Republic of Genoa | 59 | 59 | Republic of Genoa | Italy | |
1492 | 1503.0 | 4022 | Alexander VI | Xativa, Kingdom of Valencia, Crown of Aragon | 61 | 72 | Crown of Aragon | Spain | |
1484 | 1492.0 | 2886 | Innocent VIII | Genoa, Republic of Genoa | 51 | 59 | Republic of Genoa | Italy | |
1471 | 1484.0 | 4748 | Sixtus IV, O.F.M. | Celle Ligure, Republic of Genoa | 57 | 70 | Republic of Genoa | Italy | |
1464 | 1471.0 | 2520 | Paul II | Venice, Republic of Venice | 47 | 54 | Republic of Venice | Italy | |
1458 | 1464.0 | 2187 | Pius II | Corsignano, Republic of Siena | 52 | 58 | Republic of Siena | Italy | |
1455 | 1458.0 | 1457 | Callixtus III | Xativa, Kingdom of Valencia, Crown of Aragon | 76 | 79 | Crown of Aragon | Spain | |
1447 | 1455.0 | 6588 | Nicholas V | Sarzana, Republic of Genoa | 49 | 57 | Republic of Genoa | Italy | |
1431 | 1447.0 | 5832 | Eugene IV, O.S.A. | Venice, Republic of Venice | 47 | 63 | Republic of Venice | Italy | |
1417 | 1431.0 | 4846 | Martin V | Genazzano, Papal States | 48 | 62 | Papal States | Italy | |
1406 | 1415.0 | 3136 | Gregory XII | Venice, Republic of Venice | 60 | 69 | Republic of Venice | Italy | |
1404 | 1406.0 | 750 | Innocent VII | Sulmona, Kingdom of Naples | 65 | 67 | Kingdom of Naples | Italy | |
1389 | 1404.0 | 5444 | Boniface IX | Naples, Kingdom of Naples | n.a | n.a | Kingdom of Naples | Unknown | |
1378 | 1389.0 | 4205 | Urban VI | Naples, Kingdom of Naples | n.a | n.a | Kingdom of Naples | Unknown | |
1362 | 1370.0 | 3002 | Bd. Urban V, O.S.B. | Grizac, Languedoc, France | n.a | n.a | France | Unknown | |
1352 | 1362.0 | 3553 | Innocent VI | Les Monts, Limousin, France | n.a | n.a | France | Unknown | |
1342 | 1352.0 | 3863 | Clement VI, O.S.B. | Maumont, Limousin, France | n.a | n.a | France | Unknown | |
1334 | 1342.0 | 2681 | Benedict XII, O.Cist. | Saverdun, County of Foix, France | n.a | n.a | France | Unknown | |
1316 | 1334.0 | 6689 | John XXII | Cahors, Quercy, France | n.a | n.a | France | Unknown | |
1314 | 1316.0 | 730 | interregnum | n.a | n.a | Unknown | |||
1305 | 1314.0 | 1779 | Clement V | Villandraut, Gascony, France | n.a | n.a | France | Unknown | |
1303 | 1304.0 | 259 | Bd. Benedict XI, O.P. | Treviso, Italy, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1294 | 1294.0 | 223 | St. Celestine V, O.S.B. | Sant' Angelo Limosano, Kingdom of Sicily | n.a | n.a | Kingdom of Sicily | Unknown | |
1294 | 1303.0 | 2920 | Boniface VIII | Anagni, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1292 | 1294.0 | 730 | interregnum | n.a | n.a | Unknown | |||
1288 | 1292.0 | 1460 | Nicholas IV, O.F.M. | Lisciano, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1285 | 1287.0 | 730 | Honorius IV | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1281 | 1285.0 | 1460 | Martin IV | Meinpicien, Touraine, France | n.a | n.a | France | Unknown | |
1277 | 1280.0 | 730 | Nicholas III | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1276 | 1276.0 | 151 | Bd. Innocent V, O.P. | County of Savoy, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1276 | 1276.0 | 38 | Adrian V | Genoa, Republic of Genoa, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1276 | 1277.0 | 263 | John XXI | Lisbon, Portugal | n.a | n.a | Portugal | Unknown | |
1271 | 1276.0 | 1460 | Bd. Gregory X | Piacenza, Italy, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1265 | 1268.0 | 1095 | Clement IV | Saint-Gilles, Languedoc, France | n.a | n.a | France | Unknown | |
1261 | 1264.0 | 1095 | Urban IV | Troyes, County of Champagne, France | n.a | n.a | France | Unknown | |
1254 | 1261.0 | 2190 | Alexander IV | Jenne, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1243 | 1254.0 | 4015 | Innocent IV | Genoa, Republic of Genoa, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1241 | 1241.0 | 17 | Celestine IV | Milan, Italy, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1227 | 1241.0 | 5110 | Gregory IX | Anagni, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1216 | 1227.0 | 3650 | Honorius III | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1198 | 1216.0 | 6570 | Innocent III | Gavignano, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1191 | 1198.0 | 2190 | Celestine III | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1187 | 1187.0 | 57 | Gregory VIII, Can.Reg. | Benevento, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1187 | 1191.0 | 1095 | Clement III | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1185 | 1187.0 | 365 | Urban III | Cuggiono, Italy, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1181 | 1185.0 | 1460 | Lucius III | Lucca, Italy, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1159 | 1181.0 | 7665 | Alexander III | Siena, Italy, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1154 | 1159.0 | 1460 | Adrian IV, O.S.A. | Abbots Langley, Hertfordshire, Kingdom of England | n.a | n.a | Kingdom of England | Unknown | |
1153 | 1154.0 | 365 | Anastasius IV | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1145 | 1153.0 | 2920 | Bd. Eugene III, O.Cist. | Pisa, Republic of Pisa, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1144 | 1145.0 | 340 | Lucius II, Can.Reg. | Bologna, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1143 | 1144.0 | 164 | Celestine II | Citta di Castello, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1130 | 1143.0 | 4745 | Innocent II, Can.Reg. | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1124 | 1130.0 | 1825 | Honorius II, Can.Reg. | Fiagnano, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1119 | 1124.0 | 1825 | Callixtus II | Quingey, County of Burgundy, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1118 | 1119.0 | 365 | Gelasius II, O.S.B. | Gaeta, Principality of Capua | n.a | n.a | Principality of Capua | Unknown | |
1099 | 1118.0 | 4015 | Paschal II, O.S.B. | Bleda, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1088 | 1099.0 | 365 | Bd. Urban II, O.S.B. | Lagery, County of Champagne, France | n.a | n.a | France | Unknown | |
1086 | 1087.0 | 365 | Bd. Victor III, O.S.B. | Benevento, Duchy of Benevento | n.a | n.a | Duchy of Benevento | Unknown | |
1073 | 1085.0 | 4380 | St. Gregory VII, O.S.B. | Sovana, Italy, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1061 | 1073.0 | 4015 | Alexander II | Milan, Italy, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1058 | 1061.0 | 730 | Nicholas II | Chateau de Chevron, Kingdom of Arles | n.a | n.a | Kingdom of Arles | Unknown | |
1057 | 1058.0 | 241 | Stephen IX (Stephen X), O.S.B. | Duchy of Lorraine, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1055 | 1057.0 | 730 | Victor II | Kingdom of Germany, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1049 | 1054.0 | 1825 | St. Leo IX | Eguisheim, Swabia, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1048 | 1048.0 | 23 | Damasus II | Pildenau, Duchy of Bavaria, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1047 | 1048.0 | 365 | Benedict IX | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1046 | 1047.0 | 289 | Clement II | Hornburg, Duchy of Saxony, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1045 | 1045.0 | 365 | Sylvester III | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1045 | 1045.0 | 365 | Benedict IX | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1045 | 1046.0 | 365 | Gregory VI | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1032 | 1044.0 | 4380 | Benedict IX | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1024 | 1032.0 | 2920 | John XIX | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1012 | 1024.0 | 4015 | Benedict VIII | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1009 | 1012.0 | 730 | Sergius IV | Rome, Papal States, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
1003 | 1003.0 | 214 | John XVII | Rome, Papal States | n.a | n.a | Papal States | Italy | |
1003 | 1009.0 | 1460 | John XVIII | Rapagnano, Papal States | n.a | n.a | Papal States | Italy | |
999 | 1003.0 | 1460 | Sylvester II | Auvergne region of France | n.a | n.a | Auvergne region of France | Unknown | |
996 | 999.0 | 730 | Gregory V | Germany, Holy Roman Empire | n.a | n.a | Holy Roman Empire | Unknown | |
985 | 996.0 | 3650 | John XV | Rome | n.a | n.a | Rome | Unknown | |
983 | 984.0 | 262 | John XIV | Pavia | n.a | n.a | Pavia | Unknown | |
974 | 983.0 | 2920 | Benedict VII | Rome | n.a | n.a | Rome | Unknown | |
973 | 974.0 | 365 | Benedict VI | Rome, Papal States | n.a | n.a | Papal States | Italy | |
965 | 972.0 | 2190 | John XIII | Rome | n.a | n.a | Rome | Unknown | |
964 | 964.0 | 30 | Benedict V | Rome | n.a | n.a | Rome | Unknown | |
964 | 965.0 | 242 | Leo VIII | Rome | n.a | n.a | Rome | Unknown | |
955 | 964.0 | 2920 | John XII | Rome | n.a | n.a | Rome | Unknown | |
946 | 955.0 | 3285 | Agapetus II | Rome | n.a | n.a | Rome | Unknown | |
942 | 946.0 | 1095 | Marinus II | Rome | n.a | n.a | Rome | Unknown | |
939 | 942.0 | 1095 | Stephen VIII (Stephen IX) | Germany | n.a | n.a | Germany | Germany | |
936 | 939.0 | 1095 | Leo VII, O.S.B. | n.a | n.a | Unknown | |||
931 | 935.0 | 1460 | John XI | Rome | n.a | n.a | Rome | Unknown | |
928 | 928.0 | 245 | Leo VI | Rome | n.a | n.a | Rome | Unknown | |
928 | 931.0 | 730 | Stephen VII (Stephen VIII) | Rome | n.a | n.a | Rome | Unknown | |
914 | 928.0 | 5110 | John X | Romagna, Italy | n.a | n.a | Italy | Italy | |
913 | 914.0 | 200 | Lando | Sabina, Italy | n.a | n.a | Italy | Italy | |
911 | 913.0 | 730 | Anastasius III | Rome | n.a | n.a | Rome | Unknown | |
904 | 911.0 | 2555 | Sergius III | Rome | n.a | n.a | Rome | Unknown | |
903 | 903.0 | 92 | Leo V | Ardea | n.a | n.a | Ardea | Unknown | |
900 | 903.0 | 1095 | Benedict IV | Rome | n.a | n.a | Rome | Unknown | |
898 | 900.0 | 730 | John IX, O.S.B. | Tivoli | n.a | n.a | Tivoli | Unknown | |
897 | 897.0 | 122 | Romanus | Gallese, Rome | n.a | n.a | Rome | Unknown | |
897 | 898.0 | 30 | Theodore II | Rome | n.a | n.a | Rome | Unknown | |
896 | 896.0 | 15 | Boniface VI | Rome | n.a | n.a | Rome | Unknown | |
896 | 897.0 | 365 | Stephen VI (Stephen VII) | n.a | n.a | Unknown | |||
891 | 896.0 | 1460 | Formosus | Ostia | n.a | n.a | Ostia | Unknown | |
885 | 891.0 | 2190 | Stephen V (Stephen VI) | Rome | n.a | n.a | Rome | Unknown | |
884 | 885.0 | 365 | St. Adrian III | Rome | n.a | n.a | Rome | Unknown | |
882 | 884.0 | 365 | Marinus I | Gallese, Rome | n.a | n.a | Rome | Unknown | |
872 | 882.0 | 3650 | John VIII | Rome | n.a | n.a | Rome | Unknown | |
867 | 872.0 | 1825 | Adrian II | Rome | n.a | n.a | Rome | Unknown | |
858 | 867.0 | 3285 | St. Nicholas I (Nicholas the Great) | Rome | n.a | n.a | Rome | Unknown | |
855 | 858.0 | 1095 | Benedict III | Rome | n.a | n.a | Rome | Unknown | |
847 | 855.0 | 2920 | St. Leo IV, O.S.B. | Rome | n.a | n.a | Rome | Unknown | |
844 | 847.0 | 1095 | Sergius II | Rome | n.a | n.a | Rome | Unknown | |
827 | 827.0 | 30 | Valentine | Rome | n.a | n.a | Rome | Unknown | |
827 | 844.0 | 6205 | Gregory IV | Rome | n.a | n.a | Rome | Unknown | |
824 | 827.0 | 1095 | Eugene II | Rome | n.a | n.a | Rome | Unknown | |
817 | 824.0 | 2555 | St. Paschal I | Rome | n.a | n.a | Rome | Unknown | |
816 | 817.0 | 226 | Stephen IV (Stephen V) | n.a | n.a | Unknown | |||
795 | 816.0 | 7300 | St. Leo III | Rome | n.a | n.a | Rome | Unknown | |
772 | 795.0 | 8395 | Adrian I | Rome | n.a | n.a | Rome | Unknown | |
767 | 772.0 | 1460 | Stephen III (Stephen IV) | Sicily | n.a | n.a | Sicily | Unknown | |
757 | 767.0 | 3650 | St. Paul I | Rome | n.a | n.a | Rome | Unknown | |
752 | 752.0 | 0 | Pope-elect Stephen | n.a | n.a | Unknown | |||
752 | 757.0 | 1825 | Stephen II (Stephen III) | n.a | n.a | Unknown | |||
741 | 752.0 | 3650 | St. Zachary | Greece | n.a | n.a | Greece | Unknown | |
731 | 741.0 | 3650 | Gregory III | Syria | n.a | n.a | Syria | Unknown | |
715 | 731.0 | 5475 | St. Gregory II | Rome, Byzantine Empire | n.a | n.a | Byzantine Empire | Unknown | |
708 | 708.0 | 21 | Sisinnius | Syria | n.a | n.a | Syria | Unknown | |
708 | 7015.0 | 2555 | Constantine | Syria | n.a | n.a | Syria | Unknown | |
705 | 708.0 | 730 | John VII | Greece | n.a | n.a | Greece | Unknown | |
701 | 705.0 | 1095 | John VI | Greece | n.a | n.a | Greece | Unknown | |
687 | 701.0 | 4745 | St. Sergius I | Sicily | n.a | n.a | Sicily | Unknown | |
686 | 687.0 | 335 | Conon | n.a | n.a | Unknown | |||
685 | 686.0 | 365 | John V | Syria | n.a | n.a | Syria | Unknown | |
684 | 685.0 | 317 | St. Benedict II | Rome, Byzantine Empire | n.a | n.a | Byzantine Empire | Unknown | |
681 | 684.0 | 365 | St. Leo II | Sicily | n.a | n.a | Sicily | Unknown | |
678 | 681.0 | 730 | St. Agatho | Sicily | n.a | n.a | Sicily | Unknown | |
676 | 678.0 | 365 | Donus | Rome, Byzantine Empire | n.a | n.a | Byzantine Empire | Unknown | |
672 | 676.0 | 1460 | Adeodatus II, O.S.B. | Rome, Byzantine Empire | n.a | n.a | Byzantine Empire | Unknown | |
657 | 672.0 | 5110 | St. Vitalian | Segni, Byzantine Empire | n.a | n.a | Byzantine Empire | Unknown | |
654 | 657.0 | 730 | St. Eugene I | Rome | n.a | n.a | Rome | Unknown | |
649 | 654.0 | 2190 | St. Martin I | Near Todi, Umbria, Byzantine Empire | n.a | n.a | Byzantine Empire | Unknown | |
642 | 649.0 | 2190 | Theodore I | Palestine | n.a | n.a | Palestine | Unknown | |
640 | 642.0 | 0 | John IV | Zadar, Dalmatia, now Croatia | n.a | n.a | now Croatia | Unknown | |
638 | 640.0 | 365 | Severinus | Rome | n.a | n.a | Rome | Unknown | |
625 | 638.0 | 4380 | Honorius I | Campania, Byzantine Empire | n.a | n.a | Byzantine Empire | Unknown | |
619 | 625.0 | 1825 | Boniface V | Naples | n.a | n.a | Naples | Unknown | |
615 | 619.0 | 0 | Adeodatus I (Deusdedit) | Rome | n.a | n.a | Rome | Unknown | |
608 | 615.0 | 2190 | St. Boniface IV, O.S.B. | Marsi | n.a | n.a | Marsi | Unknown | |
607 | 608.0 | 267 | Boniface III | Rome | n.a | n.a | Rome | Unknown | |
604 | 607.0 | 365 | Sabinian | Blera | n.a | n.a | Blera | Unknown | |
590 | 604.0 | 4745 | St. Gregory I, O.S.B. (Gregory the Great) | Rome | n.a | n.a | Rome | Unknown | |
579 | 590.0 | 3650 | Pelagius II | Rome | n.a | n.a | Rome | Unknown | |
575 | 579.0 | 5475 | Benedict I | n.a | n.a | Unknown | |||
561 | 575.0 | 4380 | John III | Rome, Eastern Roman Empire | n.a | n.a | Eastern Roman Empire | Unknown | |
556 | 561.0 | 1825 | Pelagius I | Rome | n.a | n.a | Rome | Unknown | |
537 | 555.0 | 6570 | Vigilius | Rome | n.a | n.a | Rome | Unknown | |
536 | 537.0 | 365 | St. Silverius | n.a | n.a | Unknown | |||
535 | 536.0 | 346 | St. Agapetus I (Agapitus) | Rome, Ostrogothic Kingdom | n.a | n.a | Ostrogothic Kingdom | Unknown | |
533 | 535.0 | 730 | John II | Rome | n.a | n.a | Rome | Unknown | |
530 | 533.0 | 730 | Boniface II | Rome to Ostrogoth parents | n.a | n.a | Rome to Ostrogoth parents | Unknown | |
526 | 530.0 | 1460 | St. Felix IV (Felix III) | Samnium | n.a | n.a | Samnium | Unknown | |
523 | 526.0 | 730 | St. John I | Tuscany | n.a | n.a | Tuscany | Unknown | |
514 | 523.0 | 2920 | St. Hormisdas | Frosinone, Southern Latium, Italy | n.a | n.a | Italy | Italy | |
498 | 514.0 | 5475 | St. Symmachus | Sardinia | n.a | n.a | Sardinia | Unknown | |
496 | 498.0 | 365 | Anastasius II | n.a | n.a | Unknown | |||
492 | 496.0 | 1460 | St. Gelasius I | Africa | n.a | n.a | Africa | Unknown | |
483 | 492.0 | 2920 | St. Felix III (Felix II) | Rome | n.a | n.a | Rome | Unknown | |
468 | 483.0 | 5475 | St. Simplicius | Tivoli, Italy | n.a | n.a | Italy | Italy | |
461 | 468.0 | 2190 | St. Hilarius | Sardinia, Western Roman Empire | n.a | n.a | Western Roman Empire | Unknown | |
440 | 461.0 | 7665 | St. Leo I (Leo the Great) | Rome | n.a | n.a | Rome | Unknown | |
432 | 440.0 | 2920 | St. Sixtus III | n.a | n.a | Unknown | |||
422 | 432.0 | 3285 | St. Celestine I | Rome, Western Roman Empire | n.a | n.a | Western Roman Empire | Unknown | |
418 | 422.0 | 1095 | St. Boniface I | n.a | n.a | Unknown | |||
417 | 418.0 | 365 | St. Zosimus | n.a | n.a | Unknown | |||
401 | 417.0 | 5475 | St. Innocent I | n.a | n.a | Unknown | |||
399 | 401.0 | 730 | St. Anastasius I | n.a | n.a | Unknown | |||
384 | 399.0 | 5110 | St. Siricius | &nsp; | n.a | n.a | &nsp; | Unknown | |
366 | 384.0 | 6570 | St. Damasus I | Idanha-a-Velha, Portugal | n.a | n.a | Portugal | Unknown | |
352 | 366.0 | 5110 | Liberius | &nsp; | n.a | n.a | &nsp; | Unknown | |
337 | 352.0 | 5475 | St. Julius I | Rome | n.a | n.a | Rome | Unknown | |
336 | 337.0 | 263 | St. Mark | Rome | n.a | n.a | Rome | Unknown | |
314 | 336.0 | 7665 | St. Sylvester I | Sant'Angelo a Scala, Avellino | n.a | n.a | Avellino | Unknown | |
311 | 314.0 | 730 | St. Miltiades (Melchiades) | Africa | n.a | n.a | Africa | Unknown | |
309 | 311.0 | 365 | St. Eusebius | n.a | n.a | Unknown | |||
308 | 309.0 | 365 | St. Marcellus I | n.a | n.a | Unknown | |||
296 | 308.0 | 2555 | St. Marcellinus | n.a | n.a | Unknown | |||
283 | 296.0 | 4380 | St. Caius | n.a | n.a | Unknown | |||
275 | 283.0 | 2920 | St. Eutychian | n.a | n.a | Unknown | |||
269 | 274.0 | 1825 | St. Felix I | Rome | n.a | n.a | Rome | Unknown | |
259 | 268.0 | 3285 | St. Dionysius | Greece | n.a | n.a | Greece | Unknown | |
257 | 258.0 | 341 | St. Sixtus II | Greece | n.a | n.a | Greece | Unknown | |
254 | 257.0 | 42 | St. Stephen I | Rome | n.a | n.a | Rome | Unknown | |
253 | 254.0 | 256 | St. Lucius I | Rome | n.a | n.a | Rome | Unknown | |
251 | 253.0 | 730 | St. Cornelius | n.a | n.a | Unknown | |||
236 | 250.0 | 5110 | St. Fabian | Rome | n.a | n.a | Rome | Unknown | |
235 | 236.0 | 44 | St. Anterus | Greece | n.a | n.a | Greece | Unknown | |
230 | 235.0 | 1825 | St. Pontian | Rome | n.a | n.a | Rome | Unknown | |
222 | 230.0 | 2920 | St. Urban I | Rome | n.a | n.a | Rome | Unknown | |
217 | 222.0 | 2190 | St. Callixtus I | Spain | n.a | n.a | Spain | Unknown | |
199 | 217.0 | 6570 | St. Zephyrinus (Zephyrin) | Rome | n.a | n.a | Rome | Unknown | |
189 | 198.0 | 3650 | St. Victor I | Northern Africa | n.a | n.a | Northern Africa | Unknown | |
174 | 189.0 | 5475 | St. Eleuterus | Nicopoli, Epyrus | n.a | n.a | Epyrus | Unknown | |
166 | 174.0 | 3285 | St. Soter | Fondi, Latium, Italy | n.a | n.a | Italy | Italy | |
155 | 166.0 | 4015 | St. Anicetus | Emesa, Syria | n.a | n.a | Syria | Unknown | |
140 | 142.0 | 5475 | St. Pius I | Aquileia, Friuli, Italy | n.a | n.a | Italy | Italy | |
136 | 140.0 | 1460 | St. Hyginus | Greece | n.a | n.a | Greece | Unknown | |
125 | 136.0 | 4745 | St. Telesphorus | Greece | n.a | n.a | Greece | Unknown | |
115 | 125.0 | 7300 | St. Sixtus I | Rome or Greece | n.a | n.a | Rome or Greece | Unknown | |
105 | 115.0 | 3650 | St. Alexander I | Rome | n.a | n.a | Rome | Unknown | |
97 | 105.0 | 2920 | St. Evaristus (Aristus) | Bethlehem, Judea | n.a | n.a | Judea | Unknown | |
88 | 97.0 | ? | St. Clement I | Rome | n.a | n.a | Rome | Unknown | |
76 | 92.0 | 4380 | St. Anacletus (Cletus) | Probably Greece | n.a | n.a | Probably Greece | Unknown | |
64 | 76.0 | 4380 | St. Linus | Tuscia (Central Tuscany) | n.a | n.a | Tuscia (Central Tuscany) | Unknown | |
30 | 64.0 | 13505 | St. Peter | Bethsaida, Galilea | n.a | n.a | Galilea | Unknown | |
0 | 0.0 | 0 | n.a | n.a | Unknown | ||||
0 | 0.0 | 0 | Unknown |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"provenance": [], | |
"authorship_tag": "ABX9TyMU+Rb2MjwkOyxo0rBBRWej", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/cavedave/5cb6c262238828ee8d02232833d7604f/popechart.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Age of the pope over time\n", | |
"inspired by David Goldenberger graph of how the oldest person keeps dying.\n", | |
"\n", | |
"https://flowingdata.com/2015/06/11/oldest-person-in-the-world-keeps-dying/" | |
], | |
"metadata": { | |
"id": "UNhJqX-AnYXk" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"# Data" | |
], | |
"metadata": { | |
"id": "Kh4rVuUfnf-0" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"i want\n", | |
"name, dob, dod, day elected, day resigned\n", | |
"\n", | |
"data for the popes" | |
], | |
"metadata": { | |
"id": "bYgLRceXnhJB" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"take data from https://www.theguardian.com/news/datablog/2013/feb/13/popes-full-list\n", | |
"and https://en.wikipedia.org/wiki/List_of_popes" | |
], | |
"metadata": { | |
"id": "uuKmxHFLoW6I" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "TVGztrQ2nWg4" | |
}, | |
"outputs": [], | |
"source": [ | |
"\n", | |
"\n", | |
"import pandas as pd\n", | |
"\n", | |
"# Load the data from the URL\n", | |
"url = \"https://www.theguardian.com/news/datablog/2013/feb/13/popes-full-list#data\"\n", | |
"try:\n", | |
" df = pd.read_html(url)[0]\n", | |
" # print(df.head()) # Optional: Check the loaded dataframe\n", | |
"except Exception as e:\n", | |
" print(f\"Error loading data from URL: {e}\")\n", | |
" df = pd.DataFrame() # Initialize an empty dataframe in case of error\n", | |
"\n", | |
"# Now you have the data in a pandas dataframe (df).\n", | |
"# You can further process and analyze the data.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df.head()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 276 | |
}, | |
"id": "IgywYHQ_oi9P", | |
"outputId": "2942c5ca-8c7f-4311-b269-bb392f85ead8" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" Start year End year Number of days of Pontificate (max) \\\n", | |
"0 2013 NaN NaN \n", | |
"1 2005 2013.0 2870 \n", | |
"2 1978 2005.0 9658 \n", | |
"3 1978 1978.0 33 \n", | |
"4 1963 1978.0 5521 \n", | |
"\n", | |
" English name Place of birth \\\n", | |
"0 Francis I Buenos Aires \n", | |
"1 Benedict XVI Marktl am Inn, Bavaria, Germany \n", | |
"2 Ven. John Paul II (John Paul the Great) Wadowice, Poland \n", | |
"3 Servant of God John Paul I Forno di Canale, Veneto, Italy \n", | |
"4 Servant of God Paul VI Concesio, Brescia, Italy \n", | |
"\n", | |
" Age at start of papacy Age at end of papacy \n", | |
"0 76 NaN \n", | |
"1 78 85 \n", | |
"2 58 84 \n", | |
"3 65 65 \n", | |
"4 65 80 " | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-d3b76401-12d2-4e6a-aada-eb11a1ff0c7d\" class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Start year</th>\n", | |
" <th>End year</th>\n", | |
" <th>Number of days of Pontificate (max)</th>\n", | |
" <th>English name</th>\n", | |
" <th>Place of birth</th>\n", | |
" <th>Age at start of papacy</th>\n", | |
" <th>Age at end of papacy</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Francis I</td>\n", | |
" <td>Buenos Aires</td>\n", | |
" <td>76</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2005</td>\n", | |
" <td>2013.0</td>\n", | |
" <td>2870</td>\n", | |
" <td>Benedict XVI</td>\n", | |
" <td>Marktl am Inn, Bavaria, Germany</td>\n", | |
" <td>78</td>\n", | |
" <td>85</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>1978</td>\n", | |
" <td>2005.0</td>\n", | |
" <td>9658</td>\n", | |
" <td>Ven. John Paul II (John Paul the Great)</td>\n", | |
" <td>Wadowice, Poland</td>\n", | |
" <td>58</td>\n", | |
" <td>84</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1978</td>\n", | |
" <td>1978.0</td>\n", | |
" <td>33</td>\n", | |
" <td>Servant of God John Paul I</td>\n", | |
" <td>Forno di Canale, Veneto, Italy</td>\n", | |
" <td>65</td>\n", | |
" <td>65</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>1963</td>\n", | |
" <td>1978.0</td>\n", | |
" <td>5521</td>\n", | |
" <td>Servant of God Paul VI</td>\n", | |
" <td>Concesio, Brescia, Italy</td>\n", | |
" <td>65</td>\n", | |
" <td>80</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <div class=\"colab-df-buttons\">\n", | |
"\n", | |
" <div class=\"colab-df-container\">\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-d3b76401-12d2-4e6a-aada-eb11a1ff0c7d')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
"\n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" .colab-df-buttons div {\n", | |
" margin-bottom: 4px;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-d3b76401-12d2-4e6a-aada-eb11a1ff0c7d button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-d3b76401-12d2-4e6a-aada-eb11a1ff0c7d');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
"\n", | |
"\n", | |
" <div id=\"df-9892b3f7-60ff-4035-af32-2a53582faa5c\">\n", | |
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-9892b3f7-60ff-4035-af32-2a53582faa5c')\"\n", | |
" title=\"Suggest charts\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <g>\n", | |
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
" </g>\n", | |
"</svg>\n", | |
" </button>\n", | |
"\n", | |
"<style>\n", | |
" .colab-df-quickchart {\n", | |
" --bg-color: #E8F0FE;\n", | |
" --fill-color: #1967D2;\n", | |
" --hover-bg-color: #E2EBFA;\n", | |
" --hover-fill-color: #174EA6;\n", | |
" --disabled-fill-color: #AAA;\n", | |
" --disabled-bg-color: #DDD;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-quickchart {\n", | |
" --bg-color: #3B4455;\n", | |
" --fill-color: #D2E3FC;\n", | |
" --hover-bg-color: #434B5C;\n", | |
" --hover-fill-color: #FFFFFF;\n", | |
" --disabled-bg-color: #3B4455;\n", | |
" --disabled-fill-color: #666;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart {\n", | |
" background-color: var(--bg-color);\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: var(--fill-color);\n", | |
" height: 32px;\n", | |
" padding: 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart:hover {\n", | |
" background-color: var(--hover-bg-color);\n", | |
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: var(--button-hover-fill-color);\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart-complete:disabled,\n", | |
" .colab-df-quickchart-complete:disabled:hover {\n", | |
" background-color: var(--disabled-bg-color);\n", | |
" fill: var(--disabled-fill-color);\n", | |
" box-shadow: none;\n", | |
" }\n", | |
"\n", | |
" .colab-df-spinner {\n", | |
" border: 2px solid var(--fill-color);\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" animation:\n", | |
" spin 1s steps(1) infinite;\n", | |
" }\n", | |
"\n", | |
" @keyframes spin {\n", | |
" 0% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" border-left-color: var(--fill-color);\n", | |
" }\n", | |
" 20% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 30% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 40% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 60% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 80% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" 90% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" }\n", | |
"</style>\n", | |
"\n", | |
" <script>\n", | |
" async function quickchart(key) {\n", | |
" const quickchartButtonEl =\n", | |
" document.querySelector('#' + key + ' button');\n", | |
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
" quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
" try {\n", | |
" const charts = await google.colab.kernel.invokeFunction(\n", | |
" 'suggestCharts', [key], {});\n", | |
" } catch (error) {\n", | |
" console.error('Error during call to suggestCharts:', error);\n", | |
" }\n", | |
" quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
" }\n", | |
" (() => {\n", | |
" let quickchartButtonEl =\n", | |
" document.querySelector('#df-9892b3f7-60ff-4035-af32-2a53582faa5c button');\n", | |
" quickchartButtonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
" })();\n", | |
" </script>\n", | |
" </div>\n", | |
"\n", | |
" </div>\n", | |
" </div>\n" | |
], | |
"application/vnd.google.colaboratory.intrinsic+json": { | |
"type": "dataframe", | |
"variable_name": "df", | |
"summary": "{\n \"name\": \"df\",\n \"rows\": 270,\n \"fields\": [\n {\n \"column\": \"Start year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 504,\n \"min\": 0,\n \"max\": 2013,\n \"num_unique_values\": 250,\n \"samples\": [\n 884,\n 1922,\n 1118\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"End year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 622.2027100067855,\n \"min\": 0.0,\n \"max\": 7015.0,\n \"num_unique_values\": 246,\n \"samples\": [\n 1591.0,\n 1922.0,\n 604.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Number of days of Pontificate (max)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 123,\n \"samples\": [\n \"6464\",\n \"5503\",\n \"613\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"English name\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 264,\n \"samples\": [\n \"John XXII\",\n \"Honorius I\",\n \"Clement IV\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Place of birth\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 140,\n \"samples\": [\n \"Near Todi, Umbria, Byzantine Empire\",\n \"Jenne, Papal States, Holy Roman Empire\",\n \"Grottammare, Marche, Papal States\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age at start of papacy\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 31,\n \"samples\": [\n \"47\",\n \"70\",\n \"62\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age at end of papacy\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 32,\n \"samples\": [\n \"63\",\n \"78\",\n \"59\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" | |
} | |
}, | |
"metadata": {}, | |
"execution_count": 2 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"have to add francis data\n", | |
"\n", | |
"ratzinger as a resigner\n", | |
"\n", | |
"and pick a date to start from\n", | |
"\n" | |
], | |
"metadata": { | |
"id": "j6dV6gVDozop" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"\n", | |
"\n", | |
"import pandas as pd\n", | |
"from datetime import date\n", | |
"\n", | |
"\n", | |
"\n", | |
"def days_between_dates(date1_str, date2_str):\n", | |
" date1 = pd.to_datetime(date1_str)\n", | |
" date2 = pd.to_datetime(date2_str)\n", | |
" delta = date2 - date1\n", | |
" return delta.days\n", | |
"\n", | |
"start_date = \"2013-03-13\"\n", | |
"end_date = \"2025-04-21\"\n", | |
"num_days = days_between_dates(start_date, end_date)\n", | |
"\n", | |
"print(f\"The number of days between {start_date} and {end_date} is: {num_days}\")\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "Dbn1uTY1oyAf", | |
"outputId": "4f1ae290-5521-4018-b011-143614f456c8" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"The number of days between 2013-03-13 and 2025-04-21 is: 4422\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"\n", | |
"\n", | |
"from datetime import datetime\n", | |
"\n", | |
"def calculate_age(birthdate_str, deathdate_str):\n", | |
" birthdate = datetime.strptime(birthdate_str, \"%d %B %Y\")\n", | |
" deathdate = datetime.strptime(deathdate_str, \"%d %B %Y\")\n", | |
" age = deathdate.year - birthdate.year - ((deathdate.month, deathdate.day) < (birthdate.month, birthdate.day))\n", | |
" return age\n", | |
"\n", | |
"birthdate_str = \"17 December 1936\"\n", | |
"deathdate_str = \"21 April 2025\"\n", | |
"age = calculate_age(birthdate_str, deathdate_str)\n", | |
"print(f\"The person was {age} years old when they died.\")\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "HI-D846spetb", | |
"outputId": "0ccc679c-64c1-4f9f-c571-311d9713a11f" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"The person was 88 years old when they died.\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"add in data for francis and new pope" | |
], | |
"metadata": { | |
"id": "b-ifpehUp6-P" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df.loc[0, 'End year'] = 2025\n", | |
"df.loc[0, 'Number of days of Pontificate (max)'] = 4422\n", | |
"df.loc[0, 'Age at end of papacy'] = 88" | |
], | |
"metadata": { | |
"id": "8KwG4Mlxp2xw" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df.head()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 276 | |
}, | |
"id": "IrWZPXNRqiVK", | |
"outputId": "981e0b7f-3d43-4ae0-ab0f-2a9b2c631dc5" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" Start year End year Number of days of Pontificate (max) \\\n", | |
"0 2025 NaN None \n", | |
"1 2013 2025.0 4422 \n", | |
"2 2005 2013.0 2870 \n", | |
"3 1978 2005.0 9658 \n", | |
"4 1978 1978.0 33 \n", | |
"\n", | |
" English name Place of birth \\\n", | |
"0 Pope Leo XIV Chicago \n", | |
"1 Francis I Buenos Aires \n", | |
"2 Benedict XVI Marktl am Inn, Bavaria, Germany \n", | |
"3 Ven. John Paul II (John Paul the Great) Wadowice, Poland \n", | |
"4 Servant of God John Paul I Forno di Canale, Veneto, Italy \n", | |
"\n", | |
" Age at start of papacy Age at end of papacy \n", | |
"0 69 None \n", | |
"1 76 88 \n", | |
"2 78 85 \n", | |
"3 58 84 \n", | |
"4 65 65 " | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-435364a8-e2ea-471d-b3b6-2b7182d4901f\" class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Start year</th>\n", | |
" <th>End year</th>\n", | |
" <th>Number of days of Pontificate (max)</th>\n", | |
" <th>English name</th>\n", | |
" <th>Place of birth</th>\n", | |
" <th>Age at start of papacy</th>\n", | |
" <th>Age at end of papacy</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2025</td>\n", | |
" <td>NaN</td>\n", | |
" <td>None</td>\n", | |
" <td>Pope Leo XIV</td>\n", | |
" <td>Chicago</td>\n", | |
" <td>69</td>\n", | |
" <td>None</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2013</td>\n", | |
" <td>2025.0</td>\n", | |
" <td>4422</td>\n", | |
" <td>Francis I</td>\n", | |
" <td>Buenos Aires</td>\n", | |
" <td>76</td>\n", | |
" <td>88</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2005</td>\n", | |
" <td>2013.0</td>\n", | |
" <td>2870</td>\n", | |
" <td>Benedict XVI</td>\n", | |
" <td>Marktl am Inn, Bavaria, Germany</td>\n", | |
" <td>78</td>\n", | |
" <td>85</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1978</td>\n", | |
" <td>2005.0</td>\n", | |
" <td>9658</td>\n", | |
" <td>Ven. John Paul II (John Paul the Great)</td>\n", | |
" <td>Wadowice, Poland</td>\n", | |
" <td>58</td>\n", | |
" <td>84</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>1978</td>\n", | |
" <td>1978.0</td>\n", | |
" <td>33</td>\n", | |
" <td>Servant of God John Paul I</td>\n", | |
" <td>Forno di Canale, Veneto, Italy</td>\n", | |
" <td>65</td>\n", | |
" <td>65</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <div class=\"colab-df-buttons\">\n", | |
"\n", | |
" <div class=\"colab-df-container\">\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-435364a8-e2ea-471d-b3b6-2b7182d4901f')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
"\n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" .colab-df-buttons div {\n", | |
" margin-bottom: 4px;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-435364a8-e2ea-471d-b3b6-2b7182d4901f button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-435364a8-e2ea-471d-b3b6-2b7182d4901f');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
"\n", | |
"\n", | |
" <div id=\"df-8d6ba619-96eb-401a-87c4-e547cc26dd83\">\n", | |
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-8d6ba619-96eb-401a-87c4-e547cc26dd83')\"\n", | |
" title=\"Suggest charts\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <g>\n", | |
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
" </g>\n", | |
"</svg>\n", | |
" </button>\n", | |
"\n", | |
"<style>\n", | |
" .colab-df-quickchart {\n", | |
" --bg-color: #E8F0FE;\n", | |
" --fill-color: #1967D2;\n", | |
" --hover-bg-color: #E2EBFA;\n", | |
" --hover-fill-color: #174EA6;\n", | |
" --disabled-fill-color: #AAA;\n", | |
" --disabled-bg-color: #DDD;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-quickchart {\n", | |
" --bg-color: #3B4455;\n", | |
" --fill-color: #D2E3FC;\n", | |
" --hover-bg-color: #434B5C;\n", | |
" --hover-fill-color: #FFFFFF;\n", | |
" --disabled-bg-color: #3B4455;\n", | |
" --disabled-fill-color: #666;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart {\n", | |
" background-color: var(--bg-color);\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: var(--fill-color);\n", | |
" height: 32px;\n", | |
" padding: 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart:hover {\n", | |
" background-color: var(--hover-bg-color);\n", | |
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: var(--button-hover-fill-color);\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart-complete:disabled,\n", | |
" .colab-df-quickchart-complete:disabled:hover {\n", | |
" background-color: var(--disabled-bg-color);\n", | |
" fill: var(--disabled-fill-color);\n", | |
" box-shadow: none;\n", | |
" }\n", | |
"\n", | |
" .colab-df-spinner {\n", | |
" border: 2px solid var(--fill-color);\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" animation:\n", | |
" spin 1s steps(1) infinite;\n", | |
" }\n", | |
"\n", | |
" @keyframes spin {\n", | |
" 0% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" border-left-color: var(--fill-color);\n", | |
" }\n", | |
" 20% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 30% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 40% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 60% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 80% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" 90% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" }\n", | |
"</style>\n", | |
"\n", | |
" <script>\n", | |
" async function quickchart(key) {\n", | |
" const quickchartButtonEl =\n", | |
" document.querySelector('#' + key + ' button');\n", | |
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
" quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
" try {\n", | |
" const charts = await google.colab.kernel.invokeFunction(\n", | |
" 'suggestCharts', [key], {});\n", | |
" } catch (error) {\n", | |
" console.error('Error during call to suggestCharts:', error);\n", | |
" }\n", | |
" quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
" }\n", | |
" (() => {\n", | |
" let quickchartButtonEl =\n", | |
" document.querySelector('#df-8d6ba619-96eb-401a-87c4-e547cc26dd83 button');\n", | |
" quickchartButtonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
" })();\n", | |
" </script>\n", | |
" </div>\n", | |
"\n", | |
" </div>\n", | |
" </div>\n" | |
], | |
"application/vnd.google.colaboratory.intrinsic+json": { | |
"type": "dataframe", | |
"variable_name": "df", | |
"summary": "{\n \"name\": \"df\",\n \"rows\": 271,\n \"fields\": [\n {\n \"column\": \"Start year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 507,\n \"min\": 0,\n \"max\": 2025,\n \"num_unique_values\": 251,\n \"samples\": [\n 795,\n 1939,\n 705\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"End year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 624.1275039124815,\n \"min\": 0.0,\n \"max\": 7015.0,\n \"num_unique_values\": 247,\n \"samples\": [\n 1621.0,\n 1939.0,\n 607.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Number of days of Pontificate (max)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 124,\n \"samples\": [\n \"3861\",\n \"2073\",\n \"62\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"English name\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 265,\n \"samples\": [\n \"John VII\",\n \"Damasus II\",\n \"Alexander III\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Place of birth\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 141,\n \"samples\": [\n \"Jenne, Papal States, Holy Roman Empire\",\n \"Segni, Byzantine Empire\",\n \"Somma Lombardo, Duchy of Milan\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age at start of papacy\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 32,\n \"samples\": [\n \"49\",\n \"56\",\n \"62\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age at end of papacy\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 33,\n \"samples\": [\n \"62\",\n \"71\",\n \"70\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" | |
} | |
}, | |
"metadata": {}, | |
"execution_count": 9 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"# Step 1: Create a new row as a dictionary\n", | |
"new_row = {\n", | |
" 'Start year': 2025,\n", | |
" 'End year': None,\n", | |
" 'Number of days of Pontificate (max)': None,\n", | |
" 'English name': 'Pope Leo XIV',\n", | |
" 'Place of birth': ' Chicago',\n", | |
" 'Age at start of papacy': 69,\n", | |
" 'Age at end of papacy': None\n", | |
"}\n", | |
"\n", | |
"# Step 2: Convert to DataFrame\n", | |
"new_row_df = pd.DataFrame([new_row])\n", | |
"\n", | |
"# Step 3: Concatenate on top of original df and reset index\n", | |
"df = pd.concat([new_row_df, df], ignore_index=True)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "ly34k2RerClU", | |
"outputId": "fb0b622f-f81c-485f-a51d-08cb1e199401" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"<ipython-input-8-069f0f7b88ff>:16: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", | |
" df = pd.concat([new_row_df, df], ignore_index=True)\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"\n", | |
"\n", | |
"# Assuming 'df' is your DataFrame (from the previous code)\n", | |
"df.to_csv('pope_data.csv', index=False) # Save to a CSV file named 'pope_data.csv'\n" | |
], | |
"metadata": { | |
"id": "OfSQEuEprULU" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"## graph" | |
], | |
"metadata": { | |
"id": "MYzcu7jLs-p5" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"make a graph of the data" | |
], | |
"metadata": { | |
"id": "ZxZ5A3eFtTq4" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import pandas as pd\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"# Load the dataset with country_clean already filled in\n", | |
"df_filtered = pd.read_csv('/content/pope_data_complete_country_clean2.csv')\n", | |
"\n", | |
"# Filter from 1404 onward\n", | |
"df = df_filtered[df_filtered['Start year'] >= 1404].copy()\n", | |
"\n", | |
"# Ensure numeric types\n", | |
"df['Start year'] = pd.to_numeric(df['Start year'], errors='coerce')\n", | |
"df['End year'] = pd.to_numeric(df['End year'], errors='coerce')\n", | |
"df['Age at start of papacy'] = pd.to_numeric(df['Age at start of papacy'], errors='coerce')\n", | |
"df['Age at end of papacy'] = pd.to_numeric(df['Age at end of papacy'], errors='coerce')\n", | |
"\n", | |
"# Custom color palette using nationally symbolic colors\n", | |
"country_colors = {\n", | |
" 'Italy': '#007FFF', # Savoy blue\n", | |
" 'Germany': '#FFCC00', # Gold (flag color)\n", | |
" 'Argentina': '#75AADB', # Sky blue (flag/team color)\n", | |
" 'Poland': '#DC143C', # Crimson (flag red)\n", | |
" 'USA': '#3C3B6E', # Navy blue (flag blue)\n", | |
" 'Netherlands': '#FF7F0E', # Orange (House of Orange)\n", | |
" 'Spain': '#AA151B', # Deep red (flag red)\n", | |
"}\n", | |
"\n", | |
"# Plot\n", | |
"plt.figure(figsize=(14, 7))\n", | |
"\n", | |
"for _, row in df.iterrows():\n", | |
" if row['English name'] == 'Benedict XVI':\n", | |
" color = country_colors.get(row['Country_clean'], 'gray')\n", | |
" # Papacy\n", | |
" plt.plot([2005, 2013], [78, 85], color=color, linewidth=2, marker='o')\n", | |
" # Post-resignation\n", | |
" plt.plot([2013, 2022], [85, 95], color=color, linestyle='--', linewidth=1.5, marker='o')\n", | |
" plt.text(2022, 95, 'Benedict XVI (died)', fontsize=8, ha='left', va='bottom')\n", | |
" continue # ✅ Skip normal plotting logic\n", | |
" if pd.notnull(row['Start year']) and pd.notnull(row['End year']):\n", | |
" x_vals = [row['Start year'], row['End year']]\n", | |
" y_vals = [row['Age at start of papacy'], row['Age at end of papacy']]\n", | |
" color = country_colors.get(row['Country_clean'], 'gray')\n", | |
"\n", | |
" # Draw a dot for single-year papacies or same-age intervals\n", | |
" if row['Start year'] == row['End year'] or row['Age at start of papacy'] == row['Age at end of papacy']:\n", | |
" plt.plot(row['Start year'], row['Age at start of papacy'], marker='o', color=color)\n", | |
" else:\n", | |
" plt.plot(x_vals, y_vals, marker='o', color=color, linewidth=2)\n", | |
"\n", | |
" # Add name labels for popes after 1900\n", | |
" if row['End year'] > 1900:\n", | |
" plt.text(x_vals[1], y_vals[1] + 1, row['English name'], fontsize=8, rotation=10, va='bottom', ha='left')\n", | |
"\n", | |
" # Handle special resigning popes\n", | |
" #if row['English name'] == 'Benedict XVI':\n", | |
" #color = country_colors.get(row['Country_clean'], 'gray')\n", | |
" # Papacy\n", | |
" #plt.plot([2005, 2013], [78, 85], color=color, linewidth=2, marker='o')\n", | |
" # Post-resignation\n", | |
" #plt.plot([2013, 2022], [85, 95], color=color, linestyle='--', linewidth=1.5, marker='o')\n", | |
" #plt.text(2022, 95, 'Benedict XVI (died)', fontsize=8, ha='left', va='bottom')\n", | |
" #continue\n", | |
"\n", | |
" if row['English name'] == 'Gregory XII':\n", | |
" color = country_colors.get(row['Country_clean'], 'gray')\n", | |
" age_start = row['Age at start of papacy']\n", | |
" age_resign = row['Age at end of papacy']\n", | |
" age_death = age_resign + 2 # died in 1417\n", | |
"\n", | |
" plt.plot([1406, 1415], [age_start, age_resign], color=color, linewidth=2, marker='o')\n", | |
" plt.plot([1415, 1417], [age_resign, age_death], color=color, linestyle='--', linewidth=1.5, marker='o')\n", | |
" plt.text(1417, age_death, 'Gregory XII (died)', fontsize=8, ha='left', va='bottom')\n", | |
"\n", | |
"# Manually plot Leo XIV as a dot\n", | |
"plt.plot(2025, 69, marker='o', color=country_colors.get('USA', 'gray'))\n", | |
"plt.text(2025, 70, 'Leo XIV', fontsize=8, rotation=10, va='bottom', ha='left')\n", | |
"\n", | |
"# Legend\n", | |
"for country, color in country_colors.items():\n", | |
" plt.plot([], [], color=color, label=country)\n", | |
"\n", | |
"plt.legend(title='Country of Origin', loc='lower right')\n", | |
"plt.title('Ages of Popes During Their Papacy (From 1404 Onward)', fontsize=20)\n", | |
"plt.xlabel('Year')\n", | |
"plt.ylabel(\"Pope's Age\")\n", | |
"plt.grid(True)\n", | |
"plt.tight_layout()\n", | |
"\n", | |
"# Save and show\n", | |
"plt.savefig(\"pope_ages2.png\", dpi=300)\n", | |
"plt.show()\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 404 | |
}, | |
"id": "a1upWQCeQmi-", | |
"outputId": "c2eb6505-7eba-4893-883c-a2c606c4f229" | |
}, | |
"execution_count": 52, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 1400x700 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABWQAAAKyCAYAAABSTdcNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4U2X7B/Bvkm46aUsHLWUVyupgliWggMgQX2QIyhIFKyooKMiLigoO5BVRfojIRlEQQUCZypYNLXSwKaOUljK66EqT5/dHyGnSpmla2iZtv5/r6sUh5zknz0nOOUnuc5/7kQkhBIiIiIiIiIiIiIiowsnN3QEiIiIiIiIiIiKimoIBWSIiIiIiIiIiIqJKwoAsERERERERERERUSVhQJaIiIiIiIiIiIiokjAgS0RERERERERERFRJGJAlIiIiIiIiIiIiqiQMyBIRERERERERERFVEgZkiYiIiIiIiIiIiCoJA7JERERERERERERElYQBWSIiKpOYmBi89NJL8Pf3h42NDWQyGWQyGaKioszdNarGunfvDplMhu7du5u7Kxbh2rVr0rG3cuVKs/Zl5cqVUl+uXbtm1r6QZbtw4QJsbGxgZ2eHW7dumbs7RGRhZs2aJX2eFJaQkABbW1vY2Njg4sWLZugdEVH5YECWiKqV/fv3S1/gZDIZDh8+bO4uVUunTp1C+/bt8fPPPyMhIQFKpbJM69EG1wr/KRQK1K5dG+3atcO7776Ly5cvl/MW1Cy6QTvdP7lcDldXVwQEBCA8PBwTJ07EmjVrkJmZae4uV2tjxowx+H6U5m/WrFnm3gyzK26/lslksLOzQ926dfHMM8/ghx9+QFZWlrm7SzreeecdKJVKjBs3DnXr1i0yv7jPBkN/9evXr/wNsFCZmZk4cOAA5s2bh6FDh6JBgwbl+joNGzZM77U39cLLL7/8gt69e8Pb2xt2dnYICAjASy+9hCNHjpS5L9u3b6/Qc+KVK1fwySefoHPnzqhbty5sbW3h4eGB4OBgvPXWWzh48GC5Ph+Zzs/PD2PHjoVSqcTUqVPN3R0iojJjQJaIqpVVq1bp/X/16tVm6kn19v777yM7OxvOzs5YtGgRjh8/jujoaERHRyMoKOix169Wq/HgwQOcPHkS8+bNQ4sWLbBo0aJy6DnpEkIgLS0NN27cwLFjx7Bo0SKMGjUKvr6+eOedd/Dw4UNzd5GoTHJzc5GYmIgdO3bgtddeQ2hoKM6dO2fubhGAw4cPY9u2bbCxscH06dPN3Z1qZcCAAejWrRveffdd/Pbbb+Waqf7nn39i/fr1pVomOzsb/fr1w4gRI7B7924kJycjNzcXN27cwM8//4wuXbrg448/LnVfHj58iIiIiFIvZ4rc3Fy8/fbbaNasGT766CMcPnwYiYmJyMvLw7179xAdHY3vvvsOTzzxBPr164eEhIQK6QcZ9/7778Pa2hpbt27F8ePHzd0dIqIysTJ3B4iIykt2djY2bNgAAHB0dERmZibWr1+PBQsWwNbW1sy9qz6USiX2798PABg/fny5/SiKjo6WplUqFRISEvDbb79h1apVyMvLwxtvvIGAgAD069evXJ6vpho4cCBmz54t/T8rKwupqamIi4vD/v378eeffyIjIwPz58/HX3/9hT///BOBgYFm7LG+ffv2mbsLj23OnDnFZvUsWrQI33//PQBg+fLlaNeuncF2derUqbD+ldWYMWMwZswYszx34f06Ozsb0dHR+OabbxAdHY1Lly7hmWeeQVxcHBwcHMzSR9LQvk9DhgyBv79/ie11PxsMsbGxKZd+VQdCCGm6du3aaNu2LQ4fPvzYdz1kZmZi4sSJADTnnjt37pi03Msvv4xt27YBAHr06IFJkybB19cX0dHR+Oyzz3DlyhXMmjULPj4+GD9+vMn9+eCDD3D9+vVS9cUUGRkZGDhwIPbu3QtA8xqOGTMGTz31FLy8vJCWloaTJ09i+fLluHDhArZt24aOHTti165daNasWbn1g0oWEBCA559/Hr/++itmz56NLVu2mLtLRESlJ4iIqomff/5ZABAAxPLly6Xp3377zdxdq1YSExOl13bJkiWPta5u3bpJ6yrOt99+K7Vp3br1Yz1fTRUfHy+9hqNHjzba9vr166JXr15S+yZNmoj79+9XTkdJfPTRR9Jrv3fv3hLb6763K1asqPD+WRJT9uucnBzRqVMnqd23335buZ0kPefPnxcymUwAENu3by+2nSmfDVTUDz/8INauXSsuXbokPRYQECAAiICAgDKvd9KkSQKAeOqpp8To0aOl9yY+Pr7YZf755x+p3YABA0R+fr7e/JSUFFGvXj0BQLi6upr8OXPy5EmhUCiEra2t+PHHH6Xn+Oijj8q8fVpDhgyR1tejRw+RnJxssF1eXp545513pLaNGjUS6enpj/38VED3s7A4W7ZsEQCEXC4XV65cqcTeERGVD5YsIKJqQ1ueIDg4GGPHjkXTpk31HqfykZubK01bW1tX+PNNnDgRAQEBAIDTp0+XazYMFVWvXj1s375dykS+ePEi65VSlWVra4tPP/1U+v+OHTvM2BtasWIFhBCoU6cOevbsae7uVDvjx4/H8OHD0bhx43Jb58mTJ/Hdd9/B1ta2VKWD5s2bBwCwsrLCokWLoFAo9OZ7eHjgyy+/BACkpqZi6dKlJa5TpVLh1VdfhUqlwowZM8p1O9evX4/ffvsNABASEoI///yz2DsRrK2t8b///Q+vvPIKAE29WZbfqHx9+vSBu7s71Go1VqxYYe7uEBGVGgOyRFQt3L59G3///TcA4KWXXtL7d8eOHUhJSTFpPffu3cN7772Hpk2bwt7eHl5eXujVqxc2bdoEwPRRxHNycrBw4UI89dRT8Pb2ho2NjfQDdNmyZcjPzzfajz179mD48OFo0KAB7O3t4eDgIA28NHXqVOzZs8ek7SlOXl4eFi1ahB49esDT0xM2Njbw9vZG37598dNPP0GtVhdZRjvibYMGDaTHxo4dW+EDDcnlcrRt21b6/40bN4q02bp1KwYPHgw/Pz/Y2trC3d0dHTt2xBdffGH0Vs3C72dubi7mzZuH1q1bw8XFBc7OzujQoQMWLVoElUpVYl9VKhVWrVqF/v37w9fXV+pLly5d8PXXXyM7O9vo8qdOncK4cePQpEkT1KpVC3Z2dvD390ebNm0wceJEbNmyRe+W1IqiUCiwcuVK6dbuH3/8EXfv3tVrozug0sqVK42ur379+pDJZAZvZzf0HnzzzTcIDw+Hh4dHkf1KO9hP9+7di6zLUJ92796NAQMGwNvbG7a2tmjQoAEiIiJMqvtXXueDyvY42wwAe/fuxejRo9GwYUM4ODjA2dkZrVq1wrvvvovExMRilyvp9Sj83l26dAlvvPEGAgMD4eDgUGGvY/v27aXp69evS9N5eXnYunUr3njjDbRr1w5ubm6wtraGu7s7OnTogFmzZhXZ7wsrvG+fOHECw4cPh7+/v3T8jh07FufPnze6ntu3b2PRokUYPHgwAgMDUatWLdja2qJu3boYOHAg1q1bZ/C8bMi1a9cwbdo0tGnTBu7u7rC2toaHhwe6du2KWbNm4erVq1Lbb7/9VnrPjh49WuK6n3/+echkMtSuXRs5OTkm9UeXtgbpwIEDYWVV/pXTCn8W7dmzRyqNYG1tbXBgq0OHDmHkyJGoX78+7Ozs4OrqirCwMMycOdPod4d9+/ZJz7dv3z4IIbBs2TJ06dIF7u7ucHZ2Rvv27bFmzRq95fLy8rB48WKEh4ejdu3acHJyQufOnUtdn7Uy5Ofn49VXX4Varcb06dPRpEkTk5bLyMjAP//8AwDo2bMn/Pz8DLYbNGgQnJ2dAUA6rxozf/58REZGokmTJpg2bZqJW2GaL774QppesmSJSaVN/ve//8HLywuApsSMof2l8D6pPUdov6/UrVsXI0eOLLbG9RtvvAGZTAYfHx+D83U/9+RyOe7fv1+kTX5+PpycnCCTyQwGjo8ePYqZM2eie/fu0ndWZ2dnNG/eHBEREYiLizP6OmgHqtQeX7dv38a0adPQokUL6XkLlxtKSEjAxIkT0bBhQ9jZ2cHX1xfPPvus9F3eFNbW1hgwYAAA4NdffzV5OSIii2HmDF0ionLx1VdfSbctJSQkCCGEuHr1qnRr5IIFC0pcx9mzZ4WXl5d0i1Thv/Hjx4sVK1aUeKteVFSUdItgcX/t2rUTSUlJBpefPHmy0WUBCHd39zK/VvHx8SIoKMjo+rt06SLu3bunt5zu7WPF/ZX2lkFTb0t94YUXpHZHjx6VHs/Ozhb/+c9/jPbJ19dXREZGGlyv7vt5+vRp0aZNm2LX88QTT4iMjIxi+3j9+nUREhJitC+NGzcWFy5cMLj8119/LeRyeYmvsbE+FKc0JQt0jR8/Xlru559/LnadJd0qrz0eDD237ntw4sQJERoaanS/0u4z3bp1M7qdK1asENOnTy/2dfT09BRxcXHF9rm8zgel9bglCx5nm7Ozs/WONUN/tWrVElu2bDG4fEmvh+5798cff4hatWoVWX9pXkdT9+ucnBypXVBQkPS47q3Xxs61hw4dKnbduvv2smXLhJWVlcH12NraivXr1xtcR35+vknHfq9evUo8/r/66ithbW1tdD26x869e/eEra2tACAmTJhgdN0pKSnSuidOnGi0rSHXrl2T+rBs2TKjbctaskD3nDFjxowi2657275KpRITJ040+lq5uLiIXbt2GXyuvXv3Su127dolBgwYUOx63nrrLSGEEPfv3xdPPPFEse3mzJlTqu01xeOULPjyyy8FABEYGChycnKEEMKkkgW65Qo+//xzo8/Ru3dvAUBYWVmJvLy8YtvFx8cLBwcHAUD8888/Qgj99+BxShacOXNGWk/Hjh1LtazuOdfQd03d/v3f//1fsecIBwcHsX///iLLr1+/Xmpz7ty5IvNXrlypt55NmzYVaXP06FFpfuFSIbrn7eL+FAqF+L//+79iXwPtPhEQECCOHDkiPDw8iqxD9/PswIEDwtnZudjnmzVrlkklC4QQYvHixVK7ixcvGm1LRGRpGJAlomohODhYABBPPvmk3uOdO3cWAESbNm2MLv/gwQPh6+srfakbOXKk2L59uzh58qT49ddfRceOHQUA0aFDB6M/RC5duiRcXFwEAOHs7Czef/99sWnTJnHy5Emxc+dOMXHiROnLeIcOHYr8+Ni6dau0/uDgYPH999+Lffv2icjISLF3716xcOFC8dxzzwlfX98yvU4ZGRmiYcOG0nM899xzYsuWLeLkyZPit99+0/sR3KlTJ72ab8nJySI6Olrs3LlTajN79mwRHR0t/RVXb604pv7obtGihdTuxo0b0uNDhw6VHg8JCRGrV68WJ06cEDt37hRjx46VAvK1a9eWAvW6dH+ItGvXTgAQw4YNE9u2bRMnT54Ua9eulR7Xvl6G3L17V/j7+wtAE3h54403xG+//SZOnDgh9u7dK95//33ph2TDhg1Famqq3vJnzpyRAjINGjQQ//vf/8Q///wjIiMjxYEDB8SPP/4oRowYIWrVqlWpAVndH4KvvfZasessr4BscHCwkMlkYtSoUeKvv/4Sp06dEps2bRLbtm2T2psakNXWDe3WrZtYu3atOHnypPj777/FqFGjpDbh4eEG+1te54OyeJyA7ONss1qtFv369ZPaDRgwQKxZs0b8+++/4siRI2LBggVSvUcbGxtx4sSJIuswNSDboEED4ejoKDw9PcUXX3wh/v33X3H06FHx3XffiZSUFJNfK1P36xMnTkjtdD8jXnzxRdGwYUMxZcoUsW7dOnHkyBFx4sQJsWHDBvHaa68JGxsbAWgC2cWd27T7dkhIiLC2tha+vr7iu+++E8eOHRP79+8X06ZNkwKe1tbWBl83pVIp5HK5ePLJJ8VXX30lduzYIU6dOiX27dsnli9fLu1vAMSoUaOK3c5PPvlEaufq6ipmzJghdu/eLU6fPi327Nkj5s2bJzp16iS6d++ut9zw4cMFoAk+ZmVlFbv+b775Rlr/qVOnim1XnDVr1kjLnz171mjbxw3ItmrVSvp3+fLl4vjx42L//v16AbN3331Xat+gQQOxePFicfz4cbF3717x9ttvS8FnGxsbERUVVeS5dIOB2nPBiy++KJ27fvnlF9G0aVOpze7du8Wzzz4rrKysREREhNi1a5c4deqUWLZsmXS+USgUIiYmplTbXJKyBmSvXr0qfW7t3r1betyUgOx3331nNECo66233pLaxsbGFtuuT58+0musVV4BWd3+fvbZZ6Va9vDhw9KygwcPLjJf99wrl8tFSEiIWL58uThx4oQ4cOCAePvtt6XP/3r16onc3Fy95ZOTk6V1fP/990XWP2bMGL1g5qRJk4q0+eKLLwSgCXoXrnX7448/Cjc3NzFmzBixfPlycfDgQXH69Gnx559/ik8++UQKrspkMikQXph2n3B3dxe+vr7C0dFR/Pe//xX79u0Tx48fF8uWLRPnz58XQmguXmuDsXK5XLz22mvi77//FidOnBDLli0TgYGBAoBo27atSeeA06dPS+1+/PFHo22JiCwNA7JEVOVFRkZKX8aWL1+uN+/777836Yu+blbqN998U2R+fn6+GDhwoN6XXkM/RLQBkbCwsGIDC9u3b5e+fBceFGvkyJHSDydjgbfC2aummjp1qtT/mTNnFpmvVqvFiy++KLVZtGhRkTblOYiQKT+6//zzT6lNw4YNDT7+1FNPFfkRI4QQS5YskdoMHTq0yPzCmSGGfogplUrx9NNPS23++uuvIm1GjBghvW9Xr141uB2nT5+WMgJnzJihN++DDz4QgCb7sLjMaSGESE1NFSqVqtj5xSlrQPby5csGA1mF11leAVkAYunSpUbXZWpAFoB49dVXhVqtLtLulVdekdqcPn26yPzyOh+UxeMEZB9nm7XHirW1dbGDLd2/f1+6ONK5c+ci800NyAKazPXr16+XuH3GmLpfDx48WGr3ySefSI9fvnzZ4GuldfbsWeHo6Fjs+VIIoXc3REBAgLh9+3aRNnv27JEuxLVr167IfLVarTcIkyEffvihFBQxlAV2+vRp6XOlSZMm4ubNm8WuS/eilhD62YyFM+F1ae8ACAkJMdrX4kREREgBzsIDPBWmu6/oXvQz9KdL91h46qmnpKzOws6ePSu9Xi1bthQPHjwo0kb3s7p9+/ZF5usGA4s7V9y+fVs4OTkJQBPYl8lkBgOUuhfltNm05aWsAVlt5urw4cP1HjclIDtt2jSpjaGLELq0dzgBEDt27DDYRjtoq6urq97FkfIKyOqeH4vrQ3GysrKk9y4wMLDIfN19pG/fvga/q8yePVtqs3HjxiLzmzVrJgDNBePCGjRoIABIGdqGjs9nnnmm2P04ISFBPHz4sNjtS01NlZIeunTpYrCN7j7h6Oho8AKGlu75eO3atUXmp6enF7nbyBilUildPCl84ZiIyNIxIEtEVd7bb78tAAh7e3uRlpamN+/evXtSltO0adMMLp+TkyNcXV2L/bGslZSUJOzs7Ir9IXLgwAFpXknZP9rMzk6dOuk9rh3d/j//+Y/R5ctCdztbtGhR7A/itLQ04e7uLgCI5s2bF5lfGQFZlUolrl+/LubNmydl6AAQixcvltpof2BYW1sXCTDo6tmzpwA0mSGJiYl68wpnZxYXnLl586b0hb9fv3568+Lj44VCoRAAxNatW41u73vvvScFo3S9+uqrAtAE8itCWQOyDx48kJYr3LeKCMgWDvoaYmpA1sfHp9hgzPnz56V2hW8xLa/zQVk9TkC2rNusVqtFo0aNBAAxZcoUo8+3bds2aT2FA4OlCciuXr26xG0ribH9Ojs7Wxw/flw8//zzUhtnZ+dSZ/Frg/MtW7Y0OF83ILthw4Zi16MNRpoSoDIkPz9fylSbN29ekfnaLFeZTGYw4G6M7vvfs2dPg21OnTpV7P5jKm3AyMfHp8S2uvtKSX+6tI/J5XKjx6Tu+6FbBqcw3UDd8ePH9eYVzpAtjm6GuqGAmpa2lEF5fw6UJSCrzWZ2cXEpcpHQlIDs66+/LrUxdJu9rkWLFhk9hu7duyfq1KkjgKIZouUVkH3uueek9RgLJhZHe2dU7dq1i8zTrtfOzq7Y8096err0XfXtt98uMl+7v3p7e+s9fv36dem4P3nypDSte9E+Pz9fuijw7rvvlnrbhBDijz/+kLbj7t27Rebr7hO6F70Ku337tvR9qX///sW2O3bsmMkBWSGEVF6od+/epm0QEZGF4KBeRFSl5efnY+3atQCAAQMGSINDaNWuXRt9+/YFAPz8888GB0U5efIkUlNTARQMBGaIl5cXnn766WLnb9myBQDQtGlTtGrVymi/n3jiCQCawR10B/jSDtpw4MABXLlyxeg6SuvUqVPSdo4ZM6bIiMdazs7OGDp0KAAgLi4Ot2/fLtd+FEd3cDCFQoGAgABMnToVWVlZADSjR0+YMAGA5n3fv38/AKB3797w9/cvdr2vvvqqtEzhQSV0jR49GjKZzOA8Pz8/9O7dG4BmIBfdAb7++usvqFQqODg44JlnnjG6jdr3PTExUW9wMu37HhcXh+PHjxtdR2VydHSUpjMyMir8+V588cVyW9fgwYNha2trcF7Tpk2lbdMd4Agov/OBOZR1m+Pi4qTzzeDBg40+h3YfBoAjR46UqZ82NjYYMmRImZYtzqpVq/TOIfb29mjfvj1+//13AJp9+bfffit21HQAePDgAa5cuYLY2FjExMQgJiYGrq6uADSvkVKpLHZZNzc3DBw4sNj5L7/8sjRd0qA1arUaiYmJuHDhgtSPc+fOSQMjnTlzpkj77du3A9AMnBYWFmZ0/YXJZDKpf3v27DE4cKJ2BHMbG5syH6faAY/c3NzKtHxpdO7c2eAAXlra96BFixbo0KFDse20nx+6yxjywgsvFDsvJCSkVO0KH5+V7d69e3jnnXcAAJ999pk0aFVp6A74ZmNjY7St7jnL0MCXU6dOxZ07d9ChQweMHz++1H0xhe7nm+7nnqm0y6SnpxfbplevXsWef5ycnBAYGAjA8PvfrVs3AEBSUpLeAIHa70HNmzdHmzZt0KBBAwghcODAAanN6dOnpe0zNBhmYQ8fPsS1a9f0zoPW1tbS/MLnn8KMnR/27t0rfX8aO3Zsse3at2+PFi1alNhXrdq1awPQvD5ERFUJA7JEVKXt3LkTycnJAIoPnmgfT0hIwN69e4vMj4mJkabbtGlj9Pnatm1b7LyTJ08CAC5cuKAXGDD098YbbwAAlEql3oi4o0aNAqD5QdSyZUu88MILWLFiBS5fvmy0X6bQ3U5jP0ALz9ddrrI5ODigV69e2LJlC3744Qfp8atXr0qB2vLalnbt2hldj3ak9ocPH+r9YNK+71lZWbCysjL6vvfv319aTveHw/Dhw2FtbY3c3Fx07twZAwYMwOLFixETEwMhhNF+VSTdH6mFL3ZUhODg4HJbV1BQkNH52qBQ4UBzeZ0PzKGs26zdhwGgY8eORvdh3WBFWX/8BgYGws7OrkzLlpavry8iIiJw9uxZ6aKKrujoaLz88svw8fFB7dq10bhxY7Rs2RKtWrVCq1atpJHR1Wo1Hjx4UOzzhIWFwcrKqtj5oaGhUmAqOjq6yHwhBH766Sf06NEDjo6OqFu3LoKCgqR+tGrVClFRUQCAu3fv6i0bHx8vXUTo2rWrsZejWNqLdGq1GqtWrdKbl5ubK134HDhwINzd3cv0HNrPutIGZIXmjr5i/wwxdi7Jzc3FpUuXAJT8+REWFiYFo4x9fjRp0qTYedqgvqntKuPilzFTpkxBSkoK2rdvj9dee61M69A9vvPy8oy2zc3Nlabt7e315u3btw8rVqyAQqHA4sWLIZdXzE9XJycnaTozM7PUy2uXMfY5WdL5WRtUNPT+awOyAPQuLGuntYFW7b+G2igUCnTp0sXgc9+9exczZsxA06ZN4eTkhAYNGuidB/v166fXtjiOjo5o2LBhsfN1z32mfucyhfac8vDhQ5OXISKyBAzIElGVtnr1agCAu7s7+vTpY7BN//79pR862va6dH9ke3p6Gn0+Y/Pv3LlTUncN0gYWAeCpp57CwoULYW9vj5ycHKxbtw4vv/wyAgMD4efnh9dee63E7ITi6AZ+jWWJAYC3t7fB5SpSdHS09BcXF4ebN28iPT0du3btwoABA/TaVsS2lLQe3Swh3fWUx/seFBSEX375BW5ubsjPz8eff/6JiIgItGrVCnXq1MHIkSNx8ODBMj3P49D94aX9sViRyjNzzsHBweh87Q973WxnoPzOB+ZQ1m0uj324NCoiQ3LgwIF655CLFy/i7t27uHXrFhYtWoQGDRoUWWbZsmVo3bo1VqxYYVJw2VD2nlZJ5w8rKyvpGCp8HsrJyUG/fv0wcuRI7Nu3z+jzGOqH7nGqzbYvLV9fX+lukpUrV+oFOjdv3iz1WTfTt7S0QbqStq88GNvHdI/xkt43a2trKQBt7PPD2LGnG0Q0pZ2hO3kqy549e7Bq1arHDoCWJsCpG0TTveCTm5sr3RXz1ltvITQ0tEx9MYWHh4c0XdoLTdnZ2VIQ1djFirKenwHN95imTZsC0A+2ajNkjQVktW3CwsIMBoxPnTqFoKAgfP7557h48WKJF4GNHb+6Fx8MKc13t9JkZmv7pJvJS0RUFRR/KZ+IyMKlpaVJZQLu3btX4m1xALBx40YsWrQItWrVKvf+aL9Eh4SE4KeffjJ5ubp16+r9f+LEiRgyZAjWrl2L3bt3499//0VaWhpu3bqFH374AUuWLMGMGTMwe/bsMve1uFvzzally5ZlWq68tqWs69G+7x4eHgYzsItTOED0/PPPo2fPnli3bh127tyJgwcPIiUlBXfv3sVPP/2En376CaNHj8by5csrLEuosMjISGla+2OwIhVXRoMqlm4AYOvWrUZv9dZV0g/q4lTE++zq6lqqc8j58+fx2muvIT8/H3Xq1MG7776LJ598EvXr14eTk5P0w3758uUYN24cABgNVDzOeWjOnDlSyYFu3bph4sSJaN26Nby9vWFvby8d70888QQOHjxYYVnzr7zyCrZu3YqrV6/iwIEDUlaetlyBbumWstBewKiMi3ym7mOW+FloTl9++SUATfb/hQsXcOHChSJt4uPjpemtW7dK76tuOQZteQ1Ac3eSsbsJbt68KU3rlh/auHEjLl68CGtrazRv3hy//vprkWXj4uKk6ZiYGKlNhw4dDF6EKY5uRnVkZGSpytFERUVJQXTd8hTlrXv37rhw4YIUYL116xauXLkCmUwmHavaf8+ePYv79+/D1dUVhw4d0punKy8vD0OHDsW9e/dgbW2NN998EwMHDkSTJk3g5uYmlZO4evUqGjVqBMD4ebA05/byPPa055SSAsJERJaGAVkiqrLWr1+vV6fMFJmZmdi4cSNGjhwpPaabSZOSkmL0lkJtDTxDtJkRmZmZZQ4uatWpUweTJ0/G5MmToVarERUVhU2bNmHhwoVITU3FnDlz0K5dO6M1CwvTzXBMTk42up26GSKVkRlZWoW3xRhTt6Wk10T3eXTXo33fMzIy0KxZs8cKNrm4uGD8+PFSnbxz585h8+bN+O6775CYmIhVq1YhLCwMkyZNKvNzlMbu3bul6cK3OuoGhUvK6KpKtxGW1/mgKtHN6iptYLOqWrlyJfLz86FQKLB///5ibyc2NXhY0nkoPz9fWpfu+UMIgaVLlwLQlBvYs2dPsRdciuuLbnbf49T87tevH3x8fHD79m2sWLEC3bp1w61bt7Br1y4Amjrbj3MxSBu4M1b6oTLoHuOmvG/37t0DYJmfheVNWz7g2LFjGD58eInt33rrLWlaNyDbvHlzaVq35qkh2vlWVlZSHVXdviiVSr1avsX5/fffpZrRK1asKFVAVrc29pYtWzB9+nSTl9UmBhReT3nr1q0bfvjhB6mO7KlTpwBoXmvtsRUQEID69evj2rVrOHDgAPz9/ZGWlgbAcP3YPXv2SCWYFi1ahFdeecXgc5fXRZTCx56x+v8lHZu6tOeUevXqlb1zRERmwJIFRFRlacsP+Pj44JdffinxT5uxUbhsge7AAdovuMXRrbVYmHYglatXr5brwAJyuRytW7fGp59+in/++Ud6fP369aVaj26Q5dixY0bb6g4sZYnBmYYNG0q3/5XXtpw4ccLoerTzHRwc9Gqkad/33Nxco/tHWTRr1gzTp0/H0aNHpazu0r7vZZWSkiLVjaxVq1aRzDjdW1KNBVju378vBTSqgvI6H1QluoNA/fvvv2bsSeWJjY0FoMloM1bb0dT3OCoqSm+AxsLOnDkj1dLUPQ/dv39f+rwYMmRIsQHPzMxMg9mKgCbbXpsZpjuYT2kpFAqMGTMGALBhwwZkZmZi1apVUKvVkMlkRgfhMYV2sMu0tLQyl8koD7a2tlLgr6TPj8jISGkwN0v8LLRU7dq1k+5a0mZ0GpKXl4ejR49Ky5jrlvOQkBCpJMKRI0dMPu4zMjKwcuVKAJqSHMYGbXtcugHVffv2FSlXULidbhu5XG6wvrT2PAgAw4YNK/a5y+uzTnfAW1O/c5UkOTlZGkytNAOBERFZAgZkiahKio+PlwIHzz//PF544YUS/55//nkAmoyAW7duSetq27YtXFxcAMBoqYHk5GTs3Lmz2PnPPvssAE3G04IFCx57Gw1p3bq1lGFgbGAFQ9q0aSP9aNf+yDYkIyNDCvo1b968zDUJK5KVlZV0+93u3buRkJBQbFtt9pmVlZXREYbXrFlT7K14ulli3bt318uCHTBggHTr3TfffFOazTCZv7+/lKlZ2ve9LNRqNcaMGSPVCB0/fnyR7DA3NzdpfzL2Y+3XX38168BkpVVe54OqpHXr1tIFqyVLlpT6zoOqSBs8NZa9ffv2bb3sN2Pu37+PrVu3Fjt/+fLl0nTPnj2L9KOkvixdurTYgK9cLpcG3dm/f79eqZHSGjduHGQyGR4+fIh169ZJwaYnnnhCumW5rHQDQqYGWyqK9j2IjY3Vu2hXmPbzQ3eZ6mzfvn0lDqI2evRoqX18fLzBwdWcnJzw1FNPAQD+/vvvYj+jN27cKAXT/vOf/+jNGzNmTIl90S0T9NFHH0mPay8slMa0adOk6fHjx5tU6/jdd9+VLqi8/PLLFVpX3MfHR7qQsG/fviIDemnpBmS1bUJDQ6XPNV2mnH/UajV+/PHHx+v8Iz169JC+PxUePFDXiRMnTB5QVvdcUtIgfUREloYBWSKqklavXi39ABg8eLBJy2jbqdVqvUCLnZ0dRo0aBUDzxc5QMFWtVmPChAlGAxW9e/eWRoX96quvSsxkjI6OLvIDft26dUZ/BJw8eVLKRizN7XiAJitIeztaTEwMPv300yJthBB44403pKDfG2+8UarnqEwTJ04EoMmwGTdunJTFpGv58uVSIHXQoEFGg8tRUVH46quvijyen5+PV199Vcpui4iI0JvftGlTDBkyBIAm+Pj1118b7Xd8fDx++eUXvcf++OMPaZR0Q27evCnd1lna9720bty4gT59+mDbtm0ANAOOffTRRwbbam/P3Lx5M65cuVJk/oULF/DBBx9UXGcrQHmdD6oSuVyOGTNmANBk+I8aNUpv5PPC0tPTsXDhwsrqXoXQBjYuXbqEw4cPF5mflZWFESNGlGoAqnfeecfgbbb79+/HkiVLAGgujOmOLu7p6Sld2Pjll18Mvu4nTpwo8TiaOnUq5HI5hBB44YUXjF6kMjavUaNGUkBn5syZuHTpEoDHG8xLq3379lJNSmNB0MoQEREhZSOPHz9eCgrq2rVrF5YtWwZA0/eSRoUnfVOnTgWg+QydOHFikcGq7t69KwVBXV1di71dvrK88MILGDRoEABNZvSzzz5bbFkapVKJ9957Dz/88AMAzXHzxRdfVHgftcfm9u3bcenSJb36sVq6dWS1AVlD9WMB6JWI0F58Kez999/H6dOnH6/jj/j4+EiltrZs2WLwe3JmZqY0mJsptOcSOzu7Ci0ZQURUIQQRURXUqFEjAUDUqVNHqFQqk5ZRqVTCx8dHABAtWrTQm3fv3j3h7e0tAAgAYuTIkWLHjh3i1KlTYt26daJTp04CgGjfvr3U5tq1a0We4/Lly6J27dpSmwEDBoiffvpJHDt2TJw8eVJs27ZNzJkzR4SHhwsAYsqUKXrLBwQECFdXVzF69GixbNkycfDgQXH69Gmxe/du8dFHH0nrVigU4sSJE6V+3dLT00XDhg2l/j3//PPizz//FKdOnRIbNmwQ3bt3l+Z17NhR5OfnF1lHfHy81GbFihWl7oOubt26SesqiyFDhkjLt27dWvz000/i5MmTYvfu3WLcuHFCJpMJAKJ27doiISGhyPIrVqyQlm/btq0AIIYPHy62b98uTp06JX799Ve993zAgAEG+3Hv3j291/WJJ54QS5cuFUeOHJHev3nz5omePXsKuVwunn/++SKvg4ODgxgyZIj4/vvvxb59+0RkZKTYs2ePmDt3rvD395fWvWnTplK/Trrv2cCBA0V0dLT0d/z4cbFr1y7xzTffiP/85z/CyspKatu0aVNx+fLlYte7Y8cOqa2fn59YunSpOHXqlNi/f7/48MMPhYuLi2jcuLHw9PQUAMTo0aONvgfx8fElbot2n+nWrZvR7Sxp3wwICCi2T+V1PiiLjz76SFrn3r17S2xfXtusVqvFf/7zH2ldjRo1EnPnzpX2xf3794sffvhBDB8+XNSqVUu4u7sXWUdJ76Wx964sdLfd0DYZc/z4cWlZV1dXMWfOHLF//35x7NgxsWjRIhEYGCgAiM6dOxvdJu1rGhISIqytrUXdunXFwoULxfHjx8XBgwfF+++/L+zs7AQAYWVlJY4ePVpkHRMnTtQ7D61du1acOHFC/P333+Kdd94RdnZ2wsPDQzRp0sTo6/fpp5/qbdN///tf8ffff4vIyEixd+9eMX/+fNG1a1fRvXt3o6/Nzz//LK0HgHB2dhYPHz4s1etbnGeffVZ6XY0p62eDdpmPPvqoxLbvvvuu3v6+ZMkSceLECbFv3z4xZcoUYW1tLQAIGxsbERkZWWT5vXv3mnSsmnqO0z32y+rSpUtixYoVen/u7u4CgHB3dy8y7/bt26V+jtGjR5t8zn7hhRektj169BCbN28WJ06cEMuXL5e+xwEQP/zwQ5m2V/c9MOU9L0lqaqp44oknpHXWrl1bTJ06VWzbtk2cOnVK7N27V3z11VciKChI77MvNja22HWa2j9Tzo8//fST3rFZ+Luslva8pP3bvHmzwXaZmZmiTp060vfKCRMmiB07doiTJ0+KX3/9VTz11FNFzoOGPme0+0RAQIDRbRRCc952cnKSnvP1118Xe/bsESdPnhTLly+XznPa72QlHQ/az+OBAweW+NxERJaGAVkiqnIOHTokfUmbMGFCqZZ9/fXXpWVPnjypNy8qKkoKHBn6GzNmjFi2bJn0/6SkJIPPceHCBdGyZcti16P79/HHH+stW/hLtKE/W1vbxwqExsfH6/2YMPTXuXNnce/evWKXNzUAVJLHDchmZ2frBZEM/fn6+hr8MS2E/g/l06dPi7CwMKOvSXp6erF9uX37tujatatJ7/vYsWOLfR2K+5PL5eLTTz8t0+uk+56Z8ufs7CymTJliUhDmrbfeKnY99erVE3FxcUYDgZYYkBWi/M4HpWWugKwQQuTl5YmIiAjpQoaxvwYNGhRZvioFZIUQ4uOPPza6jVOmTClxm3Rf0x9//FHvgobun42Njfjll18M9iM1NVWEhoYW24/atWuL/fv3m/T6zZkzp9g+aP9Kev2zs7OFm5ub1P7VV18txatq3NatWwUAIZPJjF7EqIyArEql0vtOYOjPxcVF7Ny50+DylhiQ1X0uU/5MOccUVpqAbFZWlujbt6/Rz7XHCaSWd0BWCM3+/+abb5Z4HAEQffr0ETdu3DC6PlP7Z8rxnZCQoPf8EydONNhO9z2Sy+Xi/v37xa5zx44d0kUjQ3/du3cXMTExRj9nShOQFULzvmmDsob+PvzwQ5OOh/j4eOnz6rfffjPpuYmILAlLFhBRlaM7KJe2LqypdNsXHtwrJCQEcXFxmDJlCgIDA2FrawsPDw/06NEDa9euxYoVK/RuazRUjwsAmjRpgqioKKxduxbPP/886tWrB3t7e9jY2MDHxwfdu3fHzJkzcerUKXz44Yd6y+7duxcLFizA888/j1atWsHT0xNWVlZwdnZGWFgYpk6diri4uDLVR9OqX78+zpw5g4ULF6Jbt25wd3eHtbU1vLy80KdPH6xZswYHDhyoEiNK29nZYePGjdiyZQsGDRoEX19f2NjYwM3NDR06dMDnn3+OCxcuSIN1GOPm5obDhw/j888/R2hoKJycnODo6Ih27drhu+++w/79+/UGsirM29sbBw4cwJ9//okXX3xRGnjM2toanp6e6NSpE6ZMmYL9+/fr1ZMENLcqL1myBCNGjEBoaCi8vb1hZWUFR0dHtGjRAhEREYiMjMTMmTMf9yXTI5PJ4OzsDD8/P3To0AERERFYs2YNEhMTMW/ePGngNGMWLFiAtWvX4oknnoCzszPs7e3RtGlTTJ8+HadPn0azZs3Ktc+VpbzOB1WJtbU1Fi1ahDNnzuDNN99Eq1at4OLiAoVCARcXF4SGhmLcuHHYsGEDzp07Z+7uPrYPP/wQf/31F3r37g03NzfY2NjAz88PgwYNwq5duzBv3rxSre+VV17BwYMHMXToUOlcVLduXYwaNQqRkZHFDvjj4uKCf//9F59++ilatWoFOzs7ODo6olmzZpg6dSrOnDlj8q24M2bMQFxcHCZPnoyWLVvC2dkZVlZW8PT0RLdu3TB79mysWbPG6Drs7OykMixA+ZQr0HrmmWfg5+cHIUSR0i2VTS6X4//+7/9w4MABvPjii6hXrx5sbW3h7OyM0NBQzJgxA5cuXSoyoCGZzt7eHn/99Rd+/vln9OrVC3Xq1IGNjQ38/f0xYsQIHDp0CLNmzTJ3N/XY2dnh22+/xblz5/DRRx8hPDwc3t7esLa2Ru3atdGyZUtMnDgR+/fvx/bt2+Hv719pfatbt65eLefi6uLrPh4cHCyNPWDI008/jZMnT+Kll16Cr6+v9J2lW7duWLJkCf755x9pUNHy0r17d8TGxiIiIgIBAQGwsbGBl5cX+vXrhx07duDjjz82aT2//PILhBDw9fWVSiEQEVUlMiGq0EgbRERm9sorr2DZsmXw8/PDzZs3zd0dekwrV66URg6Pj49H/fr1zdshqlJ4PqD69evj+vXrGD16dLE1GKuizp074/Dhw2jevLneSOzlYe7cuZg2bRqaNGmCc+fOSbVciYhMpVar0axZM1y8eBGff/45pk+fbu4uERGVGr8BERGZKDs7G5s3bwYAhIeHm7k3RGROPB9QdXXhwgVpoLPyzI7VevPNN1G3bl1cvHixxMEviYgMWbduHS5evAgPDw+LHoCWiMgYBmSJiB65cuUKirtpQKVSISIiAnfv3gUAjB49ujK7RkSVjOcDqqm+/PJLAJpbtx+nPE5x7O3tpVuSZ8+eXexxRkRkiBACc+bMAQB8/PHHcHR0NHOPiIjKxsrcHSAishSffvopjh8/jhdeeAEdOnRAnTp1kJ2djbNnz+LHH3/E6dOnAQA9e/ZEv379zNxbIqpIPB9QTZGdnY1bt24hKysLf/zxh1R6Yfz48XB3d6+Q5xwzZgySk5ORl5eH27dvw9fXt0Keh4iqn9u3b2Pw4MEYMWIEJkyYYO7uEBGVGQOyREQ6tIM4FKdz58749ddfIZPJKrFXRGQOPB9QTXDs2DH06NFD7zF/f/8KHWxJoVBgxowZFbZ+Iqq+fH19LW4wOCKismBAlojokffffx9NmjTB33//jWvXriElJQVKpRLu7u5o27Ythg0bhhdeeIEDkBDVADwfUE0jk8ng4+ODJ598EnPmzDE6MjsRERERPR6ZYOEmIiIiIiIiIiIiokpR7TNk1Wo1EhMT4eTkxFsKiYiIiIiIiIiIqgAhBDIyMuDr61vt7kyr9gHZxMRE+Pv7m7sbREREREREREREVEo3b96En5+fubtRrqp9QNbJyQmA5s1zdnY2c2/KTqlUYteuXejduzesra3N3R2iCsH9nGoC7udUE3A/p5qA+zlVd9zHqSbgfm7Z0tPT4e/vL8X2qpNqH5DVlilwdnau8gFZBwcHODs78yRB1Rb3c6oJuJ9TTcD9nGoC7udU3XEfp5qA+3nVUB1LkFavAgxEREREREREREREFowBWSIiIiIiIiIiIqJKwoAsERERERERERERUSVhQJaIiIiIiIiIiIiokjAgS0RERERERERERFRJGJAlIiIiIiIiIiIiqiQMyBIRERERERERERFVEgZkiYiIiIiIiIiIiCoJA7JERERERERERERElYQBWSIiIiIiIiIiIqJKwoAsERERERERERERUSVhQJaIiIiIiIiIiIiokjAgS0RERERERERERFRJGJAlIiIiIiIiIiIiqiQMyBIRERERERERERFVEgZkiYiIiIiIiIiILFj9+vXRtGlThIaGolmzZhgxYgQePnxYac+/cOFCjBkzBgCwZcsWvP3220bbp6am4osvvih2/tGjR1GvXj2kpqZKjw0ZMgQfffQR1q9fj7Zt2xZZZv78+Xj22WcBaF6PqKgog+vOyspC27ZtkZGRYXB+27ZtsW/fPgDAK6+8gr179xrdFkMGDx6MlStXAtC8Np999lmplmdAloiIiIiIiIiIyMKtW7cOUVFRiI2NRVpamhQQrGzPPvss5s+fb7RNSQHZ8PBwjBgxAm+88QYA4Oeff8bly5cxc+ZMPPfcc7h27RpiY2P1llm+fDnGjRtXYv8WLlyIgQMHwsnJqcS2S5cuRY8ePUpsZ8z48eOxbNkypKWlmbwMA7JEREREREREVGUIIQAAubm5UKvVyMvLw7Jly7Bt2zYz94yocuTl5SErKwtubm7SY/PmzUP79u3RunVr9OnTB9evXwcAzJo1C8OGDcOAAQPQvHlzPPnkk7h//36Jy2VkZGDYsGFo2rQpunTpgujoaGmZlStX4rnnnpP+v2LFCoSGhiIkJARt27bFtWvX8NprryEjIwOhoaEGs10B4JNPPsGZM2fw3XffYcqUKVi1ahWsra1hY2ODl156CT/99JPU9vjx40hJSUG/fv1KfH1++OEHjBgxQvr/4cOHERoaipYtW2Ls2LHIz8+X5nXv3h1//PGHtM2vvvoq2rdvj+DgYIwfPx55eXkAgPPnz6NTp05o0aIFnnvuOaSnp0vrsLGxQe/evbF27doS+6bFgCwRERERERERWbz09HTMmTMHMpkM+fn5aNSoEU6fPg0bGxvs2rULp0+fhkqlMnc3iSrMsGHDEBoaCm9vb8jlcgwdOhQAsHbtWly4cAFHjhzB6dOn8eKLL+L111+Xljt27BhWrlyJuLg41KlTBz/88EOJy33yySewtbXF+fPn8ddff+HAgQMG+7Rv3z588skn2L59O86cOYMDBw6gTp06WLx4MZycnBAVFYWTJ08aXNbGxgZLlizBW2+9hYiICAQHB0vzxo0bh/Xr10v/X758OUaPHg0rKyujr9HNmzeRlpaGRo0aAdAEr4cNG4Z58+YhJiYGw4cPx5kzZwwuO2XKFHTt2hXHjx/HmTNnoFarsWDBAgDAyJEjMW7cOMTGxuLTTz/F/v379Zbt2LEj/vnnH6N902V8K4iIiIiIiIiIKsndu3dhb2+PWrVqAQDi4uIwaNAgHDhwAPb29vjggw/w4osvon79+vD09MS1a9fQtm1bNG3aFJmZmUhPT9fLGiSq0oQKyDwIKG8DIgfrfv0doWFtkJ+fjwkTJmDatGn43//+hz/++AMnTpxAmzZtAKDIhYk+ffrA3d0dgCZwqM12NbbcP//8g/nz50Mmk8HFxQUjRozAlStXinTxr7/+wsiRI+Hj4wMAcHBwKNUmbtq0CX5+fkXqwbZq1Qr16tXD3bt3kZ2djXXr1uHo0aMlri8hIQFeXl7S/8+fPw8rKyv07NkTANC7d280bNjQ4LJ//PEHjhw5gq+//hoAkJ2dDYVCgfT0dERFRUk1dFu1aoUuXbroLevt7Y2EhARTN5sZskRERERERERkXtoyBC+++CImTpyI27dvAwDee+89REREoE6dOnByckJISAgiIyMBAA0aNJACS35+frh37x7u3btnng0gKm8PNgLR9YGLPYD4EYAyGbjUF3iwEVZWVnj++eexY8cOAJrj5/3330dUVBSioqIQHR2tV2LAzs5OmlYoFNIt+yUtp0smk5X7Jv77779Yv349IiMjce3aNfz8889680eOHAlAM4hYy5Yt0bRp0xLX6eDggJycHKNtitsWIQR+//136fW4cOGClE1c0jpycnJgb29fYv+0GJAlIiIiIiIiogqnVquhUqmk4KsubXBj586dePjwIebMmYO1a9fCxsYG4eHhUrvGjRtLWXKtWrXCuXPnAGiCsw8fPkRKSkolbAlRBXuwEbg6GFAWyrjMv6N5/MFG7NmzRwpQPvfcc1i8eLFUG1apVEoXLowxtlzPnj2xYsUKCCGQnp6OX375xeA6BgwYgJ9++km6iJKVlYWsrCw4OzsjOztbqsFa2MOHDzFmzBj88MMP8PDwwMqVKzFlyhQkJSVJbQYPHgwA+O6770wazAsAmjZtijt37iA7OxsAEBQUhPz8fOzduxcA8PfffxvM9NW+Hl9++aUUsH7w4AEuX74MZ2dnhIWFYfXq1QCA2NhYHDp0SG/Zc+fOISQkxKQ+AgzIEhEREREREVE5Ki7wKpfLoVAojGanAcCCBQtQp04dTJo0Cc2bN0eHDh2gVCoBAKGhoVLAqHXr1oiPj4darUb9+vWRn5+P5OTkCtwyokogVMDNSQCKXrgY9j4QOkKgZbthOHcuTqpv+uKLL2LMmDHo0aMHQkJCEBoaij179pT4VMaW++CDD5CdnY2goCD07du3yC36Wk888QQ++ugjPP300wgJCUG3bt2QkpKC2rVrY9SoUQgODjY4qNd7772HHj164OmnnwYAhISE4PXXX8eECROkNs7OzgCAa9euYciQISVuD6DJBu7du7e0HTY2Nli3bh3efvtttGrVCmvXri02cDp//nzY29sjNDQUwcHBeOqpp3Dt2jUAwOrVq7FkyRK0bNkSM2fOxBNPPKG37I4dO6QAsilkwtClqWokPT0dLi4uSEtLk97IqkipVGLbtm3o27cvrK2tzd0dogrB/ZxqAu7nVBNwP6eagPs5VXfG9vG8vDzcv38f3t7epVrnzp078f333yM1NRVPP/00IiIi4OrqCiGEFKTVTkdGRqJNmzZ4+umnsX37dmkd27ZtwxtvvIGrV6/i2rVr6NmzJw4cOABXV1dERESgS5cuePXVVx//BaAawSLP5Rn7NGUKStJkL+DUvYI7Y15ljekdP34cn3zyCf78888K7F2BuLg4TJgwAQcPHjR5GWbIEhEREREREZHJPv/8c4wdO7bIwEEAkJKSgoULF2Ls2LGIiIhAXFwcAE3AYv78+RgzZgw+//xzxMfHS7cg6+aJaQOzf/31F8aNGwcfHx+MGDFCmt+sWTM8fPhQyopVKpW4dOkSHBwcoFKpEB8fj9zc3IrcfKKKpbxdvu1qoPbt22PQoEHIyMiolOe7efNmsbVmi2NVQX0hIiIiIiIiomqoffv22LlzJ7Kzs+Ho6Cg9rlQqsX79ejx8+BAvvfQSlEolXnjhBRw+fBixsbG4d+8ennvuOQCAv7+/NNK5XK6fK5aRkYFVq1Zh+/btqFevHnr06IH//ve/mDRpEvz9/ZGSkiJl0LZo0QKZmZkAgBkzZsDDwwO2traV80IQVQRrn/JtV0O9/PLLlfZc2rILpcEMWSIiIiIiIiIyWatWrZCcnCwNBKSVkpKCzz//HP7+/jh27BiWLFmChIQEnDhxAomJiejUqROys7OhUqng5+cHR0dHXL16VVpemyk7e/ZsPPPMM6hXrx5sbGzw559/Yv/+/di9ezesrKzw+++/o169egA0JQz69esHAGjevDnq1KlTSa8CUQVx7ApY+wEwXGsZkAHW/pp2VGUxIEtEREREREREJvPz84NMJkNCgv4I8NevX4eDgwN27doFZ2dnvPnmm4iPj0ePHj0QGhqKY8eOITo6GgqFAjt37kTnzp2lIKy2duzDhw9x7do19OvXDzY2NlCpVHBzc8OhQ4fw4osvAgD+85//wNPTs9K3m6hSyBSA/4LiZmr+8f9G046qLJYsICIiIiIiIqJS8fHxQVxcHMLDw6FWq2FlZYU6derA19cXL730Enr27AkASE1NxY0bN9CtWzf07t0bc+bMQWZmJu7fv48ZM2agUaNGeoN61apVC+vWrQOgCdIqFAw6UQ3kNghouAGIHwEInZrI1n6aYKzbILN1jcoHA7JEREREREREVCpNmzbFjRs3IJfLpRqwjRo1Qp8+ffDdd99h48aNSEpKwoULF/DGG28gIiICH3zwASIjI6FUKhEcHAwnJye9YGxhxT1OVCO4DQKuOwOqFMD3U8Cxi6ZMATNjqwUGZImIiIiIiIioVEJDQ/F///d/EELg3LlzOHr0KJ566imsWrUKp06dwv79+zFw4EC0bNkSdevWBQBYW1ujffv2euth0JWoGKo0QG4FqGSA1zuA3MHcPaJyxIAsEREREREREZVKjx49sHnzZqSnp+PZZ5/Fhx9+iJYtWwIA2rRpgzZt2pi5h0RVnMIFCE4E8u8zGFsNMSBLRERERERERKXSokUL7N6929zdIKr+rGqbuwdUAeTm7gARERERERERERFRTcGALBERERERERERkSW51A+41AfIjjV3T6gCMCBLRERERERERERkKUQ+kPEPkL4TkNuZuzdUARiQJSIiIiIiIiIishQ5lwCRC8hrATYNzN0bqgAMyBIREREREREREVmK7LOaf+1bATKG7qojK3N3gIiIiIiIiIgsn0oNHLwO3M4EfByBrgGAgrEiovInBWSDzdsPqjAMyBIRERERERGRURvjgEk7gIT0gsf8nIEFfYBBzc3XL6JqiQHZao/XsoiIiIiIiIioWBvjgMHr9YOxAHArXfP4xjjz9Iuo2mJAttpjQJaIiIiIiIiIDFKpNZmxwsA87WOTd2jaEVE5UOcBNvUBhaumhixVSwzIEhEREREREZFBh27KimTG6hIAbqZrassSUTmQ2wBN9wMh9wErV3P3hioIA7JEREREREREZNDtzPJtR0QmksnM3QOqQAzIEhEREREREZFBPo7l246ISiDyzd0DqgQMyBIRERERERGRQV38BfycgeJy9WQA/J2BrgGV2SuiauxCdyCmMZBx0Nw9oQrEgCwRERERERERGaSQAwv6GJ6nDdJ+00fTjogek1AD2WeB3CuAVW1z94YqEE+ZRERERERERFSsQc2BtzsWfdzPGdgwVDOfiMpB3nVAnQHIbAC7JubuDVUgK3N3gIiIiIiIiIgsm42iYHpKR6B/E02ZAmbGEpWj7LOaf+2aAzJr8/aFKhQDskRERERERERkVOTtgulJ4YC/i/n6QlRtaQOy9sHm7QdVOF7LIiIiIiIiIqJiCQFEJmmm3e01pQqIqAJkPQrIOjAgW90xIEtERERERERExbqdAdx5qJkO8wFkMuPtiaiMmCFbY7BkAREREREREREVS5sdCwBh3ubrB1G1JgTg9ASgcALsW5m7N1TBGJAlIiIiIiIiomLp1o8N8zFfP4iqNZkMCPjR3L2gSsKSBURERERERERULGbIEhGVLwZkiYiIiIiIiKhYUY8Csg7WQKC7eftCVG0pkwF1nrl7QZWEAVkiIiIiIiIiMigtB7j6QDMd4gUoGEUgqhjxI4AoR+DBRnP3hCoBT6VEREREREREZNCZZJk0zfqxRBVECCDrDCCUgE2AuXtDlYABWSIiIiIiIiIyKEo3IMv6sUQVIz8JUN0DIAfsm5u7N1QJGJAlIiIiIiIiIoOikpghS1Thss5q/rVrAsjtzdsXqhQMyBIRERERERGRQdoMWSs50LKOmTtDVF1lR2v+tW9l3n5QpWFAloiIiIiIiIiKyFPLcS5FM93cE7C1Mm9/iKqt7EcZsvbB5u0HVRoGZImIiIiIiIioiBs5zlAJTYYs68cSVaAaEpAVQpi7CxaDAVkiIiIiIiIiKuJqlos0HcqALFHFcR8JuL0AOISZuycV4sKFC3jvvfcgk8lKblxDMCBLREREREREREVczS4IyHJAL6IK5DUFaPgLYONv7p6UmRACarXa4Lzs7GzMmzevkntk2RiQJSIiIiIiIqIi4pkhS0QGHD9+HMePH9d7TCaTQS43HGZs1KgRvL29cePGjcroXpXAgCwRERERERER6VGpgWs5zgCAhm6Ai52ZO0RUXWXHAjmXAWE4u9Tc1Go1VCqVXvbr9evXYWdXcFJQqVSIjY3FqlWr8Pfff0OpVOqtw8nJCZ6enjh16lSl9dvSmTUgm5GRgcmTJyMgIAD29vbo1KkTTpw4Ic0XQuDDDz+Ej48P7O3t0bNnT1y6dMmMPSYiIiIiIiKq/i7eB3LVVgA4oBdRhUp4F4gNBO4uMWs3tIHXwgNvyeVyKBQKKftVCIEnn3wSDx8+REZGBu7fv4/Bgwdj4sSJ2L17Nx48eIDc3Nwi6w8KCiqSVVuTmTUg+8orr2D37t1Ys2YNoqOj0bt3b/Ts2RO3bt0CAMydOxfffvstFi9ejGPHjqFWrVp4+umnkZOTY85uExEREREREVVrUUkFg++wfixRBcqO1vxr36pSnq64Oq/awGvhgbfi4uIwefJkdOnSBc899xwSExOxfft2fPLJJ0hNTcUff/wBJycnbN68GT/99BOGDBkCR0fHIusPCwvD6dOnK2SbqiKzBWSzs7Px+++/Y+7cuXjiiSfQuHFjzJo1C40bN8b3338PIQS++eYbzJw5EwMHDkRwcDBWr16NxMRE/PHHH+bqNhEREREREVG1dyZZJyDLDFmiipF/H1AmaKbtW5brqoUQUKlURR4vXOdVCIFbt27h8OHDiIiIwNSpU3Hu3DkAwIMHD7Bs2TJYWVlh6dKlWLx4MerWrYvGjRvD1dUVKSkp6Nq1K+7evYvBgwfjv//9L2bNmoXo6Ghp3VphYWGIj48v122syqzM9cT5+flQqVR6NScAwN7eHocOHUJ8fDySkpLQs2dPaZ6Liws6dOiAI0eO4IUXXjC43tzcXL3U6PT0dACAUqksUsOiKtH2vSpvA1FJuJ9TTcD9nGoC7udUE3A/p+ru9O2CoE1LDyW4q1N1ZO5zuSwzElYAhHV95KsdAHXp+qFUKhEdHY2YmBhERkbizp07ePPNNxEeHi610c2IvXHjBs6cOQM7Ozv07NkTMpkMq1evxocffogRI0agefPmOHfuHMaPH489e/bg1KlT2LJlC06fPi3F75RKJby9vZGfn4+4uDgMGzYM69evR2pqKs6ePYsVK1bg/PnzWLNmjV5fAwICcPnyZeTk5EChUJi8fdWV2QKyTk5O6NixIz799FM0a9YMXl5e+OWXX3DkyBE0btwYSUlJAAAvLy+95by8vKR5hnz++ef4+OOPizy+a9cuODg4lO9GmMHu3bvN3QWiCsf9nGoC7udUE3A/p5qA+zlVR0IApxL6AFDA1SoHkQd3ItLcnSKqQOY6lzeo9ReC3YCkdE8c37at1Mtv3boVK1euxJNPPomAgAC0bt0aKSkp+OOPP3Dnzh2cP38e6enpaN26NXbv3o2rV6/C29sbtWrVwvLlyzFy5Eikp6cjOzsbVlZWqFevHmrVqoW//voLy5cvh0qlwo0bN7Bnzx7k5eXB2toaMpkMarUaDx48wIEDB+Dk5IQ7d+7AysoKd+/eRVZWFvz9/fHXX3/plT9Qq9X45JNPsG3bNpMDsllZWaV+TaoKswVkAWDNmjV4+eWXUbduXSgUCrRu3RrDhw9/rFHX3n//fbzzzjvS/9PT0+Hv74/evXvD2dm5PLptFkqlErt370avXr1gbW1t7u4QVQju51QTcD+nmoD7OdUE3M+pOruZDmREafbrdv7W6Nu3r5l7RFQxzH0uVyRsBe4DdQKeQt8OpT/O5HI5Ll++jL/++kt6LC8vD19++SV++eUXDBo0CB06dMAzzzyDQYMGwdPTExcvXsTKlSuxbNky/PLLL8jKysK3336LF198EYGBgZDL5fjhhx/g7++PXr164aOPPkJ+fj6ee+45AJos23r16mHnzp2Qy+V45pln8N///he7du1CvXr1EBwcjLfeegseHh5F+tu/f/9SbZ/2rvfqyKwB2UaNGmH//v14+PAh0tPT4ePjg2HDhqFhw4bw9tYUqUlOToaPT0EF8eTkZISGhha7TltbW9ja2hZ53Nraulp8Uaou20FkDPdzqgm4n1NNwP2cagLu51QdxaQUTIf5gPs4VXtmO5fnxgAAFLXCoCjD84eFheHatWv4/vvvcevWLcTHx+Pll1+Gv78/0tPT8cUXX0hZqleuXMHIkSNhZWWFbt26ISMjA1euXEFQUBCcnJwQHx+PFi1aQCaTwcvLC9evX4e1tTXmzZuH9evXY+nSpUhOTkaLFi3w/fffY/jw4RBCwNraGp999hm++uqrcn1pgOp97jFrQFarVq1aqFWrFh48eICdO3di7ty5aNCgAby9vfHPP/9IAdj09HQcO3YMERER5u0wERERERERUTUVqVMlMNRbFN+QiB6P9/vAw5NArQ5lWtzPzw92dnbYtm0bevbsiR49euDJJ5/Ezp07ERYWhrt378LT0xMAMGHCBEyZMgUvvfQSAGDhwoU4e/YsgoKC4Ovri8jISPTr1w8ymQweHh6Ij49HTk4ORo8ejTZt2iA5ORlNmjSBv78/AKBbt25SP6pz4LSimDUgu3PnTggh0LRpU1y+fBnvvvsugoKCMHbsWMhkMkyePBmzZ89GYGAgGjRogA8++AC+vr5SmjQRERERERERla/I2wXToV4MyBJVGNeBmr/H4O7ujvHjx2PQoEHSYx4eHnBwcMCVK1ekgKy9vT1iY2Nx/vx5/P3333jw4AH27NmDoUOHokuXLrCyKggRzp8/H87OzpDJZBBCoGXLlmjZsuVj9ZP0yUtuUnHS0tIwceJEBAUFYdSoUejSpQt27twpRdbfe+89vPnmmxg/fjzatWuHzMxM7NixQxrZjYiIiIiIiIjKlzZD1l6uREM38/aFiIxr3rw5Dh8+DJVKBbVaDUATpLW2tkZ0dLTU7ttvv0V8fDwGDx4MGxsbbNu2DZMnTwYAzJw5E9OnT4dcrgkTuri4SKUOdAfmovJj1gzZoUOHYujQocXOl8lk+OSTT/DJJ59UYq+IiIiIiIiIaqZ7WcCNNM10A/s0yGUu5u0QUXWVeRhQpQO12gJWRQfAMlVwcDB+//13qNVqKcHRzc0NISEhcHJyktq1bdsWv/7662N3m8qHRdSQJSIiIiIiIiLzi9KpH9vAIR0AA7JEFSL5ayD1d8Dvf4DXO2VeTXh4OM6cOYP8/HwpIOvp6YkZM2aUV0+pAjAgS0REREREREQA9OvHNrRPA+Bvtr4QVWvZZzX/2gc/1mratWuHdu3alUOHqDKZtYYsEREREREREVmOSN0MWftUs/WDqFpTPQRyL2umHzMgS1UTA7JEREREREREBKAgQ9ZaLuBvl2HezhBVVzmxAARg5QVY1zF3b8gMGJAlIiIiIiIiImTlARfuaaZbeGqCskRUAcqpXAFVXQzIEhERERERERHOJgPqRzHYUG8GY4kqTNajgKwDA7I1FQOyRERERERERKRXPzbUiwFZogrDDNkaz8rcHSAiIiIiIiIi89PWjwU0GbKpKebrC1G1Vu87IOs04NSjTIurhUB8SjbSc1RwtlOggac95DJZOXeSKhIDskRERERERESEqEcZsjIAwV4CB6LN2h2i6su+leavDKITMrElKgVp2SrpMRd7BZ4N9UQrP8fy6iFVMJYsICIiIiIiIqrh8lVA9B3NdKA74Ghj3v4QUVHRCZlYcyRJLxgLAGnZKqw5koTohEwz9YxKiwFZIiIiIiIiohru/F0gJ18zHeZt3r4QVWtpO4A7C4HsuFItphYCW6KM1xHZEnUXasH6z1UBA7JERERERERENZzugF5hPubrB1G1d38NcPNNIHVzqRaLT8kukhlbWFp2PuJTsh+nd1RJGJAlIiIiIiIiquF0B/RihixRBcp+VJy5lDVk03OMB2NL247MiwFZIiIiIiIiohqOGbJElUCdB2Sf00w7BJdqUWc7Rbm2I/NiQJaIiIiIiIioBhMCiHoUkK3rBHjWMm9/iKqtnPMA8gGFC2DtX6pFG3jaw8XeeLDVxd4KDTztH6ODVFkYkCUiIiIiIiKqwa6lAqk5mmlmxxJVoOyzmn/tgwGZrFSLymUyPBvqabTNs6EekJdyvWQeVubuABERERFRTaNSAwevA7czAR9HoGsAoGCqBBGZiW792FDWjyWqOLoB2TJo5eeIuq42uJWap/e4i70Vng31QCs/x8ftIVUSBmSJiIiIiCrRxjhg0g4gIb3gMT9nYEEfYFBz8/WLiGouvfqxDMgSVZzHDMgKIZCWrRm0y0Yhw/NtPOH8qEwBM2OrFgZkiYiIiIgqycY4YPB6QBR6/Fa65vENQxmUJaLKp5shy5IFRBWo4TogOwawbVimxdNzVMjM1QRkA9ztEBbgXJ69o0rEG6OIiIiIiCqBSq3JjC0cjAUKHpu8Q9OOiKgyaTNkXe2A+q5m7QpR9aZwARw7A9Zlu/KR8CBXmq7rZltevZLcvn0bGRkZ5b5eKooBWSIiIiKiSnDwun6ZgsIEgJvpmnZERJXlTiaQ+Cj+Eupd6nGGiKgS3XqQI037udk99voyMjIwZ84cREVFAQA6dOiA5cuXP/Z6qWQMyBIRERERVYLbmeXbjoioPLB+LFElebAJuDkZSP+nzKsoa4bszp078e+//wLQ1KHVys3NxT///IP9+/cDAJ588knExsYWaUfljwFZIiIiIqJK4GPiwMemtiMiKg+sH0tUSdL+Au4sADIPlHkVtx4FZO2t5ahdy/iwUEIIqFSaerMrVqzAF198IT2u5ejoiNatW+Py5csANBmyJ0+eLHP/yHQMyBIRERERVYKuAYCfM1Dc3cAyAP7OmnZERJWFGbJElST7rOZf+1ZlWjwtOx8ZOZoAq6+rDYQQBrNYtY/JZDLIHtUg6du3LxISEoq0tbGxQYMGDaSAbHh4OK5cuVKm/lHpMCBLRERERFQJFHJgQR/D87RB2m/6aNoREVWWqEcBWTsrIMjDvH0hqraECsiO0UzbB5u0SH5+Ps6dO4eff/4Zv//+O67dKahp5FfbDnK5XAq4ApryA6dOnZIeO378OHx9fQEAbdq0wcWLFwEAcnnBFw25XI5GjRohJSUFABAWFobMzEzcu3dPb91U/vh1j4iIiIiokgxqDrzRvujjfs7AhqGa+URElSUzF7h0TzPdqg5gpTBvf4iqrdwrgMgGZPaAbaMSm2/cuBE2NjaYNm0aNm/ejNWrV+O9ya8DAPJyspB2Mw5Lly7FsmXLpGXOnDmDdu3aSf9v1KgR7ty5AwBo0aIFcnJykJSUhMJ8fX2hUqlw48YNAIC7uztiYmIea3OpZMYLThARERGR2ajUwMHrmkGefBw1t7Ize7Lqy1cXTM/oCvRqyPeWiMzjTDKgveGZ9WOJKpBUrqAlIFNArVZDCAGFwvBVEG9vb3h5eWHLli0AgPj4eDRq1AhNB07F38s+xuXacoQFt0RqairmzJmD9957D02bNkWdOnWQlJQEb29vuLu7w9HREWfPnkVwcDA8PDxw5swZeHvr1ybx8PCAu7s7YmNjUa9ePfj5+WHPnj3o1q1bhb4kNR2/9hERERFZoI1xQP1vgB6rgBG/a/6t/43mcarajj4q4SYDML0L0L0Bg7FEZB56A3qxfixRuRJCQK1+dBVWCshqyhXI5fJig7EAEBgYiNzcXGRmasoUuLq6QmFljdysDDz35hdYtmQx+vbti3v37uGnn37C1atX4eLiAldXV5w9e1ZaT4MGDXDs2DEAQMuWLaUBu3Rrzzo4OMDGxkZqN2TIELi6upbLa0DF41c/IiIiIguzMQ4YvB5ISNd//Fa65nEGZauuh3nA2WTNdMs6gJOteftDRDWb3oBezJAlemxKpRINGzZEZmYmZDJZQb3W3HjNP4rmSE5Oxrp16zBu3DgsWbIEOTk5RdajzVrdunUrTpw4gbenTEVYn5Fw9vBFdkI0XnrpJXzzzTdo3rw5PDw8cOLECQCaMgV79uwBAKSnpyMvLw+nT58GADRt2hRbt24FoB+QdXZ2xtdff4033ngDAPD+++/j7bffrpgXiCQsWUBERERkQVRqYNKOgltIdQlosion7wAGBjGrsio6mQioHr25Hf3N2xciIm2GrFymqSFLRMadPn0a/v7+8PT0hFqt1hsgS61Ww9raGgkJCYiLi0P9+vXx999/o3HjxggNXQYbv3l4pvdgONTag5YtW6JNmzZYvHgxAGD8+PF6zyOTyRAWFoaIiAgMHDgQTp5+aNO+DyAEzuz9HR3bt8ecOXPw4MED/PHHH7h69SoAYOjQofjhhx8wbtw4uLi4IDAwEBcuXAAAvPbaazh//jyAogN7BQUF6T1/fn4+rKwYMqxIfHWJiIiILMjB60UzY3UJADfTNe26N6i0blE5OXKzYDrcz3z9ICLKywdiNOP9IMgDcLAxb3+ILJkQAjKZDM8//zw+/PBDjB07VgpqJiUlQSaTwdPTEwDQrl07zJs3D25ubrh27RpycnLw2muvYfjw4WjTNhx79+7Fjz/+CB8fH9y9exeHDx/GiBEj4OjoqPecDRs2xIABA7Bq1SrsjruP3bH3kZeThQD/ujh//jz279+PHTt2wN7eHocPHwYADBs2DL6+vjhx4gSeeuopBAcHw97eHkIIBAcHIzg42KTtZTC24jGvgoiIiMiC3M4s33ZkWbT1YwGgIwOyRGRGcSmA8lF5y1DWjyUySnuLf5cuXRAfryk/sHLlSoSFhaFnz56YNGkSNm3aBAAIDw/H8ePHMWvWLOzcuRNdunTBqlWrAGjKBri7u8PNzQ0A0L59eyQmJiI9vejV+NatW+P48eMAgGvJ6RBCwMbOAVOnvA0HBwd8+eWX8PDwwIoVK7B8+XIAgJ2dHXr16oUZM2agQ4cOsLe3B6DJuAUAlUpVUS8RlRIDskREREQWxMex5DalaUeWQwjgyKOArKsd0MTdvP0hoppNr34sA7JEJmnRogXi4+Nx4sQJbN68GfPnz0dMTAw6d+6MuXPnQqlUokOHDrC1tYWPj6Yw81PtZLh+6RBwbxVat26NW7duSQHYZs2aIT09Hffv3y/yXEFBQVAqlQCAOw81Gbq2VjI0a+iHNWvWYNu2bZgyZQoaN24MX19fvWVVKpVenVgtYwOJUeViQJaIiIjIgnQNAPycNbViDZEB8HfWtKOqJf4BcOehZjrcD5DzmzgRmZG2fizAAb2ISqLNMA0LC0NiYiKuXr2K6OhodO/eHQAwaNAgNGjQAPv27UP79u1x82ZBjaLg+olIz3iI1KTTaNasGe7fv4+kJM0VkYCAAKSlpUn/1xUcHIyrV68iIycfadmazNa6braQ62S7Ggu8avtMlolfA4mIiIgsiEIOLOhjeJ72a/U3fTigV1XEcgVEZEmYIUtkOm1wMzg4GAkJCXBzc8OtW7ek+b6+voiJiYGzszPq168PpVIpBVk97C8j6R4Qc80Z9vb2aNGiBbKzs6Vl9+/fj549exb73Lce5ErTdd3spGmFQsHAaxXGr/JEREREFmZQc2Be76KP+zkDG4Zq5lsqlRrYf12GA/frYv91GVRqc/fIchzRCchyQC+imkulBvbFA79Ea/41x3lSrQaiHgVk67kAtR0qvw9EVZGPjw9UKhWcnZ1Rt25dLF68GBkZGfj333/h5uYGLy8vAJparnExZ4Ck+cDDY9j6NdC8VXcAwO7du9GhQwdpnXXq1DH6nLoBWT832/LfKDILDptGREREZIF8nAqmh7UAXmurKVNgyZmxG+OASTuAhHQrAG3x9XVNEHlBH8sOIlcWbYasDEAHBmSJaqSC82TBY+Y4T155AGTmaaaZHUtkGrVaDblcDl9fX8THx2P9+vX49ttvsXjxYtjZ2eHjjz9G/fr1AQCJJ8bB6WE/4JYKQgB9uwBI6Q3IpwB+c6V1mSJBL0OWAdnqggFZIiIiIgsUc6dg+sVgoHsD8/XFFBvjgMHrgcJVzG6lax639MzeipatLMhGa+YJuNgZb09E1Y8lnSdZP5ao7AICAnD8+HEMHz4cCxYsgIuLi958cfNdOD1cIP1fW1FACDVkyV8BAOR+c01+Pm2GrK2VDB6O1o/Ze7IUFpxjQURERFRzxeoEZFsav5PN7FRqTcZX0SElCh6bvMM8t+VailOJQP6j7Wf9WKKax9LOk6wfS1R6crkc2dnZkMlk8PbWHDjaYKxarYZarQbUeZDdmW9weanUa/LXgDrPpOfMzFUhNTsfAODrWjCgF1V9DMgSERERWSBthqyDNRDgYrytuR28rn/7bWECwM10TbuaivVjiWo2SztPRukGZJkhS2QSpVKJd999F2q1GmPHjtWbJ5fLNSUIUhYBUJWwJtWjdiW79SBHmmb92OqFJQuIiIiILExWHnD1gWa6hSdgYokxs7mdWb7tqqOjOgHZjv7m6wcRmYelnSe1JQvc7TU1bImoZNbW1li4cKHxRrlXTFuZie3068ey3lF1YuFf74mIiIhqnnN3C25htfRyBQDg41i+7aobIYAjNzXTzrZAMw/z9oeIKp8lnSdvZwDJDzXTYT46t1ET0eOzbVSu7W5xQK9qiwFZIiIiIgujO6BXiyoQkO0aYDzDSgbA31nTria6kVaQ9dahruVnPBNR+dOeJ4uLfVbmeVJvQC/Wj6UKkpenqZGalpaGyZMnm7czlcnzdQCKEhopHrUrmTYga6OQwdOJA3pVJ/w6SERERGRhYqrQgF4AoJADC/oYnqcNPnzTR9OuJjrK+rFENZ4lnScjWT+WKkBiYiIWLFgAADh48CDatGkDQDPo1bfffotbt26Zs3uVR24DeL1jvI3XO5p2JXiYq8KDrEcDerlxQK/qpoZ+LSYiIiKyXLG6GbKe5utHaQxqDnQ2UBvVzxnYMFQzv6bSlisAWD+WqCYb1Bz4bSggLxRTqezzJDNk6XEplUqMHj0acXFx0mOzZ8/GxYsXoVarUbt2bdjY2ODy5csAAF9fX0RHR5uru49FqFTI/jcSGRv/Rva/kRCqkgbsAuA3F3B/1cAMBeD1rma+CXTLFXBAr+qHg3oRERERWRhthqyLLVC3Cg22oq1JaC0XmOh/Gv26hqBHQ6samxmrpZsh26Gu+fpBRObXoS6gflQkvGUd4LtnNGUKKvM8qc2QdbAGAt0r73mpahFCQAjNzirXqbUjhIC1tTWaNWuGMWPGYMGCBWjevDmOHDmCZcuWQS6Xw83NDW5ubjh79iwaN26Mpk2b4siRI+jTp5g0cQuV+ed+3P3vAqgSU6THFL6e8JgzCY79uxlf2KkrcO9HzbRDB6D2C5oyBSZkxmolPMiRplk/tvqp4V+PiYiIiCxLeg5wM10z3bJO1RlsJS0HuHxfMx3mLdC9dgK6BYgaH4zNUQKnH2WjNXUHajuYtz9EZF4nEgumBzQBujeo3GBsWg5w9YFmOsSr5paSoaLUarXe/2UyGeRyuV4wVvs4AEyfPh3PPvssli9fjj59+qB///4IDQ0FADg5OcHPzw8xMTEAgPbt2+PEiRMAIAV5LV3mn/uR/PJMvWAsAKhupyD55ZnI/HN/CSs4XDBd9zPAa3KpgrFA4QxZu1ItS5aPp18iIiIiCxKr872/KgzopXVa5xbY1j5V48dWZYhMApSPfuOyXAERndQJyLb1rfznj9KpHxvKcgU1Sm5uLmJjY5GWlgYAUBW69V4beNVmxsbGxmL16tWYO3euVG5AG0zV/jtz5ky0b98ex44dg6enJ+RyOVQqFezs7NCoUSOcO3cOANC5c2cpOFsVCJUKd/+7ADD0debRY3dnfmu8fMFDbUBWDtRqX6Z+JHBAr2qNAVkiIiIiC1LVBvTSOqUTZGjtzYCslm79WA7oRUQndMY1ameGEiZ69WM5oFe1pFQqcerUKaxatQoTJkzA7NmzkZqaikuXLuHgwYPIyMgAACgUCr1ltm/fjg0bNkAmk2Hx4sUYPXo0jh8/DltbW1hba4KB2uxYmUymV87Aw8MDmzZtwtmzZ6FQKCCXy9G4cWNpIK927drh7t27UKlU0josWc7Rs0UyY/UIQHXrDnKOnjU8X5UOZD+qmWsfAigcS90HvQG9XDmgV3XEgCwRERGRBYmtqgFZvR/5DMhq6daP7ciALFGNJkRBhmydWprBvCpbpE6GLAf0qp4WLVqE8PBwHDt2DKGhobh48SJeeuklNGnSBMOGDYNMJkN+fj7mzp2Ljz/+GACQnZ2NAwcOYPPmzVAqlTh69CjGjRuHhQsXYtKkSQgKCiryPDKZDA8fPsQXX3yBQ4cOoX///hg1ahRSUlKgUChQv3593Lt3D5mZmfDy8kJOTo6UMVtWycnJUCqVuH37NmbOnInDhzVZqOVdBiE/+d7jtXt4DFIqrWOnMvXhVmpBuQLWj62eGJAlIiIisiC6GbItPM3Xj9LSZsjaKoDmHubtiyU58igg62hTtUpQEFH5u/oA0I7R087XPDXCtRmyClnVuuhHpmvSpAk6duyIRYsWISIiAlOmTEFqaip2796Nd955B99//z2srKyQm5uLq1evAgAcHBzQqlUrpKamwtraGj179sQPP/yAN998ExEREfjiiy8MBj1XrlyJjh07ws/PD1OmTEGPHj3wzDPPIDo6Gn5+fqhbty4SEzVfELZs2YJ69eoZ7bv2OVJTUwEA27dvx5IlSwAAv/76KyZMmIBLly5BrVbjwoULUimF8mblZdpod8W2y/y3YNqxc5n6oFs/lgHZ6okBWSIiIiILog3IejoAdUp/h5tZpOUAlx4N6BXiDVgrjLevKRLSgIRHA7S1r8vBc4hqOnPXj81RAnGP7sJu7gnYsSRltZKXlwcAaNWqFRITE3H/vuaD2dXVFdHR0QgJCUFAQACUSiUAoGHDhkhLS4NSqYSVlRXq1auH9PR0pKamYuTIkYiKisJ7772H/v3747PPPitSRzYlJQWLFi3C0KFD4eDgALVajfnz52PatGnw9PSEv78/du3ahSZNmkCtVqN///5wdtZPC8/Pz8f58+dx9+5dAJqs2w8++ACjRo0CAJw/fx7Lly+X+mtnZ4f79+/D3d0dDRo0wLVr1/T6VF7swoOh8PUEirtoIgMUdevALjzY8HzdAb1qlTFDVm9ALwZkqyN+LSQiIiKyEHcfAskPNdNVKZtSd5CYNqxJKNEtV8D6sURk7vqxMXcA1aO4FevHVn2JiYlYsGABAODgwYNo06YNAMDPz0+qAztr1iy8+eabmDFjBvz8/ODh4YG7d+8iMzMTvr6+UCqVSEjQfFglJSUhKysLiYmJSE9Px7lz5xAfH4/r16+jX79+RYKpcrkcy5cvR8+ePaX/A8CQIUPg7a1fD0O3buytW7cwZcoUHDhwAAkJCXj33Xcxbdo0AMCNGzdw6NAhvPvuuwCALl26ICsrC5mZmahXrx7UajUSEhJgZ2cHb29vqe/a5y4vMoUCHnMmFTNT84/H7LcgUxi4Ai1UwMOjmmlrX8DGeFZwcRIepdNbK2TwdLIp0zrIsjEgS0RERGQhYnXGj6hKt5LqDujVxgxZX5bqCOvHEpEOc2fIsn5s1aVUKjF69GjExcVJj82ePRsXL16EWq1G7dq1YWNjg/j4eABAYGAgNm3aBHt7e7z++uuYOHEiAMDLywv5+fm4ffs22rZti7S0NGzatAkJCQk4duwY7t27h9jYWNy5cwfTp0/Hl19+icuXL+Ptt99G/fr1ARQEV93d3dGhQwfY2dkV228hBBYuXIgnn3xSysw9ceIE9uzZgyeeeAL169fH8uXLkZycjFdeeQWHDh1Cfn4+unbtCgBo0aIF0tPTkZCQAG9vb9SqVQtJSZod2dfXF2lpacjOzi7fF/sRx/7d4LV8NmClH3RV+NaB1/LZcOzfzfCC2bGAWjNwGmp1KlNtkqw8Fe4/LBjQSyHngF7VkZW5O0BERFWXSg0cvA7czgR8HIGuAVXrltyq3n+qfqrDgF7MkC2gmyHbwQIDsjwHElUelbrgXOnvDHiZoSRNpN7gi5X//GScEEK69V4341MIAWtrawQFBWHMmDH49ttv0axZMxw5cgTLli2DXC6Hm5sb3NzcEBsbiwYNGsDX1xfh4eFS5qmWl5cXMjIyEBMTg8DAQMyYMQPz5s3D+vXrMWrUKKxcuRKBgYHw8fHB5s2bTeq3Wq2GEAIKA9miMpkMQ4YMwYULFzBkyBAsXboUCxcuxPTp06U2np6eWLNmDV566SVMmzYN69evl9br4OAAJycnXLp0CUFBQfD09ERycjJyc3Ph6+sLlUqF69evGxx0rDw4dG+nOXgBKPy94fXdDNiFBxvOjNV6qFOuoKwDerF+bI3AgCwREZXJxjhg0o6C+oiAZrTgBX2AQc3N1y9TVfX+U/VU1Qf0slFo6hKifEu5VUl5+QWvS+PagGct8/anMJ4DiSrXxXtApqbEp1nKFQD65WVCmSFrdmq1Wi/wKpPJ9G7t130cAN5//32o1WosW7YMMTEx6N+/P0JDQwEATk5O8Pf3x5kzZ9C/f3+EhIRgw4YNmDp1KhwcHKBSqaBQKFC/fn306tVLynbt27cv+vbtW2JftcFiQ6UBSioX4OXlhe+++w79+vXDlClTkJ2djaefflrvdXBzc0Pz5s2xfft2nDlzBsHBwahVS/PBWb9+fcTFxWHAgAHw9/dHbGwsUlNT4ePjA0dHR1y5cgVBQUEQQhh8/R5H7tmLwKMgea0nO8C+c1jJC2WWb0CW9WOrL14DJyKiUtsYBwxer/9DHgBupWse3xhneDlLUdX7T9WXXkC2imTIZuRqAg0AEOwF2PByPwBN4CNXpZm2tPqxPAcSVT7d+rHmKFegUgNnkjXTDd0Al+LvMqdykpubi9jYWKSlpQEAVCqV3nxtIFMb7IyNjcXq1avx1VdfFRlAS/vvf//7X7Rr1w7Hjh1DnTp1IJfLoVKpYGdnh4YNG+LcuXMAgPDwcAQGBkoBSm32ar169RAREYGwsJIDi0qlEg0bNkRmZiZkMlmRwGtubi6Sk5Oxbt06jBs3DkuWLEFOTk6R9Wj7vnbtWmzfvh1WVlbSAGTaIG96ejquXbuGTz75BDt37sTcuXOl5Vu2bInz588D0ARnk5KScOvWLbi5uUEmk0nbXBFyo85L07YhTU1bSJshK7MD7E0I4BqQwAzZGoEBWSIiKhWVWpNVZSgBTvvY5B3S3T0Wp6r3n6ovIQpqyNZ1AtzszdsfU0XeLjh2WK6ggKXWj+U5kMg8dOvHtjNDQPbSPSBLU8KT9WPLmVKpxKlTp7Bq1SpMmDABs2fPRmpqKi5duoSDBw8iPV1z9Uv3ln6lUont27djw4YN0gBco0ePxvHjx2FjYwNra2sABdmxMplMCmwqFAp4eHhg48aNOHv2LBQKBeRyOQIDA3Hjxg0AQLt27bB06VLY2xf/ZeL06dNISdF88VCr9U/6arUa1tbWSEhIQFxcHJKTk7F27VocO3ZMCqY+88wzGDduHCIjI9GmTRssXrwYq1evLvb5du3ahfbt28PFxQVz5sxBRkaGtH2//vorcnJyMHPmTEyePBkxMTF4++23AWgCsocPa4KcjRs3RosWLeDg4AB3d3d88803mDx5st5rVZ5yIwuCvbZhzUpeQJkM5F7RTNdqB8jLNhiXNkPWWiFDHQ7oVW0xIEtERKVy8HrRrCpdAsDNdE07S1TV+0/VV1ImcP/RuBRVJTsWKFQ/lgN6SXTrx1pShizPgUTmccLMgx/qDejFi2flatGiRQgPD8exY8cQGhqKixcv4qWXXkKTJk0wbNgwyOVy5OfnY+7cufj4448BANnZ2Thw4AA2b94MpVKJo0eP4pVXXsHChQsxadIkgzVRZTIZMjMz8eWXX+LQoUPo378/Ro0ahZSUFCgUCgQEBODevXslDnKlDew+//zz+PPPPwEUZOsmJSUhOTlZatuuXTvMmzcPH374IVatWoX33nsPv//+OwCgdevWSE5OxqRJk/D666/jueeew+HDh5GZmVmk30II7NixAz169MDq1atx584djB8/HgBw//59bNu2Df369QMAdOvWDTNnzsSFCxdw5coVPPvss1izZg0AoFmzZpgzZw6CgoIgk8ng7e0NK6uKuzUn51GGrMzeFjZB9UteQLdcQa2ylSvIzlPh3kPN1RMfFxsO6FWNMSBLRESlcjuz5DalaVfZqnr/qfqKqaoDeukGGfgjX3LkpuZfB2tNKQdLwXMgUeVTqgrqtzaubZ47IPQG9GKGbLlq0qQJOnbsiEWLFiEiIgJTpkxBamoqdu/ejXfeeQfff/89rKyskJubi6tXrwIAHBwc0KpVK6SmpsLa2hq9evXC4sWL8eabbyIiIgJffPGFFDjVtWrVKoSHh8PPzw9TpkxBjx498MwzzyA6Ohp+fn6oW7cuEhMTiyynS7veLl26ID4+HgCwcuVKhIWFoWfPnpg0aRI2bdoEQFP64Pjx45g1axZ27tyJLl26YNWqVQCAoKAg1K5dG25ubgCA9u3bIzExUcoI1n2uqKgoHD16FBMmTICrqyu++uorZGVl4bXXXkN2djYUCgVeeeUVqX1YWBi2bduGRo0awcnJCe3bt9dbp6HXpryp7qch/5rmtbRtGQiZKYHf8hjQK1W3XAFri1RnDMgSEVGp+Jg4KrCp7SpbVe8/VV+xVXVAr0c/8m0UVSuQXJFuZwDXNSUD0c4XsDIyGHNl4zmQqPLF3gFy8jXT5qgfCzBDtiK1atUKiYmJuH//PgDA1dUV0dHRCAkJQUBAAJRKTbZjw4YNkZaWBqVSCSsrK9SrVw/p6elITU3FSy+9hKioKLz33nvo378/PvvssyJ1ZFNSUrBo0SIMHToUDg4OUKvVmD9/PqZNmwZPT0/4+/tj165daNSokUn9btGiBeLj43HixAls3rwZ8+fPR0xMDDp37oy5c+dCqVSiQ4cOsLW1hY+PZqd56qmncP265haK1q1b49atW1IAtlmzZkhPT5deB0CTHZufn4/vv/8eAwcOhKOj5sPFz88Pq1evxrfffou6devi999/h5WVlV7ZAbVaXaSGrnadZS1PoFKpcPPmTZPa5p65IE2bVK4AKJQh27E0XZNwQK+ag8MuEBFRqXQN0IzEXdwtrzJo5ncNqNRumUzb/1vphmsoWnr/qfqqihmyGbnAhbua6VZ1OKCXlqWWKwB4DiQyhxNmrh8rREGGrFctwMep8vtQnfn5+Ul1YPPy8nD69GnMmDEDfn5+8PDwQGRkJDIzM+Hr6wulUomEhAQ0aNAASUlJyMrKQmJiIuRyOW7duoWUlBRcv34d/fr1g7Ozs97zyOVyLF++HCEhIdL/AWDIkCGl6q82mBkWFobdu3fj6tWriI6ORvfu3QEAgwYNwr///ot9+/ahffv2egHM4OBgKYjcrFkz3L9/H0lJSahTpw4CAgKQlpaGpKQktGzZUlrGysoKX3/9tRSM1XJxcZGm1Wp1kUCr7iBij1MfVq1W44UXXsCHH36I48eP46effsI///xT4jpzI3UG9AorWkKi6BPlAlknHy0QCFiX7eo6B/SqOZghS0REpaKQAwv6GJ6n/VrzTR9NO0uk7X9xgQjAsvtP1Zd2QC8AaF5FMmSjknQG9GL9WMkRneSbjv7m64chVf0cTlQV6Q7oZY4M2YR04N6jsqLMjq0YgYGB2LRpE+zt7fH6669j4sSJAAAvLy/k5+fj9u3baNu2LdLS0rBp0yYkJCTg2LFjuHfvHmJjY3Hnzh1Mnz4dX375JS5fvoy3334b9evXB1AQjHR3d0eHDh1gZ/d4t7Fr1xccHIyEhAS4ubnh1q1b0nxfX1/ExMTA2dkZ9evXh1KpRFKSJsXaw8MDSUlJiImJgb29PVq0aKFXs3b//v3o2bNnkecsHIwtTC6Xl8ugXG+++Sb27t2r91haWhr27NkDZ2dnNGjQALVq1dLb3uLkROkM6BVqQkA26zQgNAOelbVcAVCQIWsll8HLmQN6VWf8qkVERKU2qDkwsGnRx/2cgQ1DNfMt2aDmwMuhRR+vKv2n6keIggzZ+q6AYxVJiDitO6AXf+RLLDlDFtCc434bWhCA1eI5kKhinHgU+5EBaG2Gc6Vu/dhQ1o+tEL6+vhgwYACmTZuGPn36SAFILy8vZGRkICYmBk5OTpgxYwb+/PNPDB48GA0aNMDKlSvRpUsXNG7cGJs3b8Zff/2Fr7/+Wq9mqilUamBfPPBLtOZflbrkZXx8fKBSqeDs7Iy6deti8eLFyMjIwL///gs3Nzd4eWkKoNvZ2SEuLk5abuvWrWjeXPNBsXv3bnTo0EGaV6dO5dzis2jRImzevBkqlQoApH/lcjkWLVqEK1euSG23b9+OJ598Eg4ODnB3d4eVlRUuX75c4nNoM2TlTrVg3dCED/PMfwuma3UuxdYUyFaqcDfz0YBerhzQq7rjjWVERFQmKp0U0++e0dxi3TWg6mRV5ev0/5MeQNd6Vav/VL3cSAMyHyVVVJVyBYD+gF7mCDJYIqWqIBuugSvgZaG1WEO9C7KbQ72B+U/zHEhUEXKUQPSjC27NPM1zwU2vfiwDshUiJCQEGzZswNSpU+Hg4ACVSgWFQoH69eujV69eUrZr37590bdv33J97o1xwKQd+uXE/Jw1d0MUd4FNrVZDLpfD19cX8fHxWL9+Pb799lssXrwYdnZ2+Pjjj6U+JyYmwslJU+dCCFGk/9p1lTchRLFZs0eOHIG3tzeeeuopODo6Ss//v//9D/369cOaNWswa9YsAMDp06fh4OAADw8PPHjwAK6urrh48aJUosGQ/KS7UCVpajLZhjaFzJTtK4cBvRJZP7ZGYUCWiIjK5Nyj26trWQMT2wPlcJdRpdIGkqzkwLudADtr8/aHarbYKlg/FigY0MtaDrTyMm9fLMXZZCD70eA9lpgdq6UbTH+2KdC9gfn6QlSdnUkG8h9lK5qjfiygnyHLkgUVIzw8HGfOnJECiAqFZjTHevXqISIiosKed2McMHh90VJct9I1j5d010NAQACOHz+O4cOHY8GCBXp1XQFNUFQbjAUKyh3oBksfNxgrhJD+tK+b7nPptktMTETdunXRsWNHnDx5EpmZmXB0dIRMJoNarYaVlRXGjh2LX375Bbt370avXr2gUqng4OAAQFO3tk6dOrh69arRPuVG6pYrMGFALyEKBvRSuAB2Jg4CVoh+/djHK01Blo/XwImIqNRylEB8qmY6yKPqBWOz8oBzjwYiauHJYCyZn+6AXi2qSP3Yh3nA+UfHUcs6gC0v8wOw7PqxulhugqhymLt+LFCQIetkAzRyM08fqrt27dph6dKlsLe3r7TnVKk1mbGGxkXQPjZ5h+HyBXK5HNnZ2ZDJZPD21qRNa4OxarUaarVmoeIyVEtb71WpVOLUqVNYtWoVJkyYgM8++wyJiYnSuuRyuV4wFgDi4+OxYcMG5OdrrnL++uuvGDZsGHJzc9GsWTPcvn0baWlpetsEAP3790f79u3xzTffQKlU4vz58+jTp4+0jT4+Prh9+zaMyY26IE2bNKBXXjyQn6yZrtURkJUt1HaLGbI1CgOyRERUapfuA+pH3/SaVZHgka4zyQX950BEZAliqmCGbFQSjyNDLL1+rNYp3YAs3z+iCnNCZ+ygdnUr//nvZWnK4gBAiDdQAXeWk5kcvK5fpqAwAeBmuqZdYUqlEu+++y7UajXGjh2rN08ul5d7CYJFixYhPDwcx44dQ2hoKC5cuIBXX30VOTk5OHfuHObPn48xY8Zg+vTpSE7WBDZjY2PxzjvvID1ds5EtW7aEEAJ3795FYGAgHj58iHv37hV5LkdHR0REROD8+fP4448/EBkZiS5dugAAbG1t4enpiZs3byIrK6vY/uboZsiGmZDtmvn45QqAggxZDuhVMzCXgYiISu2czmjwQR7m60dZ6d6qy8wwsgSxj44puazqHFM8jgw78igga2cFhFhoGQchCt4/r1qAr5Px9kRUdid1SiSZ45wQxfqx1dbtzLK3s7a2xsKFC8u3Q0Y0adIEHTt2xKJFiwAAnTp1wuuvv46DBw8iMjIS+fn5GDZsGBITEzF48GAcPHgQ7dq1g729PVJTU1G7dm0EBgYiNzcX169fR6dOnWBlZYWkpCSDz1e7dm1MnToVU6dOhZOTk172bb169RAeHo6HDx9KpQx0CSGQG6UZ0Evh6QaruiZcKdetH1urbAHZHKW6YEAvFw7oVRMwIEtERKWmvd0fAJpVkeCRLmaGkSVRqYG4RwHZxrWrTgkNHkdF3ckErj7QTLfxAWws9Jv2tVTgQY5muo1v1Ss7Q1RVZOYWfGdqVcc853fWj62+fEwcNNLUdhWpVatWSExMxP3791G7dm24ubkhOjoaLVu2RKdOnRAZGYl9+/bh0KFD+Pfff/HgwQN4eWmuYCQkJKBevXqws7ODTCbD5cuX0alTJ3h7eyMhIQF5eXmwsSmaTRoREYHDhw+jbdu2sLMrqMfatWtXdO3atdi+5l+/DfUDTVaubUhT08ozSBmycqBWB9NfGB2JqQXlCnxZrqBG4A0LRERUaud1A7JVsGSBNjNMIQOCLTSDjWqO+AdAzqNBoKpKuQJAf2C8VlWo3xVJt1yBJdeP1c1ubs0ADVGFidQp7WKOcgUAM2RLQwhD1VgtV9cAwM8ZKC5cKAPg76xpZ25+fn6QyWRYvHgxZs2ahTfeeAMzZ86Ej48P/vrrLyxYsAAKhQLfffcdateujaNHjwIAGjZsiEOHDsHKygoqlQopKSmIjIwEALi6uiI2NhbZ2dnFPu+aNWswadIk2NqaHuDMLW25AlU6kB2tmbYPARRli4AnsH5sjcOALBERlZq2ZIGVXJPRV5VkKwuyEZt7AvZVJBuRqq+qOqDXOZ0BvapKVm9FO1IV68cyIEtUYXTrx5p7QC9rueZ7DxWVmJiIBQsWlHqgKnNTyIEFfQzP027JN3007SxBYGAgNm3aBHt7e7z++ut47bXXAAAff/wxunXrhvfffx/u7u6QyWQ4e/YsAODNN9/EqVOn0Lx5c4wZMwbt2rVDo0aNAADTpk3DRx99JA1GVl5yHpUrAADbUBMG9Hp4DMCjkdMeo37sLe2tKwDqMiBbI1jojVRERFRRVGpNcf/bmZpbmLoGlO6LmkoNXHhUP7+RG2CtMN7e0pxJAlQciIgsSFUc0OuM7oBeNSigV9L5Uy9D1pIDsrr1f3keLBXdfcDTXiZ9nliqx/3Mp8dzUudYa2eGYy0rr+CuppZ1LLeMSmVSKpV45ZVXMG3aNDRv3hwAMHv2bMjlcuTn58PKyvQXyRKOr0HNgS97Ae/t1n/cz1kTjB3U3HL66+vri/DwcEybNk3v8T59+mD79u24fv06FAoF/P39ER2tyTjt27cvGjZsiPv37yMkJAS1atWSlgsIqJjU31JnyJbTgF63HmXIKuSAtwsDsjUBT8lERDXIxjhg0g79EVn9nDVX13W/sBlzI63g9uoqWa6AmWFkYWJ1BsmrKgHZ0zrHUU255b2k82e+Cjj+KBuungvg62yefpZEiILzoKeDZhvINEX3ASu4W/fGokYyDG1lzp4ZVh6f+fR4TjwKyNpZAS3McH6PvlNw8awm1Y8VQkjlB+Ryud7j1tbWCAoKwpgxY7BgwQI0b94cR44cwbJly0oVjLWk40s3dvdSMDAurGiw1RL6GxISgg0bNmDq1KlwcHCASqWCQqHAzJkzsW7dOly7dg2DBg3CjBkz4Oxc8OEUFGRClmo5ESoVcs9eBABY+XnBytOt5IXKaUCvlAzNgF7eLraw4oBeNQIDskRENcTGOGDweqBwMs+tdM3jG4aa9oXsnE7wqEoO6MXMMLIw2gxZazkQ6G7evpiqpg3oZcr5s6EbkKX5LWXR5QqupwL3H5Xb44BepituH7intMMLvwNWCssKcpbXZz6V3YNs4PJ9zXSot3nuKNIb0Ksa149Vq9V6gVeZTGaw/ID2sffffx8qlQrLly9HTEwM+vfvj7CwMJOfz9KOL93P5FdbA0/U159vKf0NDw/HmTNnpPdBodAcFG5ublL5AnNTXr4B8VDzIWlSuQKhAjI19W5h7QPYlC1r93ZqrvT+sH5szcEbVoiIagCVWnNV3NCdldrHJu/QtCvJOZ0BvYKqYEBWm9knlwEhHNCLzEypAi48OqaaelSdEiA1aWA8U8+f/94seNySyxWc5l0CpWZsH9BWajT1M7QylOdnPpWd7gVgc9ePBap2hmxubi5iY2ORlpYGAFCpVHrztcFYbWZsbGwsVq9eja+++kq69V2bMav9d+bMmWjfvj2OHTsGT09PyGQy5OXlldgXSzy+tOd1GYq+z5bU33bt2mHp0qWwt7ev+Ccro5zIUtaPzYkD1I/Sjmt1KvNVTt0BvVg/tuZgQJaIqAY4eF3/FqXCBICb6Zp2JTmvE5CtaiULcpQFt4c39wQcbMzbH6JL9wDlox9BVWVAL92B8VrUqf4D45l6/txyoeAxS86QrWnZzeWh5H1AZvJnaGUoz898KrsTZq4fCxRkyMpQNS5CK5VKnDp1CqtWrcKECRMwe/ZspKam4tKlSzh48CDS0zU7tjazUrvM9u3bsWHDBshkMixevBijR4/G8ePHYWNjA2trzYeUNitTJpPplTPw8PDApk2bEB0dDRsbG2lecSzt+MrLB84ma6abuANOhWJ5ltZfS5erG5ANMyEgm/lvwbRj5zI/7y2dgCwzZGsOBmSJiGqA25nl1063ZEFVy5A9mwzkPwp+MTOMLEFVHdBLGhivBhxHpp4/zz7KRLNRWHYmml7ZFgvupyUpz8/QylDV+ltdnTRzhmy+SlNDFtCUw3GsAjGeRYsWITw8HMeOHUNoaCguXryIl156CU2aNMGwYcOkgbfmzp2Ljz/+GACQnZ2NAwcOYPPmzVAqlTh69CheeeUVLFy4EJMmTTJYf1QmkyEzMxNffvklDh06hP79+2PUqFFISUkxWOpAl6UdX7EpQN6jhGFDF9ksrb+WLjdKZ0CvkKYlL1BOA3olPMgBoLnzyNu5ChysVC5YQ5aIqAbwcSyfdkIUlCyo61T0KrylY2YYWZqqOKBXTTuOTD1/Jj3U/NvaB7C10G/YugN6eTgA/i7m7U9VUV6foZWlqvW3ujrxaJA/RxtNSZrKdv5uwSCsoVWkfmyTJk3QsWNHLFq0CADQqVMnTJw4Ebt378aGDRtQt25dzJ49G7m5ubh69SoAwMHBAa1atUJMTAysra3Rs2dP/O9//0NsbCzy8/MREBCAadOmFQm0rlq1CuHh4fDz88OUKVOQkJCAvn37YsmSJUbryVra8VXSRTZL668lE3lK5MZcBgBYN/KHwsWp5IW0A3rJbAF70+sQ68rLLzSgl4LF3WsKZsgSEdUAXQM0I6kW9/EuA+DvrGlnTMrDgsFgqlq5AoCZYWR5dDNkzTECd1nUtOPIlPOnh0PB/y25fuzNNOBulma6jQ8H9DKVdh8ojgzCpM/QylJen/lUdsmZmtvAAc1FGoUZfnXr1Y+tIgHZVq1aITExEffva0ZDc3V1RXR0NEJCQhAQEAClUhO0atiwIdLS0qBUKmFlZYV69eohPT0dqampGDlyJKKiovDee++hf//++Oyzz4rUkU1JScGiRYswdOhQODg4QK1WY/78+Zg2bRq8vY2/WJZ2fJV0kdTS+mvJlOfjgTzNPmZSuQJlMpB7RTNdqx0gL1sttESdAb1YP7ZmYUCWiKgGUMiBBX0Mz9N+QfumT8k/GPTqx1axcgVAwZdWuQwIqSI/Tqh60wZk7ayAhm7m7YuptMeRooYcR6acP7vXL3isqtSPbV0Dgunlxdg+oB0Wx5TP0MpSXp/5VHYnLah+LGDZZVR0+fn5SXVgZ82ahTfffBMzZsyAn58fPDw8cPfuXWRmZsLX1xdKpRIJCQkAgKSkJGRlZSExMRHp6ek4d+4c4uPjcf36dfTr1w/OzvpXVORyOZYvX46ePXtK/weAwYMHw8fH+IulPb4MVZo1x/Gle5HUUOCd5wPT5Z4pKAZvG9qs5AUeHimYrvU45Qo4oFdNxcOOiKiGGNQc+KpX0cf9nIENQzXzS3Kuig/opQ1+BXkAtTigF5lZjhK4rEkCQnPPqvFjKFsJxD46jpp7Vv8BvbQGNdecJ60KvUfa8+eD7ILHOvpXbt9KQy+7uQaUmyhPg5oDTzUo+riHdTZ+fV5l0mdoZRrUHFg/pGhWXGk+86nszF0/FqiaGbIAEBgYiE2bNsHe3h6vv/46Jk6cCADw8vJCfn4+bt++jbZt2yItLQ2bNm1CQkICjh07hnv37iE2NhZ37tzB9OnT8eWXX+Ly5ct4++23Ub9+fQAFA3u5u7ujQ4cOsLOzK1MfBzUHxoYWfbyyjy+lSn9AL+diNqekzzCeDzTyogoCsnYmDehVPvVjOaBXzWXWClcqlQqzZs3CTz/9hKSkJPj6+mLMmDGYOXOmdLIUQuCjjz7Cjz/+iNTUVHTu3Bnff/89AgMDzdl1IqIqydW+YPrFVsArrTW3KJkaCKrKA3pF3+GAXmSYSq0ZXfh2pqaGWmmOicdx/i6gfpRi08JCLnCU9FqcTS4Y0KumZVg+3Vjz+gBAgAuw8rmCWzxH/6H519fJ+K3t5qZ3a2sNe//Kg7ZkjwzAsoGAv1M+0mN2Y0BQX7P2qzgt6xRk8bX3Bb7sVXnnt7Iw17m4ImjrxwJAu7qV//xCAFGPArK+TkCdKlQf1NfXF+Hh4Zg2bZre415eXsjIyEBMTAwCAwMxY8YMzJs3D+vXr8eoUaOwcuVKBAYGwsfHB5s3b67wfirVBdOznwQ6+1f+Pht7B8h9NKBXSZ/JvRsVfA9u4AosH1jx/a1qx3TemfOaCYUCNi1NiDdl/lswXQ4ZsnIZ4O3CjJGaxKwB2S+//BLff/89Vq1ahRYtWuDkyZMYO3YsXFxc8NZbbwEA5s6di2+//RarVq1CgwYN8MEHH+Dpp59GXFxcma9oERHVVLrZUa+2AbrVL93yVblkATPDyJCNccCkHUBCesFjfs6a2/sqOmNEt36sJQzoZcprcbqGDeil60xSQXCrVyOg+6NsyehkIDNPM93Rz3LrsgpRcB6sbQ8EuJq1O1VObn7BMdvMExgbBiiVAttizdsvY3QzJJ8NKthnLZE5z8XlTYiCDFk3O/OUo7mWCqRqBm2vUtmxABASEoINGzZg6tSpcHBwgEqlgkKhQP369dGrVy8p27Vv377o29d8F0O051NrOTC1k3kGcyzNRbYonfOB7mdYRalqx7QsVwnlhWsAAJug+pA7lBBrUucCWSc107aBgHXZrqzn5atxJ13zJcLbxQbWlhyxpnJn1nf78OHDGDhwIPr164f69etj8ODB6N27N44fPw5Akx37zTffYObMmRg4cCCCg4OxevVqJCYm4o8//jBn14mIqiTdL25lGXFXW7LA1Q7wqkLZFkChQBIzwwiaHwuD1+v/WACAW+maxzfGVezzx+pknJt7QC9TX4uaNqCXruLqrx65WTBtyfVjb6UDKRzQq8yikwsy4qrKvq9XQ9SCg3LmPheXt4R0IPmhZrqtr3mOtapYP1YrPDwcgYGB0h2zCoUCAFCvXj1EREQgLKxsI9mXp8zcgiSFVl7mCcYCpUs2qMwa4lXxmLa/cUe6DcY21IRyBVmnAfHoauxjlCvQH9CLCYc1jVkDsp06dcI///yDixcvAgDOnDmDQ4cO4ZlnngEAxMfHIykpSSq2DQAuLi7o0KEDjhw5YnCdRERkmFKlyfACgMDagEspP/Mzc4EbaZrpII+q92Ne+0VUhrIFo6l6Uak1mRuGBuXQPjZ5R8Et6hXBUjJkS/Na6A6MV9OOo+KC0UcTCqYtun5sDc5uLg9VcUA03Yw4Sz1eLeFcXN70BvQyQ7kCoOrWjwWAdu3aYenSpbC3ty+5sZlE6dwxYc7zwelSnJcq64JqVT2m7a8VHDS2YaYM6KVTP/YxyhWwfmzNZtaSBdOnT0d6ejqCgoKgUCigUqkwZ84cvPjiiwA0oyUCmnoxury8vKR5heXm5iI3t2CnTk/XXJZRKpVQKpUVsRmVQtv3qrwNRCXhfl6xziQDuSrNCDxh3moolapSLR+XDACa5ZvWLv3y5pSbD0QnWwGQoamHgK08H+bazbifW4b912VISC/+a5AAcDMd2Hs1H90CDP2seHyxdzT7pKONgI+D+fZJU1+LnZfyEXNHAUCGIA8Ba1nxfa6O+/nJRM37ZSUXaOZesO2Hb2oet5YLtPIw3/tYkuMJcgCaTLOQOvlQKitmv66uTiQooM1l0b5+lryfCwFEJmn2zTq1BDzsLHPftIRzcXk7erPgWAs107F2OrFgf23pqSzze2/J+7g56Z5PQ+uooFRWfnQxXw2cefTdtrGbgIPC+DGu/QyzlgsE1a6480FVPKaVSqVeQNaqZeMS93lF+iEpu1Fp1w5lfUFv3CsYFdTLScFjzYDq/JqYNSC7fv16/Pzzz1i7di1atGiBqKgoTJ48Gb6+vhg9enSZ1vn555/j448/LvL4rl278P/snXl8VNX5/9+TfQ+BkI2w7wFCwAUVUWhdEK0oWlu1rVXburR17Wrtt9rWLnZDa2u1brW17c9aai1F3Le6IAqBQNh3AiQhIfs2mZnfH3du7p1kkswkc+89Z+a8Xy9e3MzcZJ65y7nnPOc5n09aWtpwQ3acV155xekQFArLUde5NbxaNw7QlnmlNVSyZs2esH7/rfpi4CTth+PbWLNmd2QDtJDdbdm4vYsByPccZs2aDc4GhLrOnebt+jHAyYPu9+I75bRurRp0v3Bp98Szr+EiAIoSTvDii+9E/DNCJdRj8cwbO+n2asJv+Z5DrFmzcdDfiZbrvNMbz7baCwEoTm7i9ZffBKClO5EddZqG4YSUBt545W2nQhyUl/YsALRSuabtb7BmX5uzAUnGGzvOBkbgwkf1prWs2WJMSop4nR/vSuF42/kAjImr4cUXP3A4ouA43RZbwUu7Twe0ZQ9N219jzd4O22NYd+A8IJX0+C4q332RbcNc1STiNe4k/9k/H9CWRLTv/R9rqhtsj2F/exYd3UsAKPBVsWbNx/3u2+GJZ8dx7Rk2NrmR115+y7K4ZL2np/oTst6EeF7dvwMODzTO8XF+4VukxIPbm8aa1/cDB4f0uTvck4EUXPjY9N7rVLjESFKLRFtb9PZXHE3IfvOb3+Q73/kOn/3sZwGYM2cOBw4c4Kc//SnXXHMNBQVap7G6uprCQqOuvrq6mrKysqB/87vf/S533HFHz89NTU2MHTuW8847j6wsgW1vB8HtdvPKK69w7rnnkpiY6HQ4CoUlqOvcWl5aG9fTV7hqyQwWT5ge1u9/8GYcHNC2ly+czrJp0yIcoXU8tsEFO7TtT51cxLJTnVu/p65zMUg/4OLXBwbf74JFZZw9fm7EP399lQs2a9sLp45w1Jgk1GORO3Y6+AtIPnXyGJad0v+ax2i7ztdVufBu0jIai6dl9pyvl/a4oELb5/xZWSw7z7nzOBA+H9zwgNbtz0nx8cVLFksnO+MkXR44tEk7ftNGwWWf0hKdIl/nq3e6wG84ds6cXJYtEfPadLotjjQ+H1z7a+1ayU/38fnln7D9XqtthbqN2vV4cnECF1449HMv8jXuJHc9qp3jhDgfN1x6BikOZFX+tMkF27XtC+cXsuz0/s/ze4dceDf7n2HTsyztc8h4T3ceP0F19S8BSCmdxrKLPzXwL3TtI3H7CQDisxexrOyiIX2u2+Pl/dWaEH1+VhIXfeKCIf2daEdf9R6NOJqQbWtrIy4uUMY2Pj4er1cr+Z84cSIFBQW89tprPQnYpqYm1q1bx0033RT0byYnJ5Oc3Fd7IzExMSoeItHyPRSKgVDXuTVsrDa2Tx2bQLiHeGe9sT2nIPzfd5Jyk1bnqcXxJCbGOxeMH3WdO8uSSZrbb1VTcJ0zF9r7SyYlYIXh7Y4TxnZpQRyJic7J+uvHorf5ho5+LFq6jfsm1PsoWq7zTaY25JQxxvn6yKTfd8Y4MdqWYFSZTIbmF7pISpL/nNhJRa1h6HVykavPNS3idV5hMg08qUjca9PptjjS7KmHE/6C2FPGOHOvbTlubM8vjMzzRcRr3ClauwxDr9l5LjJTnTku5eZ+/SDP5P6eYVYg4z3dsW1fz3ZK2czBr/WmD3s24zIXEjfEe+NIUwde/0EqHpmi7rF+iObj4ugt8KlPfYr77ruP//73v+zfv59//etf/PrXv+bSSy8FwOVycdttt/HjH/+YF154gYqKCr7whS9QVFTEJZdc4mToCoVCIRXdJkOvKUMw9AKj85kcDxNzIhebHehGBsrQS6ETHwcPLO1/sACwcimWDRbMhl6zHDT0Au073rM4+HvmY7Exho3x+nOyft9s6FVsXzzhEo4Tt6IvMhqilUti6qS3xcGwoy2ONOtNK7BPduhaCTD0ksSATiY2HaMniWalOdZghGM0uMHGNkzGe7qzfHvPdvK8GYP/QsQMvQw5E2XoFZs4ehv89re/5fLLL+fmm29m5syZfOMb3+CGG27gRz/6Uc8+3/rWt/j617/OV77yFU455RRaWlpYu3YtKSlDyCYoFDbg83ioefc9Dq56npp338Pnkcf4SBG9bDsO7d3a9lA6j90e2FWnbU8bJVYnajC6uqHCn/yaNgoyVX9H4WdFCVxb1vf14ix47grtfSvweOFt03K+mbnWfE6osby5D17uRypNPxYXTjOSyDNyIT3JvhhFQB/4xrug1O816/XCOn9CNj8dxo9wJLSQCEgoqgRN2NjlTh5J9KRcRpI2ESsyK0rgxiCSk1a3xVaw3nStnOJUQtZ0v4ucjNfRn0N/q9D+99jvjxUWIkzQmAstJufAiNSB99djToiDOTZMAq8ogccu7vu6qPd016YdPdspoSRkW/SEbByknzrkzz18wjCjH5Oj8luxiKOSBZmZmaxcuZKVK1f2u4/L5eKHP/whP/zhD+0LTKEYIodXr6H87h/QfsR4UqcWFVL243spvkhM7S5FbDDc6qg9J4zlmjMcTB4NhS01mv4fyFPZpLAPfaIC4Cef1KocF423btJhVSXcujZQHuD0x7VqErsHKMFiAbjtNDh1DBRmGMfioyqjDYi1+6jdDVv9yehZeaCvTt1+HBr9Y6nTxyK0JquqkB0eH5uqw2WoODzRDvsbtO25+RAnwSSqebXC98+CT0y0ti22io9M95rTFbIpCeL32YI9h4qznHkmhooIEzTmQovBqmPbuqDSL2EyOw9SbFr9XZBhbF84Fb5xhrj3dFe5lpB1paeSOGXcwDt7mqDdLx6fWgrxmUP+3Cp/QjbOBUUjYmymWwE4XCGrUEQTh1ev4f3rbwhIxgK0Hz3G+9ffwOHVaxyKTKEIb1lTMLab9Mhmjh5+PHayQVWGKQbgA3+FY1oifPMMWDzR2mTs5c/2TYBWNWmvr6q05nPDiQXggQ80aRLzsYjl+2hzNXiCLE81yxWcJrBcARjPgBEpMEkyyRmn6erWrgGQZ5VFuYRL1s3SQt9caG1bbBUer/E9xmVDXsbA+1tBS6exomlOHiSIKR0MiPVMDIdgKyZsjyGMSbZN1YbEwlDGAEPFPPb4XKm493R3TT2eI9qsa1LpNFzxg9w0rR8C/hnqjKHLFbg9XqqbugDIy0oiUcSDo7AcddYVigjg83gov/sHmrVqnze118rvvkfJFygcw9xxG0pnbJvJHMTJ5dVDQYSlZQoxOdZsVJGdUmTtwNXj1aqAgmnW6q/dttaepZoDxaLTO5ZYvo/6az8/kEQ/9mgzHGvRtucXil3JKyJba41VFnYmM4aDOSErg96z2yNf0jsYO45Dq1vbdqo6dlO10baLfO5FeiaGg7nadJaN1aa9CWeS1KmKXllWZpj1Y5PmTh/8F3rkCoCMhUP+3KMNXYahl9KPjVlUQlahiAC1H6zrUxkbgM9H+5Ej1H6wzr6gFAo/3R5jcDYpB3IG0ZkKxjZThazoy996Y+4QyqClprCPdSbzFasrHN85ELwaVccHHGrS9rOaocRirl6Ltfuov2T0+4e0/+NdYg82RVheKzOyJBXMyKYhurUGOqNAWkg4/ViB73eRnonhYK42lcXQy6kJVf1zs5I1nVtRCTsh2/qusT0MQ69A/ViVkI1VVEJWoYgAHdU1g+8Uxn4KRSTZPkxDLzAqZF3AdIkSsr2rbrKUXr7CxAc2Ljk/2hLZ/YZDuLGYjfGm50JGjI0b9IRcnEvT4wRo7DCqpOYWiG1yFsvVzZFARkM0XUM0IU6r4hOd4coqiYJZP/aUMc7EsNEsVyFwMl6kZ2I4iDBB4/EahRYTR8DItIH312O2U2KhpsVIuM8rEFvHunPjtp7t5LJBErI+D7R8oG0nFkLS+CF/blWDkZBVFbKxi8C3hkIhDyn5ofV2Q91PoYgkG4Y5GPf5DA3ZCSMMQxsZCKi6kXiQp7AGc0J2gcUJ2cIQtQRD3W84hBtLgDFejN1HHW5tyTpAyWhI8ydeP6wyltUKrx+rKmSHxQZJKg512t3GJOqs0ZDsqIVzaETLNbretOrCqe+hV8jGOahvGgoiPRPDQQQ99e3Hoc0vjTFYv77dHSixYFcfXpaJQJ/PR4e/QrY7I5X4cYOc1I5K8PozzelnDEsDqOpEB6AVuxRmq4RsrKISsgpFBBh92gJSiwYQZnO5SC0qYvRpC+wNTKFg+NU9R5qhWdOcl0+uQJIOocJ+uj3G4Hl8NhQO3SQ3JBaN15yj++u6u4CxWdp+VhNuLLF8H1XUQLdfw/AkCfVjIXDZqDL0Cg+3Bzb5K9GmjoRsCVZZbKkxTOhE1hA187FkSe9guE3yUFNHwoghyEMNl65u7fwDTB9lTCCJiEjPxHAwG3rNdej+CmcCY9Ox4KaUViPLJEv34Wq8xxsAaB+fj2uwBGuAfuzwDL2ONRqGXkkJKi0Xq6gzr1BEAFd8PGU/vje4qZe/YS/78T2DuzYqFBYQUUOv0cOPx05k6RAq7GdrrWG+YkeFY3wcPLBU2+7d3dd/XrnUHgficGOJ5fuov+Wpun4swOlj7YsnXI41a5NqoLX/Ii8bFZHKWvm0Tc2GXjIkN2VMegdji2lFjlOGXpW14PZPIIl+7s3Pod7Y/UwMlXa3tvIKtBUTTq0YC2eS1Gn9WLs/N1zMcgXtE0PIsJsTssPQjz3WqAy9FBoCNXEKhdwUX7SMKV++rs/rqYWFnP74IxRftMyBqBSxjsdr6ImFojMV7Pf/s8P4efqoiIVmC9FQdaOwBjv1Y3VWlMBzV8CYrMDXi7O011eU2BOHOZaiXpXBYzL7xmK+j2SpuIsUvVcYeLzw+l542280MypV7KpTGfVPRULGyQjZDL22SZj0DobSjw2fFSXw7Kf7Tgw68UwMhc3VpmpTB6/VcAotnGrDdGmHzCRtokVUOsuNQU77hAFuGp8Hmt+Eppf8LyRB2rwhf64y9FLoSKAqpFDIg8tUejL96zdT8InFjD5tgaqMVTjGjjB0pnqzqhJuXRvognv365CbJl4nORjmqpspElfdKKzBiYQsaPfO8hmac/TRFk0fb9F456qA+qzO6/VzV3dsG+OZDb0ONMBnngtsE1vd8K9t4raJIhjQyIwsVV5mzEk5p5ZUh0O0TBqY9WOdqpCVrToaYHaeocd9chH84lxnn4kDIcIEjbnQYnw2jBqk0GKDA5rCx1vhYKO2PU/wlRmd5aYK2f4SsidWwaFbwW3qOLqAxv9CzoohfW6VKSGrKmRjG4FvD4VCPk5squjZnn7zjeQtPEMlYxWOMlTn4lWVcPmzgYkHgONt2uurKiMTn5UEVN1IMjBR2IeekE2Kt3/gGh8HiyfClXO0/50YePZ3j1c1Bd7jW2tj19Cr06THOCYTrl7V93h1dIvdJkZLssspzAkYGSoOPV5jAmVSjhwTkdEyafCRafLGqWtFtupoCDTJumSGc8/EUBBhgiacQov+TCmtRpbnjs/r7amQjS8YRfeIIA5yJ1bB3ssDk7EAvi7t9ROrhvTZeoWsCygaoRKysYygzZ1CIR8+r5eGii0ApBWPIXmUwOszFDHDUGbzPV6tMjaIInLPa7et1fYTGRE6zgoxOdGuuRSDNmiVwYU8koRzj2+I4fuootrQY6xrD368dERtE83LRqeobklYdHtgkz+5OTnHGZOmcNlVZyRrZEnIDXXiWCQ63JoBIMDMXMhwIL/i9RoVsuOyw5eocgpZkncQuGJirk3Vpr3ZEMbx2lwd3JTSamSZZHHvPYy3uRWApLkz+u7g82iVsQM9/Q/dpu0XBt0eH9WNWkJWGXop1NlXKCJEy959dLdqjXpO6RyHo1EoNIaSlHznQN8qMDM+4FCTtp/IiLC0TCEmH5qWltopVyAK4dzjsXwfmdtPPckVDFHbxJoW4zwrQ6/wqazVKqBB7KSCmY2SLVnvjhJpoU2mxJdT+rF7T0CzZtouTTIe5EnematNZ+baV23aG+kMvQRuh8yGXkll0/vu0PJO38rYAHzgPqTtFwZHGzt7tIiVfqxCdc0UighxYtPmnu0RKiGrEACP11i+ForOlM7Rlsju5xTRUHWjsAan9GNFIZx7PJaN8cyJglAQrU1UqwSGhyxJBTOyLVnfdhza/UlvmZ/TIujHypaMB62qV6/4HJsFo9OdjWcgAqpNBTH0GqxdcmpCVf/c9ESYKrAZcOfG7T3bSXODJGTdR/u+FoxQ9/NT1aD0YxUGKiGrUEQIs35szlyVkFU4z846zXAGwus8FgaRUBrOfk5grrqRZampwj5iPSEb6r07Os24j6ZKXL02VPSEXG/fs/4QrU2M5ermSCCjXIdsSblouUbXm77HKU4lZCVLxgPsrjeqekW/x8KRCrAKr8nQa1w25A6SwNafYXEuKLPpmqhrgwMmQy9R9YABOsoHScgmhniiQ93Pj9nQS1XIKgS+RRQKuTix2aiQzSktdTAShUJjqJ3HReOhOKv/JIQLrZJh0fjhRGct5qob0Tv5CnvxemGdPyGbnw7jRzgajiOEeo+PTDUZ48XYfdTVrWnIAszIlbNNVBWyw8OcLJShetPnMzRE89KhQLAJgmBEyzWqG3olxNnnZN8b2ZLxINdKJhGu1Z110KInsAc5Xh1uw5TSTokFWSZZfN3ddFXsBCBhwhjic7L67pSxCBKLGfDpnzhW2y8MlKGXwoxKyCoUEcDn9XJis2bolVpUSMroXIcjUiiGrssVHwcPLNW2e3dB9J9XLhV71luWDqHCfnbVw4kObfu0YnCFWv4YRZjv8d6Y7/Fy0wA/1u6jLTWGoddJRXK2iXo7mJGkVTgrQqfbY1z/k3IgR4JVFlVNcLxN255XIEfbJlvSOxjNnbDNry1amg8pic7EoVfIjkrVJpBkQKa+mtnQy65q0z4xhJEUrqhxRmJBhMR1KHRt34+vQ8tupwTTjwVwxcPYB/Qfer+p/Td2pbZfiHR7fRzzG3qNzkwkWRl6xTzqClAoIkDLvv10t2jicao6ViEKw9G/W1ECz10BY3p16ouztNdXlAw/PiuRpUOosJ9YlyvQWVECf72s7+vme1ym6qVI07v9lK1NrG3VjMZAS84pQ6/w2G5eZSHJtS9bhaTHK1/SOxgbjxoe7E7pxx5thmrNV5h5hXIk40Gevlpnt1FtOiMX0p0y9JJAP1YEaYdQMBt6Jc+b2f+OOStg0nOQ2MutL7FYez1nRVife6yxE48/Ua7kChQACU4HoFBEA2ZDL6UfqxABr8nQKxSdqWCsKIHlMzTn8KMtmj7iovHiVYEFIxqqbhTWoBKyBpNyjO2zxsO9iwPv8Vi+j4KtMJCpTZTFuVxUZEkUmZFNQ1TGpHcwRNOPdap6M1zMhl5jMiFfYImNimrTigkHr9VwJkmdmlA1G3pNF3jBaKdJPza5bMbAO+esgBHLoeUdzcArsVCTKQijMlYnUD82xoT5FUFRCVmFIgIoQy+FaOwyGSUMpyMWHweLJ0YmJrswV91MHCFv1Y3CGvSEbJzLuWomUTAP2C4vCbzXuz2wya+hGovGeGZDL3OCQ5Y2cTgrJBRyLaXWMVfIypCUi5ZJg4/MCdkx/e9nJQHV0RKce4A9J6DJn5sS/fyLMEFjLrQozoK8QRLY+v3V+xlmJfVtsK9B2y4rEHOyUqdDr5CNiyO5dBqewX7BFQ+Zi4f9uYdNCdliVSGrQEkWKBQRQRl6KURDxsFkpNiuDL0U/dDaBZv9ScY5eZAR433hgdqJylroiNH7qKvbuE6mjYJMCa+TDQIkEGTGnICRYfk/GBORGUkwRQLN4GiZNFhfpf2fkgAlo52JYaOE16ssS9tBjNUiu02FFoMdr94SC3b1dWR57ng7OunatheAxGnjictIs+2zq5Shl6IXKiGrUAwTs6FXSkE+KXkO9cYUChMizOY7RSwnoxUD89ER8PrF/mJdrgCMdiKYSYlMg+VIs7UWuvzlMrK2n+Zlo9NGORuLbJhXWUwYAaPsG6sPmRPtsL9B256bL4dmsAhJruFyol2r9AStMjUx/BXMEUGvkE2T6H6XqULavGLCqQrkcPr1vU0p7UKWSZaurbu1ZUBAymByBRGk2+vjqN/QKzczkZRECRpqheWoq0ChGCat+w/Q3dwMQM5cVR2rEINYTkrGcjJaMTBKP9agw21U0MzMhbReJiWxfB/J3n7WtcGBRm17XqHYy0ZFZPtxaHNr27Kc/3IJDb02mpLeIyVIegfDLFfglAROYwfs9SeFS/Plud9lSd51dmsasqBpojq1skYGQy9ZJlk6N5r0Ywcy9IowNU1dytBL0QdJmmyFQlxObDbpx5Yq/ViF85iNEkLRmYo2ZOkQKuzHnJBdEOMJ2S010D1ABU0s30eyJ6NlTyg7jSzLbs3IZui1Q8KkdzBE0I8tl1A/1ucz7rOiTCjIdDaegdhaI56h12DtklPPMP1zUxM0qQRR6TAnZMum2/a5Sj9WEQyVkFUohsmJTSb9WFUhqxCAPSdC15mKNnpX3ciw1FRhDz6fkZDNTobpkizrtIqBqpO6PcYgf1JO7BnjbZAsudUb2RPKTiNjQrtcNkOvKLlGdf1YcK5CVrbqaNAqehs6tG3RJ/xEuFbNhRZjMiE/DEMvu55hJ9qNSu2yAkhwSL4jFDrL/YZeiQkkz5pi2+dWnejo2R6Tk2Lb5yrERiVkFYphElAhO1dVyCqcRyZdrkgTLVU3ishzsBGOtWjbC4rl0Fi0koHaiQBjvBi7j9we2ORPcEwbBVkSjpliubo5EoiQgAkXfSIyIQ5m5TkbSyjImPQOhl4hm5Hk3CSfbNXRINf5FyHWPSegyV9cOVib1NUNFX45IjslFmRZWeBtacO96yAAySWTcSUnDfIbkcNcITtGGXop/MT4cEShGB4+n88w9MrPJzU/3+GIFAp5dLmsQMaBtMIelH5sIAMZepnvo1hL6FXWQqdu6CXpd9fPX1qi2MtGRcTjNRJc47PlWGXR7oZttdr2rNGQnOBsPKEQDc/q6hY41KRtn1To3CSfnoyPd8FsCZLxINf5DzD0cuiZEE5SeEuNyZTSIf1YkZ+dnZt2aEumgOR59hl6ebw+jjZoyxdzM5Shl8JAgke2QiEmPo+Hg//6N+5GzTljROlshyNSKDRiuUJWlg6hYnh4vPDOATjaAoUZsGj84EYmKiFrYDYpmZEL6aYCEY8X/m3Iq0mx/DmSyN5+1rXB/gZtu6xAHoMfUdhZB636KgtJzv+WGvBo+QUplqx7JUx6B0ME/djObm0SCaBkNKQkOhNHuMjSV+vqhs3+Z+W0UZDplKFXiAlsjxf+aizctPX5LUuFbMfGbT3byWX2GHp5fT4+2t9Et1drqItG2FeVqxAflZBVKIbA4dVrKL/7B7QfMZ4+x99fx+HVayi+aJmDkSlind5GCYPpTEUbsVzZFyusqoRb18LhJuO14ix4YCmsKOn/98wJ2VMdGjyLwhaTSYn5Pgl2bK9/AX57wcDHNpqQfYXBBsnjdxpZEkVmzEvWZZhAkTHpHQwR9GPN5owyJOMhsJ9akAFFWc7GMxBba03Vpg5eq6HI0AR7ft//rqYDb8fz22zoNVPglRmd5Tt6tu2okK043MIL5bU0tnt6XttZ3U7F4RbmFMfYIE0RFDVvrlCEyeHVa3j/+hsCkrEA3S0tvH/9DRxevcahyBQK2FMPjbrOlCSd80hhrroZlw256c7Go4g8qyrh8mcDBxwAVU3a66sqg/9eZ7cxAJw2St6KrEgRLOnU37E92jzwsY02zMdGlgSHGVmqlERFxkm9AFMnCRKysk966Kw3V8g6dK/JqB+77wTo3kain38RJmjMCezCDCjM7LtPf8/v4232PL8bO2B3vbY9VxJDL1dqMknTxlv6WRWHW/jz+8cCkrEAHW4vf37/GBWHWyz9fIUcqISsQhEGPo+H8rt/0KM9E4zyu+/B5/H0+75CYSUy6XJFmoCqG8E7+Yrw8Xi16o9gra/+2m1rtf16U37MqHKJdbkC6NtODOfYRhPdHtjkX546ZSRkS27opdrB8JFRsmKjKSErQ4WsjMe4Nz6fIVkwMhUm5jgTh/ncyzKBJNOkkQgTNHtPmAotghwvEZ7fsqzM8NQ10H1ACzZ5zjRcCdYtFvf6fLxQXjvgPi+UH8c7QE5BERuohKxCEQa1H6zrUxkbgM9H+5Ej1H6wzr6gFAoTsTwYj+VkdCzwzoG+1R9mfGgGK+8c6Pue0o8NRG8nXGhVVcM5ttFEZS10dGvbsraf5mWjytArPLxeI8E1NgtGS7DKwuM1NC4n50CWBJMIIiS5hsuhRqhp1bZPLgKXy5k4ZJOrALkqpEVYMTFYv16E53cokgoiYKdcwb7a9j6Vsb1pbO9mX227pXEoxEclZBWKMOioronofgpFpInlpGQsJ6NjgaMhruwKtp9KyBp0dUOF/xE1PRcykod3bKMJ2dvPE+1aNRVoyRmRl42KyK56aNFMsKU5/zvroM2/MkSGhJxZWkiWpHcwPhJArsDjNSr6J+XIU9EvS4W022NMdkx1cMXEYM8lEZ7fsjw7O8pNhl7zrDX0auoIbbVsqPspoheVkFUowiAlPy+i+ykUkSQUnaloRpYOoWJoFIbofRBsPz0hm5oAc2K8eQ4wKfFPXAzn2EYTsiy77A+ZlgKLiIyTeuWSLVnfVQ/NkiW9g2HWj3XK0GuXZMl40Pqpel8tL10znxWVylroFMzQK1i7JMLzW48xOR5KRlv3OcOlc+P2nu3kMmsrZLNSQpsRDXU/RfSiErIKRRiMPm0BqUWF/a9NcrlILSpi9GkL7A1MoUAzSmjQjRIkHugMhWipulH0z6LxUDyAG7ML7dwv6uXRcKwZ9jdo26eMUVWDwaqT9GPb36rb/o5ttCHLssv+kDGhKBIyTurJZuoULddoQIXsGGdi2CiZmRvAgQao96/QPmmA4ZQIiHCtmgstCjKgKEgfyOnnd2OHNtECmqFXoqB9LJ/PR+dGrUI2LjuDxEnWLpeaODqV7NSBD0Z2agITR6daGodCfFRCVqEIA1d8PGU/vtf/Q69Hn//nsh/fgyte0KeRIqqRSZcr0kRL1Y2if+Lj4IGlwd/TW+OVS7X9zKyrMrZjXa4AgrcT5mPbe1A30LGNJro9RrXh5BwYIeEYKRq0OZ1EhARMuMhm6iRj0rs3ZkOvggznqjwDkvESnHuQ6/yLEOu+E3BCL7To5xw7/fzeKMnYw3PsOJ4aLXOcXDYDl8WzAXEuFxeXDVwufHFZLnEiz0oobCGKu9YKhTUUX7SM0x9/hNTCwOno1MJCTn/8EYovWuZQZIpYRxZdLiuQcSCtCJ8VJcHPb3EWPHeF9n5vlH5sIP2ZlKwo0Y7hmF4VOAMd22jB44U/b4J2v6GXLMmN3ujnNiXB2WWjHi+8uQ/+VqH9b6W7d6Tweo1KtOIsyJNAnsPnM5Ih+elyyBTJLgsCsKfeWI10ipOGXhJWyMrUVxNhxUSoSWEnn9+ySOXo1bEAyXOn2/KZc4oz+PzpBX0qZbNTE/j86QXMKZbgQaOwnASnA1AoZKT4omWMueB8aj9YR0d1DSn5eYw+bYGqjFU4SixXR4lQyaCwB92YIj0RHv2UVp20aHz/1R/rTAnZBQ4tLRUFs0nJtFGQmRz4/ooSWD5Dc2M+2qJpzg10bKOBVZVw69pAl+pX9mivy5SEbmiHPX5Dr7n5zklzBDuexVlaBZfIx3O3eZWFJM/Pqiao8y//lkFDVMakdzBE0I81J+PzJEnGgzx9tW6PYZg2xUlDrzAS2E49v2VZnddh1o+12NDLzJziDGaNSWdfbTtNHR6yUuKZODpVVcYqelAJWYViiLji48lbeIbTYSgUgN8owd9xyxfcKMEKNsRwMjqWONYMR5q17QXFcFXpwPt7vPChX7JgXHZw/bVYYmuNyaRkgOWPiyfaF5OTrKqEy58FX6/XGzu112WqDBahSqm/41nVJP7xlCVRZEY2uYI9J6CpU9sWOXEzGCLoxx42JePnFYitxapj7qeOThtYE95pKmuhw79iwslrNdy+rRPPb7Oh1yyBTVM7y42EbMo8aw29ehPncjE5L83Wz1TIQxTXPCgUCkXssL/BpDPl4BI6JzBX3YzJhHxJq24UgxNuJcbWGmj1u1AruQI5k05W4fFqlZy9k4dmblsrx3J7cH4p+EDHU39N5OMpwvLkcJHa0Evi9me9SZfcqQpZGfVjDzUaSWTR+6kirDjz+Yw48tL7yhGIQHMn7KzTtkvzBTf08idk40ePJL5I4MyxIuZQCVmFQqGIAmTS5Yo0AVU3Eg/yFIMT7oBe6ccGEsvtRG/eORC4rL43PuBQk7afDDidbJf9eMqy7NaMbBWyIiS5hovHNAE8PhtGpzsTR7mM+rES3WMiTB4caIB6PYFdKGYCe+NRY8JN5Hu6e18V3gZteVXyPOsNvRSKcFAJWYVCoYgCnB6MO4lKMsUO4Q7oVEI2kI8lrKqyCl2LOFL7OY152agThl4yH0/zKouiTCiQRPJHr5LMSILJOc7GEgrR8KzeftxYdeFUdSzIl4wHMZKcoSLC5IEM/XoZYgToKDfrx9orV6BQDIZKyCoUCkUUEA0DnaEiS4dQMXz06zwrGSaFkIDQE7KJcfJUEVmF2wOb/IP4qQ6alIhCYYjSJqHu5ySNHbCrXtueW+DMslGZj+deCbVNT7TDgUZte24+xAk+ovP55Ex690YE/VgwkvGZkiTjQYwkZyh0m56Vk3IgJ9WZOGTo18sQIwTqxyaX2WfopVCEguCPb4VCoVAMhgw6U1YiS4dQMTyqW6DKb+g1v3DwBERDO2w7rm3PK4SURGvjE51ttSZDLzVxwaLxmqlMfwsXXcDYLG0/0dkowFJgmY+njJN65ZJVSO6p18zyQO7ntAj6sfVtpmR8gfjJeAg09BqVqplsisr249AugKGXDO2SHmNSPMwWWJa1c6PJ0KtsuoORKBR9kaAJVygUCsVAHGwUX2fKKqKl6kYxOOEm3j80DZyVXIFc+n12EB8HDyzVtns3mfrPK5dq+4mOCJVn+vEMZuol+vGUcVJPOkMvCZJLobBegGtFRv3Yw01Q26Zty2To5dS1ak5gj07TJrtEo7kTdvgnvefkQVKCs/H0h8/joXPzTgASxhYQnytJSbkiZhCwW6RQKBSKcJBJlyvSREvVjWJwwh0kKf3YQGK5neiPFSXw3BV9VxUUZ2mvryhxJq5wEeXcriiB6+f1fV304ylCAiZcZNMQlTHp3ZuubmMp+7RRMMKhpeyynXuQ6/yLEOvBRqjTCy0ETWCXHzMm4ERuN7t2HsDXph3M5DKlH6sQD0HnMhQKhUIRKiJURzmFjANpxdDYEGaFp0rIBvKxZBV1drGiBJbPgHcOaIZThRnasnoRKzn7w7xsdJYDhl5m9KW+AD/+BCwcK/bxNK+yKMyAQklWWehVkglxzpi4hcuGKHhWb6kxZF8cNfSSsC2Xqa8mQp9ahKTwYITbJ3OKzo3beraVoZdCRFRCVqFQKCRHho6bVcjSIVQMH/06z0yCKSMH3tfnMxKyeekwYYSloQmP2aRkco5zlV2iEh8Hiyc6HcXQaOqAnXXadmm+88tG9fsuJQG+tdAZg7Fw2HsCGjq0bdETRTrtbk0TGrQEfLLgozlZk969CTD0cjIh62/LEyVJxoM8/VSP15jsmDgCRqY5E4cMExiirMwYDLOhV8o8ZeilEA9B56sVCoVCEQpmQ6/cNBgrsFGCFZg7hLFWHRxL1LbCoSZtOxRDr111cMKfZDmtWMzlfnayzWxSIvDASRE+Zj1JpxMdNS1aghO0CkLRk7Eg5zNkSw14/GuFZViyvu+E0R7L3P6Y9WOdqpBt69JMp0AzUXJ6AiYUzP3UkakwfoSj4QzI9uPQ5ta2nWwPRKjSHQw9xsQ4wQ29ynf0bCfPVYZeCvFQCVmFQqGQmEONcFw3SohhQ6+CDCgS0PRAERnCrcRQcgWByFKdpAgfkZYCr5PQSE9GszvZlqzLkFwKBb1CNs7lXCK8oga8/mR8mQTnHuBIM9S0atui91NFqPo0G3qNSoVxAhZatPaaGBC1St/X5aZz624AEqeMIy4z3eGIFIq+qISsQqFQSIxIg3G7Cai6kXiQpxiccJMmKiEbSCy3E9GOSMl28323YIxzcYSDCAmYcDGbOsmQlBPpGh0q7W6oqNa2S0ZDepIzcQQk4yU5ljJVoYswQXO4CWr1QguBDb30iQGR283Oyj3QpZU8K/1YhaiohKxCoVBITDQMdIaKSjLFDkOtkI1zOWu+IgoyDYgV4WE29HJ62ahsEyHmVRb56VAkibZpuWwJ2Sh4Vm86ZshEiKAfC3JUR4Nc518E7VYZ+vUyxAi9DL3KlH6sQkxUQlahUCgkRqaObqSRpUOoGD76dZ6RBFMHMfRq7YLN/kqm2XmQmWxtbKJjNimZlAM5ytAramjuhB3+ZaNzHNaT9HhhvV+yYEwmFAu4zLY3+xsCtU1FrETrjcdrtG+TcyArxdl4BsO8/FqmpHdvRNCPBaNC1gXMlSUhK0lfzeM1ju/4bBjlkKGXDP16GWIE6NxoNvRSFbIKMVEJWYVCoZAUGXSmrESWDqFieBxvhYON2va8gsENvT4+YlQyyVClZzXbzYZeAg+GFeFTfgz8l7rjlc/baqG5S9uW5b6TJVFkZmedYTokw5J1GZPewfjIdK2c4pAcR7dH05AFmDJSnslGva+WkwITc5yNZSB21kGr/95ysk8pQ7ukx5gQp00GikpnuT8hmxBP0uypzgajUPSDSsgqFAqFpFRJoDNlFdFSdaMYnHAT77Itm7YaGTUyFaEh0rmV8b6TcVLPrCEqhVyBBMmlUNCrvxPjoDTfmRi2H4cO/+SaDMl4gCNNcKxF254vk6GXQ8fX5zPapZGpMH6EM3EMRGsXbDMZeqUkOhtPf3hb2+nasR+ApBmTiEuVZAZDEXOohKxCoVBISrQ4Fw+FaKm6UQxOuIMkGRNDVhLL7US0I4IBjY6M950ICZhwKZdMQ1QETc7h0txpOMqX5jvnKC/buQe5Jj1EiLWqCWpa/TEImsDeXG0y9BK43eys2AVeL6AMvRRioxKyCoVCISkyDiYjxQaBEhEKawlnQO/zwfv+xFB2MkwfZV1csqAMvaIX/dwmxsEch6r2dPSEbEKcHNeZuRItLx3GZDkbT6gEmDpJcJxFmjQYKhuOGtIgjurHSnbuQa5+qgjPShkmMERamTEQneWGoVdKmUrIKsRFJWQVCoVCUkSYzXcKWTqEiuGjX+fpiTBtkATroUZjeeSC4sH1ZqMdj9cYxE8Y4ZxJiSLytHYZVXuz85yr2gNo7IDKWm17bj6kJTkXS6gcaID6dm1b9KXUOj6fIVmQnw6Fgkv1mKWFZEp690YE/VgIlKtQFbKRxWt6Vo7NgtHpzsQhw4oWWSZZzIZeySohqxCYGB+qKBQKhZyYBzo5KVqyJZaQodOqGD51bZo8BWgVQfGD9FpkXDZtJTuOGwZAIg+cFOFjNvRyOtGxvsqIRZb7TpakgpnDTVDnTyLLUCF5sNGIV5akdzB0/VhwrkLW5zMShkWZkJfhTBzhovdTs5NhkuCGXi1+U0Jl6DUweozxLudXZgyEnpB1pSSRNHOSw9EoFP2jErIKhUIhIUeaoVrXmYoxDVVzMnp0GhRLWnWjGJxwpSlUQjYQWaqTFOEj0sBdxvtOxlUWZg1RZehlH+v93yM1AWaNdiaGAw3Q4NfNl6U69mgzHJXF0EuQCRo9jpwUmChgArvdbayGmJUHqYIaenkamnHv0x5MSbOn4kp0cAmJQjEIKiGrUCgUEhItA52hYK66ibVkdKwRbtLEnBg61cGlpaIQy+1EtCNSsl3GhKyMOuSyLVkX6RodKvVtsPeEtj2vEBLinYlDRv1YGfRQdUSI9UiTIbkkagJ70zHwyGDoVW7IFSj9WIXoqISsQqFQSEg0DHSGikoyxQ7hSFN0dhuDqmmjlF4qxHY7Ee3o7WBCHMzJcy4On89IyI5KhckjnYslVMyGXrlpMDbb2XhCRbakXDQ8q836sY4aekmWjAe5zr8IscrwvJYhRoDOjYahV/I8lZBViI1KyCoUCoWEiNB5dApZOoSK4aNf52mJMCN34H03HYNOj7YtS5WelXi9xiB+fLZKUEcTrV2wzWToleLgstE99caKhdOKxazq6s2hRjjepm2fJGglWjD0+zkjCSYLuJzZjKxJ794EGHo5mZCVLBkP8vTVvF5jMrc4yzl9Xhn69TLECNC5aUfPtjL0UoiOSsgqFAqFhOidxxGC6kxZiSwdQsXwqG+DfQ3adlmBMvQKl5110Kobegk8GFaEz6Zj4PUvG3Xa1FDG+06WRJGZ+jY40Khtz82HOMFHcLImvXuzXrAK2RESmbjqfbWsZLEnEHbXQ7Nu6CWAfiyI2y7pMca7YK7AldoduqFXRhqJU8Y5HI1CMTBK4VihUAiNz+Oh9oN1dFTXkJKfx+jTFuCKd0jESxBkMkqINE5W3Xi88M4B7dgXZsCi8YMnCRVDRxl6DQ9RTEoUkUekcyvjfSfjpN6mamNbhgpJGZJLoaBXyGYmaVI4TlDbClXN2nZZgRx9vuoWI+b5hWJPIIhyrert0ogUmCRgArvdDVtrtO2S0eIaenVX1+E5ogWaPHc6LpEvPoUClZBVKBQCc3j1Gsrv/gHtR4zeUmpRIWU/vpfii5Y5GJmzyDiYjBSHm5ypullVCbeu1T5fpzgLHlgKK0rsiSHWCHeQpCeGUhOc1dQUBXM74XQVpSKyhGt2ZyX6fecCTpHESE+UBEw4yKYhKqNpWm+ONRvP/JOKnEsqms99mQTnHuTqp4oQqwyFFhXVJkMvgdvNAEMvpR+rkAA1ZaBQKITk8Oo1vH/9DQHJWID2o8d4//obOLx6jUOROY+Mg8lI4UQiYlUlXP5sYDIWoKpJe31VpT1xxBrhDOirWwx5g1PGOOeELRKx3E5EO+Zlo6X5zsXR1mVUbpaMhuwU52IJFZ/PeI6MTIVxkmibyqYhGg0TQkLqx8qSkJXo+SNCrDJMYIRjsuokAYZeZTMdjEShCA2VkFUoFMLh83gov/sH2sipz5vaa+V334PP47E5MjEQYTbfKexequvxapWxQa7EntduW6vtp4gs+nWemjC4odc6CZdNW4nZ0GtsFoxOdzYeReRo64LKWm17Vp6zy0Y3HIVuf9sny313uAlqJdQ21e/nxDiYNdrZWAbDLC00MhXGj3A0nCEjmn4syJGMB3n6qWZDr6JMyBfA0EvUZKcs51TXjwVIVhWyCglQCVmFQiEcx9et71MZG4DPR/uRI9R+sM6+oARCH+hkJ8Pkkc7GYjd2d1rfOdC3MtaMDzjUpO2niBwN7bDnhLZdVjB4xauMOpZWsstsUiJ4dZIiPDZXG4ZeTg+KZbzvRJJ7CJV2N2w/rm2XjIYkwQXnqpqgplXblinp3ZuAClkH5Tj0Ctnk+MEnJ0VB76dmJsEUgfupe05AU6e2rQy9BkaPMc4lrnSGz+frkSyIG5VNwlhBA1UoTKiErCIs3G439957LzNmzGDWrFnMmzePSy65hPLycqdDC4lf/OIXXHjhhT0/Nzc3M3nyZF5//XUAFi9ezPPPPw/APffcw2233dbv3/rGN77B3//+96DvPfTQQ3zxi18E4IUXXuD2228PO9bVq1ezePFiAKqrqzn11FPp7u4O++/ISGdNTUj7dVSHtl80cawZjpiMEmQd6AwFJ6pudE2vSO2nCI0NQ9SPBVggiY6llchSyaIIH5EG7jImZGVYGtybLTWGdqMMFZIiXaNDxeeD9VXa9qhUmDDCmThaOmFXnbY9Jx8SJZDjqWkxJrLniW7oJcgEjR5HVjJMFtDQq8OttUMAM3MhLcnZePqj+9AxvPWNACTPnYErlgZJCmkRuIlUiMi1117Lxo0bef/999m6dSsbN27ka1/7Gjt27Ai6v8eGJeXhJCnvvPNOGhoaeOyxxwC44447uOCCC/jEJz4R1mdWVVWxZs0aPvOZzwy678UXX8xvfvObsP5+b/Lz8znjjDN4+umnh/V3ZCE5LzRHnpT82HPuiYaBzlBxouqmMMTla6HupwiNcLTKPF740D9wHpcNRVnWxSULsdxORDsiJdv1hGxmEswUfBm9joz3hmyGXiJdo0PlUKMhbXFykXOT35uqDXkkGc49yDXpIUKs1S1QZSq0EDGBXVFjyNOI3G52blSGXqISK0VlQ0HAW14hKrt27eJf//oXTzzxBDk5xvTdOeec05OYfOqpp1iyZAmXXXYZc+bM4cMPP2T9+vV84hOf4OSTT2bevHn84x//6PndRx55hGnTpjF//nx+9KMfBcxkvfTSS8yfP5/S0lLOPvtsKis155w333yTWbNmcf3111NWVsYzzzxDfn4+bW1tPb971VVX8fDDD/f5DnFxcTz11FN8//vf5+GHH+bNN9/k5z//edjH4oknnuCyyy7ribe5uZnPfOYzTJ8+nTPPPJOKioqefZ966ikuueSSnp///Oc/s2DBAubPn89ZZ53Fpk2bAK36+Oabb2bq1KmceuqpvPHGGwGfeeWVV/LII4+EHauM5C44hdSiAXpGLhepRUWMPm2BfUEJQjQMdIaKEwPpReOhOEtzEA+GC02jc9F4e+KJFcK5zrfWQKtb25alSs9qYrmdiHbMhl5zHUzQHG40kginjoF4CUYUZkOvnBTnqh7DRTpDLwmT3r0RRT+2XLJzD3KdfxFileF5LUOMAJ3lJkOvecrQywl8vfxfmpubOeOMM3jnnXccikh8JOg+KURh48aNTJkyhZEjBxYDWrduHT/5yU+oqKhg5syZfOUrX+GZZ57ho48+4pVXXuHOO++kqqqKLVu2cM899/D222+zYcOGgJmTmpoarrrqKv70pz+xefNmvvKVr3D55Zf33OTbtm3jC1/4AuXl5VxzzTWcc845/OUvfwG05f2vvvoqn//854PGN3XqVG655RZuvvlmHnvsMdLTw3c7efPNN1mwwEgG/vCHPyQ5OZnt27fz3//+l7fffjvo77377rv87W9/6/nO9913H1dddRUAjz76KDt27GDr1q3873//Y8OGDQG/e9JJJ7F582aamgYQtIwSXPHxlP343n7e1FJjZT++B1e8BGu3Iky4S7mjCSc6hPFx8MBSbbt3Ulb/eeVSOZIRMqEPklISNM3EgZBx2bSVeL1GAqc4C/JU9XbU0O7WJiBAq0h10tBLxvvuSDNU66ssHKx6DBdzhezcfOfiCAVZk969EUY/VrLqaJAneefzGX3qwgwozHQmDhGSwoMhQ4zQy9CrTFXI2kFTUxM//elPAbjiiiv47W9/G/B+e3s727dvZ/78+U6EJwVqCKkYMnv27KGsrIzp06dz7bXX9rx+xhlnMH36dADee+899u7dywUXXEBZWRnnnHMOADt27OD1119n6dKlFBRoPYwvf/nLPX9j3bp1zJkzhzlz5gBw9dVXc+TIEaqqtHWpkyZN4uyzz+7Z/9Zbb+V3v/sdAH/84x+58sorycgIPgr1eDz85z//obi4mI0bNw7pux8+fJj8fKNX/Nprr3H99dfjcrnIzs7uSbL25t///jebNm1iwYIFlJWV8fWvf536+nra29t57bXX+MIXvkBSUhJJSUlcd911Ab+bkJBATk4OR44cCfq3o43ii5YxasEpfV5PLSzk9McfofiiZQ5E5TxmowQRdaasxKkO4YoSeO4KGNNrKXxxlvb6ihL7YokFGjtgd722PTdfGXqFiygmJYrIs7na0BJ1+tzKeN/Jkigy4/Fq5x20Z35WirPxDIasSe/e6PqxAKc4mIDSJ9fiXFAqeDJeR++rZSTBtFHOxjIQe09AQ4e2LYJ+LIjbLukxCm3o5fXSuUmTUIwvyiMhX+CLTzKOHz9Oa2trz8+VlZXMmDGDmpoaXC4X3/ve96itreWaa67h8ccfD5CyfP311zn33HMDVjIrAhHcp1MhAh6v32k8bR47d+3meN0JckflMHnyZMrLy3nqqad6jLCAgESoz+dj1qxZvPfee33+7pYtWwJ+Dkd4u3ey9dRTTyUtLY033niDRx99lFdffbXf3/3FL35Bbm4uzzzzDKeddhoXXnghU6dODfmzAdLS0ujo6Oj3/f6+i8/n45prruEnP/nJoJ8R7G90dHSQmpoaeqCS03lcczJwJSZyyspfklpUyOjTFsRkZSwEGiWIqjNlJXolgxNVNytKYPkMrS082qJVUywarypjrWCohl6JcfJUEFmJeXA3mP5uLKL3aWS8j0UxoIFeRnqyJGQlqfIys7MO2v0LyGRYsi6CJudw8XqNCtnCDOd0yd0ew0hp+ihxjZTMHG+Fg5qnEvMKxO6nipII3WAqtJgy8CJUR+jsNq7DGbmQLuh16N59EF+LlvRT+rGRwefz4XK5uPrqqykqKuInP/kJhYWFfOtb3+Kmm24iz+/5Ulpaynvvvcfy5cv57W9/y5NPPsl3vvMdRowYwRtvvEFeXh6FhZI+EGxA4GZSIQKrKmHCSljyJ7jzo6l0TF7O2CXX8+cPGnr2Mc+Y9OaMM85g3759AQnS8vJyurq6WLJkCS+99BI1NVor//jjj/fsc9ppp1FRUdGTtP373//OmDFjGDOm/3VDt956K1/4wheYOXMm06ZNC7pPRUUFDz74II888ggTJ07knnvu4brrrsPr9YZyOHooLS0NmP0555xzePLJJ/H5fDQ1NfG3v/0t6O9dfPHF/OUvf+HgwYMAeL1ePvroo56/8Ze//AW3201XVxdPPvlkwO9WV1fjcrkYO3ZsWLHKiru5mZY9ewEYMbuE8Z++jLyFZ8RsMhbkHExGiiNNcKxF23aq6iY+DhZPhCvnaP/LksSRjXAGSQ3tsO24tj2vEFIcXMItCrHcTgyGuU9z1T+1/yes1F6XgY8FSXZ1dRuxTM6B0eErPzmCKAmYcJBtyXo0TAjtOQGN/lUGTsoVVNZCl98bWYZkPMj1/BEh1tpWOCR4ocWWGnD7h8ki39Od5Sa5grnTHYxELrxeLx6Pp4/2KxjFYS+99BItLS3cd999/PWvfyUpKYnTTjutZ7+pU6fy/vvvA5ph+v79+3tyIV6vt6eYzA6zdxkR8LZXiMKqSrj8WaMiD4BLnqIjZw5fuGgBY6fM4swzz+TVV1/l29/+dtC/kZOTw3//+19+8pOfMHfuXEpKSvjOd76D1+tlzpw53H333SxcuJD58+fT0dFBdnY2AKNHj+aZZ57hC1/4AqWlpTz88MP84x//GLCK9vLLL6elpYWvfe1rQd93u9184Qtf4Je//GXPLM2NN95IcnIyK1euDOvYXH755bz00ks9P3//+9+nvb2dGTNmsGzZMs4888ygv7do0SLuv/9+Lr30UubOncusWbP4+9//DmiSDVOnTqWkpIQzzzyTsrKygN9du3Ytl156KXEiPq0toGHL1p7tnNJSByMRBxkHk5FClESEwnrCqZD90LSsVJZl01YTy+3EQATt0wBVTdrrMiRl9XvD6WWjm6uhw1+1KdN9pz9HRqTAREkkf8yGXqIuFTYjQpJruJjlCpw09JItGQ9yPX9EmDwQIYbBkOWcdpr1Y5WhVx/6S7zGxcURHx8/4OpegAceeIC8vDxuvfVWSkpKWLBgAW635qg7b948ysvLATjvvPNYvHgxf/nLX9i/fz8NDQ09ydv4GC6qGgglWaAIiscLt66FPnMl8Umw5F5cS+7FlQVv3RZYJfbFL36RL37xiwG/Mn/+fF5//fWgn/P5z3+em2++GdBu9NNPP73nvaVLl7J06dI+v7N48eKem95MeXk5o0eP5sILLwz6WYmJiX00Y10uV0D17ptvvtmzfc899wT9OwAXXngh9957L4cPH6a4uJjMzEz+3//7f0H37X1MPvvZz/LZz342aHy///3v+/3Mxx57jEcffbTf96ONE5sqerZz5s5xMBJxiIaBzlARaamuwlr06zw5Xhl6hYvZpKQoEwocMikRjX77NGivuYDb1mqyJKJWvne4jWWjM3OdXb4s431nXmUxv1AebdNyU0JWhipJ/Vk9IgUmSZL07k2AoZcA+rEgx7mHwH6qqAlGCHxW5qdrz0snkKFfL0OMAB3mCtkYNPTq6uqivr6+x5unN/0VdL300ks8/PDDNDQ0cP7553PTTTcxYsSIHrkCl8uFz+ejqKiIT33qU9xzzz18/PHHgJa7ACgrKwtY6XzFFVfw6quv8qtf/YoPPviAP/3pTxH+ttGFoN1OhdO8c6BvFYkZH9oSi3cODO9zvvOd71BWVsasWbNYvXp1jzFXuHzpS19ixYoVPPTQQ7ZUkMbFxfHII4+wf/9+yz8LNLmCm266iZkzY2fG78SmzT3bOaUqIQvGQCczCaYKqDNlJbJ08hXDo6lD00wEmFsAicrQKyz21BtLbUWuZLEbu/o0VlJRA93+ZaNOD4plvO9kXGXh8xlVkvnpzrnAh8rRZk2bGeRKevdmvSkhqypkw0NPcqYnwvRcZ2MZiH0n4ITJ0Mupa1WG6lM9RhfiXoc+dzddW3YBkDixmPgRgjeWFvDTn/6Ua6+9NqgsQG1tLQ899BDXXnstN910E5WV2pKgyspKfvOb3/DFL36Rn/70p+zbt48vfelLAAGVtHr17OrVq7n++uspLCwMMDCfOXMmLS0tPb8zcuRI7rjjDp544gmSk5Mt+87RgqqQVQRF71BFar/+GGoCtjePPfZYRP5OOJx00km2fVZ+fn5AwxcLnNisVcjGJSWRPUNpAZl1puYJqjNlJdFQdaMYHHNF0GCJd5/PSAyNTrPf6E1EZKlksRu7+jRWItLAXb/vUhLkcX4P1yxQBA43QV27ti1DhaRI1+hQ8XiNa2XCCMh1SB/Z6zWqo8dlw8g0Z+IIh7o22N+gbZcViLvaAMQxn9Of2RlJMG2Uc3H0R1e3NhkIWoI9Q9DcWte2vfg6ugBIjlFDr1NPPZWXXnqJ9vb2APNzt9vNs88+S2trK5/73Odwu9189rOf5b333mPr1q3U1dVxySWXADB27FgmTZoE9K2obW5u5umnn+bFF19k3LhxLFmyhO9973vceuutjB07ltraWjZv3szcuXPp7u7mjDPO4Gc/+xlz5sxRSdlBELipVDhJYcbg+4Szn0IRDu6WFpp37wEge+YM4pIEtfS0kWgY6AyVaKm6UQxOONf5rjqjwuW0YnVdQGy3EwMRDX0aUZLtta2a6RFo11iSJKUdMt4bslVIinKNDodttdCmySI6Wh279wQ0a/klKbSDQa5JDxGu1eOtcLBR255XIGahxZYaw1hO5HYzwNArRhOyc+bMobq6mvr6+oDXa2tr+elPf8rYsWNZt24djz76KIcPH2b9+vUcOXKEM844g/b2djweD8XFxWRkZLB3796e39erXn/84x9zwQUXMG7cOJKSkli9ejVvvfUWr7zyCgkJCfzzn//sMV9PSEjA5/Px9a9/ncWLFyvt2EEQ8NZXiMCi8VCcpS1PCIYLGJul7adQRJrGrZVa+RtKrkBHhM6jU8g4kFYMjXCucxmXTVtNLLcTA6H3afpDhj6NedmokwmadZLed/q9kZ0MkyWR/DHrx8qQlIuGZ7WQ+rESnHuQ6/yLEKsMz2sZYgTo2LitZzu5LHbk/cwUFxfjcrk4fPhwwOsHDhwgLS2Nl19+maysLL7+9a+zb98+lixZQllZGevWraOiooL4+HheeuklFi5c2JOE1XVkW1tb2b9/PxdeeCFJSUl4PB5ycnL43//+x9VXXw3ApZdeSm6uoVMykBG7IhBJ5rUVdhMfBw8s1ZyHe6PfXiuXir0cRSEvDZu39GwrQy+NDTGsoSpLh1AxfPRBUlI8zFKGXmFhNikpzBBfb9JO9D7NZZL2aTq7DUOvGbmQrgy9wuJYMxxp1rZlWmUhm6mTjEnv3gipHyvBuQd5+mo+nxFrXjqMGWCyzkpESAoPhgwxAnSW79A24uJInjPV2WAcpLCwkMrKSk477TS8Xi8JCQnk5eVRVFTE5z73Oc455xwAGhoaOHjwIGeffTbnnXce9913Hy0tLdTX13PXXXcxefLknmQsQHp6eo95uc/nUxWvEUYlZBX9sqIEfrgEvv9G4OvFWdrAZUWJM3EprMXj1YxNjrZog/pF4+0fpDb49WMBcuaW2vvhgqJ3itITxdSZsgqPF17abfxcJoleoSJ8mjsNQ6/S/IGXQnu88Moe4+dYm6QIxr4T0OCXcFDHoy8rSrTjYp7cAjn6NBXV4FaGXkNGlkRRb/SkXGYSTBZcO13WpHdvzBWyTl4rMlfIpiVqE0eicqAB6v3azCc5eK3KIPHwsQQTA972Trq2aUvsk6ZPIC491eGInGP69OkcPHiQuLi4Hg3YyZMns3TpUn7729+yatUqjh07xo4dO/ja177GTTfdxPe//302btyI2+2mtLSUzMzMgGRsb1Tla+RxNCE7YcIEDhzoa2l7880387vf/Y6Ojg7uvPNO/v73v9PZ2cn555/P73//e/Lz1YjcLvQqjIVj4aunOpegU9jDqkq4dW2gG3VxllZZZOdgtXHLVgBciYlkKUMv6trggK4zVRg791+w6/GcP9t/PSrsYeNRze0eBq7EWFUJt7wIVc3Ga3MeVteFrEknu/D5DL2+rCR4+CIoypSjTxNwbh0cFHu88GGVtj0mE4qznYslHGSp8jJTb3ruzxVUX9JMNKzi6eo2ZCKmjYLsFOdi0ZPxI1NhrAT3WX0b7GvQtkU39BLlWanHIWqhhdsDm6u17WmjIFNQX6auLbvAowndJpfFpn6sTllZGb/73e/w+Xxs27aNDz74gE9+8pP86U9/4uOPP+att95i+fLlzJ49u0fvNTExkVNPPTXg76ikq7042lyuX7+eo0eP9vx75ZVXAPj0pz8NwO23385//vMf/vGPf/DWW29x5MgRVqxY4WTIMYfewTp/Clw5BxZPFPshqxg6qyo1iQpz8gugqkl7fVWlPXH4OjsDDL3ilTOjlIPJ4SLK9aiwj1CqRfTrwpyMBXVdQGy2E+FwoAGOt2nbZ4yDq0rl6dOIUkm1rdYwGpKlOhYCEzCyJAul048V5BodDmYDIyf1Y482Q3Wrtj2vQI5qY5kS8uZnpVOx1rXB/gZtO5KFFi0tLfz5z3/mnXfeGfbf2iqJoVfHRmXopbNkyRKKi4tpamri4osvZs2aNTz55JMAnHTSSdxxxx2cf/75PclYhRg4WiE7enSgQNzPfvYzJk+ezNlnn01jYyOPP/44f/3rX/nEJz4BwJNPPsnMmTP54IMPOO2005wIOeZYMEYbwCwc63QkCivxeLVKRF+Q93xoGnu3rYXlM6wfvPoOHQavtjZT6cdqRMNAJxxEuh4V9jFYFaC6LgYm1tqJcNErOwFOlWwsYjb0cnL5soxyBWAcv8wkmCKJtmm5ZEvWo2FCyKwfe4qDbUTAuZfkWIpSxR8KIsQabgJbN1lyuVw0NzfT1NRERUUFcXFxnHfeebjdbhITE6msrOSxxx7je9/73rBjlKVP0VluMvSaF5uGXjqzZs3qKXBUyIMwGrJdXV385S9/4Y477sDlcvHxxx/jdrt7xIcBZsyYwbhx43j//ff7Tch2dnbS2dnZ83NTk1Ze5Xa7cbvd1n4JC9Fjt/s73DBf+6d9tq0frbCRtw64ONzUf3PgAw41wRt7uzl7fLB0SGRwu934Dhzs+TmrpETq+zZSrK+KR1/QUDraHfX3oijXo1U41Z6LzkdHEgAXSfE+po/s7nOdR/t1MRx8PvjYf/zy032MTul7/OxGtOt83eE4QDOimJffjdstxzXS5YGKGu3cThvlIznOuXP73kHjWXRyoRzHsLoFqpoTAZhX4MXj8eirWyOCVdf5x0eMYz1bgue+3v5kJvkYn+V8+zMUPjxsHPOyPOeu74+qjLZqzmjn77NQrvGAfmqeuNer+VmZm+ajIM2Za/VD0/No7gDX2v79+6murmbBggWAtrr4+9//PnfccQfvvvsua9euZcmSJfh8PtxuNw0NDVRXV7NkyRI6Ozt7dESHwvoQY3Sajg3+hGxSInFTxw25LRatz6IIJJrPizAJ2eeff56Ghga++MUvAnDs2DGSkpIYMWJEwH75+fkcO3as7x/w89Of/pR77723z+svv/wyaWlpkQzZEdSsh8IK3q4fA5w86H4vvlNO69aqQfcbDr4Dh3q2tzY3sW3NGks/Twbe3XsOkE5KXDd7PlzDfgmWrw0Hka5HK1HtuUG7J54dxy8EYGxSI6++9FaffWLluhgK1Z1pnOg4F4Di+GpefHGdwxEZiHKdv7RrIaA5zTRWvsqaXZ0D/4Ig7GnLpsuzGIAC72HWrNngWCyv7VgCZBGPl5pNa1lTEcHMpkV83JgHnA7AiPa9rFmz1ZLPifR1/r/d2rFOcHk5+NGLHI0TMxkC0OBO4nDzBQCMS6pj7YvvOhzR0Hh9x2Igmzh8VDt4fa/ddzKgleg27XyLNQdbHImjNwNd4+/u+SSQQZKrm/3rX+SQS8zrtbYrlbr28wAYG1/Diy9+4Egca0znuHXX26w53BzUSGnNmjW8+OKL3HzzzcycOZPnn3+etrY2uru7mT59Oi+88AK333475557Lj6fj7fffpukpCTWRGDs9PqOswDNTbBm80us2do97L8ZaeLaOinZo40b24pG8eKrw2+HRemzKAJpa2tzOgTLGHJCdvfu3ezZs4ezzjqL1NTUAd3YQuHxxx/nggsuoKhoeDXx3/3ud7njjjt6fm5qamLs2LGcd955ZGVlDetvO4nb7eaVV17h3HPPJTEx0ZbPPNgIKQmQl27LxykcJP2Ai1/39dfrwwWLyjh7/FzL4nC73az5wY8BcCUkcMH11xGfEtsasnVtULNRu+fnF8XxqQuXORyR9YhyPVqFE+256Lx7yIVvs9aHWDw9i2XL+l7n0X5dDId/bnOBXz/3/NLRLDvb+XZCpOvc44Wrt2hd3nFZPq5a/klH4wmHxze6YIe2fdFJRSxb4Mz69cYOOLRRO4ZzC+DSi853JI5wKf9fHGgG3Fx2xgSWzR4f0b9vxXXe7oaqcu1Yz8pzsfyiCyLyd61i7W4XbNG2z52Vw7JznG9/wqXNDYf8x7wkz9nr+87fa3GkJfr40iVnOS7BM9g13tABx/z91HlFcXzqQnGv1+e3u8A/J3PenFyWLbH+Wu2dI/H5fNz2kFZ5mtKyH19tJctuvCHo7y5btoz/9//+Hz/60Y946KGHePXVV3nllVeYPHkyADk5Odx+++3cc889ZGdn8/TTT3PDDTdwwQUXDCsv4/bAwc3adThlpI9Pf+q8If8tK+l4dyM1/u28s09lRpC+Y6iI1GdR9EVf9R6NhJ2Qraur4zOf+Qyvv/46LpeLXbt2MWnSJK6//npycnL41a9+FXYQBw4c4NVXX2XVqlU9rxUUFNDV1UVDQ0NAlWx1dTUFBf13RpOTk0kOYgKUmJgYFTeXnd/j3rfhz5vh/nPhmwtt+UiFQyyZBMVZmjFOsDltF9r7SyYlWNox7G5rw3dUq4DPnjGdlMwM6z5MEiqOG9snFcWRmBj94piiXI9WEy3PpUiwqcbYPqU4+HUeK9fFUDAfv1OL40lMjHcumF6IcJ3vrIFW/2q3U8a4HI8nHMqrjW0nz235QeO+O32sPM8i8/FbMDYBq059JK/z8hrw+A/2vELxr9eA9nuMWO1PqFQeM475qQ62EY0dsOeEtl2a7yIlWZxz3981XmEsbONkwfupdj4rjx07xs6dOznrrLMCXq9vg/3+3NKcsZn86If3cvllK9iyZQvnnntun+Tt5z73OZqamrj99ttZsmQJEyZMIDExEa/Xy8UXX8yvfvUr/vjHP/Ld736XgwcPUlBQQFJS0rCK5SrroNNfIH5ykbhtUEvFrp7t1PklEYlThD6Loi/RfE7CbjFvv/12EhISOHjwYIAEwGc+8xnWrl07pCCefPJJ8vLyuPDCC3teO+mkk0hMTOS1117reW3Hjh0cPHiQ008/fUifowgPXXB8Zq6zcSisJz4OHlga/D39Ub5yqfVGOY1bt2kCTyhDLx1R3LXtxHw99u5K2nk9KuwjFEMYdV30TzQY6liJ1IZepmdAmTL0ChuzoddUSQy9NprOuRSGXlHQT1lvaiNOdvA7bJLMzA3kOv9Wxerz+eju7uZf//oX3/jGNwDYtm0bhw4dCtivubmZv6z5AD78HTQfwf3mfdTX1/OpT32KBx98kOPHjwfsrydUly9fTn19PeXl5WzdqpX4ev0GyN/85jfZvHkz99xzD2VlZWRmZg77+8jSp+jcuL1nO9YNvRTyEnaF7Msvv8xLL71EcXFgb2zq1KkcOBDCWsJeeL1ennzySa655hoSEoxwsrOzuf7667njjjsYOXIkWVlZfP3rX+f000/v19BLERnauzQn66212s8lKiEbE6wogWcug6v+Gfh6cZaW5FhRYn0MDRUVPds5paXWf6AEyNIpijQrSuC5K7S26LBplYqd16OOxwvvHICjLVCYAYvGW5v06+qG36/XqmQm58DNp0CSA4rvdn5vfZCUGAdz8vvfT6TrYihYcUx9PmPiZnQajJFXnckyzMkWJ93Tw6WrGzb7KzynjYKsFOdikTEhW9uqGf2B5lY/DH8bW9loTso59NwPp63S+ykZEiW9e/ORqa91ioNJRRHOfbjI0k/VDL207VGpMC57KH/Dh8/n62OW5XK5SEhIoK2tjf3793P8+HGWLFlCRUUFjY2NZGdns379er797W9T1ZoEnfkw+Vw+f8PtPHPwLe6++24uvfTSPp/n9XqJi4vjscce47LLLqOoqIjvf//7/PCHP+Tkk0/G4/Fw0UUXsWfPHm6//XaWL1/eU7g2HMkCWZLsneVaQtaVlkrStMjK0ciCx+Nl86Y91NU1MWpUFqVzJxMfi5UJEhP2EK+1tTWoOVZ9fX1QqYDBePXVVzl48CDXXXddn/d+85vfEBcXx2WXXUZnZyfnn38+v//978P+DEXoXPI3+PeOwNcm/xaWT4fnr3QmJoV9TMoxts8aD/cutj75ZKZh85aebVUhq6F3ilITYEaMTY6sKIHlM+xNhvZmVWXw5N8DFiX/vvUy/Pp9Y+kkwDdehjtOh/ttlPCy83u3dsF2f1HI7DxIHqRnIsJ1MRSsOqYHG6GuXds+qQiGMQaLWvQKWRdiJwx6s7UWuvzLRp2M2+czErKjUmGyJEk3WRJFvTFXyM4dYILKKsJpqwKS3gXyJL17s95/rQw2KWg1slVHg9FPTUmAktHOxjIQh5ug1u8LNNRnpcvl6pPobG1t5e2336aiooKOjg4SEhKora3l2LFj3Hjjjdx1111ceOGF/OhHP2LZsmWsH/8Nduo6tvOgorSUN998k0svvZSOjg5SUoyZt7i4OKqrq1m3bh233nor559/PgkJCXzlK1/hiSeeoKysDIAVK1bw/PPPk5ycHPEKWVGvQ8/xE3Qf0mYwkkun4YqXTypluLz11iYeWLmK2tqGntdGjx7Brbet4OyzY8tLQWbCfmwuWrSIp59+uudnl8uF1+vl/vvvZ8mSJWEHcN555+Hz+Zg2bVqf91JSUvjd735HfX09ra2trFq1akD9WMXwCJaM1fn3Du19RXRjfgB/ugQWT7Q3ydG4RUvIuhISyC5RS09OtMNev5ZYWQEkxF5fg/g47Tq8co791+OqSrj82cBBKWgappc/q70fSb71MvzivcBkLGg//+I97X07sPt7lx8Dr/87h1qJ4eR1MRSsPKayJp3sosNtVJnOyHW2yjRcAs6tg1VKe+qNpP9pxfIk/c1VXvMluTc8XuN6nZxj//UablsVDbJKTR2wwz8pOLdg8ElBK9ErZONd2gSl6DR2wO56bbs0X+x+qrk97d0e+Hw+vF4vPl8whXqNlpYW/ve///Hoo4+yefPmntcfeeQRfvSjHwFw+PBhPvroI2pqahgzZgzTp0+nrq6OmpoaMjMzmT17thaHu52UOC8zcqGsrIzy8nJAy330juHFF1+ksbGR88/XjOa++tWv8rnPfY7nn3++Z5+xY8fyxhtv8Pe//z38A9OLbg9sMrVBI1KH/SctoSNArmCGg5E4w1tvbeLu7z0RkIwFqK1t4O7vPcFbb21yJjBF2IT9yLn//vv55Cc/yUcffURXVxff+ta32Lp1K/X19bz77rtWxKiwgfau/pOxOv/eoe2XmmRPTAr7cXKJiqe9neaduwHInDaV+BSJRs0WEQ0DHVnxeLUKoWBdcx9apd1ta7VKzUgkA7u6tcrYgfj1+/DjT1grX2D394Ze17kkSZNwsPqYyrK00Ck2VYNbk9qTTj9WlHtDRrkCECehHQ4766C9W9u2e8n6UNqqaJgQ2nDU+M5O6sd2dkOlLhc3GlIk8LARpY0KhZ5npc/LvHww16WZK189Hg+7d+8mMzOToiLtgtixYwf33HMPLpeLMWPGsGvXLs4880wWLFjAyy+/zA9+8APOP/98tmzZQm1tLRUVFZx99tmMHDmS3bt3k5KSQkJCAtt3H9RM2xJTKSvSEtinn346P/zhD6moqGDLli1ceaWxJNXj8XDgwAHuvvvuntfS0tK44447LDtO245Dh78NErnd7NxkSsiWxVZC1uPx8sDKVQPu8+ADqzjzzDlKvkACwj5Ds2fPZufOnZx55pksX76c1tZWVqxYwcaNG5k8ebIVMSps4JuvRHY/hZzoHes4l/3L5Bq2VuLzaGszR8yZbe+HC0o0DHRk5Z0DfSuEzPjQlmm+E750elB+v75vZWxvPD5tPyux+3uDnEmTcLD6mKp2YmBk1Y+FwGS7k3qS0iZk/ccvPVHT4JUBJ5esD6WtioYJIVH0Y7fUQLd/8shJA79wEO357Xa7+fjjj3nqqae46aabuOqqq3j77bcBU6yuOE4p1lIgbW2ahkFVVRWPPPIIX/va1zj33HNZvnw5d911FwcPHsTr9fKf//yH0tJSnnjiCU4//XRee+01/vznPwNw/PhxysrK8Hq9jBs3jtLSUvbv3w9AcXExBw8eJCsriwsuuIBf/uqXcPgDqPwn7lfv5tChQ5x66qlce+213Hrrrbzxxhu43e6e7xMfH88PfvADLrjgAnsOIPL0KcyGXikxlpDdvGlPn8rY3tTUNLB50x57AlIMiyHV2WRnZ/O9730v0rEoHGRXfWT3U8hHh9tk5DYa0myuhD6xyTD0GlGqErIQHQMdWTnaEtn9BmPPicjuN1Ts/t5gXOcJcTBHgiWa4WLlMfX5jOOXmwZjh2BSEu18aErIylQh6/YYjutTR0K2AIZeLuRJah9v1fSVQUtmy1Ik5KSp01DaKj15I1PSuzfrTQkoJytkNwoyARMOHwtWIfv73/+eO++8k2uvvZZTTz2V2tpaVq5cSUJCIh8fPR26O0nb+hTXLH+GlpYWFi5cyB133EF2djarV6+mrq6O9957j5aWFm688Ub+9re/ceedd/Lqq6+yd+9eXn75ZSZMmMCXv/xlzjnnHLKzs3G5XKxbt46LL76YrKwsXnvtNSZOnIjP52P06NHs2rWL5uZmPvvZz/LivhSefuJeSB3J+LNm9fjy/PKXv3T4yBnIMPbw+Xw9Cdm4EZkkTJTkwRQh6uoGmDkbwn4KZwk7IWvWTDHjcrlISUlh3LhxQzL3UjjL1JHwcgiTKLK6pyoGp8I0M+9Ep+rEZlNCdo4y9AJjoJOSADNjzNDLaQozIrvfYEzOGXyfcPYbKnZ/77YuY4nmLEmWaIaLlcf0UCMc101KCuXR9rQTs1lPqYNmPeFSWQuduqGXg4Piti5DT7BktLOJ4XCQaSm1GXNSzu4qyXDbqro2OCBh0rs3eoVsqsOmVAHJeEkqZPX7LDkeZgkwoTpt2jTOPPNM/vjHPwLQ2NjIxRdfTH1nPDWtQG0lo937eOGFF0hKSuLBBx/kqquu4v3332fmzJnU12uVRykpKZxxxhl8/PHHJCQkkJ6ezm233cbNN9/c81ktLS2kpqby+c9/nj/84Q9UVlZSX19PTk4ODQ0N1NXVMW/ePK677jq8Xm2A1TnlErj6EgB+cCOMEnASYyCtXVHwHKnBU6udq+SyGX2M1qKdUaOyIrqfwlnCTsiWlZX1XPS66LT5JkhMTOQzn/kMjzzySIBLoEJsfnEu/C6EpbC/ONf6WBTO4PSyoxOb/JM9cXHK0AtoaDeqIecKbpQQjSwar7lKVzUF19Nzob2/aHxkPu/mU+AbLw8sWxDv0vazEv1797dsNdLfe1N1+IZesmHltSRDJYuTNApk1hMuoiwb3XDUmKyVUa4A5Lk3fD7N5BAgPx0Kh2+WHhbhtlWiXKPDoa7NME+dX+hsX8vJZPxQaOrQNI9Bm+xKFKCfOmfOHPbv38+DDz7IkSNHePHFFxk3bhzewlO1G2zbKtoOr+HLX97DoUOHAozF8/PzaWlpoaWlhYyMDHJycmhvb6e5uZkvf/nL3HXXXWRmZpKamsp7770HwLe+9S1uueUWcnNzee+995g1axY33ngjRUVFpKSkkJubS0lJSU98eruU4nDyvz+6PUYbNCkHcmQw9IoxuQKA0rmTGT16xICyBXl5Iyidq+REZSDsucx//etfTJ06lUcffZRNmzaxadMmHn30UaZPn85f//pXHn/8cV5//fUA8WmF+KQmwfLpA++zfLoy9IpmnFx25Glvp2nHTgBchQXEp6rJHGXo5SzxcfDAUm2797y7/vPKpZGrCEpKgDtOH3ifO0631tALAr93b6z43tEwoB8MK49pLBy/4fDxESOxJJNcAQQ+k52sUpJWP1bCe+NwE9S1a9tOLFkPt62SMendm48FkSvweI1K9IkjxHW2N2Ou6BXl/BcXF5OSksKaNWvIzc3lvvvuo6CggO/feg14u6GtlpLS+dx000289NJLrFu3rkcLtrCwkI6ODo4c0S6KESNGUF9fz+bNm1m6dCkrV67ktdde47nnnmPkyJF85jOfITdXW7521VVX8dBDD3HTTTcxadKkoEVpjR2w2y/9J2qhxfbjhqmgyO1m58ZtPdsp82IvIRsfH8ett60YcJ9bbl2hDL0kIeyh3X333ccDDzzA+eef3/PanDlzKC4u5vvf/z4ffvgh6enp3HnnnULpoSgG5/krYcGj8OGRvu8tn669r4hezIZeds/MN1Ru6zH0co0fZ++HC4qsyy2jiRUl8NwVmuu0uWK0OEsblK4o6f93h8L952m6kSvXBb4e79KSsfefF9nP648VJXDWeHi7l8mUFd87Ggb0obCiBB64AG55MfD14R5TUZJ2omLWhnTSrGcoiLJsVNqErMnQa7okkj9OGnrp6M+9a56Hli7j9WBtlYxJ794EtBEOTtrsqoM2v5eTNPqxgp7/UaNG8eUvf5nLLrsMgKlTp7Lggqth/GaYdA5xjU8xatQosrOzaW5u5pVXXuHMM8+koKCA2tpaDh48yLRp05g2bRrXXXcdY8eOBeCss87irLPOGnJcGyXo78jSJ+ssN1XIzovNVZVnnz2XH993HQ+sXBVQKZuXN4Jbbl3B2WfPdS44RViEnZCtqKhg/Pi+6+rGjx9PRYWmAVlWVsbRo0f77KMQn9ICIyE7KhU+O1uTKVCVsdFNZ7fm7gqaVqmThl6u8WPt/XBBkaVTZDUer+bofLRF061bNN5enboVJXDRNPj9ek1CYnKOJhtgVaXqlXOMhOzMXPjKSdZ+nhnzsd7vX8IZ74InlsO4bGuOvT6gi3fJpe8ZKuZjWm0ywvl0iXZeh3NMfT7j+I1MhfEjhh1u1BGqoZfT7Uxvuj1GtdzkHGer5fSEbGYSzIzgElsrj3ldG+xv0LbLCuTRNnXS0EvH49Xakzl58L7/3P/pEri6tO9x1PspaRIlvXvzkSAVsuXmcy+BXIHHC2t2GT+LJLFQUlLCxo0bexKybW1ttMdnQ1cLOfMvZ3nqEe666y6OHDmC2+1m/vz5nHTSSZx66qk8+OCDPQnYyZMnM3ly5JZ8i2aAFgxRJgIHwufz0Vm+A4D4vJHEF0ja+ESAs8+ey5lnzmHzpj3U1TUxalQWpXMnq8pYyQh7iDdjxgx+9rOf8eijj5KUpGVt3G43P/vZz5gxQysZr6qqIj8/CkdWMYB58PKthfCtM52LRWEfFdXg9mvEOfEAbqgwJ2RVhSwYnaLkeDF1puxgVWXw6tQHLKhODSeGX71vXQzmQdmNJ8Mtp0X+M4IR7HuCloj9Qpk1n9nuNhl65UFqlBl69XdMAa6bB4snDu/vVzVBrTL0GpD1/j5NRlL/CSMR2pneVNZCh75s1MEk0eFGqGrWtk8dE7nEptXHfIOklePm9t+JBFd/bVacq++5r5c06d0bvY3ISnbWuFiEZHyoBLtOLvk7PHiBc22mmblz5/Lwww+Tnp7Onj17WLd+A11Fn4IJZzO/EG695haWLbuAtLQ0xowJnKnLyIiQY2kQnPbqCAUZ2k733sN4m7QZ7uR5M2PO0Ks38fFxzJs/1ekwFMMg7Mfn7373O1avXk1xcTHnnHMO55xzDsXFxaxevZqHH34YgL179wa4ECrkYd8JY/uy2FwBEJM4XY3ZUyEbF4erWKI1kRbR2AG7dJ2pAjGMEuxmVSVc/mzfgWFVk/b6qsrojEGvigPt3NtBf98TYF+Ddcd60zHDxEzUapGhMtAxBTjaPPzPcLrdFp1jzXDIf/xPLgqeMBKhnQmGKJI1VsgV2HHMZUh8BENf0pyZpFVG28lAbdYX/tX3vIhyjQ6Ho83GhMNJhRDnYFJZBLmKUOjvOjnS7GybaWbx4sWMHTuWlpYWzj33XG7+2V9hyb2AkWScOnVqn2Ss1ejPbFELLTxeY2JgwggYleZoOP0SKFcQe/qxiugj7ArZM844g3379vHMM8+wc6dmwvPpT3+aq666isxMzQ7085//fGSjVNhCVzc0+/WiEuJg8ihn41HYh5M6UJ6ODhq3a0tPMqdOoTNZ6WNsjIKBznDweLXqi2Auzz40c5Hb1sLyGdZV5TgVwyZTlYwdS/gH+p46Vh3raDWuC+WY/uBNrfJ4OMdUVP0+URhMP1aEdqY/REm2Rzoha9cxl2FpcG/q2+BAo7Y9t8De5OBQngOiXKPDwSxX4KR+rM9nJMLy0qEw07lYBkLkNtPM7NmzWbt2bc/P97xhvOfUtdrUATvrtO3SfDELLXYcN3SMRW43Awy9ylT1mEJ+htRcZmZmcuONN/LrX/+aX//619xwww2kp6ezevXqSMensJEXdxvb+enOxaGwH71j7cL+ZXKN27bj69bWZo6YM9veDxeUaBjoDId3DvRfWQhax/9Qk7ZfNMXg9cJmf4Xs+GzIsUE3crDvCdYdaxmTJqFg1zGN9XZiMNabJJiCJVtEaGf6QxQdP3NCdkEEErJ2HXN9sic1AWZIIi/opIboUM5LNEwImdsIJ/Vjq5rguF9+Zl6BuPIz/zvkErbNHAgR+hpmSQpRn9ey9Ck6N5oqZMumOxgJNDc3c99997FlyxZH41DIzbDnr3bv3s1dd91FcXExl156aSRiUjjEf3ca27PynItDYS9d3ZqGLGgDl4xkez/fbOg1olQlZCE6BjrD4WjL4PuEs58sMexrMFYp2CVX4OSx1q/zuCgz9LLjmJoNvXJStOWFikAGM/QSoZ0JRrfHSM5NyrFnYiYYbo8xQJ+UA6MjMFFvxzE/0Q57/fJbZQWQIGAlWjDMCRu7J8aHcl4+ljDp3ZuPBqmitwtZ9GNFbTMHQ5+gyU6GyQ7pBMvQr5chRl93N50VWsIiYXwh8aNG2PK5L730Eu+++64Wg8+oEe/s7OS1117jnXfe6fOeQhEqQ0rItre38/TTT3PWWWcxffp03nvvPf7v//6Pw4cPD/7LCmExD14Wj3cuDoW9bKkxDL0c0Y/dvLlne0TpHPsDEBB9oJMkqM6U1RSG6KkQ6n6yxGCWK5hrU4LSqWPd4YatfkOvktGQFkVKJXYc0yPNUN2qbZ9UJG5FlVP4fIZkweg0zZyuNyK0M8HYfhzadUMvBwfFm6sNY7FI6cfaccxllUIpdzApF+55kTXpbcbcRoxKhfEjnItFFv1YUdvMgTjWrD0vQVtt4NSzUobqUxli7NqxH197JwDJc63Vj/X5fHg8HgCefPJJ7r///p7XdTIyMpg/fz67du3q855CESphJWTXr1/PDTfcQEFBAStXrmT58uW4XC5+//vfc+ONN5KfH0UlLjGI3rkCuHyWc3Eo7MXppTxmQ6/sWQLYszpMb52ppLCVvuVn0XjNcbu/frMLGJul7RdNMThh6OXUsd5cDd36RJCglRhDxY5jKkMli5PsPQH17dr2qWOCD8JFaGeCIcqg2ApDL3Vv9I+elEuMg1k2T8SGe15kTXqbOdhoyASc0k8bYReyVMieOdYnZJs5EKK0p3q7lBRv//0dCh6v0QaNzxbZ0GtHz/ZwDL18Ph9erzdoAlV/zeVy4fI3DMuWLePgwYN99k1KSmLSpEns2LGjz3sKRaiEnJAtLS3l05/+NKNGjeK9995jw4YN3HnnnT0XqkJuzIZe8S6Yqgy9YgYn3Yg9nZ09hl5ZU6eQkCZoD8BGzFUyMg0mI0l8HDywNLhxhP7EWbnUWtMIPYZgWBXDJgeWrA50rHWsONaiDJKsYKBrR2e4x9R8/JzUGBWVwfRjwZl7PBRE1I+NVELWjmMuY9vS7tYqo0GTDLN7IjbcNkvWpLcZUfRjwUiEZSbB5BxnYxkI83XSe/TvZJs5ECJcq82d4hda7KyDVt3QS+B2s7PcZOg1b2BDr+7ubrZt28YzzzzDP//5T9xud897LpeLuLi4gDxWZ2cnu3fv7nntww8/pKhIOxjmKtg4k+NiXFwckyZNorq6us97CkWohHzV7Nixg7POOoslS5ZQUqKq2ETF44U398HfKrT/Pd7Qfu/lPcZ2vkBLTRTW47ihl/8BmaPkCgDxBpNDbVOGy4oSuOGkvq8XZ8FzV2jv2xHDHy+2LwY9GZ+RBBNHRPZvD8SKEvhsEPnmvHTrjrUIgyQrWVECf7u87+spCZE5pk5OpMnAYPqxOitK4InlfV+3s53pjSjJdj0hmxwfWQmVFSVa0qY3kTrm+r2RmgAzJdE2ragGj39WzKkl6ytK4MEL+r4+Oq3veRHlGh0OIujHerzwwnY40Kj9XJoPoudzVpRo18OYrMDXnWwzB+qnitCnLj9mTHqL2t8RZSJwMHoMvVwukuf2b+i1atUqkpKS+Pa3v82///1vnn76ab785S8D0NrayoYNG3jsscd4/PHHe35n8+bNfPOb3+z5ecqUKdTU1AAwe/Zs2tvbOXbsGL0ZM2YMHo+HqqqqPu8pFKEQ8hzN3r17eeqpp7jppptob2/nyiuv5Oqrr1YVsgKxqhJuXRvolFqcpc1mDvaADDD0EnAphcIauroNV/dpoyDTQUOvnLkqIQtiJaqG06ZEgkSTLt33z4JPTNSWwtlZfWHWQrtwKnzjDGtiaGh3dlBmlqzRSbDw8a4PkuJc9k8E2cXBhr6vJUbovOpLhkekaIZLikDWh5FsKcw0tpdOhm+faX87o+PxGhMzE0Y4t2z0eCvsrte2TyqKfEWX+XtdUQI3nRKZY97QDnv8bdlcibRNyx1YHRGMytq+rwU7JXo/JSVBXp17cxvhRIVssP7VpmrtdSeSmuGwogSWz4B3DmgGXoUZzrWZg/VT9Ws1K9m56mMZJlCdlq8LBV9nF52VWgVZ/JSx+FL7H7QWFBSQn5/PCy+8AMC+ffuYPHkyK1eu5Ktf/SodHR3MnDmTxsZG7rvvPr71rW8xbdo0srKyqK6upri4mJEjR5KRkcHmzZspLS0lNzeXzZs3U1AQ2EiPGjWKUaNGsW3bNsaMGYPP51P5MUVYhNx0jhkzhu9973vs3r2bP//5zxw7doyFCxfS3d3NU089xc6dOwf/IwrLWFUJlz8b+EACqGrSXl9VOfDvrzNN6pw9IeLhKQRlay10aXrljnQSGjabErKlpfYHICBmQ6/Zec7FMdw2JRJsrTG2b1kAiyc6sHzY1En9XKl1MWw26cfaPSBfVRlYUahztMWac93h1swEQatgiyZDL51VlfCtV/u+3tw1/GN6tNlwsXbSpERUuj3GAHjiCMhNH3h/sx7mVRbe46Gw4zi06ctGHRwUm/uEkZIrMGNOUFw3P3LHfIOklZsiaIiuqoSHP+r7ek1bYJsVkPTOlyfpbcbrNa7Bokwoyhp4/0jTX/+qJQLPB7uIj9Pu2yvnONdmDtZPfWIDVPkNveYVOFd9LEOyU0RdaF3nVadz625wa06TqfNKiI/vv/GZOnUqnZ2dNDdrF0B2djZJSUk0Njby+OOP8/DDD3PhhRdSV1fHX/7yF/bu3Ut2dnZPAlZn0qRJfPDBB4BWJbt+/fqe2HTS09NJTk7u2U+hCJchNU2f+MQn+Mtf/sLRo0d56KGHeP3115kxYwalKqHiCB6vNjsYTANQf+22tQMvNd5jqo5aMbAkiyKKcLoa84SekHW5GDFbOck1d2oDcoA5DujI6USiTYkEetIuP33wpIpV2FXZEGDoZaM/pscLX1sT/D2rznVFjcnQS5COfyTR75+BGM4xdbrdFp3KWmjXxmz96seaEel4irC8FqzRjzVjVYJChsRHMDaa4raz/dcZqM3q/RwwJ49lbb9310OjZtRuu1zBQP0rHTv6V7ITSj/126ZJUREMvRLjNI1o0fCaDL3GZsFoh/rbAG63m0mTJtHS0tKj86rTuXE7nT4vx71drOmu4/rrr+fRRx+lo6Ojz9/Jzc1l1KhRrF69mvXr1/Ptb0Z1DjIAALPFSURBVH+bW265hXHjxvHee+9x9dVXs3LlSkpKSsjNze1JtObn5/PGG28A0NTURGdnJxs3bgRg+vTprF69GghMyGZmZvKrX/2KG2+8EUBVxyrCZlhzRdnZ2dx888189NFHbNiwgcWLF0coLEU4vHOg7+ygGR9wqEnbLxjdHmjyd0ziXTBT0uVHivBxcvDn7eqicZumBZQ5ZTIJGQ72AAQhQGfKwc7jcNuUSFDTArV+B2QnK4X1e8Tq5W7mJatzbayQ1Zcc9ocV53qDpEmTULH6/hElaScq4cgVgHE80xNhusOao6Ikh61MyJoH/+OyIzvZJsPS4N54vMYKiSkjISvF/hjCabNEuUaHg1k/1m65AhH6V9FAKMfxeJvxs1PXakunYdg3Jx+SBTT02lVvGHtb3W5u2LCB2lpNG8Vc/ar/nJiYyOHDh6msrKS6upq//vWvfPjhh3R1ddG5cRvXN23lu8272NrRxEknncQf/vAHnn766T6f43K5mDdvHjfddBMPPfQQxcXF3HLLLfh8Pp566ilOPfVU/t//+3989atfpa2tjb179wKwcOFC/ve//3H99ddzzz33MHXqVHbs0Mynb7zxRu68806gr7HXjBkzyM2VRLRcIRwRaxbKysp48MEHI/XnFGEw0GA6lP3Mhl55KicWU5gTI3YbSTRu34G3S+sBKEMvDVEGOsNtUyLBVpOWnVMJ2ZoWo8M/v9Da5W6b/AlZF/Z+XyfOtSzmEUPF6mMqSjshKqEaegHUtcH+Bm27rMB5d3ARku0eL6zzJ2SLMjU9xkgSMPiP8PWr92mS4+XRNt1ZZ1R0O6UfG06bJcI1OlwCJm1CqKKPJCL0r6KBcI+PMvTqHzv6FLqu6mWXXcb//d//ce211/YkNY8dO4bL5WL0aK3RPuWUU/jlL39JTk4O+/fvp6OjgxtvvJGFm3YwOyGDD9yN3H7P3YyZOIHjx4/z3nvvcdVVV5GREehKPmnSJD71qU/xpz/9qee11tZWioqK2L59O2+99RZr164lLS2N9957D4BFixZxwQUXsHHjRj75yU9SWlpKamoqPp+P0tJStRpcYQmCezkqQqEwY/B9BtpvtUn+V5YOrGL4uD1GEmjaKPurMk5sMjR6cuaqBxyI41w83DYlEuhyBeDcEi+7zke3x/i+00ZBuo2aqk6ca/24uohOQy+rj6l+/LKTYfLIof2NaGa9PyEb5xr8vhVJN89jqhwdn+2codf240bC9LTiyGsUWzUh09ihJXtBW2WQKIm26UYHJ8Z1wmmz9PMnU9K7Nx85OKklQv8qGgjn+GQmwVSHnpUyTGDYEaO+xP/MM89k3759ADz11FPMmzePc845h1tvvZV//etfAJx22ml8+OGH3HPPPbz00kuceeaZPPXEE7h3HmBifCojM7MYVag1lqeeeipHjhyhqalvufT8+fP58MMPAejs7MTn85Gens7tt99OWloaP//5z8nNzeXJJ5/kiSeeACApKYlzzjmHu+66iwULFpCamgoYMgQej8eaA6SIaVRCNgpYNF6rYOivz+xC04RZND74++tMS9PO6mcfRfRRWQuduqGXE/qxm0yGXnNVhSwE6kzNcUBHTme4bUokMCdknaqQtasScWedcS/aKVcAfmfkARIukT7Xnd1Q4V+eOyMXMvo3yZWWReNhxAATXMM5psea4YjfpEQZevWl3W0s/y4ZPfj1JVK19s46aNUNvWJFPzaC33OjpFIoIhh6LRqv9Tv6Q2+zSvPlTHqb6fYYEzGhmP5FGhH6V9FAKMdRZ57FK5wGQoYVLXbGOGvWLPbt28f69ev597//zW9+8xu2bNnCwoULuf/++3G73SxYsIDk5GQKC7VgPvnJT3Jg1x7wepmVkEFNnKcnATtz5kyampqor6/v81kzZszA7dYeqsnJyT1J1fz8fP785z+zZs0a7rzzTqZMmUJRUeDDyOPxBOjE6gxkJKZQDBWVkI0C4uPggaXB39MfSCuX9r8Uz2zodZky9IoZnNZaCzD0mjPb/gAEw6wzNTvPWZ2p4bYpkWCruULWoSocuyobAvRjbU7EN3SApx93ESvO9ZYacEexoRdox+rUfr7bcI+pDNU2TlJ+zLiew9GPBecHy6Ikhy1PyFo0+Jf13hChQrap0zBa7I25zdInO8D5+2WobDsObf6JD7v1YyGwf9U7mWhX/yoaGKyfau7WOHmt6sl/pwst+sPrNWIszoI8iyqz9WTovHnzOHLkCHv37qWioqLHf2jFihVMnDiRN998k1NPPZVDhw71/G5paSlNDQ00ebuZEp9Kg8fNsWNax3n8+PE0Njb2/GymtLS0Rxs2GB6PZ8DEqzLnUthFRJr7hoaGSPwZxTBYUQLPfrrvw704C567Qns/GN0ew2k03gWzBHxYKKzByYGot6uLxsptAGROnkRihlqbtalaDEMvnRUl8OQlfV8frE2JBD6fUSE7NssZkxMwEgdWL3fbZBrk2l0ha06OZPSSSrDiXMtQLRIJ6vua/gLDP6aiJO1EJRz9WDCOZ2qCVrHtJKIkh/WEbLwr8nFYOfiXsW3x+YwK2fx0KMh0Jo53Dxr9j4GeA6LIKg0Hs1yB3fqxOitKtGM6ppc+sx39q2hiRQn86dK+rxdnwZWmOg+n+tStXdoEADhfaNEfu02a3lbe03pys7S0lMOHD5OTk0NVlfHALioqYsuWLWRlZTFhwgTcbiPpmpubS3VTAzs9raS44imZMYP29vae333rrbc455xzwo4pPj5eJV4VQhB20/Dzn/+cCRMm8JnPfAaAK664gn/+858UFBSwZs0a5s6dG/EgFaExO8/oUJ1cBL84178cdYC0+2umiaPRytArpjAPXuxeJte4Y6cy9DLh8cLfDQUHx6pkejPGNDg8bzJ898zB25SB8Hg1Z9yjLZr+V39/60izMVHklFxBbavmdAzWL3fbZJrYt1tT1TzAfmiZpl052PmJ1OeJMPFgBW6PUUk2bRQ8clHkjqkoSTtRWW9KyA6WbKlvg30N2nZZASQ4vBLR6VUrAE0dxuqEuQWQFmE96z0nrDP00u+NpHjndMfD5XAT1PvzCk7JFQC8c9DYfvxizeA3WJslwjU6XMxthBMVsjorSmD5jND6RIr+MZsOnjsJ7lqkHcdPP2u87tSzctMx8PoH5qLeL3b3KQoLC/F4PGRlZTFmzBj+8Ic/cPXVV7Np0yZycnLIz9cqw1JSUqisrKSgQOsUPz75TKbUd+FKSeLVd17ClWCksPLyJGnwFYp+CDsh+4c//IFnnnkGgFdeeYVXXnmFF198kWeffZZvfvObvPzyyxEPUhEa5kb1khmweOLgv7N6l7Etqzi/Iny6PUZV3pSRkG1zBWLDZrN+bGwbeq2qhFvXagMznXvfgoIM56skzG3KlbNDa1P6I9j3LM7Slpz1/p4iGHptsLGTqt+Lo1I1V3M7MX/PU4qgxOLjrQ/oXYgz8RBpttZAl0mfezj3TW/085WZpLXdikD0CtnkeJgzyLVs1u50erDs9RrxjM1yboJ8/RFjYt9yuYIIHvOmDk2DFzSdU1m0TUWQKwAtKahz9gTI76dyeYM56S3pmMFJQ6/exMdF9vkQi5jblM+a+ql6/zU9EaaOsj8ucwzg/LXWH3YaW3q9XuLi4igqKmLfvn08++yzPPjgg/zhD38gJSWFe++9lwkTJgBw5MgRMjO1DnF3fSOLGnwQl0jSnGm4EhJ6/pZCEQ2EnZA9duwYY8eOBWD16tVcccUVnHfeeUyYMIEFCxZEPEBF6AwlgfC+IdHConGRjUchLpW10NGtbTtt6DWiNHb1Y1dVwuXPBmpdgVadefmzzi9di9Tgub/vWdUU/HsKZ+hlYSe1ugWOtWjbcwvsN2nSv2d6Iky3eMl2VzdU+M/t9Cg19ALrqoBrWowJjfkOmpSISkO7YThUVgBJg/RwRVrivqseWvTK0Vgx9IrgMQ9Irgua+AiGCIZe7W4jSTltVP/J2ObOwKT3YPeXiHR1GxOg00c5J4ekiBzBnrfHW+Fgo7Y9r9C5qmMZKsqdeA6OHz+eDz/8kCuvvJIHHniA7OzsgPd9Pl9PMhaga9OOntdTymYAqGSsIqoI+2rOycnpEVpeu3Ztj2aHz+fD4/FENjpFWAyl4Tcbeq1Qhl4xg9PLhk9s3tyznROjhl4er1YxGsxPSX/ttrXafk6hT/KkJsDMISbrhvI9t4qQkLWpssEsV2C3oVfvJdtWD1q21gZWjkYryrTIGcLVhhTpeIqSHLbV0CuCx1yGxEcwRKiQXXfYMFocqDBj41GTzr2k7XeFafWCU/qxisii3/vJ8cZKT1EqU/U4EuIGX7HhBD6f0c8vyrRewzouLo729nZcLlePFIGejPV6vXi9WkPUW9O1c+P2nteT582wNkiFwgHCHn6tWLGCq666inPPPZe6ujouuOACADZu3MiUKVMiHqAiNMxGCaEud+v2aA7bAHEuKI3S5aOKvti5HLs3Xrebhq2aoVfGpIkkZmUN8hvRyTsHApfv98aHpmFqXkpoJw3txoTN3GHoKw7le+oVsi6GnggeLnonPyNJqxqyCrOhl936sXYuVYPYMaQyDwYjWfUmStJOVIZj6OVUO9MTiwDJYZ/PSMiOTI28JIZ58D8ms/9KzKHgZJ9mOJT7J+Qyk2BSjjMxmPVjF43vfz8RrtHhIop+rCIyNHUYqyLmFhhSJXb3bYLR1qWtRgRN3iMl0Zk4BmJPveHXYEe76Xa7+eY3v4nX6+Xaa68NeC8uLq7fqteO8m0928nzVPWYIvoIe8HJb37zGyZMmMChQ4e4//77yfC7ox89epSbb7454gEqQsPskhjqw+eN/cb26LSIh6QQGCcTI007duHt1HoAsawfe7QlsvtFmkgNcMP9nl6vVkkJ2gA10qYyoVDXBgf8y93KCuwz9JrroKGXHe1ANAzoB8PtMc7p1Ajrc8fC8RsO680VsoMcn0hNOEUKEZLte0/A8TZt+7TiyMunmAf/kW5vzIZeTq2qCJd603NmrsXPmYEwT4YOVCErwjU6XD4Ko41QiE9/UiUiXKubqiUz9LIhxsTERB566KGwf0+vkI3LTCdxkgVLNxQKhwk7IZuYmMg3vvGNPq/ffvvtEQlIMTSGsjzjPzuM7ZmSivMrwqfbY1RlTM6BEan2fn6AXEHpHHs/XCAKQ6wOCnW/SBOpjlq43/NAI7S5tW2nDL3s7Mzr92JinP1VenYPWsyfF62GXpW10OlfEhvxpJP/+GUmacleRSB6hWxW8uBV7SJVVJpXOBVnQZ5Dbb6t+rERHPw3d8KO49r2nDx5tE3LzfqxDrWH3R5433/eizJh4gBVujImvXujT9rEu+xfkaKIPP1JlZgNvazWxu8PEZLCgyFDjN3HjuM5pjXwyWXTcSntWEUUEnK35e233w74+ayzzop4MIqhMxT9LHPnWxl6xQ7bj0O7bujlhH6sydArZ27sJmQXjdcG31VNwfVVXWjvD7SE0Eoi1VHTv2d/sgW9v6cQhl42VQ10dGv3I2iTYnYnEvTvmZoAMywetLg9sNkvzzAtis1UrNKyrG3VpD1Ak0FQY5JAqprgSLO2fXLR4MfH7urwgQhY4RQr+rER/J7lx0zapoJWogVDBEOv8mOGmdyicf1XRcua9DbT1mXo08/Kc2b1jSKyBGvH69pgf4O2bYc2fn+IIJswGDKsuuncaJIrKFP6sYroJORH6jXXXNOz7XK52Lt3ryUBKYbGUAYXu+uNbWXoFTs4LXavKmQ14uPggaVw+bNaUtKclNXHRCuXOugO679OUhIMo4ShoH/Py57t+16w7ymCoZdd1XPbasHjP/F2V+ucaNeWKOufbfWS7a01RuWoqJUYkcCq9jVW9HeHyvoh6seC8wNRUZLDekLWRWjHMFysSlDIUOUVDLOhl1PVmqHqx5qT3rK2P+XHjOetkiuIDvR7Pyle02kFcRKherse74JSmw1bQ8Gs6V2QAYUWG3oNlc5yYzmvSsgqopWQE7L79u2zMg7FMHB3G0v1clMhNwQ9WK830NCrTNIOliJ8nBzYe7u7adhaCUDGxAkxa+ils6IEnrsCbl0bWEFanKUlKVeUOBNXY4cxYTM3f/jJuhUl8MmJ8Fqvx0iw72mukJ3lkJSKfo9Yvdxtc41RjjTX5g677YZeggySrGaDBck1jxf+UWn8HK1yD8MhHP1Yj9dIRCXGwXQLTfsGw+OF540CIEcScx4vvLrXuHZn5EZW+xgCB/+FER78y9q2mOVqnHrWhaIf6/HC/9ti/OxUNe9wMevHKkMv+WnuhJ112nZpvlG1LcIETbs7sBo7VTBDL48X/r7FyAPMt/i54/Fqbc3RFq39XzQ+9GKTDnOFrDL0UkQpw1p00tHRQUpKlK47lIRVlfDVNYbm4vF2mLBSq0gbKJnz5n5jtjuUBK4ienCyGqdpx068HcrQy8yKElg+Y+idFSuwIqlU16797wKeWA4TRgT/nnpCNt7ljPZXfRvsa9C2rV7utqnalJC129DLQf1YmarYwqHbZOgVKX3uVZV9J2y+9QpkJDk3YSMi5grZUwao7lxVCV9/0ZA3cHth6m8H7zNZQbBze+Nq6PbaF0uwGA40aq9HMoZ9J+CEf/Af6aSp3rYkxsmjbdruNuRqZjkkAeDzwf/8ExMjUoIfu2DXxz1vQn66fO1PwKSNBRXgCnvZeNQkVWI29BJgxcHmaqMaW7T+TrB7+n8HI9/mD/R5xVmhPXN9Ph+d5X5Dr9wRJBQLWGqsUESAsIeaHo+HH/3oR4wZM4aMjIwe6YLvf//7PP744xEPUNE/qyq15c7HermYVzVpr6+qDP570MvQyyHBc4X9eLxGVcbEETDS5mR8Q4VRZjFizmx7P1xg4uNg8US4co72v5PJWIh89WSH20i0loyGL84L/j27PcYgddooSHZgkGpn5ejm6tiskJW1wmowtkVYn1t/xvfWX65pHfwZH0v4fEaypSBDG+wFQz+eejJWJ5Q+U6Tp79wea7Evlv5iaHNHPgarpDxaOo1nxuw8Z54ZQ6HClLBxquJ9x3GobdO2F47tq7vc3/VRK2n7o1fIJsVrOrgKuemvMl6foLFDG78/RJLEMdPfPd3UZc093d/nhfrM7T5wFO8J7ZdTymbg6k/kWqGQnLCH/ffddx9PPfUU999/P0lJhiL67NmzeeyxxyIanKJ/PF5tximYGZD+2m1rtf2C8Z7JvGGhMvSKGbYfN6qpnTH0MunHqgpZYYl0NWNFjVb1BQNfd3tOGDqjs0Qw9LIwcejzGZIFYzIhN926zwqG2dDL6kk5t6lydOrIyC+HFoVI3jfDfcbHErvrjaWXpxQFNyYS6XiKEMtAMehEMgarEhTK0GvoDKQfK8I1GkmaOgxTsrn5cpqSKQIJ9rztvcLJam38/hChSrc3drf5kWhDOpVcgSJGCDsh+/TTT/Poo49y9dVXEx9vtHRz585l+/btEQ1O0T/vHOjftRy0xu5QU6A+lJlddcb2pUojO2ZwetnwiU0VPds5papCVlT0zmRyfGQSo6Fed2b9WKeWntpV2XDcnUpDh5Y5sluuIEAj2IZBy7Zak6GXREmTcImkluVwn/GxxIchGHqJdDxFiMXuGKya6LLLgDHSlJsSsk4Zer09gH6sCNdoJPnYtLxd6cdGB3qbkhRv9BfNEx2OGnr5+5FxLvtXP/WH3fd0JD6vo9zIKylDL0U0E3ZCtqqqiilTpvR53ev14na7IxKUYnCOtgy+T3/79Tb0EmX2TmE9TrqPaoZeWwFIHz+epBEj7A1AERJNHYFGCYkRSNaFmqjaakrIOmboZaoctdLsZ197ds+2k3IFdrT/IlaLWEEkDROH84yPNULRjxXpeIoQi50x+HzGvZGfrgy9QNO/1HEqYaMnQlIS+iYpRbhGI4nZ0Evpx8pPS6dR8TwnTyxDrw43bK3VtktGQ1rSwPvbhd33dCQ+L6BCViVkFVFM2AnZkpIS3nnnnT6vP/fcc8ybNy8iQSkGpzBj6Pu9fcCYKR6V2lc3ShG9OJkYad61G0+7NhOQM3eOvR+uCBkrKgzM1QIDVQM5XSF7oh32ntC2rV7utq/dELpUhl7y0+0xqt4m5UDOMA29hvOMjzXMFbKn9NNmiXQ8RYjFzhj2NwQaekVSBlBvWxLi5NEF9Xg10x+AKSMhywEJl0ONmnkbwIIxfZfwi3CNRhLzpI2qkJWf/qRKRJig2VxtkugSqL9j9z093M/zeTx0bt4JQMKYPBLyRkYmMIVCQMJW0fm///s/rrnmGqqqqvB6vaxatYodO3bw9NNPs3r1aitiVARh0XjNuKKqKbg+iwvt/d66UAD/2WlsOyV4rrAfj9eoypgwAkbZbOgVKFegErKiEunkWWe3kWidkQvpA1QL6FUFSfHaQNVu7Kwg32+qkLV7yardg5ZYqJDdbjL0isR3HM4zPpZwe4xJpMk5/RtVinQ8RYjFzhismpBp7dKM9ECbwEtJjNzftpIdprbCKUMv8zLhYOdYhGs0kugVsmmJysg4GuivT2E29HLqPDu5EnEg7L6nh/t57t0H8bW2A5BcpvRjFdFN2LWRy5cv5z//+Q+vvvoq6enp/N///R/btm3jP//5D+eee64VMSqCEB8HDyzVtnsXG+g/r1wa3K39vUPG9pnK0Ctm2FkHrbqhlxP6sZuVoZcMRDpZt6UG3CFUC3R2G1IJM3KdMWOwU49wv79CNjXB/uSzPmhJjteW1FlJt8nQa3IOjBhm5aioRFojczjP+FhiSw10+JNb/enHgljHU4RY7IzBqgTFpmPg9Y/0RapEGwwR9GMDDL2CjANEuEYjxfFWw+hpnoNGT4rIEWySp6FdM4YFe7Tx+8MuY9hwsfueHu7ndWw06cfOU3IFiuhmSLfdokWLeOWVV6ipqaGtrY3//e9/nHfeeZGOTTEIK0rguStgTFbg68VZ2usrSoL/3k5l6BWT2GVW1B9DNfTyeOHNffC3Cu1/IVx9vR7Y9w5UPKf97/U4HVHE0K+TpPjI6LiGet3trDOWeUW7oVdzJxzt1NZpzcm3d1Db2AG7TIZekdAIHohtpmowkapFIo0VSaehPuNjiVD0Y3VEOp4ixGJXDFYlKERYnjwUzLJA8xxK2OgVsvEuOH1s8H1EuEYjgfk6Ufqx0YF+ThPjtD6UxwtPbDTed6ryHEKX6HICu+/p4Xxep0rIKmKIsCULdD766CO2bdPElktKSjjppJMiFpQidFaUwPIZWufqaIumxbJofP8DfK9X00kEbYZKpk6sYng4uWzY5/H0GHqljRtLUk5OSL+3qhJuXRvo1Fmcpc26OjYYqHwB1n4bmkzZu6wiWPpzKLnYoaAiQ3NnoKFXb125oRDqYNxs6OVYQtZk6GXlcrcttUa9gN2GLhttrt6IBf1YiKyhl5lwn/GxxnqzWU8I/RmRjqcIsVgdg9nQKy+978B8OFh1z1mNuQ12InFU12bIA80rhMzk/vcV4RodLutD0JhWyENrlyYRBFpf8b87+44T/r4Fzplk/zjBLNE1M1ccQy8zdt/TQ/28znKTodfc6dYEp1AIQtjD7cOHD3PllVfy7rvvMsLvkt7Q0MAZZ5zB3//+d4qLiyMdo2IQ4uNg8cTQ9n3vkKHlkpumDL1iCScTI8279+Bp02YCQtWPXVUJlz/bV3uoqkl73ZEKjcoX4Nkv0CeqpqPa61c8LXVSNsAoIULXiH7duQjd0CsSlbnh0tgBu02Vo1Yud9tcbSRkY0k/NlonAD1eo+rNCn3ucJ7xsYZu6BXvCr3aUKTjKUIsVsZwsBHq/EUAJxVG2NDL37bEu7QJRBnw+Yy2oiADCjLtj+HdQeQKeiPCNTocPjL1fZWhl/yUm6RKRqUGHyc0dDgzTqioNkl0CXyt2X1Ph/t5vi43nVt2A5A4qZj4bAcaSoXCRsJOx33pS1/C7Xazbds26uvrqa+vZ9u2bXi9Xr70pS9ZEaMigvx7h7E9bZRzcSjsxWtKGIzLhtx0ez//xKbw9GM9Xm3GO5gQvP7abWttli/werTK2IGiWvsdqeULIl1x1NUNFf5E6/RcyBigEmeLwxWydurH6g7boCV/7cTO7wnyVrGFw47j0OagPnes0tplVNbPyhvYMFDhDFbJwLR1QaW/ynNWHqRKYuh1qBHq/QlqIfRjJTHlGg56FX12sjNmoYrIYm5TPjoq1jhBVP1Y2ejathe6tE5V8jxl6KWIfsJOyL711ls8/PDDTJ9ulI9Pnz6d3/72t7z99tsRDU4Recwz4wuVoVfMsLMOWrq0bWcMvcz6sYNXyP7vkCtg+VFvfMChpkCnYMs58F6gTEEffNBUpe0nKVYYenX589ODXXf6Esq0RK3K0G7sTBxuMlXI2l3ZFaARbHHiu9tjGNhMyoGcWDD0ErgqJtrYeBQ8/pH3QIZeCuewSippc7X8hl5O6Vya+03Rbux7pAmONGvbJxWpVYHRgLlNaejofz8nxgmxMAFtBx3lJv3YMqUfq4h+wn40jR07Frfb3ed1j8dDUZEaiYiO2dDrEiXJEjNY5XIcKgGGXiFUyB5tCe3vhrpfRGipHnyfcPYTEL0zmRgXmSrVUBNVbV2wxy8XUDLamUGTXUk1j9fQkJ00wjegfl+k6a0RbLWh1446w9ArmgcnsaKTKxrh6scq7Meqe0PWSRCnDb1au4xjNyMXRtu8WspuPlJtRNShtynxIcqf2DlO0O+twSS6FAPTudGkH6sMvRQxQNjD3l/84hd8/etf56OPPup57aOPPuLWW2/ll7/8ZUSDU0QWr9dYKuUCFii535jByWU0Po+HExVbAEgbW0zyyMENvQozQvvboe4XETJCLGUMdT/BaOk0jBLm5ENyJAy9QhyMbz9uLDFzzNDLH2tyvJYUtoo99dDm1kYSpfnBFttZx8ajkdcIHohYSVTKmhySnQ9NZj2qQlY8fD7j3shNg7HZkfvbsrYtTht6rTsM3f4l3KHox8qO0o+NLtq6YJu/nzoxNG9g28YJnd2ahixokx0DSXQpBqZTr5CNjyd5zjRng1EobCDsIfcXv/hF2traWLBgAQkJ2q93d3eTkJDAddddx3XXXdezb319feQiVQybdYeNwfjIVLV0J5awSsctFJr37MXT1gaEbuh15lgfxVmagVewlJULKM6yWf9s/BmQVaQZePUXVVaRtp+EWGLoZaoWGKgaSARDr10mQy8rK0c3mQqo7U7IKkOvyOPxGkmW8dmRN/RS9I/unp6SYL38hiJ8DjXCce3Rb6mhl9063MNBr5DNTNJkXOwmVvVjAU5RkzbSs8kkVbJoHHR0izNO2Fojh6GX6HjbOujavh+ApBkTiEtLcTYghcIGwk7Irly50oIwFHbwvMnQa3quc3Eo7MXrNSQLxmbZv0QtXEMv0Bw5H1iquaS6COxs6WO6lUu1/WwjLh6W/hye/UKQN/1RLf2Ztp+ERDp51tVtmFdNG8WAS/OdNvQy6/pZXW1l/qzSPJsTsjZXlcWCntrOOmj1qzhF63cUkfo22HNC255faL38hiJ8rJJKancbZm4lo+Ux9Kpvg4ON2vbcAmeKIsx6mtFeIevzGRWyuWmaoa1Cbj7uVfF80TRxxgnK0CsydFbsBI9mPqH0YxWxQtgJ2WuuucaKOBQ2EGDoNda5OBT2srsemnVDLyf0Y8M09NJZUQLPXQG3riXA4Ks4S+tkrSiJZJQhUnIxLP8d/PvmwNezirRkbMnFDgQVGSKdrNtaazL0GuS60w29wJmErJ0V5JvMCVmHKmST4q0/zh6vUQ02YUT0Vo46rc8dqyj9WPGxKkGxudowc5PpnnPa0MvtgfcPa9vFWTB+hP0x2MmBBqNC+5SiyFZoK5yhd+HAgmJxxglOrkSMJjo3KkMvRewxJJVAj8fD888/z7ZtmujyrFmzuPjii4mPVyUKIrPDZOi1XLVxPXi8WtXA0RZNa2jReJsrLy3GKpfjUAkw9AojIQtaZ2r5DMHOT+FcY3v8Qlj8XU2mQNLKWB39OkmM0zRkh8uGMAbjeoVsVjKMyRr+Z4eDxwtrdhk/l1ksAaxLFqTFuxlvY8VOcyfs0DWC8yApAhrBA7HjOLT5K0ejuVpEVi1L2Vlv0o9VS5HFw+OFl3cbP0fS4EbWe85JQy+PFx772GiTF46N/gTleqUfG3WYDb1K/X01EcYJHi+8sd/4uVRJ6AyZzk1GQjZl3kwHI1Eo7CPsIdnu3btZtmwZVVVVTJ8+HYCf/vSnjB07lv/+979Mnjw54kEqho/XC3X+mWIXcLoy9AJgVWXwmdUHnKrAtAAnBy8+r5cGv6FX6pgiknNHhf034uNg8cRIRzYMWkyjqnGnw8RFzsUSIVq7DEOv2XmRN/QaaCKgqcNYxjk7z95BYrD7f/nf4cELrLn/69qMz5qY2ojLZV9GNkAjWOnHRoxY+Z6ioQy9xCVYu3r2U5HrVzk9yTxUnDL0CnY+XtqjvR4t/dxgmA291KSN/LS7odK/mmpWXqBUiZPjhFWVcMuLUNVsvDb74egaR9pJT4VsUiJJMyc5G4xCYRNhzx/dcsstTJ48mUOHDrFhwwY2bNjAwYMHmThxIrfccosVMSoiwPojxmA8Rxl6AdpD9PJnAzupoAnEX/6s9n404GTCoGXvPrpbW4Hwq2OFpdmUkM2UyE1kADYdM4wSInWNmK+7gaqBKk1yBXYaevV3/x9ptu7+N8sVTEht6n9HC3BSP1amKrZw8JoMvZzQ545VfD4jITsiBaaMdDYehYEd/Sq9bYlzRbby1mr0CtnEOE371g76Ox+NHdHVzw2GuYpeVcjKz6ZjJqkSQfoU+v1lTsZC9I0j7cLT2Ix7zyEAkmdPwZUkiUC4QjFMwk7LvfXWW9x///2MHGn0gEeNGsXPfvYz3nrrrYgGp4gcz28ztqeFX6QYdXi8WsVAMAVH/bXb1mr7yYzZ0GtMJuRn2Pv5QzH0Eh5zQjbD4vXtNhFprT+3x0g+Th0J2QOYpDph6OXU/a/LFQBMSG2M7B8fBLu1TmWtYguHXQ7rc8cqh5ugWpvnU9qQAmFHu9rhNjTHZ+ZCWtLQ/5adtLuNVSizbJCMgdjp5wbD6zWeQWMyoTDT2XgUw0e01SixfH9ZRecmw308uUzJFShih7ATssnJyTQ3N/d5vaWlhaQkSXpGMcj/DhnbZyhDL9450LdiwIwPONQU6EgrI3tPQFOntu2IoZdZP3ZulFTItpiyapnRkWkKVV4gVCproVNgQy+n7n9zhexEmxOyZo1gWwy9/J83Lhtyo7RyNBaqgEVE6ceKiR3takUNdPsTHCIkZUKlotpYhWKXXEGs9HODsave6Puq6tjoQLTnbSzfX1YRYOg1T5ndKGKHsBOyF110EV/5yldYt24dPp8Pn8/HBx98wI033sjFF8vrMB7t6GYuAMunOxeHKBxtiex+omKVy3GonNhsqpAtjZYKWdNBzYyuCtmEOMMoYVh/L4yOs7lCdpZNCVmn7n+9Qjbe5WNcSt+JTauwQiN4IHbVQWssGHoJVrETKyj9WDGxo10VLSkTKk4YesVKPzcYSj82+tBX+cS7YK4AUiWxfH9ZhTkhm1KmErKK2CHshOyDDz7I5MmTOf3000lJSSElJYWFCxcyZcoUHnjgAStiVAwTrxeOmwy9zhznaDhCUBji0v1Q9xOVgMGLzQkDn9fLic1+Q6+iQlJG59obgFU0mypko0CyoK3LZJQwGlIiINkUTqJKT8jmpkGeTZWUTtz/Xd2w1f9dp42CpDj71rGVW6ARPBCxkqiMdGW5IjTM7umnRPH1JRt2tKuyti1OGHrFSj83GAFV9BJdJ4rgBEiVjA409HKKWL6/rKKzXNNXdKWlkjhVJSsUsUPYdTIjRozg3//+N7t372bbNu3GmTlzJlOmTIl4cIrIsOGoMvTqzaLxUJzV/3ITF9r7i8bbGlbEcbJCtmXffrpbtKnhqKmOBUNDNnUkJCQ7G0sE2FRtgaFXiImqujY45q8emJ1nnxakfv9XNQXX/7Li/t9+HNz+HGxpfrBPtQ5l6BV5nNbnjlW8XqP6rSgTirKcjUdhYEe7KquhV7mpQjYSq1BCwYnnnCh85GAxgiLybK42SZUI0qeI5fvLCrpr6umu0qoWkudOwxUf73BECoV9hJya83q9/PznP2fhwoWccsopPPbYY5xzzjl86lOfUslYwfmXsQKAqcqNGID4OHhgafD39JzQyqXafrLi8xkJg6JMKLDZ1CDQ0CtK9GN9Pmjxj6yiUD82Eh3dbo+xNH/KIIZeW81yBTa5TkPg/d87B2zV/W829Jprd0LWQUOvaB0M7zmhDL2cYGedoQ2p5ArEwup2tbPbWFExIxfSJbGt8Hi1hBJoz8SsAZ6JkcSJ55wIdHuMvu+kHBiV5mw8iuEjYp8iVu8vq+gsN+vHKkMvRWwRcjNx3333cdddd5GRkcGYMWN44IEH+OpXv2plbIoI8b+DxrbIhl4eL7y5D/5Wof1vtTPlihIYldr39eIseO4K7X2Z2XsCGjq0bSeW0wYYepVGSUK29Th4/FmYhCTwepyNZ5h4vPDfncbPkag4qqyFjm5tOxz9WLsMvXRWlGj3+ZheFXZW3f9mQ6/SPGcqZBPiYI7Fx9lrMvQamwWjlaGXIoIouQKxsbJdrag2VhnIdM/tOA7t/meiXXIFOnY/50Rgm+l4K0Ov6EDU520s3l9WYU7IKv1YRawRsmTB008/ze9//3tuuOEGAF599VUuvPBCHnvsMeLUGnih2W5yMb9YUEOvVZVw69pACYHiLG320aoHWk0L1LVr23Pz4dtnalo/i8ZHx4ym0x2YQEOvKEjIVr4A/73T+PnIRlg5G5b+HErkMzQMds9d8Q948ILh3XPhVDJsNbVNdhl6mVlRAstnaC64R1usvf8Dl6z62LAj8p8RjNYubYAKWtI7EhrBA7GrPjYqR0Ws2IkFlKGX+FjVrprvOZk0m50w9DJj53NOBJR+bPSh3/siSpXE2v1lFZ0bt/VsqwpZRawRckL24MGDLFu2rOfnc845B5fLxZEjRyguLrYkOEVkOO5POrqAswTUsllVCZc/21eDp6pJe92qWUZz5/6Tk+DKKMgZmnEyYWA29EopyCcl34FsWySpfAGe/QJ9rtKmo9rrVzwtVVK2v3vuSPPw77kNYQyazRWydkoWmImPg8UTrf0Mn8+QLMhLhwIb9UY3mQ29lH5sxIiV7yka5mSLqn4TFyvaVSdNSoeDeTLOqWSSHc85UTDrx6o2Qn463EZfcWYupAkoVRJL95cV+Hw+OvwVsnE5WSSMV50qRWwR8vxNd3c3KSmBwkeJiYm43e6IB6WIHBuOGIPxESniGXp5vFqVXrAFvPprt621Rr4g2gfUTn6/1v0H6G5uBiBnruSGXl4PrP02A16la78jjXyB1fdcqIZePp+hIVuUCSOjWOftaDMcb9O27R6Qb1D6sRHHaX3uWKWr26g2nDYKRgSRHFJEL3rb4sL+pf/DYaOpTZQpblnRZU1cyFVJrQhORY3J0CtK+xSxTvfharzHGwBInjsdl10OvwqFIIRcIevz+fjiF79IcrLhKt7R0cGNN95IerohErdq1arIRqgYFmZDrykCGnq9cyBwyXRvfMChJm2/iFdbRHHiwJwwKMiw34n6xOYo0o898B40HRlgBx80VWn7TVxkW1hDxcp7rttjVANNyoGcARIm1SbJEKeqY+0i0NDL3s+2e5lvqAl5mdlTD41+Y6lonMwTlYoa6PLPe6mlyLFFV7emIQswPRcykgfeXxR8PmMSoSBDTd5YTWe3odc+Pdc+AzWFdUR78YxCyRUoFCEnZK+55po+r33uc5+LaDCKyPPOAWP7dAENvY62RHa/cNATlplJMFXAZPVw2N8AJ/yGXo7ox24y6cfKXiHbUj34PuHs5zBW3nPbTWYaIht62Y15yepcmyuk9MFMvAtKLU4Ge71G8mFMJuTbKM1gJ9E8mScy65V+bMyypUZOQ69DjVDvn3hU1bHWYzZ+U5M20YF63kY/neWGqULKPGXopYg9Qk7IPvnkk1bGobCI7ceN7YunORdHfxSGOGAPdb9QOd4KBxu17XmF4kk5DBentdYCKmTnSl4hmxFiFivU/RzGyntuqIZe0Z6Q3WROyNp4mbS7odJ/nGflQarFhl57TkCTXjkaxQMnVbHjDGZDr1NUQjamkDUps1EA/dhYYr3Sj406NpikSuxeYaSwh85yVSGriG2iLA2l6E1tm7G9REDB8UXjoThLe9AGwwWMzdL2iyQBnfsoHFA7+f18Pp9h6JWfT2q+5D2o8WdAVhEDXqVZY7T9JMDKey6cRFWAoVe0J2T9xdPJ8doySts+9xh4lKFXxJE1OSQ7erIlIU4lt2INWdsW8+qIeRLFLStmQy81aSM/nSapkhkSSZUoQsfn9fZUyMYX5JJQYGMnWaEQBJWQjWI2HxPb0As0Z8oHlgY3GNITRiuXavtFEqcrSK3Gye/Xuv8A7kat/Fj66liAuHhY+nP/D73TmP6fl/5M208C9HsO+v02Q77nwtErNSdkS6JYQ7atC3bWaduz8iDRxsvE7sRhLCQqe+tzFypNSFto6TSqvefYUO2tEIsAQy+JEpvK0MtedFmTeJeqpowGAqRKorRPEeu49x7G29wKQLKSK1DEKAKm6BSRYpWxAkBIQy+dFSXwqSByCsVZ8NwV2vuRxm6jGzvx+Yzvl5+uuYDb9tkeD/v/8c+en0fMsuDkOUHJxXDF05DV62LJKtJeL7nYmbiGyIoS7d4a08vsbTj3nMdrVANNHAEj0/rft9tjLOPPT4e0KE6ubKkxJsZsN/SyuapM1iq2cNh3Ahoc1OeOVTYcNe4jVfkWW3R1w2Z/ldy0UZApUZWcLlmQmaQZXSqso63LkEKanQdpSc7Goxg+sdCniHXMhl4pZUquQBGbhKwhq5CPt82GXsXOxREKuu4gwMMXaktTFo2PfGWsjv6QT0/UOvjRxIEGw0RifiG4+lubHmEOr15D+d0/oP2Ike3e86c/M2LObIovWmZPEFZScjHMuBAOvKcZeGXkazIFklTG9mZFCSyfoRn/HW3RNGOHc89tPw5tbm17oEqGVZXwtTWG+Vd1K0xYqVXtWjH54jS6XAE4YOjlvxXjXdZ/trlytCgzet3EY6EKWEQ+VIZeMcvWWujyaNsyTaDXtRleBWUFYq5SiyY2HlOTNtGGet5GP50bt/dsJ5dNdzAShcI5VEI2itlmMvS6cKpzcQyG12sM5Mdkwo2nWPt5dW1wwGToZVXS1ymc6MAcXr2G96+/QcvKmOg6cYL3r7+B0x9/JDqSsnHxMHGR01FEjPg4WBwhbWlzJUN/g+ZVlXD5s30lSqqatNetqoh3kk0Ombq0u2GrXxaiZLQNhl710KgbekmUNAkXVbHjDGazHuWeHlvIKjHlVNsfq5j1Y5WhV3Sg3/sulORHtNJZbk7IKskCRWwSZakohZmaVmP7k5Oci2MwdtdDc5e2bYvOYZQPqO3+fj6Ph/K7f9AnGau9qf1Xfvc9+Dwe64NROMZgRnIeL9y6NrhetP7abWu1/aIJc4VsqY2SBZurTYZeSj82YsTK9xQNvUI2LTG6NacVfZHVhHWjMvSylfWmKno1aSM/Xd1Q4Z9Unq4MvaISX3c3nVt2AZAwoYj4kdkOR6RQOINKyEYpW6qNpTvZyZAg8Kpquzvb0T6g3mDz96v9YF2ATEEffD7ajxyh9oN11gejcIzBrrt3DsDhpv5/3wccatL2ixa8XqNKalw25KTa99kbbNbJDqVCWnZ8PuN72q3PHcvUtsL+Bm17fqHY/RlF5DG3ZTIlNpWhl73oFbJJ8ZqGrEJuttQYUiUyTcQoQqdr+3587drSqhRVHauIYVRCNkr5Z6WxLbKhF9i/HC2aK2TNhl6j0zSTJqvpqK6J6H4K+fB4jcHn+GwYFcTQ62hLaH8r1P1kYH+DUf0f9YZeklaxhcP+BjihG3oV2afPHeuYlyIr/djYwm0ygJw6ErJTnI0nHPQK2cQ4VdVtNY0dsKNO2y4rgCQlyCc90V48owg09Eqepwy9FLGLSshGKe8cNLYXCG7oZfdAXq+2SE/UlsFEE4ca4Xibtm1XwiAlP7RShFD3U8jHzjpoHcTQqzAjtL8V6n4yYJYrsFtDUG9X41zWf7bZ0KsgA4psmAhygmiezBOZD9VS5JilshY69So5ic59W5dmdAkwK08lCK3GXEWt9GOjg1hYdRPrKP1YhUJDJWSjlMpaY/uiac7FMRhmQy87nLnr22Bfg7ZdVhDlhl42dWBGn7aA1KLC/rO/LhepRUWMPm2BPQEpbCeURNWi8VrFdn9zBC5gbJa2X7RgNnWZa2NCtsOtLfcDmJkLaUnWft6+E9CgV45G8cBJVew4Q4A2pKqQjSlknQTZUmPIhim5AutR+rHRxwYl+RH1dOgVsi4XyaUCJysUCouJsnSUQsds6HWuwIZee09Ak43O3Hbrq9qNE27Ervh4yn58r/+HXuk2/89lP74HV7wS/otWQklUxcfBA0u17d5JWf3nlUuja5Kk3JyQtVGyoKIGuv3maMrQK3JsiAFZBtHw+YwK2ZGpMCnH2XgU9iJr26IMvezFLGuiKmTlx+3RjEkBpo2CLImkShSh4e3opGvbXgASp40nLiOI1plCESNE0dBXobOt1nDXlsrQy+bEQTQugXFKx7H4omWc/vgjpBYGTmOnFhZy+uOPUHzRMvuCUdhOqFVMK0rguStgTK8l7cVZ2usrSqyJzyl0yYKMJHsTSbbrx0paxRYOZkOv0Wl9r2GFNRxshFq/DM8pSrc35jC3LTJVySlDL3tZ779O0hJhptLrlZ6tNSapkijtU8Q6XVt3Q7d2kpWhlyLWcVzVqKqqim9/+9u8+OKLtLW1MWXKFJ588klOPvlkAHw+Hz/4wQ/44x//SENDAwsXLuThhx9m6tSpDkcuJl3dcOda4+eJIxwLJSRU4iBymBMGo1JhbLa9n1980TLGXHA+tR+so6O6hpT8PEaftkBVxkY57m5jMJSXDjmpA++/ogSWz4B3DmgGXoUZmkxBNFXGgmYyojvDl+ZDnI3fz8mJLpmq2MLhYCPUtWvbytDLPsz6scrQK7bo9hiTWpNzYMQgzxaR2OiQXE0scrzVeNbOL4y+vkQsEgt9ilinc6NJP1YZeiliHEcfWydOnGDhwoUkJiby4osvUllZya9+9StycoxSovvvv58HH3yQP/zhD6xbt4709HTOP/98Ojo6HIxcTL71MqTdBy/uMV7bVK29LipOJQ5SE2BGlBl6HW4yKomcShi44uPJW3gG41ZcQt7CM1QyNspZVQnjfgMd3drPNa0wYaX2+kDEx8HiiXDlHO3/aBxAbTYZetkpVwDGxIxdhl765+Wna1rg0Ug0T+aJjNKPjV0qa41ni0xJmW7TcuspIyEz2dl4oh2zXIHSj40O1PM2+ukISMiqCllFbONohezPf/5zxo4dy5NPPtnz2sSJE3u2fT4fK1eu5O6772b58uUAPP300+Tn5/P888/z2c9+1vaYReVbL8Mv3uv7ug/j9fvPszWkQentzF1o8UD+RLumWQtakkJkKYehoDowCjtZVQmXP6u1MWaqmrTXo1GCIBzKHaqQ6uw2DL1m5EK6xYZe+xvghG7oFcWVo6pixxk+VGY9MYtTEkzDZWedkUhWcgXWs17px0Yd5ntfaTBHJ53lfkOvxASSZ01xNhiFwmEcrUt64YUXOPnkk/n0pz9NXl4e8+bN449//GPP+/v27ePYsWOcc845Pa9lZ2ezYMEC3n//fSdCFpKubvj1IIfj1+9r+4nEXpuduaPd0Cvav59CHDxeuHVt32QsGK/dtlbbL1bZ5JShVzW4/cfdDp3sWJkIipXvKRIerzEwH5sFBVFafa0Ijqx9GmXoZS8BFbKqil563B6j/zR1JGQrQ6+ow9vShnvXQQCSSybjSra4ckChEBxHK2T37t3Lww8/zB133MFdd93F+vXrueWWW0hKSuKaa67h2DGtRc7PDxzN5ufn97zXm87OTjo7O3t+bmpqAsDtduN2uy36Jtajxx7sO/x2XRwe38Dlnh4f/PYDD7csECdDsu6QC/0SLMv34HZbG9uHh+MA7TiV5XXjdgdLJ8nLR1Xx6HMspaPdyHi5D3SdK8ThrQMuDjf1//jwAYea4I293Zw9Prrus1ApP6bdjy58zBjZHXA/Wnmdrz9sc7taZbSrpVHYroJfluFoAuAiN81HQVq3lO2r3Qz3Oq+shZauRABOKvTidnsiFptCfMx9mjm54vZpel/nH5vaxDmjo7NNFIn1VVrbnJ3sY3ymaputwM6++aZq6PRo7f68AtXuRyMdH2/VOlZAYuk0YcZ8agwqNtF8XhxNyHq9Xk4++WR+8pOfADBv3jy2bNnCH/7wB6655poh/c2f/vSn3HvvvX1ef/nll0lLSxtWvCLwyiuv9Hnt9UNzgEmD/u7r5QeYUldhQVRD47mqEkAzZ/Md+Yg1a4In2SPFmn0nAcUAtOx+mzVVzZZ+np34fPD+gfOBFDLju9j67otUSrx0ONh1rhCHt+vHACcPut+L75TTurVq0P2iDY/PRcWxCwEoTG7lrVdfC7qfFdf58wfnAhMA6Nz/HmuO10f8M8y8vPt0IA+Ahm2vsWZP9Om713alcrxN0/wZG1/Diy9+4HBEcjHU6/y1urHAfACymrexZs3uCEalEBmPz8WGI8uAOPKTWnn/jVedDmlQ9Ov8tV1nAKMBOL7lVdbs6BzgtxTDod6dwtGW8wEYn3icF18Mot2miBh29M1frRsHzAMgtUG1+9FI7toP0dVcdsR1cWLNGkfj6Y0ag4pJW1ub0yFYhqMJ2cLCQkpKAkUGZ86cyT//+U8ACgq027W6uprCQmPdT3V1NWVlZUH/5ne/+13uuOOOnp+bmpoYO3Ys5513HllZWRH+Bvbhdrt55ZVXOPfcc0lMTAx4b/e6ONaE0Ff9RNl4li0Ya1GE4fPgM0ZV75cvnM8Yi0/PN36vXe6pCT6+cukiEqLISKiqCRrKtetiwbgELrxwmcMRDY2BrnOFOKQfcPHrA4Pvd8GiMs4eP9f6gASjsha6yrX27fRJaSxbFng/Wnmd//Bx7XNd+LjpktPIsHAlmM8H1/9Ga1dHp/n4wvJPRKWG7PPbXbBV2z5vTi7LlsjZvtrNcK/ztWvjQFvVyNVLprNkwrQIR6gQlS010FWutS1nTk7t04aKhPk6T0hI5LrtWtwF6T6uXv5Jh6OLbl7Y8f/bu/P4KOr7j+PvzX0TjkASjgByhvtSURFUhIhSEBQPPGjVtgpWVKw/a1XUVqWCgmfVUtC23gJSpQgiCCIoNwgIcl+BKFcIkHPn98dkN7skgQR2Zza7r+fjwYPZ2e/OfCf57mT2s9/5fBzSD+Zy/451ODf7iZXX5p7n/Zs57welXz5dLldordut1ykq8zxb++PCZ9DA5rrrPRjZGpC9+OKLtWnTJq91mzdvVkZGhiSzwFdqaqrmzZvnDsDm5ubqu+++0913313hNqOjoxUdXb6kaWRkZFC8uSo6jnsvlB6eZ6YlqEy4Q7r3wnBFBkglK8Moy7PVIF7KqBPp1w/yR/OlLaUFvTqlOhQbXfPHgqe1P5ctd28YpsjImh1tDpb3a7C6rLnUKMn8IqCi045D5vOXNY9QeM0eimdlw8Gy5S5plb8ffT3OC4ulH0rPBa3rOVQ73r/voZ1HpIMnzeVu6Q5FRQXne9bz/Hp+o3BFRgbG39Ga4mzH+fLSHKIOSRc0jhB/EkKH53uuRw25pomMjFT28UgdKj0ndklzcB3jZ6tzypYv4Nzsd1Zcm68+ULZ8fiPO+8GocK0Z+3HERiuuXQs5ImwNR5XDZ9DAFMy/E1uvcO6//34tXbpUzzzzjLZs2aJ3331Xb775pkaOHClJcjgcGj16tP7yl79o5syZWrdunW677Talp6dr8ODBdnY9oERFSA/0PH2bB3qa7QKF1ZW5PYtDWFHoxmo1tRoxaqbwMGlSlrl86lvX9XhilkIyGCt5F/TqbGGV7R9ypMLSdGtWnAdCpdCV53EG49+PQFRQXPY+al2Pwi6hpqaeWyjoZa1lHhmRetSgwm+oWLFHQa/zakvJsfb2B75XcvCIineaH1qjO7QKuGAsYAdb3wU9evTQ9OnT9cgjj+ipp55Ss2bNNHHiRA0fPtzd5o9//KOOHz+u3/72tzpy5IguueQSzZ49WzExXJ17+puZ3k4vLPGeKRvuMIOxrucDhdUX2zX14r6qAiVgUOKUFu2UsvOktASpV8a5B+X8sU2cuyGZ0sfDpPtmS3s87iJplGQGY4dkVv7aYLfGY4ZHpwaVt/O1FRZXJbd6f3YwC3qZy3VipYxkW7sTMtbsl1z16M6ncnrI8Ty31KTA5iqPflv5ZVwoMgxpeem1b0qc1LiWvf3BuSlxSu+skU4Wm49r0vseVVewuuzO6OgubWzsCRA4bP9a4pprrtE111xT6fMOh0NPPfWUnnrqKQt7VTP9rZ/0l8ul15ZJWw+b3y7e0yOwZsa6EDjwLdfx1Y6RmtW2pw/TNlQcnJt0DsE5f2wTvjMkUxrUhoD5qVaXzvCoEyu/58b2xBddvrc3V8o5bi53S/P/3RwwLfMYW8x8Cy0lzrJzaNNkqW4Nqse72nOGLAFZv9pxpCxlTo+GnJtrsoqu9eduNddzrR9c8ldvdC9HdyYgC0gBEJCFb0VFSKPPkL4gEFg9o9O1v+hwKTPF//uz0r5caX+eudzVpoDBtA3SdR+Wzye6N9dc//Gw6l9U+WOb8L3wMKlPM7t7EThy8srej50aWPt+tHJWmefM0XpBPDsp2L/MC1SetyIzQza0/PiLdKLIXK5pX/S4UhYkRknNbfpyPFQs9/gc0Z1zc41V2bX+0QKu9YNRwaof3cvMkAVMIT6PCXbw/CCfEmfOePSno/nST4fM5U6pUrDl/Lc7YFDiNL/Zrqi4k2vd6NlmOzu3CVjBM12BlbesFhZLa0v33aqulFi+tqVP7T4q/VJaJjeYZ46GwizgQPR9aUA2Msz8u43QsbKGfgly8IS066i53DlVCuMTll+RP7bmO921vgvX+sGlYLUZkA1LSlBks0Y29wYIDFwuwHI7j8hdhdaKgl6rgrzg1Uqbj2/RTu/bjE5lSNqda7arqm92O3y+TcAKnresWhlI2vCzxQW9grxQoovdX3iFotx8c5akJHVsIEVzL1dIqalfgqw5UHYxS/5L/2OGbM3nj88PCFzF2T+r5MBBSVJ059Zy8K0VIImALGywwuIAYrB/oPb68GLD8WXn+badv7YJWGGNZ0A2mAt62XzesYJhlB1n7RgznyX8b0V22Ywp0hWEnpp6zeYZkKWgl385nWXjpFGSlJpob39wdrjWDy0Fq8gfC1SEgCwsZ/UHebtnkPqb66I0OcaenGVpCb5t569tAlZwpSyICJPaWpiv2vKCXkF+XpWkfcekA66CXhbczQGT163IBGRDSomz7K6mjFo1rKCX5wxZArJ+9dMhKbfAXGZ2bM3FtX5oyffKH9vWxp4AgYWALCxndYDUFaiICpfa1ff//qy0/5gZNJDsK+jVK8OcoVDZrh2SGieZ7arqksaGz7cJ+Ft+Udmt1pkp1t5qbXlBr9Lzap1YKSPZv/uzS7B/mReovqegV8jafFA67iroVcMCbav3m1cskWHBVzw20JA/Njj44/MDApcrf6wkxVDQC3AjIAtLWV2Z+1iBeYEvmbnogrqgl00Bg/AwaVJWxc+5LrImZpntzmabp16one02AX/b8LNUXFp8wsp0BUUlZakSWtaRasX4d397c6WfQ62gFx/6LbOs9OceHym1qWdvX2Ctmpo/tsAZrk2l15rt60tR5D32q2Xkjw0KXOuHDsMw3AHZ8JTaCk8PshlSwDngFAdLWV2Ze5VHLrpAvLgvcUoLtkvvrTP/r24l0UAJGAzJlMb3K7++UZL08TDz+bPZ5sfDpIZJvtsm4E+udAWS9QW9ClwFvazIH1tDczxWV6gULgskB/LKKtV3T+eDeKipqeeWnSeT5DTMC1ryx/ofBb2CB9f6wc8oKVHex3PlPGLe0hnVqbUcwfpNPnAW+A4XlrK88EwAX9xP2yDdN9u7wmijJPPb4qpegARSwCDZY1beze2lu7qZtxmdywfqIZnSoDZmhdXsPDOP1LluE/AX2wp6WZ0/tobOYqsu13HalZ87FJE/NrR5nlvsvqapju0ny6JJ/k4ZE+qKS8ryDJ9XW6pTg/IMo2Jc6wevvM++1i+PTlLJvp/d6/K/W6u8z75WwjW9bewZEDgIyMJSBA5M0zZI131YNnvXZW+uub6q3wq7ji8p2rwwtZNncPjOblKfZr7ZbniY77YF+JNdM2T5osv3so+VVXa2Kz93KPK8FZnckKHF6ZRWlX6p1ThJSom3tz/Vse1EWf4tCnr514afpZPF5jKzY4MH1/rBJ++zr3XgN38u92HXOHbCXP/PvxCUBUTKAljM6hmdrv1FhZt5vQJBidOcGXtqMFYqWzd69pnTFxzIk/Z6FPQKs/ndXFNntgC+YBjS6tJgQnqitcEEz/eev4MBngW9asdITZP9uz+7BOqXecGOgl6ha/NBKa/QXK5pX/RsO5ksycx7aeWXcaHI60sbzhFAQDJKSvTLo5Mq/rBb6pc/vySjpMS6TgEBioAsLGN1Ze5jBdKm0ornHQKoyMKind5pCk5lSNqda7Y7nUCqAF5cUjY7sIUFRYWAQLP7qHQk31y2Ml2B53vvvNpScqx/97fvmHTguLkczDNHQ2EWcKAxjLKUBfXi/H+NgMASSNc01VHsNHPISub1T2K0zR0KcuSPBQJf/tK1XmkKyjGkkr05yl+61rpOAQGKgCwss8fiytyr93sU9AqgizbXbbDn2i5QCnpJ5i1k+aW3kNWkD1KAr9iVrmDjLx7vPSvSFQTQecefmCFrve2HpYMnzeXzGwZvsB8Vq6lfgmw+KBUa4ZIo6GUF15c2DnE3FhCoig8c9Gk7IJgRkIVlrP4gH6gfqNMSfNNuRQDNJllZQz9IAb7iWdDLyg/lluflDqDzjj+5jrNWtHReHXv7EirIHxvaAvWa7UxWHyj75oCCXv5VUCytLf3ys009ZiMDgSqiQV2ftgOCGQFZWMbq29ECNUjYK0NqlGR+u18Rh8yCFr0yTr8d14eXxCjzNjk7hUqQBqjMao+ArJUpC6yeVRao51Vf2n/MTM0gBXdahkBD/tjQ5XSWnVsaJUn1q/jFdSBYs98jIMsMWb9ae0AqKq2vQP5YIHDFXNhR4ekpp/2wG96wvmIu7Ghpv4BAREAWlrGrEnhkWOAU9JLMSqKTsip+zvV3a2KW2a4yPx8388xKFPQCAoErZUFshNTSwi/8rX7vufaXHCM1r+3//dkhFILOgWiZR0CWYEto2XJIOuYq6FXDriGYIWsd8scCNYMjPFz1/npf6YNTnzT/q/eXP8gRHm5pv4BAREAWlrC6MvfxQunH0oJe7etL0QFS0MtlSKb00lXl1zdKkj4eZj5/OoGUx7G4pGx2YHMLigoBgSavQNp6yFxuX//0X6b40qnvvdp+fu9lHyvLbR3MM0eZ8W+94pKyn3vTZCkl3tbuwGI1NX+sYUhrSgOyqfGGGtSgmb01kdeXNjVonAChKOGa3mrwz78oPC3Fa314en01+OdflHBNb5t6BgSWAAtTIVh5Vubulm5NQS+nUbY/fyhxSot2mgGKtAQzxUB1AjF148qWr8uURvao2jZKnNJHG8oe211E4sdfpJMU9EIIW5dTVkDQyvej1e+9mprjsbqY8W+9jb9IJ4rMZQItoaXEKc3YWPbYypQv52rHYenQSfOCtnEtQyVOh2VfyIUi1wzZiDBri2cCODsJ1/RW/FWXKH/pWhUfOKiIBnUVc2FHZsYCHgjIwhKWF57x8/6mbZDumy3tyS1b1yjJTEVwptmtLp59/HVnqU+zs9vvH+dI8ZFV36+v1dSZLYCveOWPtbKgl01pYKzan11cxxkI+blDBekKQlNF1zS//0wqdtp3TVNV0zZIv/1v2eNl+8LUdGL1rgNRdccLpfU/m8vt60uxkfb2B0DVOMLDFXtxF7u7AQQsvseFJTw/yFuS59CPgYNpG6TrPvT+ACFJe3PN9dM2VPy6U1X3Z1LZfg8cr95+fS1UZs0BlVljV0GvIPuiKxDk5JWdYwMhP3eooKBX6KnsmmZ/nr3XNFXh6vvBk97rq3sdiKrzvPON/LEAgGDBRw1Ywuqcpys8bmvq4MOCXiVOczaHUcFzrnWjZ5vtTsezonB6opSaaM1+/cHqYDsQaFwFvSSpo5UBWY/3nhXFZFz7S4oO3oJeoTILONAsK/2b7RB/R0JBIF/TnElN7ntNRv5YAEAwIiALS7g+5FpRmft4oZmPTjJva4rx4W1Ni3aWn83hyZC0O9dsdzpbD0u5BeZyVWaa+Wq/vlbiLLtdu1myVCfutM2BoFPilNaVBmSb15aSYqzbr+u91zTZOye1P+w/ZuYCl4J75mgozAIONPlF0trS91BmipQYbW9/4H+Bek1TFTW57zXZMo9zM2lNAADBIkg/UiGQ7Ms1b0GTrKnMvcazoJePP1C7Koyfa7vqzhj21X597UePQizMJkMo2npIOl76HrAyXcEmz/ee1WlggjhQyQxZ663eb+YMlQi0hIpAvaapiprc95rMVdArOtycbAEAQDAgIAu/s/qD/Eo/fqBOS/BNu+r+THy1X19bGSJBGqAynukKgrqgl8VpZ+yy0qOgV0sKelmC/LGhJ1CvaaqiJve9pjpyUtp80FzunCpFUqAdABAkCMjC7/wZIK2IP3Oa9sqQGiWZee4q4pDUOMlsdzrV/Zn4ar++FipBGqAyngW9OlsZkLX41vpQ+PLll+PSrqPmcpcgTssQaLxuRebvSEgI1GuaqqjJfa+pPP/+UNALABBM+LgBv7OrEni4w/cFdsLDpElZFT/nujifmGW2q4xhlF1cpiVIaWco6HXqfk/9EFDV/foDBb0Q6rxmyNpU0MvKL7oSo6QWQTpzNFTSMgQaV7GeqHBri+LBPoF6TVMVNbnvNRX5YwEAwYrLBfid60NurWjpPD9/kD9ZJG342VxuV1+K9WFBL5chmdJ715Vf3yhJ+niY+fzpbDssHck3l6sTSBmSaW6/YdLZ7dfXSpzSqtLfbUYt/xcVCmYlTmnBdum9deb/VGcOTBX9nlyFtWpFSxnJ1vXDyvdeTl5ZEZtgLehV4pQ+Wl/2uAsBWUscOSlt8rgVOSrC3v7AOoF2TVMdNbnvNdFyj4AsM2QBAMGES1/41amVua0o6FXip4JenjxniF3SWHr6cvP2tKrMiDiXGcNDMqVBbczqvdl55gzbqu7X1zYfLCtmRLqCszdtg3TfbO+qzY2SzBk4fKgLHBX9ntITy85vHRv4//zmYvV7L9gLXVX0u31ojhQfyXvQ3zzHFukKQk8gXdNUl6vv87cV63+LVuuqXp11WfOIGtH3msY1iz4+UmpTz96+AADgSwRk4VdW39JuVeDAM6h6XTupT7NqvPYc+xgeVr39+YvVqSiC0bQN0nUfSsYp6/fmmuuZaRMYKvs9uYKxUnDnjw3m93plv9uc47wHrUBBLwTKNc3ZCA+TemcYOr5+r3pndCIY6wc/H5d2lub27ppWM4L1AABUFX/W4FdWF32yKnBwLrkGPftYk/OuBvusOX8rcZqz8k4NBEll60bPJn2B3U73e/LUwab8scH0RZfVeA/ab5lHQJbckABOtZz8sQCAIEZAFn5ldZEU1/7CHVInP85YcwVVHarezDjPgl4N4s1bnmuqYJ41Z4VFO71vkT6VIWl3rtkO9jnT78nFaWHQzq4vuhKipJZBVNCL96D9XDNkE6Ok1nXt7QuAwEP+WABAMCMgC79yfZC3ojL3ySJpfY65nJnin4JeklRYLK0r3U/relJCdNVfu/2wdNijoJdVOSd9zemUVpUWM2pSS6oXb29/aqLsPN+2g39U9ecf46fzzak833uNk6QUP7/3fj5uBiUlqUtqcBX04j1or+xj0t7StB/d04NrbAHwDa9Z9ARkAQBBhstf+M2BvLIPW1ZU5l57wKOglx8v2n7IkQpLSvdT3XQFFs8Y9pfNB6W8QnO5Jh+HndISfNsO/lHVn39GLf/2w+WnQx7vPavTwATZh2Heg/ZaRv5YAGfgmiGbHCOdF0R3aAAAIBGQhR+ttDjv4EqL8iqeSz5Fq38m/hIsx2GnXhlSoyQz7UVFHDJnQPbKsLJXONWZfk+SFBdp3e/J8oJeQfIlUkV4D9rre/LHAjiNvblldyh0r8F3lQEAUBkCsvCbYK0Efi77CZa8q1YXFQpG4WHSpKyKn3N95piYRUVhu53u9+QypK11vyerC2wF85cvnr/bUz/n8x70v2WexXqCbGwBOHfLOUcAAIIcHzPgN1YHDlz7C3NUr9DW2e7HIalLNYKRhlH22vrxUsMkn3fNMsESWLbbkEzptavLr2+UJH08zHwe9hvURvptt8qfv7GddX2x8r1X4pQW7zKXY8Kl82r7d392GJJpvtdOPR/zHvQvwyhLWdAgXmpsUcoPADWHZ1oTCnoBAIJRhN0dQPDyLOjl78rc+UVmbldJaltPiovyz34Ki81ctZLUqq6UWI2CXjuPSIdOmsvd0mrurVdOZ9msuUZJUn3yK54Tz6JMg9tI911g3iLNrLzAMG2DdN9saU9u5W3u+q/0Son/g3dWvvembZDu/Z904Lj5OL9EOu8lc0ZpsAUph2SaQfdFO83bY9MSeA/629ZDZQUuezSsuX8PAfiP1yx60poAAIIQHzfgF16VuS0o6LUuRyp2msv+nI274WePgl7V3I/VM4b9Zcsh6RgFvXzGc8bj7Z2kPs0IBAWKaRuk6z48fTBWkvbnme2mbfBvf6x677mOe98x7/V7c605TjuEh5nvvZs68B60wvcU9AJwGoZRlrKgfrz5JSQAAMGGjxzwC88gkxU5Ri3LH3sOBW6s/pn4S7AElgMFP8/AVOI0Z8YaVWjrajN6tvk6f7Eid/Ppjtuq40TwI38sgNPZfrjsrrIeFPQCAAQpArLwC6src1sV1DqXoGqwVCsnf6zvGEbZLegpccwACSSLdp55ZqwnQ+ZdAYt2+q1L3u89P53nznTcVhwngp/nDFluRQZwKs+CXuSPBQAEKwKy8AsrAgcV7c+qgl7SWRT0Ku1jvbiaXcCEGZ2+s/uo9MsJc7kbM0ACSnaeta+rCiu+1Klq//15nAhuxSXSqtKx3Ly2VDfO3v4ACDzkjwUAhAICsvALV+AgPtIsfuVPBcVlBb3a1JPi/VTQq6hEWrPfXG5ZR6oVU/XX7joqHQyygl4NE6UGFPQ6J8EyazoYpZ3l2D7b152J53svPVFKTfTPfqraf38dJ4Lf+p+lk8XmMvljAVSEGbIAgFBAQBY+98txMwApmbNI/V0cZd0Bqag0n6E/c7Nu+FkqOMuCXiuDZFbp1sNSboG5XJPz4AYKq2eSo+p6ZZgpJKr63YlDUuMk83X+sM3jvefP4P2Zjtvfx4ng55WugPMegFM4nWXXR42T+PIfABC8CMjC51ZaPOvPqv2dS+7UYMm7GiyB5UDBDNnAFR4mTcoyl88UlHU9PzHLf19AWZUq5HTHbcVxIvgtI38sgNPYfFA6VmguMzsWABDM+EgFn7M6x6hlBb3OYT/Bknc1WALLgcAzr3Dd2JqdVzhYDcmUPh4mNTyl2Fr4KZHKRklmuyGZ/uuLle+9yo7biuNE8HPNkA1zcKcFgPLIHwsACBURdncAwcfqoJ1rfw5JXfxZ0MvjuKrzIfLUwFuTcwy8lTjNCufZeWYex14Z1s1WC5bAciDYkyv9TEGvgDckUxrUxvs9d1Fj6dvd1r4HrX7vVXTcVp5rEJxOFJblfG+X4r+c7wBqphKnNOPHssf+vK4HAMBuBGThc67AQVyk1Lqef/dVWCytK/1w17qelBDtn/0Ul0hrDpjLLapZ0MuXgbdpG6T7ZpvbdGmUZN5i7O9Za4ZRlrIgLUFK81NRoVDBbOOaIzxM6tPMe92pj/3JrvdeRccNnItV+6USw1ymoBcATxVd494xU3r5Ku7MAAAEJ+a6wKcOnpB2HDGXO6f6fzbVDzlSoavQlh+DWht/kfKLz24/Zzuz9lTTNkjXfeh9oSpJe3PN9dM2nP22q2LbYelIvrnM7Nhzx2xjVJXne49bvFGTkT8WQEUqu8bNPmbNNS4AAHYgIAufsrqgl2X5Y88hqOqLwk0lTnPWgFHBc651o2eb7fyFGZ2+xc8TVeU1Vgjeowb73iMgywxZAFJgXOMCAGAHArLwKasDB1YFtc6poJcPfiaLdpafNeDJkLQ712znL8zo9B3DKPt51omVMpJt7Q4CnC++1AECgatYT0yE1L6+vX0BEBgC4RoXAAA7EJCFT1kdOPDcXxd/BmTPpaBXaR9rx0hNk89u/9l5vm13NpjR6Tv7jkk5x83lbmkU9MLpMUMWweDQCWnLIXO5S6oUGW5vfwAEhkC4xgUAwA4EZOFTrsBBbITUxoKCXmtLC221qisl+rGg1+r95nLz2lLt2Kq/dm+uR+DtHAp6pSX4tl11eRYVahBPQa9zRYANVXXqey+d9x5qqOUe5z3yxwJwsfsaFwAAuxCQhc8cPiltP2Iud06VIvw8+2XDz9YU9PrxF+nkWRb08lVO3V4ZUqMkqbJ4rkNS4ySznT/sOCId9ijoxYzOc8Mt6Kgq3nsIFss8A7J8EQWglN3XuAAA2IWALHxmpcU5Ri0r6HUu+WN91MfwMGlSVsXPuS5gJ2aZ7fyBdAW+dS5F4hBaeO8hWFDQC0BFPK9xTw3KWnGNCwCAXfjTBp+xOnBgWUGvc9iPL/s4JFN6vHf59Y2SpI+Hmc/7CwW9fMszr3Cz2vb25UxKnNKC7dJ768z/qXJsLd57CAaGURaQrRUttahjb38ABJYhmea1bMMk7/VWXOMCAGCXCLs7gOBhdeDAsoJeHvup7mxG12uTfRR4i4ssW/5dN+nG9uYtXP6eNcAsPd/ZlyvtLy1M0TXAC3pN2yDdN9u7+nGjJHMmCx+OrMF7D8Fgr8d5r0dDKYzpAABOMSRTGtRGWrTTLOCVlmDNNS4AAHYhIAufcQUOYiKktn4u6FVUIq0pLbTVso5UK8Y/+ylxlhX0apYs1Ymr+mv9EXjzDA6PPF/q0ODct3kmhlG23/rx5WcvoHpqyozHaRuk6z6UjFPW78011zNjxf8833spcbz3UHORPxZAVYSHSX2a2d0LAFYpKSlRUVGR3d1QUVGRIiIilJ+fr5KSEru7E5KioqIUFoLf2BOQhU8cOSltPWwud2pgTUGvAldBLz9+uNv0i3Si9G/E2c6OlXw3s83KoLfLziPSoZPmcrcAn9FZE9SEGY8lTnNm7KnBWMlc55A0erY5k4WZK/7j9d6joBdqsGXkjwUAAKUMw9D+/ft15MgRu7siyexPamqqdu/eLQcX3LYICwtTs2bNFBUVZXdXLEVAFj5heUEvq/LHnktBL88++uBnYnXQ26WmzOisKax+r5yNRTu90xScypC0O9dsx0wW//HHlzqAHTwLevUgIAsAQEhzBWPr16+vuLg424OgTqdTeXl5SkhICMlZmnZzOp3at2+fsrOz1aRJE9vHg5UIyMInrA4cWBUkPKeCXj7+mdgVyKsJMzprEs+8ws0DtKBXdp5v2+Hs+PpLHcAOTkNaXjqW0xJIvQEAQCgrKSlxB2Pr1q1rd3ckmQHBwsJCxcTEEJC1SUpKivbt26fi4mJFRkae+QVBgtEGn7A6cOC5vy6pftyPD2bI1oqWzvNBRWm7ZsudS1EzeNt/TNp3zFwO5IJeaQm+bYezs5IZsggCPx2SjhaYy6QrAAAgtLlyxsbFVaM4C4KeK1VBqOXwJSALn3AFDqLDpcwU/+6ruERac8BcPq+2lBzrn/2UOKVVpceVUUuqW42/GdnHymYP+irwZscMWcMoCyzXi5Ma17Jmv8GqptyC3itDapRk5oqtiENS4ySzHfzDs6AX7z3UZMv3lZ1JSFcAAAAkhdRt6TizUB0PBGRxzo7mmzNgJKlTqhTp59ymG3+R8ovNZX8GJjcflI4Xnd1+/BE8dQVGrQh6u+w+Kh2koJfP1JRb0MPDpElZ5vKpv3LX44lZFPTyp91HpV9OmMu891CTeQZkmSELAAAAmPg4jXO2yur8sVYV9DrL/ZQ4pY/Xlz32RUoFq4PeLhT08q2alP5hSKb08bDy+R4bJZnrh2Ta069QUOKU3l5T9rhLgI8V4HSWZ5cFZLvzdwQAAKDaxo4dqwYNGsjhcGjGjBl+2ceIESM0ePDgar2madOmmjhxol/6Ewoo6oVzZnXQzrKCXmexn2kbpPtme1eof3COFBNxbgEsq4PeLhT08i3XzzMp2ky3EeiGZEqD2kiLdpopONISzDQFzIz1n4rOIW+tkHqkEwRHzVPkdGj1fjMg27KOVNtPKYYAAEBw2b9/v/7617/q888/1969e1W/fn117txZo0eP1hVXXGFpXxwOh6ZPn17tYKWvbNy4UU8++aSmT5+uCy+8ULVrV/5B8u2339Yrr7yi9evXKzw8XF27dtVDDz2ka6655oz7mTRpkgzDqFbfli1bpvj4+Gq9BmX4WI1zZnXQznN//pxlWN39TNsgXfehdyBFkg7kmeunbTiHvtg0U5UZsr5zIE/a61HQq6YU8AwPk/o0k27qYP5PMNZ/KjuHHDp57ucQwA678pNUUGIGZMkfCwAAqmLHjh3q1q2bvvrqKz3//PNat26dZs+ercsuu0wjR460u3sVKiws9Nu2t27dKkkaNGiQUlNTFR0dXWG7MWPG6He/+51uuOEGrV27Vt9//70uueQSDRo0SK+88kql2y8pKZHT6VStWrWUnJxcrb6lpKRQoO0c8NEa58wVtIuyqKDX6v3mcvPa/ptt43RKq0r30zhJSjnDlz4lTnNWW0XfJ7nWjZ5ttjsbdsxU9SzoVTdWakJRoXPCbGOcjr/PIYAdtpxIdi+TPxYAAFTFPffcI4fDoe+//15Dhw5Vq1at1K5dOz3wwANaunSpu92uXbs0aNAgJSQkKCkpScOGDdOBAwfcz1d0C/7o0aPVp08f9+M+ffrovvvu0+OPP6569eopNTVVY8eOdT/ftGlTSdK1114rh8Phfjx27Fh17txZ//jHP9SsWTPFxMTonXfeUd26dVVQUOC1z8GDB+vWW2+t9HjXrVunyy+/XLGxsapbt65++9vfKi8vz72fgQMHSpLCwsIqLX61dOlSTZgwQc8//7zGjBmjFi1aqG3btvrrX/+q0aNH64EHHtDu3bslSVOnTlVycrJmzpypzMxMRUdHa9euXeV+XseOHdPw4cMVHx+vtLQ0vfjii+rTp49Gjx7t9fPxTFngcDj0j3/8Q9dee63i4uLUsmVLzZw5s9JjD3UEZHFOcvPN4leS1LGBFOXnJBg//iKddBX08mNQ66dDUl7pl1xVmRm6aGf5WW2eDEm7c812Z8PKoLfLnlzpZ1dRoXSKCp0rZhvjdPx9DgHssPl42S11PTjvAQCAMzh06JBmz56tkSNHVngrvGsGp9Pp1KBBg3To0CF9/fXXmjt3rrZt26Ybbrih2vt85513FB8fryVLluhvf/ubnnrqKc2dO1eSeUu+JE2ZMkXZ2dnux5K0ZcsWffLJJ5o2bZpWr16t66+/XiUlJV4ByJycHH3++ef6zW9+U+G+jx8/rv79+6t27dpatmyZPvroI3355ZcaNWqUJHPW65QpUyRJ2dnZys7OrnA77733nhISEvS73/2u3HMPPvigioqK9Mknn7jXnThxQuPGjdM//vEPrV+/XvXr1y/3ugceeECLFy/WzJkzNXfuXC1atEgrV6487c9Skp588kkNGzZMa9eu1YABAzR8+HAdOnTojK8LReSQxTlxzSKVLEpXYFX+2GrOZszOq9p2q9rOk9VBbxerUkOEipU25QFGzeDPcwhgF9cM2XCH1NkHBS4BAEBw27JliwzDUJs2bU7bbt68eVq3bp22b9+uxo0bSzIDq+3atdOyZcvUo0ePKu+zY8eOevjhh5WUlKTWrVvrlVde0bx583TllVcqJcWcDZWcnKzUVO+LmcLCQr3zzjvuNpJ08803a8qUKbr++uslSf/+97/VpEkTr1m5nt59913l5+e7g8KS9Morr2jgwIEaN26cGjRo4A5Cn7p/T5s3b9Z5552nqKiocs+lp6crKSlJmzdvdq8rKirSa6+9pk6dOlW4vWPHjuntt9/Wu+++687ZO2XKFKWnnzkIM2LECN10002SpGeeeUYvvfSSvv/+e2VlZZ3xtaGGGbI4J16BSysKell023d1A79pCVXbblXbeVptcdDbZQUBRJ9yjd3EKKlFHXv7gsDjz3MIYIfjhdLu/CRJUocGUlz5zwcAAABeqlpUauPGjWrcuLE7GCtJmZmZSk5O1saNG6u1zw4dOng9TktLU05Ozhlfl5GR4RWMlaS77rpLc+bM0d69eyWZ6QFGjBhRaaqBjRs3qlOnTl6zgS+++GI5nU5t2rSpWsdRnYJcUVFR6tixY6XPb9u2TUVFRTr//PPd62rVqqXWrVufcdue242Pj1dSUlKVfp6hiIAszonVQTvP/XWxqKBXVY6rV4bUKEmq7K5+h8xctL0yzqIvdhX0sjjYHsx+Pm7ebi7VrIJesI4/zyGAHVbtd8hZOqJJVwAAAKqiZcuWcjgc+vHHH895W2FhYeWClEVFReXaRUZGej12OBxyOs9cuKGilApdunRRp06d9M4772jFihVav369RowYUb2On4VWrVpp27ZtFRYX27dvn3Jzc9WqVSv3utjY2EqDxOfqbH+eoYiwAM7JSo/cpu3Lpx3xqRJn2WzRpslSXT8V83M6y46rUZJUvwoz0sLDpEmlM/BPPa25Hk/MOrsK9bYV9Cr9GdSOMX/eOHsEt3Em/jyHAHZYtq9sJFPQCwAAVEWdOnXUv39/vfrqqzp+/Hi5548cOSJJatu2rXbv3u0uVCVJGzZs0JEjR5SZmSlJSklJKZdzdfXq1dXuU2RkpEpKSqrc/s4779TUqVM1ZcoU9e3b12sW76natm2rNWvWeB3r4sWLFRYWVqXZqC433nij8vLy9MYbb5R7bvz48YqMjNTQoUOrvL3mzZsrMjLSK2fu0aNHvdIe4Nzx0Q5n7ViBtOkXc7lDff/nNt30i3Si9AstfwYmtxySjrkKelVjP0MypY+HSQ2TvNc3SjLXD8k8u/6ssDDo7bLvmJRT+jeBgl7nznOWM/l4URl/nUMAOyzPLvvD0YOALAAAqKJXX31VJSUlOv/88/XJJ5/op59+0saNG/XSSy+pZ8+ekqS+ffuqQ4cOGj58uFauXKnvv/9et912m3r37q3u3btLki6//HItX75c77zzjn766Sc98cQT+uGHH6rdn6ZNm2revHnav3+/Dh8+fMb2N998s/bs2aO33nqr0mJeLsOHD1dMTIxuv/12/fDDD5o/f77uvfde3XrrrWrQoEGV+9izZ0/dd999euihhzRhwgRt3bpVP/74o/785z9r0qRJmjBhwmkDw6dKTEzU7bffroceekjz58/X+vXrdccddygsLMxvM2tDEQFZnLXV+83K35JF+WOtKuh1DvsZkintGC3Nv116d6j5//bRZx9IsTroLZkzkaeuKnvchUIs58yOWc6omXx9DgHsUOKUvtlpXqxHhRlqU9fmDgEAgBqjefPmWrlypS677DI9+OCDat++va688krNmzdPr7/+uiTzNvhPP/1UtWvX1qWXXqq+ffuqefPm+uCDD9zb6d+/vx577DH98Y9/VI8ePXTs2DHddttt1e7PhAkTNHfuXDVu3FhdunQ5Y/tatWpp6NChSkhI0ODBg0/bNi4uTl988YUOHTqkHj166LrrrtMVV1yhV155pdr9nDhxol577TW99957at++vbp3766FCxdqxowZuvfee6u9vRdeeEE9e/bUNddco759++riiy9W27ZtFRMTU+1toWIOozqZf2ug3Nxc1apVS0ePHlVSUtKZXxCgioqKNGvWLA0YMKBcTg67TFwi3f+FufzGNdJvu/t3f6P/J036zlz+4hapXwv/7GfMF9KEJebyZzdLV7c6fXt/WrRTunSKufzbbtIbA/27v2kbpPtmS3tyy9bVjZXeHGhNQCgQx7kvZLwo7ToqJURJR/+PHLKhLljHOSCZf0funSXtyytb1yjJTMnBFwsINpzPEewY4/C1/Px8bd++Xc2aNQuYwJ7T6VRubq6SkpIU5qMPaldccYXatWunl156ySfbCwTHjx9Xw4YNNWHCBN1xxx0+3fbpxkWwxPQqQlgAZ83q27BtmSFr82xGK2dWTtsgXfehdzBWkg6dNNdP2+Df/QerX46bwVjJnG1MMBZAsHL9HfEMxkrS3lz+jgAAgOB3+PBhTZ8+XQsWLNDIkSPt7s45WbVqld577z1t3bpVK1eu1PDhwyVJgwYNsrlnwcOCG6ARrFzBwsgwqUPV05uclRKntKo0UJpRy5qCXumJUmqif/ZTVVYFoUuc5szYiqbLGzKLCo2eLQ1qQ1Gh6rLqdwgAduLvCAAACHVdunTR4cOHNW7cuGoV5QpU48eP16ZNmxQVFaVu3bpp0aJFqlevnt3dChoEZHFW8gqkH0tzm7avL0X7eSRtPigddxX08mNQa9thKbegdD8BkOvTM+jtz4Jei3aWnxnryZC0O9ds16eZ//oRjFYG0IxrAPAX/o4AAIBQt2PHDru74DNdunTRihUr7O5GUGOOAs6K5QW9LLp1P5BmMx4vtC7onZ135jbVaYcyXmOXGbIAghR/RwAAAICqIyCLs2J1nlWr8tVambP1TKwMeqcl+LYdyrjGbnyk1IpK4wCCFH9HAAAAgKojIIuzstLimaRWzTIMpBmyVgaHe2WYVbAdlTzvkNQ4yWyHqjt4QtpxxFzukkbeRADBi78jAAAAQNURHsBZcQULI8KkDn7MbSqZhbZW7TeXGydJKfH+2Y9hlAWa0xKktBAp6CWZgcJJWebyqR+mXY8nZhFQrC7yxwIIFfwdAQAAAKqOy2JU2/FCaaNHbtOYSP/u76dDUl6huezvgl5H8v2/n6qyMugtSUMypY+HSQ2TvNc3SjLXD8n0fx+CjecsZ3+m2gCAQMDfEQAAAKBqbA3Ijh07Vg6Hw+tfmzZt3M/n5+dr5MiRqlu3rhISEjR06FAdOHDAxh5Dktbsl5ylyU0tyR9rVUGvAAqeWR30dhmSKe0YLc2/XXp3qPn/9tF8iD5bgZQCAwCs4Po7MveWYj2QsVxzbynm7wgAAABwCj/Wba+adu3a6csvv3Q/jogo69L999+vzz//XB999JFq1aqlUaNGaciQIVq8eLEdXUUpqwpsVbQ/y/LH2hyQtTro7Sk8TOrTzNp9BitXkD8uUmpTz96+AIBVwsOk3hmGjq/fq94ZnUhTAAAAIGnEiBE6cuSIZsyYYXdXEABsD8hGREQoNTW13PqjR49q8uTJevfdd3X55ZdLkqZMmaK2bdtq6dKluvDCC63uKkpZVWCrwv1ZNEPW7tmMzKys+Q6dkLYfMZc7p5I3EQAAAABqKs9gap8+fdS5c2dNnDjR7m6hBrM9IPvTTz8pPT1dMTEx6tmzp5599lk1adJEK1asUFFRkfr27etu26ZNGzVp0kRLliypNCBbUFCggoIC9+Pc3FxJUlFRkYqKivx7MH7k6nsgHMPyfRGSHAp3GGpbp1j+7JLTkFZmm/trlGiodrR/9md47KdBvKGUGP8e15ks3xsuV0aRjinFKioy7OuMhQJpnJ+r7/c45DrFdmlQoqIip70dQsAIpnEOVIZxjlDAOEewY4zD14qKimQYhpxOp5zOwPh8ZBiG+//T9ckwDK82Z2pflW3A5HQ6ZRiGioqKFB4e7vVcMJ9/bA3IXnDBBZo6dapat26t7OxsPfnkk+rVq5d++OEH7d+/X1FRUUpOTvZ6TYMGDbR///5Kt/nss8/qySefLLd+zpw5iouL8/UhWG7u3Lm27r/AGa6NP18tSWocnav5cxf4dX978+N1rNAMyqeH7desWd/7ZT8HCuJ0OP9KSVKj8AP63/++88t+qurrzX0k1VKYnNq76n+atSa0Tth2j3NfmHaghaR2kqTwnDWaNWu3vR1CwAmGcQ6cCeMcoYBxjmDHGIevuO6QzsvLU2Fhod3d8XLs2LHTPl9UVKTi4mLdcsst+vrrr/X111/rpZdekiStWbNGDRs21OjRo7Vw4ULl5OSoUaNGuuOOO/T73/++3DZyc3P1/vvv609/+pM2btyo6Ohod5vhw4crISFBb7zxhn8ONAAVFhbq5MmTWrhwoYqLi72eO3HihE298j9bA7JXXXWVe7ljx4664IILlJGRoQ8//FCxsbFntc1HHnlEDzzwgPtxbm6uGjdurH79+ikpKek0rwxsRUVFmjt3rq688kpFRlpU4akCS/c45FzjkCT1bpWoAQMG+HV/7693SBvN5axO9TWgl3/298lGh7TBXO7fMUUDevv3uE7nZJG0Z7X51mxX36Frr8myrS9WC5Rx7gv/nhYulabBGNG/g9rX72BvhxAwgmmcA5VhnCMUMM4R7Bjj8LX8/Hzt3r1bCQkJiomJkWFIJ2yaABkXKTkc5qzVY8eOKTExUQ6Ho9L2kZGRioiI0KuvvqodO3aoXbt27smAKSkpcjqdatasme69917VrVtX3377rX7/+9+radOmGjZsmNc2kpKSdOutt+r//u//tGDBAl1//fWSpJycHM2ZM0ezZ8+u0fGr6srPz1dsbKwuvfRSxcTEeD3nuus9GNmessBTcnKyWrVqpS1btujKK69UYWGhjhw54jVL9sCBAxXmnHWJjo72+nbBJTIyMij+iNh9HGt/Llvu0ShMkZH+TYy55kDZ8vmNwhUZGV5543PZT441+6mKFfulktIMBd3THUExbqvL7nHuC6tKJ/LHRkgdUiMVYd+QQoAKhnEOnAnjHKGAcY5gxxiHr5SUlMjhcCgsLExhYWE6XiglPWdPX/L+JMVHyZ0+wNWvyjgcDjkcDtWuXVtRUVGKj49Xerp3wZennnrKvXzeeefpu+++08cff6wbb7zRaxthYWGKj4/XzTffrLfffls33HCDJOndd99VkyZNdPnll582OBxswsLC5HA4KjzXBPO5J6DKzOTl5Wnr1q1KS0tTt27dFBkZqXnz5rmf37Rpk3bt2qWePXva2MvQZlWBLff+PItbWVXQy4LjOh0KetV8R05KWw+by51TRTAWAAAAAILcq6++qm7duiklJUUJCQl68803tWvXrkrb33XXXZozZ4727t0rSZo6dapGjBgRUsHYUGbrDNkxY8Zo4MCBysjI0L59+/TEE08oPDxcN910k2rVqqU77rhDDzzwgOrUqaOkpCTde++96tmzZ6UFveB/rmBhuEPqVPlEZZ9wOqWVpftLT5RSE/2zn+ISaekeczk5RkpN8M9+qiqQgsM4Oys9gupd+R0CAAAAQDlxkeZMVbv27Uvvv/++xowZowkTJqhnz55KTEzU888/r+++q7w+TZcuXdSpUye988476tevn9avX6/PP//ctx1DwLI1ILtnzx7ddNNNOnjwoFJSUnTJJZdo6dKlSklJkSS9+OKLCgsL09ChQ1VQUKD+/fvrtddes7PLIe1kkbS+9Nb+zBQp1s8zx7cdlnILzGV/BSanbZBGzpKOleYTP5IvNZskTcqShmT6Z59nYmXQG/7BLGcAAAAAOD2Hw0wbUNNERUWppKTEa93ixYt10UUX6Z577nGv27p16xm3deedd2rixInau3ev+vbtq8aNG/u8vwhMtgZk33///dM+HxMTo1dffVWvvvqqRT3C6aw9UJbb1Iogk7+DWtM2SNd9KBmnrN+ba67/eJj1QVmrg97wD2Y5AwAAAEBwatq0qb777jvt2LFDCQkJqlOnjlq2bKl33nlHX3zxhZo1a6Z//etfWrZsmZo1a3babd18880aM2aM3nrrLb3zzjsWHQECQUDlkEVg8wwyWXEbtj+DWiVO6b7Z5YOxUtm60bPNdlZaZ3HQG/7h+jIhJsIMrAMAAAAAgsOYMWMUHh6uzMxMpaSkaNeuXfrd736nIUOG6IYbbtAFF1yggwcPes2WrUytWrU0dOhQJSQkaPDgwf7vPAKGrTNkUbNYVWCrwv35ODi5aKe0J7fy5w1Ju3PNdn1O/4WWT1n9M4bvHc2Xthwylzs1oKAXAAAAANR0U6dOdS+3atVKS5YsKddmypQpmjJlite6Z599tsJteNq7d6+GDx+u6Ohon/QVNQMBWVSZa8ZqmMOsHO9PhlFWGCktQUrzcUGv7DzftvMVq2chw/dWkT8WAAAAAHAGhw8f1oIFC7RgwQLqJYUgArKokvwiaf3P5nLbelKcnxNvbztsFtiS/BOYTEvwbTtfcc2QtSLoDf9gljMAAAAA4Ey6dOmiw4cPa9y4cWrdurXd3YHFCMiiStYekIpL86laUtDLM3+sH/bXK0NqlGQW8Kooj6xD5vO9Mny/78rkF0k/lBb0siLoDf/w99gFAAAAANR8O3bssLsLsBFFvVAlK+3MH+uH/YWHSZOyzGXHKc+5Hk/MMttZZV2OtUFv+Idr7EaHU9ALAAAAAACUR0AWVeLPAlsV7s+CWYZDMqWPh0kNk7zXN0oy1w/J9M9+K+N1zNzqXiPl5kubD5rLnVKlSAp6AQAAAACAU5CyAGdU4pQWbDeXHZI61Pfv/jwLejWIl9J9XNDL05BMaVAbadFOs4BXWoKZpsDKmbEuVge94Xur9pctU5QNAAAAAABUhIAsTmvaBukP/5P2HjMfG5LavWbe7u+vGaQ7jkiHSwt6dUuXHKfmFPCx8DCpTzP/7qMqXDNkKehVczHLGQAAAAAAnAkpC1CpaRuk6z4sC8a67M0110/b4J/9hmJQq6C4rKBXm3pSPAW9aiRmOQMAAAAAgDMhIIsKlTil+2abM2JP5Vo3erbZztdCMaj1Q45U5CroFSJB6GDk+jIhKlxqR0EvAAAAAABQAQKyqNCindKe3MqfNyTtzjXb+VoozpD1PGZyj9ZMxwrKCnp1bCBFkRAGAAAAAABUgIAsKpSd59t2VWUYZTNkU+Kkhkm+3X6gCsVZwcFm9f6y2eOh8kUCAAAAAISK/fv367777lOLFi0UExOjBg0a6OKLL9brr7+uEydO2N091DDM4UKF0hJ8266qdh6RDp00l60o6BUoXDNkHZK6UNCrRvKa2U1QHQAAAACCxrZt23TxxRcrOTlZzzzzjDp06KDo6GitW7dOb775pho2bKhf/epX1d5uYWGhoqIoIhOKmCGLCvXKkBolmQHCijgkNU4y2/mS10zREJllWFgsrSst6NW6npQQbW9/cHZCcewCAAAAQCi45557FBERoeXLl2vYsGFq27atmjdvrkGDBunzzz/XwIEDJUlHjhzRnXfeqZSUFCUlJenyyy/XmjVr3NsZO3asOnfurH/84x9q1qyZYmJiJEkOh0NvvPGGrrnmGsXFxalt27ZasmSJtmzZoj59+ig+Pl4XXXSRtm7d6t7W1q1bNWjQIDVo0EAJCQnq0aOHvvzyS69+N23aVM8884x+85vfKDExUU2aNNGbb77pfv7yyy/XqFGjvF7z888/KyoqSvPmzfP5zxFlCMiiQuFh0qQsc/nUoKzr8cQss50vheIswx9ypMISc5lAXs3lGruRYVL7+vb2BQAAAAACnmFIJcft+WdUVMK8YgcPHtScOXM0cuRIxcfHV9jGUXp77/XXX6+cnBz973//04oVK9S1a1ddccUVOnTokLvtli1b9Mknn2jatGlavXq1e/3TTz+t2267TatXr1abNm10880363e/+50eeeQRLV++XIZheAVP8/LyNGDAAM2bN0+rVq1SVlaWBg4cqF27dnn1bcKECerevbtWrVqle+65R3fffbc2bdokSbrzzjv17rvvqqCgwN3+3//+txo2bKjLL7+8yj8jVB8pC1CpIZnSx8Ok+2Z7F/hqlGQGY4dk+nZ/JU7py21ljzs38O32A1GJU3p3XdnjLgRka6S8AunHX8zlDhT0AgAAAIAzc56QVvs4D2JVdc6TwisOrp5qy5YtMgxDrVu39lpfr1495efnS5JGjhypgQMH6vvvv1dOTo6io81bX8ePH68ZM2bo448/1m9/+1tJZpqCd955RykpKV7b+/Wvf61hw4ZJkh5++GH17NlTjz32mPr37y9Juu+++/TrX//a3b5Tp07q1KmT+/HTTz+t6dOna+bMmV6B2wEDBuiee+5xb/fFF1/U/Pnz1bp1aw0ZMkSjRo3Sp59+6t731KlTNWLECHeQGf5B2ACnNSRTGtRGWrTTLOCVlmCmKfD1zNhpG8oHfi+das7S9XXgN1BUdMzjvpGaJQfvMQcrCnoBAAAAQGj5/vvv5XQ6NXz4cBUUFGjNmjXKy8tT3bp1vdqdPHnSK9VARkZGuWCsJHXs2NG93KCBOUOtQ4cOXuvy8/OVm5urpKQk5eXlaezYsfr888+VnZ2t4uJinTx5stwMWc/tOhwOpaamKifHzJsYExOjW2+9Vf/85z81bNgwrVy5Uj/88INmzpx5Dj8ZVAUBWZxReJjUp5n/tj9tg3Tdh2UBLZe9ueb6j4cFX4CysmP+5UTwHnMw88ofGyKpNgAAAADgnITFmTNV7dp3FbVo0UIOh8N9m79L8+bNJUmxsbGSzBQCaWlpWrBgQbltJCcnu5crS3sQGRnpXnbNTq1ondPplCSNGTNGc+fO1fjx49WiRQvFxsbquuuuU2FhYaXbdW3HtQ3JTFvQuXNn7dmzR1OmTNHll1+ujAwfFwxCOQRkYasSpzlLtKLsLYbMfLWjZ5uzdH09K9cuoXjMwc4r9zEzZAEAAADgzByOKqcNsFPdunV15ZVX6pVXXtG9995baUC1a9eu2r9/vyIiItS0aVO/92vx4sUaMWKErr32WklmQHjHjh3V3k6HDh3UvXt3vfXWW3r33Xf1yiuv+LinqAjhHthq0U7vW/ZPZUjanWu2CxaheMzBzjVDNjLMzCELAAAAAAger732moqLi9W9e3d98MEH2rhxozZt2qR///vf+vHHHxUeHq6+ffuqZ8+eGjx4sObMmaMdO3bo22+/1aOPPqrly5f7vE8tW7Z0FwZbs2aNbr75Zq+Zr9Vx55136rnnnpNhGO4AL/yLgCxslV3FuxOq2q4mCMVjDmbHC8sKerWvL0Vz3wEAAAAABJXzzjtPq1atUt++ffXII4+oU6dO6t69u15++WWNGTNGTz/9tBwOh2bNmqVLL71Uv/71r9WqVSvdeOON2rlzpzsnrC+98MILql27ti666CINHDhQ/fv3V9euXc9qWzfddJMiIiJ00003KSYmxsc9RUUIHcBWaVUsqFjVdjVBKB5zMFuzX3KW5p8gfywAAAAABKe0tDS9/PLLevnllyttk5iYqJdeekkvvfRShc+PHTtWY8eOLbfeMLyTGjZt2rTcuj59+nita9q0qb766iuvNiNHjvR6XFEKg9WrV5db98svvyg/P1933HFHhf2G7zFDFrbqlSE1SjLzplbEIalxktkuWITiMQczr4Je5I8FAAAAANQQRUVF2r9/v/785z/rwgsvPOsZtqg+ArKwVXiYNCnLXD41QOl6PDEruIpbheIxBzOvgl7MkAUAAAAA1BCLFy9WWlqali1bpr///e92dyekEPKB7YZkSh8Pkxomea9vlGSuH5JpT7/8KRSPOVi5ZshGhEkd6tvbFwAAAAAAqsqVBmHTpk3q0KGD3d0JKeSQRUAYkikNaiMt2mkWs0pLMG/ZD+ZZoqF4zMHmRKG04WdzuV2KFBNpb38AAAAAAEDgIyCLgBEeJvVpZncvrBWKxxxM1hygoBcAAAAAAKge5uIBwFnyyh9LQS8AAAAAAFAFBGQB4Cy58sdKzJAFAAAAAABVQ0AWAM6Sa4ZsuEPq2MDevgAAAAAAgJqBgCwAnIWTRR4FvepLsRT0AgAAAAAEgB07dsjhcGj16tV2dwWVICALAGdh7QGpxFXQi/yxAAAAABDUlixZovDwcF199dV2d8XLiBEjNHjwYK91jRs3VnZ2ttq3b29Pp3BGBGQB4Cx4FfQifywAAAAABLXJkyfr3nvv1cKFC7Vv375K2xmGoeLiYgt7Vl54eLhSU1MVERFhaz9QOQKyAHAWvAp6MUMWAAAAAIJWXl6ePvjgA9199926+uqrNXXqVPdzCxYskMPh0P/+9z9169ZN0dHR+uabb3Ts2DENHz5c8fHxSktL04svvqg+ffpo9OjR7tcWFBRozJgxatiwoeLj43XBBRdowYIF7uenTp2q5ORkffHFF2rbtq0SEhKUlZWl7GzzA+nYsWP19ttv69NPP5XD4ZDD4dCCBQvKpSxw9XHevHnq3r274uLidNFFF2nTpk3ufW3dulWDBg1SgwYNlJCQoB49eujLL7/05481pBGQBYAzKHFKC7ZL760z/y8slr7eYT7nkNQuxc7eAQAAAAD86cMPP1SbNm3UunVr3XLLLfrnP/8pwzC82vzf//2fnnvuOW3cuFEdO3bUAw88oMWLF2vmzJmaO3euFi1apJUrV3q9ZtSoUVqyZInef/99rV27Vtdff72ysrL0008/uducOHFC48eP17/+9S8tXLhQu3bt0pgxYyRJY8aM0bBhw9xB2uzsbF100UWVHsejjz6qCRMmaPny5YqIiNBvfvMb93N5eXkaMGCA5s2bp1WrVikrK0sDBw7Url27fPEjxCmYuwwApzFtg3TfbGlPbtm6MIfkLP3ba0jKfE2alCUNybSliwAAAABQ4xiGoaIS48wN/SAy3JxNWlWTJ0/WLbfcIknKysrS0aNH9fXXX6tPnz7uNk899ZSuvPJKSdKxY8f09ttv691339UVV1whSZoyZYrS08vy3e3atUtTpkzRrl273OvHjBmj2bNna8qUKXrmmWckSUVFRfr73/+u8847T5IZxH3qqackSQkJCYqNjVVBQYFSU1PPeBx//etf1bt3b0lmAPnqq69Wfn6+YmJi1KlTJ3Xq1Mnd9umnn9b06dM1c+ZMjRo1qso/K1QNAVkAqMS0DdJ1H5pBV0/OU1bszTXbfTyMoCwAAAAAVEVRiaE/T99my77/cm1zRUVULSC7adMmff/995o+fbokKSIiQjfccIMmT57sFZDt3r27e3nbtm0qKirS+eef715Xq1YttW7d2v143bp1KikpUatWrbz2V1BQoLp167ofx8XFuYOxkpSWlqacnJyqHegpOnbs6LUdScrJyVGTJk2Ul5ensWPH6vPPP1d2draKi4t18uRJZsj6CQFZAKhAidOcGVuV72sNmakLRs+WBrWRwkkGAwAAAABBYfLkySouLvaa3WoYhqKjo/XKK6+418XHx1dru3l5eQoPD9eKFSsUHh7u9VxCQoJ7OTIy0us5h8NRLl1CVXluyzVD2Ol0SjJn586dO1fjx49XixYtFBsbq+uuu06FhYVntS+cHgFZAKjAop3eaQrOxJC0O9d8XZ9mfusWAAAAAASFyHCH/nJtc9v2XRXFxcV65513NGHCBPXr18/rucGDB+u9995TmzZtyr2uefPmioyM1LJly9SkSRNJ0tGjR7V582ZdeumlkqQuXbqopKREOTk56tWr11kfS1RUlEpKSs769S6LFy/WiBEjdO2110oyA8Y7duw45+2iYgRkAaAC2XnWvg4AAAAAQonD4ahy2gC7fPbZZzp8+LDuuOMO1apVy+u5oUOHavLkyXr++efLvS4xMVG33367HnroIdWpU0f169fXE088obCwMPfM1FatWmn48OG67bbbNGHCBHXp0kU///yz5s2bp44dO+rqq6+uUh+bNm2qL774Qps2bVLdunXL9bOqWrZsqWnTpmngwIFyOBx67LHH3LNn4XvcWAsAFUhLOHMbX74OAAAAABBYJk+erL59+1YY5Bw6dKiWL1+utWvXVvjaF154QT179tQ111yjvn376uKLL1bbtm0VExPjbjNlyhTddtttevDBB9W6dWsNHjzYa1ZtVdx1111q3bq1unfvrpSUFC1evLj6B1ra39q1a+uiiy7SwIED1b9/f3Xt2vWstoUzY4YsAFSgV4bUKMks2FWV7DwOme17Zfi7ZwAAAAAAK/z3v/+t9Lnzzz/fncv1D3/4Q7nnExMT9Z///Mf9+Pjx43ryySf129/+1r0uMjJSTz75pJ588skK9zFixAiNGDHCa93gwYO9csimpKRozpw55V7r2aZPnz7l8s527tzZa13Tpk311VdfebUZOXJkhf3CuWOGLABUIDxMmpRVtbaum2wmZlHQCwAAAAAgrVq1Su+99562bt2qlStXavjw4ZKkQYMG2dwzBAJCBwBQiSGZ0piLyq8/Nf97oyTp42FmewAAAAAAJGn8+PHq1KmT+vbtq+PHj2vRokWqV6+e3d1CACBlAQCcRlR42fLoC6VBraWLGkvf7jYLeKUlmGkKmBkLAAAAAHDp0qWLVqxYYXc3EKAIyALAaazILlsefaGUkWwu92lmS3cAAAAAAEANx5wuAKiEYUgr9pnLdWOlJuULawIAAAAAAFQLAVkAqMSeXOnnE+Zyt3TJ4Th9ewAAAAAAgDMhIAsAlXDNjpWkbmn29QMAAAAAAAQPArIAUAnP/LHd0u3rBwAAAAAACB4EZAGgEsyQBQAAAAAAvkZAFgAqYBhlM2Rrx0gZybZ2BwAAAABQA02dOlXJycl+38+OHTvkcDi0evVqv+8L546ALABUYG+ulHPcXKagFwAAAACErhEjRsjhcMjhcCgqKkotWrTQU089peLiYru7hhoqwu4OAEAgWumZP5Z0BQAAAAAQ0rKysjRlyhQVFBRo1qxZGjlypCIjI/XII4/Y3TXUQMyQBYAKUNALAAAAAOASHR2t1NRUZWRk6O6771bfvn01c+ZMHT58WLfddptq166tuLg4XXXVVfrpp58q3c7WrVs1aNAgNWjQQAkJCerRo4e+/PJLrzZNmzbVM888o9/85jdKTExUkyZN9Oabb3q1+f7779WlSxfFxMSoe/fuWrVqlV+OG/5BQBYAKkBBLwAAAABAZWJjY1VYWKgRI0Zo+fLlmjlzppYsWSLDMDRgwAAVFRVV+Lq8vDwNGDBA8+bN06pVq5SVlaWBAwdq165dXu0mTJjgDrTec889uvvuu7Vp0yb3Nq655hplZmZqxYoVGjt2rMaMGeP3Y4bvkLIAACrgWdCrWW17+wIAAAAAwcYwDBkn8m3ZtyMuRo6zLBRiGIbmzZunL774QldddZVmzJihxYsX66KLLpIk/ec//1Hjxo01Y8YMXX/99eVe36lTJ3Xq1Mn9+Omnn9b06dM1c+ZMjRo1yr1+wIABuueeeyRJDz/8sF588UXNnz9frVu31rvvviun06nJkycrJiZG7dq10549e3T33Xef1THBegRkAeAU+3Kl/Xnmctc0CnoBAAAAgK8ZJ/K1vWk/W/bdbMccOeJjq/Wazz77TAkJCSoqKpLT6dTNN9+sIUOG6LPPPtMFF1zgble3bl21bt1aGzdurHA7eXl5Gjt2rD7//HNlZ2eruLhYJ0+eLDdDtmPHju5lh8Oh1NRU5eTkSJI2btyojh07KiYmxt2mZ8+e1Toe2IuALACcgvyxAAAAAABPl112mV5//XVFRUUpPT1dERERmjlzZrW3M2bMGM2dO1fjx49XixYtFBsbq+uuu06FhYVe7SIjI70eOxwOOZ3OczoGBA4CsgBwCvLHAgAAAIB/OeJi1GzHHNv2XV3x8fFq0aKF17q2bduquLhY3333nTtlwcGDB7Vp0yZlZmZWuJ3FixdrxIgRuvbaayWZM2Z37NhRrb60bdtW//rXv5Sfn++eJbt06dJqHhHsRFEvADgFM2QBAAAAwL8cDofC4mNt+Xe2+WNP1bJlSw0aNEh33XWXvvnmG61Zs0a33HKLGjZsqEGDBlX6mmnTpmn16tVas2aNbr755mrPfL355pvlcDh01113acOGDZo1a5bGjx/vi0OCRQjIAsApXDNka0VLzSnoBQAAAACoxJQpU9StWzddc8016tmzpwzD0KxZs8qlHHB54YUXVLt2bV100UUaOHCg+vfvr65du1ZrnwkJCfrvf/+rdevWqUuXLnr00Uc1btw4XxwOLELKAgDwkH1MyqagFwAAAACg1NSpUyt9rnbt2nrnnXcqfX7EiBEaMWKE+3HTpk311VdfebUZOXKk1+OKUhisXr3a6/GFF15Ybp1hGJX2A4GFGbIA4GEl6QoAAAAAAIAfEZAFAA8U9AIAAAAAAP5EQBYAPFDQCwAAAAAA+BMBWQDw4JohmxQtnUdBLwAAAAAA4GMEZAGg1IE8ae8xc7lrmhTGGRIAAAAAAPgY4QYAKEX+WAAAAAAA4G8EZAGgFPljAQAAAACAvxGQBYBSzJAFAAAAAAD+RkAWAEqtLJ0hmxgltahjb18AAAAAAEBwIiALAJJ+Pi7tzjWXu1DQCwAAAAAA+AkhBwAQ6QoAAAAAAOX16dNHo0ePLrd+6tSpSk5OliSdOHFCjzzyiM477zzFxMQoJSVFvXv31qefflrudXv27FFUVJTat2/v554jkEXY3QEACAQU9AIAAAAAnI3f//73+u677/Tyyy8rMzNTBw8e1LfffquDBw+Wazt16lQNGzZMCxcu1HfffacLLrjAhh7DbgRkAUDMkAUAAAAAnJ2ZM2dq0qRJGjBggCSpadOm6tatW7l2hmFoypQpeu2119SoUSNNnjyZgGyIIiALACqbIZsQJbWqa29fAAAAACDYGYah/PxCW/YdExMlh8Phs+2lpqZq1qxZGjJkiBITEyttN3/+fJ04cUJ9+/ZVw4YNddFFF+nFF19UfHy8z/qCmoGALICQ98txaddRc7lLKgW9AAAAAMDf8vML1e/KP9qy7zlz/6bY2Gifbe/NN9/U8OHDVbduXXXq1EmXXHKJrrvuOl188cVe7SZPnqwbb7xR4eHhat++vZo3b66PPvpII0aM8FlfUDMQdgAQ8sgfCwAAAAA4W5deeqm2bdumefPm6brrrtP69evVq1cvPf300+42R44c0bRp03TLLbe4191yyy2aPHmyHV2GzZghCyDkkT8WAAAAAKwVExOlOXP/Ztu+qyopKUlHjx4tt/7IkSOqVauW+3FkZKR69eqlXr166eGHH9Zf/vIXPfXUU3r44YcVFRWld999V/n5+V45Yw3DkNPp1ObNm9WqVatzOyjUKARkAYS8lcyQBQAAAABLORwOn6YN8JfWrVtrzpw55davXLnytEHUzMxMFRcXKz8/X1FRUZo8ebIefPDBcukJ7rnnHv3zn//Uc8895+uuI4AFTMqC5557Tg6HQ6NHj3avy8/P18iRI1W3bl0lJCRo6NChOnDggH2dBBCUXCkL4iMp6AUAAAAAKHP33Xdr8+bN+sMf/qC1a9dq06ZNeuGFF/Tee+/pwQcflCT16dNHb7zxhlasWKEdO3Zo1qxZ+tOf/qTLLrtMSUlJWr16tVauXKk777xT7du39/p300036e2331ZxcbHNRworBURAdtmyZXrjjTfUsWNHr/X333+//vvf/+qjjz7S119/rX379mnIkCE29RJAMDp4QtpxxFzunCqFB8RZEQAAAAAQCJo3b66FCxfqxx9/VN++fXXBBRfoww8/1EcffaSsrCxJUv/+/fX222+rX79+atu2re699171799fH374oSSzmFdmZqbatGlTbvvXXnutcnJyNGvWLEuPC/ayPWVBXl6ehg8frrfeekt/+ctf3OuPHj2qyZMn691339Xll18uSZoyZYratm2rpUuX6sILL7SrywCCCOkKAAAAAACn06NHjwrTFrg88sgjeuSRRyp9/uWXX670udTUVJWUlJxT/1Dz2D4XbOTIkbr66qvVt29fr/UrVqxQUVGR1/o2bdqoSZMmWrJkidXdBBCkKOgFAAAAAACsZOsM2ffff18rV67UsmXLyj23f/9+RUVFKTk52Wt9gwYNtH///kq3WVBQoIKCAvfj3NxcSVJRUZGKiop803EbuPpek48BOBM7xvmyveFyfTfVsX6ReIvB3zifIxQwzhEKGOcIdoxx+FpRUZEMw5DT6ZTT6bS7O5IkwzDc/wdKn0KN0+mUYRgqKipSeHi413PBfP6xLSC7e/du3XfffZo7d65iYmJ8tt1nn31WTz75ZLn1c+bMUVxcnM/2Y5e5c+fa3QXA76wc54u39ZUUr+iwYm37fpZ2OizbNUIc53OEAsY5QgHjHMGOMQ5fiYiIUGpqqvLy8lRYWGh3d7wcO3bM7i6ErMLCQp08eVILFy4sV9jsxIkTNvXK/xyG6+sAi82YMUPXXnutV/S7pKREDodDYWFh+uKLL9S3b18dPnzYa5ZsRkaGRo8erfvvv7/C7VY0Q7Zx48b65ZdflJSU5Lfj8beioiLNnTtXV155pSIjI+3uDuAXVo/zQyel1BfM/fRs5NTXt5O3B/7H+RyhgHGOUMA4R7BjjMPX8vPztXv3bjVt2tSnE/POhWEYOnbsmBITE+VwMDvHDvn5+dqxY4caN25cblzk5uaqXr16Onr0aI2O6VXEthmyV1xxhdatW+e17te//rXatGmjhx9+WI0bN1ZkZKTmzZunoUOHSpI2bdqkXbt2qWfPnpVuNzo6WtHR0eXWR0ZGBsUfkWA5DuB0rBrn63aVLXdPD1NkpO1ptRFCOJ8jFDDOEQoY5wh2jHH4iuckvLCwwPjs5UpT4OoXrBcWFiaHw1HhuSaYzz22BWQTExPVvn17r3Xx8fGqW7eue/0dd9yhBx54QHXq1FFSUpLuvfde9ezZUxdeeKEdXQYQZFZmly13S7evHwAAAAAAIHTYWtTrTF588UWFhYVp6NChKigoUP/+/fXaa6/Z3S0AQWKFZ0A2zb5+AAAAAACA0BFQAdkFCxZ4PY6JidGrr76qV1991Z4OAQhqK/aZ/8dGSG3q2dsXAAAAAAAQGkiQASAkHTkpbT1sLndKlSLCT98eAAAAAADAFwjIAghJK0lXAAAAAACw2dSpU5WcnFzjtu1px44dcjgcWr16td/3FSwIyAIISSso6AUAAAAAqIIRI0bI4XDoueee81o/Y8YMORyOKm+nadOmmjhxoo97h5qIgCyAkOTKHysxQxYAAAAAcHoxMTEaN26cDh8+bHdXqqSoqMjuLuA0CMgCCEmuGbIxEVJmir19AQAAAAAEtr59+yo1NVXPPvtspW2++eYb9erVS7GxsWrcuLH+8Ic/6Pjx45KkPn36aOfOnbr//vvlcDjKzaz94osv1LZtWyUkJCgrK0vZ2dlez//jH/9Q27ZtFRMTozZt2ui1115zP+dKGfDBBx+od+/eiomJ0X/+859y/du6dasGDRqkBg0aKCEhQT169NCXX37p1aZp06Z65pln9Jvf/EaJiYlq0qSJ3nzzTa8233//vbp06aKYmBh1795dq1at8nr+8OHDGj58uFJSUhQbG6uWLVtqypQpp/nphh4CsgBCztF8acshc7lTAwp6AQAAAIDlDEMqPG7PP8OodnfDw8P1zDPP6OWXX9aePXvKPb9161ZlZWVp6NChWrt2rT744AN98803GjVqlCRp2rRpatSokZ566illZ2d7BVxPnDih8ePH61//+pcWLlyoXbt2acyYMe7n//Of/+jxxx/XX//6V23cuFHPPPOMHnvsMb399tteffi///s/3Xfffdq4caP69+9fro95eXkaMGCA5s2bp1WrVikrK0sDBw7Url27vNpNmDDBHWi95557dPfdd2vTpk3ubVxzzTXKzMzUihUrNHbsWK++StJjjz2mDRs26H//+582btyo119/XfXq1avmTzy4RdjdAQCw2iryxwIAAACAvYpOSM/Y9IHsT/ukqPhqv+zaa69V586d9cQTT2jy5Mlezz377LMaPny4Ro8eLUlq2bKlXnrpJfXu3Vuvv/666tSpo/DwcCUmJio1NdXrtUVFRfr73/+u8847T5I0atQoPfXUU+7nn3jiCU2YMEFDhgyRJDVr1kwbNmzQG2+8odtvv93dbvTo0e42FenUqZM6derkfvz0009r+vTpmjlzpjtwLEkDBgzQPffcI0l6+OGH9eKLL2r+/Plq3bq13n33XTmdTk2ePFkxMTFq166d9uzZo7vvvtv9+l27dqlLly7q3r27JHPWLbwRkAUQcrwKepE/FgAAAABQRePGjdPll19eblbomjVrtHbtWq9UAYZhyOl0avv27Wrbtm2l24yLi3MHYyUpLS1NOTk5kqTjx49r69atuuOOO3TXXXe52xQXF6tWrVpe23EFQCuTl5ensWPH6vPPP1d2draKi4t18uTJcjNkO3bs6F52OBxKTU1192fjxo3q2LGjYmJi3G169uzp9fq7775bQ4cO1cqVK9WvXz8NHjxYF1100Wn7FmoIyAIIOV4FvZghCwAAAADWi4wzZ6rate+zdOmll6p///565JFHNGLECPf6vLw8/e53v9Mf/vCHcq9p0qTJ6bsTGen12OFwyChNq5CXlydJeuutt3TBBRd4tQsP986/Fx9/+lm/Y8aM0dy5czV+/Hi1aNFCsbGxuu6661RYWHjG/jidztNu29NVV12lnTt3atasWZo7d66uuOIKjRw5UuPHj6/yNoIdAVkAIcc1QzY6nIJeAAAAAGALh+Os0gYEgueee06dO3dW69at3eu6du2qDRs2qEWLFpW+LioqSiUlJdXaV4MGDZSenq5t27Zp+PDhZ91nSVq8eLFGjBiha6+9VpIZ7N2xY0e1ttG2bVv961//Un5+vnuW7NKlS8u1S0lJ0e23367bb79dvXr10kMPPURA1gNFvQCElNx8afNBc7ljAymSgl4AAAAAgGro0KGDhg8frpdeesm97uGHH9a3336rUaNGafXq1frpp5/06aefeuVmbdq0qRYuXKi9e/fql19+qfL+nnzyST377LN66aWXtHnzZq1bt05TpkzRCy+8UK1+t2zZUtOmTdPq1au1Zs0a3XzzzdWa+SpJN998sxwOh+666y5t2LBBs2bNKhdoffzxx/Xpp59qy5YtWr9+vT777LPTpmwIRQRkAYSUVfvLlklXAAAAAAA4G0899ZRXMLNjx476+uuvtXnzZvXq1UtdunTR448/rvT0dK/X7NixQ+edd55SUqp+u+add96pf/zjH5oyZYo6dOig3r17a+rUqWrWrFm1+vzCCy+odu3auuiiizRw4ED1799fXbt2rdY2EhIS9N///lfr1q1Tly5d9Oijj2rcuHFebaKiovTII4+oY8eOuvTSSxUeHq7333+/WvsJdg7DlZQiSOXm5qpWrVo6evSokpKS7O7OWSsqKtKsWbM0YMCAcrk8gGBhxTh/4VvpwTnm8lsDpTu7+WU3QKU4nyMUMM4RChjnCHaMcfhafn6+tm/frmbNmnkVhLKT0+lUbm6ukpKSFBbGnEU7nG5cBEtMryKMNgAhxZU/VmKGLAAAAAAAsB4BWQAhZUVpEc+ocKkdBb0AAAAAAIDFCMgCCBnHCrwLekVF2NsfAAAAAAAQegjIAggZq/dLrqTZ3dJs7QoAAAAAAAhRBGQBhIQSp/TBD2WPuxCQBQAAAAAANuCGXQBBb9oG6b7Z0p7csnWPz5dS4qQhmfb1CwAAAAAAhB5myAIIatM2SNd96B2MlaSfj5vrp22wp18AAAAAACA0EZAFELRKnObMWKOC51zrRs822wEAAAAAAFiBgCyAoLVoZ/mZsZ4MSbtzzXYAAAAAAABWICALIGhl5/m2HQAAAAAA/jB27Fh17tzZ7m7AIgRkAQSttATftgMAAAAAhJ6ff/5Zd999t5o0aaLo6Gilpqaqf//+Wrx4sc/2MWbMGM2bN89n20Ngi7C7AwDgL70ypEZJ0t7civPIOmQ+3yvD6p4BAAAAAGqKoUOHqrCwUG+//baaN2+uAwcOaN68eTp48KDP9pGQkKCEBGYLhQpmyAIIWuFh0qQsc9lxynOuxxOzzHYAAAAAAJzqyJEjWrRokcaNG6fLLrtMGRkZOv/88/XII4/oV7/6lSTJ4XDo9ddf11VXXaXY2Fg1b95cH3/8sdd2Hn74YbVq1UpxcXFq3ry5HnvsMRUVFbmfPzVlwYgRIzR48GCNHz9eaWlpqlu3rkaOHOn1GtRczJAFENSGZEofD5Pum+1d4KtRkhmMHZJpX98AAAAAIFQZhqGSEydt2Xd4XKwcjlOn7VTMNXN1xowZuvDCCxUdHV1hu8cee0zPPfecJk2apH/961+68cYbtW7dOrVt21aSlJiYqKlTpyo9PV3r1q3TXXfdpcTERP3xj3+sdN/z589XWlqa5s+fry1btuiGG25Q586dddddd1X/oBFQCMgCCHpDMqVBbaRFO80CXmkJZpoCZsYCAAAAgD1KTpzU9GatbNn3tds3KyI+rkptIyIiNHXqVN111136+9//rq5du6p379668cYb1bFjR3e766+/Xnfeeack6emnn9bcuXP18ssv67XXXpMk/fnPf3a3bdq0qcaMGaP333//tAHZ2rVr65VXXlF4eLjatGmjq6++WvPmzSMgGwQIRwAICeFhUp9m0k0dzP8JxgIAAAAAqmLo0KHat2+fZs6cqaysLC1YsEBdu3bV1KlT3W169uzp9ZqePXtq48aN7scffPCBLr74YqWmpiohIUF//vOftWvXrtPut127dgoPD3c/TktLU05Ojm8OCrZihiwAAAAAAAAsFR4Xq2u3b7Zt39UVExOjK6+8UldeeaUee+wx3XnnnXriiSc0YsSIM752yZIlGj58uJ588kn1799ftWrV0vvvv68JEyac9nWRkZFejx0Oh5xOZ7X7jsBDQBYAAAAAAACWcjgcVU4bEIgyMzM1Y8YM9+OlS5fqtttu83rcpUsXSdK3336rjIwMPfroo+7nd+7caVlfEXgIyAIAAAAAAAAVOHjwoK6//nr95je/UceOHZWYmKjly5frb3/7mwYNGuRu99FHH6l79+665JJL9J///Efff/+9Jk+eLElq2bKldu3apffff189evTQ559/runTp9t1SAgABGQBAAAAAACACiQkJOiCCy7Qiy++qK1bt6qoqEiNGzfWXXfdpT/96U/udk8++aTef/993XPPPUpLS9N7772nzMxMSdKvfvUr3X///Ro1apQKCgp09dVX67HHHtPYsWNtOirYjYAsAAAAAAAAUIHo6Gg9++yzevbZZ0/bLj09XXPmzKn0+b/97W/629/+5rVu9OjR7uWxY8d6BWg9C4a5TJw4sSpdRg1AnXEAAAAAAAAAsAgBWQAAAAAAAACwCCkLAAAAAAAAgLNkGIbdXUANwwxZAAAAAAAAALAIAVkAAAAAAAAAsAgBWQAAAAAAAFiC2/vhKVTHAwFZAAAAAAAA+FVkZKQk6cSJEzb3BIGksLBQkhQeHm5zT6xFUS8AAAAAAAD4VXh4uJKTk5WTkyNJiouLk8PhsLVPTqdThYWFys/PV1gYcxat5nQ69fPPPysuLk4REaEVogytowUAAAAAAIAtUlNTJckdlLWbYRg6efKkYmNjbQ8Oh6qwsDA1adIk5H7+BGQBAAAAAADgdw6HQ2lpaapfv76Kiors7o6Kioq0cOFCXXrppe6UCrBWVFRUSM5OJiALAAAAAAAAy4SHhwdEztDw8HAVFxcrJiaGgCwsFXohaAAAAAAAAACwCQFZAAAAAAAAALAIAVkAAAAAAAAAsEjQ55A1DEOSlJuba3NPzk1RUZFOnDih3Nxc8pogaDHOEQoY5wgFjHOEAsY5gh1jHKGAcR7YXLE8V2wvmAR9QPbYsWOSpMaNG9vcEwAAAAAAAADVcezYMdWqVcvubviUwwjGMLMHp9Opffv2KTExUQ6Hw+7unLXc3Fw1btxYu3fvVlJSkt3dAfyCcY5QwDhHKGCcIxQwzhHsGOMIBYzzwGYYho4dO6b09HSFhQVX1tWgnyEbFhamRo0a2d0Nn0lKSuIkgaDHOEcoYJwjFDDOEQoY5wh2jHGEAsZ54Aq2mbEuwRVeBgAAAAAAAIAARkAWAAAAAAAAACxCQLaGiI6O1hNPPKHo6Gi7uwL4DeMcoYBxjlDAOEcoYJwj2DHGEQoY57BL0Bf1AgAAAAAAAIBAwQxZAAAAAAAAALAIAVkAAAAAAAAAsAgBWQAAAAAAAACwCAFZCy1cuFADBw5Uenq6HA6HZsyYUWnb3//+93I4HJo4caLX+kOHDmn48OFKSkpScnKy7rjjDuXl5Xm1Wbt2rXr16qWYmBg1btxYf/vb3/xwNEDFzjTOR4wYIYfD4fUvKyvLqw3jHIGuKufzjRs36le/+pVq1aql+Ph49ejRQ7t27XI/n5+fr5EjR6pu3bpKSEjQ0KFDdeDAAa9t7Nq1S1dffbXi4uJUv359PfTQQyouLvb34QGSzjzOTz2Xu/49//zz7jaczxHIzjTG8/LyNGrUKDVq1EixsbHKzMzU3//+d682nMsR6M40zg8cOKARI0YoPT1dcXFxysrK0k8//eTVhnGOQPfss8+qR48eSkxMVP369TV48GBt2rTJq42vxvGCBQvUtWtXRUdHq0WLFpo6daq/Dw9BioCshY4fP65OnTrp1VdfPW276dOna+nSpUpPTy/33PDhw7V+/XrNnTtXn332mRYuXKjf/va37udzc3PVr18/ZWRkaMWKFXr++ec1duxYvfnmmz4/HqAiVRnnWVlZys7Odv977733vJ5nnCPQnWmcb926VZdcconatGmjBQsWaO3atXrssccUExPjbnP//ffrv//9rz766CN9/fXX2rdvn4YMGeJ+vqSkRFdffbUKCwv17bff6u2339bUqVP1+OOP+/34AOnM49zzPJ6dna1//vOfcjgcGjp0qLsN53MEsjON8QceeECzZ8/Wv//9b23cuFGjR4/WqFGjNHPmTHcbzuUIdKcb54ZhaPDgwdq2bZs+/fRTrVq1ShkZGerbt6+OHz/ubsc4R6D7+uuvNXLkSC1dulRz585VUVGR+vXr5/NxvH37dl199dW67LLLtHr1ao0ePVp33nmnvvjiC0uPF0HCgC0kGdOnTy+3fs+ePUbDhg2NH374wcjIyDBefPFF93MbNmwwJBnLli1zr/vf//5nOBwOY+/evYZhGMZrr71m1K5d2ygoKHC3efjhh43WrVv77ViAylQ0zm+//XZj0KBBlb6GcY6apqJxfsMNNxi33HJLpa85cuSIERkZaXz00UfudRs3bjQkGUuWLDEMwzBmzZplhIWFGfv373e3ef31142kpCSvsQ9YobLrFk+DBg0yLr/8cvdjzueoSSoa4+3atTOeeuopr3Vdu3Y1Hn30UcMwOJej5jl1nG/atMmQZPzwww/udSUlJUZKSorx1ltvGYbBOEfNlJOTY0gyvv76a8MwfDeO//jHPxrt2rXz2tcNN9xg9O/f39+HhCDEDNkA4nQ6deutt+qhhx5Su3btyj2/ZMkSJScnq3v37u51ffv2VVhYmL777jt3m0svvVRRUVHuNv3799emTZt0+PBh/x8EUAULFixQ/fr11bp1a9199906ePCg+znGOWo6p9Opzz//XK1atVL//v1Vv359XXDBBV63CK5YsUJFRUXq27eve12bNm3UpEkTLVmyRJI5zjt06KAGDRq42/Tv31+5ublav369ZccDVMWBAwf0+eef64477nCv43yOmu6iiy7SzJkztXfvXhmGofnz52vz5s3q16+fJM7lqPkKCgokyesOnrCwMEVHR+ubb76RxDhHzXT06FFJUp06dST5bhwvWbLEaxuuNq5tANVBQDaAjBs3ThEREfrDH/5Q4fP79+9X/fr1vdZFRESoTp062r9/v7uN5wlEkvuxqw1gp6ysLL3zzjuaN2+exo0bp6+//lpXXXWVSkpKJDHOUfPl5OQoLy9Pzz33nLKysjRnzhxde+21GjJkiL7++mtJ5jiNiopScnKy12sbNGjAOEeN9PbbbysxMdHr1j/O56jpXn75ZWVmZqpRo0aKiopSVlaWXn31VV166aWSOJej5nMFpB555BEdPnxYhYWFGjdunPbs2aPs7GxJjHPUPE6nU6NHj9bFF1+s9u3bS/LdOK6sTW5urk6ePOmPw0EQi7C7AzCtWLFCkyZN0sqVK+VwOOzuDuA3N954o3u5Q4cO6tixo8477zwtWLBAV1xxhY09A3zD6XRKkgYNGqT7779fktS5c2d9++23+vvf/67evXvb2T3AL/75z39q+PDhXrOsgJru5Zdf1tKlSzVz5kxlZGRo4cKFGjlypNLT08vNkAJqosjISE2bNk133HGH6tSpo/DwcPXt21dXXXWVDMOwu3vAWRk5cqR++OEH9yxvIFAxQzZALFq0SDk5OWrSpIkiIiIUERGhnTt36sEHH1TTpk0lSampqcrJyfF6XXFxsQ4dOqTU1FR3m1MrBboeu9oAgaR58+aqV6+etmzZIolxjpqvXr16ioiIUGZmptf6tm3bateuXZLMcVpYWKgjR454tTlw4ADjHDXOokWLtGnTJt15551e6zmfoyY7efKk/vSnP+mFF17QwIED1bFjR40aNUo33HCDxo8fL4lzOYJDt27dtHr1ah05ckTZ2dmaPXu2Dh48qObNm0tinKNmGTVqlD777DPNnz9fjRo1cq/31TiurE1SUpJiY2N9fTgIcgRkA8Stt96qtWvXavXq1e5/6enpeuihh9wV+3r27KkjR45oxYoV7td99dVXcjqduuCCC9xtFi5cqKKiInebuXPnqnXr1qpdu7a1BwVUwZ49e3Tw4EGlpaVJYpyj5ouKilKPHj20adMmr/WbN29WRkaGJPPDT2RkpObNm+d+ftOmTdq1a5d69uwpyRzn69at8wpozZ07V0lJSeWCvYCdJk+erG7duqlTp05e6zmfoyYrKipSUVGRwsK8Py6Fh4e774TgXI5gUqtWLaWkpOinn37S8uXLNWjQIEmMc9QMhmFo1KhRmj59ur766is1a9bM63lfjeOePXt6bcPVxrUNoFpsLioWUo4dO2asWrXKWLVqlSHJeOGFF4xVq1YZO3furLB9RkaG8eKLL3qty8rKMrp06WJ89913xjfffGO0bNnSuOmmm9zPHzlyxGjQoIFx6623Gj/88IPx/vvvG3FxccYbb7zhz0MD3E43zo8dO2aMGTPGWLJkibF9+3bjyy+/NLp27Wq0bNnSyM/Pd2+DcY5Ad6bz+bRp04zIyEjjzTffNH766Sfj5ZdfNsLDw41Fixa5t/H73//eaNKkifHVV18Zy5cvN3r27Gn07NnT/XxxcbHRvn17o1+/fsbq1auN2bNnGykpKcYjjzxi+fEiNFXluuXo0aNGXFyc8frrr1e4Dc7nCGRnGuO9e/c22rVrZ8yfP9/Ytm2bMWXKFCMmJsZ47bXX3NvgXI5Ad6Zx/uGHHxrz5883tm7dasyYMcPIyMgwhgwZ4rUNxjkC3d13323UqlXLWLBggZGdne3+d+LECXcbX4zjbdu2GXFxccZDDz1kbNy40Xj11VeN8PBwY/bs2ZYeL4IDAVkLzZ8/35BU7t/tt99eYfuKArIHDx40brrpJiMhIcFISkoyfv3rXxvHjh3zarNmzRrjkksuMaKjo42GDRsazz33nJ+OCCjvdOP8xIkTRr9+/YyUlBQjMjLSyMjIMO666y5j//79XttgnCPQVeV8PnnyZKNFixZGTEyM0alTJ2PGjBle2zh58qRxzz33GLVr1zbi4uKMa6+91sjOzvZqs2PHDuOqq64yYmNjjXr16hkPPvigUVRUZMUhAlUa52+88YYRGxtrHDlypMJtcD5HIDvTGM/OzjZGjBhhpKenGzExMUbr1q2NCRMmGE6n070NzuUIdGca55MmTTIaNWpkREZGGk2aNDH+/Oc/GwUFBV7bYJwj0FU0xiUZU6ZMcbfx1TieP3++0blzZyMqKspo3ry51z6A6nAYBtm6AQAAAAAAAMAK5JAFAAAAAAAAAIsQkAUAAAAAAAAAixCQBQAAAAAAAACLEJAFAAAAAAAAAIsQkAUAAAAAAAAAixCQBQAAAAAAAACLEJAFAAAAAAAAAIsQkAUAAAAAAAAAixCQBQAAAAAAAACLEJAFAACA7QzDUN++fdW/f/9yz7322mtKTk7Wnj17bOgZAAAA4FsEZAEAAGA7h8OhKVOm6LvvvtMbb7zhXr99+3b98Y9/1Msvv6xGjRr5dJ9FRUU+3R4AAABQFQRkAQAAEBAaN26sSZMmacyYMdq+fbsMw9Add9yhfv36qUuXLrrqqquUkJCgBg0a6NZbb9Uvv/zifu3s2bN1ySWXKDk5WXXr1tU111yjrVu3up/fsWOHHA6HPvjgA/Xu3VsxMTH6z3/+Y8dhAgAAIMQ5DMMw7O4EAAAA4DJ48GAdPXpUQ4YM0dNPP63169erXbt2uvPOO3Xbbbfp5MmTevjhh1VcXKyvvvpKkvTJJ5/I4XCoY8eOysvL0+OPP64dO3Zo9erVCgsL044dO9SsWTM1bdpUEyZMUJcuXRQTE6O0tDSbjxYAAAChhoAsAAAAAkpOTo7atWunQ4cO6ZNPPtEPP/ygRYsW6YsvvnC32bNnjxo3bqxNmzapVatW5bbxyy+/KCUlRevWrVP79u3dAdmJEyfqvvvus/JwAAAAAC+kLAAAAEBAqV+/vn73u9+pbdu2Gjx4sNasWaP58+crISHB/a9NmzaS5E5L8NNPP+mmm25S8+bNlZSUpKZNm0qSdu3a5bXt7t27W3osAAAAwKki7O4AAAAAcKqIiAhFRJiXqnl5eRo4cKDGjRtXrp0r5cDAgQOVkZGht956S+np6XI6nWrfvr0KCwu92sfHx/u/8wAAAMBpEJAFAABAQOvatas++eQTNW3a1B2k9XTw4EFt2rRJb731lnr16iVJ+uabb6zuJgAAAFAlpCwAAABAQBs5cqQOHTqkm266ScuWLdPWrVv1xRdf6Ne//rVKSkpUu3Zt1a1bV2+++aa2bNmir776Sg888IDd3QYAAAAqREAWAAAAAS09PV2LFy9WSUmJ+vXrpw4dOmj06NFKTk5WWFiYwsLC9P7772vFihVq37697r//fj3//PN2dxsAAACokMMwDMPuTgAAAAAAAABAKGCGLAAAAAAAAABYhIAsAAAAAAAAAFiEgCwAAAAAAAAAWISALAAAAAAAAABYhIAsAAAAAAAAAFiEgCwAAAAAAAAAWISALAAAAAAAAABYhIAsAAAAAAAAAFiEgCwAAAAAAAAAWISALAAAAAAAAABYhIAsAAAAAAAAAFiEgCwAAAAAAAAAWOT/ATf3Y7kPh67DAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df.tail()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 310 | |
}, | |
"id": "7Omgb_S10PjE", | |
"outputId": "de38e146-76b4-452f-ccc6-83d8341b4d48" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" Start year End year Number of days of Pontificate (max) \\\n", | |
"59 1447 1455.0 6588 \n", | |
"60 1431 1447.0 5832 \n", | |
"61 1417 1431.0 4846 \n", | |
"62 1406 1415.0 3136 \n", | |
"63 1404 1406.0 750 \n", | |
"\n", | |
" English name Place of birth Age at start of papacy \\\n", | |
"59 Nicholas V Sarzana, Republic of Genoa 49 \n", | |
"60 Eugene IV, O.S.A. Venice, Republic of Venice 47 \n", | |
"61 Martin V Genazzano, Papal States 48 \n", | |
"62 NaN Venice, Republic of Venice 60 \n", | |
"63 Innocent VII Sulmona, Kingdom of Naples 65 \n", | |
"\n", | |
" Age at end of papacy Country Country_clean \n", | |
"59 57.0 Republic of Genoa Italy \n", | |
"60 63.0 Republic of Venice Italy \n", | |
"61 62.0 Papal States Italy \n", | |
"62 69.0 Republic of Venice Italy \n", | |
"63 67.0 Kingdom of Naples Italy " | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-85cba5f8-aa72-481b-8aae-33bd2dd40307\" class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Start year</th>\n", | |
" <th>End year</th>\n", | |
" <th>Number of days of Pontificate (max)</th>\n", | |
" <th>English name</th>\n", | |
" <th>Place of birth</th>\n", | |
" <th>Age at start of papacy</th>\n", | |
" <th>Age at end of papacy</th>\n", | |
" <th>Country</th>\n", | |
" <th>Country_clean</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>59</th>\n", | |
" <td>1447</td>\n", | |
" <td>1455.0</td>\n", | |
" <td>6588</td>\n", | |
" <td>Nicholas V</td>\n", | |
" <td>Sarzana, Republic of Genoa</td>\n", | |
" <td>49</td>\n", | |
" <td>57.0</td>\n", | |
" <td>Republic of Genoa</td>\n", | |
" <td>Italy</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>60</th>\n", | |
" <td>1431</td>\n", | |
" <td>1447.0</td>\n", | |
" <td>5832</td>\n", | |
" <td>Eugene IV, O.S.A.</td>\n", | |
" <td>Venice, Republic of Venice</td>\n", | |
" <td>47</td>\n", | |
" <td>63.0</td>\n", | |
" <td>Republic of Venice</td>\n", | |
" <td>Italy</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>61</th>\n", | |
" <td>1417</td>\n", | |
" <td>1431.0</td>\n", | |
" <td>4846</td>\n", | |
" <td>Martin V</td>\n", | |
" <td>Genazzano, Papal States</td>\n", | |
" <td>48</td>\n", | |
" <td>62.0</td>\n", | |
" <td>Papal States</td>\n", | |
" <td>Italy</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>62</th>\n", | |
" <td>1406</td>\n", | |
" <td>1415.0</td>\n", | |
" <td>3136</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Venice, Republic of Venice</td>\n", | |
" <td>60</td>\n", | |
" <td>69.0</td>\n", | |
" <td>Republic of Venice</td>\n", | |
" <td>Italy</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>63</th>\n", | |
" <td>1404</td>\n", | |
" <td>1406.0</td>\n", | |
" <td>750</td>\n", | |
" <td>Innocent VII</td>\n", | |
" <td>Sulmona, Kingdom of Naples</td>\n", | |
" <td>65</td>\n", | |
" <td>67.0</td>\n", | |
" <td>Kingdom of Naples</td>\n", | |
" <td>Italy</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <div class=\"colab-df-buttons\">\n", | |
"\n", | |
" <div class=\"colab-df-container\">\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-85cba5f8-aa72-481b-8aae-33bd2dd40307')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
"\n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" .colab-df-buttons div {\n", | |
" margin-bottom: 4px;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-85cba5f8-aa72-481b-8aae-33bd2dd40307 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-85cba5f8-aa72-481b-8aae-33bd2dd40307');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
"\n", | |
"\n", | |
" <div id=\"df-a094512c-09cb-452c-8284-77f017a16a3f\">\n", | |
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-a094512c-09cb-452c-8284-77f017a16a3f')\"\n", | |
" title=\"Suggest charts\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <g>\n", | |
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
" </g>\n", | |
"</svg>\n", | |
" </button>\n", | |
"\n", | |
"<style>\n", | |
" .colab-df-quickchart {\n", | |
" --bg-color: #E8F0FE;\n", | |
" --fill-color: #1967D2;\n", | |
" --hover-bg-color: #E2EBFA;\n", | |
" --hover-fill-color: #174EA6;\n", | |
" --disabled-fill-color: #AAA;\n", | |
" --disabled-bg-color: #DDD;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-quickchart {\n", | |
" --bg-color: #3B4455;\n", | |
" --fill-color: #D2E3FC;\n", | |
" --hover-bg-color: #434B5C;\n", | |
" --hover-fill-color: #FFFFFF;\n", | |
" --disabled-bg-color: #3B4455;\n", | |
" --disabled-fill-color: #666;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart {\n", | |
" background-color: var(--bg-color);\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: var(--fill-color);\n", | |
" height: 32px;\n", | |
" padding: 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart:hover {\n", | |
" background-color: var(--hover-bg-color);\n", | |
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: var(--button-hover-fill-color);\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart-complete:disabled,\n", | |
" .colab-df-quickchart-complete:disabled:hover {\n", | |
" background-color: var(--disabled-bg-color);\n", | |
" fill: var(--disabled-fill-color);\n", | |
" box-shadow: none;\n", | |
" }\n", | |
"\n", | |
" .colab-df-spinner {\n", | |
" border: 2px solid var(--fill-color);\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" animation:\n", | |
" spin 1s steps(1) infinite;\n", | |
" }\n", | |
"\n", | |
" @keyframes spin {\n", | |
" 0% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" border-left-color: var(--fill-color);\n", | |
" }\n", | |
" 20% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 30% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 40% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 60% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 80% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" 90% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" }\n", | |
"</style>\n", | |
"\n", | |
" <script>\n", | |
" async function quickchart(key) {\n", | |
" const quickchartButtonEl =\n", | |
" document.querySelector('#' + key + ' button');\n", | |
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
" quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
" try {\n", | |
" const charts = await google.colab.kernel.invokeFunction(\n", | |
" 'suggestCharts', [key], {});\n", | |
" } catch (error) {\n", | |
" console.error('Error during call to suggestCharts:', error);\n", | |
" }\n", | |
" quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
" }\n", | |
" (() => {\n", | |
" let quickchartButtonEl =\n", | |
" document.querySelector('#df-a094512c-09cb-452c-8284-77f017a16a3f button');\n", | |
" quickchartButtonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
" })();\n", | |
" </script>\n", | |
" </div>\n", | |
"\n", | |
" </div>\n", | |
" </div>\n" | |
], | |
"application/vnd.google.colaboratory.intrinsic+json": { | |
"type": "dataframe", | |
"summary": "{\n \"name\": \"df\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Start year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 18,\n \"min\": 1404,\n \"max\": 1447,\n \"num_unique_values\": 5,\n \"samples\": [\n 1431,\n 1404,\n 1417\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"End year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 20.692993983471794,\n \"min\": 1406.0,\n \"max\": 1455.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 1447.0,\n 1406.0,\n 1431.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Number of days of Pontificate (max)\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"5832\",\n \"750\",\n \"4846\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"English name\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Eugene IV, O.S.A.\",\n \"Innocent VII\",\n \"Nicholas V\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Place of birth\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Venice, Republic of Venice\",\n \"Sulmona, Kingdom of Naples\",\n \"Sarzana, Republic of Genoa\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age at start of papacy\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8,\n \"min\": 47,\n \"max\": 65,\n \"num_unique_values\": 5,\n \"samples\": [\n 47,\n 65,\n 48\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age at end of papacy\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.6690470119715,\n \"min\": 57.0,\n \"max\": 69.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 63.0,\n 67.0,\n 62.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Country\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Republic of Venice\",\n \"Kingdom of Naples\",\n \"Republic of Genoa\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Country_clean\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"Italy\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" | |
} | |
}, | |
"metadata": {}, | |
"execution_count": 44 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df.head()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 276 | |
}, | |
"id": "38RfGeKkNUI5", | |
"outputId": "7e3c4774-e35a-4f54-a162-6b52dd144c00" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" Start year End year Number of days of Pontificate (max) English name \\\n", | |
"0 2025 NaN NaN Leo XIV \n", | |
"1 2013 2025.0 4422 Francis I \n", | |
"2 2005 2013.0 2870 Benedict XVI \n", | |
"3 1978 2005.0 9658 John Paul II \n", | |
"4 1978 1978.0 33 John Paul I \n", | |
"\n", | |
" Place of birth Age at start of papacy \\\n", | |
"0 Chicago 69 \n", | |
"1 Buenos Aires 76 \n", | |
"2 Marktl am Inn, Bavaria, Germany 78 \n", | |
"3 Wadowice, Poland 58 \n", | |
"4 Forno di Canale, Veneto, Italy 65 \n", | |
"\n", | |
" Age at end of papacy Country Country_clean \n", | |
"0 NaN Chicago USA \n", | |
"1 88.0 Buenos Aires Argentina \n", | |
"2 85.0 Germany Germany \n", | |
"3 84.0 Poland Poland \n", | |
"4 65.0 Italy Italy " | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-3d73ba98-7f13-4eb0-aa5d-4ddc6a9623ab\" class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Start year</th>\n", | |
" <th>End year</th>\n", | |
" <th>Number of days of Pontificate (max)</th>\n", | |
" <th>English name</th>\n", | |
" <th>Place of birth</th>\n", | |
" <th>Age at start of papacy</th>\n", | |
" <th>Age at end of papacy</th>\n", | |
" <th>Country</th>\n", | |
" <th>Country_clean</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2025</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Leo XIV</td>\n", | |
" <td>Chicago</td>\n", | |
" <td>69</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Chicago</td>\n", | |
" <td>USA</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2013</td>\n", | |
" <td>2025.0</td>\n", | |
" <td>4422</td>\n", | |
" <td>Francis I</td>\n", | |
" <td>Buenos Aires</td>\n", | |
" <td>76</td>\n", | |
" <td>88.0</td>\n", | |
" <td>Buenos Aires</td>\n", | |
" <td>Argentina</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2005</td>\n", | |
" <td>2013.0</td>\n", | |
" <td>2870</td>\n", | |
" <td>Benedict XVI</td>\n", | |
" <td>Marktl am Inn, Bavaria, Germany</td>\n", | |
" <td>78</td>\n", | |
" <td>85.0</td>\n", | |
" <td>Germany</td>\n", | |
" <td>Germany</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1978</td>\n", | |
" <td>2005.0</td>\n", | |
" <td>9658</td>\n", | |
" <td>John Paul II</td>\n", | |
" <td>Wadowice, Poland</td>\n", | |
" <td>58</td>\n", | |
" <td>84.0</td>\n", | |
" <td>Poland</td>\n", | |
" <td>Poland</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>1978</td>\n", | |
" <td>1978.0</td>\n", | |
" <td>33</td>\n", | |
" <td>John Paul I</td>\n", | |
" <td>Forno di Canale, Veneto, Italy</td>\n", | |
" <td>65</td>\n", | |
" <td>65.0</td>\n", | |
" <td>Italy</td>\n", | |
" <td>Italy</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <div class=\"colab-df-buttons\">\n", | |
"\n", | |
" <div class=\"colab-df-container\">\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-3d73ba98-7f13-4eb0-aa5d-4ddc6a9623ab')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
"\n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" .colab-df-buttons div {\n", | |
" margin-bottom: 4px;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-3d73ba98-7f13-4eb0-aa5d-4ddc6a9623ab button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-3d73ba98-7f13-4eb0-aa5d-4ddc6a9623ab');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
"\n", | |
"\n", | |
" <div id=\"df-29447d47-523c-4f49-bd82-074843e41106\">\n", | |
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-29447d47-523c-4f49-bd82-074843e41106')\"\n", | |
" title=\"Suggest charts\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <g>\n", | |
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
" </g>\n", | |
"</svg>\n", | |
" </button>\n", | |
"\n", | |
"<style>\n", | |
" .colab-df-quickchart {\n", | |
" --bg-color: #E8F0FE;\n", | |
" --fill-color: #1967D2;\n", | |
" --hover-bg-color: #E2EBFA;\n", | |
" --hover-fill-color: #174EA6;\n", | |
" --disabled-fill-color: #AAA;\n", | |
" --disabled-bg-color: #DDD;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-quickchart {\n", | |
" --bg-color: #3B4455;\n", | |
" --fill-color: #D2E3FC;\n", | |
" --hover-bg-color: #434B5C;\n", | |
" --hover-fill-color: #FFFFFF;\n", | |
" --disabled-bg-color: #3B4455;\n", | |
" --disabled-fill-color: #666;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart {\n", | |
" background-color: var(--bg-color);\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: var(--fill-color);\n", | |
" height: 32px;\n", | |
" padding: 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart:hover {\n", | |
" background-color: var(--hover-bg-color);\n", | |
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: var(--button-hover-fill-color);\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart-complete:disabled,\n", | |
" .colab-df-quickchart-complete:disabled:hover {\n", | |
" background-color: var(--disabled-bg-color);\n", | |
" fill: var(--disabled-fill-color);\n", | |
" box-shadow: none;\n", | |
" }\n", | |
"\n", | |
" .colab-df-spinner {\n", | |
" border: 2px solid var(--fill-color);\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" animation:\n", | |
" spin 1s steps(1) infinite;\n", | |
" }\n", | |
"\n", | |
" @keyframes spin {\n", | |
" 0% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" border-left-color: var(--fill-color);\n", | |
" }\n", | |
" 20% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 30% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 40% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 60% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 80% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" 90% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" }\n", | |
"</style>\n", | |
"\n", | |
" <script>\n", | |
" async function quickchart(key) {\n", | |
" const quickchartButtonEl =\n", | |
" document.querySelector('#' + key + ' button');\n", | |
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
" quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
" try {\n", | |
" const charts = await google.colab.kernel.invokeFunction(\n", | |
" 'suggestCharts', [key], {});\n", | |
" } catch (error) {\n", | |
" console.error('Error during call to suggestCharts:', error);\n", | |
" }\n", | |
" quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
" }\n", | |
" (() => {\n", | |
" let quickchartButtonEl =\n", | |
" document.querySelector('#df-29447d47-523c-4f49-bd82-074843e41106 button');\n", | |
" quickchartButtonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
" })();\n", | |
" </script>\n", | |
" </div>\n", | |
"\n", | |
" </div>\n", | |
" </div>\n" | |
], | |
"application/vnd.google.colaboratory.intrinsic+json": { | |
"type": "dataframe", | |
"variable_name": "df", | |
"summary": "{\n \"name\": \"df\",\n \"rows\": 64,\n \"fields\": [\n {\n \"column\": \"Start year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 177,\n \"min\": 1404,\n \"max\": 2025,\n \"num_unique_values\": 59,\n \"samples\": [\n 2025,\n 1958,\n 1592\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"End year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 175.76844814423103,\n \"min\": 1406.0,\n \"max\": 2025.0,\n \"num_unique_values\": 57,\n \"samples\": [\n 2025.0,\n 1958.0,\n 1644.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Number of days of Pontificate (max)\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 62,\n \"samples\": [\n \"7048\",\n \"1457\",\n \"4422\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"English name\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 64,\n \"samples\": [\n \"Julius II\",\n \"Callixtus III\",\n \"Leo XIV\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Place of birth\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 49,\n \"samples\": [\n \"Belluno, Republic of Venice\",\n \"Corsignano, Republic of Siena\",\n \"Genazzano, Papal States\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age at start of papacy\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9,\n \"min\": 37,\n \"max\": 79,\n \"num_unique_values\": 30,\n \"samples\": [\n 47,\n 56,\n 62\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age at end of papacy\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 10.21243882772552,\n \"min\": 45.0,\n \"max\": 93.0,\n \"num_unique_values\": 32,\n \"samples\": [\n 57.0,\n 71.0,\n 45.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Country\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 19,\n \"samples\": [\n \"Chicago\",\n \"Austrian Empire\",\n \"Kingdom of Naples\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Country_clean\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 7,\n \"samples\": [\n \"USA\",\n \"Argentina\",\n \"Netherlands\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" | |
} | |
}, | |
"metadata": {}, | |
"execution_count": 55 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"## old check" | |
], | |
"metadata": { | |
"id": "YPl5_ESPbCgd" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import seaborn as sns\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"plt.figure(figsize=(12, 6))\n", | |
"\n", | |
"# Plot raw data\n", | |
"sns.scatterplot(x='Start year', y='Age at start of papacy', data=df, label='Pope Ages')\n", | |
"\n", | |
"# Add LOESS-style smoother with span ~0.4\n", | |
"sns.regplot(\n", | |
" x='Start year',\n", | |
" y='Age at start of papacy',\n", | |
" data=df,\n", | |
" scatter=False,\n", | |
" lowess=True,\n", | |
" line_kws={'color': 'black'},\n", | |
" label='LOESS (span=0.4)'\n", | |
")\n", | |
"\n", | |
"# Add this inside your existing plotting code, after plotting the LOESS line\n", | |
"# Identity line: birth year = 1937\n", | |
"start_year = 1937\n", | |
"end_year = df['Start year'].max()\n", | |
"x_line = list(range(start_year, end_year + 1))\n", | |
"y_line = [x - start_year for x in x_line]\n", | |
"\n", | |
"plt.plot(x_line, y_line, color='red', linestyle='--', label='Born in 1937')\n", | |
"\n", | |
"# Right side of wedge: born in 1956 (not younger than Leo XIV)\n", | |
"start_year_2 = 1956\n", | |
"end_year = df['Start year'].max()\n", | |
"x_line2 = list(range(start_year_2, end_year + 1))\n", | |
"y_line2 = [x - start_year_2 for x in x_line2]\n", | |
"\n", | |
"plt.plot(x_line2, y_line2, color='red', linestyle='--', label='Born in 1956')\n", | |
"\n", | |
"\n", | |
"\n", | |
"plt.title(\"Age at Start of Papacy Over Time (LOESS Smoothed)\")\n", | |
"plt.xlabel(\"Start Year\")\n", | |
"plt.ylabel(\"Age at Start of Papacy\")\n", | |
"plt.legend()\n", | |
"plt.grid(True)\n", | |
"plt.tight_layout()\n", | |
"plt.show()\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 627 | |
}, | |
"id": "oExOr0B8bEU3", | |
"outputId": "7e8c4410-6c16-4221-91e0-ef5666204fea" | |
}, | |
"execution_count": 10, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 1200x600 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxeZJREFUeJzs3Xd8FHX+x/H3pvdQQgs1YCBUaQpIFVBEWiJW/CmcvWI9PU89xQ569u4h9o4B7CAoiIJKr0F6OQQSIL1n5/fH3q4sSSAL2Zndzev5eOxjJzOz8/nsZrKbfDLfz9dmGIYhAAAAAAAAwERBVicAAAAAAACAuoeiFAAAAAAAAExHUQoAAAAAAACmoygFAAAAAAAA01GUAgAAAAAAgOkoSgEAAAAAAMB0FKUAAAAAAABgOopSAAAAAAAAMB1FKQAAAAAAAJiOohQAAJAkbd68WWeffbbi4+Nls9k0a9Ysq1OCBYYMGaIhQ4ZYnUYl06ZNU0pKiux2u9WpoBa89dZbstlsWrZsmddjTZo0SW3atHF9ffDgQUVHR+vrr7/2emwAwLFRlAIA1IqXX35ZNptNffr0sTqVGnvsscc8KrxkZmbqlltuUUpKiiIjI9W4cWOdfvrpuvvuu5Wfn+/a74MPPtCzzz5b+wlL2rt3rx588EGtWrWq1o89ceJErV27Vo8++qjeffdd9e7du8r9duzYIZvN5roFBwerVatWSktL80pevsowDL377rsaNGiQ6tWrp6ioKHXt2lUPPfSQCgoKrE7P5ejv17FuO3bssDrdKuXm5mrq1Km6++67FRT016+vNptNN91003Efv379ev3f//2fmjdvrvDwcCUmJurSSy/V+vXrK+3rLJZUd1u6dKlr3/z8fD3wwAPq0qWLoqOj1bBhQ3Xv3l233HKL9u7d63bcxYsXa+TIkWrevLkiIiLUqlUrjRkzRh988MFx87fb7XrnnXfUp08fNWjQQLGxsWrfvr0uv/xyt3x80csvv6y33nrL6jTcNGzYUFdddZXuv/9+q1MBgDovxOoEAACB4f3331ebNm3022+/acuWLTrllFOsTum4HnvsMZ1//vlKTU097r6HDh1S7969lZubqyuuuEIpKSk6ePCg1qxZo1deeUXXX3+9YmJiJDmKUuvWrdOtt95a6znv3btXU6ZMUZs2bdS9e/daO25RUZGWLFmie++9t0Z/5EvSJZdconPPPVcVFRXauHGjXnnlFX3zzTdaunRprebmiyoqKjRhwgR98sknGjhwoB588EFFRUXpp59+0pQpU/Tpp5/q+++/V5MmTaxOVY0aNdK7777rtu7f//639uzZo2eeeabSvnPnzjUzvRp58803VV5erksuucTjx37++ee65JJL1KBBA1155ZVKSkrSjh07NH36dH322Wf66KOPlJaWVulxDz30kJKSkiqtd763lZWVadCgQcrIyNDEiRN18803Kz8/X+vXr9cHH3ygtLQ0JSYmSpI+/fRTXXTRRa6CVf369bV9+3YtWrRIb7zxhiZMmHDM5zB58mS99NJLGjdunC699FKFhIRo06ZN+uabb9S2bVv17dvX49fFLC+//LISEhI0adIkq1Nxc9111+n555/XggULNHToUKvTAYA6i6IUAOCkbd++Xb/88os+//xzXXvttXr//ff1wAMPWJ1WrZo+fbp27dqln3/+WWeccYbbttzcXIWFhXk1fnl5uVeHLWVmZkqS6tWrV+PH9OzZU//3f//n+rp///4aO3asXnnlFb322mu1naJPmTZtmj755BPdeeedevLJJ13rr7nmGl144YVKTU3VpEmT9M0335iaV2FhoaKiotzWRUdHu32fJOmjjz7S4cOHK633VTNmzNDYsWMVERHh0eO2bt2qyy67TG3bttWiRYvUqFEj17ZbbrlFAwcO1GWXXaY1a9aobdu2bo8dOXJktVcLStKsWbO0cuVKvf/++5WKSsXFxSotLXV9/eCDD6pTp05aunRppfeKAwcOHPM57N+/Xy+//LKuvvpqvf76627bnn32WdfPLjzTsWNHdenSRW+99RZFKQCwEMP3AAAn7f3331f9+vU1atQonX/++Xr//fer3O/gwYO67LLLFBcXp3r16mnixIlavXq1bDZbpeEdGRkZOv/889WgQQNFRESod+/emjNnTo3yeeqpp3TGGWeoYcOGioyMVK9evfTZZ5+57WOz2VRQUKC3337bNSznWP/J37p1q4KDg6u8IiEuLs71x/KQIUP01VdfaefOna7jOnuZlJaW6l//+pd69eql+Ph4RUdHa+DAgfrhhx/cjuccbvXUU0/p2WefVbt27RQeHq6XX35Zp512miTpb3/7m+v4xxsas3LlSo0cOVJxcXGKiYnRsGHD3Ib8PPjgg2rdurUk6e9//7tbzp5w/mG3fft2SdLs2bM1atQoJSYmKjw8XO3atdPDDz+siooKt8cNGTJEXbp00fLly3XGGWcoMjJSSUlJevXVV932q+nrJzmGOz333HPq2rWrIiIi1KhRI51zzjmu/jWDBw/WqaeeWuXz6NChg0aMGFHt8ywqKtKTTz6p9u3b6/HHH6+0fcyYMZo4caK+/fZb1+s8evToSkUPp379+lUqfrz33nvq1auXIiMj1aBBA1188cXavXu32z5Hvm6DBg1SVFSU/vnPf1abd00d3VPqxx9/lM1m0yeffKIpU6aoefPmio2N1fnnn6+cnByVlJTo1ltvVePGjRUTE6O//e1vKikpqXTcmjynqmzfvl1r1qzR8OHDPX4uTz75pAoLC/X666+7FaQkKSEhQa+99poKCgo0bdo0j4+9detWSY5i7NEiIiIUFxfntu9pp51WZfG6cePGx4yzfft2GYZRZRybzeb2eOfQw8WLF2vy5Mlq1KiR6tWrp2uvvValpaXKzs7W5Zdfrvr166t+/fq66667ZBiG2zELCgp0xx13qGXLlgoPD1eHDh301FNPVdqvvLxcDz/8sOv9qU2bNvrnP//p9r1v06aN1q9fr4ULF7rer47uV1ZSUqLbb79djRo1UnR0tNLS0qostH3zzTcaOHCgoqOjFRsbq1GjRlU5/HLWrFnq0qWLIiIi1KVLF6Wnp1f72p511ln64osvKj03AICJDAAATlJKSopx5ZVXGoZhGIsWLTIkGb/99pvbPhUVFUa/fv2M4OBg46abbjJefPFF46yzzjJOPfVUQ5IxY8YM177r1q0z4uPjjU6dOhlTp041XnzxRWPQoEGGzWYzPv/88+Pm06JFC+OGG24wXnzxRePpp582Tj/9dEOS8eWXX7r2effdd43w8HBj4MCBxrvvvmu8++67xi+//FLtMR977DFDkvHWW28dM/bcuXON7t27GwkJCa7jpqenG4ZhGJmZmUazZs2M22+/3XjllVeMadOmGR06dDBCQ0ONlStXuo6xfft2Q5LRqVMno23btsYTTzxhPPPMM8aOHTuMhx56yJBkXHPNNa7jb926tdp81q1bZ0RHRxvNmjUzHn74YeOJJ54wkpKSjPDwcGPp0qWGYRjG6tWrjWeeecaQZFxyySVuOVfFmd+TTz7ptn716tWGJOPiiy82DMMwUlNTjQsvvNB48sknjVdeecW44IILDEnGnXfe6fa4wYMHG4mJiUbjxo2Nm266yXj++eeNAQMGGJKM6dOnu/ar6etnGIYxadIkQ5IxcuRI49lnnzWeeuopY9y4ccYLL7xgGIZhvPHGG4YkY+3atW6P++233wxJxjvvvFPt8587d64hyXjwwQer3eeHH34wJBn33nuvYRiG8c4771T5c7Fjx45Kr+Ujjzxi2Gw246KLLjJefvllY8qUKUZCQoLRpk0b4/Dhw26vW9OmTY1GjRoZN998s/Haa68Zs2bNqjanI40aNcpo3bp1ldsGDx5sDB48uNJz6d69u9GvXz/j+eefNyZPnmzYbDbj4osvNiZMmGCMHDnSeOmll4zLLrvMkGRMmTLF7Zg1fU5Vee+99wxJxpo1ayptk2TceOON1T42MTHRaNOmzTGP36ZNG6NFixaur2fMmGFIMr7//nsjMzPT7ZaVleXa74MPPjAkGQ899JBht9uPGaN9+/ZGy5Ytjd27dx9zv6rs3bvXkGSMGjXKKCgoOOa+zty7d+9unHPOOW7fk7vuussYMGCAMWHCBOPll182Ro8ebUgy3n77bdfj7Xa7MXToUMNmsxlXXXWV8eKLLxpjxowxJBm33nqrW6yJEycakozzzz/feOmll4zLL7/ckGSkpqa69klPTzdatGhhpKSkuN6v5s6d65Zrjx49jKFDhxovvPCCcccddxjBwcHGhRde6BbrnXfeMWw2m3HOOecYL7zwgjF16lSjTZs2Rr169Yzt27e79vvuu++MoKAgo0uXLsbTTz9t3HvvvUZ8fLzRuXPnKs9357l19PsAAMA8FKUAACdl2bJlhiRj3rx5hmE4/qhp0aKFccstt7jtN3PmTEOS8eyzz7rWVVRUGEOHDq1UlBo2bJjRtWtXo7i42LXObrcbZ5xxhpGcnHzcnAoLC92+Li0tNbp06WIMHTrUbX10dLQxceLEGj3Pffv2GY0aNTIkGSkpKcZ1111nfPDBB0Z2dnalfav7g7+8vNwoKSlxW3f48GGjSZMmxhVXXOFa5yz6xMXFGQcOHHDb//fff6/0eh1LamqqERYW5la42rt3rxEbG2sMGjSoUsyjC01Vce47ZcoUIzMz09i3b5/x448/Gj169DAkGTNnzjQMo/L3wTAM49prrzWioqLcvreDBw82JBn//ve/XetKSkqM7t27G40bNzZKS0sNw6j567dgwQJDkjF58uRK8Z3Fg+zsbCMiIsK4++673bZPnjzZiI6ONvLz86t9/s8++6wh6ZiFu0OHDhmSjPPOO88wDMPIyckxwsPDjTvuuMNtv2nTphk2m83YuXOnYRiOIlVwcLDx6KOPuu23du1aIyQkxG2983V79dVXq82jOidSlOrSpYvre2EYhnHJJZcYNpvNGDlypNvj+/Xr53ZsT55TVe677z5DkpGXl1dp27GKUtnZ2YYkY9y4ccc8/tixYw1JRm5urmEYfxVLqrqFh4e7HldYWGh06NDBkGS0bt3amDRpkjF9+nRj//79lWJMnz7dkGSEhYUZZ555pnH//fcbP/30k1FRUXHM3JycBZ/69esbaWlpxlNPPWVs3Lix0n7O3EeMGOFWKOvXr59hs9mM6667zrWuvLzcaNGihdv3etasWYYk45FHHnE77vnnn2/YbDZjy5YthmEYxqpVqwxJxlVXXeW235133mlIMhYsWOBa17lzZ7cYR+c6fPhwt1xvu+02Izg42PXempeXZ9SrV8+4+uqr3R6/b98+Iz4+3m199+7djWbNmrm9LzuLyFWd77/88oshyfj4448rbQMAmIPhewCAk/L++++rSZMmOvPMMyU5hpNcdNFF+uijj9yGaX377bcKDQ3V1Vdf7VoXFBSkG2+80e14hw4d0oIFC3ThhRcqLy9PWVlZysrK0sGDBzVixAht3rxZ//3vf4+ZU2RkpGv58OHDysnJ0cCBA7VixYoTfp5NmjTR6tWrdd111+nw4cN69dVXNWHCBDVu3FgPP/xwjYZ/BAcHu4bv2O12HTp0SOXl5erdu3eVuY0fP77SkCNPVFRUaO7cuUpNTXUbOtasWTNNmDBBixcvVm5u7gkf/4EHHlCjRo3UtGlTDRkyRFu3btXUqVN13nnnSXL/Pji/lwMHDlRhYaEyMjLcjhUSEqJrr73W9XVYWJiuvfZaHThwQMuXL5dU89dv5syZstlsVfY1s9lskqT4+HiNGzdOH374oet7V1FRoY8//lipqamKjo6u9nnn5eVJkmJjY6vdx7nN+frGxcVp5MiR+uSTT9zOlY8//lh9+/ZVq1atJDmactvtdl144YWucz8rK0tNmzZVcnJypaGK4eHh+tvf/lZtHrXp8ssvV2hoqOvrPn36yDAMXXHFFW779enTR7t371Z5ebkkz5/T0Q4ePKiQkBDXRAI1VZPv05Hbj/5ZeOmllzRv3jy325E9wiIjI/Xrr7/q73//uyTH0Lkrr7xSzZo108033+w2jO2KK67Qt99+qyFDhmjx4sV6+OGHNXDgQCUnJ+uXX3457nOZMWOGXnzxRSUlJSk9PV133nmnOnbsqGHDhlX5fnjllVe6znXpr+/VlVde6VoXHBys3r17a9u2ba51X3/9tYKDgzV58mS3491xxx0yDMP1/L/++mtJ0u23315pP0n66quvjvucnK655hq3XAcOHKiKigrt3LlTkjRv3jxlZ2frkksucTt/goOD1adPH9f58+eff2rVqlWaOHGi4uPjXcc766yz1KlTpypj169fX5KUlZVV43wBALWLohQA4IRVVFToo48+0plnnqnt27dry5Yt2rJli/r06aP9+/dr/vz5rn137typZs2aVWrCfPQsfVu2bJFhGLr//vvVqFEjt5uzyHC8xsBffvml+vbtq4iICDVo0ECNGjXSK6+8opycnJN6vs2aNdMrr7yiP//8U5s2bdLzzz+vRo0a6V//+pemT59eo2O8/fbb6tatmyIiItSwYUM1atRIX331VZW5VTXzlycyMzNVWFioDh06VNrWsWNH2e32GvX0qc4111yjefPmaf78+Vq+fLkOHDigu+66y7V9/fr1SktLU3x8vOLi4tSoUSNXY+2jn29iYmKlQlD79u0lOXpsOdXk9du6dasSExPVoEGDY+Z/+eWXa9euXfrpp58kSd9//73279+vyy677JiPcxYxnEWPqlRVELnooou0e/duLVmyxJXn8uXLddFFF7n22bx5swzDUHJycqXzf+PGjZXO/ebNm3u9yb6Ts3Dm5PzDv2XLlpXW2+121/fE0+dUW2ryfTpy+9HFq9NPP13Dhw93uzmL707x8fGaNm2aduzY4ZrRr0OHDnrxxRf18MMPu+07YsQIfffdd8rOztaiRYt04403aufOnRo9evRxXwNnAX/58uXKysrS7NmzNXLkSC1YsEAXX3xxpf09+V4dPnzY9fXOnTuVmJhY6bXo2LGja7vzPigoqNL7d9OmTVWvXj3XfjVxdK7OQpEzr82bN0ty9Kw7+vyZO3eu67VzxkxOTq4Uo6r3QEmuAvGRRTEAgLmYfQ8AcMIWLFigP//8Ux999JE++uijStvff/99nX322R4d0znD3J133llts+mj/xA60k8//aSxY8dq0KBBevnll9WsWTOFhoZqxowZ+uCDDzzKpTo2m03t27dX+/btNWrUKCUnJ+v999/XVVdddczHvffee5o0aZJSU1P197//XY0bN1ZwcLAef/xxV9PkIx15pZEvSk5Orrb5dHZ2tgYPHqy4uDg99NBDateunSIiIrRixQrdfffdJzSToKev3/GMGDFCTZo00XvvvadBgwbpvffeU9OmTY/bUNv5B/qaNWuUmppa5T5r1qyRJLcrNMaMGaOoqCh98sknOuOMM/TJJ58oKChIF1xwgWsfu90um82mb775RsHBwZWOe/TVQmaeI1Xlc6z1zj/4PX1OR2vYsKHKy8uVl5d33KuejhQfH69mzZq5vhfVWbNmjZo3b+7WmPxEtG7dWldccYXS0tLUtm1bvf/++3rkkUcq7RcVFaWBAwdq4MCBSkhI0JQpU/TNN99o4sSJNYrTsGFDjR07VmPHjtWQIUO0cOFC7dy50zVZgeTZ96omV3lWpzaKOTU5fyTp3XffVdOmTSvtFxJy4n/OOAtfCQkJJ3wMAMDJoSgFADhh77//vho3bqyXXnqp0rbPP/9c6enpevXVVxUZGanWrVvrhx9+qDRl/ZYtW9we5xxmFhoaekKzbc2cOVMRERH67rvvFB4e7lo/Y8aMSvvWxh9Ubdu2Vf369fXnn38e97ifffaZ2rZtq88//9xtn6qGmVXHk5wbNWqkqKgobdq0qdK2jIwMBQUFVbpyorb8+OOPOnjwoD7//HMNGjTItd45M9/R9u7dq4KCArerpf744w9Jcs0EWNPXr127dvruu+906NChY14tFRwcrAkTJuitt97S1KlTNWvWLF199dXV/pHsNGDAANWrV08ffPCB7r333ir3f+eddyQ5Zt1zio6O1ujRo/Xpp5/q6aef1scff6yBAwcqMTHRLXfDMJSUlOS6UszfnexzSklJkeQ4d7p16+bRY0ePHq033nhDixcv1oABAypt/+mnn7Rjxw63oaMnq379+mrXrp3WrVt33H2dsy4e+f7hid69e2vhwoX6888/3YpSJ6p169b6/vvvKxUAncNtnTFat24tu92uzZs3u4q0krR//35lZ2e75XKy77Pt2rWT5Jil8FifCc6YziurjlTVe6D01/vRkc8BAGAuhu8BAE5IUVGRPv/8c40ePVrnn39+pdtNN92kvLw8zZkzR5LjqpSysjK98cYbrmPY7fZKBa3GjRtryJAheu2116r8Q62qqcKPFBwcLJvN5tbPaseOHZo1a1alfaOjo5WdnV2j5/vrr7+qoKCg0vrffvtNBw8edBseEh0dXeVwPGfx4sgrE3799VfXcK6acBZtapJ3cHCwzj77bM2ePdttCNz+/fv1wQcfaMCAASd9dcixYkvuz7W0tFQvv/xylfuXl5frtddec9v3tddeU6NGjdSrV69qj1nV6zd+/HgZhqEpU6ZUinP0VSGXXXaZDh8+rGuvvVb5+fmu4YXHEhUVpTvvvFObNm3SvffeW2n7V199pbfeeksjRoxQ37593bZddNFF2rt3r/7zn/9o9erVbkP3JOm8885TcHCwpkyZUilXwzB08ODB4+bna072OfXr10+StGzZMo9j//3vf1dkZKSuvfbaSnEOHTqk6667TlFRUa6+UJ5YvXp1lb2Idu7cqQ0bNri9Jxw5lPlIzt5M1Q0vk6R9+/Zpw4YNldaXlpZq/vz5VQ6jO1HnnnuuKioq9OKLL7qtf+aZZ2Sz2TRy5EjXfpL07LPPuu339NNPS5JGjRrlWufJ+2xVRowYobi4OD322GMqKyurtN35mdCsWTN1795db7/9ttv777x586p8/SRp+fLlio+PV+fOnU84PwDAyeFKKQDACZkzZ47y8vI0duzYKrf37dtXjRo10vvvv6+LLrpIqampOv3003XHHXdoy5YtSklJ0Zw5c3To0CFJ7v9Nf+mllzRgwAB17dpVV199tdq2bav9+/dryZIl2rNnj1avXl1tXqNGjdLTTz+tc845RxMmTNCBAwf00ksv6ZRTTqk0jKdXr176/vvv9fTTTysxMVFJSUnq06dPlcd999139f777ystLU29evVSWFiYNm7cqDfffFMRERH65z//6Xbcjz/+WLfffrtOO+00xcTEaMyYMRo9erQ+//xzpaWladSoUdq+fbteffVVderUSfn5+TV63du1a6d69erp1VdfVWxsrKKjo9WnT59q+0898sgjmjdvngYMGKAbbrhBISEheu2111RSUqJp06bVKOaJOOOMM1S/fn1NnDhRkydPls1m07vvvlvtUKHExERNnTpVO3bsUPv27fXxxx9r1apVev31113NtWv6+p155pm67LLL9Pzzz2vz5s0655xzZLfb9dNPP+nMM8/UTTfd5Nq3R48e6tKliz799FN17NhRPXv2rNHz+8c//qGVK1dq6tSpWrJkicaPH6/IyEgtXrxY7733njp27Ki333670uPOPfdcxcbG6s4771RwcLDGjx/vtr1du3Z65JFHdM8992jHjh1KTU1VbGystm/frvT0dF1zzTW68847a5SjrzjZ59S2bVt16dJF33//faWm6pKjWFXVMLkhQ4ZowIABevvtt3XppZeqa9euuvLKK5WUlOTq/5SVlaUPP/zQdTXOkb755ptKDfklx7ndtm1bzZs3Tw888IDGjh2rvn37KiYmRtu2bdObb76pkpISPfjgg67HjBs3TklJSRozZozatWungoICff/99/riiy902mmnacyYMdU+/z179uj000/X0KFDNWzYMDVt2lQHDhzQhx9+qNWrV+vWW2+tteFnY8aM0Zlnnql7771XO3bs0Kmnnqq5c+dq9uzZuvXWW12v06mnnqqJEyfq9ddfdw3V/e233/T2228rNTXVrfdWr1699Morr+iRRx7RKaecosaNG2vo0KE1zikuLk6vvPKKLrvsMvXs2VMXX3yxGjVqpF27dumrr75S//79XUW0xx9/XKNGjdKAAQN0xRVX6NChQ3rhhRfUuXPnKt9j582bpzFjxtBTCgCsZNo8fwCAgDJmzBgjIiLCKCgoqHafSZMmGaGhoUZWVpZhGIaRmZlpTJgwwYiNjTXi4+ONSZMmGT///LMhyfjoo4/cHrt161bj8ssvN5o2bWqEhoYazZs3N0aPHm189tlnx81t+vTpRnJyshEeHm6kpKQYM2bMMB544AHj6I+9jIwMY9CgQUZkZKQhyZg4cWK1x1yzZo3x97//3ejZs6fRoEEDIyQkxGjWrJlxwQUXGCtWrHDbNz8/35gwYYJRr149t6nI7Xa78dhjjxmtW7c2wsPDjR49ehhffvmlMXHiRLfpyrdv325IMp588skqc5k9e7bRqVMnIyQkxJBkzJgx45ivx4oVK4wRI0YYMTExRlRUlHHmmWcav/zyi9s+x4t5Ivv+/PPPRt++fY3IyEgjMTHRuOuuu4zvvvvOkGT88MMPrv0GDx5sdO7c2Vi2bJnRr18/IyIiwmjdurXx4osvuh2vpq+fYTimu3/yySeNlJQUIywszGjUqJExcuRIY/ny5ZXynDZtmiHJeOyxx4773I9UUVFhzJgxw+jfv78RFxdnREREGJ07dzamTJli5OfnV/u4Sy+91JBkDB8+vNp9Zs6caQwYMMCIjo42oqOjjZSUFOPGG280Nm3a5NrH+bqdiFGjRlV6zY487uDBg11f//DDD4Yk49NPP3Xbb8aMGYYk4/fff3db7/xZy8zM9Pg5Vefpp582YmJijMLCQrf1kqq9Pfzww6791qxZY1xyySVGs2bNjNDQUKNp06bGJZdcYqxdu7ZSLOfzqu7m/Hnbtm2b8a9//cvo27ev0bhxYyMkJMRo1KiRMWrUKGPBggVux/zwww+Niy++2GjXrp0RGRlpREREGJ06dTLuvfdeIzc395jPPTc313juueeMESNGGC1atDBCQ0ON2NhYo1+/fsYbb7xh2O32SrnX9HsyceJEIzo62m1dXl6ecdtttxmJiYlGaGiokZycbDz55JNucQzDMMrKyowpU6YYSUlJRmhoqNGyZUvjnnvuMYqLi93227dvnzFq1CgjNjbWkOQ6t6rL1Xm+Hfke4Vw/YsQIIz4+3oiIiDDatWtnTJo0yVi2bJnbfjNnzjQ6duxohIeHG506dTI+//zzKt8jNm7caEgyvv/++8ovOgDANDbDOInuhgAAnKRZs2YpLS1NixcvVv/+/a1OBxYYMmSIsrKyatSDxxuee+453XbbbdqxY0elmcDgG3JyctS2bVtNmzZNV155pdXpIADceuutWrRokZYvX86VUgBgIXpKAQBMU1RU5PZ1RUWFXnjhBcXFxdV42BRQmwzD0PTp0zV48GAKUj4sPj5ed911l5588skTmrkRONLBgwf1n//8R4888ggFKQCwGD2lAACmufnmm1VUVKR+/fqppKREn3/+uX755Rc99thjpk5tDxQUFGjOnDn64YcftHbtWs2ePdvqlHAcd999t+6++26r00AAaNiwYY37+AEAvIuiFADANEOHDtW///1vffnllyouLtYpp5yiF154wa3xNGCGzMxMTZgwQfXq1dM///nPahv2AwAAwHvoKQUAAAAAAADT0VMKAAAAAAAApqMoBQAAAAAAANMFfE8pu92uvXv3KjY2ltk1AAAAAAAAvMwwDOXl5SkxMVFBQdVfDxXwRam9e/eqZcuWVqcBAAAAAABQp+zevVstWrSodnvAF6ViY2MlOV6IuLg4i7M5vrKyMs2dO1dnn322QkNDrU4H4JyET+F8hK/hnIQv4XyEL+F8hK/hnDRXbm6uWrZs6arJVCfgi1LOIXtxcXF+U5SKiopSXFwcPyjwCZyT8CWcj/A1nJPwJZyP8CWcj/A1nJPWOF4bJRqdAwAAAAAAwHQUpQAAAAAAAGA6ilIAAAAAAAAwHUUpAAAAAAAAmI6iFAAAAAAAAExHUQoAAAAAAACmoygFAAAAAAAA01GUAgAAAAAAgOkoSgEAAAAAAMB0FKUAAAAAAABgOopSAAAAAAAAMB1FKQAAAAAAAJiOohQAAAAAAABMR1EKAAAAAAAApqMoBQAAAAAAANNRlAIAAAAAAIDpKEoBAAAAAADAdBSlAAAAAAAAYDqKUgAAAAAAADAdRSkAAAAAAAArGYbjVsdQlAIAAAAAALDS0qVS69bSffdZnYmpKEoBAAAAAABYKT1d2r1b2rrV6kxMRVEKAAAAAADAKobhKEpJUlqatbmYjKIUAAAAAACAVTZskLZskcLCpHPOsTobU1GUAgAAAAAAsIrzKqnhw6W4OGtzMRlFKQAAAAAAAKts2uS4r2ND9ySKUgAAAAAAANZ5911p2zbpgguszsR0IVYnAAAAAAAAUKclJVmdgSW4UgoAAAAAAMAKJSVWZ2ApilIAAAAAAABmy8qSGjaUxoyps8UpilIAAAAAAABm++ILqaBA2rNHCg+3OhtLUJQCAAAAAAAw26xZjvvUVCuzsBRFKQAAAAAAADMVFEhz5zqW09KszcVCFKUAAAAAAADM9O23UnGxY9a9rl2tzsYyFKUAAAAAAADMlJ7uuD/vPMlmszYXC1GUAgAAAAAAMEtpqfTll47lOjx0T5JCrE4AAAAAAACgzigrkx58UPrhB6lvX6uzsRRXSgEAAAAAAJglOlq69VZp9mwpONjqbCxFUQoAAAAAAACmoygFAAAAAABghg0bpOnTpcxMqzPxCRSlAAAAAAAAzPD229JVV0k332x1Jj6BohQAAAAAAIC3GYaUnu5YruOz7jlRlAIAAAAAAPC2jRulzZulsDBp5Eirs/EJFKUAAAAAAAC8zXmV1PDhUlyctbn4CIpSAAAAAAAA3uYsSqWmWpqGL6EoBQAAAAAA4E27d0vLl0s2mzR2rNXZ+IwQqxMAAAAAAAAIaEuXSkFB0hlnSE2aWJ2Nz6AoBQAAAAAA4E0XXCANHiwdOGB1Jj6FohQAAAAAAIC3NW7suMGFnlIAAAAAAADeYrdbnYHPoigFAAAAAADgLRdeKA0Z4ugrBTcM3wMAAAAAAPCGggLpq6+k4mIpMtLqbHwOV0oBAAAAAAB4w9y5joJUmzZSt25WZ+NzKEoBAAAAAAB4Q3q64z4tTbLZrM3FB1GUAgAAAAAAqG1lZdIXXziW09KszcVHUZQCAAAAAACobYsWSdnZUqNG0hlnWJ2NT6IoBQAAAAAAUNucQ/fGjZOCg63NxUdZWpSqqKjQ/fffr6SkJEVGRqpdu3Z6+OGHZRiGax/DMPSvf/1LzZo1U2RkpIYPH67NmzdbmDUAAAAAAMBxDB4sjRolXXCB1Zn4LEuLUlOnTtUrr7yiF198URs3btTUqVM1bdo0vfDCC659pk2bpueff16vvvqqfv31V0VHR2vEiBEqLi62MHMAAAAAAIBjuOAC6csvpbPPtjoTnxViZfBffvlF48aN06hRoyRJbdq00YcffqjffvtNkuMqqWeffVb33Xefxo0bJ0l655131KRJE82aNUsXX3yxZbkDAAAAAADgxFl6pdQZZ5yh+fPn648//pAkrV69WosXL9bIkSMlSdu3b9e+ffs0fPhw12Pi4+PVp08fLVmyxJKcAQAAAAAAjunNN6WdO63OwudZeqXUP/7xD+Xm5iolJUXBwcGqqKjQo48+qksvvVSStG/fPklSkyZN3B7XpEkT17ajlZSUqKSkxPV1bm6uJKmsrExlZWXeeBq1ypmjP+SKuoFzEr6E8xG+hnMSvoTzEb6E8xG+xtRzMiNDoVdeKSMsTOX79kkxMd6P6WNq+jpbWpT65JNP9P777+uDDz5Q586dtWrVKt16661KTEzUxIkTT+iYjz/+uKZMmVJp/dy5cxUVFXWyKZtm3rx5VqcAuOGchC/hfISv4ZyEL+F8hC/hfISvMeOcTP7sM3WSdKBLFy1dtMjr8XxRYWFhjfazGUdOdWeyli1b6h//+IduvPFG17pHHnlE7733njIyMrRt2za1a9dOK1euVPfu3V37DB48WN27d9dzzz1X6ZhVXSnVsmVLZWVlKS4uzqvPpzaUlZVp3rx5OuussxQaGmp1OgDnJHwK52NgyC0q1cH8MuWVlCk2IlQNo0MVFxnml/E5J+FLOB/hSzgf4WvMPCeDzzhDQcuWqfzll2VcdZVXY/mq3NxcJSQkKCcn55i1GEuvlCosLFRQkHtbq+DgYNntdklSUlKSmjZtqvnz57uKUrm5ufr11191/fXXV3nM8PBwhYeHV1ofGhrqV2+G/pYvAh/nJHwJ56P/2ptdpLtnrtNPm7Nc6wYlJ+iJ8d2UWC/Sb+NzTsKXcD7Cl3A+wtd4/Zzcs0datkyy2RRy3nlSHT3/a/oaW9rofMyYMXr00Uf11VdfaceOHUpPT9fTTz+ttLQ0SZLNZtOtt96qRx55RHPmzNHatWt1+eWXKzExUampqVamDgAAPJRTWKq7Z65xKwhJ0qLNWfrHzDXKKSwN6PgAAKAOmD3bcX/GGdJR/bFRmaVXSr3wwgu6//77dcMNN+jAgQNKTEzUtddeq3/961+ufe666y4VFBTommuuUXZ2tgYMGKBvv/1WERERFmYOAAA8lZVfWqkg5LRoc5ay8ksVH+W9YXxWxwcAAHVAerrjngtpasTSolRsbKyeffZZPfvss9XuY7PZ9NBDD+mhhx4yLzEAAFDrcouPPQtL3nG2+3t8AAAQ4AoLpaVLHcsUpWrE0qIUAMAxpCgrv1S5xWWKiwxVQnQYV2sgIMVFHLu3QOxxtvt7fF/E+w8AALX4eRgVJf35p7RokXTKKbWfaACiKAUAFnI0XV5jWdNnwEwJMWEalJygRVUMoRuUnKCEGO8WQ6yO72t4/wEAwAufh7Gx0qhRtZhhYLO00TkA1GU0XUZdEx8VpifGd9Og5AS39YOSEzR1fDevX6FjdXxfwvsPAAC1/HloGLWcXd3AlVIAYBGaLqMuSqwXqRcu6aGs/FLlFZcpNiJUCTHmDRmzOr6v4P0HAIBa/jycM0eaMkW65hrpuutqMcvARlEKACxC02XUVfFR1haBrI7vC3j/AQCglj8PP/9cWrlS2rTpJLOqWxi+BwAWoekyAKvw/gMAQC1+HpaVSV984VhOSzvJrOoWilIAYBFn0+Wq1MWmywDMw/sPAAC1+Hn400/S4cNSQoLUv38tZhj4KEoBgEVougzAKrz/AABQi5+H6emO+7FjpeDgWs4ysNFTCgAsRNNlAFbh/QcAgFr4PDQMadYsxzJD9zxGUQoALEbTZQBW4f0HAICT/Dxctkzas0eKjpaGD6/dxOoAilIAAAAAAAAnIjxcuvhiR1EqIsLqbPwORSnUSTmFpcrKL1VucZniIkOVEM1/igGgLuLzAAAQaPhsM4frda7XUnHPv+F4na1Oyg9RlEKdsze7SHfPXKOfNme51g1KTtAT47spsV6khZkBAMzE5wEAINDw2WYOXufaw+x7qFNyCksrvXlI0qLNWfrHzDXKKSy1KDMAgJn4PAAABBo+28xx5Ovcc89Gtc/cIRkGr/MJoiiFOiUrv7TSm7TTos1ZysrnDQQA6gI+DwAAgYbPNnMc+Tr/a8EbmvvmTTpv/QJJvM4ngqIU6pTc4rJjbs87znYAQGDg8wAAEGj4bDOH83Vukpel7n/+Ibts+qlND9d2XmfP0FMKdUpcROgxt8ceZzsAIDAE+ucBTW4BoO4J9M82X+F8nc/a/KskaWViB2XGNHBt53X2DEUp1CkJMWEalJygRVVc1jooOUEJMfzCDgB1QSB/HtB8FQDqpkD+bPMlztd5xEdLJEnfte/n2sbr7DmG76FOiY8K0xPju2lQcoLb+kHJCZo6vhv/RQaAOiJQPw9ocgsAdVegfrb5mvioME0d1lL99qyV9FdRitf5xHClFOqcxHqReuGSHsrKL1VecZliI0KVEMOwBgCoawLx86AmTW79+fkBAI4tED/bfFGzn+ZLFRUqSemk5+49n9f5JFCUQp0UH8UbBgAg8D4PaHILAAi0zzaf9PXXkqTw889T91b1LU7Gv1GUAgAACBA0uQUAwARvvSVNnCi1b291Jn6PnlIAAAABwtl8tSo0XwUAoJaEh0vnnCO1bWt1Jn6PohQAAECAoMktAADwJwzfAwAACCA0uQUAwEvKy6UBA6RBg6T77pPi4qzOyO9RlAIAAAgwNLkFAMALFi2Sfv1V2rJFeuwxq7MJCAzfAwAAAAAAOJ5Zsxz3Y8dKIVzjUxsoSgEAAAAAAByLYfxVlEpLszSVQEJRCgAAAAAA4FiWL5d275aio6Xhw63OJmBQlAIAAAAAADgW51VS55wjRUZamkogoSgFAAAAAABwLOnpjnuG7tUqOnMBAAAAAABUp7RUGjBAysuTRo2yOpuAQlEKAGCanMJSZeWXKre4THGRoUqIZtp6AAAA+LiwMOm11xzNzm02q7MJKBSlAACm2JtdpLtnrtFPm7Nc6wYlJ+iJ8d2UWI9x+QAAAPBxFKRqHT2lAABel1NYWqkgJUmLNmfpHzPXKKew1KLMAAAAgGPIypJ++UWy263OJCBRlAIAeF1WfmmlgpTTos1ZysqnKAUAAAAf9OmnUv/+0rhxVmcSkChKAQC8Lre47Jjb846zHQAAALCEc9a9gQOtzSNAUZQCAHhdXEToMbfHHmc7AAAAYLrsbOmHHxzLaWmWphKoKEoBALwuISZMg5ITqtw2KDlBCTHMwAcAAAAf89VXUnm51LmzlJxsdTYBiaIUAMDr4qPC9MT4bpUKU4OSEzR1fDfFR1GUAgAAgI9xDt1LTbU0jUAWYnUCAIC6IbFepF64pIey8kuVV1ym2IhQJcSEUZACAACA7ykqkr791rHM0D2voSgFADBNfBRFKAAAAPiB+fOlggKpZUupZ0+rswlYFKUAoI7JKSxVVn6pcovLFBcZqoRoCkWBgu8tAABALRk5Ulq8WMrMlGw2q7MJWBSlAKAO2ZtdpLtnrtFPm7Nc6wYlJ+iJ8d2UWC/SwsxwsvjeAgAA1KLgYKl/f6uzCHg0OgeAOiKnsLRS0UKSFm3O0j9mrlFOYalFmeFk8b0FAACAP6IoBQB1RFZ+aaWihdOizVnKyqdw4a/43gIAANSihx+WrrtOWrPG6kwCHkUpAKgjcovLjrk97zjb4bv43gIAANQSw5D+8x/ptdek7dutzibg0VMKAOqIuIjQY26PPc72k+XtJtx1ucm31d9bAACAgLFypbRrlxQVJZ19tmlh6+rvshSlAKCOSIgJ06DkBC2qYpjXoOQEJcR470PP202463qTbyu/twAAAAElPd1xf845UqQ5v0fW5d9lGb4HAHVEfFSYnhjfTYOSE9zWD0pO0NTx3bz2nxhvN+Gmybd131sAAICA4yxKpaWZEq6u/y7LlVIAUIck1ovUC5f0UFZ+qfKKyxQbEaqEGO9eGlyTJtwnE9/bx/cXVnxvAQAAAsrmzdL69VJIiDRqlCkhXb/LGoZjhc3m2lYXfpelKAUAdUx8lLmFCm834abJ91/M/t4CAAAEFOdVUmeeKdWvb0pI5++yPfdm6IXZ0/R5l6H696DLXNsD/XdZilIAAK/ydhNumnwDAOD76moTZ/iZmBipbVspNdW0kM7fZcPLy5QZU1+tsve5bQ/032UpSgEAvMrbTbhp8g0AgG+ry02c4WduuEG6/nqposK0kK7fZdVNqZc/rWD7X7Hrwu+yNDoHAHiVt5tw0+QbAADflVtUt5s4ww/ZbI6eUiY5+nfZiqBgSXXnd1mulAIAeJ23m3DT5BsAAN90ML+MCUngH5Ytk7p1k8K8ez4ahqHCwkLl5OS4bhVr1+ocI0gpjYuUdeiwBgwYqGGDetSJnw2KUgAAU3i7CTdNvgEA8D15JUxIAj+QkyOdcYYUFSVt2iQ1aVLlbna7Xfn5+crJyVFubq7bfU1vubm5Ki8vdzvu75LOl5Qq6RtJCY8+qvPOGeLd5+wjKEoBAAAAALwiNpwJSWAtwzBUUlKigwcP6s8//9SqVatUXFys3Nxc5eXlKS8vT80XLtS5ZWXaFxys+++7r1LRybmcl5dX6/m1lNRbUoWkZf9bl5OTU+txfBVFKQAAPMQMQjXHawWgJnivODm+/Po1jAllQhJ4zG63q6CgQHl5eW7Fo6q+rsk+R1+ZdLRP/nc//dAh/ec///H+E/yf0NBQ/V9YmFRQoNUxMepy2mmKj49Xp06dTMvBahSlAADwADMI1RyvFYCa4L3i5Pj66xcX6Wji/I+Za9wKU3WliXNdYRiGiouLlZ+f77odr3B0rGJSfn6+abmHSxr5v+VZHjwuMjJScXFxiouLU3x8fJW3Y22Lj49XRESEbEOHSj/+qJ5TpmjB7bfX/hP0cRSlAACooZzCY88g9MIldaMhZU3wWgGoCd4rTo6/vH5MSOJbnI22CwoKXMWjI4tJR9+Otf3IbXa73eqndlw2m02xsbGKjY1VXFycYmNjNbykRDGrV+tgVJT6TJqks+vVcys2OZeP/Do2NlZhtdEQ/eBBadEix3Ja2skfzw9RlAIAoIay8kuZQaiGeK0A1ATvFSfHn14/JiTxjPPKo4KCghO+5efnV7rPz89XYWGhDMOw+inWWGhoqFsR6eiiUk2/joyM1I8//qhRo0YpNPSIXmZXXimtXq2GV1yhF194wdwn98UXkt0unXqqlJRkbmwfQVEKAIAayj3ODEHMIPQXXisANcF7xcnh9bNWWVmZ64qjwsLCKpc9KR4deSssLPSLK4+qEx0drZiYmJMqIjm/Dg8Pr5WcysrKZLPZ3FdWVEhz5jiWrbhSKT3dutg+gqIUgDrLl5uCwjfFHWeGIGYQ+guvFYCa4L3i5PD6Vc9ZMCoqKnIViY5XQPJ0+XjNs/2BzWZTTExMtbfY2FiPt0dFRSkoKMjqp1YzQUHS/PmOK5YGDjQ//ksvSWefLZ11lvmxfQRFKQB1kq83BYVvSogJYwahGuK1AlATvFecHH97/QzDUElJiVuhqLaWj74FQsHoSBEREYqOjvboFhMTU+29czkqKqry1UN1ic0mdevmuFmhRQvpxhutie0jKEoBqHP8pSkofE98FDMI1RSvFYCa4L3i5NTG61dRUaGioiJXgedEl4/+uqCgQFlZWQoODnZb70+9jDwRFBTkKvJERUW5lj0tJFV3Cw4OtvopAl5BUQpAneNPTUHhe5hBqOZ4rQDUBO8V7o6+mqi6os+RX7fLyVe9inzl5uXLXlYq7SvVHfOLq33skculpaVWP2Wvs9lsioqKUmRkpFux6OgC0sksh4WF1e0rjvzRmjXSE09IF18sjR1rbuyyMumiixxD9/72N6mW+mb5I4pSAOocmoLiZDGDkFReXq7i4mKVlJSouLj4mMvO29HTSJeUlFT6b/KR/1V2LkdERCg0NLTKW0hIiNsyfxAA/snX31fLyspqdHXQyX5dWFio4uLigL2a6GhBQUGuYpGzyFPd8vG2HesWHh7O5wMq++wz6cMPpeJi84tSP/7oaHL+88/S1VebG9vHUJTyEzRkBmoPTUFR1xmGodzcXO3fv991O3DggNvXmZmZrj+Oji4wlZSUqKKiwuqnUSVnkerIYlV1Bazy8nKVlpaqtLRU4eHhiouLU3x8vEf3kZGRqqiosPQPSCt/R7AqNr8XBbaafn/tdruKi4uP21voWLeaFo189T3PG8LCwhQZGekq+lS1XJNtoaGhWrdunQYPHqzY2Fi3/Zz3XF1kDTPeQ/3ifdrKme+csceNk+r40EyKUn6AhsxA7fK3pqBATRiGocOHD7sVlqq7HThwQMXFxVan7BXl5eWWNbcNCgpSSEhIpVtwcHCV62tjW3GFtHjrIe3JKZXNFiwFB6ttoziN7tFSCXGOqwOq+kPw6HUREREKDw/3qGeJVb+f8HuR77Pb7ZWK2ceayezIdZmHc7Vwwx79eTBXRnmJjLISxYZUqEmUTWUlxZUKSnVBUFCQx0Wikyko1VbvorKyMoWHh2vQoEEKDeUffr7CjPdQv3if3rJFWrfOURAaNcrc2Ha7NHu2Yzk11dzYPoiilI+jITNQ+2iqCn9ht9uVlZVV7dVMRxeaysqsG3pqs9kUHh6uiIgIV4Hj6OWjp40OCwur8o/T3Lx8bf3zkPLz82UvL5FRVirZK2TYKyS7786mZLfbXVdeWWmlpJWfn9hjQ0JCFB4e7vqeHXl/5HJQSKg2HCjWwSK7bMGhUnCobDZp1jzpt/cjNah9gsJCqv7DtqZXRVS1X0l5hRZuytTenP8VVW1BsgUFa/bCYK2eHacxPVoqJjK82ivkqvvaWegLCgpyu1W1zmazuW5Hf13dOk/2Pda6mrLb7SoqKqo0hNasW23/DBRLyqzVI568iIgIjwtDJ/p1aGgoVxOhVpjxt6Xf/P06a5bjfsgQqUEDc2P//ru0d68UGysNG2ZubB9EUcrH0ZAZ8A6aqsIq5eXlyszMrNEVTZmZmbLb7V7LJSgoSI0aNVKTJk0q3Ro3bqyYmJhjFpmOXK7NP5q2HsjXsKcXKr6KbYZhaO4tA9SqfrjKyspUXl6usrIyt1tV645eX15ertDQUIWHOwoYxcXFysnJUW5urtt9Veuc94E23bj015VmBQUFJ3yMTZI2/VB7OdXUGklrvjA/rtmOV/xynud1UVhYWI17DB1Z9PH0CqPw8HAFBQVZ/XQBj5nxt6Xf/P3qC0P3zj23Tjc4d6Io5eNoyAx4j683VYX/KCsrq1GRaf/+/Tp48KBX+w+FhIRUWWQ6uuDUpEkTNWzY0CenmD7WZ5/NZlNRueH6A9EqhmGouLhYBw8e1HfffadBgwa5CgLl5eWqqKhwLR99q26bp4/ZezhfX67aI8Nud11JZtjLpYoKGUaFTmsZpzBbxTEbKtelPjmBwjAMGYbh1YK1NxxdFDpy9jLnrdAerO8358gWGq6g0AjZQsJkC41wfB0SrgfSuqtrmybVNsAOCeFPG+BYzPjb0i/+ft23T1qyxLE8bpy5sQ3jr6IUQ/ckUZTyeTRkhq/xi6aFgBdUVFRo27ZtWr9+vdavX6+NGzdq+/bt2rVrl/bu3evVPxDDw8OPW2hy3urXr+/3wzz84bPPZrMpMjJSTZo0UUJCgtq0aWN6z5StB/L1y9MLq93+5u2D1a5xzDGPUVZWpsLCQlf/nyPvj7Xuv1m5evH7jTIqymRUlEnl7n9kXNC7hepV8dlQ04JsdftlF5bqs+V7jtjR7hjWWVEuw16hYR0SFBFsHPPKuaq+Li8vl91ud90qKircvj5ynbMo5G+zox15haPzFhkZWWmdN241bWbtvEqyOuecc/xzGqgOv8Oa8/nqD5/h2rtXOvVUKTRUatHC3Nj5+VLLltKePY4rpUBRytfRkBm+xC+aFgInyVl82rBhg6sAtX79emVkZKikpKTW4kRFRdW40BQXF+f3hSZP8NlXM7XxOoWGhio+vqqBkseWU1iqnc1WVhv7317qGZJTWKryD6uPa3avkiMLVEfeji5eHWv9yaw7en1paakWL16sESNGKDY21q0o5A/DzfjZh7fwO6yDGT9jfvFz3LOntHKldBJD1U9YbKz0/feO2NHR5sf3QRSlfBwNmeErcotKdffMdb7ftBCooYqKCm3fvl3r1693K0BlZGSc8Mx0sbGxNS40xcTw3/7q8NlXM1a+TlbF9rVzw9nHyVeUlZVp586dlly5Vxt87fuLwOA3jbdNYMbPmF/9HFtZFKIg5UJRyg/QkBm+4GB+mX80LQSOYrfbXcWnIwtQGzdu9Lj4ZLPZ1LZtW3Xu3FmdO3fWKaecotatW6tVq1Zq0aKFpT2OAg2ffTVj5etkVWzOjcDG9xe1zW8ab5vEjJ8xX/45jsjKcgyhq1/f/ODZ2VJRkdSsmfmxfRhFKT9BQ2ZYLa/ED5oWok4zDEO7d+/W6tWr3QpQGzduVFFRkUfHstlsSkpKchWfnLeUlBQKTybis69mrHydrIrNuRHY+P6iNvlF422TmfEz5qs/x11mzFDIjTdKr70mTZxobvD33pMmT5auv1566SVzY/swilIAaiQ23A+aFqLOKCsrU0ZGhlatWqWVK1dq1apVWrVqlQ4fPuzRcZzFp06dOlUqPkVFRXkpewAAYBa/aLwNcxQXq8ny5bKVlEgdO5ofPz3dMfte27bmx/ZhFKUA1EjDmFDfb1oIS3lrVpu8vDytWbNGK1eu1IoVK7Ro0SLt2bPH46bjziufjixApaSkKJox/UCdxWxc3sdrDKtZ1Xibc9/32BYsUEhxsYzmzWXr3dvc4AcPSgv/N7toWpq5sX0cRSkANRIX6UdNC2G62pjVxjAM7du3z+3Kp5UrV2rLli0e5dKqVSt17drVrfjUsWNHik8A3DAbl/fxGsMXWNF4m3PfNwXNni1Jso8dq2CzZyT98kupokLq1o0rpY5CUQpAjfly00JY50RmtbHb7dq8ebOrAOW8P3DgQI3jhoSEqFOnTurevbvbrb4VjSsB+BVm4/I+XmP4EjN/h+Xc91EVFbJ9+aUkyRg71vz46emOe66SqoSiFACP+GrTQljneLPa7Msu1J7tm7VixQqtWLFCy5cv16pVq5SXl1fjGLGxsTr11FPVrVs3BQUF6bLLLlO3bt0UERFRW08DQB3CbFzex2sMX2PW77Cc+z7q559ly8xUaUyMbIMGmRu7oED67jvHcmqqubH9AEUpAMBJOXJWG6O8TKVZO1W6f6vjtm+rTn12p0pKimt8vObNm7td+dSjRw8lJSUpKChIZWVl+vrrr9WjRw+FhtKYFMCJYTYu7+M1Rl3Fue+j/nel0v7evdXU7N8hv/tOKi6W2rSRTj3V3Nh+gKIUAL/hrw0j/TXv4ykqKtKaNWv03cIlOvjNN44iVOZOyV5eo8fbbDZ16NBBPXr0UI8ePdS9e3edeuqpaty4sZczB1DXMRuX9/Eao67i3PdRt9yiiubNtaO0VE3Njn3mmdLbb0t2u2SzmR3d51GUAuAX/LVhpL/mfbSCggKtXr1ay5cvdw3B27BhgyoqKmr0+ODgYHXq1Ek9e/ZUjx49XPcxMTFezhwAKrNqNq66hNcYdRXnvo9q00b2yZN16OuvzY9dv750+eXmx/UTFKUA+Dx/bRjpr3nn5eVp5cqVruLTihUrlJGRIbvdXrMDBIcorFGSWrfvrKtSh2pI/z7q2rWrIiP9pwgHILBZMRtXXcNrjLqKc9/HcaWSz6EoBcDn+WvDSH/IOzs7WytXrnS7Amrz5s0yDKNGj4+MjFT37t3Vs2dPdexyqlp36KImrdqpQWwUMzMC8GnMKOt9vMaoqzj3fczkyVL37tbMfPfcc1JpqTRhgtS8ufnx/QBFKQA+z18bRvpa3gcPHnTNgOcsQG3durXGj4+OjlaPHj3Uq1cv9ezZU7169VKHDh0UEsJHCQD/xIyy3sdrjLqKc99HbNsmvfCCFBwsjRplbmy7XXrySem//5U6daIoVQ3+kgDqCH9utu2vDSPNzvvI73Fp3mHt2rRWmzasdRWhdu7cWeNjxcXFVSpAJScnKzg4uFZzBgAAALzmf7PuafBgqUEDc2MvW+YoSMXESMOGmRvbj1CUAuoAf2+27a8NI83KOysrS9/9+LOmvfe1Nq9fpdJ9W1SRf6jGj69Xr55b8alnz55q166dgoKCaiU/AAAAwBLOopQVQ/ecsc89V4qIMD++n6AoBQQ4f222fSR/bRjpjbxzc3O1fPly/f7771q2bJl+//137dixo8aPT0hIcCs+9erVS23atJGNpo8AAAAIJPv3S7/84lgeN878+LNmOe5TU82P7UcoSgEBzh+abdeEvzaMPJm8CwsLtWrVKlfx6ffff9emTZtqHDs4ur7Cmp6iK8cN1fBB/dSzZ0+1aNGCAhQAAAAC35w5kmFIvXtLLVtKZSb2c83IcNxCQx1XSqFaFKWAAOdrzbZPhr82jKxJ3iUlJVq7dq3rCqhly5Zp/fr1qqioqFGMoKh4hTdNVlizZIU1TVZY01MUEuMYN3/lDWeoe6v6J/08AAAAAL/hC0P3hg2T4uPNj+9HLC9K/fe//9Xdd9+tb775RoWFhTrllFM0Y8YM9e7dW5JkGIYeeOABvfHGG8rOzlb//v31yiuvKDk52eLMrePPDathPn9tEh7ICgoKtHr1aq1YsUIrV67UihUrtG7dOpWXl9fo8fHx8erdu7d69+6t0047TY2TOun/Pt5a7RVQfI8BAABQp9jtjiujbDZrilK5uVJkpDWx/YylRanDhw+rf//+OvPMM/XNN9+oUaNG2rx5s+rX/+s/+tOmTdPzzz+vt99+W0lJSbr//vs1YsQIbdiwQRF1sFmYvzeshvn8tUl4IDAMQ3/++afWrl2rtWvXatWqVVqxYoU2bdoku91eo2MEh0UopHFbhTVNVnizZPXvc7pevP5ctWgQ7donp7BUg9vn8j0GAAAAJCkoSJo3T8rKkho2ND/+449L999vflw/ZGlRaurUqWrZsqVmzJjhWpeUlORaNgxDzz77rO677z6N+19jsnfeeUdNmjTRrFmzdPHFF5ues5UCoWE1zOevTcL9TV5entatW+cqQK1du1br1q3TwYMHa3yM8PBwde/eXb1791anrt31zf4orcmPkS0o2LXPqjzpn+nr3H7e+R4DAAAAVUhIsC52VJR1sf2IpUWpOXPmaMSIEbrgggu0cOFCNW/eXDfccIOuvvpqSdL27du1b98+DR8+3PWY+Ph49enTR0uWLKmyKFVSUqKSkhLX17m5uZKksrIylZnZ2OwEOXOsKtf92YX6bVumwoMrbdKv2zK1P7tQUaE0MEZljaJD9MwFXXQwv0z5JWWKCQ9Vw5hQxUWGHPfn4ljnZF1UVlamP/74Q+vWrXPd1q9f79EMeJIUHR2t7t27q3v37urRo4e6d++ujh07KjTUMdRue2aBnntpsRwj7wy3x1b1834y32N/wvkIX8M5CV/C+QhfwvkIy5SWOobPHVWQMu2c3LtXSkz0bgw/UNPX2WYYhnH83bzDOfzu9ttv1wUXXKDff/9dt9xyi1599VVNnDhRv/zyi/r376+9e/eqWbNmrsddeOGFstls+vjjjysd88EHH9SUKVMqrf/ggw8URaUSQA0ZhqGsrCzt3LlTu3bt0s6dO7Vz507t2bOnxr2fnOrXr6/WrVurTZs2atu2rdq1a6emTZsqOLiKCjMAAACAE9Z42TL1fewx/bd/fy2/4w5TY4fm5emciROV36KFfnriCZXX4RpEYWGhJkyYoJycHMXFxVW7n6VXStntdvXu3VuPPfaYJKlHjx5at26dqyh1Iu655x7dfvvtrq9zc3PVsmVLnX322cd8IXxFWVmZ5s2bp7POOst1xYTT9swCjXlpcbWP/eLGAUpqFF3tduBEHH1O5haV6mB+mfJKyhQbEaqG0aGKi/Tv4WHZ2dlav359paufsrOzPTpOTEyMOnfurC5durjdGp7AOHZ+3qt2rPdIwAqck/AlnI/wJd46HwPxd1HUruAvvpDNblezTp107rnnutab8R5pe+89Bdntio2N1dnnn++VGP7COWrteCwtSjVr1kydOnVyW9exY0fNnDlTktS0aVNJ0v79+92ulNq/f7+6d+9e5THDw8MVHh5eaX1oaKhffThXlW+TelHq07ZRtc2Mm9SL8qvnCP8SGhqqzIJy3T1znd822j906JA2bNigjRs3ut3v3r3bo+MEBwerQ4cO6tq1q9utdevWCgoKqpVc+Xk/Nn97T0fg45yEL+F8hC+pzfPRMemT//4uChNUVEhffCFJCh4/XsFVnHtefY/8X2zbeefV+ffhmj5/S4tS/fv316ZNm9zW/fHHH2rdurUkR9Pzpk2bav78+a4iVG5urn799Vddf/31ZqdrOZoZw0q5RaWVfgmQfK/RvmEY2rdvX5XFpwMHDnh8vBYtWlQqPqWkpFRZ/K5N/LwDAAD8hUmfUCNLlkgHDkj16klDhpgbu7BQ+vZbx3Jamrmx/ZilRanbbrtNZ5xxhh577DFdeOGF+u233/T666/r9ddflyTZbDbdeuuteuSRR5ScnKykpCTdf//9SkxMVGpqqpWpWyaxXqReuKSHsvJLlVfsuGQ1ISaMN2B43cH8skq/BDgt2pylrPxSU89Du92uXbt2VVl8ysnJ8fh4cXFxlYpPXbp0Uf369b2Qfc3w8w4AAOCQlV/qU7+LwkelpzvuR4+WzL5Sae5cqahIat1aqmZkFyqztCh12mmnKT09Xffcc48eeughJSUl6dlnn9Wll17q2ueuu+5SQUGBrrnmGmVnZ2vAgAH69ttvXU3S66L4KP4ohfnySo49e0JesXdmsSgpKdHmzZuVkZGhjRs3uu43bdqkwsJCj48XHx+vTp06qVOnTurYsaM6duyoLl26qGXLlrLZfG/2Sn7eAQAApNzj/K7prd9F4UcMQ5o1y7FsxZVKR8b2wb8rfJXHRakffvhBZ555Zq0lMHr0aI0ePbra7TabTQ899JAeeuihWosJwHOx4cf+T0NsxMn9J+Lw4cOVCk8ZGRnatm2b7Ha7x8dr0qSJOnbs6Co+Oe+bNm3qk8UnAAAAVC/uOL9rnuzvoggAa9dK27ZJERHSiBHmxi4vd/WTYuieZzwuSp1zzjlq0aKF/va3v2nixIlq2bKlN/IC4GMaxoRqUHJCtY23E2KOfzWP3W7X7t27lZGRUakAdSL9niSpVatWVRafGjRocELHAwAAgO9JiAk76d9FYZ6cwlJl5Zcqt7hMcZGhSog24er/Vq2kN96Q9u2Tok2epdowpOnTHT2l+vc3N7af87go9d///lfvvvuu3n77bU2ZMkVDhw7VlVdeqdTUVIWF8UYABKq4yJo33i4qKnINuTuy+LRp0yYVFRV5HDskJETJycnq2LGjUlJSlJKS4lqOiYmplecHAAAA38UkMP7DMUviGvNnSaxXT7rqKu8d/1hCQ6XUVMcNHvG4KJWQkKDbbrtNt912m1asWKEZM2bohhtu0A033KAJEyboyiuv1KmnnuqNXAFY7MjG27lFpSrLz1HWf7fpi0/edRWgMjIytGPHDhmG4fHx4+LiXMWmIwtQbdu2rfNTqgIAANR1TALj+5glEZ46qUbnPXv2VNOmTdWwYUM98cQTevPNN/Xyyy+rX79+evXVV9W5c+fayhOARcrLy7V37159+eWX2rJli1vx6dChQyd0zBYtWlQqPNHvCQAAAMfDJDC+zbJZEmfOlPbskcaPl1q0qP3jH8vatdKnn0rnny9162Zu7ABwQkWpsrIyzZ49W2+++abmzZun3r1768UXX9Qll1yizMxM3Xfffbrgggu0YcOG2s4XgJfk5uZq06ZNbkWnjIwMbd68WWVlns9mEhYWpvbt27uKTs5b+/btFRsb64VnAAAAAMBKls2S+Nxz0k8/SUFB0s03eydGdT76SHrsMSkjQ/rkE3NjBwCPi1I333yzPvzwQxmGocsuu0zTpk1Tly5dXNujo6P11FNPKTExsVYTBfyRJQ3+jsEwDO3Zs6dS4SkjI0N79+49oWM2aNBAHTt2dLvqKSUlRW3atFFwcHAtPwMAAMzna5/nVckpLNX+7EJJ0vasAjWJj/K5HAEEPktmSTxwQFq82LE8blztH/940tMd98y6d0I8Lkpt2LBBL7zwgs477zyFh4dXuU9CQoJ++OGHk04O8GeWNfiTVFxc7DbU7shG4wUFBR4fLygoSElJSa6CU4cOHVxFqISEBC88AwAAfIOVn+c15czxt22Zmna6NObFxerTtpFP5QigbrBklsQ5cxyz3/Xq5ZiBz0ybNkkbNzoanZ97rrmxA4THRan58+cf/6AhIRo8ePAJJQQEArMa/B08eLBS4SkjI0Pbt2+X3W73+HjR0dGVhtu1a9dOW7ZsUWpqKs3GAQB1ij807D0yx/AjLlD2pRwB1B2WzJJo5ZVKzthDh0rx8ebHDwAeF6Uef/xxNWnSRFdccYXb+jfffFOZmZm6++67ay05wF/VZoO/iooK7dq1y1V0OrL4lJVVdYzjad68eaXiU0pKipo3b16p0XhZWZl27dp1QnEAAPBnljXs9YA/5AigbjF1lsTcXOn77x3Lqam1f/zjYejeSfO4KPXaa6/pgw8+qLS+c+fOuvjiiylKATqxBn9FRUX6448/3IpOGzdu1B9//KHi4mKPcwgNDVVycnKlwlOHDh0UFxfn8fEAAKhrLGvY6wF/yBFA3WPaLInffiuVlkrJyVKnTt6Pd6T//lf67TfJZpPGjjU3dgDxuCi1b98+NWvWrNL6Ro0a6c8//6yVpAB/d6wGfxWFOcpY9Zt+/26XWwFqx44dMgzD41j16tWr1GQ8JSVFbdu2VUjICU2wCaCO84emzoAZLGnY6yF/yBEAvGbHDikszHGl0lEjPrwuI0OqX19KSZGqqJGgZjz+i7Vly5b6+eeflZSU5Lb+559/ZsY94H/qRwarR70S/bJ8jcoO7lbZwT2O26E9shfl6pIXPD9m69atXQWnjh07upqNN27cuNKQOwA4Uf7Q1BkwiyUNez3kDzkCgNfcdZd0/fVSSYn5sYcNk/bvl/btMz92APG4KHX11Vfr1ltvVVlZmYYOHSrJ0fz8rrvu0h133FHrCQK+rLi4WH/88YdrqJ3zdqJD7sLDw9W+fXu34lNKSorat2+v6OhoLzwDAPiLPzR1BsxkScNeDx2Z46/bMl3rfSlHAPCq2FjHzQqhoVLLltbEDhAeF6X+/ve/6+DBg7rhhhtUWloqSYqIiNDdd9+te+65p9YTBHzB4cOHKxWeTmaWu/r166tjx45uw+46duyoNm3aKDg4+PgHAAAvoGEyUJmpDXtPkDPH/dmF2vj7Qn1x4wA1qRflUzkCQK3LzZWs6pWbm+sohDFi5aR5XJSy2WyaOnWq7r//fm3cuFGRkZFKTk5WeHi4N/IDTGMYhvbu3etWeHLe9u/ff0LHbN26tavwdOR9QkICQ+4A+BwaJgNVM61h70mIjwpTVKhNGyUlNYpWaCi9pAAEsIoKqX17qXlzaeZMqU0bc+NPmiStWCG9/LJ07rnmxg4wJ9wFOSYmRqeddlpt5gKYory8XNu2batUeMrIyFBeXp7HxwsNDVX79u3dik4dO3ZkyB1wlCObZ8eEhygsOEjZRaWKifDvRtqB1BSchskAAMAvLF3q6OdUXCyZ3du6sNAx619RkdS0qbmxA9AJFaWWLVumTz75RLt27XIN4XP6/PPPayUx4GQVFRXpjz/+0IYNG9yKT5s3b6503tZEbGysq+B05C0pKYlZ7oDjqKp5dv9TGupv/ZN0yRu/qnfr+n7ZSDvQmoLTMBkAAPiF9HTH/ejRjtn3zDRvnqMg1bq11KOHubEDkMd/SX/00Ue6/PLLNWLECM2dO1dnn322/vjjD+3fv19paWneyBE4puzs7CqH3G3fvl2GYXh8vKZNm1ZZfGrWrBlD7oATUF3z7J+3HJQkXTEgSS8u2OJ3jbQDsSm4PzR1BgAAdZxh/FWUsqIG4YydmkpPqVrgcVHqscce0zPPPKMbb7xRsbGxeu6555SUlKRrr71WzZo180aOgAzD0L59+9yKTs4roPadwBScNptNbdu2dRtu57zVq1ev9p8AUIcdq3n2z1sO6or+SZL8r5F2oDYF94emzgAAoA5bu1batk0KD5dGjDA3dnm59MUXjuXUVHNjByiPi1Jbt27VqFGjJElhYWEqKCiQzWbTbbfdpqFDh2rKlCm1niTqjoqKCu3cudOt6OS85eTkeHy8sLAwdejQoVLhqX379oqIiPDCMwBwtOM1zy4p/2sGS39qpB3ITcH9oakzAACoo2bNctyffbYUE2Nu7J9+kg4dkho2lAYMMDd2gPK4KFW/fn1XM+jmzZtr3bp16tq1q7Kzs1VYWFjrCSIwlZSUaPPmzZWG3G3atEnFxcUeHy8uLq7afk/BwcFeeAYAaup4zbPDQ4Jcy/7USJum4ADgvwJpkgqgzrFy6J6zIDZ2rERf4Vrh8as4aNAgzZs3T127dtUFF1ygW265RQsWLNC8efM0bNgwb+QIP5aXl6eMjIxKxaetW7eqoqLC4+M1adKkUuGpU6dO9HsCfNixmmf3P6WhVu7OluR/jbRpCg4A/inQJqkA6hS7XbrnHkdhaswY8+NfdJFUUWFNQSxAeVyUevHFF11Xstx7770KDQ3VL7/8ovHjx+u+++6r9QThHzIzM6tsNr579+4TOl6bNm2qvPKpQYMGtZw5AG+rrnm2c/a9yR+u9MtG2jQFBwD/E4iTVAB1is0mXXih42aFM85w3FBrPC5KHVkUCAoK0j/+8Y9aTQi+y263a/fu3VUWnw4ePOjx8UJCQpScnFyp8NShQwdFR0d74RkAsMrRzbOjw0MUFhyknKJSfXHTAL9tpE1TcADwL4E6SQUA+KsTGgRZUVGh9PR0bdy4UZLUqVMnjRs3TiGMqQwIZWVl2rJlS6XCU0ZGxgn1DYuKiqpylrtTTjlFoaH0XAHqiqqbZ/t/AZqm4ADgPwJ5kgog4GVmSq++Kp13ntS5s/nxH33U0dx8wACJvsW1xuMq0vr16zV27Fjt27dPHTp0kCRNnTpVjRo10hdffKEuXbrUepLwjoKCAm3atKlS8Wnz5s0qLy/3+HgNGjSocshdq1atFBQUdPwDAAAAAF7EJBWAH5szR/rXvxzNxpcvNzf2H39I993naG6emSnVq2du/ADmcVHqqquuUufOnbVs2TLVr19fknT48GFNmjRJ11xzjX755ZdaTxIn58h+T0c2Hd+1a9cJHa9FixZVFp8aNWpEs3HgBDADEAAA5mCSCsCPOWe+s3LWvaFDKUjVMo+LUqtWrXIrSElS/fr19eijj+q0006r1eRQc3a7XTt37qw0011GRsYJ9XsKCgpSu3bt3Ga469ixo1JSUhQbG+uFZwDUTcwABACAeZikAvBTeXnSvHmOZSuKUunp1sUOcB4Xpdq3b6/9+/er81FjOA8cOKBTTjml1hJD1UpKSrR58+ZKVz1t2rRJRUVFHh8vIiJCHTp0qHTVU3JyssLDw73wDAA4MQMQAADmY5IKwA99+61UUiKdcorUqZO5sffulZYudSyPHWtu7DrA46LU448/rsmTJ+vBBx9U3759JUlLly7VQw89pKlTpyo3N9e1b1xcXO1lWsfdeuut+vLLL7V9+3bZ7XaPH39kv6cjm463atVKwTRpAyzBDEAAAFiDSSoAP3PklUpmt4yZPdtx37evlJhobuw6wOOi1OjRoyVJF154oat/kGEYkqQxY8a4vrbZbKqoqKitPOu8ffv2aevWrcfdr1WrVpVmuktJSaHfE+CDmAEIAAAAOI7SUumrrxzLDN0LOB4XpX744Qdv5IHjSElJcS2HhoYqOTnZVXxy3nfo0EExMTEWZunfaDYNszEDUO3iZxgAACAAbdwoGYbUtKnUp4+5scvKpC1bHMupqebGriM8LkoNHjzYG3ngOC666CL17NlTKSkpSkpKUmgof6zWJppNwwrMAFR7+BkGAAAIUKeeKmVmOopDQUHmxg4NdcRds0Zq397c2HXECX9HCwsLlZGRoTVr1rjd4B0dO3bU2LFj1b59ewpStex4zaZzCkstygyBzjkD0KDkBLf1zADkGX6GAQAAAlx4uHTUZGumCQqSune3JnYd4PGVUpmZmfrb3/6mb775psrt9JGCv6HZNKzEDEAnj59hAACAAFVSIoWFmd/cXJLKyx1xmRjMqzy+UurWW29Vdna2fv31V0VGRurbb7/V22+/reTkZM2ZM8cbOQJeRbNpWC0+KkztGseoe6v6atc4hgKKh/gZBgAACFD33Sd16CB99JH5sb/+2tHH6t57zY9dh3h8pdSCBQs0e/Zs9e7dW0FBQWrdurXOOussxcXF6fHHH9eoUaO8kSfgNf7WbJpmzoA7f/sZRuDIKSzV/uxCSdL2rAI1iY/i/RgAgNpiGI6Z77ZuteZqpVmzpKwsKS/P/Nh1iMdXShUUFKhx48aSpPr16yszM1OS1LVrV61YsaJ2swNM4Gw2XRVfaza9N7tIN324UsOeXqi0l3/RsH8v1M0frtTe7CKrUwMs408/wwgczvfjMS8tliSNeXEx78cAANSm9esdBanwcOmcc8yNXV4uOUeCpaWZG7uO8bgo1aFDB23atEmSdOqpp+q1117Tf//7X7366qtq1qxZrScIeJu/NJummTNQNX/5GUbg4P0YAAATpKc77ocPl2JjzY29eLF08KDUsKE0cKC5sesYj4fv3XLLLdq7d68k6YEHHtA555yj999/X2FhYXrrrbdqOz/AFP7QbJpmzkD1/OFnGIGD92MAAEzgLEpZcaWSM/aYMVKIx2UTeMDjV/f//u//XMu9evXSzp07lZGRoVatWikhoerhE4A/iI/y7T9gaeYMHJuv/wwjcPB+DACAl+3cKa1cKQUFSWPHmhvbMBz9pCQpNdXc2HVQjYfvFRQU6Prrr1fz5s3VqFEjXXzxxcrMzFRUVJR69uxJQQrwMpo5A4Bv4P0YAAAvcxaFBgyQGjUyN/aKFdKuXVJUlHT22ebGroNqXJS6//779e6772r06NGaMGGCFixYoGuuucabuQE4As2cAcA38H4MAICX9ekjXXONNGmS+bETEqR77pGuu06KjDQ/fh1T4+F76enpmjFjhi644AJJ0uWXX66+ffuqvLxcIYyxBLzO2cz5HzPXaNERvUxo5gwA5jry/fjXbZmu9bwfAwBQS/r2ddys0Lq19Nhj1sSug2pcTdqzZ4/69+/v+rpXr14KDQ3V3r171apVK68kB8AdzZwBwDc434/3Zxdq4+8L9cWNA9SkXhTvxwAAAB6ocVHKbrcrNNS9R0JISIgqKipqPSkA1aOZMwD4hvioMEWF2rRRUlKj6Eq/JwEAgBMwY4aUkuIYwhdU445DteO776SyMmn4cCkiwtzYdVSNi1KGYWjYsGFuQ/UKCws1ZswYhYX99QfyihUrajdD4DhyCkuVlV+q3OIyxUWGKiGaog0AAAAA+J38fOn666WSEmnNGqlrV3PjT5kiLVkivfyyIw94XY2LUg888ECldePGjavVZABP7c0u0t0z1+ino3osPTG+mxLr0ZQOAAAAAPzGt986ClLt2kldupgb+88/HQUpSRo71tzYddhJFaUAK+UUllYqSEnSos1Z+sfMNXrhkh5cMQUAAAAA/iI93XGflibZbObGnj3bcd+nj9S8ubmx6zCTB2gCtScrv7RSQcpp0eYsZeWXmpwRAAAAAOCElJZKX33lWE5NNT++syBmRew6jKIU/FZucdkxt+cdZzsAAAAAwEf8+KOUkyM1aSL162du7OxsacECx3Jamrmx6ziKUvBbcRHHnuUo9jjbAQAAAAA+wnml0rhx5s+69/XXUnm51LGj1KGDubHrOIpSdVhOYam2HsjXyl2HtTUzXzmF/jXcLSEmTIOSE6rcNig5QQkx9JMCAAAAAL+wdKnj3oorlayMXcfVqCjVoEEDZWU5evdcccUVysvL82pS8L692UW66cOVGvb0QqW9/IuG/Xuhbv5wpfZmF1mdWo3FR4XpifHdKhWmBiUnaOr4bjQ5BwAAAAB/sWyZ9NNP0plnmh/7+eeljRul6683P3YdV6PZ90pLS5Wbm6uEhAS9/fbbmjp1qmJjY72dG7wkkGatS6wXqRcu6aGs/FLlFZcpNiJUCTFhfpM/AAAAAEBScLA0YIB18VNSrItdh9WoKNWvXz+lpqaqV69eMgxDkydPVmRkZJX7vvnmm7WaIGpfTWat86eiTnwURSgAAAAA8EuG4biZ3UfKyW63LjZqNnzvvffe07nnnqv8/HzZbDbl5OTo8OHDVd7g+5i1DgAAAADgEzZskFq0kG67zfzY5eXSKadIF1wgHThgfnzU7EqpJk2a6IknnpAkJSUl6d1331XDhg29mhi8x4xZ63IKS5WVX6rc4jLFRYYqITpwrmYK5OcGAAAAAKZKT5f+/FP64w/zY//8s7R9u5SdLdWvb3581KwodaTt27d7Iw+YyDlr3aIqhvDVxqx1e7OLKvWsGpScoCfGd1NivaqHffqLQH5uAAAAAGC69HTHvRUz3zljjxkjhZ78xRnw3AkNnFy4cKHGjBmjU045RaeccorGjh2rn376qbZzg5d4c9a64zVRzyksPeFjWy2QnxsAAAAAmG7XLmnFCkdPp7FjzY1tGNKsWY5lKwpikHQCV0q99957+tvf/qbzzjtPkydPliT9/PPPGjZsmN566y1NmDCh1pNE7fPWrHWB1kT9SIH83AAAAADAdM6iUP/+UuPG5sZetUrauVOKjJTOPtvc2HDxuCj16KOPatq0abrtiCZkkydP1tNPP62HH36YopQf8casdYHcRD2QnxsAAAAAmM45fC411brYI0ZIUVHmx4ekExi+t23bNo0ZM6bS+rFjx9JvCqY0UbdKID83AAAAADBVVpa0aJFj2cp+Ugzds5THRamWLVtq/vz5ldZ///33atmyZa0kBf/lbKJeldpoom6lQH5uAAAAAGCq8nLpttukceOkpCRzY1dUSBMmSH37SqNHmxsbbjwevnfHHXdo8uTJWrVqlc444wxJjp5Sb731lp577rlaTxD+xdlE/R8z17jN7lcbTdStFsjPDQAAAABM1bSp9NRT1sQODpbuucdxg6U8Lkpdf/31atq0qf7973/rk08+kSR17NhRH3/8scaNG1frCcL/eKuJui8I5OcGAAAAAICZPC5KSVJaWprSGHeJY/BGE3VfEcjPDQAAAAC8bsUKR0+pIUOkMJP/tjpwQFq4UBo1SoqPNzc2KvG4pxQAWC2nsFRbD+Rr5a7D2pqZr5zCUqtTAgAAAFBTTz/tmPXu/vtNDx00e7Z06aXSyJGmx0ZlJ3SlFABYZW92ke6euUY/HdXX64nx3ZRYL9LCzAAAAAAcV1mZ9OWXjuUxY0wPb5s927LYqIwrpQD4jZzC0koFKUlatDlL/5i5hiumAAAAAF/3449STo7UuLHUr5+poUMKCmT74QfHF7Qk8gkUpQD4jaz80koFKadFm7OUlU9RCgAAAPBp6emO+3HjHLPgmajJ8uWylZVJKSmOGyzncVHqoYceUmFhYaX1RUVFeuihh2olKQCoSm5x2TG35x1nOwAAAAAL2e2Sc/hcaqrp4ZstXWpZbFTN46LUlClTlJ+fX2l9YWGhpkyZUitJAUBV4iJCj7k99jjbAQAAAFjo99+lvXul2Fhp2DBzYxcXq8mKFY5lhu75DI+LUoZhyGazVVq/evVqNWjQoFaSAoCqJMSEaVByQpXbBiUnKCHG5OlkAQAAANTc/PmO+3PPlcLDTQ1t+/13hRQXy2jeXOrd29TYqF6NZ9+rX7++bDabbDab2rdv71aYqqioUH5+vq677jqvJAkAkhQfFaYnxnfTP2au0aKjZt+bOr6b4qMoSgEAAAA+6557pNGjpSDz21sbAwfquzfe0LCkJIVYEB9Vq3FR6tlnn5VhGLriiis0ZcoUxcfHu7aFhYWpTZs26mdy53wAdU9ivUi9cEkPZeWXKq+4TLERoUqICaMgBQAAAPg6m03q1s38uIYhGYaKGzWSMWiQ+fFRrRoXpSZOnKjy8nLZbDYNHTpULVu29GZeAFCt+CiKUAAAAAA8UEUbIljPo2vWQkJCdP3118tut3srHwAAAAAAEGjOPlu69FJp2zbzY//znwoePVoJa9eaHxvH5PFAytNPP10rV670Ri4AAAAAACDQ7N4tzZsnffihFB1tbmzDkD76SEFz5yq0oMDc2DiuGg/fc7rhhht0xx13aM+ePerVq5eijzqhulkxPhQAAAAAAPim2bMd9/37S02amBt7zRppxw4ZkZE60KOHubFxXB4XpS6++GJJ0uTJk13rbDabDMOQzWZTRUVF7WUHAAAAAAD8W3q64z411bLYxllnqSI83Pz4OCaPi1Lbt2/3Rh4AAAAAACDQHDokLVzoWE5LMz/+/4pS9nHjzI+N4/K4KNW6dWtv5AEAAAAAAALNF19IFRVSt25S27bmxt62zTF8LzhYxqhR0tKl5sbHcXlclHLasGGDdu3apdLSUrf1Y8eOPemkAAAAAABAAHAO3bPwKikNHiw1aGB+fByXx0Wpbdu2KS0tTWvXrnX1kpIcfaUk0VMKAAAAAAA4nHGGtGOHNf2k2raVhg2Txo83PzZqJMjTB9xyyy1KSkrSgQMHFBUVpfXr12vRokXq3bu3fvzxRy+kCAAAAAAA/NJdd0mrVkndu5sfOy1N+v576frrzY+NGvH4SqklS5ZowYIFSkhIUFBQkIKCgjRgwAA9/vjjmjx5slauXOmNPAEAAAAAABBAPL5SqqKiQrGxsZKkhIQE7d27V5KjAfqmTZtqNzsAAAAAAOB/ysqkmTOl/Hxr4n/1lbRvnzWxUWMeXynVpUsXrV69WklJSerTp4+mTZumsLAwvf7662prdid9AAAAAADgexYulM4/X2rVytFT6n99qE2Rmyudd56jMLZtm9SmjXmx4RGPi1L33XefCgoKJEkPPfSQRo8erYEDB6phw4b66KOPaj1BAAAAAADgZ5wz3511lrkFKUn6+muptFRq315q3drc2PCIx0WpESNGuJZPOeUUZWRk6NChQ6pfv75rBj4AAAAAAFBH2e3S7NmO5bQ08+PPmvVXbOoUPs3jnlJXXHGF8vLy3NY1aNBAhYWFuuKKK2otMQAAAAAA4IeWLZP++18pJkYaNszc2CUljiulJGsKYvCIx0Wpt99+W0VFRZXWFxUV6Z133qmVpAAAAAAAgJ9yDt0791wpIsLc2PPnS3l5UmKidNpp5saGx2pclMrNzVVOTo4Mw1BeXp5yc3Ndt8OHD+vrr79W48aNTziRJ554QjabTbfeeqtrXXFxsW688UY1bNhQMTExGj9+vPbv33/CMQAAAAAAgJcdOXzOqtipqVKQx9fhwGQ17ilVr1492Ww22Ww2tW/fvtJ2m82mKVOmnFASv//+u1577TV169bNbf1tt92mr776Sp9++qni4+N100036bzzztPPP/98QnEAAAAAAIAXbdsmZWRIoaHSyJHmxjaMv4bupaaaGxsnpMZFqR9++EGGYWjo0KGaOXOmGjRo4NoWFham1q1bKzEx0eME8vPzdemll+qNN97QI4884lqfk5Oj6dOn64MPPtDQoUMlSTNmzFDHjh21dOlS9e3b1+NYAAAAAADAi9q2lbZulVaskOLjzY1ts0mrV0tffSUNGWJubJyQGhelBg8eLEnavn27WrVqVWsz7d14440aNWqUhg8f7laUWr58ucrKyjR8+HDXupSUFLVq1UpLliyptihVUlKikpIS19e5ubmSpLKyMpWVldVKzt7kzNEfckXdwDkJX8L5CF/DOQlfwvkIX8L5WMe1bOm4WfH9j4uTLr7YsXxEfM5Jc9X0da5xUSorK0sFBQVq3bq1a9369ev11FNPqaCgQKmpqZowYYJHSX700UdasWKFfv/990rb9u3bp7CwMNWrV89tfZMmTbRv375qj/n4449XOYxw7ty5ioqK8ig/K82bN8/qFAA3nJPwJZyP8DWck/AlnI/wJZyPsIRhOK6aqgLnpDkKCwtrtF+Ni1I333yzEhMT9e9//1uSdODAAQ0cOFCJiYlq166dJk2apIqKCl122WU1Ot7u3bt1yy23aN68eYqoxW7899xzj26//XbX17m5uWrZsqXOPvtsxcXF1VocbykrK9O8efN01llnKTQ01Op0AM5J+BTOR/gazkn4Es5H+BLOx7rJ9uabCvriC9mvuUaG2f2k1q5V8E03ybjwQtlvuKFSUYpz0lzOUWvHU+Oi1NKlS/XWW2+5vn7nnXfUoEEDrVq1SiEhIXrqqaf00ksv1bgotXz5ch04cEA9e/Z0rauoqNCiRYv04osv6rvvvlNpaamys7Pdrpbav3+/mjZtWu1xw8PDFR4eXml9aGioX514/pYvAh/nJHwJ5yN8DeckfAnnI3wJ52Md8+mn0vz5CjrzTGnsWHNjf/GFtGSJ1KiRgm+9tdrdOCfNUdPXuMbzI+7bt09t2rRxfb1gwQKdd955Cglx1LXGjh2rzZs31zjBYcOGae3atVq1apXr1rt3b1166aWu5dDQUM2fP9/1mE2bNmnXrl3q169fjeMAAAAAAAAvO3RI+vFHx7IVM9+lpzvu09LMj40TVuMrpeLi4pSdne3qKfXbb7/pyiuvdG232WxuDcaPJzY2Vl26dHFbFx0drYYNG7rWX3nllbr99tvVoEEDxcXF6eabb1a/fv2YeQ8AAAAAAF/y5ZdSRYXUtavUrp25sbdvd8y6FxQkjRljbmyclBpfKdW3b189//zzstvt+uyzz5SXl6ehQ4e6tv/xxx9q2bJlrSb3zDPPaPTo0Ro/frwGDRqkpk2b6vPPP6/VGAAAAAAA4CQ5r1Sy8iqpQYOkhg3Nj48TVuMrpR5++GENGzZM7733nsrLy/XPf/5T9evXd23/6KOPNHjw4JNK5kfnpX7/ExERoZdeekkvvfTSSR0XAAAAAAB4SWGh9N13jmUrhs/NmmVdbJyUGhelunXrpo0bN+rnn39W06ZN1adPH7ftF198sTp16lTrCQIAAAAAAB82d65UVCS1bi11725u7AMHpMWLHctWXKWFk1LjopQkJSQkaNy4cVVuGzVqVK0kBAAAAAAA/EhkpDRwoHTaaZLNZm7snBxp3Djp4EGpVStzY+OkeVSUAgAAAAAAcDNihONmGObHTk529JSyIjZOWo0bnQMAAAAAAFTL7KukfCU2ThhFKQAAAAAAcGJ+/VXKyrImdkaGtHWrNbFRKyhKATBVTmGpth7I18pdh7U1M185haVWpwQAAADgRBiGdP75UpMm0s8/mx9/yhTplFOkp54yPzZqhcc9pYKDg/Xnn3+qcePGbusPHjyoxo0bq6KiotaSAxBY9mYX6e6Za/TT5r/+kzIoOUFPjO+mxHqRFmYGAAAAwGPLlkl79kjR0VKvXubGLimRvvrKsTxggLmxUWs8vlLKqKZ5WElJicLCwk46IQCBKaewtFJBSpIWbc7SP2au4YopAAAAwN/MmuW4HzlSiogwN/YPP0h5eVKzZtLpp5sbG7WmxldKPf/885Ikm82m//znP4qJiXFtq6io0KJFi5SSklL7GQIICFn5pZUKUk6LNmcpK79U8VEUtgEAAAC/kZ7uuE9Lsy52aqoURGcif1XjotQzzzwjyXGl1Kuvvqrg4GDXtrCwMLVp00avvvpq7WcIICDkFpcdc3vecbYDAAAA8CGbNkkbN0qhodK555obu6JCmj3bsZyaam5s1KoaF6W2b98uSTrzzDP1+eefq379+l5LCkDgiYsIPeb22ONsBwAAAOBDnFcqDR0q1atnbuylS6X9+6X4eGnIEHNjo1Z5fI3bDz/8QEEKgMcSYsI0KDmhym2DkhOUEMPQPQAAAMBvOK9UsmLonjP26NESva39msez70nSnj17NGfOHO3atUulpe7NiZ9++ulaSQxAYImPCtMT47vpHzPXaNFRs+9NHd+NflIAAACAP5k1S/riC2nMGPNjP/CA1K+f1Ly5+bFRqzwuSs2fP19jx45V27ZtlZGRoS5dumjHjh0yDEM9e/b0Ro4AAkRivUi9cEkPZeWXKq+4TLERoUqICaMgBQAAAPibJk2kq66yJnZ0tDVXaKHWeTx875577tGdd96ptWvXKiIiQjNnztTu3bs1ePBgXXDBBd7IEUAAiY8KU7vGMereqr7aNY6hIAUAAAAAdZTHRamNGzfq8ssvlySFhISoqKhIMTExeuihhzR16tRaTxAAAAAAAPiIw4elYcOk556T7Hbz419yifSvf0mZmebHRq3zuCgVHR3t6iPVrFkzbd261bUtKyuruocBAAAAAAB/99VX0oIF0n/+IwV5XFI4OTt2SB99JD36qGSzmRsbXuFxT6m+fftq8eLF6tixo84991zdcccdWrt2rT7//HP17dvXGzkCAAAAAABfkJ7uuE9NNT/2rFmO+4EDpYSqZ/aGf/G4KPX0008rPz9fkjRlyhTl5+fr448/VnJyMjPvAQAAAAAQqIqKpG+/dSxb0WjcWRCjyXnA8Lgo1bZtW9dydHS0Xn311VpNCAAAAAAA+KC5c6XCQqlVK6lHD3NjZ2ZKixc7lq24SgteYfIAUAAAAAAA4JeOvFLJ7J5Oc+Y4Gqv37Cm1bm1ubHgNRSkAAAAAAHBs5eXSF184lhm6h1pCUQoAAAAAABxbVpbUt6+UmCj1729ubMNwxK1Xj6F7AYaiFAAAAAAAOLamTaWvvpJ27JBCPG5PfXJsNun116UDB6TOnc2NDa864aJUaWmpNm3apPLy8trMBwAAAAAA+KrQUGtjm93LCl7lcVGqsLBQV155paKiotS5c2ft2rVLknTzzTfriSeeqPUEAQAAAACAhf78U9q505rYpaXSypWOIXwIOB4Xpe655x6tXr1aP/74oyIiIlzrhw8fro8//rhWkwMAAAAAABZ76SWpTRvp7383P/YPPzhm3DvjDPNjw+s8Hgg6a9Ysffzxx+rbt69sR1w217lzZ23durVWkwMAAAAAABZzznzXvbt1sU891fzY8DqPr5TKzMxU48aNK60vKChwK1IBAAAAAAA/98cf0oYNjubmo0aZG9tul2bPdiynpZkbG6bwuCjVu3dvffXVV66vnYWo//znP+rXr1/tZQYAAAAAAKw1a5bjfuhQqV49c2MvXSrt2yfFx0tnnmlubJjC4+F7jz32mEaOHKkNGzaovLxczz33nDZs2KBffvlFCxcu9EaOAAAAAADACs7hc6mp5sd2FsRGjZLCwsyPD6/z+EqpAQMGaNWqVSovL1fXrl01d+5cNW7cWEuWLFGvXr28kSMAAAAAADDb3r2Oq5Ukadw4c2Mbxl8FMYbuBSyPr5SSpHbt2umNN96o7VwAAAAAAICvcPZz6ttXSkw0N/b69dKWLVJ4uHTOOebGhmk8Lkrl5uZWud5msyk8PFxhXFIHAAAAAID/u/RSqUEDKSrK/NgdOkjff+9otB4TY358mMLjolS9evWOOcteixYtNGnSJD3wwAMKCvJ4dCAAAAAAAPAFcXHSRRdZEzs0VBo2zHFDwPK4KPXWW2/p3nvv1aRJk3T66adLkn777Te9/fbbuu+++5SZmamnnnpK4eHh+uc//1nrCQMAAAAAAMD/eVyUevvtt/Xvf/9bF154oWvdmDFj1LVrV7322muaP3++WrVqpUcffZSiFAAAAAAA/ujee6XISOmKK8zvJ/Xuu9KKFdLll0s9epgbG6byeHzdL7/8oh5VnBQ9evTQkiVLJDlm6Nu1a9fJZwcAAAAAAMxVVCQ995x0//3Sn3+aH3/6dOnZZ6WFC82PDVN5XJRq2bKlpk+fXmn99OnT1bJlS0nSwYMHVb9+/ZPPDgAAAAAAmOv776WCAqlVK6lnT3NjZ2ZKP/3kWE5NNTc2TOfx8L2nnnpKF1xwgb755huddtppkqRly5YpIyNDn332mSTp999/10VWNUMDAAAAAAAnLj3dcZ+aKh1jojOv+PJLyW6XuneX2rQxNzZM53FRauzYsdq0aZNee+01bdq0SZI0cuRIzZo1S23+d8Jcf/31tZokAAAAAAAwQXm5NGeOY9mKK5WcBbG0NPNjw3QeF6UkqU2bNnr88ccrrV+3bp26dOly0kkBAAAAAAALLF4sHTwoNWwoDRxobuz8fGnuXMcyRak6weOeUkfLy8vT66+/rtNPP12nnnpqbeQEAAAAAACs4LxSacwYKeSErmM5cd9+K5WUSO3aSVzwUieccFFq0aJFmjhxopo1a6annnpKQ4cO1dKlS2szNwAAAAAAYKbgYCk21porlQoLpebNHbHN7mUFS3hU9ty3b5/eeustTZ8+Xbm5ubrwwgtVUlKiWbNmqVOnTt7KEQAAAAAAmOHpp6XHH5eCTnpglecuv1z6v/+TiorMjw1L1PgsGzNmjDp06KA1a9bo2Wef1d69e/XCCy94MzcAAAAAAGC28HApNNSa2EFBUnS0NbFhuhpfKfXNN99o8uTJuv7665WcnOzNnAAAAAAAgNn++ENKTrZm6NzWrVKbNo7hg6gzanyl1OLFi5WXl6devXqpT58+evHFF5WVleXN3AAAAAAAgBk2b5Y6dHA0GC8vNze23e6Y6a9pU2ndOnNjw1I1Lkr17dtXb7zxhv78809de+21+uijj5SYmCi73a558+YpLy/Pm3kCAAAAAABvmTXLcZ+YaP6se7/9Jv35p2PmPUZm1Skedy6Ljo7WFVdcocWLF2vt2rW644479MQTT6hx48YaO3asN3IEAAAAAADelJ7uuLdi1j1n7FGjHP2sUGecVDv9Dh06aNq0adqzZ48+/PDD2soJAAAAAACY5c8/paVLHcvjxpkb2zCsLYjBUrUyx2NwcLBSU1M1Z86c2jgcAAAAAAAwy+zZjuLQ6adLzZubG3vDBkc/q7Aw6ZxzzI0Ny9VKUQoAAAAAAPgpXxi6N3y4FBdnfnxYiqIUAAAAAAB1VXa2tGCBY9mKopSzwTpD9+okk1vqAwAAAAAAnxEV5Ri+9/PPUocO5sd/+WXH1VJMnFYnUZQCAAAAAKCuCguTzj3XcbPC6ac7bqiTGL4HAAAAAAAA01GUAgAAAACgLvrxR+nuu6UVK8yPnZUlXXWV9OWX5seGz2D4HgAAAAAAddG770pvvikVFko9e5ob+8svpenTpWXLpNGjzY0Nn8GVUgAAAAAA1DXl5dKcOY5lK2a+S0+3LjZ8BkUpAAAAAADqmp9/dgyha9BAGjTI3NgFBdLcuY5lilJ1GkUpAAAAAADqGueVSmPGSCEmd/b57jupuFhq21bq2tXc2PApFKUAAAAAAKhLDEOaNcuxbOXQvdRUyWYzPz58BkUpAAAAAADqklWrpJ07pchI6ayzzI1dVvbXjHsM3avzmH0PAAAAAIC6ZPduqXFjqX9/KSrK/NhNmkhhYVK/fubGhs+hKAUAAAAAQF0ydqw0apSUnW1+7LZtpYwM6cABKTjY/PjwKQzfAwAAAACgrgkOlho2tC5+48bWxYbPoCgFAAAAAEBdceCAZLdbEzs72zHrHvA/FKUAAAAAAKgr0tKkFi2khQvNj/3EE1KjRtJzz5kfGz6JnlIAAAAAANQF+/ZJS5ZIhiGdcor58WfNkvLzpaZNzY8Nn8SVUgAAAAAA1AVz5jgKUqefLjVvbm7sjRulTZscs+6NHGlubPgsilIAAAAAANQF6emO+9RU62IPGybFxZkfHz6JohQAAAAAAIEuJ0eaP9+xnJZmfnxnUcqK2PBZFKUAAAAAAAh033wjlZVJKSmOm5l275aWLZNsNmnsWHNjw6dRlAIAAAAAINBZOXRv1izH/RlnSE2amB8fPovZ9wAAAAAACHS33Sa1aCFddJH5sUeNcsy6l5Rkfmz4NIpSAAAAAAAEur59HTcrtG0r3XOPNbHh0xi+BwAAAAAAANNRlAIAAAAAIFBVVEi33y7NnetYNttTT0kffugYvgcchaIUAAAAAACB6uefpWeekS6+WLLbzY1dUCDdf780YYK0ZYu5seEXKEoBAAAAABConDPfjR4thYaaG/u776TiYqlNG+nUU82NDb9AUQoAAAAAgEBkGH8VpdLSzI9/ZGybzfz48HkUpQAAAAAACESrV0vbt0uRkdLZZ5sbu6xM+uILx7IVBTH4BYpSAAAAAAAEovR0x/2IEVJ0tLmxFy6UsrOlRo2kM84wNzb8BkUpAAAAAAACkbMolZpqXeyxY6XgYPPjwy9QlAIAAAAAINDk5Ej5+Y6C0Jgx5sffs8dxz9A9HEOI1QkAAAAAAIBaFh8vbd0qbdsmNWhgfvzZs6Xdu6XGjc2PDb9BUQoAAAAAgEBks0nt2lkXv2VL62LDLzB8DwAAAACAQFJcLJWWWhc/L8+62PArFKUAAAAAAAgk777rGDY3ZYr5sTMypIYNpXHjJMMwPz78CkUpAAAAAAACSXq6o9F5aKg1scvKHFdq2Wzmx4dfoSgFAAAAAECgyM2V5s93LFsx8116unWx4XcoSgEAAAAAECi+/tpxlVL79lJKirmx9+yRfv/dcYXU2LHmxoZfsrQo9fjjj+u0005TbGysGjdurNTUVG3atMltn+LiYt14441q2LChYmJiNH78eO3fv9+ijAEAAAAA8GGzZjnu09LMHz7njN2vn9S0qbmx4ZcsLUotXLhQN954o5YuXap58+aprKxMZ599tgoKClz73Hbbbfriiy/06aefauHChdq7d6/OO+88C7MGAAAAAMAHlZQ4rpSSrBk+d2RBDKiBECuDf/vtt25fv/XWW2rcuLGWL1+uQYMGKScnR9OnT9cHH3ygoUOHSpJmzJihjh07aunSperbt68VaQMAAAAA4Hvmz5fy8qRmzaTTTjM39qFD0o8/OpYpSqGGLC1KHS0nJ0eS1KBBA0nS8uXLVVZWpuHDh7v2SUlJUatWrbRkyRKKUgAAAAAAOHXsKD34oBQZKQWZPDAqJER69llp9WqpXTtzY8Nv+UxRym6369Zbb1X//v3VpUsXSdK+ffsUFhamevXque3bpEkT7du3r8rjlJSUqKSkxPV1bm6uJKmsrExlZWXeSb4WOXP0h1xRN3BOwpdwPsLXcE7Cl3A+wpdwPlqkRQvpn/90LJv92kdGStdea03sGuCcNFdNX2efKUrdeOONWrdunRYvXnxSx3n88cc1ZcqUSuvnzp2rqKiokzq2mebNm2d1CoAbzkn4Es5H+BrOSfgSzkf4Es5H+BrOSXMUFhbWaD+fKErddNNN+vLLL7Vo0SK1aNHCtb5p06YqLS1Vdna229VS+/fvV9NqOvnfc889uv32211f5+bmqmXLljr77LMVFxfntedQW8rKyjRv3jydddZZCg0NtTodgHMSPoXzEb6GcxK+hPMRvoTz0Xy2jz6SwsJkjBghRUebG3vJEmn9ehmjR/vsrHuck+Zyjlo7HkuLUoZh6Oabb1Z6erp+/PFHJSUluW3v1auXQkNDNX/+fI0fP16StGnTJu3atUv9+vWr8pjh4eEKDw+vtD40NNSvTjx/yxeBj3MSvoTzEb6GcxK+hPMRvoTz0SSGIT3wgLR9u/TZZ9L//n42zfTp0jvvSJs2OfpK+TDOSXPU9DW2tCh144036oMPPtDs2bMVGxvr6hMVHx+vyMhIxcfH68orr9Ttt9+uBg0aKC4uTjfffLP69etHk3MAAAAAACRpzRpHQSoiQjrnHHNjl5VJX3zhWGbWPXjI0qLUK6+8IkkaMmSI2/oZM2Zo0qRJkqRnnnlGQUFBGj9+vEpKSjRixAi9/PLLJmcKAAAAAICPmjXLcX/22aYP3dNPP0mHD0sJCdKAAebGht+zfPje8UREROill17SSy+9ZEJGAAAAAAD4mfR0x70VVyo5Y48dKwUHmx8ffi3I6gQAAAAAAMAJ2r5dWr3aURAaM8bc2Ibx11VaDN3DCaAoBQAAAACAv3JeqTRokNSwobmxly2T9uxxDBkcPtzc2AgIFKUAAAAAAPBX69Y57lNTzY+9apXjCq2RIx1N1gEPWdpTCgAAAAAAnIQ335Tuu0+qV8/82FdfLZ13npSba35sBASKUgAAAAAA+LO2ba2L3bCh+cMGETAYvgcAAAAAgD8qLa2bsREwKEoBAAAAAOBv8vKkJk2kceOk/Hzz4w8ZIvXv75j5DzhBDN8DAAAAAMDffPONlJ0tbdzomP3OTP/9r7RkiWSzSY0bmxsbAYUrpQAAAAAA8Dfp6Y77tDRHcchMs2c77vv2lZo1Mzc2AgpFKQAAAAAA/ElJifTVV47ltDTz4x9ZEANOAkUpAAAAAAD8yYIFjp5SzZpJp59ubuzDh6Uff3Qsp6aaGxsBh6IUAAAAAAD+ZNYsx31qqhRk8p/1X30llZdLnTtLycnmxkbAoSgFAAAAAIC/qKj4q6eTFVcqMXQPtYjZ9wAAAAAA8BdlZdJdd0lz50pDhpgf/8ILHYWx8ePNj42AQ1EKAAAAAAB/EREh3X6742aFiy5y3IBawPA9AAAAAAAAmI6iFADg/9u787goy/3/469hBwFxR1xQExUV992jZmmgZm5pqZmY2q8SS8ulk5Vaaqt2Ou7lgpzqa8ejkplpiPuSaYqmcXAptwRcEhFR1vv3BzHHUXCFmUHez8djHszc93Vfn2vGj1N8vK7rFhEREZGi4NgxWLwYzp+3fuzMTPjHP3LGIFJAVJQSERERERERKQq+/BKeew6GDrV+7K1bYfRoaNkyZ08pkQKgopSIiIiIiIhIURAZmfPTlnfde+IJcHS0fnx5IKkoJSIiIiIiImLvjh+HffvAwQG6d7dubMOwbUFMHlgqSomIiIiIiIjYu9yiUPv2ULasdWPv3QunToGHB3TubN3Y8kBTUUpERERERETE3uUun7Pl0r0uXcDd3frx5YGlopSIiIiIiIiIPTt3DrZty3luy6JUr17Wjy0PNBWlREREREREROzZzp05+zo1aQL+/taNnZAAv/0GTk7QrZt1Y8sDz8nWAxARERERERGRW3jiCYiPhzNnrB/b1xfOn8/ZV8rHx/rx5YGmotRfsrKyyMjIsPUwyMjIwMnJiWvXrpGVlWXr4Ygdc3FxwcFBkx1FRERERIqFChVyHrZQogS0a2eb2PJAK/ZFKcMwSEhIICkpydZDAXLG4+vry6lTpzCZTLYejtgxBwcHqlevjouLi62HIiIiIiIihcUwwFa/G+bGNoyc1/odVQpYsS9K5Rakypcvj4eHh80LQdnZ2aSkpODp6alZMJKv7Oxszpw5Q3x8PFWrVrV53oqIiIiISCEZPBhOn4Z33oG//c26sefNg7lzYdQoeO4568aWYqFYF6WysrLMBakyZcrYejhATrEhPT0dNzc3FaXklsqVK8eZM2fIzMzE2dnZ1sMREREREZGClp4O33wDycng6Gj9+CtXwi+/5OwpJVIIinXVI3cPKQ8PDxuPROTu5S7b095jIiIiIiIPqI0bcwpSvr7QsqV1Y1+8mBMfoFcv68aWYqNYF6VyaemTFEXKWxERERGRB9zKlTk/e/QAa6+kWbMGMjMhMBACAqwbW4oNFaVERERERERE7E12ds7SPbDNTKXcgphmSUkhUlGqCAoNDcVkMmEymXBxcaFmzZq88847ZGZm2npoAJw+fRoXFxfq169v66GIiIiIiIgUTbt2QUIClCwJHTtaN/bVq/D99znPVZSSQqSiVBEVEhJCfHw8R44c4bXXXmPSpEl89NFHth4WAOHh4fTr14/k5GR27dpl6+GIiIiIiIgUPbkzlbp1g7/2k7WaqChITYUqVaBpU+vGlmJFRakiytXVFV9fX/z9/XnxxRfp1KkTq1atAuDixYs8++yzlCpVCg8PD7p06cKRI0fM14aHh+Pj40NkZCQBAQG4ubkRHBzMqVOnLGJ88803NGnSBDc3N2rUqMHkyZNvOxvLMAwWL17MoEGDGDBgAAsXLrypzY4dO2jUqBFubm40a9aMyMhITCYTMTEx5jYHDx6kS5cueHp6UqFCBQYNGsT56+748J///IegoCDc3d0pU6YMnTp14sqVK/fyUYqIiIiIiNifli2hSxfo29f6sf38YNAgGDwYtJetFCIVpQrApdR0jp1NYd/Jixw7l8Kl1HSrj8Hd3Z309Jy4oaGh7Nmzh1WrVrFz504Mw6Br167muw0CpKamMnXqVCIiIti+fTtJSUk8/fTT5vNbt27l2Wef5ZVXXuHXX39l/vz5hIeHM3Xq1FuOY+PGjaSmptKpUyeeeeYZli5dalEsSk5Opnv37gQFBbF3717effddxo8fb9FHUlISjzzyCI0bN2bPnj2sXbuWxMRE+vXrB0B8fDz9+/fnueeeIzY2lk2bNtG7d28Mw7jvz1FERERERMQu9OmTs9l4z57Wj92sGUREwDvvWD+2FCtOth5AUXcm6Srjlx9g65H/zeJpH1CW9/s0wM/HvdDjG4ZBdHQ069atY+TIkRw5coRVq1axfft22rRpA8CXX35JlSpViIyMpO9fVfaMjAxmzZpFy79uK7pkyRICAwP56aefaNGiBZMnT+b1119n8ODBANSoUYN3332XcePGMXHixHzHs3DhQp5++mkcHR2pX78+NWrUYNmyZYSGhgLw1VdfYTKZ+Pzzz3Fzc6Nu3br88ccfDB8+3NzHrFmzaNy4MdOmTTMfW7RoEVWqVOHw4cOkpKSQmZlJ79698ff3ByAoKKjgPlQREREREZHiTv/oL1agmVL34VJq+k0FKYAtR87z+vIDhTpjavXq1Xh6euLm5kaXLl146qmnmDRpErGxsTg5OZmLTQBlypShdu3axMbGmo85OTnRvHlz8+s6derg4+NjbrN//37eeecdPD09zY/hw4cTHx9PampqnmNKSkpixYoVPPPMM+ZjzzzzjMUSvri4OBo0aICbm5v5WIsWLSz62b9/Pxs3brSIXadOHQCOHTtGw4YNefTRRwkKCqJv3758/vnnXLx48V4+RhEREREREfvz5Zdw8qRtYn//PcTE5BSltHRPCplmSt2H8ynpNxWkcm05cp7zKemU9CicDek6duzI3LlzcXFxwc/PDyengv2jTElJYfLkyfTu3fumc9cXlK731Vdfce3aNYuCmGEYZGdnc/jwYWrVqnXHsbt3784HH3xw07mKFSvi6OhIVFQUO3bs4IcffmDmzJlMmDCBXbt2Ub169Tt8hyIiIiIiInboxAl45hlwdIRz56BUKevFNgx44YWcgth330HXrtaLLcWSZkrdh+RrGbc8f/k25+9HiRIlqFmzJlWrVrUoSAUGBpKZmWlx17sLFy4QFxdH3bp1zccyMzPZs2eP+XVcXBxJSUkEBgYC0KRJE+Li4qhZs+ZNDweHvNNm4cKFvPbaa8TExJgf+/fvp127dixatAiA2rVr88svv5CWlma+bvfu3Rb9NGnShEOHDlGtWrWbYpcoUQIAk8lE27ZtmTx5Mvv27cPFxYWVuXenEBERERERKaoiI3N+tm1r3YIUwL59OQUpDw/o2NG6saVYUlHqPni7Od/yvNdtzheGgIAAevTowfDhw9m2bRv79+/nmWeeoVKlSvTo0cPcztnZmZEjR7Jr1y5+/vlnQkNDadWqlXkp3dtvv01ERASTJ0/m0KFDxMbGsnTpUt58880848bExLB3716GDRtG/fr1LR79+/dnyZIlZGZmMmDAALKzs3n++eeJjY1l3bp1fPzxx0BOoQlgxIgR/Pnnn/Tv35/du3dz7Ngx1q1bx5AhQ8jKymLXrl1MmzaNPXv2cPLkSVasWMG5c+fMBTUREREREZEiK/cf23v1sl3s4GBwL/w9kkVUlLoPZT1daB9QNs9z7QPKUtazcJbu3c7ixYtp2rQpjz/+OK1bt8YwDNasWYOz8/+KZB4eHowfP54BAwbQtm1bPD09+frrr83ng4ODWb16NT/88APNmzenVatWfPLJJ+aNxW+0cOFC6tata9776Xq9evXi7NmzrFmzBm9vb7799ltiYmJo1KgREyZM4O233wb+tyzQz8+P7du3k5WVxWOPPUZQUBCjRo3Cx8cHBwcHvL292bJlC127dqVWrVq8+eabTJ8+nS5duhTkxygiIiIiImJd587B1q05z21x1z1bFsSkWNKeUvehpIcL7/dpwOvLD7DlhrvvfdCnQaHtJxUeHn7L86VKlSIiIuK2/fTu3TvPPaNyBQcHExwcfEdjmjlzZr7nfH19ycrKMr9u06YN+/fvN7/+8ssvcXZ2pmrVquZjAQEBrFixIs/+AgMDWbt27R2NS0REREREpMhYvRqys6FRI6hWzbqxDx+GQ4fAyQkef9y6saXYUlHqPvn5uDOzf2POp6Rz+VoGXm7OlPV0KbSC1IMgIiKCGjVqUKlSJfbv38/48ePp168f7poeKiIiIiIixZktZyp9803Oz4cftv5eVlJsqShVAEp6qAh1NxISEnj77bdJSEigYsWK9O3bl6lTp9p6WCIiIiIiIraTng6bN+c8t0VRav36nJ+2WDYoxZaKUsVQaGgooaGhNos/btw4xo0bZ7P4IiIiIiIidsfFBU6dguhoqF/f+vFXr84pijVoYP3YUmypKCUiIiIiIiJiD7y9bbfJuLMzdOpkm9hSbOnueyIiIiIiIiIiYnUqSomIiIiIiIjYUlQUNGsGs2dbP/alS1C7NowenbOvlYgVqSglIiIiIiIiYksrVsDPP8OBA9aP/d13cPgwrF2bs6+ViBWpKCUiIiIiIiJiK9nZ8M03Oc9tcee7lStzftpqLysp1lSUEhEREREREbGVXbsgPh68vOCRR6wb++pV+P77nOcqSokNqCglNhMdHU1gYCBZWVm2Hordef311xk5cqSthyEiIiIiIoUtd6ZSt27g6mrd2OvXw5UrULlyzp5WIlamolQRFBoaSs9bTOu8evUqEydOpFatWri6ulK2bFn69u3LoUOHLNpNmjQJk8l006NOnTrmNr///jsDBgzAz88PNzc3KleuTI8ePfjvf/9rbrN582YeeeQRSpcujYeHBwEBAQwePJj022ySN27cON58800cHR3v7YOwE5s2baJJkya4urpSs2ZNwsPD7/jao0eP4uXlhY+Pj8XxMWPGsGTJEn777beCHayIiIiIiNgPw7Dt8rnIyJyfPXuCyWT9+FLsqSj1gElLS6NTp04sWrSIKVOmcPjwYdasWUNmZiYtW7bkxx9/tGhfr1494uPjLR7btm0DICMjg86dO3Pp0iVWrFhBXFwcX3/9NUFBQSQlJQHw66+/EhISQrNmzdiyZQu//PILM2fOxMXF5ZYzoLZt28axY8fo06dPoX0W1vD777/TrVs3OnbsSExMDKNGjWLYsGGsW7futtdmZGTQv39/2rVrd9O5smXLEhwczNy5cwtj2CIiIiIiYg9+/RWOHs2ZIdWli3VjZ2bCqlU5z7V0T2xERakHzD/+8Q927tzJ6tWr6devH/7+/rRo0YLly5cTGBjI0KFDMQzD3N7JyQlfX1+LR9myZQE4dOgQx44dY86cObRq1Qp/f3/atm3LlClTaNWqFQA//PADvr6+fPjhh9SvX5+HHnqIkJAQPv/8c9zd3fMd59KlS+ncuTNubm7mY/v376djx454eXnh7e1N06ZN2bNnDwDh4eH4+PgQGRlJQEAAbm5uBAcHc+rUKfP1x44do0ePHlSoUAFPT0+aN2/O+vXrLeJWq1aNadOm8dxzz+Hl5UXVqlX57LPP7vnznjdvHtWrV2f69OkEBgYSFhbGk08+ySeffHLba998803q1KlDv3798jzfvXt3li5des9jExERERERO2cY8NRT0Lt3zp5S1nTlCvTrB0FB0L69dWOL/EVFqesYhkFSUpLNHtcXi+7VV199RefOnWnYsKHFcQcHB0aPHs2vv/7K/v3776ivcuXK4eDgwH/+8598Zz35+voSHx/Pli1b7mqcW7dupdkNa5YHDhxI5cqV2b17Nz///DOvv/46zs7O5vOpqalMnTqViIgItm/fTlJSEk8//bT5fEpKCl27diU6Opp9+/YREhJC9+7dOXnypEWc6dOn06xZM/bt28dLL73Eiy++SFxcnPl8vXr18PT0zPfR5bp/wdi5cyedOnWy6D84OJidO3fe8v1v2LCBZcuWMXv27HzbtGjRgtOnT3P8+PFb9iUiIiIiIkVU/fqwdCl89ZX1Y5csCbNnw4ED4ORk/fgigDLvOpcuXaJUqVI2i3/x4kW8vb3vq4/Dhw/TsWPHPM8FBgaa2zRq1AiAX375BU9PT4t2zzzzDPPmzaNSpUr885//ZNy4cUyePJlmzZrRsWNHBg4cSI0aNQDo27cv69ato0OHDvj6+tKqVSseffRRnn322Vu+lxMnTuDn52dx7OTJk4wdO9a8p1VAQIDF+YyMDGbNmkXLli0BWLJkCYGBgfz000+0aNGChg0bWhTj3n33XVauXMmqVasICwszH+/atSsvvfQSAOPHj+eTTz5h48aN1K5dG4A1a9aQkZGR79ivnwGWkJBAhQoVLM5XqFCB5ORkrl69mudssQsXLhAaGsoXX3xxy88o9/M5ceIE1apVy7ediIiIiIiISFGkmVIPoLuZcVW7dm1iYmIsHu+88475/IgRI0hISODLL7+kdevWLFu2jHr16hEVFQWAo6Mjixcv5vTp03z44YdUqlSJadOmmfeqys/Vq1ctlu4BvPrqqwwbNoxOnTrx/vvvc+zYMYvzTk5ONG/e3Py6Tp06+Pj4EBsbC+TMlBozZgyBgYH4+Pjg6elJbGzsTTOlGjRoYH5uMpnw9fXl7Nmz5mP+/v7UrFkz30elSpXu9OPN0/DhwxkwYADtbzNFNreglZqael/xRERERETEDu3enbOnVAGsmLlrJ07A1q2gO6GLjako9YCpVauWuUhzo9zjtWrVMh9zcXG5qehSvnx5i+u8vLzo3r07U6dOZf/+/bRr144pU6ZYtKlUqRKDBg1i1qxZHDp0iGvXrjFv3rx8x1m2bFkuXrxocWzSpEkcOnSIbt26sWHDBurWrcvK3DtR3IExY8awcuVKpk2bxtatW4mJiSEoKOimuwBevyQQcgpT2dnZ5td3s3zP19eXxMREi/4SExPx9vbOd0+tDRs28PHHH+Pk5ISTkxNDhw7l0qVLODk5sWjRInO7P//8E8hZRikiIiIiIg+YceOgXj1YsMD6sRcuzNlHasgQ68cWuY6W712nZMmSNxVKrB3/fveVevrpp5kwYQL79++3WMqWnZ3NJ598Qt26dW/ab+pumEwm6tSpw44dO/JtU6pUKSpWrMiVK1fybdO4cWN+/fXXm47XqlWLWrVqMXr0aPr378/ixYvp9dedIDIzM9mzZw8tWrQAIC4ujqSkJPOyxO3btxMaGmpun5KSck/7Md3N8r3WrVuzZs0ai/NRUVG0bt063+t37txpsUfXN998wwcffMCOHTssZmEdPHgQZ2dn6tWrd9fvQURERERE7Nj585C7L+8Ne9RaRe4//nfubP3YItdRUeo6JpMJHx8fm47hTotSly5dIiYmxuJYmTJlGD16NN988w3du3dn+vTptGzZksTERKZNm0ZsbCzr16/HZDKZr8nMzCQhIcGiH5PJRIUKFYiJiWHixIkMGjSIunXr4uLiwubNm1m0aBHjx48HYP78+cTExNCrVy8eeughrl27RkREBIcOHWLmzJn5jj84OJglS5aYX1+9epWxY8fy5JNPUr16dU6fPs3u3bvp06ePuY2zszMjR47kn//8J05OToSFhdGqVStzkSogIIAVK1bQvXt3TCYTb731lsUMqDvl7+9/x21feOEFZs2axbhx43juuefYsGED//73v/nuu+/MbWbNmsXKlSuJjo4G/re3V649e/bg4OBA/fr1LY5v3bqVdu3a3fIuhiIiIiIiUgR9+y1kZ0PDhlC9unVjHz0KBw+CoyN062bd2CI3UFGqiNq0aRONGze2ODZ06FAWLFjAhg0bmDZtGm+88QYnTpzAy8uLjh078uOPP95U+Dh06BAVK1a0OObq6sq1a9eoXLky1apVY/LkyRw/fhyTyWR+PXr0aCDnDnHbtm3jhRde4MyZM3h6elKvXj0iIyPp0KFDvuMfOHAg48aNIy4ujtq1a+Po6MiFCxd49tlnSUxMpGzZsvTu3ZvJkyebr/Hw8GD8+PEMGDCAP/74g3bt2rFw4ULz+RkzZvDcc8/Rpk0bypYty/jx40lOTr7nz/hOVK9ene+++47Ro0fz6aefUrlyZRYsWEBwcLC5zfnz52/aH+tOLF26lEmTJhXgaEVERERExC5ERub8/GuVh01iP/wwlC5t/fgi1zEZ97tezM4lJydTsmRJLl26dNOdzq5du8bvv/9O9erVb9p021ays7NJTk7G29sbB4cHe8uvsWPHkpyczPz582/bNjw8nFGjRpGUlFT4A7MD33//Pa+99hoHDhzAKZ/bs1orfzMyMlizZg1du3a9aT8uEWtTPoq9UU6KPVE+ij1RPt7ClStQtixcuwb798N1N2KyirZtYccOmDULRoywbmwbUk5a161qMdd7sKseYtcmTJiAv7//PS2xe9BduXKFxYsX51uQEhERERGRImrt2pyCVPXqEBRk3dgJCbBzZ87zHj2sG1skD/qNV2zGx8eHN954w9bDsEtPPvmkrYcgIiIiIiKFIXf/2V694Lr9fq3i++/BMKB5c6hc2bqxRfKgopQUCaGhoYSGhtp6GCIiIiIiIvdn7lx48kmoUcP6sQcPhrp1ITXV+rFF8qCilIiIiIiIiIi1uLpC1662ie3gAC1b2ia2SB60p5SIiIiIiIiIiFidilIiIiIiIiIihS07Gzp0gPHjwRZ3FR8xAoYNg9hY68cWyYeKUiIiIiIiIiKFbfdu2LIlZ08pd3frxk5Lg4gIWLgQLl+2bmyRW1BRSkRERERERKSwrVyZ87Nr15x9paxp/XpISYFKlaBZM+vGFrkFFaVERERERERECpNh/K8o1bOn9ePnxu7RI2ezcxE7oWyUAmEymYiMjLT1MEREREREROxPbCwcPgwuLta/815WFqxalfO8Vy/rxha5DRWliqDQ0FBMJpP5UaZMGUJCQjhw4IDNxhQfH0+XLl3uq4/PPvuMhx9+GG9vb0wmE0l5bP63d+9eOnfujI+PD2XKlOH5558nJSXFfP7ChQuEhITg5+eHq6srVapUISwsjOTkZHObGz+/3Ee9evXua/wiIiIiIiJ5yp2p9Oij4O1t3dg7dsC5c1CqVM5G6yJ2REWpIiokJIT4+Hji4+OJjo7GycmJxx9//L76TE9Pv+drfX19cb3PddGpqamEhITwxhtv5Hn+zJkzdOrUiZo1a7Jr1y7Wrl3LoUOHCA0NNbdxcHCgR48erFq1isOHDxMeHs769et54YUXzG0+/fRT82cXHx/PqVOnKF26NH379r2v8YuIiIiIiOQpd1WJLWYq5RbEHn8cnJ2tH1/kFlSUKqJcXV3x9fXF19eXRo0a8frrr3Pq1CnOnTtnbvPLL7/wyCOP4O7unuesotDQUHr27MnUqVPx8/Ojdu3aHD9+HJPJxIoVK+jYsSMeHh40bNiQnTt33nI81y/fu9c+Ro0axeuvv06rVq3yPL969WqcnZ2ZPXs2tWvXpnnz5sybN4/ly5dz9OhRAEqVKsWLL75Is2bN8Pf359FHH+Wll15i69at5n5Klixp/ux8fX3Zs2cPFy9eZMiQIbccn4iIiIiIyF3LyoLGjcHXF554wvrxq1SBWrW0dE/skopSeblyJf/HtWt33vbq1Ttre59SUlL44osvqFmzJmXKlPkr1BWCg4MpVaoUu3fvZtmyZaxfv56wsDCLa6Ojo4mLiyMqKorVq1ebj0+YMIExY8YQExNDrVq16N+/P5mZmXc1roLo43ppaWm4uLjgcN3GfO5/3Up127ZteV5z5swZVqxYQYdbTFNduHAhnTp1wt/f/57HJiIiIiIikidHR/jsM/jjD6hQwfrxR4+G//43Z5NzETujolRePD3zf/TpY9m2fPn82964x1K1anm3uwerV6/G09MTT09PvLy8WLVqFV9//bW5YPPVV19x7do1IiIiqF+/Po888gizZs3iX//6F4mJieZ+SpQowYIFC6hXr57FnkpjxoyhW7du1KpVi8mTJ3PixAnzbKQ7VRB9XO+RRx4hISGBjz76iPT0dC5evMjrr78O5Oxpdb3+/fvj4eFBpUqV8Pb2ZsGCBXn2eebMGb7//nuGDRt2z+MSERERERG5LVve9c5k0l33xC4pK4uojh07EhMTQ0xMDD/99BPBwcF06dKFEydOABAbG0vDhg0pUaKE+Zq2bduSnZ1NXFyc+VhQUBAuLi439d+gQQPz84oVKwJw9uzZuxpjQfRxvXr16rFkyRKmT5+Oh4cHvr6+VK9enQoVKljMngL45JNP2Lt3L9988w3Hjh3j1VdfzbPPJUuW4OPjQ09b3JZVREREREQebJcuwY8/Qna2beJv2nTzah8RO+Jk6wHYpev2XbqJo6Pl61sVWW6sRB8/fs9DulGJEiWoWbOm+fWCBQsoWbIkn3/+OVOmTLmrfvLifN0GeCaTCYDsu/wiLYg+bjRgwAAGDBhAYmIiJUqUwGQyMWPGDGrUqGHRLne/qDp16lC6dGnatWvHW2+9ZS6OARiGwaJFixg0aFCehTkREREREZH7EhkJoaHQuTP88IN1Y//2G3TsCD4+cOYM/LX1iYg9UVEqL/kUaqza9i6ZTCYcHBy4+tc+VoGBgYSHh3PlyhVz4Wn79u04ODhQu3btQhuHtVT4ay32okWLcHNzo3Pnzvm2zS2EpaWlWRzfvHkzR48eZejQoYU3UBERERERKb5y77rXpo31Y+feda9JExWkxG6pKFVEpaWlkZCQAMDFixeZNWsWKSkpdO/eHYCBAwcyceJEBg8ezKRJkzh37hwjR45k0KBB5oKOvUlISCAhIcG879Qvv/yCl5cXVatWpXTp0gDMmjWLNm3a4OnpSVRUFGPHjuX999/Hx8cHgDVr1pCYmEjz5s3x9PTk0KFDjB07lrZt21KtWjWLeAsXLqRly5bUr1/fmm9TRERERESKg9RUWLcu57kttgvJLUppqxKxYypKFVFr1641L0Xz8vKiTp06LFu2jIcffhgADw8P1q1bxyuvvELz5s3x8PCgT58+zJgxw4ajvrV58+YxefJk8+v27dsDsHjxYkJDQwH46aefmDhxIikpKdSpU4f58+czaNAg8zXu7u58/vnnjB49mrS0NKpUqULv3r3NG6LnunTpEsuXL+fTTz8t/DcmIiIiIiLFz7p1OXdkr1YNGja0buzERNixI+e5ilJix1SUKoLCw8MJDw+/bbugoCA2bNhwy35uVK1aNQzDsDjm4+Nz07EbXX/+XvuYNGkSkyZNumWbiIiIW57v2LEjO3K/fG+hZMmSpKam3radiIiIiIjIPcmdqdSrV87d76xp1SowDGjWDKpUsW5skbugu++JiIiIiIiIFKSMDPj225znvXpZP/71BTERO6ailIiIiIiIiEhB2roVkpKgXDnrb3J++TJER+c8V1FK7JyW74mIiIiIiIgUpA4dYMsWiI8HR0frxvb0hJiYnMJUYKB1Y4vcJRWlRERERERERAqSoyO0a2eb2CZTTjFKBSkpArR8T0RERERERERErE5FKREREREREZGCMn06vPRSzhI6a4uOhqeegtWrrR9b5B6oKCUiIiIiIiJSUD7/HObOhdhY68deuhT+/W9Ys8b6sUXugYpSIiIiIiIiIgUhNhbi4sDZGbp2tW7srCxYtSrnue66J0VEkShKzZ49m2rVquHm5kbLli356aefbD0kEREREREREUuRkTk/H30USpa0buydO+Hs2Zy4Dz9s3dgi98jui1Jff/01r776KhMnTmTv3r00bNiQ4OBgzp49a+uhyXVMJhORuV/AIiIiIiIixdHKlTk/e/a0XezHH8+ZqSVSBNh9UWrGjBkMHz6cIUOGULduXebNm4eHhweLFi2y9dBsJjQ0FJPJZH6UKVOGkJAQDhw4YLMxxcfH06VLl/vq47PPPuPhhx/G29sbk8lEUlLSTW327t1L586d8fHxoUyZMjz//POkpKRYtLn+s8l9LF261KJNWloaEyZMwN/fH1dXV6pVq1asc0pERERERO7T6dOwezeYTNCjh3VjG8b/ilJauidFiF0XpdLT0/n555/p1KmT+ZiDgwOdOnVi586dNhyZ7YWEhBAfH098fDzR0dE4OTnx+OOP31ef6enp93ytr68vrq6u9xU/NTWVkJAQ3njjjTzPnzlzhk6dOlGzZk127drF2rVrOXToEKGhoTe1Xbx4sfnziY+Pp+cN/1LRr18/oqOjWbhwIXFxcfzf//0ftWvXvq/xi4iIiIhIMZa7cqR1a/D1tW7sAwfg99/BzQ1CQqwbW+Q+ONl6ALdy/vx5srKyqFChgsXxChUq8N///jfPa9LS0khLSzO/Tk5OBiAjI4OMjAyLthkZGRiGQXZ2NtnZ2QU8+ntjGIb5Z35jMgwDFxcXypcvD0D58uUZN24cHTp0IDExkXLlygHwyy+/MHr0aHbu3ImHhwe9e/dm+vTpeHp6AjBkyBCSkpJo3rw5c+bMwdXVlejoaB566CGWLVvG7Nmz2bVrFwEBAcyZM4fWrVvnO25HR0eWL19Oz549OX78+D318fLLLwOwadMmgJv+XFatWoWzszMzZ87EwSGnnjpnzhwaNWrE4cOHqVmzprmtt7e3+fPJldvX2rVr2bx5M0ePHqV06dIAVK1a1aJNUZCdnY1hGGRkZODo6FhocXL/3tz490fEFpSPYm+Uk2JPlI9iT4pjPpocHXGsXp3sJ54g28rv2/Tnnzg0bQp+fmS5uEAx+tzvVHHMSVu608/ZrotS9+K9995j8uTJNx3/4Ycf8PDwsDjm5OSEr68vKSkplrOErlzJP4CjY071+U7aOjiAu/vt25YocdOhy5cv59ttRkYGmZmZ5oJbSkoKixcvpkaNGjg7O5OcnMyVK1cICQmhefPmREdHc/78eV5++WVeeOEF5syZY+5nw4YNuLu7s3z5cnNfABMmTOCdd97ho48+YsqUKfTv35+9e/fi5JR/yly9epXk5OT76gNyZkzlfga5xSfIKTA6OTlZLNfLysoCYP369RZFqLCwMIYPH061atUYMmQIAwcOxGQyAbB8+XIaNWrElClT+Pe//42HhwddunThjTfewP36Py87l56eztWrV9myZQuZmZmFHi8qKqrQY4jcKeWj2BvlpNgT5aPYk2KVj35+MGMGpqwsjDVrrB//rbcwZWTYJnYRUqxy0oZyf6+/HbsuSpUtWxZHR0cSExMtjicmJuKbz3TIv//977z66qvm18nJyVSpUoXHHnsMb29vi7bXrl3j1KlTeHp64nZdocmhVKl8x2R06YKxerX5talSJUz5fNhGhw4YGzb8r21AAKbz529ql/1XYQVyZkFdvnwZLy8vcxHlRs7Ozqxbt47KlSsDcOXKFSpWrMiqVavw8fEBcjaIT0tL48svv6TEX0UvBwcHevTowfTp06lQoQLOzs6UKFGC8PBwXFxcADh+/DgAY8aMoW/fvgBMmTKFoKAgzp49S506dfL9bNzd3fH29jbPxLqXPgBz8dDLy8viz6xLly5MmDCBzz77jJdffpkrV64wdepUAJKSksxtJ0+eTMeOHfHw8CAqKooxY8aQlZXFyJEjATh9+jQ//vgjJUqUYMWKFZw/f56wsDAuX75cpPaVunbtGu7u7rRv394ifwtaRkYGUVFRdO7cGWdtmCg2pnwUe6OcFHuifBR7onwUe6OctK7cSTS3Y9dFKRcXF5o2bUp0dLR5T6Ds7Gyio6MJCwvL8xpXV9c89zZydna+KfGysrIwmUw4ODhYzMi5FZPJhOlO28Idtb0+du7ysdxx5TeGjh07MnfuXAAuXrzInDlz6NatGz/99BP+/v7ExcXRsGFDvLy8zNe1a9eO7Oxsjhw5QsWKFTGZTAQFBVkW5P6K2ahRI/PzSpUqATnLKW/1OeV+jvfTx/VjuPHPJSgoiCVLlvDqq6/yxhtv4OjoyMsvv0yFChVwdHQ0t3377bfN1zRt2pTU1FQ+/vhjXnnlFSCn8Gcymfjqq68o+ddtWtPT03nyySeZO3dukZkt5eDggMlkyjO3C4O14ojcCeWj2BvlpNgT5aPYE+Wj2BvlpHXc6Wds10UpgFdffZXBgwfTrFkzWrRowT/+8Q+uXLnCkCFDCi/oDXdzs3Dj3j1nz+bf9sbiy1+zkApCiRIlLPZQWrBgASVLluTzzz9nypQpd9VPXq5PoNwZW3e731JB9HGjAQMGMGDAABITEylRogQmk4kZM2ZQo0aNfK9p2bIl7777Lmlpabi6ulKxYkUqVapkLkgBBAYGYhgGp0+fJiAg4L7GKCIiIiIiIiK3Z/dFqaeeeopz587x9ttvk5CQQKNGjVi7du1Nm58XqHwKNVZte5dyZ1ZdvXoVyCmyhIeHc+XKFXPhafv27Tg4ODwQd5nL/fNftGgRbm5udO7cOd+2MTExlCpVyjyDrm3btixbtoyUlBTzUsPDhw/j4OBgXhIpIiIiIiIiIoXrztah2VhYWBgnTpwgLS2NXbt20bJlS1sPyebS0tJISEggISGB2NhYRo4cSUpKCt27dwdg4MCBuLm5MXjwYA4ePMjGjRsZOXIkgwYNKtyC3n1ISEggJiaGo0ePAjl3D4yJieHPP/80t5k1axZ79+7l8OHDzJ49m7CwMN577z3zXlrffvstCxYs4ODBgxw9epS5c+cybdo0835SkDPbqkyZMgwZMoRff/2VLVu2MHbsWJ577rkis3RPREREREREpKiz+5lSkre1a9dSsWJFIGdD8Dp16rBs2TIefvhhIGez8HXr1vHKK6/QvHlzPDw86NOnDzNmzLDhqG9t3rx5FndObN++PQCLFy8mNDQUgJ9++omJEyeSkpJCnTp1mD9/PoMGDTJf4+zszOzZsxk9ejSGYVCzZk1mzJjB8OHDzW08PT2Jiopi5MiRNGvWjDJlytCvX7+7WvYoIiIiIiIiIvdHRakiKDw8nPDw8Nu2CwoKYsN1d//Lq58bVatWDcMwLI75+PjcdOxG15+/1z4mTZrEpEmTbtkmIiLiludDQkIICQm5ZRuAOnXq6FagIiIiIiIiIjZUJJbviYiIiIiIiIjIg0VFKRERERERERERsToVpURERERERERExOpUlBIREREREREREatTUUpERERERERERKxORSm47V3hROyR8lZERERERESKsmJdlHJ2dgYgNTXVxiMRuXvp6ekAODo62ngkIiIiIiIiInfPydYDsCVHR0d8fHw4e/YsAB4eHphMJpuOKTs7m/T0dK5du4aDQ7GuGcotZGdnc+7cOTw8PHByKtZ/jUVERERERKSIKva/zfr6+gKYC1O2ZhgGV69exd3d3eYFMrFvDg4OVK1aVXkiIiIiIiIiRVKxL0qZTCYqVqxI+fLlycjIsPVwyMjIYMuWLbRv3968vFAkLy4uLppNJyIiIiIiIkVWsS9K5XJ0dLSLvXkcHR3JzMzEzc1NRSkREREREREReWBpmoWIiIiIiIiIiFidilIiIiIiIiIiImJ1KkqJiIiIiIiIiIjVPfB7ShmGAUBycrKNR3JnMjIySE1NJTk5WXtKiV1QToo9UT6KvVFOij1RPoo9UT6KvVFOWlduDSa3JpOfB74odfnyZQCqVKli45GIiIiIiIiIiBQfly9fpmTJkvmeNxm3K1sVcdnZ2Zw5cwYvLy9MJpOth3NbycnJVKlShVOnTuHt7W3r4YgoJ8WuKB/F3ignxZ4oH8WeKB/F3ignrcswDC5fvoyfnx8ODvnvHPXAz5RycHCgcuXKth7GXfP29tZfFLErykmxJ8pHsTfKSbEnykexJ8pHsTfKSeu51QypXNroXERERERERERErE5FKRERERERERERsToVpeyMq6srEydOxNXV1dZDEQGUk2JflI9ib5STYk+Uj2JPlI9ib5ST9umB3+hcRERERERERETsj2ZKiYiIiIiIiIiI1akoJSIiIiIiIiIiVqeilIiIiIiIiIiIWJ2KUoVgy5YtdO/eHT8/P0wmE5GRkfm2feGFFzCZTPzjH/+wOP7nn38ycOBAvL298fHxYejQoaSkpFi0OXDgAO3atcPNzY0qVarw4YcfFsK7kQfB7XIyNDQUk8lk8QgJCbFoo5yUgnIn35GxsbE88cQTlCxZkhIlStC8eXNOnjxpPn/t2jVGjBhBmTJl8PT0pE+fPiQmJlr0cfLkSbp164aHhwfly5dn7NixZGZmFvbbkyLodjl54/dj7uOjjz4yt9F3pBSU2+VjSkoKYWFhVK5cGXd3d+rWrcu8efMs2ug7UgrK7fIxMTGR0NBQ/Pz88PDwICQkhCNHjli0UT5KQXnvvfdo3rw5Xl5elC9fnp49exIXF2fRpqDybdOmTTRp0gRXV1dq1qxJeHh4Yb+9YktFqUJw5coVGjZsyOzZs2/ZbuXKlfz444/4+fnddG7gwIEcOnSIqKgoVq9ezZYtW3j++efN55OTk3nsscfw9/fn559/5qOPPmLSpEl89tlnBf5+pOi7k5wMCQkhPj7e/Pi///s/i/PKSSkot8vHY8eO8be//Y06deqwadMmDhw4wFtvvYWbm5u5zejRo/n2229ZtmwZmzdv5syZM/Tu3dt8Pisri27dupGens6OHTtYsmQJ4eHhvP3224X+/qTouV1OXv/dGB8fz6JFizCZTPTp08fcRt+RUlBul4+vvvoqa9eu5YsvviA2NpZRo0YRFhbGqlWrzG30HSkF5Vb5aBgGPXv25LfffuObb75h3759+Pv706lTJ65cuWJup3yUgrJ582ZGjBjBjz/+SFRUFBkZGTz22GMFnm+///473bp1o2PHjsTExDBq1CiGDRvGunXrrPp+iw1DChVgrFy58qbjp0+fNipVqmQcPHjQ8Pf3Nz755BPzuV9//dUAjN27d5uPff/994bJZDL++OMPwzAMY86cOUapUqWMtLQ0c5vx48cbtWvXLrT3Ig+GvHJy8ODBRo8ePfK9RjkphSWvfHzqqaeMZ555Jt9rkpKSDGdnZ2PZsmXmY7GxsQZg7Ny50zAMw1izZo3h4OBgJCQkmNvMnTvX8Pb2tshRkRvl99/t6/Xo0cN45JFHzK/1HSmFJa98rFevnvHOO+9YHGvSpIkxYcIEwzD0HSmF58Z8jIuLMwDj4MGD5mNZWVlGuXLljM8//9wwDOWjFK6zZ88agLF582bDMAou38aNG2fUq1fPItZTTz1lBAcHF/ZbKpY0U8oGsrOzGTRoEGPHjqVevXo3nd+5cyc+Pj40a9bMfKxTp044ODiwa9cuc5v27dvj4uJibhMcHExcXBwXL14s/DchD5xNmzZRvnx5ateuzYsvvsiFCxfM55STYi3Z2dl899131KpVi+DgYMqXL0/Lli0tlgv8/PPPZGRk0KlTJ/OxOnXqULVqVXbu3Ank5GNQUBAVKlQwtwkODiY5OZlDhw5Z7f3IgycxMZHvvvuOoUOHmo/pO1KsqU2bNqxatYo//vgDwzDYuHEjhw8f5rHHHgP0HSnWk5aWBmAxk9nBwQFXV1e2bdsGKB+lcF26dAmA0qVLAwWXbzt37rToI7dNbh9SsFSUsoEPPvgAJycnXn755TzPJyQkUL58eYtjTk5OlC5dmoSEBHOb6/8iAebXuW1E7lRISAgRERFER0fzwQcfsHnzZrp06UJWVhagnBTrOXv2LCkpKbz//vuEhITwww8/0KtXL3r37s3mzZuBnHxycXHBx8fH4toKFSooH6XQLVmyBC8vL4ulAPqOFGuaOXMmdevWpXLlyri4uBASEsLs2bNp3749oO9IsZ7cX/b//ve/c/HiRdLT0/nggw84ffo08fHxgPJRCk92djajRo2ibdu21K9fHyi4fMuvTXJyMlevXi2Mt1OsOdl6AMXNzz//zKeffsrevXsxmUy2Ho4IAE8//bT5eVBQEA0aNOChhx5i06ZNPProozYcmRQ32dnZAPTo0YPRo0cD0KhRI3bs2MG8efPo0KGDLYcnwqJFixg4cKDFzAARa5o5cyY//vgjq1atwt/fny1btjBixAj8/Pxu+pd9kcLk7OzMihUrGDp0KKVLl8bR0ZFOnTrRpUsXDMOw9fDkATdixAgOHjxonpUnRZdmSlnZ1q1bOXv2LFWrVsXJyQknJydOnDjBa6+9RrVq1QDw9fXl7NmzFtdlZmby559/4uvra25z410Ecl/nthG5VzVq1KBs2bIcPXoUUE6K9ZQtWxYnJyfq1q1rcTwwMNB89z1fX1/S09NJSkqyaJOYmKh8lEK1detW4uLiGDZsmMVxfUeKtVy9epU33niDGTNm0L17dxo0aEBYWBhPPfUUH3/8MaDvSLGupk2bEhMTQ1JSEvHx8axdu5YLFy5Qo0YNQPkohSMsLIzVq1ezceNGKleubD5eUPmWXxtvb2/c3d0L+u0UeypKWdmgQYM4cOAAMTEx5oefnx9jx4417+bfunVrkpKS+Pnnn83XbdiwgezsbFq2bGlus2XLFjIyMsxtoqKiqF27NqVKlbLum5IHzunTp7lw4QIVK1YElJNiPS4uLjRv3vym2/sePnwYf39/IOd/gJ2dnYmOjjafj4uL4+TJk7Ru3RrIycdffvnFolAQFRWFt7f3TQUvkTu1cOFCmjZtSsOGDS2O6ztSrCUjI4OMjAwcHCz/F97R0dE801TfkWILJUuWpFy5chw5coQ9e/bQo0cPQPkoBcswDMLCwli5ciUbNmygevXqFucLKt9at25t0Udum9w+pIDZeKP1B9Lly5eNffv2Gfv27TMAY8aMGca+ffuMEydO5Nn+xrvvGYZhhISEGI0bNzZ27dplbNu2zQgICDD69+9vPp+UlGRUqFDBGDRokHHw4EFj6dKlhoeHhzF//vzCfGtSRN0qJy9fvmyMGTPG2Llzp/H7778b69evN5o0aWIEBAQY165dM/ehnJSCcrvvyBUrVhjOzs7GZ599Zhw5csSYOXOm4ejoaGzdutXcxwsvvGBUrVrV2LBhg7Fnzx6jdevWRuvWrc3nMzMzjfr16xuPPfaYERMTY6xdu9YoV66c8fe//93q71fs3538d/vSpUuGh4eHMXfu3Dz70HekFJTb5WOHDh2MevXqGRs3bjR+++03Y/HixYabm5sxZ84ccx/6jpSCcrt8/Pe//21s3LjROHbsmBEZGWn4+/sbvXv3tuhD+SgF5cUXXzRKlixpbNq0yYiPjzc/UlNTzW0KIt9+++03w8PDwxg7dqwRGxtrzJ4923B0dDTWrl1r1fdbXKgoVQg2btxoADc9Bg8enGf7vIpSFy5cMPr37294enoa3t7expAhQ4zLly9btNm/f7/xt7/9zXB1dTUqVapkvP/++4X0jqSou1VOpqamGo899phRrlw5w9nZ2fD39zeGDx9ucZtUw1BOSsG5k+/IhQsXGjVr1jTc3NyMhg0bGpGRkRZ9XL161XjppZeMUqVKGR4eHkavXr2M+Ph4izbHjx83unTpYri7uxtly5Y1XnvtNSMjI8Mab1GKmDvJyfnz5xvu7u5GUlJSnn3oO1IKyu3yMT4+3ggNDTX8/PwMNzc3o3bt2sb06dON7Oxscx/6jpSCcrt8/PTTT43KlSsbzs7ORtWqVY0333zTSEtLs+hD+SgFJa9cBIzFixeb2xRUvm3cuNFo1KiR4eLiYtSoUcMihhQsk2FoFzoREREREREREbEu7SklIiIiIiIiIiJWp6KUiIiIiIiIiIhYnYpSIiIiIiIiIiJidSpKiYiIiIiIiIiI1akoJSIiIiIiIiIiVqeilIiIiIiIiIiIWJ2KUiIiIiIiIiIiYnUqSomIiIiIiIiIiNWpKCUiIiIiIiIiIlanopSIiIhIPs6dO8eLL75I1apVcXV1xdfXl+DgYLZv325uYzKZiIyMLJB4x48fx2QyERMTk2+bzZs34+zszLZt2yyOX7lyhRo1ajBmzJgCGYuIiIhIYXOy9QBERERE7FWfPn1IT09nyZIl1KhRg8TERKKjo7lw4UKBx0pPT7+jdh06dGDkyJGEhoayf/9+SpQoAcC4ceNwd3dnypQphTI2FxeXAu9XREREijfNlBIRERHJQ1JSElu3buWDDz6gY8eO+Pv706JFC/7+97/zxBNPAFCtWjUAevXqhclkMr8+duwYPXr0oEKFCnh6etK8eXPWr19v0X+1atV49913efbZZ/H29ub555+nevXqADRu3BiTycTDDz+c59imTZuGi4sL48ePB2Djxo0sWLCAiIgIXFxceO+996hevTru7u40bNiQ//znP+Zrs7KyGDp0qPl87dq1+fTTTy36Dw0NpWfPnkydOhU/Pz9q1659vx+niIiIyE00U0pEREQkD56ennh6ehIZGUmrVq1wdXW9qc3u3bspX748ixcvJiQkBEdHRwBSUlLo2rUrU6dOxdXVlYiICLp3705cXBxVq1Y1X//xxx/z9ttvM3HiRABGjBhBixYtWL9+PfXq1ct3dpKbmxsRERG0adOGzp07M2rUKN544w2aNm3K1KlT+eKLL5g3bx4BAQFs2bKFZ555hnLlytGhQweys7OpXLkyy5Yto0yZMuzYsYPnn3+eihUr0q9fP3OM6OhovL29iYqKKsiPVURERMTMZBiGYetBiIiIiNij5cuXM3z4cK5evUqTJk3o0KEDTz/9NA0aNDC3MZlMrFy5kp49e96yr/r16/PCCy8QFhYG5MyUaty4MStXrjS3OX78ONWrV2ffvn00atTotuObOHEiU6ZMoXHjxvz4449kZWVRunRp1q9fT+vWrc3thg0bRmpqKl999VWe/YSFhZGQkGCeURUaGsratWs5efKklu2JiIhIodHyPREREZF89OnThzNnzrBq1SpCQkLYtGkTTZo0ITw8/JbXpaSkMGbMGAIDA/Hx8cHT05PY2FhOnjxp0a5Zs2b3Nb633nqL7OxsXn/9dZycnDh69Cipqal07tzZPNPL09OTiIgIjh07Zr5u9uzZNG3alHLlyuHp6clnn31209iCgoJUkBIREZFCpeV7IiIiIrfg5uZG586d6dy5M2+99RbDhg1j4sSJhIaG5nvNmDFjiIqK4uOPP6ZmzZq4u7vz5JNP3rSZee4m5ffKycnJ4mdKSgoA3333HZUqVbJom7v8cOnSpYwZM4bp06fTunVrvLy8+Oijj9i1a1eBjk1ERETkdlSUEhEREbkLdevWJTIy0vza2dmZrKwsizbbt28nNDSUXr16ATnFouPHj9+279yZSTf2dzdjc3V15eTJk3To0CHPNtu3b6dNmza89NJL5mPXz6ISERERsRYVpURERETycOHCBfr27ctzzz1HgwYN8PLyYs+ePXz44Yf06NHD3K5atWpER0fTtm1bXF1dKVWqFAEBAaxYsYLu3btjMpnMy+xup3z58ri7u7N27VoqV66Mm5sbJUuWvOMxe3l5MWbMGEaPHk12djZ/+9vfuHTpEtu3b8fb25vBgwcTEBBAREQE69ato3r16vzrX/9i9+7d5jv/iYiIiFiL9pQSERERyYOnpyctW7bkk08+oX379tSvX5+33nqL4cOHM2vWLHO76dOnExUVRZUqVWjcuDEAM2bMoFSpUrRp04bu3bsTHBxMkyZNbhvTycmJf/7zn8yfPx8/Pz+L4tedevfdd3nrrbd47733CAwMJCQkhO+++85cdPp//+//0bt3b5566ilatmzJhQsXLGZNiYiIiFiL7r4nIiIiIiIiIiJWp5lSIiIiIiIiIiJidSpKiYiIiIiIiIiI1akoJSIiIiIiIiIiVqeilIiIiIiIiIiIWJ2KUiIiIiIiIiIiYnUqSomIiIiIiIiIiNWpKCUiIiIiIiIiIlanopSIiIiIiIiIiFidilIiIiIiIiIiImJ1KkqJiIiIiIiIiIjVqSglIiIiIiIiIiJWp6KUiIiIiIiIiIhY3f8Ha6U9s4N9eaAAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"# Find the minimum age at start for Francis\n", | |
"francis_row = df[df['English name'] == 'Francis I']\n", | |
"francis_start = int(francis_row['Start year'].values[0])\n", | |
"francis_age_start = int(francis_row['Age at start of papacy'].values[0])\n", | |
"\n", | |
"# Determine the latest birth year from which someone would always have had an older pope\n", | |
"# That means: birth year + (Francis start year - birth year) < Francis's age → birth year < Francis_start - Francis_age\n", | |
"latest_safe_birth_year = francis_start - francis_age_start\n", | |
"\n", | |
"latest_safe_birth_year\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "GGPoMz5ufLPF", | |
"outputId": "679b3910-e8e4-4135-b9a4-9b312fa945a2" | |
}, | |
"execution_count": 5, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"1937" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 5 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns\n", | |
"\n", | |
"# Prepare the cleaned data\n", | |
"df_age = df[['Start year', 'Age at start of papacy']].dropna().sort_values('Start year')\n", | |
"\n", | |
"# Start and end points for wedge\n", | |
"start_left = 1937\n", | |
"start_right = 1956\n", | |
"end_year = int(df_age['Start year'].max())\n", | |
"\n", | |
"# Shared Y values (ages from 0 up to pope age max + padding)\n", | |
"max_age = int(df_age['Age at start of papacy'].max()) + 5\n", | |
"y_values = list(range(0, max_age + 1))\n", | |
"\n", | |
"# X values (start year = birth year + age)\n", | |
"x_left_edge = [start_left + y for y in y_values]\n", | |
"x_right_edge = [start_right + y for y in y_values]\n", | |
"\n", | |
"# Begin plotting\n", | |
"plt.figure(figsize=(14, 7))\n", | |
"\n", | |
"# Plot pope ages and LOESS smoothing\n", | |
"sns.scatterplot(x='Start year', y='Age at start of papacy', data=df_age)#, label='Pope Ages'\n", | |
"sns.regplot(x='Start year', y='Age at start of papacy', data=df_age, scatter=False, lowess=True,\n", | |
" line_kws={'color': 'black'})#, label='LOESS (span=0.4)'\n", | |
"\n", | |
"# Plot wedge boundaries\n", | |
"plt.plot(x_left_edge, y_values, color='red', linestyle='--')#, label='Born in 1937'\n", | |
"plt.plot(x_right_edge, y_values, color='red', linestyle='--')#, label='Born in 1956'\n", | |
"\n", | |
"# Fill the wedge\n", | |
"plt.fill_betweenx(y_values, x_left_edge, x_right_edge, color='red', alpha=0.1)\n", | |
"\n", | |
"# Add annotations\n", | |
"plt.text(1870, 4, \"Pope always older\\n than you\\n(born after 1937)\", fontsize=9, color='red')\n", | |
"plt.text(1975, 10, \"Still younger than the pope\\n(born after 1956)\", fontsize=9, color='blue')\n", | |
"\n", | |
"#add old pope\n", | |
"\n", | |
"plt.plot(1670, 79, marker='o', color='gray')\n", | |
"plt.text(1630, 75, \"Clement X\\n(oldest)\", fontsize=9, ha='left', va='bottom')\n", | |
"\n", | |
"\n", | |
"#add young pope\n", | |
"\n", | |
"plt.plot(1513, 37, marker='o', color='gray')\n", | |
"plt.text(1518, 35, \"Leo X\\n(youngest at election)\", fontsize=9, ha='left', va='bottom')\n", | |
"\n", | |
"\n", | |
"# Add Leo XIV marker\n", | |
"plt.plot(2025, 69, marker='o', color='black')\n", | |
"plt.text(2029, 69, \"Leo XIV\", fontsize=9, ha='left', va='center')\n", | |
"\n", | |
"#black line explained\n", | |
"plt.text(1600, 58, \"Average age at election\\n(smoothed)\", fontsize=9, color='black')\n", | |
"\n", | |
"plt.suptitle(\"Born Between 1937 and 1956: The First Pope Younger Than You\",\n", | |
" fontsize=16, fontweight='bold')\n", | |
"plt.title(\"The Age of the Pope at Election\", fontsize=12)\n", | |
"# Final formatting\n", | |
"#plt.title(\"The Age of the Pope at Election\\nBorn Between 1937 and 1956: The First Pope Younger Than You\")\n", | |
"plt.xlabel(\"Start Year of Papacy\")\n", | |
"plt.ylabel(\"Age at Start of Papacy\")\n", | |
"plt.legend()\n", | |
"plt.grid(True)\n", | |
"plt.tight_layout()\n", | |
"plt.savefig(\"pope_now.png\", dpi=300)\n", | |
"plt.show()\n", | |
"\n", | |
"\n", | |
"\n", | |
"\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 463 | |
}, | |
"id": "E_w0Sfr3g-8w", | |
"outputId": "a85b13da-3c55-4178-dca6-9bd124cf4d37" | |
}, | |
"execution_count": 57, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"<ipython-input-57-ca2713c46653>:65: UserWarning: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", | |
" plt.legend()\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 1400x700 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABVkAAAKzCAYAAAAEHA0gAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdcE+cfB/BPAmEvZaMsERUHThxVcQ9w/tRaV8XVWkfVblvrqnZobWu1VjustnW0Vju0auuo1lkXigMHKrgQBZUlI0Du90eaK0cCBBkX4PN+vfJK7u65u++N3IUvzz2PQhAEAURERERERERERET0RJRyB0BERERERERERERUmTHJSkRERERERERERFQKTLISERERERERERERlQKTrERERERERERERESlwCQrERERERERERERUSkwyUpERERERERERERUCkyyEhEREREREREREZUCk6xEREREREREREREpcAkKxEREREREREREVEpMMlKRCZLoVAYfJmbm8PR0RENGzbEs88+i507d8odarnjvqh6EhIS8OWXX2LChAlo2rQpzM3NJcd27dq1xS7j9OnTmDBhAgIDA2FjYwM7OzsEBQVh+vTpuHHjRqHzfffdd5gwYQJatWqF2rVrw9raGpaWlnB1dcVTTz2FWbNm4datW3rzxcXFFXouFvaKi4srxV4yHWvXrpVs17x580o0v5zHe8yYMUYdq969exe5/ps3b2LmzJlo2bIlnJ2dYWFhAQ8PDzRv3hyTJk3CgQMHSrRPilJwf5fkNWbMGIPLKOkxK0/z5s0zenuaNWtW5LzGnDumqLjria2tLerWrYuRI0diz549codbIZ577jnJPvDy8kJKSorBshs2bJCUNTMzw6FDhyo4YtIx9jpr6KX7Dhdcxv79+2XdptJSq9Vo3LixZJv69OlTaPnnn39eUtbT0xMPHz6swIiJiEqPSVYiqnTy8vKQmpqKixcvYt26dQgPD8e4cePkDksWFbUvqtoPf1Pwxx9/YOLEiVi9ejXOnj2LvLy8Es3/3nvvoVWrVli9ejWuXr2KzMxMPH78GJcuXcKyZcvQoEEDbN682eC877zzDlavXo1Tp07hzp07yMrKglqtRlJSEo4ePYr33nsPDRo0wI4dO8piUwnyHu+ysGzZMtSrVw+LFi1CZGQkHj58iJycHNy7dw9nzpzBqlWr8N1335Xb+sl07N+/32BSu6xlZGTg2rVr2LBhA3r06IFnn322xN+byuajjz6Ct7e3OHz37l289tpreuUePHiAGTNmSMZNmzYNHTp0KO8QiYxmYWGBtWvXwszMTBy3Y8cObNiwQa/s/v378fXXX0vGrVq1CjVr1iz3OImIypK53AEQERkrLCwMNjY2yMnJwZkzZ3Dz5k1x2po1a/D0008jLCxMxggrDvdF1aJSqWBpaYn09HSjyq9btw6zZs0Sh83MzNC+fXvk5ubi6NGjEAQBWVlZGDZsGI4ePYqQkBC9ZSgUCtSpUwe1a9eGnZ0drl+/josXL4rTMzIyEBERgTt37sDCwgIAYGtri8GDBxca140bN3Dy5Elx2MvLC7Vq1TJqm6oTOY63jouLCzp16mRwWvPmzQ2O/+STT/Dyyy9Lxvn6+qJevXrIzc1FXFwcYmNjjdoWY/n5+Rk817Zs2SIZ1l0L8ytq+02Vr68vWrVqZXCav7+/ZLhhw4aSfePn51eeoVUo3XZlZmYiMjISCQkJ4rR169bB398f77zzjlzhlTsHBwd8/fXX6NWrlzju66+/xogRI9C5c2dx3IwZM5CYmCgOBwYG4r333qvIUKmAkJAQvWt6YmKipIa/jY2Nwd9mVek7XFCrVq3wxhtvSM7P6dOno2fPnnBxcQEAZGVl4fnnn4cgCGKZkSNHYsCAARUeLxFRqQlERCYKgOQVGxsrTlOr1ULr1q0l01955RX5gi1ncu+LiIgIyfL37dtXpsuvjo4fPy589tlnwrFjx4SsrCy9fbxmzZpC5/Xz85OU/eWXX8RpX331lWRa27Zt9ebfsmWLEB8frzf+p59+0jvXTp48afQ2DR48WDLvokWLjJ7X1K1Zs0aybXPnzi3R/HIe7/zr6tSpU4nijo6OFlQqlTh/jRo1JOvXuXLlirB///4SLftJFHUtLKi0x6w8zZ07VxJbRESE3CEZbd++fWUSe2xsrN7xzO/x48dC9+7dJdMdHByEnJycMtgK0/bcc89Jtrtu3bpCRkaGIAiC8Mcff0imKZVK4eDBgzJHTIYU/K74+voWWb6q/tbKzs4WGjduLNm2kSNHitNnzpwpmebh4SE8ePBAxoiJiJ4cmwsgokpJpVIhNDRUMi4zM9Ng2fT0dCxfvhzdu3eHu7s7LCws4OjoiODgYEybNk1Sey+/zp0767UtuWXLFnTu3BlOTk6Sx+YNlf3rr7/Qp08f1KxZE1ZWVmjUqBE++eQTyX/qK3pfZGZmYtWqVejVqxc8PDzEfdGqVSvMnz8fDx48kJTXNRPw7bffSsZ36dJFr/mATZs2ScZ9+umnknl69+4tTmvbtq1kWsG2E7/66ivJdEEQ8Pvvv2Po0KHw8/ODtbU1bGxsUL9+fUyaNAmXLl0qch8dPHgQERERCAwMhJ2dHaysrODv74+IiAicOHHC4DyGmkg4ffo0hg4dCjc3N1haWqJu3bqYPXs2srOzi1y/ISEhIZgyZQpat24NS0tLo+e7evWqpJ1TLy8vDBw4UBweN24crKysxOF//vkH0dHRkmUMGjQInp6eesseMmQInJycJOOsra2Niuv69ev45ZdfxGF7e3tMnDjRqHl14uLiMHv2bPTr1w/169eHm5sbLCwsYGdnh4CAAAwdOhS///67wXkNtVN59epVjBs3DrVq1YKFhQV8fHwwbdq0Qts4zMjIwLx581CvXj1YWlrCw8MDo0ePxvXr10u0HYbIebxL46OPPkJOTo44/Nlnn0nWrxMYGGiwhqypNTXy8OFDvPLKK6hTp454jMeOHYs7d+4UOs+1a9fw6quvonnz5nBychLbou3bty82b95c5tf04hTXJqufn59kuiAI+Oqrr9CmTRs4ODhI2kp+8OAB5s2bhzZt2qBmzZpQqVRwcHBAnTp10K1bN7zxxhtiTTxdMwFdunSRrO/bb78tl+YDbGxs8NZbb0nGpaam6l3v1Wo11q5diz59+sDLywuWlpawt7dH/fr1MX78eBw/ftzg8g2dmydOnMD//vc/uLq6ivftDz/8UPIdKOhJ7i/FWbJkCXx8fMThq1evYt68eXj8+DFeeOEFSdnp06frNROwd+9ejBw5EgEBAbC1tYWVlRV8fHwwaNAgbNmyBRqNRm+dxZ1XBdvQzV+ztrD5S3oNzszMxDvvvIP69evD0tIS7u7uGDZsGC5evGh0G8tldb/ft28fwsLC4OzsDKVSKVvbxxcuXMDw4cPh7u5e7O+OQ4cO4aWXXkKXLl0QEBCAGjVqiG33N2nSBJMmTUJUVJTB9ZTn71hdswHm5v89RLt+/Xrs3LkTUVFRWLJkiaT8F198IWkm4Em/44a2KT9TbrebiCoxWVO8RERFQDG1N9u0aVNsTbAzZ87o1QIr+DI3NxeWLFmiN2+nTp0k5Z599lm9eXW1DAqWHT16dKHrmz59uiz7Ijo6WqhXr16R+8LDw0M4cuSIOE/BWhWFvfbt2yckJSUJCoVCHPe///1PXE5OTo5gZ2cn2edpaWmFruf69evitNTUVCEsLKzI9atUKmHVqlV625yTkyOMHTu2yHkVCoUwe/ZsvXkLxjRy5EjBzMzM4DIGDhxY0kNa7PoKq9l4+PBhSblGjRrplXF3d5eU+eKLL4yKYcuWLZL5AgICjK419uKLL0rmffnll42aLz9DNWkNvcaNG6c3b8GagUOGDBGsra0Nzh8SEiKo1WrJ/CkpKUKrVq0Mlre3txcmTpwoGVfaWpEVebzzrysgIECYPn26MGzYMGHs2LHCggULhH/++afQON3c3MR5bWxshDt37gjLli0Txo4dK4wcOVKYOXNmkTVYy7pmVlHXwoIK1mQdMmSI4OXlZfAY+/r6Co8ePdJbxooVKwQLC4siz8ewsDDh8ePHJdqO0tRkLThvwXPH19dXMt3QvSs2NlZITEzUK2voNXjwYEEQ9GvlFfYydluKq8kqCIJw4cIFvTL571FxcXFCs2bNio3ppZdeEjQajWTZBc/NcePGCUql0uD83bt3F7KzsyXzl+b+Yoxdu3ZJlmVmZib069dPMi4wMFCs4SoI2hqDzzzzTLH7o0uXLnrne3HnVcHjVbBWfGmvwWlpaXq/ZXQvKysrvfO44DW4LO/3o0aN0pu3qKcNClPamqyTJk0q9Ppj6HfHlClTij32ZmZmwurVq/XmLe/fsYIgCLNmzZIsx8fHR2jRooXevs+vNN/xgttU8H5hyk87EFHlxSQrEZmsgj+gwsLChMGDBwsDBgzQ+8OwY8eOen8AJSYm6iUfnJ2dhR49eggNGzbUW/66desk8xf8cab7cdq8eXMhPDxc8PX1LTTJCkCws7MTunbtKtStW1cyXqlUCjdv3qzQffHw4UOhdu3aknJ169YV+vTpo5dYcnZ2Fu7cuSMIgiB89tlnwuDBg/XWERoaKgwePFh8nT9/XhAEQfJj2dnZWfzB+88//+htw86dO8X48i+/Tp06ktj79Okjmc/V1VXo3bu30KVLF8kfHwqFQtixY4dk3smTJ0vmtbe3F7p37y707NlTkvQFIKxcuVIyr6EEs6WlpRAaGio0adJEb9rhw4dLdEwLMjbpdvHiRb1tyszMFKc/fPhQL1Hw6quvGlzW22+/LQwePFgICwvTS8D7+PgY3VTAw4cPBVtbW3Fec3PzEp/jgvBfktXHx0do166dEB4eLvTt21cICQmRPLIOQO+R9YJ/4Ou+r23atDH4h/v69esl80+YMEEyXaFQCCEhIUJoaKhgZWWlN39FJVnL4ngb88+SLl26CLdv35bMd+PGDUkZBwcHve+N7tWjRw8hKSmp2O2UM8mqezVv3lzo2LGj3j9N3n33Xcn8mzZt0jufnnrqKaFPnz5CrVq1JNOeeeaZEm1HwfPV19dXck3N/yq4z0qaZNVdu1q3bi307t1bcHd3F2JjY4X33ntPUsbPz0/o27eveI/UJch0Sdbz588LgwcPFkJDQ4uM/bPPPjNqHxiTZP3+++8LPebZ2dl693J7e3uha9eueokbAMLChQslyzb0vbC1tRW6dOkiNG/eXG/arFmzJPOX5v5irOeff77Q76xSqRQOHTokKT9+/HhJGXNzc6FNmzYGr2Pdu3eXzFvWSdaSXoMLbqtCoRBatWolhIaGGkw0FrwGl/X9HtD+U6tPnz5C/fr1ZUmy6r67xv7umDJliqBUKoUGDRoIHTt2FPr37y+EhYUJQUFBkvmsrKz0mgwq79+xgmC42YD8L09PT+Hhw4eS8qX5jjPJSkRyYJKViExWYT/CCr4CAgKEa9eu6c1fsI2nNm3aSGpuLFiwQDK9Vq1aQl5enji94I8zJycnyR80Go1GTGYWLOvr6yvExcUJgqCtXdGtWzfJ9G+//bZC98Xbb78tKffBBx9Ipm/YsEEyferUqZLpxiZKXn/9dUm5s2fPCoIgCIsWLZL80QVAeOONNwRB0P/DbeLEieLy9uzZI5nWv39/SQL58uXLkj+eGjduLJmWP/nUunVrISUlRZx+7949wdvbW5zu7OwsWXbBbXZ0dBTOnDlT6PT58+cXevyMYWzSTaPR6CXMJ02aJCQmJgp3794Vhg8frndePPfccwaX1b59e4PnUfPmzcXEuTEKJmtGjBjxJLtAuHfvnnDr1i2D086fPy9ZR8GkVsE/8M3MzIQ9e/YUOn3s2LHitLt37wrm5uaS6Zs3bxannz59Wq9GVkUlWcvieBtbI71+/fqSGpknTpww+toDQOjQoUOxtQXlTrLm388Fp3fp0kWclpeXJ/j4+IjTatSoIURHR4vTc3Jy9P4BVJL2iw0lpAp7FTw3Sppk9fX1lcSem5sr5ObmStr9rFevnpCbmytZTnZ2trB3717Jd0EQKqZN1oyMDGHXrl16yewGDRqIZVatWiWZVqdOHcn1o2CC1sbGRpLAKXhuenh4CFevXi10+fb29kJ6erogCKW/vxgrNTVVch7mfxV8WiA6OlryNIm5ubnw999/i9PPnTsnODo6Spbxxx9/iNPLOslakmtwQkKC3j/S8idhjx8/LlhaWhZ6DS7r+725ubnw66+/SrYvKyuriCNlWGmTrCX93RETEyMkJycbXPZnn30mmbdgorm8f8fqnDx5Uu9+q3tt3bpVUra033EmWYlIDmyTlYgqvWvXriE4OBj79u2TjN+6datkeN68eZL2JmfOnAkvLy9x+M6dO4iMjCx0Pa+88grat28vDisUCrHX9YJmzpwJX19fAIC5uTnCw8Ml04tq/680CtsX+dvKBICjR49iyJAh4mvTpk2S6du2bXui9Xfv3l0y/Pfff0ve69evj5YtWwKA2DZjwTYa8y+jYNxJSUkYMWKEGPdbb70FlUolTj9//rzY5tbWrVsl7c6p1WqMGzdOnHfy5MmSdsUePHiAI0eOFLptL7zwApo2bSoO9+/fXzK9vI5pQQqFQq8X6ZUrV8LV1RWenp7YuHGj3jwlaQMUAE6fPo1mzZph1apVxZZVq9VYvny5ZNyrr75aovXpuLm54datW5gwYQKaNGkCR0dHmJmZQaFQoHHjxpKyxbXDO2TIEHTr1k0cLup47d+/H7m5ueJw27ZtJb23N2vWDCNHjnyibSqtsjjevr6+mDlzJnbv3o24uDhkZmYiJiYGM2fOhEKhEMtdvnwZK1asEIfVarXesmvVqoXDhw8jPT0d27dvh729vTjt0KFDetfdtWvXQtD+Ux+CIOi141iR2rRpI2kvtKhzIjIyEjdv3hSHbWxsMHv2bPH6MWzYMMTHx0vmf9LrZnlbuHAhgoKCxGEzMzOYmZmJ9ygAiI2NxVtvvYWffvoJkZGRSE9Ph4WFBbp27Sr5LpQ3XduINjY26Nmzp+SYKJVKfPTRR+JwwXPttddeQ+3atcXhUaNGISQkRBzOyMjA3r17C133lClTEBAQIA4///zzCAwMFIfT0tLwzz//iOsuy/tLYezt7bF69Wq98fXq1cPChQsl437//XfJOgcPHixpr71x48Z4/vnnJfOU5zlbkmvwvn37JO3ehoSEYMSIEYUOF1TWxyMiIkKvZ/uS3kfLQkl/d9SpUwd//vknBg8eLLbHq1QqoVAoMHXqVEnZ4u6h5fU7tmXLlpg5c6be+GeffRb9+vWTjCvr7zgRUUUwL74IEZFpiI2NhZ+fHwRBwJ07d/Dhhx9i2bJlAIDHjx9j9OjRuHr1qvhDuGAD902aNJEMm5ubo2HDhpI/lGNjY9GqVSuD6y9JciD/jz4AcHR0lAw/SUdJ+ZV0X8TGxkrm/+2334pc/q1bt5CXlwczM7MSxdWxY0dYWVkhKysLgDZ5NWnSJBw6dAiAdh86Ojri+PHjOHXqFNLT0yVJVqVSia5du0q2Mz9j/kjV7ZuC8545cwZnzpwpdt7CjnN5H9OSePbZZ/Ho0SO89tprBhNhXl5ekvPazc3N4HJ0xyU1NRWxsbH46quvxCRbbm4upk6dig4dOuglOPPbuHEj7t69Kw5369YNzZs3f6Lt+vjjj/HKK68YVbawjlN0SnK8bty4IZlW8FoBoMh9UN5Ke7znz5+vN0/dunXx/vvv4/Hjx5Ik+Y4dO/Daa68BABwcHPTme/311/HUU08BAMLDwzF+/HgsXbpUnL5nzx695ISpKMk5UfD6cefOHWzZsqXI5RecpyQiIiLKrWOdwq5pzz33HL788kvcvHkTOTk5WLx4sThNoVCgQYMGGDBgAF5++WW4urqWS2zGcnNzw8qVKyWJnuLu8QDQtGlTSWdHRR2j4OBgybBCoUCjRo0QExMjjtNdK8r6/lKU7t27o127djh69Kg47tVXX9XrlNDY/VEwpvJSmmtwwTgB/eOTX1kfDzn/GZRfSfahIAgYPHgwfv31V6OWXZb30JKaPXu23j8JZs+erVeurL/jREQVgUlWIqp0FAoFateujU8//RRbt24Vf4Tdvn0b//zzj9jDdf5aC7r5SiN/rdfiODs7S4ZLmqw0lrH7oqQ0Gg0yMzNhZ2dXovmsrKzQvn17sSbBgQMHEBkZidTUVABAp06d4OjoiMWLFyM3NxeHDh2SJFlbtGgh6VH2STx+/Lhc5q2oY2qsadOmYciQIfjxxx9x7tw5ZGZmwsfHB/3798d3332HL7/8Uixb2D8OdBwcHNC0aVN89tlnuH37tpiEz8vLw5YtW4pMMH788ceSYV2CrqTu3r2LN954QzLO29sbTZo0EZMJ+ZNcBb/fBZna8Sqtsjze+XXv3l2SZM2frPX394eZmRny8vLEcfXr15fMX3D44cOHRq+7opX3OVGaa095Kuze5ebmhjNnzmDlypXYvn07oqKixG0QBAEXL17ExYsX8cMPPyAqKspg0r2s6WrN6mqzenp6ok2bNggPD9erSVjW9/jyVprzo+BTM/mf4NAp6/2Rv3Y/ANy7d69E85fm+6ZU6j9sWdbHt6jjUZLfe+WpJPtwy5YtegnWJk2awN/fHyqVComJiThw4IA4Tc57qKGnwCrDOU1EZAwmWYmoUiv4n/X8Ner8/f0RHR0tDp87d07ywzk3N1cyXTdPYQz96Dclxe2LCxcuAND+SL1z5w48PT2NXnZJfth2795dTLImJibi888/F6d17twZtra2YuJm7dq1khosBZsbKHg8fvjhBzzzzDNGxVFw3g8++EAviVfZeXl54aWXXpKMe/DggaSmspOTk+SR0eLUqlVLMpyQkFBo2V27duHs2bPicJMmTdCrVy+j15XfP//8I/kDqE+fPti2bZt47t29e7fYmoRPysfHRzJ8/vx5vTK674+cnuR45+TkGPzjVadgrZ/81xFbW1s0b94cJ0+elKwvv4JJ1cJqTVc2Ba8fvXv3xs6dO2WKpnSKunfVqFEDb731Ft566y0IgoDExERcuXIFH3/8sdhcS1xcHH7++WexqYXyTGZu3rzZ6LL+/v64ePGiOHzu3DmxlrVO/uuTbp7CnDt3Tu9x7IK/EXSPT5vi/aVgTOfOndMrU9T+KJj4KvhdP3jwYGlDLFT+pisAw9fbqKioQucv6+Nh6r/3DCl4fBYtWoTXX39dHN64caMkyVoZlPY7buicrlu3rjhcnuc0EVVfle8OQkT0r/379+slQ/InUfv27SuZNn/+fMnjUR9++KGk1paXlxdatGhRTtGWr+L2Rf4/HAVBwJQpU8TapfmdPXsWs2fP1muLs+BjiUW1xdWjRw/J8Lp16wAAgYGB8PT0hIODg/g4+U8//SQpWzDJWvAP3tmzZxt8FOzOnTtYsWIFXnzxRXFc3759JcmAjz76yGCbu0lJSVi7dm2R7b2ZmqSkJOzZs0evVkZsbCyGDBkiqZ3x4osvwtbWVhxevXo1vvvuO4OPCh49elSvjc/8f5AUlL99RABGP+pvSP72+ABtrWjd8cvOzi7VsovTuXNnmJv/93/no0ePSmoEnT17FuvXry+39RenNMf78OHD6NixI3755Re9fXzy5EksWLBAMq5Dhw6S4bFjx0qGv/nmG3E5aWlpevul4Hd4zJgxYjubCoVCrw1mU9WiRQvJPxx27dqF7777Tq9cVlYWduzYgaFDh+L27dsVGWKp7du3D99//72YKFcoFHBzc0OHDh0QFhYmKZv/ny0luR+Up4L3+CVLlkju6Rs3bsTx48fFYWtra0kboQWtWLFCcn/56quvcOXKFXHYzs4Obdu2FddtaveXPn36SGLasmULDh8+LA5HR0dLarwD0n1YsPbmxo0bxfvE8ePHsWjRovIIGwDQpUsXyT+DDh8+LGkv9sSJE9iwYUOh85vi8ahoBa/vNjY24ueEhAS9x/Mrg9J+xwue01988YVYO/abb77B9u3byyNsIqrmWJOViCqNyZMnw8bGRmyH9Pjx45JHiXx8fNCuXTtx+JVXXsGaNWuQmJgIQJs4qVu3Llq0aIE7d+7o1ZR4//33K03thSfdF7o/lH/55Rfs3r0bLVq0gJOTE5KTkxEdHY2kpCQAwNy5cyXra9CggWR40qRJ2LBhA6ytreHg4IBvvvlGnNa8eXM4OzuLtWB0iaH8bZx17twZJ0+elHRUYW1trZfg6dmzJ3r06IHdu3cDAGJiYhAYGIgWLVrA09MTGRkZuHr1qthMQv7mERo0aIAJEybgq6++AqCtVduyZUs0bdoUPj4+yM7ORlxcHK5evQqNRqNXk6a8RUZGYvLkyeLwtWvXJNMXLFggSXb/8ssvYu3jhIQE9OjRA05OTqhfvz5cXV1x+/ZtREdHS9rsDAkJwdtvvy1Z7rlz5/Dpp59CpVIhKCgI3t7e0Gg0iIuLk9QYAbS1Igv7Y/TcuXPYtWuXOFyrVq1S/eHaunVrKJVK8ZzYsmULmjRpAh8fH5w+fbrIGrWl5enpidGjR0vO48GDB6NVq1awtrbGsWPHxHaGn5RcxxvQtr176NAhsWZqjRo1cOvWLURFRUmuG/b29nj55Zcl8+ra7dTVItu7dy/q1auHoKAgvePSrl07vc5RKiulUonFixeLHZ5pNBpERERg7ty5aNCgAZRKJeLj43Hx4kWxbcL8bZpWBlFRUXjppZdgZmaGevXqwcfHB9bW1khISJC0cQhA0nFWYGCg5Lu6Z88etGvXTkxKv/nmm2IHh+Vp3Lhx+PTTT3H58mUAwNWrVxEUFISQkBAkJyfj1KlTkvIzZ85EjRo1Cl3e3bt3ERwcjNatWyM5OVkvSZf/HximeH9p2LAhRo8ejW+//RaANunWuXNnhISEwMLCAsePH0dmZqZYvkuXLujdu7c43LVrV8lxjYqKgqenJ2rWrFnuiXR3d3eMHTtWkgQeOHAgQkJCYGlpiWPHjhXZBqgpHo+K1rZtW6xcuVIcnj59OjZt2gRLS0v8888/JtucSVFK+x3v0aOH+H0AgDVr1ohPfphy0zZEVMkJREQmCoDRr5o1awpHjhzRW8apU6cEHx+fIuc1MzMTPvjgA715O3XqJCkXGxtbaKzFlV2zZo1k+ty5cyt8X5w7d04IDAw0ahkLFiyQzBsfHy84ODgYLOvs7Ky3riFDhuiVW7dunTh927ZtetN79OhhcNtTUlKEXr16GRV3t27dJPOq1Wph9OjRRs0bEBAgmTciIkIyfd++fZLp+/btk0yPiIgo6hDqKTh/ca/859S5c+eKLd+7d28hOTlZb73Tp083an0eHh7CgQMHCo1/zJgxkvKLFi0q0fYb8vLLLxcaz5IlSyTDvr6+knnnzp0rmb5mzRrJ9NjYWMn0Tp06SaYnJycLLVq0MLhuKysrYfjw4aX6Dst1vPfv32/08T548KDB2G/duiU0atSoyPlbtmwpJCQk6M1b3PeopIraTwUZc90t6pwSBEFYtmyZYGFhYdQ+vHnzptHbUfB8Lcn1o7hz3dfXVzK9MJ988olR2xUeHi7k5eVJ5n366acLLb9t2zajtqPgd7KoWAtz/fp1oUmTJsVuw4svvihoNBrJvAXPzRkzZggqlcrg/F27dhWysrIk85fm/lJSBX9jFDzmOllZWQbvvwVfoaGhwoMHD/TmL+z+oFAohKlTp0rGFbyGlvYanJaWJrRp08bg+m1tbYVx48ZJxr377ruS+cvzfv+kCl73DV1jShJHUb871Gp1ofvP2tpaWLBgQZHXnPL+HVtQwRgLu5aX5juuVquFkJAQg+Xt7e31fseUdpuIiARBECpHlS0iogJUKhXc3NzQsWNHLFy4EJcvX5bU3NRp0aIFzp8/j08++QRdunSBi4sLzM3NYWdnh0aNGmHKlCmIioqSvS210jB2XzRu3BhRUVH46quvEB4eDi8vL1haWkKlUsHd3R3t27fHK6+8gr179+Ktt96SzOvp6Yl9+/ahX79+cHFxKbbGb8EmAwBpTdaOHTvqdaJQ8DFjHQcHB/zxxx/Yvn07RowYgYCAANjY2MDMzAw1atRA8+bNMX78ePzwww/YunWr3r759ttvcejQIYwbNw5BQUGws7ODmZkZHBwc0LhxY4waNQrffPONXs0tU1a7dm3Mnj0boaGhqFWrFqytrWFtbQ0/Pz8MHz4cO3bswM6dO/Xa6QWA8ePHY/78+ejVqxfq1q0LJycnmJmZwdbWFgEBARgwYABWrVqFq1evomPHjgbXf/fuXcmjm/b29pg4cWKpt2vJkiX44osv0LRpU1haWsLR0RGdOnXC1q1by7W5AEDbFumBAwcwe/Zs1K1bFxYWFnBzc8PQoUNx6tQp9OzZs1zXX5TSHO/Q0FAcOHAAb7zxBjp16gQvLy9YWFiI140uXbrgo48+wqVLl/Rqkudff2RkJJYtW4aOHTuiZs2aMDc3h4uLC7p3746vv/4aR48ehbu7e3nvigr34osv4uLFi3jjjTcQEhKCGjVqwMzMDDY2NggICED//v2xZMkSXL9+Hd7e3nKHWyKDBg3Cp59+imHDhqFRo0Zwd3eHSqWCpaUlvL290adPH3z77bfYunWr3jX/m2++wSuvvIKAgACDndhUFH9/f5w4cQJff/01evfuDQ8PD6hUKtjY2CAwMBBjx47FkSNHsGzZsmLbkh0wYABOnDiBQYMGwcXFBZaWlggKCsIHH3yAnTt36nW8ZYr3F0tLS/z000/4888/MXz4cPj7+8Pa2hoWFhaoVasWBgwYgB9//BH79u0z2MnkJ598gk8++QQNGzaEhYUFnJycEBYWhr///rvcr8F2dnbYt28f5s2bh8DAQPEaPHz4cJw+fVrv0e+Cw6Z4PCqSSqXC3r178frrr8PPzw8qlQqurq4YMmQITpw4Uej13dSV5juuUqmwe/duvPjii/D29oZKpYKnpyfGjBmDc+fOPXHnsERERVEIQjFdCxIREREREVUhY8aMkTxKvG/fPsk/A6nixcXFwc/PT2/8rVu3EBISIrY/rVQqERcXV+n+sUFERFUf22QlIiIiIiIiWfn7+yM4OFhsdz03NxexsbH4/fffJe1iv/DCC0ywEhGRSWKSlYiIiIiIiGR39uxZnD17ttDpY8eOxaefflqBERERERmPSVYiIiIiIiKS1dKlS/H333/j3LlzSExMxOPHj2FnZwc/Pz+0a9cOERERaNOmjdxhEhERFYptshIRERERERERERGVQtHdQxMRERERERERERFRkZhkJSIiIiIiIiIiIioFJlmJiIiIiIiIiIiISoFJViIiIiIiIiIiIqJSYJKViIiIiIiIiIiIqBSYZCUiIiIiIiIiIiIqBSZZiYiIiIiIiIiIiEqBSVYiIiIiIiIiIiKiUmCSlYiIiIiIiIiIiKgUmGQlIiIiIiIiIiIiKgUmWYmIiIiIiIiIiIhKgUlWIiIiIiIiIiIiolJgkpWIiIiIiIiIiIioFJhkJSIiIiIiIiIiIioFJlmJiIiIiIiIiIiISoFJViIiIiIj7N+/HwqFAps3b5Y7FJP3/fffo0GDBlCpVHBycirx/HFxcVAoFFiyZEnZB0elpjs+a9eurfB1jxkzBn5+fhW+XiIiIqLiMMlKRERE1ZZCoTDqtX//flniu3jxIhQKBaysrJCcnCxLDCV16dIljBkzBgEBAfjqq6/w5ZdfFlp2x44dmDdvXsUFZ0D+46xUKuHl5YWePXvKdszLUnR0NObNm4e4uDijys+bN6/I70FCQkL5Bvyv+Ph4zJs3D2fOnKmQ9RERERGVBXO5AyAiIiKSy/fffy8Z/u6777B792698UFBQbh48WJFhgYAWLduHTw8PPDo0SNs3rwZEyZMqPAYSmr//v3QaDT49NNPUbdu3SLL7tixAytWrJA90dqjRw+MHj0agiAgNjYWn3/+Obp27Yrt27cjLCxM1thKIzo6GvPnz0fnzp1LVPtz5cqVsLOz0xv/JLWSn0R8fDzmz58PPz8/NGvWTDLtq6++gkajqZA4iIiIiEqCSVYiIiKqtkaNGiUZ/ueff7B792698QAqPMkqCAI2bNiAESNGIDY2FuvXr68USdb79+8DqLiEXFmoV6+e5Jj/73//Q3BwMJYuXVqpk6xPasiQIXBxcZE7DINUKpXcIRAREREZxOYCiIiIiEpAo9Hg3XffRe3atWFlZYVu3brh6tWreuWOHTuG3r17w9HRETY2NujUqRMOHz5s9HoOHz6MuLg4DBs2DMOGDcOBAwdw+/Ztg/HMmzcPXl5esLGxQZcuXRAdHQ0/Pz+MGTNGUjY5ORkzZsyAt7c3LC0tUbduXSxatMjomoGff/45GjVqBEtLS3h5eWHKlCmSZgz8/Pwwd+5cAICrqysUCkWhtVTHjBmDFStWAJA+sl/Ql19+iYCAAFhaWiIkJAQnTpzQK3Pp0iUMGTIENWvWhJWVFVq1aoWtW7catU2GNGnSBC4uLoiNjRXH/fXXX+jYsSNsbW3h5OSEAQMG6CXedY/bX7p0CUOHDoWDgwOcnZ0xffp0ZGVl6a1n3bp1aNmyJaytrVGzZk0MGzYMt27dKja+GzduYPLkyahfvz6sra3h7OyMp59+WtIswNq1a/H0008DALp06VIhTV8YexySk5Px0ksvwc/PD5aWlqhduzZGjx6NpKQk7N+/HyEhIQCAsWPHinHr2n811Cbr48eP8corr4jndf369bFkyRIIgiApp1AoMHXqVPz6669o3LgxLC0t0ahRI/zxxx/lsj+IiIioemFNViIiIqIS+OCDD6BUKvHqq68iJSUFixcvxsiRI3Hs2DGxzF9//YWwsDC0bNkSc+fOhVKpxJo1a9C1a1ccPHgQrVu3LnY969evR0BAAEJCQtC4cWPY2Nhg48aNeO211yTl3nzzTSxevBj9+vVDr169EBUVhV69eukl9TIyMtCpUyfcuXMHEydOhI+PD44cOYI333wTd+/exdKlS4uMZ968eZg/fz66d++OSZMm4fLly1i5ciVOnDiBw4cPQ6VSYenSpfjuu+/wyy+/iI+cBwcHG1zexIkTER8fb7B5Bp0NGzYgLS0NEydOhEKhwOLFizFo0CBcv35drNF44cIFtG/fHrVq1cLMmTNha2uLTZs2YeDAgdiyZQv+97//FbuvC3r06BEePXokNnewZ88ehIWFoU6dOpg3bx4yMzOxfPlytG/fHpGRkXpJv6FDh8LPzw/vv/8+/vnnHyxbtgyPHj3Cd999J5Z59913MXv2bAwdOhQTJkxAYmIili9fjtDQUJw+fbrImsAnTpzAkSNHMGzYMNSuXRtxcXFYuXIlOnfujOjoaNjY2CA0NBTTpk3DsmXL8NZbbyEoKAgAxPeiPHz4UG+cubl5kTEZexzS09PRsWNHXLx4EePGjUOLFi2QlJSErVu34vbt2wgKCsI777yDOXPm4Pnnn0fHjh0BAE899ZTB9QqCgP79+2Pfvn0YP348mjVrhj///BOvvfYa7ty5g08++URS/tChQ/j5558xefJk2NvbY9myZRg8eDBu3rwJZ2fnYvcNERERUaEEIiIiIhIEQRCmTJkiFPbzaN++fQIAISgoSMjOzhbHf/rppwIA4dy5c4IgCIJGoxECAwOFXr16CRqNRiyXkZEh+Pv7Cz169Cg2DrVaLTg7OwuzZs0Sx40YMUJo2rSppFxCQoJgbm4uDBw4UDJ+3rx5AgAhIiJCHLdgwQLB1tZWuHLliqTszJkzBTMzM+HmzZuFxnP//n3BwsJC6Nmzp5CXlyeO/+yzzwQAwjfffCOOmzt3rgBASExMLHY7C9vfsbGxAgDB2dlZePjwoTj+t99+EwAI27ZtE8d169ZNaNKkiZCVlSWO02g0wlNPPSUEBgYWGwMAYfz48UJiYqJw//594dixY0K3bt0EAMJHH30kCIIgNGvWTHBzcxMePHggzhcVFSUolUph9OjRetvev39/yTomT54sABCioqIEQRCEuLg4wczMTHj33Xcl5c6dOyeYm5vrjS8oIyNDb9zRo0cFAMJ3330njvvpp58EAMK+ffuK3Q/54zf0ql+/vlhOd3zWrFkjjjP2OMyZM0cAIPz8889669d9X06cOKG3fJ2IiAjB19dXHP71118FAMLChQsl5YYMGSIoFArh6tWr4jgAgoWFhWRcVFSUAEBYvnx58TuIiIiIqAhsLoCIiIioBMaOHQsLCwtxWFfT7vr16wCAM2fOICYmBiNGjMCDBw+QlJSEpKQkPH78GN26dcOBAweKfTx/586dePDgAYYPHy6OGz58OKKionDhwgVx3N69e5Gbm4vJkydL5n/xxRf1lvnTTz+hY8eOqFGjhhhTUlISunfvjry8PBw4cKDQePbs2QO1Wo0ZM2ZAqfzv5+Nzzz0HBwcHbN++vcjteVLPPPMMatSoIQ4X3NcPHz7EX3/9haFDhyItLU3cpgcPHqBXr16IiYnBnTt3il3P6tWr4erqCjc3N7Rp0waHDx/Gyy+/jBkzZuDu3bs4c+YMxowZg5o1a4rzBAcHo0ePHtixY4fe8qZMmSIZ1h0PXdmff/4ZGo0GQ4cOlRwLDw8PBAYGYt++fUXGa21tLX7OycnBgwcPULduXTg5OSEyMrLY7S3Oli1bsHv3bslrzZo1hZYvyXHYsmULmjZtarCGsaHmIoqzY8cOmJmZYdq0aZLxr7zyCgRBwM6dOyXju3fvjoCAAHE4ODgYDg4O4jlFRERE9KTYXAARERFRCfj4+EiGdUnAR48eAQBiYmIAABEREYUuIyUlRZI8LGjdunXw9/eHpaWl2N5rQEAAbGxssH79erz33nsAtG1zAhAfa9epWbOm3vJjYmJw9uxZuLq6GlynrsMqQ3TrqV+/vmS8hYUF6tSpI04va8Xt66tXr0IQBMyePRuzZ882uIz79++jVq1aRa5nwIABmDp1KhQKBezt7dGoUSPY2toCKHzbAe2j93/++SceP34slgeAwMBASbmAgAAolUqxzdSYmBgIgqBXTqe4zp0yMzPx/vvvY82aNbhz546k7dGUlJQi5zVGaGhoiTq+KslxuHbtGgYPHlzqGHVu3LgBLy8v2NvbS8brmkUoeG4WPKcA7XmlO6eIiIiInhSTrEREREQlYGZmZnC8LtGlq6X64YcfolmzZgbL2tnZFbr81NRUbNu2DVlZWQaTcBs2bMC7775b4lp/Go0GPXr0wOuvv25wer169Uq0vIpg7L5+9dVX0atXL4NlCyagDalduza6d+/+hFEWr+Cx0mg0UCgU2Llzp8FtLOr8ALQ1Y9esWYMZM2agXbt2cHR0hEKhwLBhw4zuxKwsldVxqAjFnVNERERET4pJViIiIqIypHsU2cHB4YkSdz///DOysrKwcuVKvdqEly9fxttvv43Dhw+jQ4cO8PX1BaCtSejv7y+We/DggV7NvICAAKSnpz9RTLr1XL58GXXq1BHHq9VqxMbGPnGC8kkeD89PF4tKpSq3JGn+bS/o0qVLcHFxkdRiBbQ1VfMfj6tXr0Kj0YgdZAUEBEAQBPj7+z9Rcnvz5s2IiIjARx99JI7LyspCcnKypFxp96+xSnIcAgICcP78+SLLlCRuX19f7NmzB2lpaZLarJcuXRKnExEREVUEtslKREREVIZatmyJgIAALFmyBOnp6XrTExMTi5x/3bp1qFOnDl544QUMGTJE8nr11VdhZ2eH9evXAwC6desGc3NzrFy5UrKMzz77TG+5Q4cOxdGjR/Hnn3/qTUtOTkZubm6hMXXv3h0WFhZYtmyZpMbf6tWrkZKSgj59+hS5TYXRJScLJgeN5ebmhs6dO+OLL77A3bt39aYXt6+N4enpiWbNmuHbb7+VxHn+/Hns2rUL4eHhevOsWLFCMrx8+XIAQFhYGABg0KBBMDMzw/z58/VqUAqCgAcPHhQZk5mZmd58y5cvR15enmRcafevsUpyHAYPHoyoqCj88ssveuV021SSuMPDw5GXl6d3zn/yySdQKBTiPiciIiIqb6zJSkRERFSGlEolvv76a4SFhaFRo0YYO3YsatWqhTt37mDfvn1wcHDAtm3bDM4bHx+Pffv26XXio2NpaYlevXrhp59+wrJly+Du7o7p06fjo48+Qv/+/dG7d29ERUVh586dcHFxkdQIfO2117B161b07dsXY8aMQcuWLfH48WOcO3cOmzdvRlxcXKHtcLq6uuLNN9/E/Pnz0bt3b/Tv3x+XL1/G559/jpCQEIwaNeqJ9lXLli0BANOmTUOvXr1gZmaGYcOGlWgZK1asQIcOHdCkSRM899xzqFOnDu7du4ejR4/i9u3biIqKeqLY8vvwww8RFhaGdu3aYfz48cjMzMTy5cvh6OiIefPm6ZWPjY0Vj8fRo0exbt06jBgxAk2bNgWgrc25cOFCvPnmm4iLi8PAgQNhb2+P2NhY/PLLL3j++efx6quvFhpP37598f3338PR0RENGzbE0aNHsWfPHjg7O0vKNWvWDGZmZli0aBFSUlJgaWmJrl27ws3Nrcjt3bx5s8EmC3r06AF3d3eD8xh7HF577TVs3rwZTz/9NMaNG4eWLVvi4cOH2Lp1K1atWoWmTZsiICAATk5OWLVqFezt7WFra4s2bdpIagfr9OvXD126dMGsWbMQFxeHpk2bYteuXfjtt98wY8YMSSdXREREROVKICIiIiJBEARhypQpQmE/j/bt2ycAEH766SfJ+NjYWAGAsGbNGsn406dPC4MGDRKcnZ0FS0tLwdfXVxg6dKiwd+/eQtf/0UcfCQCKLLN27VoBgPDbb78JgiAIubm5wuzZswUPDw/B2tpa6Nq1q3Dx4kXB2dlZeOGFFyTzpqWlCW+++aZQt25dwcLCQnBxcRGeeuopYcmSJYJarS5q1wiCIAifffaZ0KBBA0GlUgnu7u7CpEmThEePHknKzJ07VwAgJCYmFru83Nxc4cUXXxRcXV0FhUIh7nvdPv3www/15gEgzJ07VzLu2rVrwujRowUPDw9BpVIJtWrVEvr27Sts3ry52BgACFOmTCm23J49e4T27dsL1tbWgoODg9CvXz8hOjpaUka37dHR0cKQIUMEe3t7oUaNGsLUqVOFzMxMvWVu2bJF6NChg2BrayvY2toKDRo0EKZMmSJcvny5yFgePXokjB07VnBxcRHs7OyEXr16CZcuXRJ8fX2FiIgISdmvvvpKqFOnjmBmZiYAEPbt21focnXxF/bSzVvYOW/scXjw4IEwdepUoVatWoKFhYVQu3ZtISIiQkhKShLL/Pbbb0LDhg0Fc3NzyboiIiIEX19fyfLS0tKEl156SfDy8hJUKpUQGBgofPjhh4JGo5GUK+xYG9pvRERERCWlEAS28k5ERERUlSQnJ6NGjRpYuHAhZs2aJXc41ca8efMwf/58JCYmFlormIiIiIiqJrbJSkRERFSJZWZm6o1bunQpAKBz584VGwwRERERUTXFNlmJiIiIKrEff/wRa9euRXh4OOzs7HDo0CFs3LgRPXv2RPv27eUOj4iIiIioWmCSlYiIiKgSCw4Ohrm5ORYvXozU1FSxM6yFCxfKHRoRERERUbXBNlmJiIiIiIiIiIiISoFtshIRERERERERERGVApOsRERERERERERERKVQ5dtk1Wg0iI+Ph729PRQKhdzhEBERERERERERUSUgCALS0tLg5eUFpbLouqpVPskaHx8Pb29vucMgIiIiIiIiIiKiSujWrVuoXbt2kWWqfJLV3t4egHZnODg4yBxN6eXk5GDXrl3o2bMnVCqV3OEQlQue51Qd8Dyn6oDnOVUHPM+pOuB5TtUBz3MyJDU1Fd7e3mJ+sShVPsmqayLAwcGhyiRZbWxs4ODgwC89VVk8z6k64HlO1QHPc6oOeJ5TdcDznKoDnudUFGOaIGXHV0RERERERERERESlwCQrERERERERERERUSkwyUpERERERERERERUClW+TVYiIiIiIiIiIiKqnvLy8pCTk2NwmkqlgpmZWZmsh0lWIiIiIiIiIiIiqlIEQUBCQgKSk5OLLOfk5AQPDw+jOrcqCpOsREREREREREREVKXoEqxubm6wsbHRS6IKgoCMjAzcv38fAODp6Vmq9THJSkRERERERERERFVGXl6emGB1dnYutJy1tTUA4P79+3BzcytV0wHs+IqIiIiIiIiIiIiqDF0brDY2NsWW1ZUprN1WYzHJSkRERERERERERFWOMe2slrYtVh0mWYmIiIiIiIiIiIhKgUlWIiIiIiIiIiIiolJgkpWIiIiIiIiIiIioFJhkJSIiIiIiIiIiIioFJlmJiIiIiIiIiIioytFoNGVSxhjmZbIUIiIiIiIiIiIiIhNgYWEBpVKJ+Ph4uLq6wsLCAgqFQlJGEASo1WokJiZCqVTCwsKiVOtkkpWIiIiIiIiIiIiqDKVSCX9/f9y9exfx8fFFlrWxsYGPjw+UytI98M8kKxEREREREREREVUpFhYW8PHxQW5uLvLy8gyWMTMzg7m5uV4t1yfBJCsRERERERERERFVOQqFAiqVCiqVqtzXxY6viIiIiIiIiIiIiEqBSVYiIiIiIiIiIiKiUmCSlYiIiIiIiIiIiKgUmGQlIiIiIiIiIiIiKgUmWYmIiIiIiIiIiIhKwVzuAIiIiIiIiIiIiKgIqanAgwdyR/EfCwvAywtQKOSOxGQwyUpERERERERERGTKUlOBjAzA0lLuSICsLMDcnAnWAphkJSIiIiIiIiIiMkWpqdqEZmYmYGMjf5L14UPtu729vHGYILbJSkREREREREREZIoWLwY8PYHVq7WP6Mvp6lUgOBiYMEH+WEwQk6xERERERERERESmaNs2bW3WGjXkfzx/zx5AEACVCrC2ljcWE8QkKxERERERERERkam5cQM4exZQKoFu3eSOBti9W/seHi5/wtcEMclKRERERERERERkarZt0743bw54eMgby8OHwIkT2s8DBsgbi4likpWIiIiIiIiIiMjUbN2qfe/USVubVU779gF5eUD9+toX6WGSlYiIiIiIiIiIyJSkpgL792s/9+ghaygA/msqoHdvwMxM3lhMFJOsREREREREREREpmTXLiAnB/D1BYKC5I1Frf4v4du/v6yhmDJzuQMgIiIiIiIiIiKifJo3B958ExAEQKWSNxaNBnj7beDIEaB9e3ljMWFMshIREREREREREZmSgABg0iQgI0PuSAArK21nVyNGAJaWckdjsthcABERERERERERkSlRq4HMTNNJaubkAHZ2ckdh0liTlYiIiIiIiIiIyFRs2qRNsNavD/j4yBtLbCzw55/aZgLq1pU3FhPHmqxERERERERERESmYu5cYMwYbRuocvv9d2DBAmDRItOpVWuimGQlIiIiIiIiIiIyBTExwKVLgLk50K2b3NEAu3dr38PDAYVC3lhMHJOsREREREREREREpmDbNu17q1aAi4u8sSQlAZGR2s8DBsgbSyXAJCsREREREREREZEp0CVZO3WSv+bo3r2AIACNGgF16sgbSyXAJCsREREREREREZHcHj0CDh7Ufu7ZU95YgP+aCujdGzAzkzeWSoBJViIiIiIiIiIiIrn98QeQlwcEBACBgfLGkpUF7N+v/dy/v6yhVBayJlnz8vIwe/Zs+Pv7w9raGgEBAViwYAEEQRDLCIKAOXPmwNPTE9bW1ujevTtiYmJkjJqIiIiIiIiIiKiMnT6tfe/cWf6ao5cuaRO+7u5A27byxlJJmMu58kWLFmHlypX49ttv0ahRI5w8eRJjx46Fo6Mjpk2bBgBYvHgxli1bhm+//Rb+/v6YPXs2evXqhejoaFhZWckZPhERERERERERUdlYvBgYOFCb3JRbs2bA0aPAgweAhYXc0VQKsiZZjxw5ggEDBqBPnz4AAD8/P2zcuBHHjx8HoK3FunTpUrz99tsY8G8vZt999x3c3d3x66+/YtiwYbLFTkREREREREREVGbUasDFxXSSmhYWQOvWckdRacjaXMBTTz2FvXv34sqVKwCAqKgoHDp0CGFhYQCA2NhYJCQkoHv37uI8jo6OaNOmDY4ePSpLzERERERERERERGVKo9G2g6pWy59k1WiAnBxApQL4FLnRZK3JOnPmTKSmpqJBgwYwMzNDXl4e3n33XYwcORIAkJCQAABwd3eXzOfu7i5OKyg7OxvZ2dnicGpqKgAgJycHOTk55bEZFUq3DVVhW4gKw/OcqgOe51Qd8Dyn6oDnOVUHPM+pOpD1PBcEmLdsCcHdHXmvvQY4OlZ8DPkoP/0Uyt9/R96kSRAmTdImXKupkpwPsiZZN23ahPXr12PDhg1o1KgRzpw5gxkzZsDLywsRERFPtMz3338f8+fP1xu/a9cu2NjYlDZkk7F79265QyAqdzzPqTrgeU7VAc9zqg54nlN1wPOcqgM5znO7W7fQ7fx5aC5dwp8TJiAvMrLCY8gv9LffUOPqVZy7ehU3d+6UNRa5ZWRkGF1WIQiCUI6xFMnb2xszZ87ElClTxHELFy7EunXrcOnSJVy/fh0BAQE4ffo0mjVrJpbp1KkTmjVrhk8//VRvmYZqsnp7eyMpKQkODg7luj0VIScnB7t370aPHj2gUqnkDoeoXPA8p+qA5zlpNBrcunUL6enpsLOzg7e3N5RKWVtyKnM8z6k64HlO1QHPc6oO5DzPlR9+CLNZs6Bp3x55GzYACkWFrl8iIQGq1q0hKBTIvXIF8PWVLxYTkJqaChcXF6SkpBSbV5S1JmtGRobeHxNmZmbQaDQAAH9/f3h4eGDv3r1ikjU1NRXHjh3DpEmTDC7T0tISlpaWeuNVKlWVuhlUte0hMoTnOVUHPM+rp4sXL2LHjp1IT08Tx9nZ2SM8PAxBQUGyxJSSoUZSuhqpWTlwsFbBxdYCjjZl0x4Yz3OqDnieU3XA85yqA1nO8x07AADKLl2gNJc1VQfs2wcAUAQHQ1WnDlDFKgGUVEnOBVmPXL9+/fDuu+/Cx8cHjRo1wunTp/Hxxx9j3LhxAACFQoEZM2Zg4cKFCAwMhL+/P2bPng0vLy8MHDhQztCJiIioDMTFxcHf3x+PHj2Ck5OT3OFUiIsXL2LTpk0QAOSvo5CWnoZNmzZh6NChFZ5ojU/OxBtbzuJgTJI4LjTQBR8MDoaXk3WFxkJERERUrSQlAbrO3Xv2lDcWANi1S/seHl7tE6wlJeveWr58OYYMGYLJkycjKCgIr776KiZOnIgFCxaIZV5//XW8+OKLeP755xESEoL09HT88ccfsGLvZkRERJXCoUOHEBYWhho1asDJyQlNmzbF4sWLoVar5Q6tSHFxcVAoFEhOTi60zF9//QVHR0fcuHFDHHfz5k04OTlhl+4Haj4ajQY7duzUS7Di32EBwI6dO8WneipCSoZaL8EKAAdikjBzy1mkZJj2cSIiIiKq1HbsADQaoEEDwM9P3lgyMoBDh7SfBwyQN5ZKSNYkq729PZYuXYobN24gMzMT165dw8KFC2Fh8d+jaQqFAu+88w4SEhKQlZWFPXv2oF69ejJGTURERMb6/fffERYWhl69eiEmJgbJycn48ccfER0djbt378odXql17doVzz77LMaNGwdBECAIAsaOHYvhw4ejp4GaCDdv3kR6eppeglVHASA9LQ03b94s17jzS0pX6yVYdQ7EJCEpnUlWIiIionKzdav2vVMnwMxM3lgOHgSys4FatYAWLeSNpRJivV8iIiIqF4IgYNq0aXjjjTcwY8YMuLi4AAAaNGiAtWvXwtdAI/qCIGDZsmVo0KABnJyc0LlzZ1y8eFGc7ufnh/fffx8hISGwtbVFWFgYHj58iMmTJ8PJyQmBgYE4cuSIWD4nJwdz5sxBQEAAnJ2d0b9/f8THx4vTFQoFVq1ahcaNG8PBwQH9+/dHSkoKAKB169YAgNq1a8POzg7r1683uJ2LFi3CjRs38Nlnn+Gzzz5DXFwclixZYrBsWlqawfFPWq4spGblFDk9rZjpRERERFQK3boBbdsCPXrIHQng7g706wcMGQKw/eUSY5KViIiIykVMTAxiY2MxfPhwo+dZuXIlVq9ejW3btiEpKQmDBg1Cv379JE0L/Pjjj/j5558RHx+PW7duoW3btujevTsePHiAESNG4IUXXhDLzpo1C4cPH8ahQ4dw9+5d1KtXD8OGDZOsc9OmTfjrr79w8+ZN3L59G5988gkA4Pjx4wCA27dvIz09HSNHjjQYs62tLdauXYu33noLb731FtauXQtbW1uDZe3t7Y3aD8aWKwsOVkX/gLYvZjoRERERlcK4ccDatUCrVnJHAjRrBrz3HjB/vtyRVEpMshIRUbFSMtS4dj8dp28+wrXEdLbRSEZJTEwEANSqVcvoeVasWIF33nkHgYGBMDc3x7Rp05CZmYljx46JZSZNmgRvb284OjoiPDwczs7OGDRoEMzMzPDMM8/g/PnzUKvVEAQBn3/+OT7++GN4enrCwsICCxcuxOHDh3Hr1i1xea+//jrc3Nzg5OSEwYMH49SpUyXe1saNG8Pa2hpeXl5o3759oeV8fHxgZ2cPoZDpAgA7e3v4+PiUOIYn5WJngdBAF4PTQgNd4GJnYXBadcfrIhERUfVTLvf/rCwgJ8c0ao7q4mA/SE/EXO4AiIjItLHXcXpSuuYB7ty5g4CAAKPmiYuLw6hRo2CWrz0qtVqN27dvi8Pu7u7iZxsbG71hQRCQkZGBnJwcPH78GKGhoVAo/msF1cLCArdu3YK3tzcAwMPDQ5xma2v7RI/qT58+HW3btsWVK1fw8ccf49VXXzVYTqlUIjw8DJs2bdLr/Eo3HB4WBmUF9uTqaGOBDwYHY+aWszhQ4Hu+aHAwHG2YZC2I10UiIqLqp8zv/4IAbNwING4MWJjA760jR7RxNG1qGvFUQkyyEhFRoYrrdXz58OZMwFCh6tWrBz8/P/zwww+YNWuWUfN4e3tj6dKl6N27d6nX7+zsDBsbGxw7dgwNGjQo8fzGJjp/++037NixAxcuXMD169fRvXt39OvXD/Xr1zdYPigoCEOHDsWOHTuRnv5fQtfe3h7hYWEICgoqcayl5eVkjeXDmyMpXY20rBzYW6ngYmfB77cBvC4SERFVP+Vy/z93Dhg5ErCxASIjyzDaJzRnDnDxIvD118D48XJHUykxyUpERIUyptdxJhOoMAqFAsuXL8fw4cPh4OCAESNGwNnZGVeuXMGiRYswZ84cvXmmTJmCOXPmwN/fH/Xr10dqair27duHrl27lridUqVSiRdeeAGvvPIKVq1aBW9vbzx48AB79uzBM888U+z8rq6uUCqVuHbtGlq2bGmwzIMHDzBx4kSsWLECbm5ucHNzw5QpUzBmzBgcPny40ERtUFAQ6tevj5s3byItLQ32/zYRUJE1WAtytGFS1Ri8LhIREVU/5XL/37pV+966NWBnV8oIS+n2bW2CVakEevWSN5ZKjG2yEhFRodjrOJVW3759sXPnTmzfvh0BAQFwcnLCkCFD0KBBA3h6euqVnzp1KsaMGYNBgwbBwcEBQUFB2LBhwxOv//3330e7du3EJG3Lli2xa9cuo+a1trbG3LlzERYWBicnJ4NxTJ48GaGhoRg6dKg47p133kFKSgqWLFlS5PKVSiX8/PzQpEkT+Pn5yZpgJePxukhERFT9lMv9f9s27XvnzoBCUWTRcrd7t/a9RQvAy0veWCox1mQlIqJCsddxKgsdOnTAH3/8YXCan58fBOG/bqAUCgUmT56MyZMnGywfFxcnGZ43b16Ry7OwsMDbb7+Nt99+2+Dy8pcFgBkzZmDGjBni8Jw5cwzWuNX58ccf9cZZWloiOjq60HmocuN1kYiIqPop8/t/QgJw/Lj2c8+eTxhVGdIlWfv00dZmpSfCPUdERIVir+NERFK8LhIREVU/ZX7///137XvjxsC/nbHKJi1N2+kVAPTrJ28slRyTrEREVChdr+MFf1Cw13Eiqq54XSQiIqp+yvz+n7+pALlrjv79N5CTA/j5AcHB8sZSybG5ACIiKhJ7HScikuJ1kYiIqPops/u/Wg3s3av93L172QdaUn//rX3v1QtQsdmj0mCSlYiIisVex4mIpHhdJCIiqn7K5P5vYQFcvAj8+CPQrFmZxFUq776rrVHbooXckVR6bC6AiIiIytUPP/yAoUOHFltu7dq1aFbED81ff/0Vfn5+ZRdYPs899xy++uqrclk2EREREZGEgwPQu7fp1Bzt1Alo0kTuKCo91mQlIiKicqPRaPDWW2/ht99+kzsU0ZgxY+Dk5ISlS5eK42bNmoWnnnoKo0ePhqWlpXzBEREREVHVl54OmJtISi47G7Cx0dawpVJhTVYiIiIqNzt27EDNmjXRxMT/M+7n54d69eph8+bNcodCRERERFVVZKS21ujq1YAp/GN/9Ghg4UIgI0PuSKoEJlmJSiklQ41r99Nx+uYjXEtMR0qGWu6QiIhMxtatW9G1a1dx+OrVq+jVqxdq1qyJgIAASW3Sgm7fvo2ePXvCwcEBLVu2RHR0tGR6eno6pk6dCh8fH7i5uWH06NFISUkBAGRnZ2PcuHFwcXGBo6MjGjdujBMnTmDZsmVYv349Pv/8c9jZ2aFRo0bi8rp164atW7eW7Q6opHhvIyIiqpx4DzddKRlqPNzwE3DgADL27kNqnswBxcZqO+D64Qdt8wVUaiZSN5mocopPzsQbW87iYEySOC400AUfDA6Gl5O1jJEREZmGM2fO4IUXXgAA5Obmom/fvujfvz9+++03XLlyBb1794abmxtGjBihN++IESPg7++PhIQE3Lx5E2FhYZLp48aNg7m5Oc6ePQuVSoUJEyZg6tSp+P777/Htt98iKioKV69ehaOjI2JiYmBtbY1p06YhMjJSr7kAAGjYsCHWrVtXbvuisuC9jYiIqHLiPdx06Y7NzO83oSaA5YIP7vx2AW+FB8HDUaZjs3u39j0kBPDwkCeGKoY1WYmeUEqGWu8GBgAHYpIwc8tZ/seQiAjAo0eP4PDvf8aPHTuGu3fvYuHChbCyskJwcDCmTp2KtWvX6s1369YtHDx4EB9++CFsbGzQoEEDMVkLAImJidiyZQtWrFgBJycn2Nra4p133sGPP/6IvLw8qFQqpKWl4eLFixAEAfXq1YO3t3eRsTo4OODRo0dluv2VDe9tRERElRPv4aZLd2yunrqIRvevQwMFDvk1wz/XH+K9HReRminTsdElWcPDAYVCnhiqGCZZiZ5QUrpa7wamcyAmCUnpvIkREdWoUQOpqakAtI//e3l5wSJfo/p16tTB7du39eaLj4+HlZUV3NzcxHG+vr7i57i4OGg0Gvj7+8PJyQlOTk4ICQmBUqlEQkICnn32WYwZMwYvvPACXFxcMGbMGCQlGb5m66SmpqJGjRql3eRKjfc2IiKiyon3cNOlOzbdrp0AAES7+eO+nfY35z/XH+Lh45yKDyo5GTh2TPt5wICKX38VxSQr0RNKzSr6QphWzHQiouqgWbNmuHTpEgCgdu3aiI+PR07Of9fHuLg41K5dW28+Ly8vZGVl4f79++K4mzdvip+9vb2hVCoRHx+P5ORk8ZWVlYVatWrB3Nwcb731FqKionDx4kXcvHkT8+fPBwAolYZ//kRHR6NZs2ZlsdmVFu9tRERElRPv4aZLd2y6XdUmNf/xbgJB8d/v0fRsGY7N/v1AXh4QEAA0bFjx66+imGQlekIOVqoip9sXM52IqDro168f9u3bBwBo3bo13N3dMWfOHGRnZ+P8+fNYvnw5IiIi9Obz9vZG+/btMXPmTGRmZuLy5cv44osvxOkeHh4YOHAgpk6dKtZQTUhIwC+//AIA+Ouvv3DmzBnk5ubC1tYWVlZWMDfXNkXv7u6O69evQxAEyTr/+usv9O3bt1z2Q2XBexsREVHlxHu46XKwUsFGnYmnbkQBAA74N5NMt7OU4djomgoICwPMzCp+/VUUk6xET8jFzgKhgS4Gp4UGusDFzsLgNCKi6iQ8PBxJSUk4f/48VCoVfv/9d5w6dQoeHh7o378/Xn75ZYOdXgHAhg0bcOvWLbFjrHHjxkmmr127VmwmwMHBAR07dsSpU6cAAPfu3cPw4cPh5OQEf39/ODo6Yu7cuQCACRMm4M6dO6hZsyaCg4MBADdu3MClS5fw9NNPl+PeMH3V/d7GHpmJiKiyqu73cFPmYmeBXh7mOOLbFNdreCHG2Uec1rZOTdS0lSHJ6uUFuLmxqYAyphAKVuOoYlJTU+Ho6IiUlBSx443KLCcnBzt27EB4eDhUKv4nSm7xyZmYueUsDhTovXHR4GB4svfGJ8bznKqD6nSeb9y4Eb/++it+/PFHuUMp1PPPP4+QkBA899xzcociu7K8t1Wm85w9MtOTqkznOdGT4nleOfDv09Ipz/M8PjkT73x/GNdPX0SytSMAbYJ1VngQ3B1lODZqNZCdDfj5AZaWFb/+SqQkeUXzCoqJqErycrLG8uHNkZSuRlpWDuytVHCxs4CjDf9LSESkM3z4cAwfPlzuMIr05Zdfyh2CyaiO97biemRePrx5ld5+IiKqGqrjPbyy8HKyxuJedfCopTPSVJaws1Shpq0KDtYyHZvsbMDGhgnWMsYkK1EpOdrwpkVERFVLdbu3GdMjc3XaH0REVHlVt3t4pRAfDzx+DAcIcPCqAVjIeHwEAThzBqhdG3B3ly+OKoptshIRERFRtcYemYmIiKjcfPYZUK8e8MEH8iZYAeDaNaBvX6BXL3Z4VQ6YZCUiIiKiao09MhMREVG52bpV+96ggbxxAMCuXdr3+vUBOzt5Y6mCmGQlIiIiomqNPTITERFRuYiNBS5c0NYa7d5d7miA3bu17337AgqFvLFUQUyyEhEREVG15mhjgQ8GB+slWnU9MrNtOyIiInoi27Zp31u0ANzc5I3l4UPg5Ent53795I2limLHV0RERERU7bFHZiIiIipzuqYCOncGlDLXc9y7F9BogKAgIDBQ3liqKCZZiYiIiIjAHpmJiIioDKWkAH//rf3cs6e8sQD/NRXQuzc7vSonbC6AiIiIiIiIiIioLP3xB5CbC9Spo+1oSk7Z2cD+/drP/fvLGkpVxpqsREREREREREREZSksDFizBkhKkr/mqEoFfPedtmZtu3byxlKFMclKRERERERERERUlhwcgG7dgIwMuSPRtgfbsCHQpg1gaSl3NFUWmwsgIiIiIiIiIiIqS2o1kJlpOknN3FzAzk7uKKo01mQlIiIiIiIiIiIqKytWAPHxQIcOQNOm8sZy+TLw1VdA165A3bryxlLFsSYrERERERERERFRWVm2DHjvPeDSJbkjAXbuBDZuBH74wXRq1VZRTLISERERERERERGVhcuXgStXtJ1Nde0qdzTAnj3a9z59AIVC3liqOCZZiYiIiIiIiIiIysK2bdr3Vq0AFxd5Y7l/Hzh9Wvu5f395Y6kG2CYrERFRCaRkqJGUrkZqVg4crFVwsbWAo42F3GEREREREZEp0CVZO3eWv+aorhZrcDDg7y9vLNUAk6xERERGik/OxBtbzuJgTJI4LjTQBR8MDoaXk7WMkRERERERkewePAAOH9Z+7tlT3lgAYPdu7XtYGKDkw+zljXuYiIjICCkZar0EKwAciEnCzC1nkZKhlikyIiIiIiIyCTt3Anl5QL16QECAvLFkZgIHDmg/s6mACsGarEREREZISlfrJVh1DsQkISldzWYDiIiIiIiqswcPAHt7oFMnwMxM3lju3AE8PIDsbCAkRN5YqgkmWYmIiIyQmpVT5PS0YqYTEREREVEVN20a0KcPkJoqdyRA3bramrW5uYBKJXc01QKbCyAiIjKCg1XRP0zsi5lORERERERVnFqtbS7A2VnuSLRycwFvb7mjqDaYZCUiIjKCi50FQgNdDE4LDXSBix2bCiAiIiIiqrYSE4GsLCAnR/6ao2lpQHq6Ng4rK3ljqUaYZCUiIjKCo40FPhgcrJdoDQ10waLBwWyPlYiIiIiouhIEoHVroGlT4Pp1uaMBvvgCaN4c+P57wIJ/p1QUtslKRERkJC8naywf3hxJ6WqkZeXA3koFFzsLJliJiIiIiKqzCxeAuDhtQrNOHbmjAXbvBjIyAE9PQKGQO5pqg0lWIiKiEnC0YVKViIiIiIjy2bZN+96mDVCjhryxxMcD589rk6t9+8obSzXD5gKIiIiIiIiIiIie1Nat2vfOneWvObp7t/a9WTN2elXBmGQlIiIiIiIiIiJ6EvfvA8eOaT/36iVvLACwZ4/2vU8fQMm0X0VicwFERGTyUjLUSEpXIzUrBw7WKrjY8pF94nlBRERERCZg+3Ztx1cNGwI+PvLG8vgxcPiw9nP//vLGUg0xyUpERCYtPjkTb2w5i4MxSeK40EAXfDA4GF5O1jJGRnLieUFEREREJkHXHmvnzoCZmayh4MABIDtb20xAs2byxlINsd4wERGZrJQMtV4iDQAOxCRh5pazSMlQyxQZyYnnBRERERGZjMmTgVGjgN695Y4EaNwYmD4deP55QKWSO5pqhzVZiYjIZCWlq/USaToHYpKQlK7m4+HVEM8LIiIiIjIZHTtqa45aWckdiTaOCRPkb7agmmJNViIiMlmpWTlFTk8rZjpVTTwviIiIiMhkZGUBOTmmUXNUF4cpJHyrISZZiYjIZDlYFf1Dxb6Y6VQ18bwgIiIiItkJAvDOO8BffwEKhdzRAFu3Aj//rE20Wug/1dW5c2csXbq0XEMQBAFdunTBtGnTJONfeuklhIaGQqPRAAAUCgXOnDmDTZs2wdnZGdnZ2XrLGjlyJEaPHl2u8ZY1JlmJiMhkudhZIDTQxeC00EAXuNjxkfDqiOcFEREREcnuzBlg7lxg5EhZO7zKy8vD/iNHsHHBAux/+WXkHT4sWywKhQLffPMNvv32W+zfvx8AsH//fqxevRpr166FUilNQw4cOBAKhQK//fabZHxKSgp++eUXTJgwoaJCLxNMshIRkclytLHAB4OD9RJqoYEuWDQ4uELb3UzJUOPa/XScvvkI1xLTy71zpYpeX2ViSucFEREREVVT27Zp39u1A+ztZQnh5x074NO6Nbo8/TRGxMejCwCfefPx888/l2g5165dQ79+/eDq6gpfX18sXLhQrHUKAOvWrUNQUBCcnJzQoUMHREZGFrosf39/LF68GGPHjkV8fDzGjh2LRYsWoU6dOnplLSwsMGrUKKxZs0YyfuPGjahduzZCQ0NLtB1yY8dXRERk0rycrLF8eHMkpauRlpUDeysVXOwsKjSRFp+cqdebfWigCz4YHAwvJ+tKv77KyBTOCyIiIiKqxnRJ1s6dZWku4OcdOzDk+echCIJkfHzCXQwZMgSbN2/GoEGDil1ORkYGunXrhhkzZmDLli1ISEhAeHg4PD09MX78eBw4cACTJk3C9u3b0a5dO6xYsQK9e/dGTEwMHB0dDS5z4sSJ+Pnnn9G0aVM0b94ckyZNKnT948ePR/PmzXHnzh3UqlULAPDNN99g3LhxJdgbpoE1WYmIyOQ52lggwM0OzXxqIMDNrsJrsBZMeALaXuxnbjlb5jVMK3p9lZmc5wURERERVWPx8cDJk9rkas+eFb76vLw8vDh7tl6CVUcQBEybPh15eXnFLmv79u2oUaMGZsyYAQsLC/j4+GD69OnYsGEDAOD777/HqFGjEBoaCpVKhRkzZqBGjRrYvn17kcsNDQ1FUlISIiIiiizXpEkTtGjRAmvXrgUAXLhwAadPny52PlPEJCsREVERktLVeglPnQMxSUhKL9ukZ0Wvj4iIiIiISuj337XvwcHAv7UvK9LBY8cQn5BQZJk7t2/j4MGDxS4rLi4O58+fh5OTk/h65ZVXkPDv8m/fvg0/Pz/JPP7+/rh9+3ahy7x48SI++OADvPTSS3jjjTeQkpJSZAzjx48Xk6zffPMNwsLC4OnpWWzspoZJViIioiKkZuUUOT2tmOmmvj4iIiIiIiohXVMBnToByopPrd29f9+4cnfvFlvG29sbLVu2RHJysvhKTU3FhQsXAAC1a9dGXFycZJ64uDjUrl3b4PJyc3MRERGBl156CR9//DGaNWuGGTNmFBnD8OHDER8fj71792LdunUYP368UdtnaphkJSIiKoKDlarI6fbFTDf19RERERERUQnk5QHnz2s/9+ghSwiebm7GlStQGzQ3NxdZWVniKzs7G3379sW9e/fw+eefIysrC3l5ebh8+TL2798PABg1ahTWr1+Pw4cPIzc3F8uXL8eDBw8QHh5ucJ0ffPAB1Go1Zs+eDQD48ssv8dtvv2HHjh2Fxung4IAhQ4ZgwoQJUCgU6NOnj1HbZ2qYZCUiIiqCi52FXi/2OqGBLnCxK9t2QCt6fURERERPIiVDjWv303H65iNcS0xnu/FUfZiZARcuAJs2AU2ayBJCxzZt4OXhUWSZWrVro2PHjpJxr732GqytrcVX/fr1YWdnhz179mDv3r3w8/ODs7MzRowYITYX0KlTJyxfvhzjx4+Hs7MzfvjhB+zcuRNOTk5664yKisIHH3yAb7/9FiqVtnKIl5cXli5diueeew7JycmFxjt+/HjExcUhIiIC5ubmJdshJqJyRk1ERFRBHG0s8MHgYMzcchYH8rWVGhrogkWDg8u8s6WKXh8RERFRScUnZ+p11Bka6IIPBgfDy8laxsiIKkhODhAUBKjkecrMzMwMyxcswJDnnzfY+ZVCocCyTz+FmZmZOE5XM9WQgIAAbNmypdDpERERRnVE1bRpU6Snp+uNHz16NEaPHi0OG4o5NDS00I68KgsmWYmIiIrh5WSN5cObIyldjbSsHNhbqeBiZ1FuCc+KXh8RERGRsVIy1HoJVkDbQefMLWexfHhz/mahqksQtK/0dEDm2paDwsOxedUqvDhnDuLv3RPH16pdG8s+/RSDBg2SMbrqiUlWIiIiIzjaVGySs6LXR0RERGSMpHS1XoJV50BMEpLS1fwNQ1XXiRPAgAFA797AnDlluujc3FykpqUhOTUVyampSCnwLhmXlobklBSsiozEOo0GE21scDUzE6NGjcKaNWskNVip4jDJSkRERERERERGSc3KKXJ6WjHTiSq1rVuBhATg7l3A4r9/Jmg0GqSlpyMlLQ0p/yZB9d7zfU5OSdG+50ucpj9+XKJQAgHUA+AH4J5aDQGAk5MTE6wyYpKViIiIiIiIiIziYFV0G5T2xUwnMiV5eXlIT09HamoqHjx4gMuXL0OlUiEjIwOpqaniKy0tDampqXhr0yb4Alhw6RI2de8uJk3T0tMrvD3Rfv++/w0g9d/PRXUsReWPSVYiIiISpWSokZSuRmpWDhysVXCxZbMFZYH7lYgqE16zKk5l3NcudhYIDXSRdNCpExroAhc7046fKj9BEJCdnW0wCVrwVdx4Q500FcYHwBcA8gAsvXEDD8trAwE42NvDycEBjg4OcPr35WhvDydHR/F95Pr1wPXr8B43DscmToSTkxNcXV3LMSoqDpOsREREBIA9BZcX7lciqkx4zao4lXVfO9pY4IPBwZi55awk0Roa6IJFg4NNPklM8slfa7S0ydGcnIpvlqLvv++HgSITrNZWVnD8Nykqvuf7LEme6pKm+cbZ29kV/8j/o0fAe+8BABq88grQsGFZbCKVEpOsRERExJ6Cywn3KxFVJrxmVZzKvq+9nKyxfHhzJKWrkZaVA3srFVzsTL8WLpVMTk4O0tPTkZaWhrS0NPGzoXHGfM7IyJB7k4pkZWUFS0tLuLq6wt7eHg4ODpLX9J07gbg4KLt0wdr+/fUTqf++q1QV0GTGvn1AXh5Qrx5Qv375r4+MwiQrERERsafgcsL9SkSVCa9ZFacq7GtHGyZVTUlubi4eP36M9PR08b3gS5fwLDiusKRodna23JtVLIVCoZcMNZQgLW68vb09FAoFduzYgfDwcP1EaVoasHo1AKDD66+jQ3CwDFubz+7d2vfevQF2dGUymGQlIiIi9hRcTrhfiagy4TWr4nBfV19qtVqSBC2YGC3uvbBplSEhmp+VlVWJE6GGxtna2kKhUJRJTEU2QZCVBUyeDJw6BQQFlcn6SqVDB+D+fWDAALkjoXyYZCUiIiL2FFxOuF+JqDLhNavicF+bLkEQxERoRkYGHj9+LHkVHFdwuLhEqRxtiZYFKysr2Nvbw87OTvJe0s+65GiFPFJfllxdgblzgdu3AVOIfcgQYOBAwM9P7kgoHyZZiYhMRGXsXZaqDvYUXD64X4moMuE1q+JwXz85QRCQk5MjJjh1Sc78yc4nSY7mH5eXlyf3ZpaKubk5bG1txeRm/sRo/peuTHEJUltb28qXFC0PaWmmkWAFALUasLU1nXgIAJOsREQmobL2LktVB3sKLh/cr0RUmfCaVXGq6r4uWAu0qFdRZQwlUPN/ruxJUB0LCwtJwvNJ3g2Ns7ConOePybpyBbh8GfD3B+zs5I1FEICffwaaNAGaNZM3FtLDJCsRkcwqe++yVHWwp+Dywf1KRJUJr1kVpyL3tSAIyMrKQmZmpiSZWdRw/s/p6em4du0a1qxZg6ysLIPz6l4ajabM45eTSqWCra0tbG1tYWNjI34ubFhX87O4BClrh1Yiq1cDixcD/fsDK1fKG8uVK8C0aYCVFXD3rryxkB4mWYmIZFYVepelqoM9BZcP7lciqkx4zao4dpZmMNMADopcZGSkIv5BBq6VIBFqbKI0MzMTgiDIvbnlwszMTExwFkx6GpscLaoME6GEbdu07506yRsHAOzerX1v1w5wdJQ3FtLDJCsRkczYuywRERGR6dA98l5Yrc6y/FzZeoQvqYIJ0MJe+ctYW1tLEp35pxsax0fjqVxdvQpcvAiYmwNdusgdDbBrl/Y9PBxQKOSNhfQwyUpEJDP2LktkWnJzc5GVlVWiV2ZmplFlHj9+jLS0NKSnpyM9PR1paWnIyckptOaNoVo2KpVKfFlYWEiGS/OysLCAubk5cnJyoFaroVarodFo4ODgADs7Oyj4Q56IZKbRaCQ1M4tLYpYmCVrVHnkvSJf8tLa2liQ38yc+8w9bWFjg9u3baNasGezt7cVpuoRoYclTlUrF+wdVbrparC1bAm5u8saSlARERmo/DxggbyxkEJOsVQR7JSeqvNi7LFH5y83NRWJiIhISEop9paamVnh82dnZePToUYWv11hKpRIODg5wdHSEk5MTHB0d9V6Gxtva2iIxMRHx8fGwtraGubm53kupVFb49pja7yZTiMcUYiDTZcz5kZeXJ/4zydjOiwr2Cm9oev4EaFWv9QkAlpaWRiU9SzutpI/A5+TkYMeOHQgPD+fj81VERV/3K+19Rpdk7dxZ/pqje/dqO75q1AioU0feWMggJlmrAPZKTlS5VdXeZYnKmyAISE5ONipxmpiYWGXboqsIGo0GycnJSE5Oxo0bN8p02QqFQky4qlQqg4nY0r7yLzcrDzh09SFupaihUCoBpRnquDmgX3MfuDhoEw/W1tZ6SYrCanaVtoaWKfyOM4UYqHwJgoCcnBxJwvLx48fiq6jhxEcpOHwpHvcepkDIyYaQkw1bs1w4WQhQZ2WKZatyAlSpVBaZyCyLz7rrjpmZmdybS9VARV/3K+195tEj4MAB7eeePeWNBfivPdawMIDXCpPEJGslx17JiaoG9uRL9J+MjAzcu3fPqOSpWq0u93iUSiWsrKxgZWUFa2tr8XNJX5aWlrCzs4O9vb3kXaVS6SU4dK8Hj1Kw+fh13Eh4CE1OFoTcbAh5eYAmFzWtzdDQ3QaCJg85OTl6L7VabXC87pWXl1fu+84YuuSPLgEkh9MATm8p+XxKpRLW1tawtLSUHOfiPuuGYabCrssPceORGgpzFaDQ1urdfhq4vM8Wz4R4w9pC+3O9sGRuUUleY6ZlqnOx4fhNxNxL/3eCEgozM+yMNseNk39hYpdAONnZFNrMhC6JXdR0Pir8n7y8PIPNjBj6XNbjyvIfTdkAHpbZ0p6cpaVluSY+dZ/L4h8qRKaionMIlTpnsW8fkJcHBAQAgYHyxpKTAxw+rP3cr5+8sVChmGSt5NgrOVHVwZ58qSozlcf17ezs4OHhUeTLxcUFNjY2YjJMziTRtfvp+Cb9b9RoaHj65y93QoCb3RMtW6PRIDc3Vy/5qlKpYGlpKSYVUlNTkZycjJSUFMnL0DhD4ysiES4XjUYjJsTL2nEAx9eX+WJL5ACAA6tKvxylUim+zMzMivysUCigUCgkn019WBAEJCQkYOXKlcjOzi4y6ZmTU306syzYVqexnRgV1r5nwcQna30SPZmKziFU6pzF//6nTWxeuiR/zVGVSpv0/ftvoG1beWOhQjHJWsmxV3IiIpKLqTyub25uXmzi1MPDA+7u7rCze7KEpFzK8z6vVCphYWFRbK/Mrq6ucHV1faJ15OTkYNu2bejZsycUCgVyc3NlfcU/Sse207chaPIATR4ETR4ETS6Qp31v5e0AKzNBTIoV7Dzn8ePHVb4znPKg0Wi430yMQqGQdLhXsPM93XCGxhw7Lz2CQmUJpcoSCpUVFP++K80t8e7TLdGsjofB3uHlaG+ZiIpX0TmESp2zUCiA2rUBFxe5I9GysQGGDgWK+e1G8mGStZJjr+RERFQeMjMzcePGDcTFxSEuLg53796t8Mf1XVxcjEqc1qxZs8r+MV8V7vNmZmawtLQ0iY5Srt1Px+GP/y50+ppiagbrmjbIn3TNyspCdna2WHOx4HBR05JS0rEz6haEXDWEXP0/Mlv714SNhVmh/6Ao6h8Xxk7LVOfh1I1H+aZpAE2u2CyFf00rKATDTVLkf9GTUSgUYq3Mgs2SGBpX3HRj5tF9NqaG/rX76finiO9Ml85PXpueiORR0b8tKvVvGbUayMoynaRmbi5QySoMVDdMslZy7JWcqoNK2xMlUSWQmZmJixcv4vz58zh37hzOnTuH8+fP486dO+WyPnt7ezE5WlTy1M3NzSSScnLjfb5slXZ/KhQKsfavk5NTqeNJyVDjxY2nC42nItqpK4sYBEGARqMpNAGrq8mal5dX5Oe8vDwIgiC+NBqNSQ/rxuXm5uLSpUto0aIFbG1tS5TwNPU2a3kNosqCfy8Yr6K/15X2OjJvHnD+vLbJgC5d5I3l/Hng7beBXr2072SymGSt5NgrOVV1lbYnSiITk5eXh2vXruklU2NiYkr9GK9KpTL6cX1bW9sy2qLqgff5smVq+9MU4imLGBQKBczMzGBmZgYrK6vyDNck5eTkYMeOHQgPD69y/xwyhXOUqDj8e6FkKvp7XSmvI4IArFsHXLsGhIbKHQ2wezdw4gTg5GQ6tWrJICZZqwD2Sk5VVWqmGm9sOV85e6IkkomuAxZdIlWXTI2Oji5xz+1mZmbw8fGBn58fateuXWjytEaNGiZdE6uy432+bJna/jSFeEwhBjJdPD/IlFXqnutlVNHf60p3Hbl0SZtgVankr8UKaJOsANCnj7adWDJZTLJWEeyVnKqiB+k5lbcnSqIKkJqaKtZMzV9D9eHDhyVajqWlJRo2bIjGjRujSZMmaNKkCYKCglCrVi2Ym/Ongingfb5smdr+NIV4TCEGMl08P8hUVeqe62VW0d/rynQdUW7frv3QujVQs6a8wdy7B0RFaZOr/fvLGwsVi385EZHJSsuuxD1REpUhtVqNS5cu6SVTb968WaLlKBQK1K1bV5JMbdy4MerWrctkKhEREVU6lbrnejJZCl2StXNn+WuO7tmjfQ8OBnx95Y2FisW/qIjIZNlbVuKeKImeUEpKCk6fPo1Tp04hMjISZ86cwZUrV5Cbm1ui5Xh4eEgSqU2aNEHDhg1hY2NTTpETERERVaxK3XM9mSSL1FQojh7VDvTsKW8wALBrl/Y9LAxQKuWNhYrFJCsRmSxnO1Xl7ImSyEhpaWnYu3cvzp49KyZVr169WqJl2Nvbo3Hjxnq1U11cXMopaiIiIiLTUGl7rieT5X7qFBQaDVC/PuDvL28wmZnAwYPazwMHyhoKGYdJViIyWQ7WlbAnSqqUUjLUSEpXIzUrBw7WKrjYln2bUYmJiYiMjBSTqadOnUJcXJzR86tUKjRo0EAvmerr68tOp4jI5FTEdZVKhseEqiJT6bme36+qI9fSEpqmTaFs2xYwM5M3mIcPgY4dgbg4oEULeWMhozDJSkQmrdL1REmVTnxypl6vtKGBLvhgcDC8nKyfaJkJCQmSZGpkZCRu3bpl9PyOjo5o0aIFWrZsiebNmyM4OBj16tWDhQXPeyIyfeVxXaXS4TGhqkzuvxf4/apa7j71FPJeeAHK7Gy5QwFq1QKWLwdsbQEVm76oDJhkJSKTV5l6oqTKJSVDrfejGND2Rjtzy1ksH968yHNPEATcuXNHr4bq3bt3jY6hZs2aaNmyJVq2bCkmVv39/Vk7lYgqpdJeV6ns8ZhQdSDX3wv8flVRmZnaxKYpyM0FHBzkjoKMxCQrERFVW0npar0fxToHYpKQlK6W/DBOTEzEiRMnJK/79+8bvT43Nzcxmdq0aVMkJycjIiKCNVSJqMoo6XWVyh+PCVH54ferijlzBuaZmdrEptw1RxMSgPR0wN0dsLKSNxYyGpOsRERUbaVm5RQ6LS8zDbt378Kmm5dx8uRJnDx5Ejdv3jR62V5eXmJCVVdD1cvLS6yhmpOTgx07drDGKhFVKUVdVwEgrZjpVPZ4TIjKD79fVYggwHzIEITFx0Ozdi3QpYu88Xz3HfDpp8DYscDq1fLGQkZjkpWIiKotByvtf6g12Y+RnXAV6oQYqBOuQZ0Qg9zkBEwycjk+Pj5iIlWXVPXw8Ci/wImITJTuuloY+2KmU9njMSEqP/x+VSFnz0Jx8yY0FhYQgoPljgbYtUv73ro1wEoZlQaTrEREJVTVeg+tattTnIyMDJw5cwYnTpzAkaPH8OjvI0hNuGH0/O7u7ggJCRFfrVq1gqurazlGTERUebjYWSA00EXSy7dOaKALXOyq7v3FVPGYEJUffr+qkG3bAACJwcFwdnSUN5bbt4GLFwGlEujbV95YqESYZCUiKoGq1ntoVduegnJycnDu3Dmx/dSTJ0/i/PnzyMvLM2p+FxcXtGrVSvLK/8g/ERFJOdpY4IPBwZi55awk6RAa6IJFg4Or9D/xTBWPCVH54ferCvk3yZrQujWc5f6tv2eP9r1FC8DLS95YqESYZCUiMlJV6z20qm1PXl4eLl++LOmUKioqCtnZ2UbN7+DohAaNm6J5i5Z4qm1rdGrfFj4+PkyoEhGVkJeTNZYPb46kdDXSsnJgb6WCi13VfkrC1PGYEJUffr+qgLt3gePHAQAJrVqhkczhiE0F9Omjrc1KlQaTrERERqpqvYdW5u0RBAGxsbGShGpkZCTS09ONmt/GxgYtWrSQPPJft25dJlSpSPPmzcOZM2fw66+/lvmy169fjxUrVuDIkSNlvmwiOTjaMMFganhMiMoPv1+V3PbtAABNo0bIrllT3ljS04GjR7Wf+/WTNxYqMSZZiYiMVNV6D61M23Pnzh2cPHlS8tj/w4cPjZpXpVKhadOmkoRqUFAQzM1N6xY4btw4rFmzBtHR0QgKCpI7nConLi4O/v7+ePToEZycnGSNZf/+/Rg4cCCSk5PFcSNHjsTIkSPlC4qIiIiouvq3qQChUyeZAwHw99+AWg34+gKm0AEXlYhp/YVJRGTCqlrvoaa6PUlJSWIiVfd+9+5do+ZVKpVo2LChpGOqJk2awNLSspyjLp20tDRs2rQJNWvWxOrVq7FkyZIyX0dubi7MzMxYW5eIiIiIKL+lS4HmzaFp00ab4JRTly7AsmWASqV9UaXCxh2IqMylZKhx7X46Tt98hGuJ6UjJkPlGVUZ0vYcaUhl7D5V7e1Iy1Dhz9Q6+2Pgb3pizAAMHDYafnx9cXV0RHh6OOXPmYNu2bUUmWOvWrYvhw4fj448/xsGDB5Gamopz587hm2++waRJk9CqVSuTT7ACwI8//ghbW1ssWrQI33//PXJytLWIBwwYgHfeeUdSdtKkSZg4cSIAbcdec+bMQUBAAJydndG/f3/Ex8eLZRUKBT777DM0btwYtra2SE9Px8cff4zAwEDY29sjICAAn332mWT5Bw4cQJMmTWBvb49BgwZh/PjxGDNmjDj92rVr6NevH1xdXeHr64uFCxdCo9EY3K6bN2+iR48ecHV1RY0aNdCnTx/ExcWJ07Ozs/HCCy+gZs2a8Pf3x+rVq6FQKMQygiBg2bJlaNCgAZycnNC5c2dcvHix0P1Y1La1bt0aAFC7dm3Y2dlh/fr1BpcRGRmJLl26oGbNmqhbty6++uqrQtd3//59jBw5Ep6envDy8sKMGTMkbQCfOnUKXbt2Rc2aNeHq6ooXX3wRDx48QFhYGFJSUmBnZwc7OzscPHgQa9euRbNmzcR57927h6FDh8LV1RU+Pj6YNWsWcnNzAWhrwjo5OeHrr7+Gt7c3nJ2d8frrrxcaJxEREREVwcsLGD4caNBA7kgAGxttonXECLkjoSfAJCsRlan45ExM3Xga3T7+G//7/Ai6ffQ3Xtx4GvHJmXKHVmq63kMLJiYra++hFb09OTk5iIyMxMqVKzF0xLPwCaiH5oG18cKIgVi8YA5+++Vn3Lhxo9D5vb298b///Q/vvfcedu/ejYcPHyImJgYbNmzASy+9hA4dOsDW1rZMY64oq1evxsiRIzFs2DA8fvwY2/59ZOnZZ5/FunXrxHJqtRqbNm3C6NGjAQCzZs3C4cOHcejQIdy9exf16tXDsGHDJMvesGEDdu3ahdTUVNja2sLX1xd//fUXUlNT8fXXX+O1117D4cOHAQCPHj1C//798dJLL+HRo0eYMGGCJBmZkZGBbt26oVu3brhz5w4OHjyIH374AWvWrDG4XRqNBi+//DJu3bqFGzduwMbGBs8995w4feHChTh58iQuXLiAM2fO4JdffpHMv3LlSqxevRrbtm1DUlISBg0ahH79+kFdSA2Dorbt+L+dGdy+fRvp6ekGH81PSEhAjx49MGnSJCQmJuLXX3/F3LlzsXfvXr2ygiCgf//+8PDwwLVr13Du3DlERUVh4cKFALRNXHTt2hVDhgxBfHw8bty4gaFDh8LZ2Rk7d+6Eo6Mj0tPTkZ6ejo4dO+otf8SIEVCpVIiNjcXBgwfx66+/YvHixeL0tLQ0REdHIyYmBocOHcKKFSuwf/9+g/uFiIiIiIqQlQXk5ACm0JyYWg1YWABWVnJHQk/ABM4gIqoqqlpv9YZUtd5Dy2t7BEHArVu38M8//+DYsWM4duwYIiMjkZlpXLLdzc1NbD9V9+7u7l6qmExVdHQ0/vnnH6xatQp2dnb43//+h9WrV4sJxeeffx7//PMP2rZti+3bt6NGjRpo3749BEHA559/jsOHD8PT0xOANmlpa2uLW7duwdvbGwDw+uuvw8vLS1zf4MGDxc9dunRBr169sH//frRv3x6///47ateujXHjxgEAwsPD0a1bN7G8bv0zZswAAPj4+GD69OnYsGEDxo8fr7dtfn5+8PPzAwBYWVlh1qxZaNu2LTQaDZRKJTZs2IBFixaJ8c+dOxfb/+14AABWrFiB9957D4GBgQCAadOmYdGiRTh27JjBxGRR22aM77//HqGhoRg6dCgAoHHjxhg7diw2bNgg2Q8AcPLkScTExODIkSNQKpWwsbHBW2+9hRdeeAELFizAunXr0LJlS0yePFmcx1DMhty5cwd//fUXEhISxNqus2bNwrx58/DWW28B0H7HFi5cCCsrKwQFBeGpp57CqVOn0LlzZ6PWQURERFTtCQIQEQE0agT06iV3NMDatcCdO8AzzwD16skdDT0BJlmJqMxU5t7qS6Kq9R5aFtuTmpqKkydPignVY8eOISEhwah5lZa2sPAIhIVnICw9ArFlzrPo0Kx+tWk7dO3atWjatCmaNm0KAIiIiEDv3r1x584d1KpVC0OHDsV3332Htm3b4rvvvsOzzz4LQNt27ePHjxEaGirZVxYWFpIkq4+Pj2R969evx0cffYS4uDhoNBpkZGTA398fABAfHy/Op+Pj4yMmx+Pi4nD+/HlJx1EajUZvHp3ExERMnz4dBw8eREpKCgBtEwFpaWlwdHTUW1/BWOPi4jBq1CiYmZmJ49RqNW7fvm1wfUVtmzHi4uKwY8cOyfbl5eUZTI7GxcUhOTkZNfP1QCsIAvLy8gAAN27cEJPDJXX79m1YWVlJ/rFQp04dyXY7ODjAxsZGHLa1tUVaWtoTrY+IiIioWoqMBL7/HrC1BQYMkDsabZI1JgZo0QIIDZU7GnoCTLISUZmpTL3V05PLycnB+fPncezYMRw/fhzHjh3DxYsXIQhCsfOqVCrUa9gEN828YOFVH5ae9WBew0uSJLR3dq82Cdbc3FysX78e6enp8PDwAPBfom7t2rWYNWsWnn32WfTv3x9z5szBzp078dFHHwEAnJ2dYWNjg2PHjqFBEe1HKZX/tQx08+ZNRERE4I8//kDnzp1hbm6OgQMHisfOy8sLt27dksx/8+ZNuLq6AtA22dCyZUv8888/Rm3fm2++iYyMDERGRsLV1RVnzpxB8+bN9dbXpk0bcV35eXt7Y+nSpejdu3ex6ypu2/Lvh8LomqT44YcfjCrr5uZWaJvBvr6+2LVrl8FpxcVSu3ZtZGVl4d69e2KiNS4uDrVr1y42LiIiIiIy0tat2vd27QB7e6CQfgYqRGysNsFqbg6Eh8sXB5UK22QlojJjqr3V05PTaDS4cuUKNmzYgJdffhkdOnSAo6MjWrRogUmTJmHNmjWIjo4uNMHq7++PYcOG4ZNPPsGRI0eQmpqK33b9jZo9XoBdoy5Q1ayll1CtTufJ8ePHkZqaisjISJw5cwZnzpxBVFQUZs+ejW+++QaCIKB9+/aoUaMGxowZg1atWqFOnToAtIm6F154Aa+88oqYGH3w4AF+/PHHQteXnp4OQRDg5uYGpVKJHTt2SBKBffr0wa1bt7B27Vrk5ubijz/+wF9//SVO79u3L+7du4fPP/8cWVlZyMvLw+XLlwttCzQ1NRU2NjZwcnLCgwcPMH/+fMn04cOHY/HixUhISEBKSgoWLFggmT5lyhTMmTMHly9fFpf322+/GayxWdy2ubq6QqlU4tq1a4Xun2effRZ//fUXtmzZgpycHOTk5ODMmTM4ceKEXtmQkBB4e3vj7bffRlpaGgRBwI0bN7Bz504AwMiRI3H8+HGsWrUK2dnZyMjIwMGDBwEA7u7uSEtLw/379w3GUatWLXTp0gWvvvoqHj9+jJs3b+Ldd99FREREobETERERUQn92w8CunQB5K7ksXu39j0kBPi38gVVPrInWe/cuYNRo0bB2dkZ1tbWaNKkCU6ePClOFwQBc+bMgaenJ6ytrdG9e3fExMTIGHHlUFV7dyfTJndv9VQ6giDg+vXr2LRpE15//XV07doVNWrUQP369TFy5Eh88sknOHz4cKHtqto7OKJtx86Y8vLr+GHzz7h37x6uX7+OjRs3YsaMGWjXrh2srKx4nuSzZ88ePPPMM2jQoAE8PDzE17Rp0xAfH499+/YB0Cb//vzzT7HDK533338f7dq1Q9euXWFvb4+WLVsWWnsSABo2bIhZs2aha9eucHZ2xo8//oj+/fuL02vWrIlff/0VS5YsgZOTE7788ks8/fTTsLS0BADY2dlhz5492Lt3L/z8/ODs7IwRI0YU2jTE/PnzcfXqVbEd2bCwMMn0t99+G02bNkXDhg3RrFkzhP/7X3vd+qZOnYoxY8Zg0KBBcHBwQFBQEDZs2PBE22ZtbY25c+ciLCwMTk5OBpdTq1Yt/Pnnn/jiiy/g6ekJd3d3TJkyBampqXplzczM8Pvvv+POnTsICgqCo6Mj+vTpg6tXrwLQ1kbdu3cvNmzYAHd3d/j5+WHz5s0AgPr162P8+PFo2LAhnJyccOjQIb3lb9iwAZmZmfD19UX79u3Rp08fvP766wa3nYiIiIhK6PZt4PRpbXK1e3e5o/kvyRoeLn/Cl56YQjDm+c5y8ujRIzRv3hxdunTBpEmT4OrqipiYGAQEBCAgIAAAsGjRIrz//vv49ttv4e/vj9mzZ+PcuXOIjo6GlRG9raWmpsLR0REpKSlwcHAo700qdzk5OdixYwfCw8OhUhmu7RWfnKnX+VBooAs+GBwMLyfrigqVqqn45EzM3HIWBwqcf4sGB8PTyPPPmPOcSicnJweXLl1CVFQUoqKicObMGZw6dQqPHj0yan6VSoWmTZuiTZs2CGzcDHsfOCAq1RoKhfZ/d8Vdc8riPKnsKst53qtXL4SGhmLWrFnlvq6jR4+ic+fOyMrKqjZNRlR1leU8JyoNnudUHfA8pypn5Upg8mSgWTNtjValEjl5edgRGYnwFi2gytcnQLlLTgaCg4G8PODsWaBJk4pbNxWrJHlFWdtkXbRoEby9vbFmzRpxXP4OKgRBwNKlS/H2229jwL+NEH/33Xdwd3fHr7/+imHDhlV4zKauOvTuTqatvHqrpyeXlJSEqKgonD17VkyqRkdHQ602roa7QqFAgwYN0KpVK7Rs2RJt2rRBs2bNYGVlhZQMNaZuPI2zaUmSf7gWd83heWK6du3ahRYtWsDJyQmbN2/GX3/9haVLl5bLuu7fv48LFy4gNDQU9+7dw5tvvonBgwczwUpERERE5UvXVECnToARbfeXq/37tQnWgACgYUN5Y6FSkTXJunXrVvTq1QtPP/00/v77b9SqVQuTJ0/Gc889BwCIjY1FQkICuueruu3o6Ig2bdrg6NGjBpOs2dnZyM7OFod1j/jp2lar7HTbUNi23EvOwPHribA08E+XY9cTcS85AzYq/vFK5ctGpYBPDUsAluK4knz/ijvPybC8vDzExMSIydRz587h7NmziI+PL9Fy6tati5YtW4qvZs2awd7eXq9cTk5Oqa45pT1PKjtTPc+PHz+OkSNHIiMjA35+fvj+++9Rt27dcokzKysLM2bMwLVr12BjY4Nu3brh448/Nrl9Qk/OVM9zorLE85yqA57nVKUIAsxycqAwM0Nu9+7aBCeAnALvFUX56BGUDg7Q9OoFjUYjbwdcpKck1z1ZmwvQPe7/8ssv4+mnn8aJEycwffp0rFq1ChEREThy5Ajat2+P+Ph4eHp6ivMNHToUCoXCYOce8+bN0+tYA9C2bWZjY1N+G0NEVIEeP36MuLg4xMbGIi4uDjdu3MCNGzeMrp0KaNuUrF27Nvz8/ODv7w9/f38EBATAzs6uHCMnIiIiIiKSnyo9HTm2tibRBqoiLw9m2dnIZd7K5GRkZGDEiBFGNRcga5LVwsICrVq1wpEjR8Rx06ZNw4kTJ3D06NEnSrIaqsnq7e2NpKSkKtMm6+7du9GjRw+DbeHEJj5GvxX6HWjobJvSAf6utuUZIlGpFXeeVycajQbXr1/H2bNnxde5c+dw48aNEi3H2dkZwcHBCA4ORpMmTRAcHIygoCCxg6EnxWvOk+N5TtUBz3OqDnieU3XA85yqnJQUID4eqFFDHJWTl4fdUVHo0bRpxbbJqlZrXz4+gAWbTzM1qampcHFxMf02WT09PdGwQHsTQUFB2LJlCwDAw8MDAHDv3j1JkvXevXto1qyZwWVaWloaTBqoVKoqdTMobHvcnWzQpo6rpDMZndBAF7g72VSp/UBVm+48T8lQIyldjdSsHDhYq+BiWzXb7kxJScGFCxckbaeeO3cO6enpRi9DqVSiXr16aNq0qeTl5eVVLu1c8ppTeiqVClu2bMHPP/+MTZs2yR1Oofbv34+BAwciOTm5TJaXnJyMGjVqIDY2Fn5+fnj33XeRkZGBd999t0yWT6alqv0OIzKE5zlVB+V5nleX3/wkM40GePAAyMoCLC0BA8lUlZlZxSVZk5K0iVU7O8CWlVNMUUmuebImWdu3b4/Lly9Lxl25cgW+vr4AtJ1geXh4YO/evWJSNTU1FceOHcOkSZMqOtxKwdHGAh8MDi60127epKiyiU/O1OvMrbie601deno6oqOjceHCBVy4cAHnz5/HhQsXcPv27RItx9HREcHBwZJkaqNGjSq0aRRec0pPo9Hgrbfewm+//SZ3KKK4uDj4+/vj0aNHcHJyqpB1Tp8+HQEBAXjxxRfFf7ISERFR9VAVf/OTiTp+HHjqKSA0FFi7Vt5YBAEYMADIzgZ+/BHw9pY3Hio1WZOsL730Ep566im89957GDp0KI4fP44vv/wSX375JQBtj9YzZszAwoULERgYCH9/f8yePRteXl4YOHCgnKGbNPbaTVVFaqYab2w5L/mxBRTfc72pyMzMxMWLF/WSqXFxcSVeVkBAgF7tVF9fX5PohZ3XnNLZuXMnatasiSZNmsgdiqzs7OwQFhaG1atXY9asWXKHQ0RERBUkJUOtl2AFKs9vfqpktm7VJjdtbOR/NP/qVSAuDlCpgAYN5I2FyoRSzpWHhITgl19+wcaNG9G4cWMsWLAAS5cuxciRI8Uyr7/+Ol588UU8//zzCAkJQXp6Ov744w+x0ywyzNHGAgFudmjmUwMBbna8KVGl9CA9R+/Hls6BmCQkpRvfyVN5ys7OxtmzZ7Fx40a8/fbbGDhwIAIDA2FnZ4eWLVti9OjRWLRoEbZv315sgtXe3h5t27bFxIkT8fnnn+Pw4cNITU3F1atXsWXLFsyZMwcDBgyAn5+fSSRYdXjNeXK///47unbtCgAQBAFvvPEGPDw84ODggHr16uH3338HoO3YsW/fvpg4cSIcHR3h7++P/fv349dff0XdunVRo0YNveTkunXrEBQUBCcnJ3To0AGRkZHitLS0NDz//PPw9PSEp6cnXnjhBTx+/BgA0Lp1awBA7dq1YWdnh/Xr14vzff311/D29oazszNef/11yfr27NmD1q1bw8nJCY0aNcLWrVvFadnZ2Zg0aRJq1qwJf39/bN68WW9fdOvWTTIPERERVX1J6epK8Zufqoht27TvnTvLGgYAYPdu7Xu7doCLi7yxUJmQtSYrAPTt2xd9+/YtdLpCocA777yDd955pwKjIiJTkJadU/T0rKKnl7Xs7GxcuXIF0dHRksf9Y2JikJeXV6Jl2djYoGHDhmjUqBEaN26MRo0aoVGjRvD29jap5CmVv6ioKLEJnN27d2PDhg2IjIyEl5cXbt68iaysLLHsrl278MMPP+Dzzz/H/PnzMWrUKPTo0QNRUVG4ceMGWrRogcGDB6NFixY4cOAAJk2ahO3bt6Ndu3ZYsWIFevfujZiYGDg6OmL69OmIi4vD+fPnIQgChgwZgpdeeglffvkljh8/Dn9/f9y+fVtsLmD//v1IS0tDdHQ0YmJiEBsbi1atWiE8PBydO3fG2bNn8fTTT2PLli3o3Lkzjhw5gj59+uD48eOoX78+3n33XRw9ehTnz5+HjY0NRowYobcvGjZsiDNnzlTEbiciIiITkVrMb/qK/s1PVVhsLHD+vLYd1u7d5Y7mvyRrnz4A/wasEmRPshIRFcbesugGpu2tyqfR/aysLFy+fBkXLlwQE6rR0dG4evVqiZOplpaWCAoKEpOouoSqn58flEpZHyYgE5GcnCz2UqlSqZCVlYULFy7A1dUVPj4+krItW7bEoEGDAADDhg3DggULMHPmTNja2qJhw4YIDg5GZGQkWrRoge+//x6jRo1C6P/Zu+/wKMr1jeP3pvcCoUVCkyJFivROKAqhKkcEK+VgF1F/No69INajR1TUo2JDUVEkgkooglIsCCJVpIVOQktCSN/fH+/ZFBIgSzaZTfb7ua69ZjMzO3vPZgjw5Jn37dVLkjR58mS98cYbmj9/vkaPHq2PP/5Yy5cvV/Xq1SVJU6dOVd++fTVjxowzZrXb7XrqqacUEBCg5s2bq1u3blqzZo369OmjN998U2PHjs3vyu3Ro4eGDBmizz77TA8//LA+/vhjPfPMM4qOjpYkPfroo/r222+LHD8sLExZWVlKT0+v0LGFAQCAdcLO8W/68vo3PzyQo4u1XTupZk1rsxw9Kv32m3k+bJi1WeAyFFkBuK3qIb7q1STqjDPXR4WU7Zb09PR0bdmypUhn6qZNm7Rjxw7l5eU5dSxfX181a9asWDG1UaNG8vHhRy3OLCIiQikpKZKk2NhYPf7443r44Ye1efNm9e/fXy+88IIaNmwoSapVq1b+6xxFyNPXpaWlSZL27t2rPqfdBuXoTk1KSlJWVpYaNGiQv61Ro0bKzMxUcnLJt+tJpghauPgZHBys1NRUSWayrCVLlui9997L356Tk5NfQN6/f3/+xJaSijx3SElJkZ+fHwVWAAA8SFSIX7n+mx/u4UR6lpLTspSSka2wQF9FBVswh4OjyBobK1nd8LJ4sZSXJzVvLjVpYm0WuAz/8wfgtsICXTNzfWpqapFiquOxc+dO2e12pzL5+vqqadOmRbpTW7ZsqSZNmsjXl9+yw3lt2rTRli1b8r++9dZbdeutt+rEiRO65ZZbNGnSJMU7/kHohLp16xYbA3jXrl2qW7euatSoIT8/P+3atSu/SLtr1y75+/srKipKe/fudfr9YmJidOedd2ratGklbo+Ojtbu3bvVuXNnSVJiYmKxfTZt2qS2bds6/d4AAKDyCg9yzb/54b72Hz9VbHKzXk2iNG1ka0VHBFZMiBMnpB9+MM8vvbRi3vNsHEMFDBxohi9AlUCRFYBbc2bm+mPHjmnz5s3Fiql79uxx+n39/PzyO1NbtGiR/2jcuDHFVLjU4MGDNXXqVEnSr7/+quzsbHXo0EGBgYEKDg7WqVOnzuu41157rYYOHaprr71WnTt31htvvKEjR44oLi5OXl5euvrqq/Wvf/1Ln332mex2u6ZMmaLrrrtOXl5eqlGjhry8vLR9+3a1b9++VO930003aeDAgbrsssvUq1cv5eTk6Pfff1dERISaN2+uMWPGaNq0aerRo4eCgoJKHGt9yZIlZx2nHQAAVE3O/JsflcuJ9KxiBVbJTGr2wJz1enVMu4r5Pvv4SK+9ZgqtzZqV//udy9ixUni49I9/WJ0ELkSRFYDbCw8q+g+spKQkLft1U7Fi6sGDB50+dkBAgC666KL8SagcxVRu80dFGTRokO6++25t2LBBKSkpuueee7R9+3b5+vqqa9eueuONN87ruL1799arr76qCRMm6MCBA2rVqpW+/fbb/ImsXnnlFd19991q0aKFJGnYsGF68cUXJUmBgYF69NFHNWjQIGVlZen111/PH0v1TNq1a6dPPvlEDz30kDZv3iwvLy+1bdtWL7zwgiTpoYce0uHDh9WqVSuFhYXpoYce0vz58/Nff/LkSS1YsICJrwAA8FCn/5sfVUNyWlaxAqvD8m3JSk7Lqpjve3CwNGqU1K2be3SOtm8vtWkjFRq+C5Wfze7svbKVTEpKisLDw3XixIn8ceEqs+zsbC1YsEBxcXF006HKys7O1vz589WuXTtt27Ytv4jq6FI925iRZxIcHKzmzZvnF1Edt/s3aNBA3u7wlyw8TuGf51988YXmzp2r2bNnWx3LMlOnTtXJkyf19NNPWx0FLsS/W+AJuM7hCbjOcb7WJh7T5a+vPOP2ubd2U9t6kRUTZs8eKT1dCg0tcXN2bq4W/P674i65RL7l/X/ElBST44ILyvd9UGbO1BVp0wJgqby8PO3Zs6dIR+rGjRv1559/Kj093enjhYWFFbm93/GIiYmRl9WDmwNnMGbMGI0ZM8bqGJaaMmWK1REAAADgYmEBZy/Kh55ju0usW2fGQG3XTmrcuPzf72zsdumll6RWraRhw6zNApejyAqgQuTm5mrHjh3FxkzdvHnzeRVTq1WrVmy81BYtWqhOnTqy2WzlcAYAAAAAAGdEhfipV5OoIpOaOfRqEqWokAoYKuCjj6QXX5SGDJHefLP83+9sNm82RVZ/f2n4cGuzwOUosgKV1In0LCWnZSklI1thgb6KCnaPMYyysrL0999/F7m9f9OmTdq6dasyMzOdPl7t2rXzb+933OLfokUL1ahRg2IqAABVhLv+u+ZcTqRn6dBx88vincknVSs8qFLkBoCKEh7kp2kjW+uBOeuLFFp7NYnSsyNbV8zPzPh4s+zbt/zf61wSEsyye3cpsoKGSUCFocgKVEL7j58qNkNjryZRmjaytaIjAiskQ0ZGhv76669ik09t27ZNOTk5Th8vJiYmvxu1adOmOn78uMaNG6datWqVQ3oAAOAu3OHfNefDkfuXHUl6rpM0dPpP6tyohtvnBoCKFh0RqFfHtFNyWpZSM7IVGuCrqJAK+mXa1q3SX39Jvr7uVWQdMkSiaajKocgKVDIn0rOK/UdEMjMzPjBnvV4d086lf1mdPHlSW7ZsKXaL//bt25WXl+fUsWw2mxo2bFjk9v7mzZvroosuKjKAtGNg/WrVqrnsPAAAgPup6H/XuErh3P6F5kZx99wAYJXwIIvuUHB0sbZvL0VFVfz7F3b4sLR2rXnOeKxVEkVWoJJJTssq9h8Rh+XbkpWclnVef3mlpqbm396/cePG/ILqrl27nD6Wt7e3GjduXOT2fkeHalBQkNPHAwAAVVN5/bumvFXW3ADgcRxF1j59rO8cXbzYLC++WGrY0NosKBcUWYFKJiUj+6zbU8+x/fjx40XGSnUUVPfs2eN0Fl9fXzVr1qzY5FONGzeWv7+/08cDAACepaz/rrFKZc0NAB7l6FFpxQrz/LLLrM0iFQwVEBcneXlZmwXlgiIrUMmEBfiedXvo/7YfPXq0yC3+jmLq/v37nX7PgICA/ImnChdTL7zwQvn48GMEAACcn9L+u8bdVNbcAOBR1q2TfHykCy80Dyvl5ZnxYSWGCqjCqI4AlUxUiJ96NYnKn5kxN/2EspMTlX1kj2rkHNa4K1/QX1s369ChQ04fOygoqFhXaosWLdSgQQN5e3uf+wAAUIlV1tnNgcrs9H/XFNarSZSiQtzzz2BlzQ0AHqVvX+nvv6Xff5es/v+sl5e0aJH0559Shw7WZkG5ocgKVAJ2u11JSUn53ai23/9Qxk+/KWnPduWdSsnf76ikraU4XmhoaLFCasuWLRUTEyMvblsA4IEq6+zmQGUXHuSnaSNb64E564sULHs1idKzI1u77S86Cuf+eUdS/np3zw0AHsVuNx2kF11kdRIjO1vq2FHy4++IqooiK+BG7Ha7Dh8+nF9MLbw8cuSI08cLDw8vMvGU41G3bl3ZrB70GwDcRGWd3RyoKqIjAvXqmHZKTstSaka2QgN8FRXi/p3kjtyHjqdr86/LFH9bD9WKCHL73ADgEXJzpZwc6dQpKSDA2iyOYm9OjhQSYm0WlCuKrIAF7Ha7Dh06VKyQumnTpvMqpkZGRqply5bFCqp16tShmAoA58As4YD1woPcv6hakvAgPwX52rRZUsMawfL1ZSxWAHAL99wjLVkiTZggXXmltVn+/FO69lpp4EDpnXeszYJyRZEVKEenF1MLF1SPHj3q9PGqV69eYjG1Vq1aFFMB4DwxSzgAAEAVYrdL8+ZJO3easVCtlpAgHTkiJSczVEAVR5EVcIHCt/m7ophao0aN/HFSCy9r1qxZDukBwLMxSzgAAEAVsnGjKbD6+UmxsVankRYuNMuhQyWao6o0iqyAk04vppblNv+aNWuWWEytUaNGOSQHUBaFZ54PD/RVsL+P0jJyqvxM9IXPu6qeJ7OEAwAAVCHx8WbZubMUGWltlv37pQ0bTHF1yBBrs6DcUWQFziApKanEYmpycsnj9p1N4WJq4YJqVFRUOSQH4GqFZ54P8vPWf8a003srdmrF3wW/XKmKM9EXPm+HqnielXV2cwAAAJTAUWSNjbW+c3TRIrNs106KibE2C8odRVZ4vOTk5BKLqUlJSU4fq0aNGvmFVIqpQNVw+szz43s0LFZglareTPSnn7dDVTtPh8o6uzkAAAAKOXxYWr3aPL/0UmuzSGY8VkkaNMg9xodFuaLICo9x9OjRYsXUjRs36vDhw04fKyoqqkgxldv8garr9Jnn28VEaPqSv0vctyrNRH/6eRdWlc6zsMo6uzkAAAD+Z/58M/FVixZSvXrWZklPl1asMM+HD7c2CyoERVZUOcePHy+xmHrw4EGnj1W9evUSi6lMQAV4jtNnns/MyTvr/lVlJvrTz/t0VeU8AQAAUIU0bSqNGiXVry95e1ubJSNDGjdO2rxZatvW2iyoEBRZUWmdOHFCmzZtKlZM3b9/v9PHqlatWom3+desWVM2q8dwAWCp02ee9/c5+20+VWUm+tPP+3RV5TwBAABQhXTrJtWtK2VmWp1EqlZNmjRJioiQfPm3syegyAq3l5qaWmIxde/evU4fKyIiolhnasuWLVWrVi2KqQBKdPrM82v3HFf3xtWLjckqVa2Z6E8/78Kq0nkCANzPifQsJadlKSUjW2GBvooKZjgXAKWUlWU6SAMCrE5i5OZKwcFWp0AFcbrIunTpUsXGxpZHFni4tLQ0bdq0qVhBNTEx0eljhYWFlVhMrVOnDsVUAE45feb5d3/aqf+MaSebpJ8KFVqr2kz0p5+3Q1U7TwCAe9l//FSxiRd7NYnStJGtFR0RaGEyAG7v22+l0FApPNwsrbRjh/TXX1L79pK/v7VZUGGcLrIOHDhQdevW1bhx43TDDTcoJiamPHKhCjt58qQ2b95crDN19+7dTh8rNDQ0/9b+wo8LLriAYioAlzl95vmwQF+9OKqt0jJyqvRM9Kefd1U9TwCAeziRnlWswCqZCRcfmLNer45px99BAEpmt0s33STt2SO9/bYUF2dtntmzpenTzYRXX31lbRZUGKeLrPv27dOHH36o999/X48//rj69u2rCRMmaMSIEfLz4y88FEhPTy9WTN20aZN27tzp9LGCg4NLLKbGxMRQTAVQIUqaeb5WmEVhKlBJ5w0AQHlITssqVmB1WL4tWclpWfydBKBkf/xhCqyBgVKPHlankRYtMsu4OImahcdwusgaFRWlu+66S3fddZd+//13vffee7r11lt166236uqrr9aECRPUpk2b8sgKN3Xq1Clt2bKlWGfqzp07ZbfbnTpWUFCQmjdvXqyYWq9ePXl5nX2yGQAAAACVV0pG9lm3p55jOwAPFh9vll26WD9UQGKitGWL5O0tDR5sbRZUqDJNfHXJJZeodu3aql69uqZNm6Z3331Xr7/+urp27aoZM2aoZcuWrsoJN5CRkVFiMXXHjh1OF1MDAwNLLKbWr1+fYioAAADggcICzj77dug5tgPwYPPmmWWfPtZ3jiYkmGWHDlKdOtZmQYU6ryJrdna2vv76a7377rtKSEhQhw4dNH36dI0ZM0ZJSUl66KGHdOWVV2rTpk2uzosKcOrUKW3dujX/9v7CxdS8vDynjhUQEFCkmOq45b9Bgwby9vYupzMA4GrM8gsAAMpbVIifejWJKjLhokOvJlGKCuHfHgBKsH+/9Ntvprh62WVWpykossbFSTSReRSni6x33HGHPvnkE9ntdl133XV67rnn1KpVq/ztwcHBeuGFFxQdHe3SoHC9wrf5O4qpmzZtOq9iqr+/vy666KJinakNGzakmApUcszyCwAAKkJ4kJ+mjWytB+asL1Jo7dUkSs+ObM0veAGU7JtvzPLii6ULLrA2S2qqtHq1eT58uLVZUOGcLrJu2rRJr776qq644gr5+/uXuE9UVJSWLl1a5nBwjfT0dG3ZsqVIIfV8b/P38/MrVkxt0aKFLrzwQoqpQBXELL8AAKAiRUcE6tUx7ZSclqXUjGyFBvgqKoQ7aACchaNztHdv6ztHV62SsrOlRo2kQg2J8AxOF1kXL1587oP6+Kh3797nFQjn7+TJk0U6Ux3F1POZgOr0YqrjNv9GjRrJx6dMQ/kCqESY5RcAAFS08CCKqgCc8NFHpms0JsbqJNKAAaazNiPDTHwFj+J0teyZZ55RrVq1NH78+CLr3333XSUlJen+++93WTiU3h133KHp06c7/brCt/k7CqktWrSgmApAErP8AgAAAHBzdruZZCooyOokZlzY+vWlevWsTgILOF1Fe/PNNzVr1qxi61u2bKnRo0dTZLVIrVq1zro9ICDgjMVUbvMHcCbM8gsAAADArWVmSjk5kjs0imVlSX5+UkCA1UlgAaevwIMHD6pOnTrF1teoUUMHDhxwSSg4r0WLFpJMMbV58+b5RVRHQZUJqCoes7GjKmCWX+vwMwQAAAA4i7w8qVcvqXlz6Z//lKpVszbPv/8t/fmnNHGi1LSptVlgCaeLrDExMVqxYoUaNmxYZP2KFSsUHR3tsmBwzoABA7R9+3bVr1+fYqobYDZ2VBXM8msNfoYAAAAA5/Dbb9KKFdK6ddI991idRvrqK2n7dumqq6xOAos4XWSdOHGiJk+erOzsbPXt21eSmQzrvvvu0z3ucFF7qNDQUIWGhlodA2I2dlQ9zPJbsfgZAgAAAJRCfLxZdu8uWV0P2b7dPHx8pLg4a7PAMk4XWe+9914dOXJEt956q7KysiSZW9Tvv/9+Pfjggy4PCFQ2zMaOqohZfisOP0MAAACAUnAUWWNjzYRTVkpIMMvOnaWaNa3NAss4XWS12Wx69tln9fDDD2vz5s0KDAxUkyZN5O/vXx75gEqH2dgBlAU/QwAAAIBzSEyU/vhD8vKS+ve3Oo20aJFZxsVZX/CFZc576rWQkBB17NjRlVmAKoHZ2AGUBT9DAAAAgHNwdLG2bSvVrm1pFB07Jv3yi3k+fLi1WWCp8yqy/vbbb/rss8+UmJiYP2SAw5dffumSYEBlxWzsAMqCnyEAAADAOTiKrH36mG5WKy1dKuXmSk2bShddZG0WWMrpK/HTTz9Vt27dtHnzZn311VfKzs7Wxo0btWTJEoWHh5dHRqBScczG3qtJVJH1lW029hPpWdp+OE1rE49pe1KaTqRnnftFAMqsqvwMAU6kZ2ln0klJ0s7kk/w9AgAAXKdZM6lWLWnAAKuTSIGB0sUXm6ECvL2tTgMLOd3JOnXqVP373//WbbfdptDQUL3yyitq2LChbrrpJtWpU6c8MgKVTmWfjX3/8VPFZjfv1SRK00a2VnREoIXJAM9Q2X+GAI6/R37ZkaTnOklDp/+kzo1q8PcIAABwjWeflW6+WQoKsjqJNGiQ1KWLFBNjdRJYzOlO1u3bt2vw4MGSJD8/P508eVI2m0133XWX3nrrLZcHBCqr8CA/XVgzRG3rRerCmiGVpjhyIj2rWIFVMrOaPzBnPZ1IQAWprD9DAP4eAQAA5S4jw9yi7+sG8xVkZZkcgfwi2dM5XWSNjIxUamqqJOmCCy7Qhg0bJEnHjx9Xenq6a9MBqHDJaVnF/mPssHxbspLT+M8xAODM+HsEAACUm9xcaeVK6fhx9yiwbtggJSebjlp3yANLOV1k7dWrlxISEiRJV155pe68805NnDhRY8aMUb9+/VweEEDFSsnIPuv21HNsBwB4Nv4eAQAA5Wb1aql7dyk2VvKz+E4vu1268Uapa1dp/Xprs8AtOD0m6/Tp05WRkSFJ+te//iVfX1+tXLlSI0eO1EMPPeTygAAqVljA2X/7FnqO7QAAz8bfIwAAoNzEx5tlixaSv7+1WbZtk3bvNsXezp2tzQK34HSRtVq1avnPvby89MADD7g0EABrRYX4qVeTKC0v4VbPXk2iFBXCuJAAgDPj7xEAAFBu5s0zy9hYa3NI0sKFZtmtm1SoVgbP5XSRVZJyc3P11VdfafPmzZKkFi1aaPjw4fLxOa/DAXAj4UF+mjaytR6Ys77If5B7NYnSsyNbM/kOAOCsCv898vOOpPz1/D0CAADKZPt2afNmycdHcofhKv83lKbi4iSbzdoscAtOV0U3btyoYcOG6eDBg2rWrJkk6dlnn1WNGjUUHx+vVq1auTwkgIoVHRGoV8e0U3JallIzshUa4KuoED/+YwwAKBXH3yOHjqdr86/LFH9bD9WKCOLvEQAAcP4cQwW0by/VrGltliNHpDVrzPMRIyyNAvfhdJH1n//8p1q2bKnffvtNkZGRkqRjx45p7NixuvHGG7Vy5UqXhwRQ8cKDKKoCAM5feJCfgnxt2iypYY1g+TLjLgAAKAvHUAF9+ljfObpokZn4qkULqVEja7PAbThdZF23bl2RAqskRUZG6umnn1bHjh1dGg4AAAAAAAAe7tgxafly83zAAGuzSKbIKkkDB0re3tZmgdtwusjatGlTHTp0SC1btiyy/vDhw2rcuLHLggEAAAAAAAAKCzOFzfnzpaZNrU4jPfaYdMklDBWAIpwusj7zzDOaNGmSHnvsMXXp0kWStHr1aj3xxBN69tlnlZKSkr9vWFiY65IC5ehEepaS07KUkpGtsEBfRQVzqzwAAAAAAG7B21tq00aKinKPztGoKOn666UGDaxOAjfidJF1yJAhkqRRo0bJ9r8xMOx2uyRp6NCh+V/bbDbl5ua6KidQbvYfP6X756zXj9uS89f1ahKlaSNbKzoi0MJkAAAAAABAkpSaKvm5STNUZqYUGiox5jwKcbrIunTp0vLIAVjiRHpWsQKrJC3flqwH5qzXq2Pa0dEKAAAAAIBVVq+W3n5b6tnTTHplJbtduvNOqXlz6ZZbrM0Ct+N0kbV3797lkQOwRHJaVrECq8PybclKTsuiyAoAAAAAgFU+/1x6910pOVm69FJrs2zcKM2ZIwUESPfcY20WuB2ni6wO6enpSkxMVFZWVpH1rVu3LnMooKKkZGSfdXvqObYDAAAAAIByYrdL8+aZ5337WptFkhISzLJHDyk83NoscDtOF1mTkpI0btw4ffvttyVuZxxWVCZhAWcfPyX0HNsBAAAAAEA52bpV+vtvM/ZpbKzVaQqKrEOGSP+bpwhw8HL2BZMnT9bx48f1888/KzAwUN99953ef/99NWnSRPMcv11AlXMiPUvbD6dpbeIxbU9K04n0rHO/qBKICvFTryZRJW7r1SRKUSEMFQAAAAAAgCXi482yUyepenVrsxw8KP3xh3n+v4nfgcKc7mRdsmSJvv76a3Xo0EFeXl6qX7++BgwYoLCwMD3zzDMaPHhweeSEhfYfP1VscqheTaI0bWRrRUcEWpis7MKD/DRtZGs9MGe9lp92fs+ObM14rAAAAAAAWMXRzBcba33n6OLFZtmmjdSggaVR4J6cLrKePHlSNWvWlCRFRkYqKSlJTZs21cUXX6zff//d5QFhrRPpWcUKrJKZFOqBOev16ph2lb4QGR0RqFfHtFNyWpZSM7IVGuCrqBC/Sn9eAAAAAABUWkeOSCtXmucDBlibRSoYKmDQIMnL6RvD4QGcLrI2a9ZMW7duVYMGDdSmTRu9+eabatCggWbMmKE6deqUR0ZYKDktq1iB1WH5tmQlp2VViWJkeBBFVQAAAAAA3MauXVKjRpK3t9SwobVZ7Hbz8PGRhg+3NgvcltNF1jvvvFP79++XJD366KMaOHCgPv74Y/n5+WnmzJmuzgeLpWRkn3V76jm2AwAAAAAAOK19e+mXX6TNm02h1Uo2m/Tmm9KxY1Lr1tZmgdtyush67bXX5j9v3769du/erS1btqhevXqKiip5AiFUXmEBvmfdHnqO7QAAAAAAAE6z26XUVMldak1ZWVLt2pIvdRCUrNSDSJw8eVK33HKLLrjgAtWoUUOjR49WUlKSgoKCdMkll1BgraKiQvzUq0nJ39teTaIUFeLaW+xPpGdp++E0rU08pu1JaTqRnuXS47srTz1vAAAAAACKOXLEFFhPnZL8/a3NkpcnHT4s5eRIISHWZoFbK3Un68MPP6wPP/xQ11xzjQICAvTJJ5/oxhtv1FdffVWe+WCx8CA/TRvZWg/MWa/lhcZm7dUkSs+ObO3ScUz3Hz9VbJKtXk2iNG1ka0VHBLrsfdyNp543AAAAAAAleuwxaeZM6a67pJtvtjbL+vXS4MFSt27S4sXWZoFbK3WR9auvvtJ7772nK6+8UpJ0/fXXq0uXLsrJyZGPj9OjDqASiY4I1Ktj2ik5LUupGdkKDfBVVIhrJ4o6kZ5VrNAomcm1HpizXq+OaVclJ6by1PMGAAAAAKBEdrsUHy+lpZnb862WkGCWERHWd9XCrZW6Orp371517949/+v27dvL19dX+/fvV7169colHNxHeJBri6qnS07LKlZodFi+LVnJaVlVstjoqecNAAAAAECJNmyQdu82Bc3eva1OIy1caJZDhpgJsIAzKPWYrHl5efI9bXBfHx8f5ebmujwUPE9KRvZZt6eeY3tl5annDQAAAABAiebNM8suXUz3qJX27ZM2bZK8vEyRFTiLUney2u129evXr8jQAOnp6Ro6dKj8/Ao67X7//XfXJoRHCAs4++x8oefYXll56nkDAAAAAFCi+Hiz7NPH+s5Rx1AB7dpJF1xgbRa4vVIXWR999NFi64YPH+7SMPBcUSF+6tUkqsjkWg69mkQpKqRq3jLvqecNAAAAAEAxBw9Kv/xinl92mbVZpIIia1yc6WYFzqJMRVbAVcKD/DRtZGs9MGd9kYJjryZRenZk6yo7LqmnnjcAAAAAAMXMn28mvmrZUoqJsTZLWpq0cqV5PmyYtVlQKZS6yAqUt+iIQL06pp2S07KUmpGt0ABfRYWU74Rb7sBTzxsAAAAAgCJiY6WHHpICA63vHPX2lqZOldauldq0sTYLKgWKrHAr4UGeWVz01PMGAAAAACBfw4bShAlSthtMAh0YaIYJuPpqyZf5UnBuDCgBAAAAAAAA62VlSZmZkp+bNCHl5krBwVanQCVBJysAAAAAAACs9e67Ztm8uVS/vrVZNm2SFi+W+vSRmja1NgsqjVJ1slarVk3JyWZSnvHjxys1NbVcQwEAAAAAAMBD2O3Sww+boQI2bLA6jTR3rjRtmvT66+7TVQu3V6oia1ZWllJSUiRJ77//vjIyMso1FABUBifSs7T9cJrWJh7T9qQ0nUjPsjoSAAAAAFQ+v/8u7d8vBQVJPXtanUZKSDDLoUOtzYFKpVTDBXTt2lUjRoxQ+/btZbfbNWnSJAUGBpa477uO9m4AqML2Hz+l++es14/bkvPX9WoSpWkjWys6ouSfjwAAAACAEsTHm2W3blJoqLVZdu2S/vpL8vExE18BpVSqTtaPPvpIcXFxSktLk81m04kTJ3Ts2LESHwBQ1Z1IzypWYJWk5duS9cCc9XS0AgAAAIAz5s0zyz59JJvN0iheixaZJx07SnXqWJoFlUupOllr1aqladOmSZIaNmyoDz/8UNWrVy/XYADgrpLTsooVWB2Wb0tWclqWwoMYtwcAAAAAzmnvXmntWlNcHTDA6jSyOYqscXGWF3xRuZSqyFrYzp07yyMHAFQaKRnZZ92eeo7tAAAAAID/+eYbs2zTRoqOtjSKT1qabL/8Yr4YPtzSLKh8SjVcwOmWLVumoUOHqnHjxmrcuLGGDRumH3/80dXZAMAthQX4nnV76Dm2AwAAAAD+Z9Mms+zdW/I6rzKVy4Tv3m3GYr3wQqlFC0uzoPJx+ur96KOP1L9/fwUFBWnSpEn5k2D169dPs2bNKo+MAOBWokL81KtJVInbejWJUlQIQwUAAAAAQKm88oq0cqU0ZozVSXSkZUvlLF8uvfee5O1tdRxUMk4PF/D000/rueee01133ZW/btKkSXrppZf05JNP6uqrr3ZpQABwN+FBfpo2srUemLNeywuNzdqrSZSeHdma8VgBAAAAoLQyM6XISCkoyOokhr+/1KyZ1SlQCTldZN2xY4eGDh1abP2wYcM0ZcoUl4QCAHcXHRGoV8e0U3JallIzshUa4KuoED8KrAAAAABQWjk5UkaGWfo4XaJyfRZJ8vWVAgKszYJKyenhAmJiYrR48eJi6xctWqSYmBiXhAKAyiA8yE8X1gxR23qRurBmCAVWAAAAACitvDypUSPp8sulo0etTiOvZ55R7KRJsi1dKvnxfzs4z+lfE9xzzz2aNGmS1q1bp27dukmSVqxYoZkzZ+qVV15xeUAAAAAAAABUMb/8Iu3ZIx0/LtWubW0Wu11eixYpLDFROXSx4jw5XWS95ZZbVLt2bb344ov67LPPJEnNmzfX7NmzNXz4cJcHBAAAAAAAQBUzb55Zdu8uhYRYm2X7dtl27lSuj4/sgwZZmwWV1nkNeHH55Zfr8ssvd3UWAAAAAAAAeIL4eLOMjbU2hyQlJEiSjrRqpcjq1S0Og8rK6TFZAQAAAAAAgPO2c6e0YYPk7S3162d1mvwi68FOnSSbzeIwqKwosgIAAAAAAKDiOLpY27WTatWyNsvRo9Kvv0qSDnboYG0WVGoUWQEAAAAAAFBxHEXWPn0kL4tLU0uWSHl5sjdrplM1a1qbBZXaeY3JCgAAAAAAAJyXyy+X0tOlSy+1OonUqJE0YoTyWrWyOgkqOad/XfDEE08oPT292PpTp07piSeecEkoAAAAAAAAVFHjx0vvvCNddJHVScyQBU89pby777Y6CSo5p4usjz/+uNLS0oqtT09P1+OPP+6SUAAAAAAAAKiiMjKknBwz8ZXVsrIkPz/J39/qJKjknC6y2u122UqYae2PP/5QtWrVXBIKAAAAAAAAVUxOjvTuu9Lff0u+vlankRYvltaskQIC3CMPKrVSj8kaGRkpm80mm82mpk2bFim05ubmKi0tTTfffHO5hAQAAAAAAEAlt3KlNGGCFBEh/fabtVnsdmnKFGnvXmn2bDNOLFAGpS6yvvzyy7Lb7Ro/frwef/xxhYeH52/z8/NTgwYN1LVr13IJCQAAAAAAgEouPt4se/SQAgOtzbJliymw+vtL/ftbmwVVQqmLrDfccINycnJks9nUt29fxcTElGcuAAAAAAAAVCXz5pllbKy1OSRp4UKz7N5diow0QxkAZeDUmKw+Pj665ZZblJeXV155AAAAAAAAUNX89Zd5+PpK/fpZnUZKSDDLwYOlEuYeApzl9MRXnTp10tq1a8sjCwAAAAAAAKoix1ABHTpIUVHWZjl8WFq3zjwfPtzSKKg6Sj1cgMOtt96qe+65R3v37lX79u0VHBxcZHvr1q1dFg4AAAAAAABVgGOogD59rO8cXbzYTHx18cVSw4bWZkGV4XSRdfTo0ZKkSZMm5a+z2Wyy2+2y2WzKzc11XToAAAAAAABUbmlp0urV5vmll1qbRZJ+/NEsBw2SvJy+yRsokdNF1p07d5ZHDgAAAAAAAFRFISHS9u3SV19JF15odRrp5ZfNMAGdOlmdBFWI00XW+vXrl0cOAAAAAAAAVFXBwVJsrOTtbXUSM1RAjx5SgwZWJ0EV4nSR1WHTpk1KTExUVlZWkfXDhg0rcygAAAAAAABUIampkp+f1SmMzEwpNFTy9bU6CaoQpwee2LFjh9q0aaNWrVpp8ODBGjFihEaMGKHLL79cl19++XkHmTZtmmw2myZPnpy/LiMjQ7fddpuqV6+ukJAQjRw5UocOHTrv9wAAAAAAAEAFWrpU6t5deu89yd/f2ix2uxkm4IknpNOaBoGycrrIeuedd6phw4Y6fPiwgoKCtHHjRi1fvlwdOnTQDz/8cF4hfv31V7355ptq3bp1kfV33XWX4uPj9fnnn2vZsmXav3+/rrjiivN6DwAAAAAAAFSwr7+WVq6U/vjD+s7RP/+UfvvNZKpWzdosqHKcLrKuWrVKTzzxhKKiouTl5SUvLy/16NFDzzzzjCZNmuR0gLS0NF1zzTV6++23FRkZmb/+xIkTeuedd/TSSy+pb9++at++vd577z2tXLlSqx0z0gEAAAAAAMA92e1SfLx5HhtrbRZJSkgwy549pbAwa7OgynF6TNbc3FyFhoZKkqKiorR//341a9ZM9evX19atW50OcNttt2nw4MHq37+/nnrqqfz1a9asUXZ2tvr375+/7qKLLlK9evW0atUqdenSpcTjZWZmKjMzM//rlJQUSVJ2drays7OdzuduHOdQFc4FOBOuc3gCrnN4Aq5zeAKuc3gCrnOct02b5Ltjh+x+fsrp1UvKzbU0js/ChbJJyomLkz0np8g2rnOUxJnrwekia6tWrfTHH3+oYcOG6ty5s5577jn5+fnprbfeUqNGjZw61qeffqrff/9dv/76a7FtBw8elJ+fnyIiIoqsr1Wrlg4ePHjGYz7zzDN6/PHHi61fuHChgoKCnMrnzhIcv30BqjCuc3gCrnN4Aq5zeAKuc3gCrnM4q8mcOWoh6XCrVlq9a5e0a5dlWQKSk3XZhg2y22xKCA9X1oIFJe7HdY7C0tPTS72v00XWhx56SCdPnpQkPfHEExoyZIh69uyp6tWr69NPPy31cfbs2aM777xTCQkJCggIcDbGGT344IO6++67879OSUlRTEyMLr30UoVVgVbw7OxsJSQkaMCAAfK1eiwToJxwncMTcJ3DE3CdwxNwncMTcJ3jfHk/+6wkKSouTnGXXGJpFq8PP5Qk2du2Vf/RoyWvoiNocp2jJI475EvD6SLrZZddlv+8cePG2rJli44eParIyEjZbLZSH2fNmjU6fPiwLin0hyw3N1fLly/X9OnT9f333ysrK0vHjx8v0s166NAh1a5d+4zH9ff3l38Js9X5+vpWqT8kVe18gJJwncMTcJ3DE3CdwxNwncMTcJ3DKYcPS/+bU8f7ssvk7e1tbZ7FiyVJXnFx8iqhbuTAdY7CnLkWnJ74avz48UpNTS2yrlq1akpPT9f48eNLfZx+/frpzz//1Lp16/IfHTp00DXXXJP/3NfXV4v/94dAkrZu3arExER17drV2dgAAAAAAACoKCdOSIMHS5dcItWvb3UaqUkTqU4dafhwq5OginK6yPr+++/r1KlTxdafOnVKH3zwQamPExoaqlatWhV5BAcHq3r16mrVqpXCw8M1YcIE3X333Vq6dKnWrFmjcePGqWvXrmec9AoAXK1Pnz56+eWXy/U97Ha7YmNjNWnSpCLr77rrLvXq1Ut5eXnl+v4AAAAA4HJNmkgffCDNnClZ3cUqSffdJy1bJrVta3USVFGlHi4gJSVFdrtddrtdqampRcZRzc3N1YIFC1SzZk2Xhvv3v/8tLy8vjRw5UpmZmbrsssv0+uuvu/Q9AMBqNptN7777rtq2basrrrhCffr00Q8//KB33nlH69atk5eX078PAwAAAABr2e1SSop0llvzK1RmphQRITEUAMpJqf/nHhERoWrVqslms6lp06aKjIzMf0RFRWn8+PG67bbbyhTmhx9+KNIxFhAQoNdee01Hjx7VyZMn9eWXX551PFYAqEjbt2/X0KFDVaNGDdWvX19PPfVUka7Tjz76SM2bN1dERIR69Oih33///YzHatiwoZ577jmNGzdO+/fv17hx4/Tss8+qUaNGFXEqAAAAAOA6O3dKmzdLGRnWF1nz8szYsJmZUnCwtVlQpZW6k3Xp0qWy2+3q27ev5syZo2rVquVv8/PzU/369RUdHV0uIQHA3aSnp6tfv36aPHmy5syZo4MHDyouLk516tTRhAkTtHz5ct1yyy2aP3++unbtqtdee00DBw7Utm3bFB4eXuIxb7rpJn355Zdq06aN2rVrp1tuuaWCzwoAAAAAXOD556U33pBuukl65BFrs6xdK40cKV1wgbRtm7VZUKWVusjau3dvSdLOnTtVr1492Wy2cgsFAO5u/vz5ioyM1OTJkyVJ9erV05133qlZs2ZpwoQJ+vDDD3XttdeqV69ekqTJkyfrjTfe0Pz583X11Vef8bi9evXSwoULdcMNN1TEaQAAAACAa9nt0jffmOfuMP5pQoJZtmsnFRr6EnC1UhdZk5OTdfLkSdUvNCPcxo0b9cILL+jkyZMaMWLEWQsHAFCV7Nq1Sxs2bFBERET+ury8PMXExEiS9u7dqz59+hR5TcOGDbV3794zHnPz5s2aNm2a7rrrLt1///0aMmTIGbteAQAAAMAt/fGHtGePKWj+r2HPUo4i65AhEg2DKEelHpP1jjvu0H/+85/8rw8fPqyePXvq119/VWZmpsaOHasPP/ywXEICgLuJiYlR+/btdfz48fxHSkqKNm7cKEmqW7eudu3aVeQ1u3btUt26dUs8Xk5Ojm644Qbdddddeumll9S2bdv8LlkAAAAAqDTi482ySxcpLMzaLHv2SFu2SF5e0uDB1mZBlVfqIuvq1as1bNiw/K8/+OADVatWTevWrdPXX3+tqVOn6rXXXiuXkABgpZycHGVkZOQ/MjMzNWTIEB06dEivv/66MjIylJubq61bt+qHH36QJF177bX6+OOPtWLFCuXk5OjVV1/VkSNHFBcXV+J7TJs2TVlZWXr44YclSW+99Za+/vprLViwoKJOEwAAAADKzlFkjY21vnPU0cXaoYPEPEIoZ6Uush48eFANGjTI/3rJkiW64oor5ONjRhwYNmyYtjGAMIAq6N5771VgYGD+o1mzZgoJCdGiRYu0ePFiNWjQQNWrV9fVV1+tgwcPSjLjWL/66quaMGGCqlevrk8//VTffvttkeEFHP744w9NmzZN77//vnx9fSVJ0dHRevnllzVx4kQdP368As8WAAAAAM7T/v3Sr7+a55deam0WSVq40Czj4kw3K1COSj0ma1hYmI4fP54/Jusvv/yiCRMm5G+32WzKzMx0fUIAsJCjM7UkF154oebMmXPG7TfccEOpJrBq06aN0tLSiq2//vrrdf3115cqJwAAAABYbv58s7z4YukMQ6VVmNRUafVq83zoUGuzwCOUusjapUsX/ec//9Hbb7+tL7/8Uqmpqerbt2/+9r/++it/whcAcFd5eXlKTExUamqqQkNDVa9ePXnxG00AAAAAKLsxY8yEVykp1neOBgdLn30m/fKL1Lq1tVngEUpdZH3yySfVr18/ffTRR8rJydGUKVMUGRmZv/3TTz9Vb3eYNQ4AzmDz5s1asOBbpaWl5q8LCQlVXNwgNW/e3MJkAAAAAFAFBAdLPXtK2dlWJzFF3mbNpM6dJZ9Sl7+A81bqq6x169bavHmzVqxYodq1a6tz585Fto8ePVotWrRweUAAcIXNmzfrs88+k11S4aHXU9NS9dlnn2nUqFEUWgEAAACgLDIzpYwMKSjI6iRGbq4p/AIVwKlSflRUlIYPH17itsGDB7skEAC4Wl5enhYs+LZYgVX/+9ouacG336pZs2YMHQAAAAAA5+OZZ6Rjx6TYWKlNG2uzrF0rvf++mXyraVNrs8BjUE0AUOUlJiYqLS21WIHVwSYpLTVViYmJJW7/9NNPNWrUqHLLB6NPnz56+eWXy+XYN998s+6//36XHOvpp5/Wv/71L5ccCwAAAKgS8vKkV1+Vnn9e2r/f6jRmAq7PP5cWLJD8/KxOAw9BkRVAlZeamnrunc6wX15enqZMmaKHH37Y1bHcis1m07p168779TNnzlTbtm1dlqcsHnvsMY0YMaLIuhkzZujZZ591yfHvvPNO/fe//9XBgwddcjwAAACg0luzRjpwwNya37271WmkhASzHDrU2hzwKBRZAVR5oaGh573fggULVK1aNV188cWujoVKKiQkRIMGDdI777xjdRQAAADAPcybZ5bdu0ul/P9XudmxQ/r7bzPZVVyctVngUSiyAqjy6tWrp5CQUNnPsN0uKSQ0VPXq1Su2bd68eerbt2/+13fddZfGjh1bZJ9p06Zp0KBBkqTs7Gw9+OCDqlevnmrUqKGrrrpKSUlJkqRdu3bJZrPp+PHj+a+dPHly/vEc2z/88EM1btxYERERGjt2rLILzcz5xRdfqHHjxgoPD9fEiRM1ZMgQPfbYY/nbf//9d8XGxqpatWpq3Lix3n777SLbunTporCwMEVFRWno/36r26lTJ0lSt27dFBISoqlTp5b4OV177bWKjo5WWFiY2rdvr6VLl0qS1q5dq5tvvll//vmnQkJCFBISctahF1q3bq2IiAh17NhRK1euLHG/c52LJH3yySdq06aNwsLCVL9+fc2cOVNz587V1KlT9c033+RnkaSxY8dq8uTJ+a/97bff1L17d0VERKhFixb65JNP8rc99thjGjp0qG6//XZFRESoXr16mj17dpH37tevn+Y5/iEJAAAAeLr4eLPs00eynWmgtgri6GLt1EmqWdPaLPAoThdZvb29dfjw4WLrjxw5Im9vb5eEAgBX8vLyUlzcoPxJrgpzTIYVN2hQiZNerVu3ThdddFH+1xMmTNCcOXOUlpaWv27mzJkaP368JOmZZ57RN998o59++kk7d+6UzWbTNddc41Teb7/9VmvXrtWmTZu0ePFiffzxx5Kkv/76S9ddd52mT5+uI0eOqFOnTvr+++/zX3fw4EENGDBAt9xyi5KSkjR37lw9+uijWrx4sSTp9ttv19ChQ3X8+HHt27dP9957ryTpl19+kSStXLlSaWlpmjJlSom5+vXrp82bN+vIkSMaPXq0/vGPfyg1NVXt2rXTjBkzdPHFFystLU1paWklFqwXLFig//u//9PMmTN19OhRPfjggxo6dKiOHDlSbN9znUt8fLxuv/12/fvf/9bx48f166+/qk2bNhoxYoSmTJmiIUOG5Gc53fHjxzVw4ECNHj1aSUlJeuONNzRx4kStWLEif5/vv/9evXr10pEjR/TUU0/pn//8Z5HhJFq0aFGm4RUAAACAKiMxUfrjD8nLS+rf3+o0BUXWwYOtL/jCozhdZLXbS+4Fy8zMlB+DCQNwU82bN9eoUaMUGlL01pXQ0FCNGjVKzZs3L/F1x44dU1hYWP7XrVq1UosWLfTFF19IklatWqWkpCQNGzZMkvThhx/qoYce+l/3bIheeuklJSQkaL8Tg78/8sgjCg0NVXR0tAYOHKg1a9ZIkmbPnq1+/fpp4MCB8vHx0cSJE9W00EyZH374oXr16qVRo0bJ29tbrVq10rhx4zRr1ixJkq+vr3bv3q39+/fL399fvXr1KnUmSRo3bpzCw8Pl6+ure++9V3l5eVq/fn2pX//aa6/p3nvv1SWXXCIvLy9dccUVuuiii7RgwYJi+57rXF5//XXdeeed6tu3r7y8vFSzZk21a9euVDnmz5+vGjVq6I477pCvr6969+6tq6++Wu+//37+Ppdcckn+e1933XXKysrSX3/9lb89LCxMWVlZSk9PL/X5AwAAAFWSo4u1bVupTh1Lo+j4cel/TSQaPtzSKPA8PqXd8T//+Y8kMznKf//73/xbMCUpNzdXy5cvL9LtBQDupnnz5mrWrJkSExOVmpqq0P8NEVBSB6tDZGSkUlJSiqwbP368Zs6cqbFjx2rmzJm65ppr5O/vL0nau3evGjRokL9vdHS0/P39tXfvXtUs5a0qtWvXzn8eHBycP7zA/v37FRMTU2Tfwh2ju3bt0oIFCxQREZG/Ljc3Vz179pQkvfvuu3r88cfVvn17RUZG6vbbb9ftt99eqkx5eXl6+OGH9dlnn+nQoUPy8vJSSkqKkpOTS/V6R74pU6bo0UcfzV+XnZ2tffv2lbjv2c5l9+7duv7660v93oWd/j2SpEaNGmn58uX5Xxf+HthsNgUGBhbpZE1JSZGfn5+CgoLOKwMAAABQZZw6JUVESL17m25WK+3bJzVsaDpYqVGhgpW6yPrvf/9bkulknTFjRpGhAfz8/NSgQQPNmDHD9QkBwIW8vLyKFdjOpm3bttqyZUuRdWPGjNE999yjTZs2afbs2fljk0pS3bp1tWvXLnXu3FmSue09MzNTdevWze/2T09Pzy8eHjhwQIGBgaXKEh0drZ9//rnIusTExPz3iomJ0eWXX65PP/20xNdfeOGF+uCDD2S327VixQr1799fXbt2Vfv27WU7x200s2bN0qxZs/T999+rSZMmstlsioyMzL+74WyFaoeYmBjdcccduvnmm0u179nOpX79+vr7779L3HauLI7vUWG7du1S3bp1z5nLYdOmTWrbtm2p9wcAAACqrHvukUaMkNzhLq+WLaWvv5b8/CSGtEQFK/WvGHbu3KmdO3eqd+/e+uOPP/K/3rlzp7Zu3arvv/8+/z/6AFBVDB06tEgRVTK3io8cOVJXX321GjZsWOQ29WuvvVZTp07Vnj17lJaWprvvvlv9+/dXdHS0oqKiVK9ePb3//vvKy8vT0qVLS7xV/kxGjRqlRYsWaeHChcrJydG7775b5Bb26667TkuWLNGcOXOUnZ2t7OxsrVu3Tr/++qsk6YMPPtChQ4dks9kUEREhLy+v/F+Y1apVS9u3bz/jezs6N6OiopSVlaUnnniiSGdnrVq1dODAAZ06deqMx7jtttv0/PPPa82aNbLb7UpPT9eiRYu0d+/eYvue61xuuukmvfLKK1q2bJny8vJ0+PBhrV27Nj/L7t27lZOTU2KOuLg4HT58WK+//rpycnL0448/6uOPP3aqM3bJkiUaMmRIqfcHAAAAqqzMTCknx3SzugO7XapVy+oU8EBO93EvXbpUkZGR5ZEFANxOXFyckpOTtWHDhiLrJ0yYoD/++EPjxo0rsv7BBx/UZZddpq5du6pBgwbKzs7WRx99lL/93Xff1Xvvvafw8HC9+eabGj16dKmzNGvWTO+//75uueUWVa9eXatWrVLfvn3zhyq44IIL9P333+vNN99UnTp1VKtWLd122235wx0sWrRIbdq0UUhIiIYPH67nn38+vxvzySef1KRJkxQZGalp06YVe+8bbrhBLVu2VP369dWoUSMFBgYW6fzs27evunTpogsuuEARERFKTEwsdoyhQ4dq2rRpmjhxoiIjI9WwYUO98sorysvLK7bvuc5lxIgReumll3TbbbcpPDxcHTt21J9//ilJuvLKKxUWFqYaNWoUGW7AITIyUt9++60++ugjVa9eXTfeeKPeeOMN9ejRo1Tfh5MnT2rBggX65z//War9AQAAgCpr3z4zXEBOjuRT6puly8fRo1JKiuTrK/3v/0hARbLZzzST1Vns3btX8+bNU2JiorKysopse+mll1wWzhVSUlIUHh6uEydOFJm8prLKzs7WggULFBcXJ19fX6vjAOXC3a7zTz75RHPnztXs2bPz1yUmJqpJkybav3+/qlevblm2Zs2a6ZFHHtE111xjWQZPM3XqVJ08eVJPP/10mY7jbtc5UB64zuEJuM7hCbjOUaLcXKl2bVPQfPddqVUra/M88og0a5b0wAPmuZO4zlESZ+qKTv+aYfHixRo2bJgaNWqkLVu2qFWrVtq1a5fsdrsuueSS8w4NAO5qzJgxGjNmTP7Xubm5evbZZzVq1KgKL7DGx8erT58+8vPz0/Tp03XgwAENHDiwQjN4uilTplgdAQAAALDezz9LyclSWJiZbMpKdru0aJHpqm3UyNos8FhODxfw4IMP6v/+7//0559/KiAgQHPmzNGePXvUu3dvXXnlleWREQDcxs6dOxUWFqZly5aVuZPxfHz//feqX7++oqKi9Mknn2jevHmWdtICAAAA8FDz5plljx5ScLC1WbZtk3bvNhNe0YQCizjdybp582Z98skn5sU+Pjp16pRCQkL0xBNPaPjw4brllltcHhIA3EXDhg118uRJy95/+vTpmj59umXvDwAAAACSpPh4s4yNtTaHJCUkmGW3bhJNKLCI052swcHB+eOw1qlTp8hs1MnJya5LBgAAAAAAAPezfbu0aZOZ7KpfP6vTFBRZ4+Ikm83aLPBYTneydunSRT/99JOaN2+uuLg43XPPPfrzzz/15ZdfqkuXLuWREQAAAAAAAO7C0cV6ySVSzZrWZjlyRPrtN/N8xAhLo8CzOV1kfemll5SWliZJevzxx5WWlqbZs2erSZMmeumll1weEAAAAAAAAG7EUWTt08f6ztHFi83EVy1aMOkVLOV0kbVRoQs2ODhYM2bMcGkgAAAAAAAAuLEpU6SYGOmyy6xOInXtKt19t1SvnuTtbXUaeDCni6wAAAAAAADwYN26SdHRUkiI1UmkunWlceOk+vWtTgIP5/TEVwAAAAAAAPBgGRlSbq57dI5mZUn+/lJAgNVJ4OEosgIAAAAAAODcsrOlBx6QEhLco8A6e7b02Wem0Orra3UaeDiGCwAAAAAAAMC5rVghPfusFBkp/fqrtVnsdumFF6T9+6UGDaSWLa3NA4933p2sWVlZ2rp1q3JyclyZBwAAAAAAAO4oPt4se/aUAgOtzbJxoymwBgS4xwRc8HhOF1nT09M1YcIEBQUFqWXLlkpMTJQk3XHHHZo2bZrLAwIAAAAAAMBidrs0b5553revtVkkM2SBJPXoIYWHW5sF0HkUWR988EH98ccf+uGHHxRQaFDh/v37a/bs2S4NBwAAAAAAADewdav0999m7NPYWKvTSIsWmeXgwZLNZm0WQOcxJuvcuXM1e/ZsdenSRbZCF3HLli21fft2l4YDAAAAAACAG3AMFdCxo1S9urVZDh2S1q0zz4cOtTQK4OB0J2tSUpJq1qxZbP3JkyeLFF0BAAAAAABQRTiKrLGx1neOOrpY27SRGja0NgvwP04XWTt06KD58+fnf+0orP73v/9V165dXZcMAAAAAAAA1svMlHbtMs8HDLA0iiQzbIEkDRwoeZ33nO6ASzk9XMDUqVM1aNAgbdq0STk5OXrllVe0adMmrVy5UsuWLSuPjAAAAAAAALCKv7+0ZYvpIG3UyOo00iOPSGPGSPXrW50EyOd0ub9Hjx5at26dcnJydPHFF2vhwoWqWbOmVq1apfbt25dHRgAAAAAAAFgpM9MUWL29rU5islxwgRQTY3USIJ/TnaySdOGFF+rtt992dRYAAAAAAAC4k9xcyW6XUlMlPz+r00jZ2VJWlhQaKvmcV1kLKBdOd7KmpKSU+EhNTVVWVlZ5ZAQAAAAAAIAVliyRoqOlJ54wwwZYKS9P6tFDGjtWOn7c2izAaZwu+UdERORPdlWSunXrauzYsXr00UflxeDDAAAAAAAAlde8eVJSknTsmOTra22W9eulvXulo0cZKgBux+ki68yZM/Wvf/1LY8eOVadOnSRJv/zyi95//3099NBDSkpK0gsvvCB/f39NmTLF5YEBAAAAAABQAex2KT7ePO/Xz9oskpSQYJa9e5vhAgA34nSR9f3339eLL76oUaNG5a8bOnSoLr74Yr355ptavHix6tWrp6effpoiKwAAAAAAQGW1YYO0e7cZJqB3b6vTFBRZhw6VznKXNWAFp+/nX7lypdq1a1dsfbt27bRq1SpJUo8ePZSYmFj2dAAAAAAAALDGvHlm2aWLFBFhaRTt2ydt3Ch5eUlDhlibBSiB00XWmJgYvfPOO8XWv/POO4r533gYR44cUWRkZNnTAQAAAAAAwBqOoQL69LG+c9TRxdqunXTBBdZmAUrg9HABL7zwgq688kp9++236tixoyTpt99+05YtW/TFF19Ikn799VddddVVrk0KAAAAAACAinHokPTLL+b5pZdam0WSFi0yy7g4080KuBmni6zDhg3T1q1b9eabb2rr1q2SpEGDBmnu3Llq0KCBJOmWW25xaUgAAAAAAABUILtduvtuafNmqV49q9NIAwdKWVnSsGFWJwFK5HSRVZIaNGigZ555ptj6DRs2qFWrVmUOBQAAAAAAAAvVri09+KB08KB7dI7+4x/SFVdI/2vwA9xNmf+UpKam6q233lKnTp3Upk0bV2QCAAAAAACAlex2KTVV8vOzOomRmSkFB0s+59UvCJS78y6yLl++XDfccIPq1KmjF154QX379tXq1atdmQ0AAAAAAAAVbf16ae5c6cQJ64usubnSrFnSvn2myAq4KafK/wcPHtTMmTP1zjvvKCUlRaNGjVJmZqbmzp2rFi1alFdGAAAAAAAAVJTXX5fefFMaPVp68UVrs/z+u3TvvVJYmHTggLVZgLModSfr0KFD1axZM61fv14vv/yy9u/fr1dffbU8swEAAAAAAKAi2e3SN9+Y57Gx1maRpIQEs+zTRwoKsjQKcDal7mT99ttvNWnSJN1yyy1q0qRJeWYCAAAAAACAFX7/3dyaHxQk9epldZqCIuuQIdbmAM6h1J2sP/30k1JTU9W+fXt17txZ06dPV3JycnlmAwAAAAAAQEWKjzfLrl2l0FBrs+zeLf31l+TtLQ0ebG0W4BxKXWTt0qWL3n77bR04cEA33XSTPv30U0VHRysvL08JCQlKTU0tz5wAAAAAAAAob44ia2ysZLNZm8XRxdqhg1S7trVZgHModZHVITg4WOPHj9dPP/2kP//8U/fcc4+mTZummjVratiwYeWREQAAAAAAAOVt714zXIDNJg0YYHUaaeFCsxwyRPJyuoQFVKgyXaHNmjXTc889p7179+qTTz5xVSYAAAAAAABUtKVLzbJ1ayk62tosp05Ja9aY5zT1oRIo9cRXZ+Pt7a0RI0ZoxIgRrjgcAAAAAAAAKtq110pNmkjbt1vfORoYKK1YIf3yi9SypbVZgFJwSZEVAAAAAAAAVUDt2lL16lanMAIDpeHDzcRXgJtjQAsAAAAAAABImZlSRobk7291EiM3VwoOtjoFUCoUWQEAAAAAADzd5MnS6NHS2rWSj8U3Pq9ebSa7+vxzKSDA2ixAKVFkBQAAAAAA8GR5edInn0hff206Wa32/fem2Lthg+TnZ3UaoFQosgIAAAAAAHiyX36RDh+WQkKkbt2sTiMlJJjlsGHW5gCcQJEVAAAAAADAk8XHm2X37qbQaqW//5Z27pR8faVBg6zNAjiBIisAAAAAAIAnmzfPLGNjJZvN2iyOLtbOnaUaNazNAjiBIisAAAAAAICn2rXLjH3q7S317291moIi65Ah1hd8ASdQZAUAAAAAAPBUjqEC2rWTatWyNsvRo9Kvv5rnjMeKSsbH6gAAAAAAAACwSI0a0iWXmKECvCzuxUtNlQYMkJKTpaZNrc0COIkiKwAAAAAAgKe66ioz/mlOjtVJpPr1pZdekqpVM8MXAJUIwwUAAAAAAAB4qsxM8/D3tzqJZLebR3Cw1UkAp9HJCgAAAAAA4IlWr5bq1DFdrD4Wl4gSE6WTJ6V69aSAAGuzAOeBTlYAAAAAAABPk5MjDR4sNW4sbd9udRrp7bel/v2lV16RfH2tTgM4jSIrAAAAAACAp1m1Sjp6VAoJkVq2tDaL3S4lJJjn3btbmwU4TxRZAQAAAAAAPE18vFn26CEFBVmbZetWac8eMy7sZZdZmwU4TxRZAQAAAAAAPM28eWYZG2ttDklauNAsu3eXIiOtzQKcJ4qsAAAAAAAAnmTbNtM96uMj9etndZqCoQLi4iSbzdoswHmiyAoAAAAAAOBJHEMFdOwoRUVZmyUpSVq71jwfPtzaLEAZUGQFAAAAAADwJI6hAnr3tr5zdPFiM/FVq1ZSo0bWZgHKwMfqAAAAAAAAAKhA778vffCB1KeP1UlM96q/vxQeLnnRC4jKiyIrAAAAAACAJ6lZU/rHP6SQEKuTSAEBpqO2fn2rkwBlwq8IAAAAAAAAPElGhpSbK3l7W51EysoynawBAVYnAcqEIisAAAAAAIAnyMqSrrhCev11q5MYr74qTZsmHTok+fpanQYoE4YLAAAAAAAA8AQ//ih99ZW0bJk0Zoy1Wex2aeZM6eBBacAAa7MALkAnKwAAAAAAgCeIjzfLnj2tvz1/wwZTYA0KosiKKoEiKwAAAAAAQFVntxcUWfv1szaLJCUkmGXPnlJYmLVZABegyAoAAAAAAFDVbd4s7dhhxj7t08fqNAVF1iFDJJvN2iyAC1BkBQAAAAAAqOrmzTPLLl2katWszXLggLR+vSmuDh1qbRbARSiyAgAAAAAAVHWOoQL69LG+c3TRIrNs21aKibE0CuAqFFkBAAAAAACqspwcM8GUr6906aVWp5EyM6WICGnQIMmL0hSqBh+rAwAAAAAAAKAc+fiY4QI2bJBq17Y6jTRhgjRihHtkAVyEXxcAAAAAAABUdRkZUmCg5O1tdRLTyRoUZP3YsIAL0ckKAAAAAABQVWVlSUeOmKWfn9VppH37pOBgKTLSdNgCVQSdrAAAAAAAAFXVkiVSdLT0z39K/v7WZsnLkwYPlmJjpf37rc0CuBhFVgAAAAAAgKoqPt4sIyLMxFdWWrdOSkqS0tOlpk2tzQK4GEVWAAAAAACAqshul775xjzv18/aLJK0cKFZ9ukjhYRYGgVwNYqsAAAAAAAAVdH69VJiohQQIPXubXUaadEisxwyRLLZrM0CuBhFVgAAAAAAgKpo3jyz7NJFCguzNsuePdLmzZKXlxmXFahiKLICAAAAAABURY7xWGNjre8cTUgwyw4dzERcQBVDkRUAAAAAAKCqOXBA+vVX8/zSS63NIhUUWePiTDcrUMX4WB0AAAAAAAAALhYaKr39tvTzz1LdulankSZNkho0kEaMsDoJUC4osgIAAAAAAFQ1ISHS5ZdLXbu6R+dou3ZSmzam0ApUQW7wpwwAAAAAAAAuZbdLqamSn5/VSYzMTCk4WPKh3w9VE0VWAAAAAACAqmTlSmnaNGnLFsnf39osubnSk09KP/4oBQRYmwUoRxRZAQAAAAAAqpKZM6UpU6QPPrC+c3TNGmnGDOm++6wv+ALliCIrAAAAAABAVZGXJ33zjXner5+1WSRp4UKz7NtXCgqyNgtQjiiyAgAAAAAAVBVr1kgHDpjxT7t3tzqNlJBglkOGWJsDKGcUWQEAAAAAAKqK+Hiz7N5dCg21NsuOHdLff5shCwYPtjYLUM4osgIAAAAAAFQVjiJrnz6SzWZplPwu1k6dpJo1rc0ClDOKrAAAAAAAAFVBYqK0bp3k5SX17291moIi6+DB1hd8gXJmaZH1mWeeUceOHRUaGqqaNWtqxIgR2rp1a5F9MjIydNttt6l69eoKCQnRyJEjdejQIYsSAwAAAAAAuKk//5QCA6U2baQ6dazNkpUl7dtnng8fbm0WoAJYWmRdtmyZbrvtNq1evVoJCQnKzs7WpZdeqpMnT+bvc9dddyk+Pl6ff/65li1bpv379+uKK66wMDUAAAAAAIAbGjxY+usv6emnTTerlfz8pMWLpW+/lS66yNosQAXwsfLNv/vuuyJfz5w5UzVr1tSaNWvUq1cvnThxQu+8845mzZqlvn37SpLee+89NW/eXKtXr1aXLl2siA0AAAAAAOB+7HYpJ0dq3NjqJEZWltS2reTtbXUSoNy51ZisJ06ckCRVq1ZNkrRmzRplZ2erf6FxRC666CLVq1dPq1atsiQjAAAAAACA28nKkjIzpYwMyd/f2iy5uabYa7dLwcHWZgEqiKWdrIXl5eVp8uTJ6t69u1q1aiVJOnjwoPz8/BQREVFk31q1aungwYMlHiczM1OZmZn5X6ekpEiSsrOzlZ2dXT7hK5DjHKrCuQBnwnUOT8B1Dk/AdQ5PwHUOT8B1Xjl4T5wo2y+/KPfWW2UfMcIUOi1iW7FC3rfcoryhQ5U3Y4ZUCa4drnOUxJnrwW2KrLfddps2bNign376qUzHeeaZZ/T4448XW79w4UIFBQWV6djuJMExQx9QhXGdwxNwncMTcJ3DE3CdwxNwnbux3FwNnDtX/ikp+vnECSX//rulcVrNmqULjx/X3v37ta6SXTdc5ygsPT291Pu6RZH19ttv1zfffKPly5erbt26+etr166trKwsHT9+vEg366FDh1S7du0Sj/Xggw/q7rvvzv86JSVFMTExuvTSSxUWFlZu51BRsrOzlZCQoAEDBsjX19fqOEC54DqHJ+A6hyfgOocn4DqHJ+A6d3+2Vavkk5Iie2ioOv3jH9beom+3y+ePPyRJF1x3naLj4qzL4gSuc5TEcYd8aVhaZLXb7brjjjv01Vdf6YcfflDDhg2LbG/fvr18fX21ePFijRw5UpK0detWJSYmqmvXriUe09/fX/4ljD3i6+tbpf6QVLXzAUrCdQ5PwHUOT8B1Dk/AdQ5PwHXuxhYskCTZevSQr9UNZn/9JSUmSr6+8hk8WKpk1wzXOQpz5lqwtMh62223adasWfr6668VGhqaP85qeHi4AgMDFR4ergkTJujuu+9WtWrVFBYWpjvuuENdu3ZVly5drIwOAAAAAADgHuLjzTI21tockuS43b5bN6l6dWuzABXI0iLrG2+8IUnq06dPkfXvvfeexo4dK0n697//LS8vL40cOVKZmZm67LLL9Prrr1dwUgAAAAAAADe0Y4e0aZPk4yP162d1GmnhQrMcPFiy2azNAlQgy4cLOJeAgAC99tpreu211yogEQAAAAAAQCXi6GK95BKpZk1rsxw5Iq1ZY54PH25tFqCCucXEVwAAAAAAADgPl1wijR4tNW8ueXlZm8Vul267Tdq9W7rwQmuzABWMIisAAAAAAEBl1aOHVLeulJtrdRIpKkq65RYzFqu3t9VpgApl8a84AAAAAAAAcN4yMszD39/qJKaTNS9PCgqyOglQ4ehkBQAAAAAAqIy++MJ0jbpD5+jmzdLff0tdukgBAdZmASxAJysAAAAAAEBlk5Mj3Xij1LevtHGj1Wmkjz6Sbr5ZeuEFydfX6jRAhaPICgAAAAAAUNmsWCEdOyZFREidOlmbxW6XEhLM8yFDrM0CWIQiKwAAAAAAQGUzb55Z9uolBQZam2XTJmnfPjNMwKWXWpsFsAhFVgAAAAAAgMomPt4sY2OtzSEVdLF27246awEPRJEVAAAAAACgMtm6Vdq2zYx92rev1WmkRYvMcsgQyWazNgtgEYqsAAAAAAAAlYljqICOHaXq1a3NcuiQtHateT50qLVZAAtRZAUAAAAAAKhMli41yz59rO8cXb3aLFu3lho2tDYLYCEfqwMAAAAAAADACV99Jc2ZIzVqZHUSafhwqUED89yLXj54LoqsAAAAAAAAlUlentSunRQSYnUSyW6X6tWT6te3OglgKX7FAAAAAAAAUJlkZEi5uZK3t9VJpKwsyc9PCgiwOglgKYqsAAAAAAAAlUFWltSmjXTXXea51R57TJo4Udq8WfLhZml4NoqsAAAAAAAAlcHy5dL69dKCBVJkpLVZ8vKkefOkxYulnBxrswBugCIrAAAAAABAZTBvnln27Cn5+1ub5c8/pUOHpKAgqX9/a7MAboAiKwAAAAAAgLuz26X4ePM8NtbaLJK0cKFZ9u4thYZamwVwAxRZAQAAAAAA3N2GDdKuXaaDtU8fq9NICQlmOWSIZLNZmwVwAxRZAQAAAAAA3J2ji7VzZ+vHY923T9q4UfLykoYOtTYL4CYosgIAAAAAALg7R5G1Tx/rO0cXLTLLdu2kCy6wNgvgJiiyAgAAAAAAuLO8PKljR1PQvPRSq9NI1aubAuuQIaabFYB8rA4AAAAAAACAs/DykqZNk266SQoPtzqNNHiw1L27VK+e1UkAt8GvGwAAAAAAANxdRoZZukPnaGammYArMNDqJIDbcIM/mQAAAAAAAChRRob0ww/SsWOSr6/VaaTffpMOHZKCgyUfbpAGHCiyAgAAAAAAuKslS6TYWHOLvr+/tVlyc6Xx46WePaW//rI2C+BmKLICAAAAAAC4q3nzzLJtW+s7WX//XTpyRAoKkjp0sDYL4GYosgIAAAAAALgju1365hvzvG9fa7NI0qJFZhkba4YLAJCPIisAAAAAAIA7WrtW2rfPdI726mV1GikhwSyHDrU2B+CGKLICAAAAAAC4I8dQAV27SqGh1mbZvVvaulXy9pbi4qzNArghiqwAAAAAAADuKD7eLGNjJZvN2iyOLtaOHaXatcvlLUJCpD//NM8fe0waMaJgm80mrVtXLm9bKVn9eYwdK02ebN37uyOKrAAAAAAAAO5m3z4z0ZTNJg0YYHUaaeFCs4yLk7zOXU7autWMKhAVJYWFSRddJD37bMH2Bg2kuXOLviYtTbr4YpclrjJK+qwq0ukFb5TMx+oAAAAAAAAAOE2dOtKPP5rJpqKjrU4jvfKKmYTryitLtfvgwdLo0dLs2ZK/v7Rli7RpUzlnrORycsxoDFY3LeP80MkKAAAAAADgbry8pObNpX/8o1Sdo+UuMlK65hqpSZNz7pqcLG3fLt10k5mzy9tbatmyoD575ZVSYqI0ZowZIuDmm83687kFPilJCgiQdu4sWJeRYeL+/LP5+rffpO7dpYgIqUUL6ZNPCvY9/bb348dNjl27CrZPnGgKxqGhUrNm0g8/FN3/yivNsS+6SHr11aJF0uxs6ZFHpAsvlKpXl4YNk/bvL9hus0nTp0utWknBwaabt7AzfVaStHq1eV1YmDnuiRMF26691tTmw8Kk9u2lpUsLts2cKbVtKz35pFSzplSrlvTyyyV/vnPnSlOnmvp6SIh5OJw8eebP5VznfTqbzdTxmzUzn+VVVxU9n7N9Dx97TBoyRJowwZxvkybSV18VbLfbpf/8x3x/IiKkPn2kzZvPnOV8ucGfUgAAAAAAABRht0upqaYN1B1kZpoqoLf3OXetXt0Uy8aNkz77zMyZVdjnn0v16plCWVqaNGPG+ceqUcMU2N5/v2DdV1+ZAmPnzqYIOnCgKQYmJUlvvGGKpitWlP49Zs82xc3jx6XrrjOFV4c77jDFxt27TSHzww+LvvZf/zLv9dNP0oEDUtOmJkths2aZ0RhSUsxHXNjZPqvPPpOWLDFF2L17pX//u2Bbv36mkHjkiHm/f/zDXE4OGzeaAvi+feb87r3XFMZPN2KENGWK+YzT0ooWgc/2uZTmvE/34YfmM9y1Szp2rKD4XZrv4XffSZ06SUePSi+9ZIrSjvN54w3pnXfMEMfJydIVV5ihLLKyzp7HWRRZAQAAAAAA3MnChaZitWSJ9UXWnBzTIvjBB6UqsEqmK/GHH6Q2baTHH5caNTLdh465s1zNEc9uN1/PnGkKvJI0f74pxN5xh+TrK/XuLV19ddGi7LnExZnuR29vc9zdu03xMjfXFBqfeEIKDzcjPNx7b8Hr7Hbp9ddN0a9OHcnPT3rqKVMc3LOnYL/77jNFYX9/55qW77vPdKJGREgjR0pr1hRsGzfOZPL1NZny8qT16wu2R0VJ99xjtvfpY8Z9dbaL+EyfS2nPu6TziY425/Pkk6b4nJdXuu9h06amc9rHxxRQY2MLul1fe818j5o0MdsnTZJOnSrodHYViqwAAAAAAADuZPZsUzVcvNhUhaz066+mTXDGDHNfeCnVri29+KLpmExKkgYNki6/3HQautpll5muxGXLTGfmsmWms1IyHZ4NGhTdv1Ejs760atcueO7oNE1NNV2R2dlSTEzB9nr1Cp4nJ5su1169TOEwIsIcy8+vaLGx8GuccXouR6dqXp7pJG3SxNw+HxFhbr1PTi7Yv1atoscq/PrzfX+p4HMpzXmfrn79os+zssy1U5rvYeHXOr7et88837XLDJ/gyBIRYTplnbkGSoOJrwAAAAAAANyFo3VPMvd8W83Rftq3rxQYeF6HqFbNjJv50ktm7NRq1Vw7zKyXl2n8nTnTDFNw2WUFRcS6dQvGV3XYtcusl8wYo+npBdsOHCj9+0ZFmc7KPXsK3i8xsWB79ermlvyffzbjgZ4t/9k4+1nNmmUe339vCq02mxmj1tHp6yxn37+053263bvNEA+S+Rz9/EwH67m+h47XFpaYKHXrZp7HxJgxZwcOdO48nEUnKwAAAAAAgLv49Vfp0CFT/eve3eo0BUXWYcNK/ZJjx6SHHpK2bDG31KenmwJrtWoFRbdatUoeA/R8jR8vffmlGXtz/PiC9XFx0uHD5vb1nBzpxx+ljz+Wrr/ebL/kElOMPHBAOnXKR089VbohESRzm/yoUaaAfOKEdPCg6d518PIyY5bec09BB+eRI6ZR2RnOflYpKaZAGRVlukGfeML5LtXT33/3bvP5lcb5nvfzz5vJsY4fN5NmjR5tjnWu76Ek/fWX9PbbZvv8+WakjauuMttuu80cb+tW83VKivT112X7TEo8b9ceDgAAAAAAAOdt3jyz7N696FTuVvj7b2nHDtOuOWhQqV/m52du1Y6LM+OC1qtnxuP89tuC28qnTJGmTze3bt96a9mjNmokdehgCmeDBxesj4w07/vRR6bD8sYbzURIPXqY7ddea8b4vPhiH02e3EeDBuU59b6vvmrGUq1Xz4xPOmqUOX+HZ56RunY1jcChoVL79mbIXWc4+1ndcIPUsqW5Zb5RI9OAXLjr01lXXmmGHahRw2QojfM572uvNWOp1q9vXvPKK2b9ub6HkulSXb3aFPLvvNPs26SJ2Xb77abT+YorzHk0b246fV3NZrefb7Nw5ZCSkqLw8HCdOHFCYWFhVscps+zsbC1YsEBxcXHy9fW1Og5QLrjO4Qm4zuEJuM7hCbjO4Qm4zitY69bSn39K06YVDCxqlRkzzAxEPXpIy5eb+87d2Pjxpsj2wgvOv9ZV1/knn5iuyW3bzvsQHslmk9auldq2df61jz1mJu2aO9e1mSTn6oqMyQoAAAAAAOAOdu0yBVYvL/cYj9XRejh4sNsXWLdvl774QlqzpmLfd9s2M1RA+/am8fepp0znJzwPRVYAAAAAAAB3sH+/GbQ0JKTo1O1WyM019/b7+krDh1ub5Rxuusnc/v3AAwW3iFeUkyfNbe579pihEa64woxHC89DkRUAAAAAAMAddOtmZvXZudP5Kd1dzdtbeustM2tV06bWZjmHN980Dyu0bWsm+ELZlGUw08cec1mMMmHiKwAAAAAAAHdgt5uZmyIjrU5iZGZKNWuagiuAs6LICgAAAAAAYLVDh6Tjx01hs/D09FbIzjZDF9jtUlDQeR/m00+lUaMKvrbZzARF7mr//mB17eqt0FDpnnusTlM+Vqww85jB9SiyAgAAAAAAWO2++6S6daXPP5d8LB7dcdUqqWNH6bbbpICA8zpEXp40ZYr08MMuzlaOvvyyiS6+2DQTv/ii1KeP9PLLrn+fhx+WLr7YfJsnTy6+PSFBuuQSKTRUatFC+u67otttNlP7DgkxjzZtim7PzJT+7/+kOnXM9osvNnOqSVL37maY3a+/dv15eTqKrAAAAAAAAFbKzZXmzzfjnzZsaHUaU+WTTJXO1/e8DrFggVStminwlYfsbNcf89ChILVqVYbBQU9zpoyNG0vPPScNG1Z8244d0uWXS088IZ04YfYbOdKsL2zlSiktzTz++KPotnHjpO3bpTVrTMH488+liIiC7TfcIE2fXqZTQwkosgIAAAAAAFhp1SrpyBEzPX2XLtZmsdsLiqxDh573YebNk/r2Lb5+2TKpWTNT9LvqKlNIdPjtN9NpGRFhOjg/+aRg22OPSUOGSLfcYoq3DzwgjR0rTZwojR5tuj6bNZN++OHMmT76SGrVyuxbr57pKHVMuNStm7c2bozSlCleCgmR2rc3c5Ddf7/pBh00yOyXlibdfrt5fc2a0vXXF5zDrl2my/S990whtW7dknPccIM5XlhY8W3ffWe6WIcMMXOfDRkideokffDBmc+rsI0bTZfqu+9K0dEmz0UXFS2y9utnPqfU1NIdE6VDkRUAAAAAAMBK8fFm2aNHmcZAdYmtW6U9e8y4sJdddt6HWbfOFPdO9+GH0tKlpiB57FjB7fLHj0sDB5qCaVKS9MYbpoC6YkXBa7/7TurcWTp8WHrySbNu9mzp5pvN66+7zhRez6R6denLL6WUFFMEfustadYss23lylw1b35EU6fmKS3NdIH27Ck9+6wprH77rdlv/Hjp6FFp/Xpp507TrXr77UXfZ948UzDeudPZT80Ms2C3F1+3fn3RdXFxUo0apmC6enXB+mXLpAYNpIceMtubNDHdsIXFxJhRIDZscD4fzowiKwAAAAAAgJXmzTPLklo/K9rChWbZo4dpGT1Px46V3Kl5332mwzIiwhRKZ80yRcT5801R8I47zAgFvXtLV18tvf9+wWtbtTJFVB+fglp0XJwZO9Xb29wmv3u3aQouyaBBUtOmpruzbVtpzJizd76eLilJmjNHeu01kz842NzWP3u2GfHB4dFHzfbzqZcPGCD9+qs0d66Uk2OWK1aYwrDDkiWmgLtrlzn/Sy+VEhPNtqNHpU2bTPftnj3m9a+8YorbhYWFme8RXIciKwAAAAAAgFW2bZO2bDGVw379rE5TMFRAXJypRp6nyMiihUGH+vWLPs/KMsXLvXtNB2ZhjRqZ9Q716hU/Xu3aBc+Dg83yTLfBf/+91K2bFBVlRmaYMUNKTi7V6UgyRc28PDNsbkSEeXTsaG7rP3jw7DlLq1kzU7R9/HEzHME775ju3urVC/aJjZX8/c353nOP6RhesMBsCwkxBecnnjDdqi1bmu5bR7O0Q0qK+R7BdSiyAgAAAADgSRo0MO1tldG5srdtK82cWTFZXMVR/erQwVT/rJScLK1da54PH16mQ7Vta2rHp9u9u+B5YqIZlaBGDTN+6a5dRffdtavouKZeZahiZWVJV1wh3XSTtG+fGUf15puL35pf2OnvFxNj1u3fb4YncDwyMqQLLnBNTsl89GvXmq7U+HhTh+/du3Q527Qxy7PVx/fsMZlbtSpbThRFkRUAAAAAAFfo08e0l4WEmNus+/QxAzsCZzN8uPTII2YWqDJ0jrpEUJD04oumEtmoUZkONXSoGXv1dM8/X1CkfOQR06Xp5WUaZw8fll5/3dwm/+OP0scfm4mlXCEz0xQWq1c3f0x//rlgPNYzqVVL2r694OvataURI8wYrI4O2IMHpa++ci5LdrbJkptrHhkZZp3Db7+ZzyA11XSkHj1qJsuSzDiqa9YUHOM//zGTXTmGz+3Vy4zD+vjjZp+tW83vHQrXzJcsMfuFhjqXG2dHkRUAAAAAAFdxzJKzf7/Url2ZuwFRgQpXuSpSw4amgjZkiDXvX1hQkKnWPfFEmdsx4+JMIfL0yZWuvdbc7l6/vinyvfKKWR8ZaSaX+ugjUwi98UYz+VWPHmWKkS801IyleuONZjzSp582de2zmTxZWrTIDAvg+PbMnFkwTEBYmJkcy9nfpUycKAUGmnOdPt08nzixYPuDD5rf09Staya8Wrq0YCiEpCTzGUZEmO7ZL780E4I1bGi2e3ubIX5XrTL7DBwo3XmndM01Bcf/4IPik3Wh7CiyAgAAAADgagEB0oQJ5r7kI0ekQ4ekUaPMfdH16kn/+pdpVZPMzDsREdKrr0p16ph2uUcfLXof86JFUqdOZr+WLQsmSirJwoXm1vPwcHO8W2+VTp0qed/mzU2FRpL+/NN0Us6YYb4+ccLMQPS/lj3vG24wMxaFhUnt2xe0KWZnm5a/02cQat7cDC5pt0v332/OKyzMzDz0zTcl57HbTSflhReaKtPAgdKOHWc+1+nTzT3c1aubz/R0Z/vcxo4136NRo0wux3lXtMxM8/D3t+b9C7PbzaCjgYFlPpS3tzR1qpncqvDh77zTdFeeOCF9/rn51jh06iStXGm2bd5siokOjz1WfKSImTOll18u+DoiwrzH6WO7Otx8s/n9R0qKuRRefbXoMZ9+eoUmTcrL/7pzZ5Pj+PGCSzY0VHrpJTPxVEqKuZX/qafMtgYNzPsXPqeSzJxp9iv8KDzKRUKCOfaJE9IXXxQdMiE21mQ6edL8aPnhB6l796LHb9LEdKuePGly/t//FWxbudJcbpdffvaMcB5FVgAAAAAAXC09Xfrvf027XvXqZpp0X19T8fjxR1PZee65gv1TU6Xffzf3Jv/wg/Tuu6bdTDKtbFdeKU2bZu4bfvNN6brrTKWqJIGB0ttvm31XrDDF0JdeKnnf2NiCYumSJaa46fj6hx+kFi3yxwnN69vXVHeOHDH3eP/jHya3r6/JU7hKtGqVKSyPGGEqRrNmmfNLSTGFz6ZNS87z4Ycm69y5phrWsqW579xRkC5syRJTWP3sM+nAAbOucNtkaT63Tz4xhdbjx82yov3nP9L775v39/au+Pcv7LffTMVy717zSwIXGDPG1NnhPrp1k376yeoUVRNFVgAAAAAAXOXBB00bW6NGZtafefNMN+uSJaZ4GBJiCq//+lfRomRenhlqICjITBV+++2m4CiZ4uDYsVLfvuYW7h49zL3Ln31WcoaePc1QBd7eJsdNNxXvMnU4vcj68MPSsmUFX/ftm7+r/YYbTHesr690770m8/r1ZuOECdKcOWaoBMmc29VXm+5MX18zeOTGjabrtV69sxdZJ02SLr7YFPqmTjWz9PzyS/F9P/7Y3APdtauZPemxxwruqS7t53bppeb2eC8v89lXpOxsMyjpLbeYGaCs9sUX0gsvmIK4r6/VaYBKhyIrAAAAAACu8swzpivx4EFzG37r1gWdgbVqFezXqJFZ7xAQINWsWfB1/fqmOCuZKdZnzDDFW8fj669Np2dJfv1V6t/fvF9YmDRlSsEsPafr08dMY37smLmP+IorzG39GzcWLbLm5cnr4YfNfchhYSbDiRMFx23e3ExV/sUXpqA6e7Y0frzZFhtrZuF5+GHTFTtypOnoLcnevUXv9fb3N0MUFP6sHPbvN5+Tg6+vGR7BoTSfW716JeeoCD/+aD7DatXM8A5WsttNx7FkOocBOI0iKwAAAAAA5aluXVN4PHSoYN2uXUUHWszIMFOrOyQmmlltJDPm6J13muKt45GWZmYFKsmYMaawuWOHuT1/6tSi47sWVqOG6Zx9+WWpcWMz4GTfvqZIumWLmYJcUt3ly+U1e7Y0f74pDB4/brpaCx93wgTTwfrVV6b4ecklBdtuvVVavdqcl7+/6VY902e1a1fB11lZpiha+LNyiI6Wdu8u+Do7u2DYgNJ+bmWc3KlMHOPD9uzpkjFQy2TDBvOLgcBA090LwGkUWQEAAAAAKE8XXGCKnv/3f2YmmsREM7X5DTcU7OPlZYYaOHXKjBn62msF04HfdJP03nvmtv7cXDNrzapVZnzUkqSkmK7N4GCzz5mKsQ6xsabIGhtrvu7b10z53q6dKaRK8klPN52iUVGm8PnEE2Y81sKuuspMsz5tWkEXq2Q6a1euNK8LDDS5fHxKznLttWYyq02bzHk+9JD5/Dp1Kr7vmDFmyICffy7IdPJkwXZnP7eKZLdL8fHmeb9+1maRCrpYe/Y0ncoAnEaRFQAAAACA8jZrlimg1q9vpgIfPFi6776C7aGhUtu2ZhiBXr2k668vKMK2a2cmaHroIdN5esEF5tb7zMyS3+vNN83YmiEhZjr10aPPni021hRmHUMD9O5tJu4qNB7rnr59ZW/RwuRv1MgUS0/vLg0NNRNNbdlSUCCWzLFvvdVMAFa7tulMfeWVkrNcf710xx1m7NTataU//jDFyJKKsv37m6nrR440wwTk5ZkhCxyc/dwq0ubNptPY19cM2WA1R5F18GDJZrM2C1BJneFXRwAAAAAAwClnmlxKMgXDL744++vvuMM8StK3b5Gi51ldfrl5FPb44wXPC9+O79i/8G3/oaHm1vtCcgMClPv55/IqPCHSvfcWf+8GDcyYnlFRBev69ZPWrStddpvNFJ8LF6ALOz37pElFhx54+umi28/2uRWeeKyiObpYO3c2Y7Ja6cABM4GZzcZ4rEAZUGQFAAAAAABll5Qkvf22tcXLymLHDrOMjbW+c3TrVikoSGratOhEYgCcQpEVAAAAAACUzdNPmwm2rrvOPcYYdXdvvCGNHWv9hFeSGa7gxx/NuLVWTgQGVHIUWQEAAAAAsFKfPmbm+8rsX/8yD5ROZqaZVCw01OokZqgIf3+6WIEyosgKAAAAAABQUTIzpYwMM1GXt7f1WRxF1oAAa7MAlRx94AAAAAAAVBSbrfSTQKHqycyU6tQxE0ylpVmdxnQf9+9vhgvwoQ8PKAuKrAAAAAAAlIcGDaS5c61OAXfyww/SsWPSX39JtWpZmyUvT1q0SNq5U6pWzdosQBVAkRUAAAAAAKAizJtnlr17m1v0rbRunZSUJIWESH37WpsFqAIosgIAAAAA4GpXXiklJkpjxpgi1s03F2xbvVpq1UoKC5OGDZNOnCjYdu21UnS02da+vbR0acG2mTOltm2lJ5+UatY0nZAvv1zy+yclmTE2d+4sWJeRIUVGSj//bL7+7Tepe3cpIkJq0UL65JOCfceOlSZPzv/SJy1Nvn5+0q5d5/NpQDJjn8bHm+fuUNRMSDDL3r3NNQqgTCiyAgAAAADgap9/LtWrZwqXaWnSjBkF2z77TFqyxBRh9+6V/v3vgm39+kmbN0tHjkijR0v/+IeUmlqwfeNGKShI2rdPmj1buvdeafv24u9fo4Y0ZIj0/vsF6776yhRwO3eWjh+XBg4075GUJL3xhjRxorRihcs/CvzPH39Ie/aY4nefPlanKSiyDh1qxgoGUCYUWQEAAAAAqEj33Wc6USMipJEjpTVrCraNGyeFh0u+vqaAmpcnrV9fsD0qSrrnHrO9Tx8z7uuZJtKaMEH64APTQSmZTthx48zz+fNNIfaOO8yxeveWrr66aFEWruXoYu3a1XQqW2nvXlPM9/KSBg+2NgtQRVBkBQAAAACgItWuXfA8OLigUzUvz8z23qSJKcJFRJihBJKTC/Y/fbKkwq8/3WWXSVlZ0rJlpvN12TLpuuvMtr17TYG2sEaNzHqUD0eRtXdv6ztHHV2s7dub7mYAZeZjdQAAAAAAAKokLyf7mmbNMo/vvzeFVpvNjKHq6EQ9n/cfO9Z0sDZrZoqujiJt3brFx1fdtcusl8wYnenp+ZsCjh07vwww7HbphhvMUAGXXmp1GjMm8MiRZkxeZ69TACWiyAoAAAAAQHmoVavk8VLPJCVF8vMzQwJkZUnPPnvmLtXSGj/eTJZVs6b04osF6+PipEmTpNdfl268UVq1Svr4Y+nbb832Sy6RHn9cOnBA8vdXs9mzy5bD09lsZqiG2FjrhwqQpA4dpMaNpfr1rU4CVBn8ugIAAAAAgPIwZYo0fbq57f/WW8+9/w03SC1bmsJXo0ZSYGBBZ+n5atTIFNRSU4uOvRkZaQqqH30kVa9uCq1vvCH16GG2X3utua39oovk07GjDrVvX7YckE6dMh2t7tA5mpkp+fubzloALkEnKwAAAAAA5WHoUPMo7PRb/ydPNg/JjK/65ZdFt997b8HzsWPNo7AzTXpVWIMGpjPV57QSQKdO0sqVJb/Gz89MmiUpJztbexcsUOvnn5evr++53w9FnTplhmxo29Z0KVvtm29MN23PnsWvCQDnjT9NAAAAAABUVdu3S198Ia1ZY3USz7V4selkjo4+c1G7ouTmSg88IB07Ji1YIF1wgbV5gCrEDXrUAQAAAACAy910k+mevP9+M5EWrBEfb5a9eklWdwKvWWMKrOHhZjgIAC5DJysAAAAAAFXRm2+aB6yTl1dQZO3Xz9oskrRwoVnGxkpBQdZmAaoYOlkBAAAAAADKw++/SwcOmPF2HZOKWSkhwSxPHysYQJlRZAUAAAAAwFU+/VQaNarga5utdJNTWWXbNqljRyk0VLrnHqvTlI8VK6wrcM6bZ5bdupnP2Eo7d0p//20mu4qLszYLUAVRZAUAAAAAwBXy8qQpU6SHH7Y6Sek9+6zUurWUmiq9+KLUp4/08suuf5+HH5YuvtgU+CZPLr49IUG65BJTiGzRQvruu4Jte/eaImX16mYs0bZtpa++Ktg+daoUElLwCA42xe0vvzTbu3c3Y6F+/bXrz+tcHEMFxMaaTFZydLF26iTVqmVtFqAKosgKAAAAAIArLFggVatmionlITvb9cfcudO1ec+UsXFj6bnnpGHDim/bsUO6/HLpiSekEyfMfiNHmvWSFBkpzZwpJSWZ7a+/Ll17rckumcJ2WlrB44MPTDF20KCC97jhBmn6dNedZ2kkJ0sbNkheXlL//hX73iVZtcos4+KsL/gCVRBFVgAAAAAAXGHePBDZuwgAACRbSURBVKlv3+Lrly2TmjWTIiKkq64yhUKH334znZYREaaD85NPCrY99pg0ZIh0yy2mePvAA9LYsdLEidLo0abrs1kz6Ycfzpzpo4+kVq3MvvXqmY5Su91s69TJvPb++00HaPv20o8/FnztKFKmpenit96Sz4UXSjVrStdfX3AOu3aZgt1775lCat26Jee44QZzvLCw4tu++850sQ4ZYgqSQ4aYbB98YLYHB0tNm5ptdrtZ5uaa9y7JO+9IY8ZIgYEF6/r1M+eamnrmz8rVoqJMxjfekOrUqbj3PZO33jKf6ZgxVicBqiSKrAAAAAAAuMK6ddJFFxVf/+GH0tKlpuB27FjB7fLHj0sDB5qCaVKSKcZNnGjGEHX47jupc2fp8GHpySfNutmzpZtvNq+/7jpTeD2T6tXNbfMpKaYI/NZb0qxZZtsvv0g9e5ohA9LSpDVrin797beSJO+JE+WXmqqcNWtM92h2tnT77UXfZ948UzB2dJc6Iy+voPBbeN369UXXtW4t+ftLXbuawnTPnsWPtXev9P330j//WXR9TIwUEGA6SytSQIAZ6sDLDcovOTkmS/36VicBqiQ3+FMOAAAAAEAVcOxYyZ2a990nRUebbtUnnzRFzrw8af58qUYN6Y47zJihvXtLV18tvf9+wWtbtTJFVB8fKSjIrIuLM2OnentL48ZJu3dLR46UnGnQINMFarOZsUzHjDl75+vpkpJk++orrb/pJpM/ONjc1j97tukmdXj0UbPdkdEZAwZIv/4qzZ1rCoFz55pCc0pK0f3WrzfF3/h4c17e3sWP9d57phjbvn3xbWFh5ntUUex20znr719x73k2mZnm+1fS5wagzCiyAgAAAADgCpGRxQuDUtHOwfr1paws07m6d6/UoEHRfRs1Musd6tUrfrzatQueBweb5Zlug//+e9O9GBVlximdMcOMFVpau3bJlpenATfeKJ8aNUwhtWNH05l58ODZc5ZWs2amaPv442Y4gnfeMd291asX39fPzwwnsHSp9PHHRbfZ7abIOmFCye+TkmK+RxVh7lzTgfzBB9YXWbOzzZiwTzxRtDAOwKUosgIAAAAA4Apt20pbthRfv3t3wfPERFMorFHDjF96+riiu3YVHde0LLeZZ2VJV1wh3XSTtG+fGUf15puL35pf2OnvFxMju5eXvn/vPeUkJZkhCo4flzIypAsucE1OSRo+XFq7Vjp61HSqbttmOnvPJDvb7FPY4sXSgQNmUqzT7dljMrdqVbacpfX116Y7d9s204VspV9+kTZvlhISzNi+AMoFRVYAAAAAAFxh6FDTYXm655+X9u83xclHHjFdml5e5rb/w4el1183t8n/+KPpzrz+etfkycw0hcXq1U035c8/F4zHeia1aknbtxd8Xbu27MOG6eK33irogD14UPrqK+eyZGebLLm55pGRYdY5/Pab+QxSU03H5dGjZrIsyUwctmqVKRpnZUkzZ5rPecCAou/xzjumqBwRUfz9lyyRevUyE4CVt9xcMxSEZDpIrZaQYJb9+hWdDAyAS1FkBQAAAADAFeLiTCHy9MmVrr1Wio01QwWEhkqvvGLWR0aayaU++sgUQm+80Ux+1aOHa/KEhkqvvWaOGxYmPf20dNVVZ3/N5MnSokWmUDlkiCQp9513lB0cLJ9u3cxxevY0k2Q5Y+JEU+D76CNp+nTzfOLEgu0PPmi6LOvWNWOvLl1aMBTCyZOmG7d6dVMEfuMN6dNPi35OR4+awu/pE145fPBB8cm6ysvPP5vhIEJDzVANVrLbC4qsQ4damwWo4izuWQcAAAAAoIrw9pamTjWTW82ebdY5bs2/886SX9Opk7RyZcnbHnus+LqZM4t+HRFx9tv/b77ZPM7k9EmwOnc2t5YXFhqqjePHq35cnHx9fYtua9Dg7O/vMHNm8eyFOQqBJYmLM4+zqVbNdMeWZOVK09V7+eXnSuka8fFm2aNHQaHYKn//bYag8PU1k4UBKDd0sgIAAAAA4CpjxhQUWOEeunWTfvqp4t7PUWSNja249zyThQvNslu3kicSA+AyFFkBAAAAAABcYccOaeNG09Xcr5/VaQo6hAcPlmw2a7MAVRzDBQAAAAAAALhCZqY0fLh04oRUs6a1Wex2qW1b6cABadgwa7MAHoAiKwAAAAAAgCs0by7997/SwYOSl8U3D9ts0v33S/fdJzVsaG0WwAMwXAAAAAAAAIAr2O1SaqoUEGB1EiMzUwoNNcMXAChXdLICAAAAAACU1ZYtUlaW5OsrhYRYmyUzU/rlF6lpUykoyNosgIegkxUAAAAAAKCsnnpKatNGevNN6ztHV6+WRo+WrrzSfbpqgSqOIisAAAAAAEBZ5ORICxaY5506WZtFkhYuNMvOnU1nLYByR5EVAAAAAACgLFaskI4dkyIiTGHTSna7lJBgng8dam0WwINQZAUAAAAAACiLefPMslcvKTDQ2iybNkn79plhAi67zNosgAehyAoAAAAAAFAW8fFmGRtrbQ6poIu1e3fTWQugQlBkBQAAAAAAOF9bt0rbtpmxT92hyLpokVkOHizZbNZmATwIRVYAAAAAAIDz5ehi7dBBioqyNsvhw9Lateb5sGHWZgE8jI/VAQAAAAAAACqtW2+VoqOlzEzrO0dr1DDjw65fLzVsaG0WwMNQZAUAAAAAADhfAQFSly5SXp7VSUyRt1EjqXNnyYubl4GKxJ84AAAAAACA85WZaR7+/lYnkex2swwKsjYH4IHoZAUAAAAAADgfDzwgZWVJl10mXXyxtVmWL5dmzzYTXjVrZm0WwANRZAUAAAAAAHBWVpb0+utSaqrUtavVaaRvvpHmzpXCw6V//tPqNIDHYbgAAAAAAAAAZy1fbgqsUVFShw7WZsnLkxYvNs+HDrU2C+ChKkWR9bXXXlODBg0UEBCgzp0765dffrE6EgAAAAAA8GTz5pllr17Wj8f655/SwYNmLNYBA6zNAngoty+yzp49W3fffbceffRR/f7772rTpo0uu+wyHT582OpoAAAAAADAE9ntUny8eR4ba20WSUpIMMtevaTQUGuzAB7K7YusL730kiZOnKhx48apRYsWmjFjhoKCgvTuu+9aHQ0AAAAAAHiijRulXbtMB2ufPlanKSiyDh0q2WzWZgE8lFsXWbOysrRmzRr1798/f52Xl5f69++vVatWWZgMAAAAAAB4LMdQAZ07S5GR1mbZt0/asMEUV4cMsTYL4MF8rA5wNsnJycrNzVWtWrWKrK9Vq5a2bNlS4msyMzOVmZmZ/3VKSookKTs7W9nZ2eUXtoI4zqEqnAtwJlzn8ARc5/AEXOfwBFzn8ARc58V55eXJq1o15fbqJfvJk5Zmse3eLe+mTWUPCVFurVoS36fzwnWOkjhzPdjsdru9HLOUyf79+3XBBRdo5cqV6tq1a/76++67T8uWLdPPP/9c7DWPPfaYHn/88WLrZ82apaCgoHLNCwAAAAAAPERurrzy8pTn62t1EkmSd2amcq2egAuoYtLT03X11VfrxIkTCgsLO+u+bt3JGhUVJW9vbx06dKjI+kOHDql27dolvubBBx/U3Xffnf91SkqKYmJidOmll57zw6gMsrOzlZCQoAEDBsjXTX6QA67GdQ5PwHUOT8B1Dk/AdQ5PwHV+Fu7Ut8ZYrGXCdY6SOO6QLw23LrL6+fmpffv2Wrx4sUaMGCFJysvL0+LFi3X77beX+Bp/f3/5l/CbG19f3yr1h6SqnQ9QEq5zeAKuc3gCrnN4Aq5zeAKuc3gCrnMU5sy14NZFVkm6++67dcMNN6hDhw7q1KmTXn75ZZ08eVLjxo2zOhoAAAAAAAAAuH+R9aqrrlJSUpIeeeQRHTx4UG3bttV3331XbDIsAAAAAAAAALCC2xdZJen2228/4/AAAAAAAAAAAGAlL6sDAAAAAAAAAEBlRpEVAAAAAAAAAMqAIisAAAAAAAAAlAFFVgAAAAAAAAAoA4qsAAAAAAAAAFAGFFkBAAAAAAAAoAwosgIAAAAAAABAGVBkBQAAAAAAAIAyoMgKAAAAAAAAAGVAkRUAAAAAAAAAyoAiKwAAAAAAAACUAUVWAAAAAAAAACgDiqwAAAAAAAAAUAYUWQEAAAAAAACgDCiyAgAAAAAAAEAZUGQFAAAAAAAAgDKgyAoAAAAAAAAAZUCRFQAAAAAAAADKgCIrAAAAAAAAAJSBj9UBypvdbpckpaSkWJzENbKzs5Wenq6UlBT5+vpaHQcoF1zn8ARc5/AEXOfwBFzn8ARc5/AEXOcoiaOe6Kgvnk2VL7KmpqZKkmJiYixOAgAAAAAAAKCySU1NVXh4+Fn3sdlLU4qtxPLy8rR//36FhobKZrNZHafMUlJSFBMToz179igsLMzqOEC54DqHJ+A6hyfgOocn4DqHJ+A6hyfgOkdJ7Ha7UlNTFR0dLS+vs4+6WuU7Wb28vFS3bl2rY7hcWFgYf+hR5XGdwxNwncMTcJ3DE3CdwxNwncMTcJ3jdOfqYHVg4isAAAAAAAAAKAOKrAAAAAAAAABQBhRZKxl/f389+uij8vf3tzoKUG64zuEJuM7hCbjO4Qm4zuEJuM7hCbjOUVZVfuIrAAAAAAAAAChPdLICAAAAAAAAQBlQZAUAAAAAAACAMqDICgAAAAAAAABlQJHVAsuXL9fQoUMVHR0tm82muXPnnnHfm2++WTabTS+//HKR9UePHtU111yjsLAwRUREaMKECUpLSyuyz/r169WzZ08FBAQoJiZGzz33XDmcDVCyc13nY8eOlc1mK/IYOHBgkX24zuHuSvPzfPPmzRo2bJjCw8MVHBysjh07KjExMX97RkaGbrvtNlWvXl0hISEaOXKkDh06VOQYiYmJGjx4sIKCglSzZk3de++9ysnJKe/TAySd+zo//We54/H888/n78PPc7i7c13naWlpuv3221W3bl0FBgaqRYsWmjFjRpF9+HkOd3eu6/zQoUMaO3asoqOjFRQUpIEDB2rbtm1F9uE6h7t75pln1LFjR4WGhqpmzZoaMWKEtm7dWmQfV13HP/zwgy655BL5+/urcePGmjlzZnmfHtwcRVYLnDx5Um3atNFrr7121v2++uorrV69WtHR0cW2XXPNNdq4caMSEhL0zTffaPny5brxxhvzt6ekpOjSSy9V/fr1tWbNGj3//PN67LHH9NZbb7n8fICSlOY6HzhwoA4cOJD/+OSTT4ps5zqHuzvXdb59+3b16NFDF110kX744QetX79eDz/8sAICAvL3ueuuuxQfH6/PP/9cy5Yt0/79+3XFFVfkb8/NzdXg/2/v/oOius4+gH9Xl2UXFwQqQoDwSykBBAQ0BsmIGnSxKQW1ldBIJYqJRtpoBa1GNBOSiAlqqTGKaUQxtU5MgJDQYgGBKKJFAzarFBINYUwXcTZiUBRW9rx/ON43G/AnKBC+nxlG77nPPfecnWfOwDNn7336aXR0dODIkSPYvXs3du3ahbVr1z7w+REBd87zH67jOp0OO3fuhEwmw+zZs6UYrufU390pz//4xz+isLAQ77//Pmpra7F06VIkJiYiPz9fiuF6Tv3d7fJcCIHo6GicPXsWH3/8Maqrq+Hq6orw8HBcuXJFimOeU39XXl6OJUuW4OjRoygqKoLBYMD06dN7PY+//vprPP3005gyZQpqamqwdOlSJCQk4MCBAw91vtTPCOpTAERubm6X9nPnzgknJyeh1WqFq6ur2Lx5s3Tu9OnTAoCoqqqS2v75z38KmUwmvv32WyGEEO+8846wsbER7e3tUszKlSuFl5fXA5sL0a10l+fz5s0TUVFRt7yGeU4DTXd5HhMTI+bOnXvLa1paWoSZmZnYv3+/1FZbWysAiMrKSiGEEP/4xz/EkCFDRFNTkxSzbds2YWVlZZL7RA/DrX5v+aGoqCgxdepU6ZjrOQ003eW5r6+vePXVV03agoKCxMsvvyyE4HpOA8+P87yurk4AEFqtVmrr7OwUdnZ24t133xVCMM9pYGpubhYARHl5uRCi9/J4xYoVwtfX1+ReMTExQqPRPOgpUT/Gnaz9kNFoRFxcHJKTk+Hr69vlfGVlJaytrTFu3DipLTw8HEOGDMGxY8ekmEmTJkGhUEgxGo0GdXV1uHjx4oOfBNFdKCsrw8iRI+Hl5YXFixdDr9dL55jnNNAZjUYUFBTg5z//OTQaDUaOHIkJEyaYfDXvxIkTMBgMCA8Pl9oee+wxuLi4oLKyEsCNPPfz84O9vb0Uo9Fo8P333+PUqVMPbT5Ed+P8+fMoKCjAggULpDau5/RTMHHiROTn5+Pbb7+FEAKlpaWor6/H9OnTAXA9p4Gvvb0dAEy+bTNkyBCYm5vj8OHDAJjnNDBdunQJAGBrawug9/K4srLSpI+bMTf7oMGJRdZ+aMOGDZDL5fjDH/7Q7fmmpiaMHDnSpE0ul8PW1hZNTU1SzA8XBADS8c0Yor4UERGB7OxslJSUYMOGDSgvL8eMGTPQ2dkJgHlOA19zczMuX76MtLQ0RERE4F//+hdmzpyJWbNmoby8HMCNPFUoFLC2tja51t7ennlOA9Lu3bthaWlp8pU7ruf0U7Blyxb4+PjA2dkZCoUCERER2Lp1KyZNmgSA6zkNfDeLTKtWrcLFixfR0dGBDRs24Ny5c9DpdACY5zTwGI1GLF26FKGhoRgzZgyA3svjW8V8//33uHr16oOYDg0A8r4eAJk6ceIEMjIy8Pnnn0Mmk/X1cIgemGeeeUb6v5+fH/z9/TFq1CiUlZXhqaee6sOREfUOo9EIAIiKisKyZcsAAGPHjsWRI0ewfft2hIWF9eXwiB6InTt34tlnnzXZCUX0U7BlyxYcPXoU+fn5cHV1xWeffYYlS5bA0dGxy04mooHIzMwMOTk5WLBgAWxtbTF06FCEh4djxowZEEL09fCI7suSJUug1Wql3dhEDxp3svYzhw4dQnNzM1xcXCCXyyGXy/HNN99g+fLlcHNzAwA4ODigubnZ5Lrr16/ju+++g4ODgxTz47fj3Ty+GUPUn3h4eGDEiBH46quvADDPaeAbMWIE5HI5fHx8TNq9vb3R2NgI4EaednR0oKWlxSTm/PnzzHMacA4dOoS6ujokJCSYtHM9p4Hu6tWrWL16NTZt2oTIyEj4+/sjMTERMTExSE9PB8D1nH4agoODUVNTg5aWFuh0OhQWFkKv18PDwwMA85wGlsTERHz66acoLS2Fs7Oz1N5beXyrGCsrK6hUqt6eDg0QLLL2M3FxcfjPf/6Dmpoa6cfR0RHJycnSW+pCQkLQ0tKCEydOSNcdPHgQRqMREyZMkGI+++wzGAwGKaaoqAheXl6wsbF5uJMiugvnzp2DXq/HI488AoB5TgOfQqHA+PHjUVdXZ9JeX18PV1dXADf+mDEzM0NJSYl0vq6uDo2NjQgJCQFwI8+/+OILkyJVUVERrKysuhRwifrSe++9h+DgYAQEBJi0cz2ngc5gMMBgMGDIENM/nYYOHSp9a4HrOf2UDB8+HHZ2dvjyyy9x/PhxREVFAWCe08AghEBiYiJyc3Nx8OBBuLu7m5zvrTwOCQkx6eNmzM0+aJDq4xdvDUqtra2iurpaVFdXCwBi06ZNorq6WnzzzTfdxru6uorNmzebtEVERIjAwEBx7NgxcfjwYeHp6SliY2Ol8y0tLcLe3l7ExcUJrVYr9u3bJywsLERmZuaDnBqR5HZ53traKpKSkkRlZaX4+uuvRXFxsQgKChKenp7i2rVrUh/Mc+rv7rSe5+TkCDMzM7Fjxw7x5Zdfii1btoihQ4eKQ4cOSX0sWrRIuLi4iIMHD4rjx4+LkJAQERISIp2/fv26GDNmjJg+fbqoqakRhYWFws7OTqxateqhz5cGp7v5veXSpUvCwsJCbNu2rds+uJ5Tf3enPA8LCxO+vr6itLRUnD17VmRlZQmlUineeecdqQ+u59Tf3SnPP/jgA1FaWirOnDkj8vLyhKurq5g1a5ZJH8xz6u8WL14shg8fLsrKyoROp5N+2trapJjeyOOzZ88KCwsLkZycLGpra8XWrVvF0KFDRWFh4UOdL/UvLLL2gdLSUgGgy8+8efO6je+uyKrX60VsbKxQq9XCyspKPPfcc6K1tdUk5uTJk+LJJ58U5ubmwsnJSaSlpT2gGRF1dbs8b2trE9OnTxd2dnbCzMxMuLq6ioULF4qmpiaTPpjn1N/dzXr+3nvvidGjRwulUikCAgJEXl6eSR9Xr14VL774orCxsREWFhZi5syZQqfTmcQ0NDSIGTNmCJVKJUaMGCGWL18uDAbDw5gi0V3leWZmplCpVKKlpaXbPrieU393pzzX6XQiPj5eODo6CqVSKby8vMTGjRuF0WiU+uB6Tv3dnfI8IyNDODs7CzMzM+Hi4iLWrFkj2tvbTfpgnlN/112OAxBZWVlSTG/lcWlpqRg7dqxQKBTCw8PD5B40OMmE4FOsiYiIiIiIiIiIiO4Xn8lKRERERERERERE1AMsshIRERERERERERH1AIusRERERERERERERD3AIisRERERERERERFRD7DISkRERERERERERNQDLLISERERERERERER9QCLrEREREREREREREQ9wCIrERERERERERERUQ+wyEpEREREdA+ampowbdo0DBs2DNbW1n09HCIiIiLqB1hkJSIiIhpELly4gMWLF8PFxQXm5uZwcHCARqNBRUWFFCOTyZCXl9cr92toaIBMJkNNTc0tY8rLy2FmZobDhw+btF+5cgUeHh5ISkrqlbH0ls2bN0On06Gmpgb19fXdxrzyyiuQyWSQyWSQy+Vwc3PDsmXLcPny5Yc8WiIiIiJ6GOR9PQAiIiIienhmz56Njo4O7N69Gx4eHjh//jxKSkqg1+t7/V4dHR13FRcWFobf//73iI+Px8mTJzFs2DAAwIoVK6BSqfDaa689kLEpFIr7uvbMmTMIDg6Gp6fnbeN8fX1RXFyM69evo6KiAvPnz0dbWxsyMzPv675ERERE1H9xJysRERHRINHS0oJDhw5hw4YNmDJlClxdXfH4449j1apV+NWvfgUAcHNzAwDMnDkTMplMOj5z5gyioqJgb28PtVqN8ePHo7i42KR/Nzc3pKam4ne/+x2srKzw/PPPw93dHQAQGBgImUyGyZMndzu2N954AwqFAitXrgQAlJaW4q9//Suys7OhUCiwfv16uLu7Q6VSISAgAB9++KF0bWdnJxYsWCCd9/LyQkZGhkn/8fHxiI6Oxuuvvw5HR0d4eXnd8nPatm0bRo0aBYVCAS8vL+zZs8dkjh999BGys7Mhk8kQHx9/y37kcjkcHBzg7OyMmJgYPPvss8jPzwcA7NmzB+PGjYOlpSUcHBzw29/+Fs3NzdK1ZWVlkMlkKCgogL+/P5RKJZ544glotVopRq/XIzY2Fk5OTrCwsICfnx/+/ve/m4zBaDTizTffxOjRo2Fubg4XFxe8/vrrAICpU6ciMTHRJP7ChQtQKBQoKSm55byIiIiIqCsWWYmIiIgGCbVaDbVajby8PLS3t3cbU1VVBQDIysqCTqeTji9fvoxf/OIXKCkpQXV1NSIiIhAZGYnGxkaT69PT0xEQEIDq6mqkpKTg3//+NwCguLgYOp0OOTk53d5XqVQiOzsbO3bswMcff4z58+dj9erVCA4Oxvr165GdnY3t27fj1KlTWLZsGebOnYvy8nIANwqJzs7O2L9/P06fPo21a9di9erV+OCDD0zuUVJSgrq6OhQVFeHTTz/tdhy5ubl46aWXsHz5cmi1Wrzwwgt47rnnUFpaKn0+ERERmDNnDnQ6XZdi7u2oVCppd6/BYEBqaipOnjyJvLw8NDQ0dFuwTU5OxsaNG1FVVQU7OztERkbCYDAAAK5du4bg4GAUFBRAq9Xi+eefR1xcnPSZA8CqVauQlpaGlJQUnD59Gnv37oW9vT0AICEhAXv37jXJhffffx9OTk6YOnXqXc+LiIiIiACZEEL09SCIiIiI6OH46KOPsHDhQly9ehVBQUEICwvDM888A39/fylGJpMhNzcX0dHRt+1rzJgxWLRokbQb0s3NDYGBgcjNzZViGhoa4O7ujurqaowdO/aO41u3bh1ee+01BAYG4ujRo+js7IStrS2Ki4sREhIixSUkJKCtrQ179+7ttp/ExEQ0NTVJO17j4+NRWFiIxsbG2z4mIDQ0FL6+vtixY4fUNmfOHFy5cgUFBQUAgOjoaFhbW2PXrl237OeVV15BXl6e9CzaEydOICIiApMnT8b+/fu7xB8/fhzjx49Ha2sr1Go1ysrKMGXKFOzbtw8xMTEAgO+++w7Ozs7YtWsX5syZ0+19f/nLX+Kxxx5Deno6WltbYWdnh7fffhsJCQldYq9duwZHR0ds375d6i8gIACzZs3CunXrbjk3IiIiIuqKO1mJiIiIBpHZs2fjf//7H/Lz8xEREYGysjIEBQXdtmAI3NjJmpSUBG9vb1hbW0OtVqO2trbLTtZx48b1aHwpKSkwGo3405/+BLlcjq+++gptbW2YNm2atBNXrVYjOzsbZ86cka7bunUrgoODYWdnB7VajR07dnQZm5+f3x2fw1pbW4vQ0FCTttDQUNTW1t7zXL744guo1WqoVCo8/vjjCAkJwdtvvw3gRtE1MjISLi4usLS0RFhYGAB0GfMPC8u2trbw8vKSxtLZ2YnU1FT4+fnB1tYWarUaBw4ckPqora1Fe3s7nnrqqW7Hp1QqERcXh507dwIAPv/8c2i12ts+AoGIiIiIuscXXxERERENMkqlEtOmTcO0adOQkpKChIQErFu37rbFtaSkJBQVFSE9PR2jR4+GSqXCr3/96y4vt7r50qr7JZfLTf69fPkyAKCgoABOTk4msebm5gCAffv2ISkpCRs3bkRISAgsLS3x1ltv4dixY706tnvl5eWF/Px8yOVyODo6SgXeK1euQKPRQKPR4G9/+xvs7OzQ2NgIjUZz1y8LA4C33noLGRkZ+POf/ww/Pz8MGzYMS5culfpQqVR37CMhIQFjx47FuXPnkJWVhalTp8LV1fX+JkxEREQ0iLHISkRERDTI+fj4IC8vTzo2MzNDZ2enSUxFRQXi4+Mxc+ZMADeKnw0NDXfs+2Zh8cf93cvYzM3N0djYKO32/LGKigpMnDgRL774otT2w12u98Lb2xsVFRWYN2+eSf8+Pj733JdCocDo0aO7tP/3v/+FXq9HWloaHn30UQA3HhfQnaNHj8LFxQUAcPHiRdTX18Pb21saV1RUFObOnQvgxrNp6+vrpbF6enpCpVKhpKSk28cFADd2944bNw7vvvsu9u7dK+20JSIiIqJ7wyIrERER0SCh1+vxm9/8BvPnz4e/vz8sLS1x/PhxvPnmm4iKipLi3NzcUFJSgtDQUJibm8PGxgaenp7IyclBZGQkZDKZ9LX+Oxk5ciRUKhUKCwvh7OwMpVKJ4cOH3/WYLS0tkZSUhGXLlsFoNOLJJ5/EpUuXUFFRASsrK8ybNw+enp7Izs7GgQMH4O7ujj179qCqqgru7u73/BklJydjzpw5CAwMRHh4OD755BPk5OSguLj4nvu6FRcXFygUCmzZsgWLFi2CVqtFampqt7Gvvvoqfvazn8He3h4vv/wyRowYIT0r19PTEx9++CGOHDkCGxsbbNq0CefPn5eKrEqlEitXrsSKFSugUCgQGhqKCxcu4NSpU1iwYIF0j4SEBCQmJmLYsGFSEZ2IiIiI7g2fyUpEREQ0SKjVakyYMAGbN2/GpEmTMGbMGKSkpGDhwoUmOxg3btyIoqIiPProowgMDAQAbNq0CTY2Npg4cSIiIyOh0WgQFBR0x3vK5XL85S9/QWZmJhwdHU2KuXcrNTUVKSkpWL9+Pby9vREREYGCggKpiPrCCy9g1qxZiImJwYQJE6DX6012td6L6OhoZGRkID09Hb6+vsjMzERWVhYmT558X/11x87ODrt27cL+/fvh4+ODtLQ0pKendxublpaGl156CcHBwWhqasInn3wi7Q5es2YNgoKCoNFoMHnyZDg4OHR5WVlKSgqWL1+OtWvXwtvbGzExMWhubjaJiY2NhVwuR2xsLJRKZa/Nk4iIiGgwkQkhRF8PgoiIiIiI/l9ZWRmmTJmCixcvwtra+oHeq6GhAaNGjUJVVdVdFc6JiIiIqCs+LoCIiIiIaBAyGAzQ6/VYs2YNnnjiCRZYiYiIiHqAjwsgIiIiIhqEKioq8Mgjj6Cqqgrbt2/v6+EQERERDWh8XAARERERERERERFRD3AnKxEREREREREREVEPsMhKRERERERERERE1AMsshIRERERERERERH1AIusRERERERERERERD3AIisRERERERERERFRD7DISkRERERERERERNQDLLISERERERERERER9QCLrEREREREREREREQ9wCIrERERERERERERUQ/8HyzLc9zuYCogAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [], | |
"metadata": { | |
"id": "A70QYl4iUGBe" | |
} | |
} | |
] | |
} |
Author
cavedave
commented
May 10, 2025
Data originally taken from https://www.theguardian.com/news/datablog/2013/feb/13/popes-full-list and https://en.wikipedia.org/wiki/List_of_popes Before 1404 the data is full on NAs
And I saw this graph format first in David Goldenberger's 'Why The Oldest Person In The World Keeps Dying'
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment