Skip to content

Instantly share code, notes, and snippets.

@cavedave
Last active June 19, 2025 23:10
Show Gist options
  • Save cavedave/9a430d65496b1b0a4b9726f002c61005 to your computer and use it in GitHub Desktop.
Save cavedave/9a430d65496b1b0a4b9726f002c61005 to your computer and use it in GitHub Desktop.
electricity.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"authorship_tag": "ABX9TyOfpbBIUpuUUrlT0tVvn0e+",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/cavedave/9a430d65496b1b0a4b9726f002c61005/electricity.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"source": [
"Lets make a simple graph of energy in china and usa\n",
"\n",
"data from https://ember-energy.org/data/monthly-electricity-data/"
],
"metadata": {
"id": "bABkofk8fgHp"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 414
},
"id": "5dDn2pJMfY1C",
"outputId": "6fc2d981-fcb5-433e-f741-7fe839780757"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Area Country code Date Area type Continent \\\n",
"0 Argentina ARG 2018-01-01 Country South America \n",
"1 Argentina ARG 2018-01-01 Country South America \n",
"2 Argentina ARG 2018-01-01 Country South America \n",
"3 Argentina ARG 2018-01-01 Country South America \n",
"4 Argentina ARG 2018-01-01 Country South America \n",
"\n",
" Ember region EU OECD G20 G7 ASEAN \\\n",
"0 Latin America and Caribbean 0.0 0.0 1.0 0.0 0.0 \n",
"1 Latin America and Caribbean 0.0 0.0 1.0 0.0 0.0 \n",
"2 Latin America and Caribbean 0.0 0.0 1.0 0.0 0.0 \n",
"3 Latin America and Caribbean 0.0 0.0 1.0 0.0 0.0 \n",
"4 Latin America and Caribbean 0.0 0.0 1.0 0.0 0.0 \n",
"\n",
" Category Subcategory \\\n",
"0 Electricity demand Demand \n",
"1 Electricity generation Aggregate fuel \n",
"2 Electricity generation Aggregate fuel \n",
"3 Electricity generation Aggregate fuel \n",
"4 Electricity generation Aggregate fuel \n",
"\n",
" Variable Unit Value YoY absolute change \\\n",
"0 Demand TWh 12.77 NaN \n",
"1 Clean % 34.57 NaN \n",
"2 Fossil % 65.44 NaN \n",
"3 Gas and Other Fossil % 63.40 NaN \n",
"4 Hydro, Bioenergy and Other Renewables % 29.08 NaN \n",
"\n",
" YoY % change \n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN "
],
"text/html": [
"\n",
" <div id=\"df-3567b19d-8eeb-4012-84a5-a8daaf0592a6\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Area</th>\n",
" <th>Country code</th>\n",
" <th>Date</th>\n",
" <th>Area type</th>\n",
" <th>Continent</th>\n",
" <th>Ember region</th>\n",
" <th>EU</th>\n",
" <th>OECD</th>\n",
" <th>G20</th>\n",
" <th>G7</th>\n",
" <th>ASEAN</th>\n",
" <th>Category</th>\n",
" <th>Subcategory</th>\n",
" <th>Variable</th>\n",
" <th>Unit</th>\n",
" <th>Value</th>\n",
" <th>YoY absolute change</th>\n",
" <th>YoY % change</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Argentina</td>\n",
" <td>ARG</td>\n",
" <td>2018-01-01</td>\n",
" <td>Country</td>\n",
" <td>South America</td>\n",
" <td>Latin America and Caribbean</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>Electricity demand</td>\n",
" <td>Demand</td>\n",
" <td>Demand</td>\n",
" <td>TWh</td>\n",
" <td>12.77</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Argentina</td>\n",
" <td>ARG</td>\n",
" <td>2018-01-01</td>\n",
" <td>Country</td>\n",
" <td>South America</td>\n",
" <td>Latin America and Caribbean</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>Electricity generation</td>\n",
" <td>Aggregate fuel</td>\n",
" <td>Clean</td>\n",
" <td>%</td>\n",
" <td>34.57</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Argentina</td>\n",
" <td>ARG</td>\n",
" <td>2018-01-01</td>\n",
" <td>Country</td>\n",
" <td>South America</td>\n",
" <td>Latin America and Caribbean</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>Electricity generation</td>\n",
" <td>Aggregate fuel</td>\n",
" <td>Fossil</td>\n",
" <td>%</td>\n",
" <td>65.44</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Argentina</td>\n",
" <td>ARG</td>\n",
" <td>2018-01-01</td>\n",
" <td>Country</td>\n",
" <td>South America</td>\n",
" <td>Latin America and Caribbean</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>Electricity generation</td>\n",
" <td>Aggregate fuel</td>\n",
" <td>Gas and Other Fossil</td>\n",
" <td>%</td>\n",
" <td>63.40</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Argentina</td>\n",
" <td>ARG</td>\n",
" <td>2018-01-01</td>\n",
" <td>Country</td>\n",
" <td>South America</td>\n",
" <td>Latin America and Caribbean</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>Electricity generation</td>\n",
" <td>Aggregate fuel</td>\n",
" <td>Hydro, Bioenergy and Other Renewables</td>\n",
" <td>%</td>\n",
" <td>29.08</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-3567b19d-8eeb-4012-84a5-a8daaf0592a6')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-3567b19d-8eeb-4012-84a5-a8daaf0592a6 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-3567b19d-8eeb-4012-84a5-a8daaf0592a6');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
" <div id=\"df-dfaaccf7-a5e1-4674-ad23-ed39b4cf0af9\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-dfaaccf7-a5e1-4674-ad23-ed39b4cf0af9')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-dfaaccf7-a5e1-4674-ad23-ed39b4cf0af9 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "df"
}
},
"metadata": {},
"execution_count": 17
}
],
"source": [
"# prompt: laod /content/monthly_full_release_long_format.csv\n",
"\n",
"import pandas as pd\n",
"\n",
"df = pd.read_csv('/content/monthly_full_release_long_format.csv')\n",
"df.head()"
]
},
{
"cell_type": "code",
"source": [
"# Filter again just to be sure\n",
"df_filtered = df[df['Area'].isin(['China', 'United States of America'])].copy()\n",
"df_filtered = df_filtered[df_filtered['Variable'].isin(['Solar', 'Nuclear'])].copy()\n",
"# df_filtered =df_filtered[df_filtered['Variable'] == 'Solar'].copy()\n",
"df_filtered =df_filtered[df_filtered['Unit'] == 'TWh'].copy()\n",
"\n",
"df_filtered.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 328
},
"id": "ICPTxPfGgZO7",
"outputId": "c5e2225b-b516-4584-9a83-d1d07af84e8f"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Area Country code Date Area type Continent Ember region EU \\\n",
"81258 China CHN 2015-01-01 Country Asia Asia 0.0 \n",
"81302 China CHN 2015-02-01 Country Asia Asia 0.0 \n",
"81346 China CHN 2015-03-01 Country Asia Asia 0.0 \n",
"81390 China CHN 2015-04-01 Country Asia Asia 0.0 \n",
"81434 China CHN 2015-05-01 Country Asia Asia 0.0 \n",
"\n",
" OECD G20 G7 ASEAN Category Subcategory Variable \\\n",
"81258 0.0 1.0 0.0 0.0 Electricity generation Fuel Nuclear \n",
"81302 0.0 1.0 0.0 0.0 Electricity generation Fuel Nuclear \n",
"81346 0.0 1.0 0.0 0.0 Electricity generation Fuel Nuclear \n",
"81390 0.0 1.0 0.0 0.0 Electricity generation Fuel Nuclear \n",
"81434 0.0 1.0 0.0 0.0 Electricity generation Fuel Nuclear \n",
"\n",
" Unit Value YoY absolute change YoY % change \n",
"81258 TWh 11.57 NaN NaN \n",
"81302 TWh 11.57 NaN NaN \n",
"81346 TWh 12.25 NaN NaN \n",
"81390 TWh 12.43 NaN NaN \n",
"81434 TWh 13.68 NaN NaN "
],
"text/html": [
"\n",
" <div id=\"df-6ab802c7-2df4-496a-a52e-6f9d22dd883b\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Area</th>\n",
" <th>Country code</th>\n",
" <th>Date</th>\n",
" <th>Area type</th>\n",
" <th>Continent</th>\n",
" <th>Ember region</th>\n",
" <th>EU</th>\n",
" <th>OECD</th>\n",
" <th>G20</th>\n",
" <th>G7</th>\n",
" <th>ASEAN</th>\n",
" <th>Category</th>\n",
" <th>Subcategory</th>\n",
" <th>Variable</th>\n",
" <th>Unit</th>\n",
" <th>Value</th>\n",
" <th>YoY absolute change</th>\n",
" <th>YoY % change</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>81258</th>\n",
" <td>China</td>\n",
" <td>CHN</td>\n",
" <td>2015-01-01</td>\n",
" <td>Country</td>\n",
" <td>Asia</td>\n",
" <td>Asia</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>Electricity generation</td>\n",
" <td>Fuel</td>\n",
" <td>Nuclear</td>\n",
" <td>TWh</td>\n",
" <td>11.57</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81302</th>\n",
" <td>China</td>\n",
" <td>CHN</td>\n",
" <td>2015-02-01</td>\n",
" <td>Country</td>\n",
" <td>Asia</td>\n",
" <td>Asia</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>Electricity generation</td>\n",
" <td>Fuel</td>\n",
" <td>Nuclear</td>\n",
" <td>TWh</td>\n",
" <td>11.57</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81346</th>\n",
" <td>China</td>\n",
" <td>CHN</td>\n",
" <td>2015-03-01</td>\n",
" <td>Country</td>\n",
" <td>Asia</td>\n",
" <td>Asia</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>Electricity generation</td>\n",
" <td>Fuel</td>\n",
" <td>Nuclear</td>\n",
" <td>TWh</td>\n",
" <td>12.25</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81390</th>\n",
" <td>China</td>\n",
" <td>CHN</td>\n",
" <td>2015-04-01</td>\n",
" <td>Country</td>\n",
" <td>Asia</td>\n",
" <td>Asia</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>Electricity generation</td>\n",
" <td>Fuel</td>\n",
" <td>Nuclear</td>\n",
" <td>TWh</td>\n",
" <td>12.43</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81434</th>\n",
" <td>China</td>\n",
" <td>CHN</td>\n",
" <td>2015-05-01</td>\n",
" <td>Country</td>\n",
" <td>Asia</td>\n",
" <td>Asia</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>Electricity generation</td>\n",
" <td>Fuel</td>\n",
" <td>Nuclear</td>\n",
" <td>TWh</td>\n",
" <td>13.68</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6ab802c7-2df4-496a-a52e-6f9d22dd883b')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-6ab802c7-2df4-496a-a52e-6f9d22dd883b button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-6ab802c7-2df4-496a-a52e-6f9d22dd883b');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
" <div id=\"df-26402d89-bdbc-499f-b941-6748c84887d4\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-26402d89-bdbc-499f-b941-6748c84887d4')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-26402d89-bdbc-499f-b941-6748c84887d4 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "df_filtered",
"repr_error": "0"
}
},
"metadata": {},
"execution_count": 21
}
]
},
{
"cell_type": "code",
"source": [
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"\n",
"\n",
"color_map = {\n",
" ('China', 'Solar'): 'darkorange',\n",
" ('United States of America', 'Solar'): 'olive',\n",
" ('China', 'Nuclear'): 'steelblue',\n",
" ('United States of America', 'Nuclear'): 'firebrick'\n",
"}\n",
"\n",
"\n",
"# Ensure 'Date' column is datetime\n",
"df_filtered['Date'] = pd.to_datetime(df_filtered['Date'])\n",
"df_filtered = df_filtered[df_filtered['Date'] >= '2016-01-01']\n",
"\n",
"# Start the plot\n",
"plt.figure(figsize=(12, 6))\n",
"\n",
"# Plot each line\n",
"for country in ['China', 'United States of America']:\n",
" for source in ['Solar', 'Nuclear']:\n",
" subset = df_filtered[\n",
" (df_filtered['Area'] == country) &\n",
" (df_filtered['Variable'] == source)\n",
" ]\n",
" color = color_map[(country, source)]\n",
" linestyle = '-' if source == 'Solar' else '--'\n",
" plt.plot(subset['Date'], subset['Value'],\n",
" linestyle=linestyle, color=color)\n",
"\n",
"\n",
"# Titles\n",
"plt.title(\"Solar and Nuclear Electricity Generation\", fontsize=18, y=1.06)\n",
"plt.suptitle(\"Monthly Generation in TWh — China vs United States\", fontsize=12, y=.87)\n",
"\n",
"# Axis labels and grid\n",
"plt.xlabel(\"Date\")\n",
"plt.ylabel(\"TWh\")\n",
"#plt.grid(True, linestyle=':', alpha=0.7)\n",
"\n",
"# Add one label manually\n",
"plt.text(pd.to_datetime(\"2024-11-01\"), 45, \"China Nuclear\", color='steelblue', fontsize=10)\n",
"\n",
"plt.text(pd.to_datetime(\"2025-02-15\"), 20, \"USA Solar\", color='olive', fontsize=10)\n",
"\n",
"plt.text(pd.to_datetime(\"2025-02-15\"), 66, \"USA Nuclear\", color='firebrick', fontsize=10)\n",
"plt.text(pd.to_datetime(\"2024-06-15\"), 100, \"China Solar\", color='darkorange', fontsize=10)\n",
"#remove box on top and right\n",
"ax = plt.gca()\n",
"ax.spines['top'].set_visible(False)\n",
"ax.spines['right'].set_visible(False)\n",
"\n",
"# You can remove the legend entirely, or keep it if you like\n",
"# plt.legend()\n",
"\n",
"# Final layout\n",
"plt.tight_layout()\n",
"\n",
"plt.savefig(\"solar_nuclear_apr2025.png\", dpi=300, bbox_inches='tight')\n",
"\n",
"plt.show()\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 572
},
"id": "nrOPJjycn81k",
"outputId": "92d509bb-27c3-4017-d251-c4a887538355"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJsAAAIrCAYAAABI7ZhSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYU9cbB/BvCHtvkCGK4t7gHrgqWmdr3dbRpbXaYe12j1pb9+76qbVaR2vV1j1wi3tPVMAFKCB7k/P7I+SWyAqQEMb38zw8hNx7z32Te3NJ3pzzHpkQQoCIiIiIiIiIiEgLDPQdABERERERERERVRxMNhERERERERERkdYw2URERERERERERFrDZBMREREREREREWkNk01ERERERERERKQ1TDYREREREREREZHWMNlERERERERERERaw2QTERERERERERFpDZNNRERERERERESkNUw2ERFRnqZPnw6ZTIaOHTvqO5Ryq2PHjpDJZJg+fbq+Qyl1PH8KNmrUKMhkMowaNUrfoejE2rVrIZPJUK1aNa21WdGfM9K+atWqQSaTYe3atfoOhYio0mGyiYiojBNCYOvWrXjttdfg5eUFMzMzWFpaokaNGmjXrh0mTpyIv//+G/Hx8foOlbRIlaiSyWRo1qwZhBD5rqv6YC+TyUoxwsot53OuyU9oaKi+Qy7Q9u3bMX36dGzfvl3foRTL2rVrMX36dBw5ckTfoQAAHj16hFmzZqFz587w8PCAmZkZzMzM4O7ujq5du2LKlCm4dOmSvsMst8ra8SYiotwM9R0AERHlLzY2Fv369cPRo0el+wwNDWFubo6HDx/iwYMHOHnyJBYtWoQ1a9bwG/8K6tKlS9i0aROGDBmi71AoD46OjpDL5QWuU9hyfdu+fTvWrVuHkSNHol+/fiVuz8bGBrVr14a7u3vJg8tWpUoV1K5dG1WqVMm1bO3atdJ1Up+96dLT0/HFF19gxYoVyMjIkO43NzeHsbExwsPD8fTpUxw6dAizZ89G+/btsX79enh5eekt5vJI0+Ndo0YNmJqawsbGppQiIyIiFSabiIjKsBEjRuDo0aOQy+X4+OOPMWbMGNSoUQMGBgbIzMzEzZs3sXfvXmzcuFHfoZKOTZkyBW+88QaMjIz0HQq95Ny5c1odLlYRvPbaa3jttde02ubcuXMxd+5crbapTampqQgICMCxY8cAAN26dcP48ePRoUMHKdmRmZmJy5cvY+/evfjxxx9x/Phx3Lp1i8kmHTl06JC+QyAiqrSYbCIiKqOCg4Pxzz//AABmz56NL7/8Um25oaEhGjVqhEaNGuHzzz9HSkqKPsIkHevSpQtOnjyJ+/fv48cff8T48eP1HRIR5WH8+PFSomnZsmV5vlYNDQ3h5+cHPz8/fPnll1iwYAHMzMxKO1QiIiKdY80mIqIy6vLly9Ltvn37Frp+QR9Ytm3bhl69esHFxQXGxsZwcXFBr1698PfffxcrtuTkZPzxxx8YMWIEmjRpAicnJ5iYmMDNzQ39+vXDnj178t325cLBgYGB6NevH6pUqQK5XF6koYAhISGYN28eunfvjlq1asHCwgKWlpaoV68ePv74Yzx8+DDfbXMW7xZC4Oeff0bLli1hbW0NKysrtG7dGr///nuB+8/KysKyZcvQrFkzWFhYwN7eHh07dsSff/6p8WMojIeHByZMmAAAmDVrFhITE4u0vSaFmkNDQwutLZSeno5ffvkF3bt3h4uLC0xMTFClShW0bt0aM2fOREhISJHiAoDnz59j8uTJaNq0KWxsbGBqagpvb2+8/fbbuHHjRr7bBQUF4YsvvkD79u3h5eUFU1NT2NraolWrVpg3b16Bz5HqcR45cgTPnj3DxIkTUatWLZibm5e5mlehoaH4+OOPUb9+fVhaWsLc3Bx16tTBRx99VOC5DWh+vI4cOQKZTIZ169YBANatW5er3lTOujg5Cy4nJiZi6tSpaNiwIaysrNTOH03Ou6SkJCxcuBD+/v5wdHSEsbExPDw84O/vjwULFiAyMlJt/bwKhKv2oxpSNWPGjDzrZe3duxcymQyGhoZ4+vRpgc9d+/bti1yI/Nq1a/jf//4HAHj//fc1SgobGhriiy++gL+/f77rnDx5EsOHD5fOcxsbG7Ro0aLA8/zl5+nPP/9Ex44dYW9vD3NzczRp0gRLliyBQqEoML7inH9Fub4X5/qt6fFWKaxAeFZWFv73v/+hc+fOcHR0hImJCdzd3TFgwIAC60Fp4/8HEVGFJ4iIqEzasmWLACAAiP379xerjbS0NDFo0CCpHQMDA2FnZycMDAyk+4YMGSLS09NzbTtt2jQBQPj7++datmbNGml7mUwmbGxshLm5uXQfAPHpp5/mGZNqWy8vL7F48WIhk8kEAGFjYyOMjIzEyJEjNX58/v7+0v6MjY2Fg4OD2mOzsbERx48fL3DbyZMni759+woAwtDQUFhbW6s9jqlTp+a5fWpqqggICFB7bm1tbaXH88UXX0j7mDZtmsaP6eX4Ro4cKWJiYoStra0AIGbMmJFr3ZzHI79lXl5e+e4rJCRE2j4kJCTX8gcPHogGDRqoHXM7Ozu1Y/7RRx+pbVPQ+SOEEAcOHJAeEwBhZGQkLCws1I7nunXr8tw25/ExNzcXdnZ2avfVq1dPREZGFrjtzz//LFxcXAQAYWpqKqysrPJ8/vKT8znP6zkrzMiRI6Xjm5fff/9dmJiYSPswMTERZmZm0t9WVlZi3759eW5blON18uRJ4eLiIkxNTaXnwsXFRe3n5MmTUtteXl4CgJg/f76oVauWdKxUx1L1XBR23l24cEF4enqqvX7s7e3VHvOiRYsKfc42bdokXFxchJGRkQAgLCwscsX/8OFDoVAoRPXq1QUAMWvWrHyPy61bt6T953zchRk7dqx0DXn8+LHG2+UnKytLfPjhh2rntaWlpZDL5dLftWvXFqGhobm2zfk8ffDBB2rXp5ztjRgxIt/9F/f8K8r1vTjXb02Pt4rqfF2zZk2uWGNjY0XHjh2l/cnlcrVrOAAxadKkPJ+fkv7/ICKqDJhsIiIqo0JCQqQ3vQ0bNhR37twpchuffvqp9GFzypQp4sWLF0IIIWJiYsTXX38tvSH+4osvcm1bULJg+/btYtKkSeLEiRMiKSlJuv/p06dixowZ0geBHTt25NpW9WHE1NRUyOVyMWrUKOnDQWZmprh3757Gj++jjz4SK1asEHfv3hVZWVlCCCEyMjLEmTNnRPfu3QUA4ebmJpKTk3Ntq/qwYGdnJ2xsbMTatWul9R49eiR69+4tfUi7e/duru0/+eQT6bmdPXu2iIuLE0IIERkZKd5//33pw5I2kk1CCPHdd99JH/KePXumtq4uk01xcXHCx8dHeq5++uknERsbKy2/f/++WLBggVi4cKHadgWdP1evXpU+uL777rvi5s2bIjMzUwghRFhYmBg3bpz04e3cuXO5tu/du7fYvHmzCA8Pl+5LTk4W27ZtE7Vr1xYAxGuvvZbnY835wb127dri0KFD0rlTlNeYLpNN+/fvFwYGBsLQ0FB8/vnnIiQkRCgUCqFQKMTt27fFgAEDBABhbW0twsLC1LYt7vEqLPmlovrwbmlpKVxdXcXff/8tJasfPXokXQ8KOu8ePnwoHB0dBQDh6ekpNm3aJG2nUCjEjRs3xPTp08Xvv/+ucYyaJHZVr6Fq1aoJhUKR5zoTJ04UAESDBg0KfB5epnrOW7RoUaTt8jN58mQBQDg7O4sVK1aI6OhoIYQQ6enpIjAwUDRt2lQAEM2aNZPOXxXV82RnZyeMjY3FwoULpetTVFSUeOedd6Rz99ChQ7n2XZLzryjXd21cvwu7thaUbOrfv7+U6Fq6dKl0DoaHh4u33npLeo5WrVqV7/6L+/+DiKgyYLKJiKgMe/fdd9V6JzRt2lSMGzdO/Prrr+LatWv5fmASQojHjx8LQ0NDAUB89dVXea6j+mBlZGQknj59qrassJ4pBfnhhx8EANGlS5dcy3J+SH/99deL3LamMjMzRaNGjQQAsX79+lzLc36rfvjw4VzLU1NThZubmwAgZs+erbbsyZMn0nM7ZcqUPPc/ZMgQqX1tJJuSk5OFu7u7ACA+/PBDtXV1mWxSfeg1MTERFy9e1Dj+gs6fzp07F3heCiGkXh19+/bVeJ9CKM97ExMTIZPJcn0QFuK/ZJO1tbV49OhRkdrOKedz7ujomKt3Rc6fvBJf+SVOsrKypMTFjz/+mO/++/TpI4DcPcqKe7yKmmySy+UFtl/QeTd8+HABQDg4OKj1QilJjJokH549eyaMjY0FALF3795cy1NTU6Uk2NKlSzWOKz09XToX3nvvPY23y09ISIiQy+XCzMxMXL58Oc914uPjhYeHhwAg/v77b7VlqucpvySLEEL4+voKAOKdd95Ru7+k55+2ru+aXr+Lm2wKCgqS4szvcaqSUY6OjiIlJSXP/Rfn/wcRUWXBmk1ERGXYypUrMWXKFFhYWEAIgUuXLmHlypV4++230bBhQ7i6umLixIm5apsAwF9//YXMzEyYmprmKi6uMnnyZJiYmCAjI0OrdYZ69uwJADh9+jSysrLyXe+rr77S2j5fJpfL0b17dwDAiRMn8l2vbdu26NSpU677TUxMEBAQAAC4evWq2rI///wTmZmZMDMzw6RJk/Jsd/r06cWMPG9mZmZSm6tXr863tpK2qerQvPPOO2jatGmJ2wsNDcXhw4dhaGiY73MHKGdiBICDBw8WeA69zN3dHY0bN4YQAqdOncp3vTfffBMeHh6aB16AqKgoREZG5vsTExOjcVvHjh1DcHAwHB0d8c477+S7nur52bdvn9r92j5e+enevXux2k9KSsLmzZsBAF9++SU8PT21HVq+nJyc0L9/fwDATz/9lGv533//jaioKJiZmeHNN9/UuN2cx9fe3j7f9caOHQtXV9dcP6+//rraemvXrkVWVha6d++Oxo0b59mWlZUV+vXrByD3OaDi6emJkSNH5rmsT58+AHJf20p6/uVUkuu7ptfv4lKdgx4eHvk+zlmzZgFQvr4PHDiQ5zrF+f9BRFRZcDY6IqIyzNDQEDNnzsSnn36Kf/75B0ePHsW5c+dw69YtpKen49mzZ1i0aBHWr1+PXbt2oUWLFtK258+fBwA0b94c1tbWebZvZ2cHPz8/nDx5UlpfU5GRkVi5ciX279+Pu3fvIi4uLldSIDk5GS9evICjo2Ou7c3MzNCsWbMi7TMvx48fx6+//oqgoCA8fvwYSUlJudZ5/Phxvtu3bNky32Vubm4AkCtZoHqu/Pz88n1ua9WqBXd3dzx58qTQx6Cp0aNHY8GCBbh9+zamTJmC9evXa63tvISFhUnFlHv37q2VNk+ePAkAUCgUqFevXr7rqc6lpKQkREdHw9nZWVqmUCiwadMmbNq0CZcvX8bz58+Rmpqaq42Cjnvbtm2L+xByCQkJKbAQdlGonp+4uDjp/MtLeno6AOUxUtHF8cpPcZ+/8+fPIyMjA4DuY8zL2LFj8ccff+Cff/5BZGQkXFxcpGU///wzAGDgwIGwtbXV+r5jY2Pz/GLg5euL6hzYv38/XF1d821PVSA85zmQU/PmzfMtep/fta0k519Oml7fS3r9Li7VNbxTp04wMMj7u/e6detK1/Dz58/neb4W5/8HEVFlwWQTEVE5YGNjg+HDh2P48OEAgNTUVJw4cQJLly7FP//8g6ioKPTv3x/BwcEwNTUFADx79gyAsqdHQVS9O1Tra+L06dN49dVXERsbK92nmq1IJpMhKysLUVFRAJTJgrySTQ4ODvm+ydfUF198ge+//176Wy6Xw87ODsbGxgCUH8aSkpLy/ACjYmVlle8yQ0Plv0nVh2OVojy32kw2yeVyzJkzB/3798fGjRvx2WefoVGjRlpr/2URERHSbS8vL620qUqGKBSKPD945yU5OVntdq9evRAYGCjdZ2xsDHt7exgZGQFQfrjLyMgo8LjnTF6VJarnJyMjQ6PnJyUlRbqti+OVn+I+f6UZY146dOiAevXq4ebNm1izZo3U6/PevXvSOTVmzJgitZmzN1NBiQVVglRl1KhR0iyAOanOgcKuXSo5Xx85FefaVpLzLydNru/auH4XV1Gv4fn9fyzOc0xEVFlwGB0RUTlkamqKrl27YufOndIwicePH2Pv3r0633dmZiaGDBmC2NhYNGnSBLt370Z8fDwSEhIQGRmJiIgIBAUFSesLIfJsRy6XlyiOAwcOSB9Uxo0bh2vXriEtLQ0xMTGIiIhAREQEPvnkkwJjKI9ef/11tGzZEgqFIt/hkdqSX6+IklD1WHJxcYFQ1o4s9Cdnr6E5c+YgMDAQZmZmWLRoEcLCwpCamoro6GjpuKt6GxR03Et6/umK6vlp2bKlxs+Pii6OV36K+/yVZoz5GTt2LADgl19+kZ4/1e0GDRqgdevWRWrPyMgIPj4+AIDLly+XOD7VOfDFF19odPyPHDlS4n2+vO/inH85FXZ+VNbrNxFRZcJkExFROffee+9Jt+/cuSPdVvU8KGwIgmq5pj0VTp8+jbCwMMjlcvz777/o0aNHrm93c/Ze0BVVD4GAgACsWLECDRo0yPUBR1dxqJ6rwnotabNXU07z5s0DAOzZswdHjx4tcF3Vt+t5DTNTiYuLy/P+nEN48hsuU1SqNqOioorVY0F13KdOnYqPP/4YVatWzZXAKI3zT1dUz09xnm9dHC9tKwsxjhgxAubm5rh//z4OHz6MjIwMrF27FkDRezWpdOnSBQBw8eLFEr/uS3IOlFRp7Vuf129Ad/8fiYjoP0w2ERGVc5aWltJtExMT6bafnx8AZW2K/JIJsbGxarWdNPHo0SMAymK7+Q1BOHjwoEZtlYQqjvyKFAshcPjwYZ3sO+dzq6qb8rLg4GCd1BoBAH9/f/To0QOAsvdDQezs7AAoh42kpaXluc6ZM2fyvL9q1arSMf7nn3+KG64aVa2frKws7Nmzp8jbF3bcQ0NDce/eveIHqGeq5yciIqLIddRKcrxUQ5503YvEz89PGialrXMKKFr8NjY2GDJkCABloXBV/SYzMzNpqHJRjRs3DjKZDJmZmZgzZ06x2lBRnQMHDx4sMEmsCyU5/4qipNfvkp6vqmt4YGAgFApFnuvcvn1bShxq+v+RiIj+w2QTEVEZFRISgrt37xa6Xs6aHzkLsvbv3x+GhoZITU2VesK87Ntvv0VaWhqMjIykWZoKY2NjAwDSTFsve/z4MZYuXapRWyWhiuPKlSt5Ll+9ejUePHigk333798fcrkcKSkpmD9/fp7rzJw5Uyf7Vpk7dy4MDAxw5swZbNu2Ld/1VLNZCSHw999/51qekpKCRYsW5bv922+/DUA5zOjSpUsljBrw8fFBx44dAQDffPNNvolQlZdr4BR23HU9tFDXOnXqhJo1awIAPvnkE6kQc35efn6Ke7xUhe5z1mHTBXNzcwwePBgA8N1330lJh5IqavyqoXTbt2+XhnOVpDB4w4YN8dZbbwEAVq1aheXLlxerHQB46623YGhoiKioKEybNq3AddPT0/NNeBdHSc8/TZX0+l3S81V1Dj558gS//PJLnutMnToVAODo6IiuXbsWaz9ERJUZk01ERGXUjRs3ULduXfTs2RO//fab2lT3GRkZuHTpEkaPHo2FCxcCAFq0aIF27dpJ67i7u+Ojjz4CoPxQN23aNOmNeWxsLKZMmYIffvgBADBx4kRUqVJFo7jatWsHCwsLCCEwcOBAKSGWlZWFffv2oWPHjqVSl0U1LfaePXswa9YsaUhWbGwsvv32W0yYMAEODg462be7uzs++OADAMrpsefOnYuEhAQAwPPnzzF+/Hj8/vvv0gcqXWjcuDGGDh0KoOAeIh4eHtJ5MXHiRBw8eFCqy3LhwgV07dq1wOLwkyZNgo+PD9LS0tClSxf8/PPPiI+Pl5bfv38fM2fOzDfplpdly5bB0tISd+/eRatWrbBjxw61HhxPnjzB+vXr0aVLl1w9t1THffbs2di2bRsyMzMBKJOzQ4cOxZYtW6TeXOWRoaEhVq9eDUNDQ5w4cQIdOnTAoUOH1IoMP3jwAKtXr0bz5s2xcuVKte2Le7waNGgAQDk72O3bt3X4CJV1txwdHREdHY22bdtiy5YtUqFpIQSuX7+Ozz77rEizLari3717t0bD2Pz8/ODr64v09HSpZ19xh9CpLF++HB06dAAATJgwAQEBAfjnn3/UEqoKhQJ3797F999/j127duXZTo0aNTBlyhQAwPfff48RI0bg+vXr0vLMzExcvnwZM2fORM2aNbVSJ0qlpOefpkp6/S7q8X5ZixYtpC9YJkyYgOXLl0uF1iMiIvDuu+9i69atAJTXeNXEG0REVASCiIjKpL179woAaj/GxsbC3t5eyGQytfubNWsmnjx5kquNtLQ0MXDgQGk9AwMDYWdnJwwMDKT7hgwZItLT03NtO23aNAFA+Pv751q2atUqtf1bWloKU1NTAUA4OjqKnTt3SstCQkLUtl2zZo0AILy8vEr0/KSnp4v27dtL+5HJZGqPrWfPnmLy5Mn5PgZ/f38BQEybNi3ffRT0HKSkpIiuXbtK+5fL5cLOzk46Nl988YVG+8iPatuRI0fmu86DBw+EsbGx2rHIy6VLl4S1tbW0jqmpqbCwsBAAhIuLi9i1a1e+x0sIIe7fvy/q1aundh7Z29sLc3Nz6b6PPvpIbZuCnjshhDhx4oRwdXVVe/4cHByEmZmZ2uN555131LYLDQ0VLi4u0nJDQ0NhY2Mj/f3tt98W+Lyr1gsMDMz3edWE6jxWnfMuLi4F/mzatElt+5EjRxZ4fP/++29hZWUl7cPIyEg4ODgIExMTtedn9uzZubYtzvGKiYkRTk5Oao/Jy8tLeHl5idOnT0vreXl5CQBizZo1Gj0/+b3OL1y4INzd3XMdf9V1BIBYtGiRxs/Z3bt3pW0NDAyEi4uLFP+jR4/yjOGXX36R9tWgQYMCH4+m0tLSxEcffSSMjIzUjpOFhYVwdHTM9Xpt3769OHfuXK52FAqFmDJlitq13szMTDg4OAi5XK7WxokTJzR+nlQKOz7FPf80vb6X9Pqt6fEu6HyNjY2VrhWqa0nOazgAMWnSpDzjL+n/DyKiyoA9m4iIyqiAgAAEBwdjyZIlGDBgAOrWrQsTExPExsbC3NwcPj4+GDhwIDZt2oRz587Bzc0tVxvGxsbYvHkz/vzzT/To0QMODg5ISEiAg4MDevTogW3btmHjxo3SlPGaGjt2LHbt2oWOHTvC0tISmZmZcHd3x4QJE3DlyhU0bNhQW09DvoyMjLB//35MmzYNtWrVgpGREYQQaNGiBVatWoWdO3fqdMYxU1NT7NmzB0uWLEGTJk1gbGwMIQTat2+PLVu24LvvvtPZvlWqV68uDQcqSJMmTXDmzBkMHjwYzs7OUCgUcHR0xAcffIDLly+jXr16BW7v7e2NS5cuYeXKlejYsSPs7OyQkJAAW1tbtG7dGrNmzZJmjtJU27ZtcffuXcyfPx8dOnSAra0tYmNjIZfLUbduXQwfPhwbNmzA4sWL1bbz8vLC+fPn8fbbb0vnvKmpKXr16oV9+/bhq6++KlIc2hAVFSUNK83vJ78p4vPTr18/3Lt3D9OmTUOLFi1gaWmJ2NhYmJiYoHHjxnjnnXfw999/47PPPsu1bXGOl52dHY4dO4bBgwfD3d0dcXFxCAsLk2b707ZmzZrh1q1b+O6779CqVStYWVkhISEBTk5O6NixIxYuXCj13NOEj48PAgMD0adPHzg5OSE6OlqKX9X77WVvvPGG1AuzpL2aVIyNjbF48WLcu3cPM2bMQKdOneDm5obMzEwkJibCwcEBnTp1wldffYUrV67g2LFjUv2gnGQyGWbOnImrV69i3LhxqFu3LuRyOeLi4mBnZ4c2bdrgs88+w6lTp6Q6S9pUkvNPEyW9fhfneL/MxsYGhw4dwq+//oqOHTvCysoKiYmJcHV1Rf/+/REYGCj1/iUioqKTCcH5RImIiIiocvnrr7/wxhtvwMzMDE+fPi12vSYiIiLKjT2biIiIiKjSWbZsGQBgyJAhTDQRERFpGZNNRERERFSp/PTTTzh69CgMDAwwceJEfYdDRERU4RjqOwAiIiIiIl0LCgrC4MGDERcXJ83MOW7cONSvX1+/gREREVVATDYRERERUYWXmpqKsLAwyOVyeHt7Y+TIkfj666/1HRYREVGFxALhRERERERERESkNazZREREREREREREWsNkExERERERERERaQ2TTUREREREREREpDVMNhERERERERERkdYw2URERHohk8kwfvz4Qtdbu3YtZDIZQkNDdR9UJXPkyBHIZDIcOXKk1PfdsWNHdOzYsdT3qw0dO3ZEgwYN9B1GiYwaNQqWlpYarSuTyTB9+nTdBlTBVKtWDaNGjSqVfY0aNQrVqlUrlX0RERFpiskmIqIKRpWckclkOHHiRK7lQgh4enpCJpOhV69eOo3l1KlTmD59OmJjY3W6n+I4fvw4Bg4cCHd3dxgbG8PGxgYtW7bEzJkzERkZqe/wtGrlypVYu3atvsPQGdX5XtjPli1bIJPJ8NFHH+Vq46OPPoJMJsO0adNyLRsxYgSMjIyQnJxcGg+nRFJTU7Fo0SK0bNkSNjY2MDU1Ra1atTB+/HjcvXtX3+GVKQUlDaOiorSaZLt58yamT5+u16S5QqHAb7/9hpYtW8Le3h5WVlaoVasWRowYgaCgIK3GunHjRixevLjkQRMRUbllqO8AiIhIN0xNTbFx40a0a9dO7f6jR4/i8ePHMDEx0XkMp06dwowZMzBq1CjY2trqfH+amjp1KmbNmgVvb2+MGjUK3t7eSE1NxYULF7BgwQKsW7cO9+/f13eYWrNy5Uo4Ojrm6mnRoUMHpKSkwNjYuNRj2r9/v9baWr9+vdrfv/32Gw4cOJDrfn9/f/j4+OSZhD158iQMDQ1x8uTJPJc1bdoU5ubmWotZF6KiotC9e3dcuHABvXr1wtChQ2FpaYk7d+5g06ZN+Omnn5Cenl7kdlNSUmBoyLeMRXHnzh0YGPz3ne7NmzcxY8YMdOzYUW+9kD788EOsWLECffv2xbBhw2BoaIg7d+5gz5498Pb2RqtWrbQW68aNG3H9+nV8/PHH2nsARERUrvCdAxFRBfXqq69i69atWLp0qdoHxY0bN8LX1xdRUVF6jE5/Nm/ejFmzZmHgwIFYv359rkTLokWLsGjRIj1FVzghBFJTU2FmZlbitgwMDGBqaqqFqIpOmwmu4cOHq/0dFBSEAwcO5LofANq1a4fffvsNiYmJ0jCypKQkXLlyBQMHDsTOnTuRlZUFuVwOAAgPD8eDBw/Qt29frcWrK6NGjcKlS5fw559/on///mrLZs2ahW+++aZY7errHCnPSiOZXxSRkZFYuXIl3n33Xfz0009qyxYvXoznz5/rKTIiIqqoOIyOiKiCGjJkCKKjo3HgwAHpvvT0dPz5558YOnRontskJSXh008/haenJ0xMTFC7dm3Mnz8fQgi19VT1lrZv344GDRrAxMQE9evXx969e6V1pk+fjs8++wwAUL16dWko08tDMwpqIy8jR46Eo6MjMjIyci3r1q0bateuXeD2U6dOhaOjI3799dc8Ex42NjZ5Dp3Zs2cP2rdvDwsLC1hZWaFnz564ceOG2jqqOjhPnjxBv379YGlpCScnJ0yaNAlZWVlq6yoUCixevBj169eHqakpXFxcMGbMGLx48UJtvWrVqqFXr17Yt28f/Pz8YGZmhh9//BEAsGbNGnTu3BnOzs4wMTFBvXr1sGrVqlzb37hxA0ePHpWOgapWUn41m7Zu3QpfX1+YmZnB0dERw4cPx5MnT4r9WPPycs0mVSxbtmzBnDlz4OHhAVNTU3Tp0gX37t0rtD1NtWvXDllZWWrDhs6cOYPMzExMmjQJiYmJuHz5srRM1dPp5R6CgLIHSKdOnWBubg53d3d8//33WouzqM6cOYNdu3bh7bffzpVoApTJj/nz5+e6X5Pj9/JwsunTp0Mmk+HevXtSr0UbGxuMHj0611BDTc7RvMyfPx8ymQxhYWG5ln311VcwNjaWXivBwcHo378/XF1dYWpqCg8PDwwePBhxcXGF7qcoivK4c9ZsWrt2LQYMGAAA6NSpk/Q6zPm60+T6Avx3vTQ1NUWDBg3w999/axR7SEgIhBBo27ZtrmUymQzOzs4axbpjxw707NkTbm5uMDExQY0aNTBr1iy1c6Zjx47YtWsXwsLCpO1z9pBKS0vDtGnTULNmTZiYmMDT0xOff/450tLS1OI6cOAA2rVrB1tbW1haWqJ27dr4+uuvNXq8RESkf0w2ERFVUNWqVUPr1q3xxx9/SPft2bMHcXFxGDx4cK71hRDo06cPFi1ahO7du2PhwoWoXbs2PvvsM0ycODHX+idOnMC4ceMwePBgfP/990hNTUX//v0RHR0NAHj99dcxZMgQAMreQuvXr8f69evh5OSkcRt5efPNNxEdHY19+/ap3R8REYHDhw/n2ZtF5e7du7h796704VpT69evR8+ePWFpaYl58+ZhypQpuHnzJtq1a5creZaVlYWAgAA4ODhg/vz58Pf3x4IFC3L1JhgzZgw+++wztG3bFkuWLMHo0aOxYcMGBAQE5Eqk3blzB0OGDMErr7yCJUuWoEmTJgCAVatWwcvLC19//TUWLFgAT09PjBs3DitWrJC2Xbx4MTw8PFCnTh3pGBTUw2Xt2rUYOHAg5HI55s6di3fffRfbtm1Du3btctXe0vSxFsV3332Hv//+G5MmTcJXX32FoKAgDBs2rNjtvUyVNMo5lO7kyZOoVasWmjZtCg8PD7WhdPklm168eIHu3bujcePGWLBgAerUqYMvvvgCe/bs0VqsRbFz504AyteHpkp6/AYOHIiEhATMnTsXAwcOxNq1azFjxgy1dTQ5R/NrW5V8fNmWLVvQrVs32NnZIT09HQEBAQgKCsKECROwYsUKvPfee3jw4IHOasVp8rhz6tChAz788EMAwNdffy29DuvWrQtA8+vL/v370b9/f8hkMsydOxf9+vXD6NGjcf78+UJj9vLyAqBMJBdUe6ywWNeuXQtLS0tMnDgRS5Ysga+vL6ZOnYovv/xSauObb75BkyZN4OjoKG2vqt+kUCjQp08fzJ8/H71798ayZcvQr18/LFq0CIMGDZLauHHjBnr16oW0tDTMnDkTCxYsQJ8+ffIc5kpERGWUICKiCmXNmjUCgDh37pxYvny5sLKyEsnJyUIIIQYMGCA6deokhBDCy8tL9OzZU9pu+/btAoCYPXu2WntvvPGGkMlk4t69e9J9AISxsbHafVeuXBEAxLJly6T7fvjhBwFAhISE5IpT0zZUj0fVRlZWlvDw8BCDBg1Sa2/hwoVCJpOJBw8e5Pvc7NixQwAQixcvVrtfoVCI58+fq/1kZGQIIYRISEgQtra24t1331XbJiIiQtjY2KjdP3LkSAFAzJw5U23dpk2bCl9fX+nv48ePCwBiw4YNauvt3bs31/1eXl4CgNi7d2+ux6M6rjkFBAQIb29vtfvq168v/P39c60bGBgoAIjAwEAhhBDp6enC2dlZNGjQQKSkpEjr/fvvvwKAmDp1apEfa378/f3VYlLFUrduXZGWlibdv2TJEgFAXLt2rdA2VT744ANR0FscZ2dn0aVLF+nvgIAAMXr0aCGEEAMHDhQDBgyQlvn5+QkfH59csQMQv/32m3RfWlqacHV1Ff3799c4Tm167bXXBADx4sULjdYvyvEDIKZNmyb9PW3aNAFAvPXWW7licHBwULtP03M0L61bt84Vy9mzZ9We+0uXLgkAYuvWrYW29zJ/f39Rv379PJc9f/68RI/by8tLjBw5Uvp769ataq81laJcX5o0aSKqVKkiYmNjpfv2798vAAgvL69CH++IESMEAGFnZydee+01MX/+fHHr1q1c6+UXqxB5H88xY8YIc3NzkZqaKt3Xs2fPPGNav369MDAwEMePH1e7f/Xq1QKAOHnypBBCiEWLFgkA4vnz54U+LiIiKpvYs4mIqAIbOHAgUlJS8O+//yIhIQH//vtvvkPodu/eDblcLn2rrfLpp59CCJGrx0bXrl1Ro0YN6e9GjRrB2toaDx480Di+4rRhYGCAYcOGYefOnUhISJDu37BhA9q0aYPq1avnu218fDwA5OrVFBcXBycnJ7Uf1VCqAwcOIDY2FkOGDEFUVJT0I5fL0bJlSwQGBubaz9ixY9X+bt++vdpj2rp1K2xsbPDKK6+otenr6wtLS8tcbVavXh0BAQG59pOzblNcXByioqLg7++PBw8eFGsI0fnz5/Hs2TOMGzdOrU5Pz549UadOHezatavIj7WoRo8erTa8sX379gBQojZf1rZtW5w5cwZZWVlQKBQICgpCmzZtpGWq3hPJycm4fPlynkPoLC0t1XrRGRsbo0WLFlqNsyhU57aVlVWRtivJ8ctr2+joaCkWoGTn6KBBg3DhwgW1Yv2bN2+GiYmJVEPLxsYGALBv375Smy1Qk8etKU2vL+Hh4bh8+TJGjhwpPWYAeOWVV1CvXj2N9rVmzRosX74c1atXl3oP1q1bF126dMk1TDY/OY9nQkICoqKi0L59eyQnJ+P27duFbr9161bUrVsXderUUXu8nTt3BgDp8aomlNixYwcUCoVGsRERUdnCZBMRUQXm5OSErl27YuPGjdi2bRuysrLwxhtv5LluWFgY3Nzccn1YVQ2feLl2StWqVXO1YWdnl6vmUEGK28aIESOQkpIi1Su5c+cOLly4UOgQItVjS0xMVLvf0tISBw4cwIEDB6Q6UyrBwcEAgM6dO+dKSO3fvx/Pnj1TW9/U1FRtqGBejyk4OBhxcXFwdnbO1WZiYmKuNvNLoJ08eRJdu3aFhYUFbG1t4eTkJNU0KU6ySXWM86p7VadOnVzngCaPtahePifs7OwAoERtvqxdu3ZSbabr168jLi5OqmXTpk0bPH36FKGhoVItp7ySTR4eHpDJZLliLSzOmJgYREREFOunoJnkrK2tAUAtAVuYkh4/TY5VSc7RAQMGwMDAAJs3bwagHOq7detW9OjRQ3q81atXx8SJE/HLL7/A0dERAQEBWLFihdbqNb18jAHtnqOaXl9Urz0fH59cbRRWp07FwMAAH3zwAS5cuICoqCjs2LEDPXr0wOHDh/McWp2XGzdu4LXXXoONjQ2sra3h5OQkJV01ec6Dg4Nx48aNXI+1Vq1aACA93kGDBqFt27Z455134OLigsGDB2PLli1MPBERlSOcjY6IqIIbOnQo3n33XURERKBHjx7SN8YlpZqt62XipWLiumijXr168PX1xe+//44RI0bg999/h7GxMQYOHFjgdnXq1AEAXL9+Xe1+Q0NDdO3aFQDw+PFjtWWqDzfr16+Hq6trrjZfnhI+v8f0cpvOzs7YsGFDnstfTgDkNfPc/fv30aVLF9SpUwcLFy6Ep6cnjI2NsXv3bixatKhUPpRp8li11WZRzqvC5KzbZGxsDHt7e+ncaNKkCczNzXHixAmEhISora+NOF9//XUcPXq0WHEHBgaqFVXPSRX/tWvXpN5ghSnp8SvsOSjpOerm5ob27dtjy5Yt+PrrrxEUFISHDx9i3rx5austWLAAo0aNwo4dO7B//358+OGHmDt3LoKCguDh4ZFv+6ampkhJSclzmaqXVF4z8WnzHC3q9UVbHBwc0KdPH/Tp0wcdO3bE0aNHERYWJtV2yktsbCz8/f1hbW2NmTNnokaNGjA1NcXFixfxxRdfaHTNUSgUaNiwIRYuXJjnck9PTwDKa96xY8cQGBiIXbt2Ye/evdi8eTM6d+6M/fv36+TaQ0RE2sVkExFRBffaa69hzJgxCAoKknoI5MXLywsHDx5EQkKCWu8m1dCIgj6E5CevXgHaMmLECEycOBHh4eHYuHEjevbsKfUwyE/t2rXh4+OD7du3Y/HixbCwsCh0P6phfs7OzlJCqqRq1KiBgwcPom3btnkmkjTxzz//IC0tDTt37lTraZHXsD5Nj4PqGN+5c0ca1qJy586dYp0DZVGzZs2khJKJiQlat24tPUeGhoZo3rw5Tp48iZCQEDg7O0u9LrRhwYIFxe6l1bhx43yX9e7dG3PnzsXvv/+ucbJJ14pyjuZn0KBBGDduHO7cuYPNmzfD3NwcvXv3zrVew4YN0bBhQ0yePBmnTp1C27ZtsXr1asyePTvftr28vHD48GGkpKTkeh3euXNHWkcb8nsNanp9UcWh6gmVkyrW4vLz88PRo0cRHh4OLy+vfGM9cuQIoqOjsW3bNnTo0EG6X5WUzamgx3vlyhV06dKl0OuSgYEBunTpgi5dumDhwoX49ttv8c033yAwMFBr12IiItIdDqMjIqrgLC0tsWrVKkyfPj3PD2kqr776KrKysrB8+XK1+xctWgSZTIYePXoUed+qZI4uZoUaMmQIZDIZPvroIzx48KDAWehymj59OqKiovDuu+/mmvUNyN07ISAgANbW1vj222/zXP/58+dFjn3gwIHIysrCrFmzci3LzMzU6PlSfbOfM964uDisWbMm17oWFhYatenn5wdnZ2esXr1abRryPXv24NatW+jZs2ehbZQHhoaGaNmyJU6ePImTJ09K9ZpU2rRpg2PHjiEoKCjPqeJLwtfXF127di3WT0HJ1NatW6N79+745ZdfsH379lzL09PTMWnSJK0+lsIU5RzNT//+/SGXy/HHH39g69at6NWrl1qSOD4+HpmZmWrbNGzYEAYGBmrncF5effVVZGRk4Mcff1S7X6FQYNWqVTA2NkaXLl00jrUg+V0LNb2+VKlSBU2aNMG6devUhqsdOHAAN2/eLHT/ERERea6Xnp6OQ4cOwcDAADVr1iww1ryOZ3p6OlauXJmrXQsLizyH1Q0cOBBPnjzBzz//nGtZSkoKkpKSACiHm75MNQtnYceViIjKBvZsIiKqBEaOHFnoOr1790anTp3wzTffIDQ0FI0bN8b+/fuxY8cOfPzxx2qFvDXl6+sLQDkV9uDBg2FkZITevXtr1KOoME5OTujevTu2bt0KW1tbjRMhQ4cOxfXr1zF37lycPXsWgwcPRvXq1ZGUlITr16/jjz/+gJWVlfTB3traGqtWrcKbb76JZs2aYfDgwXBycsLDhw+xa9cutG3bNleCrjD+/v4YM2YM5s6di8uXL6Nbt24wMjJCcHAwtm7diiVLluRbW0ulW7duMDY2Ru/evTFmzBgkJibi559/hrOzM8LDw9XW9fX1xapVqzB79mzUrFkTzs7OuXouAYCRkRHmzZuH0aNHw9/fH0OGDEFkZCSWLFmCatWq4ZNPPinS4yzL2rVrJ/WweTmh1KZNG8ydO1dar7z47bff0K1bN7z++uvo3bs3unTpAgsLCwQHB2PTpk0IDw/H/PnzSy2eopyj+XF2dkanTp2wcOFCJCQkYNCgQWrLDx8+jPHjx2PAgAGoVasWMjMzsX79esjlcvTv37/Atnv37o1u3brhk08+wdmzZ9GmTRskJydj586dOHnyJGbPnp1rSGtxNWnSBHK5HPPmzUNcXBxMTEzQuXNnODs7a3x9mTt3Lnr27Il27drhrbfeQkxMDJYtW4b69evnqkP3ssePH6NFixbo3LkzunTpAldXVzx79gx//PEHrly5go8//hiOjo4FxtqmTRvY2dlh5MiR+PDDDyGTybB+/fo8hw/6+vpi8+bNmDhxIpo3bw5LS0v07t0bb775JrZs2YKxY8ciMDAQbdu2RVZWFm7fvo0tW7Zg37598PPzw8yZM3Hs2DH07NkTXl5eePbsGVauXAkPD49y9ZokIqrU9DIHHhER6cyaNWsEAHHu3LkC1/Py8hI9e/ZUuy8hIUF88sknws3NTRgZGQkfHx/xww8/CIVCobYeAPHBBx/k2WbO6b6FEGLWrFnC3d1dGBgYCAAiJCSkSG2oHo9qu5y2bNkiAIj33nuvwMealyNHjog33nhDVKlSRRgZGQlra2vh5+cnpk2bJsLDw3OtHxgYKAICAoSNjY0wNTUVNWrUEKNGjRLnz5+X1hk5cqSwsLDIta1qyvSX/fTTT8LX11eYmZkJKysr0bBhQ/H555+Lp0+fSuvkdZxUdu7cKRo1aiRMTU1FtWrVxLx588T//ve/XM9XRESE6Nmzp7CyshIAhL+/v/SYkMcU55s3bxZNmzYVJiYmwt7eXgwbNkw8fvxYbZ2iPtaX+fv7S3HkjOXlKexDQkIEALFmzZpC21T54IMPCo1h3759AoAwNDQUSUlJasuio6OFTCYTAMSZM2fyjL1+/fq57h85cqRGU9DrUnJyspg/f75o3ry5sLS0FMbGxsLHx0dMmDBB3Lt3T1qvKMcPgJg2bVqudV6elj6v16qm52hBfv75ZwFAWFlZiZSUFLVlDx48EG+99ZaoUaOGMDU1Ffb29qJTp07i4MGDGrWdmpoqpk+fLurUqSNMTEyEhYWFaNWqlfj9999zrVuUx53XtfDnn38W3t7eQi6X53rdaXJ9EUKIv/76S9StW1eYmJiIevXqiW3btml03sXHx4slS5aIgIAA4eHhIYyMjISVlZVo3bq1+Pnnn3Nd4/OL9eTJk6JVq1bCzMxMuLm5ic8//1x6LeV8PImJiWLo0KHC1tZWAFCLLz09XcybN0/Ur19fmJiYCDs7O+Hr6ytmzJgh4uLihBBCHDp0SPTt21e4ubkJY2Nj4ebmJoYMGSLu3r1b4OMkIqKyQyaEFituEhERlaIdO3agX79+OHbsWJmpU0NEREREVNkx2UREROVWr169cOvWLdy7d0+nxciJiIiIiEhzrNlERETlzqZNm3D16lXs2rULS5YsYaKJiIiIiKgMYc8mIiIqd2QyGSwtLTFo0CCsXr0ahob87oSIiIiIqKzgu3MiIip3+D0JEREREVHZZaDvAIiIiIiIiIiIqOJgsomIiIiIiIiIiLSGySYiIiIiIiIiItIaJpuIiIiIiIiIiEhrmGyCstBsfHw8C84SEREREREREZUQk00AEhISYGNjg4SEBH2HQkRERERERERUrjHZREREREREREREWsNkExERERERERERaQ2TTUREREREREREpDVMNhERERERERERkdYw2URERERERERERFrDZBMREREREREREWkNk01ERERERERERKQ1TDYREREREREREZHWMNlERERERERERERaw2QTERERERERERFpDZNNRERERERERESkNUw2ERERERERERGR1jDZREREREREREREWsNkExERERERERERaQ2TTUREREREREREpDVMNhERERERERERkdYw2URERERERERERFrDZBMRERERERERUWFi7gBCoe8oygUmm4iIiIiIiIiICpISA6ypC6x0BtLi9R1NmcdkExERERERERFRQR4fBSAAc2fAxFrf0ZR5TDYRERERERERERXk0RHlb89O+oyi3GCyiYiIiIiIiIioII8Clb89O+o1jPKCySYiIiIiIiIiovwkPweirilvM9mkESabiIiIiIiIiIjy8/io8rdjA8DcSb+xlBNMNhERERERERFVdAtkQPD2/Jc/OqJcJzW2dOIpietrgeW2pbe/R0eUvz06lt4+yzlDfQdARERERERERCWQFAEEzQFCdgGJTwAzZ8C5CdDsY8Cri2ZtuLUBxoYDJja6jBTISAaCZgF3tihjNbYCHOoBvhOBmn11u+/iUtVrqsri4JpisomIiIiIiIiovIoLBTa1BUxsgQ4/AI4NAUUGELoPOPQB8NZtzdqRGwMWrrqMVOngWCD8DNB5mTLJlBoNPDkFpETrft85ZaUrH3NhkiKB6JsAZICHv87DqiiYbCIiIiIiIiIqrw6NAyADhp0FjCz+u9+xPtDgLfV1U6KAHa8pE1GW7oD/AqBmH+WyR0eALZ2AD14AprbKoWpHPgZ6bQYCPwYSHgHu7YCANYBlFeU2EeeA418Dzy4pE1zOTYCOiwCXZvnHe38n0GkJ4P2q8m+baoCLr/o6qS+AwI+A+/8AWWnKJE/npYCdT95txt4HjkwEwoOAjCTAvi7Qfi7g1fW/dX6uBjR4G4gNBu5tB3xeB7qvzT9OFVW9JqdGgJlD4esTANZsIiIiIiIiIiqfUmKAkL1Akw/UE00qprbqf5+eAdQaCIy4ClR/Fdg9TNlGfjKSgXPzgR7rgUHHgPiHwNFJ/y1PTwDqjwQGnwCGBgG2PsC2V5X358fcFXiwu+B19o4CIs4D/XYCQ04DEMp2szLyXj89Ufl4BhwC3rwEVO8ObO+tjDen8/MBp8bKdVpNyX//OamG0HEWuiJhsomIiIiIiIioPIq9B0AA9nU0W7/BKKDuEMCuJtD+WyAjEYg4m//6igzgldWAq5+yt1LT8cDDQ/8tr9oZqDcccKgDONQFuv0EZCYDj47m32a3n4Cnp4AVDsDvzYHAT4AnJ/9b/iJY2fup2y+AR3vAuTHw6gZlfad72/Nu07kx0HiMcrY4Ox+g7SzApoaynZyqdgb8PgVsayh/NPFQlWxivaai0Guy6dixY+jduzfc3Nwgk8mwfft2teVCCEydOhVVqlSBmZkZunbtiuDgYLV1YmJiMGzYMFhbW8PW1hZvv/02EhMTS/FREBEREREREemDKNrqjo3+u21kARhbA8nP8l/f0Fw9KWNRRX39pEhg/7vArz7AMhtgmbWyl1HCw9xtqXh0AN55oOyFVOsNIPoGsKk9cHqWcnn0LcDAEKjS8r9tzBwAu9pAzK2820xPBI5MAtbUVc5St9RSue7LPZtc/PKPKy+JT4EXd6Cs19ShaNtWcnpNNiUlJaFx48ZYsWJFnsu///57LF26FKtXr8aZM2dgYWGBgIAApKamSusMGzYMN27cwIEDB/Dvv//i2LFjeO+990rrIRARERERERHph60PABkQo2ERcAMj9b9lMkAo8l9f/tL6kEEtwbV3JPDssrIG05BTwJuXlYmhrPSC45AbKXsttfgCeGM/0Hamcoa6wrbLz9FJwL2/gXbfAoOOK+NwbAgoXmovr6GGBVH10HJuCpjaFS+2SkqvBcJ79OiBHj165LlMCIHFixdj8uTJ6NtXOf3hb7/9BhcXF2zfvh2DBw/GrVu3sHfvXpw7dw5+fsoM5bJly/Dqq69i/vz5cHNzK7XHQkRERERERFSqzOyBagHA5RVAsw9zJ1NSY3PXbdKmJyeBriv/K/Yd/0hZhLyoHOoBikwgM1U5HE+RqZyxzr2NcnlKtLKHkUO9vLd/ehKoPwrweU35d3oiEB9a9DhexnpNxVZmazaFhIQgIiICXbv+Vz3exsYGLVu2xOnTpwEAp0+fhq2trZRoAoCuXbvCwMAAZ86cybfttLQ0xMfHq/0QERERERERlTtdVgAiC9jQArj7l7LmUfQt4OJS4I/Wut23nQ9wc71yf+FnlAXHDc0K3mZzR+DKj0DkBSAuVFks/PjXQNVOgIm1ss0afYED7wKPTwDPrgC7hytnz6vRN+82bX2A4G3KXlbPrgC7hhbcY0tTj1ivqbjKbLIpIiICAODi4qJ2v4uLi7QsIiICzs7OassNDQ1hb28vrZOXuXPnwsbGRvrx9PTUcvREREREREREpcDWGxh+UZkQOfopsK4B8OcrykLeXVfpdt/dfgVSXwC/NwP2vKnsXWXuXPA21QKAG+uAP7sBa+sChyco7+u15b91uq8BXHyB7b2yE2YCeH13HsP6snVcqBzm9kcb5Sx01QIA52Yle2wJj5UF2GUGyiF/VCQyIUQRK4rphkwmw99//41+/foBAE6dOoW2bdvi6dOnqFKlirTewIEDIZPJsHnzZnz77bdYt24d7ty5o9aWs7MzZsyYgffffz/PfaWlpSEtLU36Oz4+Hp6enoiLi4O1tbX2HxwRERERERERlR83f1cm0Fz8gOHn9B1NuVNmeza5uroCACIjI9Xuj4yMlJa5urri2TP1yvmZmZmIiYmR1smLiYkJrK2t1X6IiIiIiIiIiABwCF0JldlkU/Xq1eHq6opDhw5J98XHx+PMmTNo3Vo57rR169aIjY3FhQsXpHUOHz4MhUKBli1b5mqTiIiIiIiIiKhQqmRTVSabikOvs9ElJibi3r170t8hISG4fPky7O3tUbVqVXz88ceYPXs2fHx8UL16dUyZMgVubm7SULu6deuie/fuePfdd7F69WpkZGRg/PjxGDx4MGeiIyIiIiIiIqKiiw8D4kIAmRxwb6fvaMolvSabzp8/j06d/ssSTpw4EQAwcuRIrF27Fp9//jmSkpLw3nvvITY2Fu3atcPevXthamoqbbNhwwaMHz8eXbp0gYGBAfr374+lS5eW+mMhIiIiIiIiogrg0RHlb1c/wNhKn5GUW2WmQLg+xcfHw8bGhgXCiYiIiIiIiCq7vaOUM+a1+BJoP1ff0ZRLZbZmExERERERERFRqRICeMji4CXFZBMREREREREREQDEhwIJDwEDQ8C9rb6jKbeYbCIiIiIiIiIiAv7r1eTaAjCy0G8s5RiTTUREREREREREAPCIQ+i0gckmIiIiIiIiIiIhmGzSEiabiIiIiIiIiIhi7wOJTwADI8Cttb6jKdeYbCIiIiIiIiIiUvVqqtIKMDLXbyzlHJNNREREREREREQcQqc1TDYRERERERERUeUmBPDoiPJ2VSabSorJJiIiIiIiIiKq3F7cBZLCAbmJchgdlQiTTURERERERERUuamG0Lm1BgxN9RtLBcBkExERERERERFVbg9Zr0mbmGwiIiIiIiIiospLCODJMeVtz456DaWiYLKJiIiIiIiIiCqv+DAgKQIwMARcmus7mgqBySYiIiIiIiIiqryenlb+dm4KGJnpN5YKgskmIiIiIiIiIqq8wrOTTVVa6zeOCoTJJiIiIiIiIiKqvJ6eUv52Y7JJW5hsIiIiIiIiIqLKKSMZeH5FeZvJJq1hsomIiIiIiIiIKqfI84AiE7B0A6yq6juaCoPJJiIiIiIiIiKqnJ7mqNckk+k3lgqEySYiIiIiIiIiqpxUySYOodMqJpuIiIiIiIiIqPIRgjPR6QiTTURERERERERU+cSFAMnPAAMjwKWZvqOpUJhsIiIiIiIiIqLKR9WryaUZYGiq31gqGCabiIiIiIiIiKjyecohdLrCZBMRERERERERVT4sDq4zTDYRERERERERUeWSkQQ8v6K8zZ5NWsdkExERERERERFVLhHnAJEFWLoD1p76jqbCYbKJiIiIiIiIiCoXaQhdG/3GUUEx2URERERERERElQvrNekUk01EREREREREVHkIAYRzJjpdYrKJiIiIiIiIiCqP2PtAShQgNwacm+o7mgqJySYiIiIiIiIiqjxUvZqcfQFDE/3GUkEx2URERERERERElQfrNekck01EREREREREVHkw2aRzTDYRERERERERUeWQnghEXVXeZnFwnWGyiYiIiIiIiKgyiLwE/K8OcHuzviPRn4hzgFAAVp6Albu+o6mwmGwiIiIiIiIiqgzOzAFe3AFurNF3JPqjKg7OXk06xWQTERERERERUUWXHAXc36m8/SJYv7Hok6pek3sb/cZRwTHZRERERERERFTR3d4IKDKUt+NDgax0vYajF0L8l2xizyadYrKJiIiIiIiIqKK7nmPonFAAcaF6C0VvXgQDqdGAoSng3ETf0VRoTDYRERERERERVWTPLgPPLwNyY8C6mvK+2Eo4lE5Vr8nZV/lckM4Y6jsAIiIiIiIiItIhVa+mGn2VvZriQytn3SbVEDo3DqHTNfZsIiIiIiIiIqqoMtOAW78rbzcYDdj5KG/H3tNfTPoSzmRTaWHPJiIiIiIiIqKK6sE/QGoMYOkGeHUDEsOV91e2nk3pCUDUdeVtFgfXOfZsIiIiIiIiIqqoVEPo6o0EDOSAXU3l35WtZlP4WeUQQmsvwLKKvqOp8JhsIiIiIiIiIqqIEp8CoXuVt+uPUv62zR5GFx8GZKXrJSy9UA2hY6+mUsFkExEREREREVFFdHO9sjePW1vAvpbyPgtXwMhSeX/sA/3GV5pYHLxUMdlEREREREREVNEI8d8Qugaj/7tfJgNsVUPpKkmRcCGA8CDlbbc2+o2lkmCyiYiIiIiIiKiiCQ8CXtwBDM2B2gPVl0kz0lWSuk0v7iqLpBuaAU6N9R1NpcBkExEREREREVFFc/1/yt+13gCMrdSXqXo2VZYZ6Z6eUv528QPkRvqNpZJgsomIiIiIiIioIslIAu5sVt7OOYRORdWzqdIkm1ivqbQx2URERERERERUkQRvA9ITABtvwKND7uWqGekqS80mVb0mzkRXaphsIiIiIiIiIqpIVIXB648CZHl87Ff1bEp4CGSmlVpYepGZCkTfVN529dNvLJUIk01EREREREREFUVcCPAoEIAMqD8y73XMnQEjS0AogLgHpRpeqYu+AYgswMwRsHTXdzSVBpNNRERERERERBXFjXXK31W7ANZV815HJqs8dZueXVb+dmqifNxUKphsIiIiIiIiIqoIhAK4sVZ5O6/C4DlJdZsqSbLJuYk+o6h0mGwiIiIiIiIiqggeBgLxYYCJDVDztYLXtaskRcKfX1b+dmqs1zAqGyabiIiIiIiIiCqCG9mFwesMAYzMCl63MgyjEwrg+RXlbfZsKlVMNhERERERERGVd2lxQPBfytv1CxlCBwC2NZW/K3KyKS4USE8A5CaAXW19R1OpMNlEREREREREVN5dXgFkpgIO9QDX5oWvr+rZlPBIuV1FpBpC59gAkBvpNZTKhskmIiIiIiIiovIs8hJwarrydvPPNZt1zcwJMLYGIIDY+7qMTn9yzkRHpYrJJiIiIiIiIqLyKiMZ2D0MUGQoi4LXG6HZdjJZxS8Szpno9IbJJiIiIiIiIqLy6tgXQMwtwKIK8MpPmvVqUqnodZukmeia6DOKSonJJiIiIiIiIqLyKGQPcHm58nb3tYC5Y9G2l3o2VcBkU0qMsh4VADg10m8slRCTTURERERERET6kpkGbO4I/DMASInWfLvk58De7Fnnmn0EVOtW9H3bZiebKmLPpudXlL9tvAETa/3GUgkZ6jsAIiIiIiIiokor4izw+Gj27XNAn78AF9+CtxEC2P8OkBwJONQH2s0t3r4rcs0m1RA61mvSC/ZsIiIiIiIiItKXqOv/3Y4PA/5oC1z7teBtrv0M3N8JyI2BVzcARmbF27eqZ1PCIyAjpXhtlFWciU6vynSyKSsrC1OmTEH16tVhZmaGGjVqYNasWRBCSOsIITB16lRUqVIFZmZm6Nq1K4KDK2AXQCIiIiIiIqp4VMmmRu8B3r2BrDRlr6X97wKZqbnXj7kLBH6ivN3uW8C5cfH3beYAmNgob8fdL347ZRF7NulVmU42zZs3D6tWrcLy5ctx69YtzJs3D99//z2WLVsmrfP9999j6dKlWL16Nc6cOQMLCwsEBAQgNTWPFyURERERERFRWRKdnWxybwf02w60nQ1ABlz7BdjUXtnbSSUrA9gzHMhMBqp2Bnw/Kdm+ZbKKWbcpMw2Ivqm8zZ5NelGmk02nTp1C37590bNnT1SrVg1vvPEGunXrhrNnzwJQ9mpavHgxJk+ejL59+6JRo0b47bff8PTpU2zfvl2/wRMREREREREVRIj/ejY5NABkBkCrb4D+ewFTeyDyPLDeFwg9oFwnaKayrpOpHdB9nXL9krKrgMmm6JuAIlP5PFl56DuaSqlMJ5vatGmDQ4cO4e7duwCAK1eu4MSJE+jRowcAICQkBBEREejatau0jY2NDVq2bInTp0/n225aWhri4+PVfoiIiIiIiIhKVXIkkBqjTBrZ1/nv/mrdgDcvKguFp0YD27oDB8YCZ75VLu/6o/aSKLYVsEi4aiY6pybK3ltU6sr0bHRffvkl4uPjUadOHcjlcmRlZWHOnDkYNmwYACAiIgIA4OLioradi4uLtCwvc+fOxYwZM3QXOBEREREREVFhVL2abGvkLvJt7QUMPgEcGg9c/xW4+qPy/nojgNoDtBeDXU3l79gK1LOJ9Zr0rkz3bNqyZQs2bNiAjRs34uLFi1i3bh3mz5+PdevWlajdr776CnFxcdLPo0ePtBQxERERERERkYZyDqHLi6EpEPAL8MrPgNwEsKsNdF6W97rFVRFrNnEmOr0r0z2bPvvsM3z55ZcYPHgwAKBhw4YICwvD3LlzMXLkSLi6ugIAIiMjUaVKFWm7yMhINGnSJN92TUxMYGJiotPYiYiIiIiIiAqkSjY55pNsUmn0jrI3k4ERYGSu3RhUNZsSnwAZydpvv7QJwZ5NZUCZ7tmUnJwMAwP1EOVyORQKBQCgevXqcHV1xaFDh6Tl8fHxOHPmDFq3bl2qsRIREREREREVSbSGySYAMLHRTSLIzEFZSBuoGHWb4sOAtDhAbqxeB4tKVZnu2dS7d2/MmTMHVatWRf369XHp0iUsXLgQb731FgBAJpPh448/xuzZs+Hj44Pq1atjypQpcHNzQ79+/fQbPBEREREREVF+hAKIuqG8rUmySZdsfYCIs8pkk1Mj/cZSUqohdA71lQkn0osynWxatmwZpkyZgnHjxuHZs2dwc3PDmDFjMHXqVGmdzz//HElJSXjvvfcQGxuLdu3aYe/evTA1NdVj5EREREREREQFiH8IZCQqh8ap6ibpi21NZbKpItRtkmaia6zfOCq5Mp1ssrKywuLFi7F48eJ815HJZJg5cyZmzpxZeoERERERERERlUR0dq8m+9qA3Ei/sdhVoCLhrNdUJpTpmk1EREREREREFVJhM9GVJlWyKbYCJJs4E12ZwGQTERERERERUWnTdCa60qAaxlfeC4SnxgLxocrbHEanV0w2EREREREREZW2MpVsqqn8nfgUyEjSbywloarXZF0NMLXVZySVHpNNRERERERERKVJkQnE3FLeLgvJJjN7wNReeftFOe7dxHpNZQaTTURERERERESlKfY+kJUGGJoBNtX1HY1SRajbJNVr4hA6fWOyiYiIiIiIiKg0qWaic6gPyMrIx3LbCjAjnWoYHYuD610ZOauJiIiIiIiIKgmpXlN9/caRk105LxKelf5fEo/D6PSOySYiIiIiIiKi0qRKNjmUgXpNKqoi4eW1Z1PMbWXCycQGsPbSdzSVHpNNRERERERERKWpLM1Ep1LeazZJ9ZqaADKZPiMhMNlEREREREREVHoy04AXd5W3y1KySVWzKSkCSE/QbyzFwZnoyhQmm4iIiIiIiIhKy4s7gMhSDveydNd3NP8xtQXMHJW3X5TDuk05ezaR3jHZRERERERERFRactZrKmvDvVR1m8pbkXAhcsxE11i/sRAAJpuIiHJRZGQg5elTfYdBRERERBWRasa0sjQTnUp5rduU8BhIjQEMDAGHevqOhsBkExGRJD02FneWLMHBDh1wsH17PPn3X32HREREREQVTVmciU5FVbepvM1Ip6rX5FAPMDTRayikxGQTEVE2kZWFe6tXI+3ZMwBA+L59eo6IqPzLSEhAzMWLEELoOxQiIqKyoSzORKdiVwaTTY9PAFdWA0+DgIzkvNdhvaYyx1DfARAR6UNGQgIeb9uGuJs30WTePACAiYMDan30ETITE3Fv1Sq8uHABQgjIytpYeqJyIC0mBiFr1yLkt9+QmZCAhjNnotqwYfoOi4iISL8ykoC4B8rbZTnZVFZqNmUkAX8FAJnZSSaZAWBfF3DxBVyaAc7NlLPPcSa6MofJJiKqVDLi43Hr++/xeMcOZCUr/2l5v/UWrGvXBgD4jB2LzJQU3P/5Z6RGRiLlyROYe3joM2SiciU1MhL3f/0VYX/8Ib3GAODp7t1MNhEREUXfVP42dwbMnfQbS15UBcKTI4G0eMDEWr/xPDmhTDQZWQBGlsq4om8of27+lr2STJmEAtizqQxhsomIKpUbc+bg0Z9/AgAsfXxQbdgwmLm5qa1jaGYGmwYNEHv5MmLOn2eyqQxKuHsXsdevw/P11/UdCuWQHhuLw126ICslBQBgXb8+qvbvj6jTp+HSubOeoyMiIioDyvIQOgAwsQHMnICU58reTS7N9BvPw0Dl71oDgID/AUnhQOQFIPIi8Oyi8nbiE0BkKRNSzk31Gy9JmGwiokpDkZGBiP37AQBNFy2Ce+/e+Q6Rs/f1RVpUFBSZmaUZImkg6swZnB87FhmJiTBxdIRzhw76DqlSS33+HKZOym9mjW1t4dKlC1LCw+Ezbhyc/f0hk8lQfeRIPUdJRERURkRlz0RXFouDq9j5KJNNL4L1n2x6lJ1s8uwEyGSApZvyp0bv/9ZJigSeXQKsPABTW72ESbkx2URElUb02bPIiI+HsYMD3Hv2LLAWU93PP0f9r78uxehIE09378alTz+FIj0ddr6+sG3UCJlJSTAwNoaBkZG+w6t0nu7Zg4sff4yOe/fCsnp1AECTefNgYGLCWmdERER5iVb1bKqv3zgKYucDPD0FxOq5SHhaHBB5Xnnbs1P+61m4ANW7l05MpDHORkekY1mpqbizdCnSYmKgSE9HzMWLiDhwQN9hVUqRhw4BAFy7dIFMLi9wXQND5uLLmgdr1+LChx9CkZ4O14AAtP7tN1ydMgV7mzVD9Nmz+g6vUgpdvx4iMxOhGzZI98lNTfNMNCWFheHRtm2lGR4REVHZoxpGV5Z7NtlmFwkP2QsosvQXx+PjgFAAtjUAa0/9xUHFwk9TFYjIyoIQgh+Sy5Co06dx9ZtvkBQWhuSwMHgOHIjTQ4fCxMkJLl27Vppv/pMfPYLMyAhmrq56jaPu55/DsW1bmFWpovE2QqFAVloaDM3MdBiZ7oVt3oyEO3dgbGcHY3t7GNvZwaFFC5g4OgJAmZ51TygUuPX997j/888AgGpvvokGU6ZAJpfDwNgYIjMTUadPw6ltWz1HWrlkpaXhxaVLAIBqQ4cWuG5mYiICX3kFIisLDs2bw9yTbxiJiKgSSn2hrC8ElO2eTbUHAme+BZ6eBE5OBtrP1U8cOYfQUbnDnk0VxN0VK3CgTRtE7Nun71AIQHpcHK589RVODx+OpLAwmDg7w7VbN9g1bgwDY2OkPX+O5LAwfYdZau6uWIGjPXog9flzvcYhNzWFa5cusKlXT6P17//6K/b5+iJ4xQodR6ZbD//8E1e//hoh69bhzuLFuDZ1Ki5MmICEe/9NaRv2xx/Y06QJzk+YACGEHqPNLfLQISnRVOezz9Bg2jSpZ5pjq1YAgOigIL3Fp02Pd+zArfnz8eivv/QdSqFeXL4MRXo6TBwdYZE9hC4/hpaWsGuqLNj57Pjx0giPiIio7FHVa7LyVBbiLqvsfJTFuAHg7HdAsJ56JkvJJk4yUh4x2VRBZCUlIS0qCk/37NF3KJWaEAJPd+3CkW7d8HDLFgCA19Ch6LR/P6oEBEBuagqbhg0BANHnz+szVJ0RQiAyMBAJ9+9L9xlZWyMjPh7By5frMbKiM7S0REZ8PF5cvKjvUIrtxZUruDZlCgCgSo8eqDpoEFy7dYO9nx9MXVyk9dJjYpCZkIDw3bsRd/26vsLNk0vXrqg+ejSazJ8Pn7Fj1XpgqZJNsdeuITMpSV8hasXzEydwaeJE3Fu1SkquqQSNHo0TAwfi4sSJuL1wIaLOnNFTlP+JyR666NCypUa94pzatwcAPGeyiYiIKqvoMj4TXU51BgG+E5W394wEom+X7v5TYoBnl5W3PTuW7r5JK5hsqiCq9OgBAIgMDERmcrKeo6m8Qn//HRc+/BBpUVGwrFEDbTZvRqNZs2BkZSWt49C8OYD/PqhVFIrMTDzesQNHe/bE2XfeUUssuXTpAgAI27QJSaGheonv3Pvv49b8+UiLjtZ4G3tfXwD/9eAoj+4sWqSscfTKK/BduhSNv/0WzVetQtvNm6WCzgDgPWqUNDW9qraVPqVFRSEzMREAIJPJ0GDyZHi+9lqu9cw9PWHm7g6RmYmYcpzAzUxKwpVvvgEA2Ddvjiqvvqq2/MWlS3hx4QKe7NiB4BUrEDRyJFIiIvQRqiQquzeZQ8uWGq2vmjUw6tQpKDIydBYXERFRmVUe6jXl1GGeMtGTkQjsfA1Iiy+1XSvCDiP2mREeBPvg0d6TpbZf0h4mmyoImwYNYF61KhSpqXh25Ii+w9E5IQQiDh3CyUGDcP6DDyAUCn2HBADw6NsXZu7uqDVhAjr88w8c/PxyrWOffV/0uXOlHZ5OZKakIOS333C4SxdcmjgRCXfuQG5hATM3N2k4lmPLlnDq0AEiMxN3Fi8u9RgTQ0IQsX8/7v/8M2RFqGlmWaMGjOzsoEhLQ9zNmzqMUHf8li+H91tvockPP0BmkP8l39DSElUCAgAAEYcPl1Z4+bq9YAHOjx+vUZLPsXVrAP8lP8qj2wsWIOXxY5i5uaHlL7+g9ocfSsuEEGi1bh18ly5F3c8/h4W3N0RGBh7rsdh2znpNmiabbOrXh5GdHTITE/HiyhVdhkdFFH3+vFqRdyIi0pHo7GF0ZbleU04GhkCvzYClOxBzG9g7CtBRuYXMlBREnT6Nu8uW4fTIkdj7+tc4/qcHbhzIQshvv+lkn6RbTDZVEDKZDG7ZvZue7t6t52h0RwiB5ydO4ET//jj33nuIOX8e4Xv3Iur0aX2HBkA5XKzTgQOo/fHHkJuY5LmOvZ8fIJMh+eFDpD57VsoRaldmSgqO9+uH6zNmIOXxYxjb26POp5+i6/HjqPvZZ2pDa+p+9hkA4Mk//yDuxo1SjTPy4EEAyg/Fxjaaj4+XyWSwb9YMABBz4YJOYtM1Q0tL1P/mG7Xedflx7tQJkMkQf+MGUsLDSyG6vAmFApGHD+P58eMaJWUdynndppjz56U3UY2+/RaGlpZqy2UyGewaN4Zbz56oOWYMfMaOBQA83LpVb4n2zMREuPfpA9smTWBZo4ZG28jkcqmI+/Njx3QZHhVB2B9/4PTw4bg2fXq5TtgSEZV5QgDPrylvl4dhdCrmzkCfvwC5MXDvb+DsPJ3s5uirr+L08OG4s3gxok6cQFZaFgyNs+DcvDbcevYsczVFqXBMNlUgFX0oXfS5czg1dCiCRo5E7JUrkJuZwa5pU3gOGABTZ2e9xpaVlibdzi/JpGJkZQXrunUBADHlvHfTw82bkXjvHozt7dFw5kx0PX4cPuPG5ZnQsalXD+59+gAAbv3wQ6nGGX7gAADA9ZVXirytaihdeRqi9ejPP3H/l1+K/E/ZxMFBKuIcqcfeTXE3biAtKgpyCwtp2GlBHFu1gmtAADzfeKMUotMuoVDgyuTJgBDw7N8fztl1jQpSpUcPGFpaIuXJE8TfuVMKUeZm4uCAJt99h/Z//VWkWQxVjy/q1CldhUYaUqSn4+rUqbg6eTJERgbcundHVkoKrk6ejHBONkJUIkIIRJ87h7SYGH2HQmVJ8jMgNRqADLCvq+9oiqZKS6DzMuXtk98AoQe0vgu7xo1h6uoKt1690PCbSfAf+Bjd3wpDy/+tQ80xY8rsrMmUP83Hk1CZZ9OgAcw9PZH86BGeHTkCt5dqfpR3YRs2IObsWRgYG8Nr2DD4jB0rTduub5cmTUJSWBjqf/21VLC4IPW++AJyMzPYNChH32rkoeqgQRCZmTB1dYV7r16Frl/7k0/wdM8eRJ0+jcSQELWaQbqSFhUlFfh27dq1yNtLyaYLFyCEKPP/6F5cuYKrU6ZAkZ4OM3d3qcejply7dsWLixcRHRSEasOG6SjKgj07ehQA4NSmDQyMjQtd36xKFTRfuVLXYemEzMAAjefMwe2FC1Hv66812sbQ3By+S5fCuk4dtSLv5YFzp05ovnq11BuN9CMtKgrnJ0xQ1g6UyVDn009Rc+xY3Fm0CGF//IHMpCRpWC2VnszERFz55htkxMfDyNpa+WNlBUPVbUtLOLRsWe5e95XR3aVLcXfpUji2a4fW69bpOxwqK1T1mmxrAEbm+o2lOBq+C4SfBa7/CuwaAgw/D9hU01rzjb/7DgYmJsr32ne2Ai/SAceGgLkTkh4+xPUZM5D+4gXa67GMABUNk00ViEwmQ7U330Tas2ewql1b3+GUWMLdu5BbWMDc3R0AUOujj2BoaQmfDz6AWZUqeo7uP5mJiYg8fBiK1FSNhioBgFO7djqOqnQYmpmhxjvvaLy+RdWqaPztt7Bv1gwW1arpLrAcIg4eBISAbaNGxTpvbBo2hGO7drBr0gSK9PRCe67pU1pUFM6PGwdFejpcunYt1odF9759Ye/nB7smTbQfoIZUdeecO3bUWwylyd7XF22KWC/H2d9fR9EUTpGejvg7d2BTrx5kcnmRtjVxcChWD0PSnrgbN3Bu7FikPH0KQ0tLNFu0SJocwLFNGwSvWIGo06fLRXK9ohFCwKldO9xbtQpJYWF5rtPi11+ZbCoHVL1ylUOB0sr0ewcqReVpJrq8yGRAl+XA8ytA5HlgZ39g8AnAyKzYTT5YswYJ9+7Bs39/qXQFAOBRoPK3ZycAgJGNjfT+MC0qqsx0OKCCMdlUwdR4+219h6AViSEhON6/P6p064amCxYAACyrV0ej2bNzrSuEQNy1a4gKCkLN994r7VARkZ1osqhWDdb16pX6/vUhKy0NBkZGBRaczo/n66/rIKL8RZRgCB2gHBZZHr6VVGRk4Pz48UiNiIBljRpoOn9+sY6PmasrzFxddRChZtJfvJCKRxcloSKEQHJYGOJu3iwXvToVGRlIefoUFl5eJW4rKzUVclNTLUSlmdhr13By4ECYV62KzocPMyFRzry4dEl57lWrhuY//girmjWlZXZNm8LAxARpz58j8d49WPn46DHSysfIygpuPXtCZmCAjPh46SczIUG6zURT2ZVw9y6satUCADi0bg25mRmyUlIQf/OmNESdKrmocp5sAgBDU2X9pt99gWcXgUPjgID/KRNRxfB01y68uHQJ9s2aqSebHmaXc8hONhnb2MCqVi0k3L2LmAsX2Pu2nGCyicocRUYGLk2ciKzkZCSFhUEoFAV+aE6Pjsbx/v0BhQKur7xSKkOzcnq6axcAwK1XryJ96Io8cgSRhw/DvVcvOLRooavwdCJ4xQpEHDyIBpMnw7FNm2K3E3/nDixr1IBBEWaIKwohBMzc3GBkZ1fhe1PcmDMHMefOwdDSEs1Xr9a4l11Z8/z4cUChgFWtWkXqiZYeHY3DXboAMhkc27SBsa2t7oLUgvs//4y7y5ej/tdfo9rw4cVqIyk0FFenTkV6dDQ6/PtvqSV9os+eBQBY161brH1mxMfj/i+/IO7GDbT45Rcmq0qZ17BhEAoF3Pv2zVVfT25iAns/P0SdPImoU6eYbNIDQ3NzePbvX+A6Cffu4dmxY3Bs3Ro2dctZ3ZcKSJGRgVs//IAHv/6K5qtXw/WVVyCTyeDYti0iDx5EzIULFSLZlBQWhvC9eyE3N4eRjQ1cOnWS3mtkpaZCZmCg0dD3Si0qe4IcB90lmzISEvD477+hyMhQDsO1tIShlRWMsn8bWlrC1MWlZP97rasCPTcBf3UDbqwFar0BePcscjOZKSmIvaYsmG6fs0Zn4lPgxR0AMsDzvy8e7X19mWwqZ1ggvAJSZGTg2bFjCN24Ud+hFEvwihWIvXoVRtbW8F22rNDeGSaOjnDu0AEA8Oivv0ojREl6XJxUX8a9Z9EusuF79yJswwZEBgbqIjSdSYuJwYO1a5Fw5w4yEhKK3c71WbNwtGdPPPrzTy1Gp04mk6HRrFnoFhQEyxzf3hdHWkwMnp88qaXItOvhli0IXb8eANB0wQJYenuXqL302FhcnTwZR3v1gsjK0kaIGjO0soJDy5Zw6dKlSNuZODoqj7EQiD5zRkfRaUfC/fu4u2wZFGlpkFtYFLsdY3t7xJw/j/jbtxGb3RusNKieX8eWLYu1vYGJCe7/+iueHTmChLt3tRka5SPnJBYymQzVR4zId2ZO1RcIz1nEvVTF376NB2vWIDEkpNB1g1euxM05cxC+Z08pREYFSX3+HKfffBMPfv0VABB365a0TJrNNrtuZHkmhMD58eNx6/vvcX36dFz65BOkv3ghLb+7bBl21a2LXfXrIzAgQKPzuNIRIscwuvo6242BkREebtmCm99+iytffYULEybgzKhROPHGGzgSEICDbdsqYykpry5A43HK27c3FauJ2MuXlbVfXVxg7un534JHR5S/nZsApnbS3XbZdVRfVIDXVGXBZFMFFH/rFs6MHo2b336LzJQUfYdTJC8uXUJwdqHfhrNmadyzQfUt4OO//y7VD8cRBw5AZGTAqlYtqeu0plTj+cvbjHT3f/oJWUlJsKlfH67duhW7HXMPD0AI3F26VOfnqYGhYYm+wclISMD+Fi0QNGJEmZxZRmZkBBgYoNZHHxWrCPrLDC0s8OTffxF/6xZeXL5c8gCLwKVTJ7TZuBF1Pv20yNuqivNHnT6t7bC0RmRl4cqXX0KRng6nDh3g0a9fsdsysraWCsA/3LxZSxEWTJGRgZgLFwAADsVMNslNTKTenM+PHdNabPrw4tIlJIaElHpStqhuzJmDQ5064cm//xa6rlN2sin6zJky/7i04cm//+L0iBFIiYjQexw3Zs/G3aVLC11XlRDkrI76FX3+PI716SP1KvZbuRK1P/xQWi59MM6eYKQ8izp1CvE3b8LA1BSuAQFwaNVKrQdxRnw8AECRmorEe/dwc+5cPUVahiU8AtITAANDwK5onxk0oTrH5KamaDp/PtxefRXOnTrB3s8P1nXqwMzdHUY2NjCyti5WmYU81R6k/P3gHyArvcibq2Z6tvfzU3+fLtVr6qy2vmrSntjr15GVmlr0eKnUMdlUAdk0bAgzDw9kpaRIhdTKg8ykJFycOBEiKwvufftqNLuZikuXLjCysUFqRESpfhv7NPuNu1sRezUB/3UXjb1+vdwkBVOfPUNIdg+a2p98UqIEjtfQoTBzd0dqZCRCf/tNWyFKFOnpiL12TStv8IysrGBZowaAsvltiudrr6Hd1q2oNX68VtozMDKCS3Zx7shDh7TSZlEV59xyaN0aABAdFKTtcLQm9Pff8eLiRcgtLNBozpwSDyGrOngwAOUH1czERG2EWKC469eRlZwMI1vbIifYc1L1Rn12/Li2QtOLS599hsCuXbG7USMcf+01XPnqKzxYswZRp0+rfeuvb8+PH0fyw4eQmxVexNWmfn0YWlnBxMEBKZGRpRBd6chKS0PUqVO4OW8eonL2fhQCUSdPInjFCv0Fh+whxACc2rcvdF1Vsin26tUS9TCm4nuwZg1ODxumnJTHxwft//4717Ae2wYNIDMyQlpUFFKePtVTpNpx/5dfAABVBwxA85Ur0WbDBhhZW0vLG06fjoCLF9F2yxbI5HJEHjqk/jorQ4QQyEhIQNLDh1KSrFSo6jXZ1Qbk2htumJWaistffong5cul+6zr1IHvsmVo+csvaLt5M/x37ULXY8fQ/eJFBGS/j01+8gQP1qxBUmho8Xfu1howdwbS4v7rjVQE0apkU84hdMB/yaaqndTuNvf0hImTE0RGBmKvXi1GwFTamGyqgGQymfRtd/ju3XqORnM3v/sOyQ8fwrRKFTScPr1I28pNTODepw8A6HRY1suqDRsGt1dfLVayydzTE6YuLsoLZin3Himue6tWQZGaCrumTUs8U5jcxAS1P/5Y2e7q1UiPiyt5gDlEnz2L4/364fhrr2mlPdW3KapeHfoWFRSE1GfPpL/tmjTR3jdVgDQ7VcThw1prszDxd+6UqOeYqrdMQnAw0qKitBWW1iQ/foxb8+cDAOp98QXM3dxK3Ka9nx8sqldHVnIynpbC9V5Vr8mhefMSnW+qD9Qx586Vm2Q7oJzJTfVtqsjKgpGNDQxMTaFITUXs1at4uGULbsyejdPDh+P0iBF6jlYpKSwMyQ8fQmZoqNHQR5lcji5HjqDzoUNaOUf1KSMhASHr1+Pse+9hn58fTr/5Ju7/9JNUaxFQDkcFlO8d9HXdSIuORtwNZS0XTZJN5m5usPDygsjKkl6T5ZnqQ++9H3/E3RUrcGfpUrWhn0927sS1adNwe8GCMtGb4fnJk7gxezZEZibce/dGu7/+ynP4utzUFK1/+w3dzp2TZlYujxLu3lX2QpXJ4D16dJ7ryORyGNvYwN7XV/oS5NZ33+m1R5ciIwO3Fy3ChQkTcHr4cBzt2RMH2rTB7nr1sLdJExzu1Anh+/eXXkA6KA6eFBqKE2+8gUdbt+Lu8uVI1iCpqfqS69rUqbgxe7ZGPV7zZSAHavZT3g7eVqRNFZmZeHHpEoD/RnsAAOIfArH3AZkccFe/HspkMji1aweHli3LfW/ByoLJpgpKNRtTZGBguXkjX3XAAFjWrImmP/yg9m2JplRD6SL27y+1bypcX3kFvsuWFasouUwmg72fH4D/upGWZclPnyJsk3JMdp2JE7VS1Nejb19Y1aqlLBj8448lbi8n1Sx0NlqaIVBKNpWBYxUVFIQzb72FU0OGIPX5c53sw8nfHzJDQyQGB+c7Bbe2Xfn6a+xv0aLYb/5M7O1hXacOAJS5uk0iKwvnxoxBVnIy7Fu0gNeQIVppVyaToerAgQCUtbt0TfW8FncInYpljRowrVIFivT0Mnes8hMVFISTgwbh3NixyEpLg0wuR/u//sKrV6+i08GD8F2+HD7jx8P1lVdgXrWqdC7qm6rWnF2zZjC0tNRom7JeYF8TmcnJODVkCK5Pn47IQ4eQlZwME0dHeLz2Glw6/fdtuWObNrBt3BiK9HSE6KCXrSaenzwJCAHrunVh6uSk0TYVZShdZlISgkaMwI3Zs3Hr++9xZ+FC3F2yBFk53rtGnTmD0N9/R/DKlXiwZo0eo1WyrlsXjebMQe1PPkHTRYtgWEDtPYcWLWCSndAsr2IuXIBMLkeVgACNZlCt/eGHkFtYIPbqVYTv21cKEeZNkZEBMzc3JD18iKjTpxF/+zZSIyOhSFcO95KbmUGRI6mpc9HaTTaF79uHY337Iv7WLRg7OKDVmjVF+oKgSvfuUjslUjP7S9172wGF5kOvU589g6mTE4ysrdV7Sqt6Nbn4Aia5Pw82nT8fbTZuLHbdSCpdnI2uglINpUt5/BjPjh6FW/YFpSyzbdQIHXfvhkwuL9b2Ng0aKBMXcXFIfPAAdk2aaDdAHXBo0QJPd+1CdDmo2/Rk+3Yo0tPh0KpViWagy0kml6PuZ5/h7Lvv4sHatag2YgTMXF1L3K5QKBBx8CAAaG0WOlWyKe76dWSlpUFuYqKVdosq5sIFnH33XSjS0mDp7Z1vkd+SMraxgb2fH6KDghB5+HC+32ZqS1p0tLLItRCwa9y42O04tGqF+Nu3ERUUVKweh7oik8tRdeBABK9ejSZz52q1F5rn66/j9oIFeHHpEuLv3IF17dpaa/tlPuPGwbZJkxL3bJTJZHBu3x4Pt2zB8+PHpWGbZdXzkydx9r33oFD1qsjxjapMLodl9eqwrF5d6lUMKK9DKhkJCXqbIfL5iRMAAKe2bYu8rSIjAzIDg2L/X9anq1OmKD+E2dvD++234dyhA6zr1Mn12pPJZKg5ZgzOjxuH0N9/R80xYwpMHuiCqnaZJr2aVBzbtEHYH3+U+2TTjTlzkBQaChMnJzi1b6+ssWhoqDZLrUunTlCkpuLx9u0IXb8eNd5+W6+znpnY28Mru/dOZeA1ZAicOnSAyMjQaH0TR0fU/vhjiMxMtcRuaTM0N0fVN96A3NQUkMlgbGen/LG3h7GdHQyzhxVnpaXh0datiDxyBC1++kmr/58liiwgPLsXYglnolNkZOD2/PnS0EY7X1/4Ll1a5PfPLl26QCaXI/7mTSQ9fAiLqlWLF1DVzoCxNZAcCYQHAe6a/a8xd3ND50OHkJGQoP6cS/Wa9HfulHf/1KgBv1WrUKUEtXW1hT2bKqjyMpROCKHWa6Ikb2hlMhla/Poruh4/rvNEU+qzZ7izeDES7t0rUTuqMcrp0dFlvjtozfffR4uff0a9L7/Uaruq4oWGFhZIvH9fK23GXb+O1IgIyC0stJYYM/fygomjIxTp6YjLnqa1tMVevYozb72FrORkOLZrB9/ly3X6hltVbLw06jY9P3FC+c1+vXowdXEpdjtVBwxA89WrUWfSJC1GVzwZ8fFIyHFOVxsxAh337oVFtWpa3Y+JoyN83n8fTebNg3lx3yxqyN7PD7U//LBYvTlf5tShg3IYmpGRFiLTnWfHjysTvKmpcPb3R/Mff1R+eCmE6s3zo23bcLB9e70UrldkZkrJiKIkMgDg8hdfYK+vb7n4MiQvXoMHw9TVFX6rVsFn7FjY1KuX74dI165dYVGtGjLi4kqlh2BOQqGQ6jU5F+EYOWRPiJAUGqr1YeilJXz/fuXkBjIZmi1ahKY//IDGc+ei0axZar3wXLt2ReO5c2Hi7IzUyEg8LUez8ImsLNxeuBCnhw8v1/W1zN3di/S/q8Zbb6Hme+/p7Ys5FZlcDo++feHRpw+c27eHbYMGMHdzkxJNAJCVnIyb33+PZ4GBUq94rTv7HfDiDmBkCbgX/31pVloagkaOlBJN3m+/jTYbNhTri1oTe3up/EBESXo3yY0B7+w6u8F/F3lztS9ihAAequo1dc57g2zpsbEav6ZODR2K67Nm5br/0Z9/Yk+Oz4yZKSm49cMPONSpE3bVrYt9zZvj5JAheZ4XKeHh+LdOHRzRsEPHpc8+wz81aiB49Wq1+8P378c/2XVhKyImmyow1VC6pNDQMpvIeLhpE4507661btHmbm6l8g3s0927cXfZMlwpYeLFyscHXU+ehP+uXVoZlqZLMpkMLp07w7ZhQ62323T+fHQJDCzWN+95UQ3DcvH319obHZlMJs0so4+6TXG3biFo1ChkJibCoWVLNF+9Wudv4lw6d4Z51aqwbdRI59cQ1WQGzv7+JWrHuk4duL7yis56fGkq5uJFHO3VC2ffeUd6MySTyXQWV+2PP4bnG2+ovYEu61y7dkXAuXNaT2BrU+SRIzj33ntQpKXBpXNn+K1aVeTXXcz588hMSMClSZNKPSkQe/UqMhMSYGRjA9sGRfs2XZGejqykpHLbc8aheXN0PnwYDtnD1Qsik8tR4913AQD3f/0VCg17cGhD8qNHyIiPh9zMTPofowkTe3u03bIFARcv6v16V1xpUVEwMDZGjXfegWP2BA/5MTA2RrXhwwEAD379VW/va8M2bULIunVqNRMLIpPL8WTnTkSdPq3svVuOZKakIPHBgxK3I7KySr3W1rOjR/FgzRqNZpk0trOD96hRAIA7ixer9UrVivAzwKlpyttdlisLaheTgZERXLt1g7G9PfxWrkT9r78u0Rc2rtlF7Us8lM7ndeXve9vUev7mRwgBRWZm7gVxIUDCQ8DAqMAeUpc++wz7fH3V6u9pw7XJkxG+bx8aTJ2KTgcOoOX//ge37t2RHhuba91Hf/0Ft1dfRUZiosYzNxuYmOD+jz+W2y8IctL0/ySTTRWYTcOG8N+9G+137CiTiYyk0FDcmDMHivR0rU+vrMjMRGJIiFbbzEl1cSvpMB2ZgYFWho3pUuqzZzr/Ns7c01PtW8yEu3dL1J62h9CpVBs6FI2/+w5uvXtrtd3CJNy7h6ARI5ARFwe7pk3R4qefSiWpYOHlhc6HD6Pu55/r9BoisrKkWclKOjxL34RCgeDVq3Fq8GCkPHkCAEjTUV2t0ha6cSOe7t2rteuBgZFRmR6eFRkYiPPvvw9FejpcunaF34oVxUrw1v/mG1h4eSE1IgLXpkwp1Q/JRtbWqDZ8ODz79y/yc10eawIlhYWp/f8oyvHyeO01mFetiirdu5fqB2MLLy8EXLiA1hs2FPn8svf1LVcJ5pdVGzoUHXbsQO1PPtFofa8hQ2BgYoK4GzcQo4ced0II3PvxR1yfORMxRZiZ1q5ZMwAo0jZlweO//kLgK6/gWhEn7ckpKigIR3v2xN1ly7QXmAZCfvsNN2bPxqOtWzVa3/vtt2FoaYmEu3cRrs2ec+kJwK6hgMgCag8C6pVs4giZgQG8R41C1xMncs1+WByqYVYvLl3SKDGXr+rdAUNTZbLoeeGzxCU+eIC9zZrh7Jgx6v8TVUPoXFsARvkPZ1Z9dtL2l78Rhw7B5/334dKpE8w9PGDbsCGqjxyJqgMGqK0nhMCjv/6CR79+8OjTR+MesU5t28LEyQn3Vq3Kd507S5bg6Eszsj9YswYHs2fxVXm4dSsCu3fHrrp1sb9VqwJfpylPn+L8hAnY06SJ9LwnP34sLY+9ehWnR4zAXj8/7GncGCeHDEHs9etqbfxTowZCN2zA2ffew+4GDRC8cqVGj5nJpgpMJpPBunbtMploUmRm4uKnnyIrJQUOrVrB+623tNZ2wt27ONi+PU4PG6b1JBagLJT94uJFQCaTeo9pQ1ntfXZj1iwc8vcvtSKP4fv24WivXrg1f36xnpPEkBAkBgdDZmQEZy3XCnBq1w5VBwwo9RmaDC0sYGRtDZsGDdByzRqNi/xqQ2lcP2KvXkXGixcwsrbWyhDYxJAQ3F64EPd++qnkwRVB6vPnCBo1Crd/+AEiKwtuvXqhw86dec5SpAsZCQl4sGYNrk6ZovW2RVYWbs2bhwsffKD1gvFCCKRGRmq1TW0wcXCAgbExqnTvDr8SDFk1tLBA00WLIJPL8XTXLjzZuVPLkebPqmZNNJwxA/W/+abI26p6msRevYrMxERth6Z1mUlJODdmDI737y8VRS8KuYkJOh88iAaTJ5d6fS1Dc/MS1aorb3L+b7eqVUvjJJuJvT08X38dVrVqlWrvM5WEu3eR/PAhDIyNizTk0T472fSiHCWbRFYWHvzvfwBQov9hmYmJSAgOVvYy0mCmNG1Ij4uTrgFVctTRK4ixjQ28334bAHBn6VLtfX44PAGIewBYVQW6rgaK+Z4q/cULteuwtnq2m7q4wK5pUxgYGyP+5s3iN2RkAXhlJ7/uFT6ULubcOWQlJSEzIUH9febD7BmQqxb8/l3VC/SFlpNNJk5OeHbkSKH/86JPn0ZWSgqc2raFe9++eLprFzKTkwvfgYEB6nz6KUJ++w0p4eHFjjN0wwZcmzYNXoMGwX/3brT46ad8i/crMjIQNHo0DC0s0HbzZrTdsgWG5uYIGj1aKpafmZgIz9dfR9vNm5Wza1arhrNvv53rebizZAlcu3WD/+7d8HwpAZfvQy72o6RyJSstTS//mF+W/Pgxwv74A2ffeQexly/D0MoKTX/4QavF+CyqVYMiIwOpkZFSYVRtCs/u1eTQokWJasuopD5/jjNvvYXDnTtrv+tuCcXduoWnu3cjIz5e63Vm8pP8+DFEVhburVqlnFq4iAknc09PtN6wQS8fGHTFrEoVtNm0Ca3WrtXLY1Kkp+P5iRM6u4ZEZg+hc2rXTq0obHElhYYieMUKhP3xR4nb0lTMxYs42rMnok6ehIGpKRp/9x2aLV5cqscrIy4ON+bMQdjGjUh6+FCrbcfdvInMxEQYWlnBpm5drbWb/PgxDrZvjyPdu+fdpV6PbBs1Qru//kKzxYtLXFfKrnFj1JowAYByuumc3yiWVeYeHjCvWhUiK6vM120SQuDy558jITgYhhYWsKpZs1jtlOWedvm59cMPONqrV6nNGlpSCXfv4lifPogtZu3Det98A//du7U27L4oIrKH6Du1b1+kIvKqnk0vLl3SyZeguhBx6BCSwsJgZGMDzzfeKHY7Ll26wL5FCyjS0nBn8WLtBViAyAMHIDIyYFWrVpGuBd6jR8PIxgaJ9+7hiTaGZ93eDNxYB8gMgFd/B0xti9WMEAKXJk3C0d69c/U20YYmP/yAgHPn4NK54BpJhfLJnpUueFuhq6p6JtrnHOYshMbFwe2bNQNkMiSFhSEtKqpY4eal8Zw5iLl4EXv9/HCsXz9cnz07z1moH27dCrdevSCTy2FduzbMPT01rpFcJSAANvXq4c6SJcWOM3jFCtR4+214jx4Ny+rVYduoUb4T+TzdtQtCoUDjuXNhXbs2rGrWRJN585Dy9CmismcDdmzTBh79+sGqRg1Y1ayJRnPmICs1FdFnz6q15d6nD6q+8QYsqlbV+It3JpsqgZvffYf9LVog8vDhUt93WlSU2geI4JUrcXXyZKkYZqOZM2Gm5V4iBsbG8OjTB4Cy8Ju2Pfn3XwAlH0KnYmxjg+izZ5H88CESS1hwXNtU3Z7devbU6QxXOdV4+200nDEDABCydi2ufv11kd6cGRgawrFVK6m2g7Yl3L+PB2vXFuub85IwdXKCsZ1dqe4TUL7JCQwIQNDIkXn+w9WGasOHo/G8efAaNkwr7dn7+UEmlyP54UMkl9I3qdemTkV6dDSsfHzQYccOVB0woNR7lZp7eMCpXTsA0HjogKZUbzhUz622mFWpgqzkZGTExyP2auFd73UtKSxMrai7Vc2aWitgXvP992HXrBkyExNxadIknX/oTAgORvT58yVKEqt6N5X1oXT3Vq1C+N69kBkZwW/FihJ/ERR9/jxuzZ+vpejyFxkYiKO9e+N+dg+S4oi5cAHxt26V+WMEKL/4vDhxIuJv3iz2sCpDMzO99dgPzy4SXNQh+ta1a0NuYSH18ikPHvz6KwDAa+hQGJqbF7sdmUwm1eV7tG0b4m/f1kp8BXma/aG/qKMPjKysUOOddwAAd5cuLdkXwPFhwMExytstvwY8ijZBQ05hGzbg2ZEjSI2I0MmEGpbVq2unx7x3b0AmB6KuAS8K/jwTnf1+UjVREgDgxV0gKVxZcLxKwTXcjKytYeXjA0C7Q+kcWrRAlyNH0Hr9erj16IGE4GCcHDxY7XqVER+P8H374NG3r3SfR9++eFiE9111P/8cj7dtK9ZEU2lRUUiNjNR4AqT4W7eQHBaGPY0aYXfDhtjdsCH2+vpCkZaG5OwvJtOionDlq69wuHNn7GncGHsaN0ZmUlKu3ojFqdvLZFMlIBQKZCYmShdfXUt++hTXZ83CkR49sL9lS7WZu5z9/WHfvDlqffQR2m/fDvfspJC2efbvD0BZu0ebRdiSQkMRd/06ZHK5VsZKA8rkmGroULSOPswXR0pEBCKzax/V+uCDUt13teHD0eT77wEDAzzcsgWXPv200A9M6XFxeLp7t86fwyfbt+PGrFl4vH17vusIhQJZaWmIOHSo2MMBAeU/0NsLF+r1Q7hMJoND9puBCB3NSmfq5ISqb7wBx+zZlUrKyMoKNtn/EKNLaQawVmvXouGMGWj9++/F7lWhDVUHDQKgLFypzZ5C0apvv1q21FqbgLIniWN2DwXVlxD6kpmUhHNjx+LE66/rZOY4A0NDNF2wAIaWlrBr0kTnyaaQ9etxatAg3Jw3r9htlIe6TZGBgbi9cCEAoOH06bAvQpHtvKRFReH08OG4t2qVxkVfi+vZ0aPKacdLUIS5PBwjlTuLFiH+1i0Y29uj0Zw5JWorMykJIevXl1qh3eTHjxF/4wZgYFDkHiAyuVx6n1ce6ja9uHwZMefPQ2ZkhOpvvlni9uwaN1YmfoQo0fVIE2pD6IpR6qL6iBFw69ULzRYuLP6oC0UmsHs4kBYHVGkJtJpavHag/NLgxrffAgDqfvGFzr/4zUpLK/7GZvaAZ0fl7QKG0qWEhyPl8WPAwAD2TZv+t0DVq8mtDWBUeC06+yJM2mNoaYnMPOpNZiQk5OqBbmBkBIfmzVFzzBi0XrcOtT/+GHdXrJCGnD3ZuROKtDSc6N8f/9aqhX9r1cLN779HzPnzGtcLdmjRAk7t2+PWDz/kWiYzMMhVZD3nZyBNZsPNKTM5GTYNGsD/n3/UfjofPCh9Dr80aRLibt1C/SlT0G7rVvj/8w+M7exyffaSF6NGIJNNlYCqB07k4cM6L3qZlZaGoOHDEbJ2rVSkM+7WLWl5lYAAtN20CbU//FDrs5rlZF2vHqzr1IEiPR1Ps3siaUPC/fswtLKCQ+vWMHF01Fq7qsy+Pgpe5ufR1q0QWVmwb94cVrVqlfr+Pfv3h++SJZAZGuLJP//g/Pjxahc9RWYmYs6fx53Fi3G8f3/s8/PDhQkTELpunU7jUnX5zW+ceMj69Tj73nvITEjA+Q8+wL1Vq5AUGlqsfT3dvVs5HGzz5uKGqxUuXboAACIPHSqztcVepkpcRQUFlcr+TBwdUW34cK1eF4rDtUsXGNvbIzUyEs+OHtVKmyIrS7o2OWg52QRA6o2lz2STEAKXv/wSCXfvQm5mprM6WxZVq6JzYCDqffllsWtAaUr1fDpp+O1nXhxbt4ZDq1Zw69mzTL72E0NCcPGTTwAh4DVkCLwGDy5xmyaOjlLvaF3XfZOO0UuFX4tCSjYFBZW5ofg5RZ0+LU3X3vjbb2Hq5FSi9s68/TauT5+Oh6X0/1E19bm9nx9MHByKvL19s2YwtLIqF/XP7mf3avLo00cr5SIAoM6kSZAZGeH5sWM67RkeceAARGYmrGrXhlUxppM3tLSE75IlsG3UqPhBnJkLPDkBGFkCr24A5MXrjZSVloaLn3wCRVoanDp0QPWRI4sfUyGiz5/H0d69cf7990vWkGpWuuD8k02q9xM29eqp96h6qNkQOpWizBBtWb064m7cyHV/3PXrsKhevcBtrXx8IDIzpUTcwy1b4P322+jwzz/Sj/+//8K+efMi9Sqv+/nniDx8GC8uXVK739jeHqnPn6v9z43P8Vna0NISZh4eGn/BYFO/PpJCQ2Hs4ACLatXUflSJtpiLF1F95Ei4dOoEq1q1YGBsjPSYGI0fS0GYbKoEbBs1gpm7O7KSk/P88JEWHY3wfftwY84cBI0alWt8ZlGErFuHpLAwmDg5wXfZMnQ7dw7Vhg4tSfjFIpPJpDHm2hxK59qlC7qdOYMmc+dqrU3gvwRG9NmzZeINvcjKkhIc2njzXlxur76K5qtXw8DYGGaurpAZGkIoFDg/fjz2+fri5KBBuLtsGWIvXwYUClj6+MAyu1utrtgVME78yc6duD5jBp4FBiLy8GGpR9Cz7JpERaWqOab6MK4vTu3awcDYWCdDPYNXrcL9//1P42mkNeWQnWyKDgoqE6+p0mJgbAyP15R1EzSdHaUw8bdvIyM+HoaWlrCuV08rbeakKrT74soVvU0HfP+nnxC+e7dyGNby5Vr7gJUXE3t76bYixxtYbUoKC0Pyw4eQGRmVKEFo4uCANhs2wGfcuDI52ciDX39FZkIC7Hx90WBq8XsPvEw1lCZi/36dzWyb9PAhkkJDITM0lIYrFoddo0aQm5sjPSamVIYoFUd6XBwuTZoECIGqgwZpZaZYVQ/2kN9+K5WapGlRUZAZGUmzdxVVjTFj0P3iRdR87z0tR6ZdmUlJUk9WVcFsbbDw8pI+D2h1treXpIaHw8DYGG4aFgYvTJHPraengdPKUhDouhKwLXrCS+X2ggVST8Am33+v02uwsa0t4m/exPNTp0o242yN7KFl4aeBxLzLGOQ5hK4I9ZpUHFq0gOeAARqVzfAaNgyJISG4PmMG4m/fRuKDB7j/66948u+/qJHjPD81dChCN25E7LVrSH78GJGBgbg1fz4cW7WCkZUV4m7eRNyNG6g6aBCsa9dW+3Hv3RuPtm3TuFe5de3a8OjTByEvfUnu0LIl0mNicP+nn5AUFoaQ9etzfX6v/eGHuP/rr3iwdi0SQ0IQe/16rnZU3Pv2hbGdHc6NGYPoc+eQ/OgRooKCcH3GDKlIuUW1ani8fTsS7t3Di8uXcXHiRBgUsQdVfphsqgRkMhmqdO8OQNlTIucHr+BVq7C/RQucHzcOD/73Pzw/fhwXPvwQ6bGxRd5PWlQUglesAADUnTQJbq++qvamurS59+4NmaEhYq9e1eqbRbmJidbrTNk1bQqZoSFSIyKk6dL1KfbqVaSGh8PIxkbjmTx0xaVTJ7Tfvh0Npk2DTCaDzMAAKU+fIjMxEUa2tnDr2RONv/sOXU+cQKe9e1H7ww91Go+RlZXU0yvntymRR47g0mefAUKg2ptvwnPAADh37CgtK6qU8HBlYkcmK9EHEW0wtLCQkjfarP2myMzE/Z9+ws05c5D86JHW2gWU3atlRkZIefpUGpOuC/G3b+PU0KFFGquva1UHDgSgPFaJJRieo/LiyhUAyudUGwXcX2bm5gbLmjUBhQIRpTTrZU7Pjh2TurI3mDpVvWCpDiWFhuLkoEG4qeUvLwBIPQfsmzUrUiHj8qbB9OmoNWEC/Fas0GpPMatatZRDpYTA/Z9/1lq7Oal6Ndk1bVqiiQQMjI3h0KIFgLI5lE4IgWtTpiA1IgIW1aqh/uTJWmnXvU8fGDs4IDU8HOF792qlzYLU/ewzBJw7V+xi2YZmZlqdDEdXDC0s0OXoUTRfvVrrQ7Z8xo9H89Wr0XDWLK22m1OtCRPQ7exZVBsxokTtZMTH49r06Tjy6qvS8KlCpcUDu4cBIguoMwSoW/zaoc9PnpTqZjX+7rsS9wQsjFXNmrCsUQMiI6Nk7/Os3IEq2SUR7u3IcxWb+vXh2K6depH/6BtAynPA0AxwbaHRrszd3dHku+/gmf0FW0EsqlZF202bkPDgAU6/+SaOv/46nu7eDd9ly+Ds7y+t59S+PR5v24agUaMQ2K0brs+cCef27eGbXbPp4ZYtsPTxybPXnGu3bkiLji7SF8y1s3vm5mRVsyYazpyJkPXrcbRXL8ReuSJ9AaLi2b8/6k+ejNANG3CkRw+cfffdfEdRGJqZoc2mTTBzc8P5ceMQ2K0brnz1FbLS0qSeZU3mzkVGXByO9emDS59+iuojRxarB2eeBIm4uDgBQMTFxek7FJ2JuXRJ7PT2Fju9vUVEYKB0/9N9+8ROb28RGBAgrkyeLA517Sp2enuLC598UuR9XP7yS7HT21sc7dtXKLKytBh98YVu3CheXLsmFApFidtKff5cK+3k59jrr4ud3t7i4bZtOttHUSSGhoqIQ4f0HUaenp8+LV5cuSIUmZl62f+VKVPETm9vcX3OHCGEENHnz4t/69VTvnY++kg6/+Pv3RM7vb3Fv3XqiIzExCLt4+HWrWKnt7c41q+f1uMvjpDffxc7vb3F8QEDtNZm9LlzYqe3t9jTrJlOjuXxAQPEnqZNReSxY1pvW+XmDz+Ind7e4uzYsTrbR3Gcee89ce6DD0TS48clbkuhUIikhw9F3O3bWogsb7cWLBA7vb3Foa5dRVZGhs7287LEsDCxp2lTsdPbW1z+8kudXuNf9uz4cen/cvS5c1pt++zYsWKnt7e4u2KFVtpLjYoS4QcPaqUtbSiN4xSVfX36t04dkfLsmdbbP/Pee2Knt7e4s3x5idu698svYqe3twgaPVoLkWlXZkqKODVihPjHx0e8uHJFq23fXrJE+X/ytddK9bVbUqV5jaPiyUxJEftathQ7vb1FyIYNmm20+00h5kOIn7yESI0t0f5Tnz8XQaNHiytTppSonaK4NX++8v3M+++XrKEz85TPw5aumm9zYWnRt6Fyoeyn2EkrbBs3hmV2FjY2+1tqAHDu0AEB58+j4969aDRrFprOnw8YGODJjh1FnnmqyquvwsrHBw2mTCkz3954DRkC2wYNStz1VAiBk4MH43Dnzmo1qLTJuX17OLZuDSNra520X1QWXl4lnwZVRxxbtYJto0Z6m6ZaKkp4/jzi79zB2XfegSI1Fc7+/squztnnv6W3N8w9PaFITy9ywWFVzwR9D6FTcemk7Nb84uJFpEVHa6VNVY8vp3btdHIsm69ciYBz56RhWtomhMDT7OmRtTU7pbb4LVsGv+XLYe7uXuK2ZDIZzD09dVqY1OeDD+A1bBha/PSTTnpP5efejz8iIy4Otk2aoMH06aU6VMypXTt4vK6sb/Hor7+01q4iM1Pq4aKN60dmcjIOtGmDc/9n767jm7q7B45/Im3qbtRogeLuOhw22JgwpgwmjLk98+03fZ5n9szdhTFnBmPAcHcoLqWUKnX3Jrm/P24bKLSlkjQpnPfr1Vdvk5t7TyVpcnK+58yd22rTHRuSMG8e+555xuZLp/wGDMC3Xz/MlZUkfP21VY9trqoip7qfXFAL+jXVCBg+HENQEK5WuL9bm87FhaFffcWIX35pWR+cOkTdcANaZ2fy9+whz4aNt5tT7V+XpF9+YcXo0RyuoymwIyhNTW21ZedVhYXkWLlP6ZmtDVpC5+JCTHX/orgPPjj3cudDP8DBb0GjVfs0GbxbdH5DQACDv/iCnlaqBGyMmlUwmWvXYiwra/6BYqorjVLWQFkj+/7ULKGLbNrrDrPRSP7+/aRXDzQSjscxMgLC5jQaDcO//54RP/1Ex9tvt1yuc3GpNU7dt08fuv7rX/R9/XVL47XGCho1itF//93iSTC20pLJTAUHDlCSkEB5RgZu4eFWjOqULg8+yLD58wmpbsZcn5KkJA69/nqzm06fiy36h5xvapbZFB46xLbbb6eqsBDf/v0ZcMZSDo1Gc2op3erVjT6+YjZbkk0BDpJscg0Npde//83ov/7C2UrLYzPXrQOw/IyszRAQUG8Sy1haSt6ePS16QlWwfz+lSUloXVwsyThHYevm09amMxjo/eKLeJzWqDMvNtbmE9t6Pfccne68k4Hvv4/OYLDpuepS03cmbckSqz325u/Zoy4z9vXFu0ePFh9P7+ZmGehh72VaGatXs//f/ybxhx9s2vcF1MfvjnPn4hYZafWG8VVFRQRPmIBnTIxVfkdeXbsycdMmettweVJT5e7YYWlYrtFq8e3Tx+rnMAQEEH7FFQAc/+orqx8fqpOtI0aw7vLLqczLa9GxNDodZSkpDjmRzlxZycYZM1hzySU2e35Zo/DIEVaOGcP2O+9sWX+g01Tm57N85EjWXXGF1Y4Zed11uISEUJ6efu5G9JufVz8PeRrCRjS4a0NKT2ulodFoWvV/uVf37riGh2MuLyer+vlZs/jGQEBPdSrf8dpDmgqPHDk7KViYCMnVS/ca2a/JctODB1l/+eXEPvaYQw9IuJBJsukCYggIwG/gQPRubg3uF3PXXURceWWj3+E9/c7tKBVNp6vIzib2iSdYf/nlzX4gOvbRRwCETJzYot4KLZW2eDHrLruMYx99xKE33rD68RWTiTWTJ7P9zjspz8iw+vHPF66hoQz/8Ucm79rFwPffx3/oUAZ//jn6OkaC1qwFL2lC37Cy9HQUoxGdm1vtsbB2FnXDDXh17WqV6o/yzEx1jDTYrPKoRllaGmlLlnDk3XfZfvfdrBo3jiW9e7Phqqso2L+/2cetqWoKHjfOYfvilKalsfuRR0hr5gvzpAUL2HbHHZz85x8rR9awzHXr2Hjttex84AGbJsC1zs50e/RRXNu1s9k5GuI/aBAuwcEYi4pa9uT+NL59+zLyt9/o/Z//WK1isKZvnD2TTQWHDrHzgQfAbCbymmsIvewym58zZMIExi5fbkkKWovBz4/+b7zBmKVLrfK8SaPROFQD9+Tff2fjddex9+mnbf4CMPrmm6F6VLgtktNZ69djLi+nMj8fJx+fFh2r5s3Ygv37He6NvaQFCyjPyKCqoAAXGz8eenTsiCEwkKr8fOKtNPExfcUKlKoqzJWVVnuerjMYiLnnHkDtcVvvRG+zEfLj1e3ezW8AX5GTw5rJk4l97DGbTw+vi0ajod3kyQCcbGn/xE7VU+mO1Z5Kt/fpp/lnyBDSavqsFZ+EX8ZDRQH494CQpvVM9OrWDZ2rK1UFBVYfYCOsw/EyA8KhVBYUkBcbW+/1pvJy1l56Kcc+/bTxDfRamdZgIH3ZMgoPH7aMrm2KggMH1OaTGg2dq//p2FJFTs5ZiR5FUdj77LPsvP9+y9jc7I0brf7EKnPtWkqTk8nZsaPFT6rOZxqNBv9Bg9C7uuLTuzfD5s/H2bvukumA4cMZu2IFw7//vtHHdwsNZfL27Vy0cGGbq1BprJqqJp/evTEEBNjsPMc+/ZQVF13Eznvv5eg775C+bBkliYmgKBgCAmq9U92Ud0MVRSHt778Bx1tCd7qUX38l5fffOfTaa816jM5YtYqMFSsojo+3QXT1MxYXo9FqOblkCVtmz7bqlLqsjRs58NJLLap2tRaNTmf5+0ldtMhqx/Tt04fQ6iUR1mBJNm3ebJfpjuUZGWybMwdTSQkBw4bR64UXWiW5otFqW3VZZ0spZrPNq1LOJXXhQmIfewwURf3/ZePfk1eXLkzcsIGBH3xgk+XY6dWJ9naTJrX4b84tMhJnf3/MlZUteqPD2sozMjj02msAdJo71+ZVnlq9nq7/+hegVqSVZ2W1+Jgna/4fW3moTeTVV+MaGkpFZiZH33+/7se/4jS1KbhWD+7NT9RlrlmDqayM/L177fbcL3TqVMIuu4ywSy9t2YFqltKdWApVJQAYy8rI37cPAJ8ePaA0GxZMVBN1XlEwfan6M2wCrZOTZXnu6UN7hOOQZJOoV1FcHGsuvphtt99eb4+W+M8/p+jIEXX0rI2XOzSXk6enZSzmsU8+afIT5SNvvw2o0+1qppDZypF33uGfwYM5dsY7PRqNRp3sp9HQ6a670Ht6UlVQQL6Vn6wk/vADABFXXWWXJSVtVUNPQHUGQ62lQY0+pk7XrNvZWu6uXey45x6SFyxo0XHKMzLQOjvXmgJiC24RERj8/fHu0YOI6dPp/vTTDJ03j0lbtzJp61baTZpEcUICm2fOZOsttzT68SF/zx7KUlPRubnZ/HtoiQ633oohMJDSpCRONCHhCeoL19zqnhr+Q4bYIrx6hU6ZwpAvv0Tv4UHu9u1svPZayqzQL6g0LY2dDzzA8S++4PiXX1oh0pYLq67QSV+5EmNJiZ2jqZvvgAFoDQYqMjNbP/FYWsq2uXMpT0/Ho2PHs5Yrt0oMJSUk//67VSq7qoqKKDx82OpJu4qcHP4ZMoTVF1+MsbTUqsdurLQlS9j9yCNq9dm111qmyNqaS3CwTY5rrqqyLIEPmTixxcfTaDT49e8PYNMeU02hKAp7n3kGY1ERPr17E3XTTa1y3pBJk/Dp2xdTWZllknVzVebnW1oPtJsyxRrhWWidnYm5915AndRcp8IT6mfPSNA2P+FZM8UsZPJku60U8e3Th/5vv93ynq2BfcA7GozlcEKtksqPjUUxGnEJCcE10BN+u1idQucRCjNWgmfz2pRY+qhKsskhSbJJ1MstMhJnHx8qc3PZ//zzZ11flp7OsY8/BqD7Y4/VuYTIUUTPno3WYCB/zx5LU87GyIuNVUeAarV0vv9+G0aoqukLUfMCr6aKCdRxriN+/plujzxCwPDhwKnRydZQlpZmadjc/rrrrHZccUpjKtEUs9kulQONlbdrFyeXLuX4N9+0KM7O99zD5J07ib7lFitGd7bQSy5h0tatXLRwIX1fe42Ot95K4IgRtaqp9O7u5O7aRd7u3Y1fyqTREHjRRbSbPNmhH/v07u50eeABAI6+/z5VhYWNvm1ebCyVubnoXF0tPXtaU8CwYYz4+WdcgoMpjotjw4wZFB450qJjxn3wAVV5eXj37En07NlWirRlvHv1IvK66+j7yitoWlhFk7l+PXuefNJSOWgtOoPB8oS+tZfSxT72GAX79+Ps58fgzz+vt4rUluI//5zYRx7h2GeftfhYGatXs3bqVLZY+e/P2c8PnasrSlWV5TlEa0pfvpxdDz6IYjIRMX26uoyzlV8wlyYnk711q9WOl7NtG1UFBTj7+VmtH6lvdbLJUfo2pS1aRMbKlWicnOjzyiutVsmn0Wjo9uijgPpGZ0lSUrOPlb5iBYrRiGeXLnWOpG+pyBkz6PLgg/R4+mlL8rSyoOBU76HCRPWzV/tmn8NsNJJZ/Zw+2EZ9LFuVRgOdqqub4n4DsAye8uvfF80fl0HGTnANgKtXgE/z++L5SrLJoUmySdRLZzCok7V0OtL+/vusnh+H//c/TGVl+A4Y0Cq9E1rCEBBA5DXXAGp1U2PVrFmOuOqqVqky8Rs0CFB7U+x68EE2Xn+9ZV2/RqezvCMWPXs2/d95h6gbb7TauZN++QXMZvyHDLF6M9QLnamigu13382ywYPP+WI/e/NmVowaxSEHnVYTcfXVaA0GCg8eJG/37hYdS+/mZpcXjmdyCQqyVD8eefvtRiXRfPv0YehXX9HXQX9Pp4uYMQOPTp2oysuzvEFwLnl79rBtrtp7InDUKLROTrYMsV5eXbowYsECPGJiKE9PZ+tttzW710llfj4pf/wBQI+nn3aY6k2NRkOf//6XsMsua3FM6cuWkfTzz2Q2YSBBY9W8ydHayaaIq6/G2c+PQR9/jHtkZKueu0bYtGkAZG3Y0OIlPzUJbWs0Bj+dRqOx2+8oY/Vqdtx3H4rRSNjll9Pn5ZdbPdGUuX49K8eNUxsFW6nSvqb1QvD48VZbond6FYa931iqyMlhf3VT+c733GPTiaN1CRg6lMBRo1CMRssqguaw1RK6Ghqtls733Vfr53PkzTdZNX48xz79FFPOcfVCr6hmnyNv926MRUU4+fpafWpjUymKQuGRI8R99FHLlpvXJJuO/wWmSsv0QX/nHZC6QZ3YN/0f8O/Wonj9+vcHjYbSpCSrTiQU1iHJJtEgn1696HTnnQDse/ZZy3K6vN27LU/ae/7f/zlUY8r6dLztNjQ6HVnr1zd6+Vm3xx5j6Lx5rVLVBOAaEoJbZCSYzaQuWkTh4cPk1PEuXcCQIYRdemmtSYItYTYaSfr5ZwDaX3+9VY4pTtEZDBTHx1OVn0/Whg0N7pu1YQPlJ09SYYUeBrbg7ONjWfZz4rvvmnWM/L177f4k+0yd5s5F5+pK/t69TXqh3hYe+7R6Pd0eewxQ+2Oca3x91saNbJ45k6q8PHx696b3f//bGmHWyy00lBE//YRbRASBI0diauYEwaSff8ZcXo5Xt26WxP75RFEUyzvjgTZout/u4ovp+9pr9HzuubOuMxYXk7xggU2SHMFjxjB+zRq7Trr1iI7Gp29fMJtJ++uvc+5fH8VstlQk22IwgqXqefNmqx+7IebKSlAUQqdMsbxJ2dr8Bw3CydubspSUljc3Rr0/1SSb2k2a1OLj1fDu2RPvXr0IveQSzHZuEm6qqMAzJgbPLl3odMcddomh26OPotHr0RkMzWomb8sldPUxV1VRcOAAxuJiDr36Kmse/YX0BDcUz+Ynw2uedwRddJFd7j+nU0wmNt1wA4dff71lVZKhw8AtGCoKMJ9YYXmD0s+wG5zc4aolENzyIThOXl54xsQAUt3kiCTZJM6p87334tW1K5W5uex7/nkUs5n9//kPoI5ttncGvrHcIiIIrW5419heHRqNhsARI3ALC7NlaLUEDB0KgEtICMO//56giy6y+Tkz16yhPD0dZz8/Qqz4pEqcUtPXp2ZNfn1qnjQFjBxp65Caraai7uTffzf5XaScbdtYf+WVbLnpJpuPtW8KQ0AA0bNmAXD4HNVN2Zs3W6V/UGsKHjcO/yFDMFdWnrO6STGbMVdVETByJMPmz1f7xdmZs7c3Y5Yto+8rr+DcjOEFisnEifnzAbUy1BGThKUpKcR9+GGzJ/+VJiZSlpKCxsnJJj22PKKjiZg+3TK5TzGZyFy/nl3/+hfLhgwh9vHHrbLMDCB/3z61kX81R5j2GH7FFQCk/P57wzs2oPDwYSqys9G5uVmWflhTTSP3woMHaw0/sLV2kycz4scf6ffmm3ZrqK5zcbH8b4r/7LMWv6GhmEx0f/xxwqZNsyTxrEFnMHDRH3/Q64UX0Lm4WO24zeEWGsqw+fMZNm+e3RpSe/fowYR165pdDadzdaX/W2/R4bbbbLKEri5aJydG/PwzfV97Te2JmFXG9iUhbHt3S7Mrb2vaWAQ5wBI6rV5PyIQJQAun0ml10OlyAApXfoOptBQngwnPQC1csVBNRllJt8ceY9i339rkjRbRMpJsEuekdXZW36nS6zn5998cfvNNCvbvR+fuTtdHHrF3eE3S6Y476PLgg/R85pkG9yuKj2/VJ2qn6/rww/R68UUuWrQI/wbefS9JSiLuww85/vXXLT6n/+DB9HzuOTrfe6/DLC0539Sswc9cu7bed+8qsrMpPHAAgEArPrm1Np/evfHp0wdzZSVJTWwUfuSddwBwj4qy+7t3Z+owZw46d3cKDxywTCA6k2Iyseuhh1gxahQ51f0H2gKNRkP3J56g0113Wfpk1Cdo1CiGffstgz/91CFe5NdoyWNT+sqVlKWm4uTra6nMczSpf/3F4TfeIOGbb5p1+5qqSb/+/W36eytJTOTgK6+wYtQott58M6l//om5vBz36GgChg5FURTy9uwhfeXKZp8j/vPPWT99umVykSMInToVjV5PwYEDFMXFNesYNVVNAUOH2uR/rUtgoPoOv6KQ3YT+lNbg26+f3Zbb1oieNUvtz7l3b5P6c9ZFq9cTNm0a/d96y+5JIWs7PRGn0WptOhG2MVrS4F1nMBA6ZQo9nnrKihGdm0arJWL6dMatWEGn4aDVmcncEUfa4sVNPpaiKLS//nqCRo+2ScVjc7Srnmaa/s8/zao4s4i5CgC3rAX0HZ9Jl8EFaKYtgMgWNiA/Q/DYsQQMH47ezc2qxxUtJ8km0SjePXoQc9ddhF9xBR3nzGH033/T99VXcQkKsndoTeLVpQud77uvweVniqIQ++ijrBg92vJOQ2syBAQQdeON56wmKDp6lMNvvMGJefNafE4nLy+iZ81ymIa55yO/gQPRubtTkZ1d78jjmiUoXt262f3J37nUvIOc+P33ja5Qyt66lZwtW9A4OdHp7rttGV6zGPz86FB9H0j+7bc698nZvp2KrCycvL3xbSNVnTV8evem2yOP4OTpWetyRVGI/+wzihMSLJf5DxrksInnwsOHOfTaa02qXPDs1InIa66hw+zZDvvCsWbUdM7WrZRnZDT59pYldDasiqzIziZ10SLiP/uM8owMnHx8iJo5k5G//cbY5cvpdMcdZK5ezYarrmJ/dSV0UxlLSkhfsYKqvDxwoOW2Bj8/S4Vqyp9/NusYNY3bbfnuu6VvU3WV7OnKMzLI27MHUO/3RXFxTRoacKbYxx4j/osvqCoqavYxrMng70/kjBkAZ031dTSmigqrTxRurL1PPcW+55+vNYTGERTFx3Po9dcdbpl9Q/TubnQbkELMgHyAZk3q1Wg0RN90E0O+/NJq7TFaKmD4cPQeHpRnZJBf/ZjRLBFjweCNs4uZiK6lRD/5CXS81HqBCocnySbRaJ0feIB+b7yBs48Pnh072qwRX2syV1WddVnGqlXqA6vZjE/PnnaIqnH8hwxBo9dTkpjYoikeonVonZ0JHDECUKub6lKzhK5mP0cWeuml+PbvT4dbb210A8mj1VVNkTNm4BYaasvwmq3DnDn0eeUVBr7/fp3Xp1U3Ig2ZNMluyw6sQVEUKrKz1WXRL7zAwVdeYcvs2Q734uNMxpISNlxzDcc++aTe+1FdPDp0oM/LL9P5vvtsGF3LuIWH49uvHyiK5e+sscxVVZZKDlsmm9BoyNq4kZCJExn44YdM3LSJXi+8gG+fPpaliTUvUsrS0po13j19xQq1Uqp9e7ztMAWxITVL6cpSU5t828q8PMvPw5bJpnaXXEKnO+8k/KqrLJfVLCNdPWkSO++9F2NJCdvvvJM1F1/c7GWbJUlJJP/6K4dee81aoVtFh9tuA62WrHXrKDh0qFnHKE1OJu7DDyk6dszK0akqCwpY2rcv66+4ot5EnbGsTJ2GbGWZ69eT9PPPnJg/v8XTPa3JWFLChquu4thHH5HRyKrI9JUrOfree5ScOGHb4BpSkgGmSiK6lhBz1530eekl+8ViRTqDgeCxYwFIXbSoBQdyhh63gFYPkz6HLtdYKcKzZa5dy/7//KfBJG5Zerq8ZmplkmwSjeaIPS6aK3fHDjZccw2H33yz1uWK2WyZiBE9a5ZDV5c4eXqqL0zgnE2n62M2Gtk6Zw6JP/3U7HXmovFq/nHXVTGnKIrl99gW1pzrDAZG/vILHW6+uVEVMNmbN5OzdStaZ2di7rqrFSJsHmdvbyJnzKhzOYjZaORk9VTO0FZqRGoLxQkJbJwxg82zZrH7X//ixLffAuoQBb2Hh52ja5je3Z32110H0OjJem1JzRK/pj65L8/IwCUkBCdfX6tPOTudwd+fET/8wKCPP6bd5Ml13vd1Li6ETJwIqEsDmyp14UJAnQDnaM87gsePZ/y6dfR/660m39bZ15cRP/1Ex9tvt+l0W/9Bg+j26KOW6bWFhw+z4Zpr2PfccxiLizEEBlKZn493N3UC1Ln6CNan5v+Vb//+Z1VL2pN7ZCShl1yC3tOTkuPHm3WMtL//5vAbb1gmtVmbs7c3LiEhoCjkxcaedb2xtJRtc+aw7fbbm1UpUx9jcTF7n34agOibbrJr0/0z6d3dibrpJgAOv/76OSumTeXlHP/yS468/XazHmespvAEAK7tQuj6yKO4R0U16eamigoSf/yRspMnrR9bC4VVJ9cTf/iB0uTkZh+nNOZh4l3fIl8ZaKXI6pb0yy8kfPWVZeLnmXJ37mTFiBGsnjTJoZZon+8k2SQuSFVFReTt3Eni99/XKiE/uWwZhQcPovfwoOPtt9sxwsapeQe7pg9EU2WsWkXm6tUcfv11h3tSfz4KGj0a3379CBk//qwycXNFBe0uvhiv7t3xG2jbf8itTVEUS6+myGuuwdVBq5rOZK6srPWOac7WrVTm5uLk62tpxNsWOfv6UhwfT9GRI6QuWoRGr6f/W2+1mWW0HW+7Da2zM7nbt5+zb1Zlfj57nnzSbstVmip06lTQasnfs6dWg+xzcQsPZ+yyZYxbudIheqHVDONI+/vvJo3OrsjJsfw/C3XA3lo6g6FFA0N8evem+xNPWDGi+hnLyjj02musu/xy8mNj0Xt40PP55xn5yy+4hYURVP3mR9b69XVWeZ+L5c0RBxxm0ePpp5mwfr16f2oGyxS66qSpLfhWJwPPrP6rKipi6y23kLNlC3oPD3QeHhx46SW2WWFa3KHXX6csNRXX8HCH7Lnaae5cnLy9KYqLs0y8Pp2iKOTt3s3e//s//hk61FLNadc3fwqrH6e92jfr5rnbt7P36afZMH26wy0fDBo9moDhw3Hy8mpRNVDWhg0c/N9bHHz5ZStGd7aa5Gn21q1krl/Pvuef59gnn1iu96mulFWqqs4qNmiKwsOHOfrBBxhLSloW8AVCkk3ighQ0ZgyenTtjLC62TChSTCZLVVOHW291mHXTDamZVJe9aVOTntDXSPzhBwAirr66TS8JaitcgoMZuWABMXfffVZyT+fiQs9nnmH0okUO21OmLqbycpIWLGiwqXFlXh4VOTlonZ3pdOedrRhd8xUcPMiqCRPYOmeO5b5V0/iz3eTJdm+E2xLOPj7EVPfM0rm6MvjTTwmbNs3OUTWeS3Aw4VdeCcCxjz5qcN/kX34h6eef2fPEEw73RL4uhoAASyKzOe/WO3t7WzukZgkcMQInX18qc3Ka1Kj55NKlKCYT3j16tNpkqeaqyM5udEVwZX6+bYM5g7G0lAP/+Q/HPvkExWgkZPJkxixbRvRNN1mSkT69euHs54exuLjJ48LNRqOlx6CjNDQ+nUtwcLOrrdKWLlVHtGs0BFdP5LKFmsqz03/2VYWFbLn5ZnJ37EDv6cnQb77Bf+BAEr7+mowVKyiKj2/2+XK2b7dUsfZ56SWHGv5Qw8nLy/Ic4cjbb9e6f2WsWcPqSZPYcPXVJP7wA8aiIlzDwuj90kt4dOhgr5BPSzZFAeoyxe133mlpi3Aulil0o0c73Ju+Go2Gvq++yriVK1vU3iFj9WoAm7+Rakk2bdjA1ptv5sS335L444+W//1aZ2dGL16MRq8na906cps55OXwm29y5M03OVA9mV00TJJN4oKk0Wgs/9COf/UVpvJyUv/6i+Jjx3Dy9qbDrbfaOcLG8e7RAycfH4zFxU1u4FeakmJ5B7n9tdfaIjxxAcjesoU9jz/OkbffxlhWVuc+Bj8/xi5dyoiffrKMTXd07pGRGEtLKUlIIHXhQhSz2dIjqC0voavR4dZb6fv664z6/XdL0+O2pNPcuaDVkrlmTb19WRSTiYTqF1fRs2c73BP5+oRddhk6NzfM5eWN2j/5t98crnJL6+REaPU0o6YkzU5fQufI9v7f/7F8+HAyVqw4574FBw6wfPhwDrz0UqslPIvj40n68UdcQkIY9MknDPrwQ1xDQmrto9FqLff9pi6ly9+zB2NREU4+PjZdttlSiqKQtXEjFbm5jdq/NDmZPdWVZx3nzDnrZ2ZNNS+M82JjUUwmKvPy2DxzJvmxsTj5+DBs/nx8+/bFEBBwqjF9PYMrzsVUXm75viKvucah+0JGz5qFS3AwZWlpxH3wgeVyvbs7JcePo3VxIfyKKxg2fz7j16yx//PX6mV0NZVNGStWkL58Ocm//NKom9fc94KqJxY7GtfQ0BYtr09duFB9nNRoLMurbcWrWzfLZENDYCCR111Hz2efrTVowqtrVyKmTwfgcDOWQ+fu3ElGdQVxx7lzrRP4eU6STeKCFTp1Kq7h4VTm5pK8YAGlKSlo9Ho63n67Q/UfaIhGpyNw+HB07u6UNrFhaeKPP4KiEDBiRJPXmIuWqSwoqLW8xFxVRfamTW2yb1bQRRfhFhFBVWEhaQ30mdHodPi0oelteg8POlUvpT363nsoJhNjli6l/1tv4T9kiJ2jazmNTkfElVeqY9LbIPeoKEvSr77eTekrV1KWmoqTr6+lF1JbEHbZZUzato2uDz98zn1TFi4k9rHH2DxzZot6athCzTK4vN27G51k6fu//9H14Ycty/AclZOPD4rJ1KipdIffeANzRQUVmZmtlvD06dWL8evWMW7lSkIaqM6peYHb1Mm7liV0w4c7xLLN+ux5/HG2zJplqWBviLmykp0PPICxqAjffv0adf9rCc+YGPQeHphKSsiLjWXzzJkUHDiAs58fw7/7rtaAmppm7yl//NHo6a+ny9u1i/KsLFyCg+n+5JNW+x5sQefiQuf77wdqt4jwGziQfm++yaQtW+j3xhsEDBuGRusAL2PPWEYXcfXVgNqWo7KgoMGblpw4QUlCAhq93jJF0lEpikLqwoWkLV3a6NuUJCay95lnAIi5+27LMjZb0To5Mer337lo0SImbtpEn//+l+CxY8/6O4m59160zs7kbNliqdBsDEVROPzGGwBETJ9u09575xMHuJcKYR9avZ6Oc+YAcOyzz+h0xx2MW7GC6Fmz7BxZ0/R87jku3rmT8Ca8E2wsKbEsoWt//fW2Ck3UQTGbWT1hAjvvu4/86sagebGxbL7pJlZPmtQmlvqcTqPV0v6GGwBImD+/VvyKopC2eHGbTKIBRN10E85+fpQmJZHyxx84eXoSNm0aWr3e3qEJoNOdd2IIDKz3CeyJefMAtXKzLS1N1bm4oHd1Ped+J//5h9hHHgFFIWzaNFzDw1shusbzHzSIYd99x5i//250ksU9MpKYu++2aUWJNYRffjmgTj+qyMmpd7+c7dvJXLsWjV5PlwcfbKXoVG5hYef8uw8cNQqNTkdxXBylKSmNPraxuBitweDwwyxqKoIS5s3DWFra4L6JP/xA/p49OHl50f+dd2y+VFqj0+HTty8AhYcOETRmDIbAQIZ//z1eXbvW2jd43DicvL0pT08ne/PmJp8rYPhwJm7YwJCvvsLJy8sa4dtUxNVXEzBiBGg0lucUGo2G8Msvd7w3g89YRufdsyeeXbpgrqwk7RxVnTVJXr+BAx3v+zpDyq+/suuhh9j/wguN6lVkrqxk14MPYiwuxnfAAEsC0dZcgoPx7t69wUSkW2ioZdDI4TffbPTz7qwNGyyDbhx5sq2jkWSTuKBFXH01zn5+lKWkkP7PP7hFRDjkOvaGGAICmvykKPH776nKz8c9Kop2kybZKDJRF41Wa3kHq+aJRs27xH79+rWZpT6ni5wxA62zM4UHDlgSaADZGzey8/77WXvJJc1qQGtvejc3y3Lbo++/j7my0s4RidN5d+vGhPXrLW8anK7wyBGyN29Go9PR/sYb7RBdyymKQuGRI3U+Ec5ct45dDzyAYjIRfuWV9Hr+eYd77NBotQQMHerQlS/N5RkTg3ePHihGI2l//13nPoqicPj11wH1MdIRK4idvb3p9vjjDP7iCwyBgY2+XY+nn+biXbscson76UImT8YtMpKqvLxzLmtqf8MNdLrzTvq88kqLmsA3RftrrqH7k08SMHw4XR95hNF//VVntanOYLBU+yU3cymdk5cXXl26tCje1qLV6xk2bx6jfvvN4R7XalEUKDihbldXNmk0Gkt107kmCdYsoauZVOzIQi+7DLfISCoyM2s13a5P0i+/kL93L07e3vR/+22He5Ou01134Td4cKOTRqc/nkfNnNlmBt04AodPNqWmpjJz5kz8/f1xdXWlV69e7DitoZeiKDz77LO0a9cOV1dXJkyYQFxcnB0jFm2J3tWV7o8/Tv+33ybkPEi6NPbFsG+/fgQMH06nu+46L18IOLqapQs1PYBqkk0BDjjVpzGcfX0tT4QTahruK4ql4X7Q2LFttqF2TdVWWUoKsa00RUo0Xn1/VwnVVU0hEyfi1gafFCqKwoarr2btlCln9ePL2baN7XfdhbmyknaXXEKfV15xjOUkDVBMpgaHWBQdPcq2uXObtETD3mqa1Nc1NQvUF5K5O3agNRiIuffeVoysaTredhvBY8agMxiadLvGVuDZ0+kV7PFffNHg36DWyYlujz5Ku8mTWys8QqdOpeOcOXh06IBGo8EQEFDvvhHVS+lOLltGVVFRo46vmM3k7tjR5iqm24yyHDBWV8x5RVouDr/8cjR6Pfl791J45EidNzVVVFiawztqv6bT6QwGyyTN+M8/pzQtrcH92193HV0eeog+L7/skP+DXYKCGPHDD41vzK4oRM+ejWeXLm1m0I2jcOhnJ3l5eYwYMQInJyeWLFnCwYMHeeONN/A9bUrYa6+9xrvvvsvHH3/M1q1bcXd3Z/LkyZQ3srGmEBFXX03YZZc5XNa9KdKWLmXV+PHse+GFRu3vN3Agw7791tIkT7SuoIsuAo2GwoMHKTp6lPy9ewEcumnnuUTfdBMAJ//+Wx1fvmEDebt3ozUY6GSFkc32ond1pfdLLwHgFhFh52hEXRSzmbSlSy0JJgCPjh1xCQkhevZsO0bWfBqNBvdI9cVL6mm90AoPH2bb7bdjLi8naOxY+r/5psP/7zr2yScsHzmSk0uW1LtPysKFZKxcScrvv7diZC0TdtllaHQ68mNjKU5IqHWdYjZbentE33STwy8LbIpzLUdzNBHTp6sV7KmpZ1WhmY1GEr79tk1Urfr06YPfoEG0v/ZazI1cmp6+YgUbr72WrbfcIgknW6hpDu4eAvpTS1YN/v4EjxsHQPKvv9Z5U53BwIQNGxj44Yd4OPjkzRohkybhP2QI5ooKDr/2WoP7anQ6Ot97b6smb1viXPcPjVZLxFVXMXrxYgz+/q0U1fnBoZNNr776KhEREXz11VcMHjyY6OhoJk2aRMfqO6WiKLz99tv83//9H5dffjm9e/dm3rx5pKWl8Uc97zQBVFRUUFhYWOtDiLZMZzBQcuIEWevXN+kJhUOXJ5/HDP7++PTpA8DBV14BsxmPTp3azKS2uvj07o1P7974DxlCVUEBR995B4CoG2/EJSjIztG1TPtrr2X8unV0aaWeA6JpsjdvZuc993Dof/+jMi8PgI633sr4NWvwGzTIztE1X01T87TFiy1Ngd0iI/Hp04eAYcMY+P77aJ2d7Rlio1QVFVGRmVnvVDpFUSy9TdpSI3dDQACB1dWoqWc0Ci+Ki6PkxAl10EAbeBc8LzaWg6++Ss727Q3upygKay65hDVTplAUH99K0bWMzsXFknSO//TTWs+R4t5/n/3PP8/WW291+GSMRqNhxI8/0vPZZxusgKqhKArxn34KqH2E5PmeDZzRHPx0EVdfjVf37g0uXXT29qbd5Mlt5nej0Wjo8fTToNGQumgRubt21bpeMZtJ+OabNtWn01hSwtH33mPTddehmM3n3L+t/K4ciUMnmxYuXMjAgQOZMWMGQUFB9OvXj88++8xyfUJCAunp6Uw4bdKGt7c3Q4YMYXMDDfRefvllvL29LR8R8m61aOP8hwxB6+xMWWoqJSdO1Ltfyh9/cPDVV6nIzm694ESdgs9YSteWq5pqDP/xR4Z+/TWlyclqVZOLy3kzGtYtLEyWnDqogOHD8ereHVNpKQnffmu5XOvk1KafGAaOHImTtzcVWVlkb9kCqH3EBn/2GYM++aTNND2vSSBlrVtHVR1v7uXHxlKanIzOzY3g8eNbO7wW6XDbbfR68cWzKui8unRh3OrVDHj3XZxPq8Z3VMkLFhD/6aekLV7c4H4lJ05QlpJC8fHjbapaK2rmTHRubpgrK6nIygIge9Mmjr7/PgAR11zTph8r6pK7c6f6f9jZuc1WeDq8M5qDny543DhGL1p03q0g8O7Rg8gZMwA48N//1krSxn/2GftffJHNN97YqMSNIzAbjcR/8QW5O3bU+fhnqqhgwzXXkPjjjw0uwxX1c+hk0/Hjx/noo4+IiYlh2bJl3HXXXdx///188803AKSnpwMQHBxc63bBwcGW6+ry5JNPUlBQYPlIdrBxwUI0ld7NDb8BA4Dao2JPZzYaOfLOO8R/+ikpCxe2ZniiDjVTcmoEttF+TafTGQxqr6bTq5qa0HRWiObQaDSWpZpH33mH5AULzosnhVpnZ9pdfDEAW2bNsjyp1xkMbWqQhVeXLnjGxGCurOTkP/+cdX1q9f+jkEmTHL4H0JkCR4wg6sYb60wouQQGnvU476iCqhsUZ6xe3WCFj2WYRf/+bepv0NnHh1G//sqYpUtxCQqiIjubXf/6FygKkddc06RpvvammM1kb95M+vLlDe5XU9UUftVV8n/YVmqW0dVR2dRQ8rLo6FE2zJhB/Oef2ygw2+ryr3/hN2gQ3R591PJ95sXGcvjNNwGImDHD4fsI1nD29rb0dTvyzjtnPXdI/OEH8nbu5Oh776GcB88r7MGh/xLMZjP9+/fnpZdeol+/fsydO5fbb7+djz/+uEXHNRgMeHl51foQoq2rGUFc82TwTGl//UVpUhLOfn6WkZ/Cfrx79qTPyy8z6JNP6PbYY/gPHmzvkKzCWFyMwd8fnasrnc6Tqibh+EIvuQT39uoT/tjHH+fYRx/ZOSLrOH1Z2fEvv7RjJC1TM0DgzFHgZqOR1Op3k9vSErr6mMrLyTltiE1bETBsmFodnZJC8bFj9e5X8/yi5vlGW+LZuTMarRbFbGb3I49QkZWFR0wMPZ591t6hNcnJJUvYPHMmB156qd7EYFFcHBkrV4JGU+e0TptKXAnb/wcmx++D1WINLKOrUVVUROJPP9VaUZCxZg15u3aRvWmTrSO0CZfAQEb8+CMBQ4cC6ve484EHUIxGQqdMIfKaa+wcYdN0uPlmnHx9KUlIqLUk2lhSQtwHHwDQ+d5720w1saNx6GRTu3bt6N69e63LunXrRlJSEgAh1SW8GRkZtfbJyMiwXCfEhaKmMiZ7y5azml0qZjNxH34IQIdbb0Xv5tbq8YnaNFotkddcQ8iECXS64w70Hh72DskqnDw9GfzZZ4xbubJRfSWEsAaNTkeH015UhZ8nSxf8Bw/Gb9AgvLp1I6w6YdMW1cSevWlTrRdd2Zs3U5mTg7OfX5tdSmyqqODEd9+x5eabOf7VV2y69lr2PPWUvcNqEr2bG/5DhgCnxrGfyVxVRXZ1i4q2XIl79L33yFq/Hq2LCwPffbfNVdMFjR2Lzt2d0qQkcutJbNZUzIRMmoRHdHTrBFaSAYtvgAUTYN1jsOud1jmvPTWwjK7G9jvuYO9TT9UaflBzH2sLU+jORVEUdj/yCGUpKbiGh9P7pZfa3JJUvYeH5c3Ro++9h7mqCoDjX31FZW4u7u3bE3H11fYMsU1z6GTTiBEjOHLGyMijR4/Svvrdy+joaEJCQli5cqXl+sLCQrZu3cqwYcNaNVYh7M2rWzec/fwwlZSQFxtb67qTS5dSHB+Pk5cXUTNn2idAcUFxOWN5sxC2Fnn11UTNnEnP555zyFHLzaHR6Rjx449ctGhRm75PuUdF4d2rF4rJxMmlSy2Xa7RafPv1I3TKFLROTnaMsPm0ej1xH3xA1vr1lmUkvv362Tmqpgs+bSldXfJiYzGVlODs54d3jx6tGZrVVBYUWKZW9nruOTw7d7ZzRE2nd3MjdMoUoO5JZ+aqKvL37AFonepiRYF9X8DX3eDwD6cu3/spKG2jb0+zNbCMrkZNxWbSr7+iKApVRUXk7twJtP1kk9loZMddd5GxYgUAA95+GydPTztH1TxRN92EISCA0uRkkhcsoDI/n/jqPtFdHnywzf5/cgQOnWx66KGH2LJlCy+99BLHjh3j+++/59NPP+Wee+4B1PWwDz74IP/5z39YuHAh+/btY9asWYSGhnLFFVfYN3ghWlnNWM7211+Pk7e35XJFUSxloNE339xm/xEIIURDtM7O9HrhBaJnzbJ3KFbX1t4prkvUzJlE33JLrQmBgSNGMHLBAno884wdI2sZjU53agmg2Yx7hw6EX3mlfYNqhpoXvrk7d1JVVHTW9TX9IANHjGgz/VjO5OztTY8nn6Tn888TUd3kuC2KuOoqQF1SZywrq3Wd1smJ0YsXM+zbb/Ht29e2geQchp/HwD9zoDwPAvvCNavB2RPyj0FS3YnL80JFgfoBDSabQi+9FK2LC8VxceTv2UPWhg0oRiMeHTviHhnZSsHahkanswx96PbYY20yyV5D7+pKp7vuAiDu44859tFHGIuL8era1bIMXDSP3t4BNGTQoEH8/vvvPPnkk7z44otER0fz9ttvc+ONN1r2eeyxxygpKWHu3Lnk5+czcuRIli5diousqxQXoO5PPnnWZRmrVlF4+DA6d3eZSCKEEMIuIhtYhqDVO/TT0XMKv/JKy9Klrg891Ca/H/f27XHv0IGqggJKEhLw6d271vV+gwYRftVVbW5i4JnOh+UwfgMH4hYRQWlyMun//EP45ZfXul6j0xEwfLjtAjBWwLaX1Q9TJejdYMSL0P8B0Oqh20zY8xHs/QTat+2/l3rVLKFz8Qfn+tsgOHl60m7yZFL//FMdXlG9RKutVzWB+ibIoE8+ofDwYfwGDrR3OC3W/vrrKTlxgoirrmLj9dcD0PXhh9tsct1RaJSGxk5cIAoLC/H29qagoECahYvzTllaGsc+/RRnX1+6PPCAvcMRQgghyFy/Hp9evXD28bF3KFZx6PXXMZWX0+Opp9rsi5Oy9HRcgoLabPwXkiPvvsvRd94hYORIhlVP6S48fBj36Gh0BoPtTpy8FpbfAXnVbU6ip8D4D8A76tQ+mXvg275q4mluCri33SXA9Tq2EP68HIL6w007G9w1a+NGtsyapfbm1GgwFhUxdN68Ntun7kKQt3s3qYsX0+Ppp8+LymJ7kmQTkmwS5xez0Uj+nj3oPTzw6tLF3uEIIYQQACgmE9lbtpC1YQMJX3+NoiiMW7kSt7Awe4cmRJtSmpzMyjFjcI+OZvRff4FGw8oxY0BRGPrNN9Z//mc2wtpHYdfb6tduwTDuXeg8A+p6Mf79MDi5BUa+DEOesG4sjmDXe7D6foi5Cqad3TvrdIrZzMoxYyhLTQXUnpbjVq+2bVJQCAchb10IcZ458uabbLzmGo5/9ZW9QxFCCCEsKvPz2XrLLcR/+inmyko8oqMl0eSAFLMZU3m55euMNWsoOHAAxXyeN3xuQ9wiIhi9eDFjly9H5+JC6sKFVGRmotFqrT+Brjwffpt6KtHU+w645TB0uabuRFPNPgD7ztNG4ZZJdPX3a6qh0WqJmD4dNBo63XUXEzZskESTuGBIskmI84x/9STGtL/+Ytsdd5C/d6+dIxJCCCHA4O9PwGlLR8KmTbNjNKIuCd9+y/Lhwy2TmBRFYd8zz7Bu2jSyNm60c3TidF5du6LRaFDMZsvvq8Mtt6B1drbeSfKOwQ/DIPEftTfTtF9h4sfg4tPw7bpcAwZvKEiAxOXWi8dRNGIS3emiZs5kwrp1dHvkEVmmKi4o8tcuxHnGf9AgtM7OmMrKyFixgqSff7Z3SEIIIQQAYadN9gmTKT8OR+vsTEVWFhlr1gBQkpBAWVoaWmfn86IJ8Pno5NKlFMfHo/fwIPK666x34OQ18P0QyD0MHuFw3QZ12VhjOLlB9+rJoHs+sV5MjsJS2RTVqN0N/v64hobaLh4hHJQkm4Q4z+hcXPAbPBhQJ5J0uvNOO0ckhBBCqNpdfDH+Q4YQNXMmbhER9g5HnCG4ekpW/p49VOTkkLV+PaBOo9O7utoxMlGX5AUL2HnffQC0v+EGnDw9rXPgvZ/BgolQngshg+HGbRDcxNH2NUvp4hdCcZp14nIUTaxsEuJCJckmIc5D7SZPBtQRv27h4XaORgghhFDp3d0Z/v339HrhBXuHIurgEhyMV/fuoChkrltH1oYNAASOHGnnyERdDMGnJr11uPnmlh/QbILVD8HyuWpT8C7XwTVrwKNd048V0ANCR4Bigv1ftjw2R1FVAmXZ6rYkm4RokL6pNygpKeGVV15h5cqVZGZmYj6jWeDx48etFpwQonnaX3cdXp0749Onj71DEUIIIUQbEjxmDIUHD5L+zz9kb9kCQOCoUXaOStQlcORIuj/1FG7h4biclnhqlooCWHw9JCxRvx7+Igz9v/qbgDdGnzshbaNaKTX4SdDqWhajIyhMUj87e4HBx66hCOHompxsmjNnDmvXruWmm26iXbt2aFryACSEsAmNViu9FYQQQgjRZEFjxhD34Yek//MPAIaAALy6dLFzVKIuGo2Gjrfd1vIDFZ+EBRMg5yDoXeHib6DLjJYft/PVsPoBKEqCE0uhw9SWH9PeTl9CJ6+DhWhQk5NNS5YsYfHixYw4bZqIEEIIIYQQou3z7dsXJ19fqvLyAAgYOVImaJ3vNj6jJpo8QuHyPyHESm9Y6l2gx2zY+ZbaKPy8SDY1rTm4EBeyJiebfH198fPzs0UsQgghhBBCCDvS6HREXX89xpISPGNi8O7Vy94hCVsqSoGD89TtS3+xXqKpRq+5arIpYTEUJoNXGx8MYEk2Sb8mIc6lycmmf//73zz77LN88803uLm52SImIYQQQgghhJ10ffhhe4cgWsuON8BcBeGjIWy49Y/v31U9dspa2P8FDH/e+udoTQUn1M+SbBLinBqVbOrXr1+t3kzHjh0jODiYqKgonJycau27a9cu60YohBBCCCGEEMK6SrNh76fq9pCnbHeePneqyaZ9n6tNx7VNrndwHDWVTd5Rdg1DiLagUff0K664wsZhCCGEEEIIIYRoNbvfBWMpBPWH9hNtd55OV4JrABSnwvG/odM0253L1opkGZ0QjdWoZNNzzz1n6ziEEEIIIYQQQrSGikLY/Z66PeQp205W0xugxy2w43+w9+O2m2wyVkBxmrotySYhzqnRoyVmz57NvHnzSEpKsmU8QgghhBBCCCFsae8nUJEPvl0g5krbn6/3XPVzwtJTfY/amqJk9bPeFVwD7RuLEG1Ao5NNiYmJ3HHHHURHR9OxY0fmzJnDd999x8mTJ20ZnxBCCCGEEEIIazGWq43BAQY/AZpGvyRsPt9OEDkeUNTeTW1R4Qn1s1d721aCCXGeaHR3tjVr1lBRUcGmTZtYs2YNa9asYf78+VRVVRETE8PYsWMZN24cM2bMsGW8QgghhBBCCCGaa/9XUJoBnpHQ7cbWO2/vOyBppTqVLnIcKAqgnPp8+rZvF/Dp0HqxNUZNc3CvKLuGIURboVEURWnujcvLy9m0aRNLlizh008/pbi4GJPJZM34WkVhYSHe3t4UFBTg5eVl73CEEEIIIYQQwvrMRvgiRq3SGfsu9L+v9c5tqoRPI9VE17k4ucPsfeAdbfu4Gmvjs7Dl32rSbOLH9o5GCIfXrLmTlZWVbN68mTVr1rB69Wq2bt1KaGgo06dPt3Z8QgghhBBCCCGs4fCPaqLJNRB63da659Y5w5g3YNuroJgAjbqET6NRt9Go2yUnoSQdVj0AVy5s3RgbcvoyOiHEOTU62bRu3bpayaXIyEhGjx7N3LlzmT9/PuHh4baMUwghhBBCCCFEcylm2PaKuj3gQXBya/0Yut147qV7OQdhXh84vgjiF0HHy1ontnORZXRCNEmjk01jxowhMjKSxx9/nB9//JHg4GBbxiWEEEIIIYQQwlriF0HOAXD2gj532zua+vl3hwH/gu2vwar71cbi9kiMncmSbJLKJiEao9GjBx577DFCQkJ48MEHmThxIvfddx+//vor2dnZtoxPCCGEEEIIIURLKApsfUnd7ns3uPjYNZxzGvoMeISrS9e2vWzvaNReV0Up6rZ3lF1DEaKtaHKD8OLiYtavX2+ZSLd79246d+7M6NGjGTt2LFdffbWtYrUZaRAuhBBCCCGEOG8lrYJfxoPeBeacAPc2sErl6K+w6Gq119Ps/eAbY79YChPhsyg1lgfK1F5TQogGtWgaHUBubi5vvvkm7733nkyjE0IIIYQQQghH88tESFoBfe+F8e/ZO5rGURT4bQqcWArtJ8H0pdXNxO0gZR38NBp8OsJtx+wTgxBtTJOn0ZnNZrZv326pbNq4cSPFxcVERkZy1VVX2SJGIYQQQgghhBDNkb5dTTRp9TDoEXtH03gaDYx7D77pCYn/QNyv0NlOq2gKTqifpTm4EI3W6GTTa6+9ZkkuFRUVERYWxpgxY3j77bcZO3Ys0dHRtoxTCCGEEEIIIURTba3uedTtxrbX3Nq3Ewx6HLa8CKsfhKiLwdmj9eOQ5uBCNFmjk01vv/02Y8aM4fXXX2fs2LF06tTJlnEJIYQQQgghhGiJnINw7HdAoyZt2qLBT8Chb6EgATa/CKNfa/0YJNkkRJM1Otl0xx138Oijj+Lm5gBjJ4UQQgghhBBCNGzXu+rnTleAfze7htJsTq7qcrrfL4Vdb0GP2RDQo3VjKDyhfpZldEI0WqPb6L/44osUFxfbMhYhhBBCCCGEENZQUQiH5qvb/e+3bywt1WEqdLwczEZYeY/aPLw1SWWTEE3W6GRTC4fWCSGEEEIIIYRoLYfmQ1UJ+HWD8NH2jqblxr0DeldIWQuHv2+98ypmKEpSt72jWu+8QrRxjU42AWjsNWpSCCGEEEIIIUTjKArs+Ujd7nOnOtmtrfNqD0P/T91e8zBUFLTOeUvSwVQJGh14hLXOOYU4DzS6ZxNA586dz5lwys3NbVFAQgghhBBCCCFaIG0TZO9XK4G6z7J3NNYz4GE48A3kHYWNz6rVTrZWs4TOIwy0TXr5LMQFrUn3lhdeeAFvb29bxSKEEEIIIYQQoqVqqpq6Xg8uPnYNxar0Bhj/ASyYCLHvw6BHwTPctucsOKF+liV0QjRJk5JN1113HUFBQbaKRQghhBBCCCFES5RmwdFf1O0+d9k3FltoPwHCRkHqejj4LQx50rbnk+bgQjRLo3s2Sb8mIYQQQgghhHBw+79SewwFD4SQgfaOxjZ63qJ+PvC17SfTFUmySYjmkGl0QgghhBBCCHE+UMyw9xN1+3ysaqrR+WrQu6m9m05use25apbReUXZ9jxCnGcanWwym82yhE4IIYQQQgghHFXicig4DgYf6HqdvaOxHWdPNeEEanVTcxQmw7cDYMEk2P91/dPtZBmdEM3S6GSTEEIIIYQQQggHFlvdGLzHbHBys28sttbjZvXz4R+hqqzpt9/6H8jcpSbolt0CHwXDohkQ9wcYK9R9FOW0ZFOUFYIW4sIhySYhhBBCCCGEaOsKk+H4InW79x32jaU1RIxWq40qC+HYH027bVHqqYqoPneDX1cwVcDRBbDwSvg4BP65HY79DsZSdT/PCGtGL8R5T5JNQgghhBBCCNHW7ftM7dkUMQb8u9k7GtvTaKH7bHW7qUvpdryuNlEPvwgmfAA3H4SZu2DgI+ARBhX5sO9zWDhd3d+9HegN1oxeiPOeJJuEEEIIIYQQoi0zVanJETi/G4Ofqccs9XPicihKadxtSjNPNVEf8rT6WaOB4H4w+n9weyJcsxp6zVF7XwGEDLJq2EJcCCTZJIQQQgghhBBtWfxCKDkJbsHQ6Qp7R9N6fDqq1UkocHBe426z820wlkHwQGg/8ezrtTq1OmzSZ3BnOly3ASZ/ZcWgRX0m/3sxmw6n13v9nhM5TP73YorLq1oxKtua9e4qftuaYO8wbEJv7wCEEEIIIYQQQrTAnurG4L3mgM7ZvrG0th63QMo6dSnd4CfVKqX6lOdD7Afq9pCnG94X1KVzYSOsFekFLbe4nB82HGNbXCY5RRV4uzvTMdiLK4dE0y86oFHH6B7hyw8PjcfdYNs0xrdrjzJ/XRxT+kfywNRelsvj0wu4+7MNfHPfWEJ8zvMG/FYglU1CCCGEEEII0VblHoWklYAGet9u72haX+erwckd8uIgbXPD+8a+rzYU9+8Bnaa1TnyC9PxS7v18A7EJOcyZ0I2P7xjFf68fTJ8of95fsr/Rx3HSafHzcEFzriShFTjrtSyLTSY1p8Tm57K1KpPZLueVyiYhhBBCCCGEaKv2fqx+7jBVnc52oXH2UBNOB75Rq5vChte9X2WxuoQOYMhTaoNx0SreX7IfDRreu20ELs6nUhBRQZ5M7lt7yl9BWSUv/LyDnfFZ+Hu5MHdCd4Z1CQbUZXSPfbuFXx+dhIeLE//sSebjZQd5anp/Pl52gKzCcnpE+vHwZb3x93QB4EhaPl+tOkJ8egFGs0LHYC/umNSdmHbeDcYc7u+Bj7szX60+wv9d3b/OfWrO/9tjky2XbTqczgu/7GTZM1Mtl205msF36+JIyCzC1VlHz0g/nrtmYJ3HLC6v4rPlh9h8NIMqo5mYUG/umNidjiFeAKTllvDJ8kMcTs2jvNJEZIAHt4zrSv8Op6rDZr27isl9I0jNLWHzkQxGdA3hkcv7NPj92oLcw4QQQgghhBCiLaoqOzWJ7UJqDH6mHjern4/8BFWlde+z91Moz1H7PHW5ptVCu9AVllWy41gWlw1sXyvRVMPDxanW1/PXxXFR93Z8dMdFDO4UxKt/7KawrLLe41dUmViw+TiPXdGX12cPI6ugjM9WHLJcX1ZhZGLvMN64eTjv3DKcMD93nvlhO6UVxnPGfuu4rmw8fJKjafmN/4bPsDUugxd+3smgTkF8ePtIXpk5lC6hPvXu/58Fu8gvqeA/1w/i/Tkj6RTixRPzt1h+BmWVJgZ3CuTVmUP58PZRDOwYyHM/bSezoKzWcRZsOU6HYC8+uH0kN4zq1Oz4W0KSTUIIIYQQQgjRFh39GcrzwCsKoiafc/fzVvhF6s+gshCO/XH29cZy2PG6uj3oCdDKAp/WkpZbigJEBHg0av9JvcMZ2zOMMD93bhnbhbJKE0dS8+vd32hWuH9KTzqH+hDTzptpg9oTm5Bjub5vdADje4cTGeBBZKAnD1zai4oqE3sTc+o9Zo2Ydt5c1D2UL1YeblTsdflhwzHG9GjHrDGdiQz0pGOIF9eNrDv5sz8plyNp+Tx9dX86h/oQ5u/O3IndcXdxYsMhtXF6xxAvpg5oT1SQJ2H+7swe24V2vm5sPppR61h9o/y5elgHQv3cCfVzb3b8LSH3MiGEEEIIIYRoa8wmiP1Q3e59hzpF7UKl0UKP2bD5BbXSq9sNta8/8LU6rc8jHHrMskeEFzClSXtHB3tZtl2c9bgZ9OSX1F/ZZHDS1Uqm+Hm4kF9SYfk6r7iCr9ccYW9iDvkllZjNChVVJrIKy+o63Flmj+nM7R+tZWd8Fj7uTW++fzy9kEv6RTZu34xCyiuNzHh9ea3LK40m0nLV3lFllUa+XXuUbXGZ5BZXYDIrVBpNZJ1R2XSuZYKtQZJNQgghhBBCCNFWmE1w9BfY/CLkHgKtE/S61d5R2V/3WWqyKXEFFCaDV3UvIFMVbHtV3R706IU3rc/OQv3c0QDJ2cWN2l+vrd38WwMoDSSs6t7/lP8t3ENRaSV3TepBkLcrTnotD321iSpT45JgoX7uXNI/ki9XHeahS3ufcS7NWZEZzbUvcXZqfBK4rNKEn4cLr80aetZ1NcsNP11+iN0J2dw+oRuhvm44O+n4z4JdZzUBr2vJYmuTZXRCCCGEEEII4ejMJjj0A3zTCxZfryaaDD4w8RNwC7J3dPbn0wHCRwMKHPr21OWHf4DCE+AaCL3m2Cu6C5aXqzMDOgayaEci5ZVn90kqLq+y6fkPJudy+eAoBscEERXkiZNOS0Fp/ZVSdblxVAwpOSWsOZBW63Ifd2fKKoy1vq/49IJa+0QHeRKbkN2o83Rq50VucQU6rYYwP/daH95uztXfTx4Te4czomsI0cFe+HkYyMivp0+ZnUmySQghhBBCCCEcldkEh76Hb3rC3zecSjINfxFuPwE9b7F3hI6jplH4ga9BUUAxw7aX1csGPgxObvaK7IJ27yU9MSsK932xkfWHTpKaU0JSVhF/bEvgwS832vTcYX7urNyXSlJWEYdT83j1j1gM+qalQXw9DFw1NJo/t5+odXmXMB8MTjq+Wn2EtNwSVu1LZfnelFr7zLyoM2sOpDFvzVGSsopIyCjkp43xdZ6nf3QA3cJ9eOHnneyMzyI9v5QDybl8teqwpUl5mJ8bGw+nE59eQHx6Ia/8thulaSsVW439a6uEEEIIIYQQQtRmNqnT1Ta/CHlH1MtcfGHAv6DffWCwf08Wh9P5alh1L+TFQdpmKEmD3MNqcu5CntZnZ+183Xh/zkh+2HCMz5YfIre4Am83Zzq18+a+Kb1seu6HLu3NO4v3cc/nGwj0cuWWsV1qTatrrKuHdWDxziQqjaeqorxcnXn8ir58tvIQS3Yl0Tc6gJkXdeadxfss+/SJ8ufp6f35fv0xft4Uj5tBT89IvzrPodFo+M/1g/l69RHeWLSHgpJKfD0M9Ir0w8fdAMDcSd15c9FeHvpqE15uzlwzvCOldVSMOQKNojhqHqz1FBYW4u3tTUFBAV5eXue+gRBCCCGEEELYirECfh4LJzerX7v4nZZkktcrDVp6i1rZ1GsOZOyEzN0w9FkY8YK9IxPigiKVTUIIIYQQQgjhSFI3qIkmJ3cY8hT0vVeSTI3V42Y12bT/S3UZnZM79L/f3lEJccGRnk1CCCGEEEII4Ugydqifo6eqySZJNDVe+CjwjlYTTaAun3P1t29MQlyAJNkkhBBCCCGEEI6kJtkUMtC+cbRFGi10n61u6wzq8kMhRKuTZXRCCCGEEEII+zi5TV3uVFUMVaVgLD3tc8mpbZ0LdL8J+t4DnmH2jtr2Mnaqn4Ml2dQsfe+ClLXQ6UrwaGfvaIS4IEmDcKRBuBBCCCGEEK2uogC+6gol6Y2/jVYPXa6FAQ9B8ADbxWZPZTnwYYC6fW++TJ0TQrRJUtkkhBBCCCGEaH3rn1ITTT4d1YolvRs4udX9Oe8I7HwbUtfDoe/Uj/CLoP9D0PEy0Ors/d1YT01Vk2+MJJqEEG2WJJuEEEIIIYQQrSttC+z5SN2e+BlEjm14/4AeEHMVpO+AnW/B0Z8hZZ364d0B+j8APW8BZ0/bx25rNf2aZAmdEKINkwbhQgghhBBCiNZjqoIVdwAK9Jh97kTT6UIGwtTvYM4JGPwEuPhCwXFY/QB8Fg3ZB2wVdeuRfk1CWFVOUTl/bkugoLQSgEqjCbN0E7I5STYJIYQQQgghWs/OtyBrL7j4w0WvN+8YnmEw6mWYmwzjP1SX4pXnwIanrBurPaTXVDadpz2phGhlK/am8uGyg/z3110AfLTsIE9/v438kgo7R3Z+k2STEEIIIYQQonUUJMDm59Xt0a+DW0DLjufkrk4eu+IvdeR9/ELI2NXiMO2mNBOKkgANBPWzdzRC2FSVyWzZrjSabHIORVFYvicZgPG9wsjIL2XlvlR2Hc/mrk/Xs+dEjk3OKyTZJIQQQgghhGgNigIr7gZjGYSPVpfQWYt/V+hynbq9+UXrHbe11Syh8+sCBpmSLc5fVSYzt3+0lhd/3sEzP27n5vdXU1Fl/YTTkbR8knNKMDjpGNWtHcE+brx76wgiAzzILa7giflbmL8uDpNZltVZmySbhBBCCCGEELZ39Bc4sRR0zjDxE9BorHv8oc8AGoj/EzJ2W/fYrSVdmoOLC8Oa/WmczCtlf3Iex04WkFNUwYq9KVY/z/I96jFHdg3BzaDOR4sK8uS920YwqU84ZgW+XXuUp77bSm5xudXPfyGTZJMQQgghhBDCtsrz1SbeAIOfUit3rM2/K3S9Xt3e/IL1j98aLM3BpV+TOH8pisIvm+MBmD60AzOGdwTgty0JVm3cXWk0seZAGgAT+4TXus7FWc/D0/rwyLQ+GJx0xJ7I4fFvt0rjcCuSZJMQQgghhBDCtjY8BSXp4NtZnSJnK0P/jzZd3ZQhlU3i/Lf9WBaJWcW4OeuZOiCSi/tG4G7Qk5Jbwra4TKudZ/ORDIrLjQR6udAnyr/OfSb2Cef920YQHeTJbeO7orV2xeUFrE0lm1555RU0Gg0PPvig5bLy8nLuuece/P398fDwYPr06WRkZNgvSCGEEEIIIcQpaZthz8fq9sRPQG+w3bn8u0HX6t5NW9pY76bik1CcqjY6D+pr72iEsJmaqqYpAyLxcHHCzaBnSv9IAH7dctxq50nNLUGn1TChd3iDSaTIQE8+uH0kQzsHW+3cog0lm7Zv384nn3xC7969a13+0EMPsWjRIn755RfWrl1LWloaV111lZ2iFEIIIYQQQliYqmD5XECBHjdDxBjbn7Omd9OxPyAz1vbnsxZLc/Bu4Oxh31iEsJHDqXnsTcxFr9Vw5eBoy+WXD45Cp9WwNzGXuJMFVjnXDaNi+P7B8VwxOOqc++q0p1IjJzKLePr7bRSXV1kljgtVm0g2FRcXc+ONN/LZZ5/h6+trubygoIAvvviCN998k3HjxjFgwAC++uorNm3axJYtW+wYsRBCCCGEEIKdb0L2fnDxh4v+1zrnPL26qS1NprMsoZN+TcL6Ko0mDiTn8vOmeF7/cw9H0vLtEsfvW08AMK5XGAFeLpbLA71cGd29HQB/bEuw2vl83A34uDe+mtKsKLz02y52xGfx0m+7z5pSZzJVWi22812bSDbdc889TJ06lQkTJtS6fOfOnVRVVdW6vGvXrkRGRrJ58+Z6j1dRUUFhYWGtDyGEEEIIIYQVZe071ah7zBvgFtB657ZUN/3edqqbLM3BpV+TaLnTkySpOSVc9do//OvrzXyx8jDL96bw+p977NIM+56LezBrdGeuHtbhrOuuHtaRm8d24Y5J3Vt0DkVRSM8vbdZttRoNj1/RF4OTjp3xWXyx8pDlOpOpkg8/7MHChbdTWprTohgvBA6fbPrxxx/ZtWsXL7/88lnXpaen4+zsjI+PT63Lg4ODSU9Pr/eYL7/8Mt7e3paPiIgIa4cthBBCCCHEhUlRYO/n8P0QMJZBxFjoPqt1Y/DvBl2uVbetWN10Mq+Up77bypLdSVY7JqD+zGoqm0Ik2SSap6S8ig+W7ue2D9fw1qK9lstDfN1w0mnxcXdmRJdg3A16krKL2Xi4/tfMtuLl5syNF8XQPtDzrOs6hnhx/chOeLk6t+gcR08WMPu91Tz13VaUZiTUOoZ488i0PgD8uiWB5XtSANi7dz65uceIi/sLZ2f3FsV4IXDoZFNycjIPPPAA3333HS4uLue+QSM9+eSTFBQUWD6Sk5OtdmwhhBBCCCEuWOX58Nd1sPx2NdHUfiJc+iPYY8LTsNOrm/a0+HA5ReU8MX8LO49n8/mKw1QaTS2PsUZxmjqtT6ODwD7WO664oHy07CALtyeSklPCgZRcy+U6rYbP7x7Njw9N4NlrBnJ5dQ+jH9Yfa1YypjlMZnOTb9Pcyqua5JCnqzOaZj72XNS9HTeOigHgncX7OJCUxYYNagHM8OGPotdbLz9xvnLoZNPOnTvJzMykf//+6PV69Ho9a9eu5d1330Wv1xMcHExlZSX5+fm1bpeRkUFISEi9xzUYDHh5edX6EEIIIYQQQrRA2mb4th8c/Rm0ehj1KkxfCm5B9onHvzt0uUbdbuFkusLSSp78bivp+WUAlFZUcTTNOk2MgVNVTf7dwcnNescVF4z49EJW7FWTLI9M68M7t4yodb2/p4sl8XLlkGhcnXVUVJnIKapolfjmrTnKv77exL6k3HPuu+t4Ng99tYk/tja9d1Ol0cTq/WkATOoT3uTbn27m6BhGdAmmymTm3R/fIjf3GK6u/gwYcEeLjnuh0Ns7gIaMHz+effv21brslltuoWvXrjz++ONERETg5OTEypUrmT59OgBHjhwhKSmJYcOG2SNkIYQQQgghLiyKGba9ChufAcUE3tEw9QdoN8Tekam9m478DHG/QdZeCOx97tucobTCyNM/bCMxqxh/TwO3T+hG7/b++HtasbLB0hxcltCJ5vl85SEUYHT3dkw8R5LFy9WZN28eTvtAT3Ra21cdllYY+WtnIsXlRopKz91gOz2/lIMpeeQUlVdPqWt8jczWo5kUl1cR4OlC3+iW9YnTajQ8ekVf0r7cQHDuTwAMHfqQLKFrJIdONnl6etKzZ89al7m7u+Pv72+5/LbbbuNf//oXfn5+eHl5cd999zFs2DCGDh1qj5CFEEIIIYS4cBSfhCU3QdJK9euu18OEj8Dgbd+4agT0UKubjvyk9m6atqDJh3jv730cTSvAy9WJl28cUmevmRaraQ4u/ZpEM+yIz2LX8Wz0Wg23jOvaqNt0CG691T1LdydRXG4k3M+doV2Cz7n/+F5hfL36CBkFZaw/lM6YHqGNPtfy6uqu8b3CrJJIc3XWM2dIJosXHsdg8GLw4HtafMwLhUMvo2uMt956i0svvZTp06dz0UUXERISwm+//WbvsIQQQgghhDi/JSyBeX3URJPeDSZ/CVO+c5xEU42ayXRxv6rVTU00e2wXOoV48d8bBp+VaDKamt6H5iyKAultt7LJrCgUNKJaRdjOd+viAJg2KIp2vk1bhllpNLH+4Emb9W4ymsz8Wr0c7urhHdA2ooeSwUnHpQPaA/DrluONji23uJztx7IAmNDCJXQ1FEVh1/bXABg8+D5cXHw4mde8SXcXGo3SWh3BHFhhYSHe3t4UFBRI/yYhhBBCiDZOURTmrT3KhkPpPHFlXzqGOFjyo60zlsP6J2HX2+rXgX1g6o/g37iKCrtYdK3aSypmerOqm8yKUutF8onMIj5adgCzovC/WS1s31GYBJ+1V/tc3VcEDth42KwoJGQUcjKvlJP5pWTkl3Eyr5T06m1vd2e+e2C8vcOsJbOgDF8PA066Nl9fcU55xRX8uPEYN14U06RJbkaTmTkfreVkXimv3TSUPlH+Vo9txd4U/vfnHvw8DHxz31ic9bpG3S6/pIKZ76yiymTmjdnD6Bnpd87b/LblOJ8sP0S3MB/evnXEOfdvjGPHlvLdd5fg5OTG/Q+cIDbJSO/2/ni5tWxi3oXAoZfRCSGEEEII0VTz1h7l+/XH8HJ1IiLAw97hnF+yD8DfN5yqEOp3H1z0mkMmSGoZ9qyabIr7FYpSwTOs3l0VReGzFYfoGenH8C7q0KEzqzE8XJzYcyIHBbW/TIhPC5p6W5qD93Ton+O/F+yqt6Ijv7iCKpMZJ50WRVGoMpkbnVSwtiqTmU/+OciiHYn0jPTjtZuGtkpfInvy9TBw1+QeTb6dXqdlYMdAFu1I5Pv1cVZPNimKwi+bjgNwxeCoJv1N+LgbGN87jKW7k/l1y/FGJZumDGiPj7sBDxenZsd8OkVRWLfuPwAMGHAnHu6BDOuinPd/T9Zy/qd5hRBCCCHEBeOXTfF8v/4YAJcObG95cWMym0mXpQ/Npyiw+334bqCaaHILgisXw7h3HTpBYhHQ41TD8oQlDe46b+1Rft2SwH8X7CIjv+6/mQAvF/pEqy/MV+1LbVlsNUvoHKRfk8lsZvORDF76dReVRhOgJtuuHBxFl1AfxvQI5boRHXnw0l68OnMI39w7loVPXoyTTktqTglPfreND5YcsFv8eq3G8nvbn5TLb1uP2y0WW8ssKGvxMa4Z3hG9VkPsiRwOJJ97UlxT7DqezYmsItyc9UytXhbXFNOHRAOw+UgGqbkl59zfxUnHuF5hDI6xzgTMxMR1JCdvRKdzZvjwhwEk0dQEUtkkhBBCCCHOC3/tTOTzlYcBuHVcF64d0cly3bdr4/hjWwL3T+nFuF71V7XYU1FZFW4GXZMmL7WK0kxYegsk/K1+HX0JTP4K3M/d6NehRE+Bk1vV76P3nLOuNisKP288lay8c3J3ghuoWJrQK5zYhBxW7Uvl+pGdLGPlm6ymObid+zVlFZaxdHcyS2OTyS4sB2Bo52DL/eXywdFcPji6wWPkl1awOyEbgIv7RdAt3Ne2QVc7vZpKo9Hw8LQ+fL/+GH9uP8E3q48yJCaYyPOsyjG/pII7Pl5Hj0hfHr+iH56uzavmCfJ2ZUKfcJbuTua79cd46YbBLYqrqKwKrQbcXZzoG+3Pk1f2o6CsslnVRpGBnswY1oGYdt6E+LhSVmkkObu4zn11Wi0dgj2bfz+sw/r1/wWgX7/b8PRsfJNyoZJkkxBCCCGEaPNW7k3h/b/3A3DtiI61Ek0ms5lDKXmUVZp49Y9Ydidkc8/FPXBxdpynwnsTc3jqu22M6BrCk1f1s3c4pyQsgaU3qwknnQEu+h/0uxes+IKu1XSYCpueg8TlYKwAvcFy1ZG0fD5ceoDDqfkA3Dy2C5cNjGrwcMO7BmP4W0tyTglxJwvoHOrT9JgU5dQyulaobKo0mqgymXE3qC/8C8sq+WljPIlZReyMz8Jc3c3X282ZSX3C6d7EZFGPCD8m9Qnnnz0pvL9kP+/eNtLmlSCFpZW8uWgvHi5OPHJ5H0BdgnXX5O6k5JawMz6LNxft4Y3Zw8+rqpT56+IorTSSX1KJu0vLHsuuG9GJf2JT2BmfxeHUfLqG+TTp9iazmR3xWSzfk8qWoxncNLoz147oiE6rZUzPliVp5kzoZtk+kVnAg19tqnM/Z72WmRd15orBURicWr6EMzV1G8ePL0ej0TFixGMtPt6FyHH+wwohhBBCCNEMucXlvL14HwowbVB7bhnbpdb1Oq2Wl24cwvfr4/h+fRz/7EnhcGo+T13Vj+hWHP9dnyqTmXcX76PKZGbNgTRuGh1DuL+dqzCM5bDucdj9rvp1QE+Y8j0E9rLqab5fH8cf207QLdyXgR0DGBITTJC3q1XPYRHUD9yCoTQDUjdAe7Wh9ecrDrFg83EUwNVZx81ju3D5oKhzHs7d4MSwLiGsOZDGyn2pzUs2FZ6A8lzQOqk9m6wsLbeEr1cfISWnhOyicgpKK7lsYHvuvUQ9lwYNCzafWmbWu70fU/u3Z3jX4Gb3XLptfFc2HUnnWHohf+1MbNTPsrliT2Tz2h+x5BRV4KTTcv3IToT5uwOg0Wh4cGov7vh4HYdS8vljWwLTh3awWSytKTm7mMU7kwC4fUK3Rk14a0g7XzfG9Qplxd5UflgfxwvXDWrU7Y5nFLJibwqr96eRW1xhufxIWn6L4qmPXqcl0Kv+ZbtH0vLR66yTUKypaurT5yZ8fKKscswLjSSbhBBCCCFEm+bn4cL/Xd2fLUczuWtyjzqXUei0Gm4a3Zne7f155ffdJGUXc/+XG7lzUnem9I+06tKLpsopKq+1dO7P7Se452LrJx4araoEfhwFmbvVr/vdD6NeASfrJoEy8kv5bl0cRrPClqMZbDmaQWmFiWtHdASgosqEoijWq0DTaNUlgAe+hoTFlmRTsI8bCjC+Vxi3je+Kv2fje1CN7xXGmgNprDmQxtyJ3Zq+BLKmX1Ng71qVVgCHUvLwcnW2JE+aKrOgjMfnbz2rr8/pSQEPFz1XD+uAv4eBQZ2CrNJQ38fdwM1ju/L+kv18s/oIF3Vrh6+H4dw3bAKjycy8tUf5eWM8ChDu785TV/U762cV5O3K3EndePuvfcSnF6Ioil3u62m5JSRkFtE1zKdJf1/1+XLVYcyKwpCYIKs19b5uRCdW7UvFDJZm7/Uxmsw88+N2dh3Ptlzm7ebM2J6hTOwdTscQ2yTxY9p5M78Vph6mp+/hyJGFgIYRI56w+fnOV5JsEkIIIYQQbdLp4+iHxAQzJObcPYT6RPnz0dxRvL5wD9uPZfHe3/vpGOLd5GUj1hTi48YHt4/k711JfLD0AP/EpjB7TBerTVRqst3vq4km1wC4ZJ6aoLGB7zccw2hW6BHhy6BOQeyMz2JQp0DL9RsPp/Pmor30iPRlZNd2TB0Q2eIKDjpMZc/enZgPxtFvjHrRlP6RdA71pkszKpP6dwhgRNcQhnYOwqxAk2uB6unXtOdEDo99uwUnnZbHr+jLqO7tmnTY/JIKnvxOTTSF+7kzd1I3AjxdCfByweu03j4ajYbbT1umZC1T+keyLDaZuJMFfL7yEI9e3tcqx1UUhbf/2sfuE9lk5KtJtIv7RXDXpO71JiUv7htBOx83+kYHWCWGplAUhSW7k/lw6QGqTGYAIgM86BvtT7+oAPpE+ePexPv5vqRcNh3JQKtRq8isJSLAg6/uHduoyYp6nRYfN2f0Wg1DOgczsXc4gzoFom8gQdWWbNjwEgA9elxDQECXc+wt6iPJJiGEEEII0ebEnSzgrUV7+b+r+xPq17TKDx93Ay9eN4hftxyna5ivXRNNNfQ6LZcNbM/inUmcyCpiWWyyfZb8VBbB9v+p26PfsFmiKS23hH9iUwD1BXOPCD+uH9mp1j5H0vKpMpmJTcghNiGH0gqjpeqpObIKy/g0NoJ1FS8TXJnOZ9lxGAJi0Gk1zUo0gfp7e3bGgGbHZOnXdEayqUeELx2CvTieUch/f93FXcXdz9mc+3Q747NIySkh0MuFl2cOsd3SxHrotBruvaQnD365kaNpBZRVGnFtQoVaYVklh1PyOZSaR3F5laXST6PRcCy9gIz8Mjxc9Dw4tfc5E3EajcYuiSaAY+mFvLN4HwDB3q5kFpSRlF1MUnYxC7cn8uSV/Sw9jUoqqtCgwc1Q/89JURQ+W34IgIv7RdI+0NOq8daXaCour+KnjfFc0i/C8nh72/huzB7bpVHJqbYkO/sIBw78AsCoUU/ZOZq2TZJNQgghhBCiTTmcmsczP2ynsKyKr1cf4anp/Zt8DK1Gw4xhzU9cWMP2Y5nEpxcyfVgHnHRaNBoNlw+O4rMVhzDVdGpubbvfg/Ic8O0M3W6w2WnWH0rHrCgM7BhIjwi/Ove5c1J3Lh3QnmWxyfyy+Tg/bIhjQu+wZi1DKiyt5P4vNpJbXIEWM4N0OzHGl2EIiGnpt9J8pzcHD66dsNLrtLw/ZyQfLt3PXzuT+HDZQbIKy7l1fNdGVXeN7x2OWYFu4T6tnmiq0TXMh39fP4i+0QENLsk63fGMQj5ceoB9SbmWy/RatfqqpofUTaM7o9Vo6BHpa2l03lj5JRV8uvwQN4zq1Cp90WLaeXP9yE64OuuZMbwDxeVV7D2RQ+yJHHYnZNM3+tQSuEXbE/lq9RH8PAyE+7sT6udOuJ87Yf6nPucWV1BQWoGLk46bRtvubze7sJzYE9mM7hHKXzsS+X59HIVlVaTnl/J09eNtQAO9k9qyDRteBhS6dJlGcHBve4fTpmkURbHTfzLHUVhYiLe3NwUFBXh52b9JpBBCCCGEOJvJrPDLpnjmrT2KyazQOdSbV2YOafILzrqk5BRzKCWfiX3CrRDpuZVXmZj78Voy8su4dVxXS8VOpdGE0aQ0WN1gMxWF8HkUlOfBlPnQ7Uabnm5vYg6eLk7nbNJuVhQe+moTh1PzmdQnnIen9Wnyud7+ay9LdicT5ufO01330jH2AYi6GKYvaW74teQUlbPmQBrh/u6NWs4JQN4x+DJGnfJ3XyHonEnPK8Xfy8WSnFEUhR83xvP16iMAjOsZyr+m9akzeVNlMlNpNFnl/tDaKqpMfLcujgVbjlsSrWF+7nQL96FbuC8TeoVZpXfXy7/tZs2BNHpE+PK/WcNsMp1u4+F0Ytp5NznJVxNbfb66Zwyhfu5UGk3EpxfSrYmTAhsrp6ic2e+txmQ2E+zjxsm8UkBd/nfb+K4M7dzIv+82KD//BO++2wlFMTFnzlbCwgbbO6Q2TSqbhBBCCCHOcwkZhQR5uza5N4gjyS4s57U/Y9lzIgeA0d3b8cDUXlZ5YZ2aW8Ldn67HaFZoH+jRvKliTfTThmNk5JcR6OXCtEHtLZc763VYqx92k+16R000+XWFLtfZ/HS92zeusbFWo+Guyd154MtN/LMnhUsHtm/SsrfDqXks3Z0MwEOX9aajexDEAsmr1WboTs1rwH26pbuTmbf2KP2iAxqfbKqpagrsAzpnKqpMPP39NvQ6Lc/M6E+4vwcajYbrR3YiwNOFt/7ay6r9afRq78+U/pG1DmUyK/zvj1hSc0v47w2D8XG3bkPuljKazPyx7QRje4bWWZm2LDaZnzbFAzCiSzB3Tu5hk4qs28Z3ZVtcJgeS8/hzWwJXWXGpqtFk5ouVh/ltawJdw3x4ffawRld0ATx5VT/um9KT1NwSUnNKSMkpITW3hJScYjIKygj2UX8eznqdzRJNAP6eLvTrEMC2uExO5pXi625g1pjOTO4b3vQG+G3Mhg2voigmOnSYKIkmK5BkkxBCCCHEeWxZbDJvLtrLgA4BvHTjEHuH0ywnMot4ZN5misqqcHHScc8lPZjYO9xqU6VCfd0YHBPM+kMnefWPWD64fRQuTs0b+94YKTnF/FI9bv7OSd3r7GWjKAp7E3Px9zRYfbmPyaycXdFRng8731C3hz0PWtt8/5kFZTjrtU1OhnQN82V8rzD2JuZQUm5s9O1MZoX3/t6PAkzoHUavSD9QfMGrPRQmQtJq6HhpE7+Ls43rFca8tUeJTcgmp6i8cUv9zmgO/t26OFJyS/D3NJz185nYJxxfDwObjqRzcb+IWtcpisL7S/az9uBJdFoNCZlF9It2rGTTm4v2snJfKnEnC3jyqn4AtSbDTekfyfZjmVzSL5LhXUNsFkeQtyu3T+zGO4v38dXqIwyJCW72tL/TZReW89JvuziQnAdAr0g/mvPo5OHiRJdQn7OSqa09Re+Oid2oNJroGeHH1cM6NKnfVluVmxvP7t1fADBq1NN2jub8cH6nJoUQQgghLmAnMov4YMl+AHYezyYtt8TOETVPuL87YX7uxLTz5oPbRzKpT4RVX3hpNBrun9ITPw8DKTklfLHykNWOfSY1MaBOphrUKZAR9byw/mLlYR77dgs/bYy36vnT80q55f3V/OvrTRSWVp66YtfbUFEA/j2gy4xGHcvcjG4cHy87wOz3VrNmf/3Lhepz5+TufH73GPp3aHyz54oqE1FBnni4ODFnfPXUNY0Goqeq2wmLmxxHXdr5utEjwhcFWLU/tXE3Oq1fU9zJAksC8r5LetU5iXBgx0Dun9LL0rOp0mgiLbeEL1cd4e9dSWiAx67oSz87NcNuyJVDotFqYM2BNGITslm+J4VH5m2h0mgC1B5V/75+sE0TTTUu6RdBv+gAKo1m3li0p9n90apMZtYeSGPB5uPc8/l6DiTn4WbQ8+yMAcyZ0M2qk9laM9EEEO7vwaszh3LT6M4XRKIJYPXqZzCbq+jYcTJRUaPtHc554cL4yxFCCCGEuMCUVxr576+7qDCaLZct35vC7DFtY4xzUlYR7fzccdJp0eu0PH/NQDxcnZq0LKUpvNyceXhaH57+fhsLtycyJCaYgR0DrX6edQdPsjshGyedlrsn96j3ReTwriH8svk4q/encdv4rlZZFmUyK7z2ZywZBWVkFJTxxPytvDJzCF6aYtj5VvWJnwfNuX/Gf24/wVerDjOxTzh3TureqOU1cScL2Fg9sr1DcNOnaHm5Ojf5Nm4GPY9e3pf8koraP8MOU2DPh3D8b7VRtxVezI/rFcaB5DxW7U1lhtsKMJaCWxC4BVd/DgLXANDqQTFbKpuMgQN4c+FezIrC6O7tGNbl3MvwTGaFV3+PZfuxTMt9/P6pvRjTI7TF34ctxLTzZuqA9izakcj//bCdKpMa85LdyVw+KKpVY9FoNDx0aS/u+GQdB5LzeGPhHh67oi+gJoOf+2lHrf0VRaGorIq8kgr6Rgfw0KWnmka/9Ntuy3Z0kCfPXD3AKpVSonWdPLmL/ft/AGDChFfsHM35Q5JNQgghhBDnoZIKddS4v6eBa4d35MNlB1mxN9UyyckWCssqcXPWt+gdfUVRWLj9BJ+tOMwVg6OYM0GtRvH1sP2yoIEdA5k2qD0LtyfyxsI9fHLHRXi5NT3BUR+TWeHLVYcBuG5ER8sI8bp0C/Ohc6g3R9MK+HtXEjeMavnkqQWb49XqC2c9zk5a4jMKefK7rbwWswL3ykII7A0xVzV4DEVRmLf2KN+vPwbAkdSC6mV55z7/vDVqk+uxPcOIbMHIdpNZ4Z89yZRVGBvdc+esZF3EWNC7QFES5ByEgB7NjqfGRd3b8dHSAxzPLCLhn5eJ1ibWsZcGXP3BxQ8qi0Dvws9HXTiekYKXqxN3X9y4OMorjWQVllsSTXPGdz2rj5OjmT2mC+sOnqSgtBJnvZaZF8Uw1U4xB/u4cfuEbrz7934qT0vIA2yNy6z3dhn5ZZZtJ52WwZ0CMTjpiQ7yZPqwDjZdfitsZ8WKJwDo1etGQkL62jeY84gkm4QQQgghzkP+ni68cfMw0vNKCfZxJS69kLE2rHrIyC/lns834KTT8tw1A+ga1vQGthVVJt5ctNcykSk5p6Tu/kI2dNv4buw6nk1KTgm/bjnOLeO6Wu3YOq2G/94wmJ83xXNN9fS5+mg0Gq4cHM2rf8SyaEciM4Z3bFFVV1FZFT9uUJfk3XVxdzq38+Gxb7fQ3s8Zlz3VVU3Dnm+wqslkVvhw6X7+2pkEQLdwH/5z/WDLSPqGHEzJY9uxLLQaDTde1LLE2a7jWbz91z6c9VpGdmtXZyPpfYk5/LY1gTsndSfYx+3sgzi5qQmnhCVwfLFVkk1ers4M7ujHprgcVhrHMqdjoloxVZpZ/ZEFKFCWrX4Aif7T+H6Dunzursk9Gl3B5u7ixGs3DWH+ujhC/dwdPtEE4OnqxAvXDmTtwZNcNrA9YQ0kW1vDlP6R+Hu6nJUgeujSXmft6+HihK+HgUCv2n9r/75emki3dfHxyzl+fDlarRNjx/7b3uGcVyTZJIQQQghxHqk0miwv/p10WiIC1ObSjzRjXHxTLN6ZRFFZlXqub7Zw35SeTO4bcY5bnZJbXM4LP+/kcGo+Oq2GOyZ2Y9qgqFbvVeLipOPxK/qy5WgmN4zqZPXjh/t78K/LGve7GNW9HZ+tOERucQXrD55kXK+wZp/X09WJt24Zzsp9qZbm6u/dNoKAvf9Gd6IIAvtCpyvqvX2Vycz//ohl7cGTaIB7LunJZQPb19rn1y3HGdk1pM7kzrw1RwGY1Ce8xUmGgR0D6RXpx76kXD5fcYinpvevdb3RZOa9JftJzCrG39OFey/pWfeBoqeoyaaEv2HwYy2KqcY4wxa2E0WFIRimfwq603ovmU1QnqMmnkoyoCIPg8dguq1IxcVJx9ieTUsGuzjrLZV/bUW3cF+bTlJrCo1Gw9DOwWdddnE/x0/cCetQFDMrVjwOwKBBd+PrG23niM4vkmwSQgghhDhPVFSZeODLjQzqFMTsMZ2t2qC2IZVGE0tj1dHy0UGeJGQWsSM+i0l9Gjcx7nhGIc/+uJ2swnI8XJx4ZkZ/+kbZr8lx51AfOp8xDepMlUYTOUUVtPM9lVhZcyCNQyl5lFeZKK80qZ+rjFRUmhjZrR1XD2vamHUnnZbLBrbnmzVH+X1bAmN7hrYo+RYV5Mlt409VagU7l0DsewCYhr7AD+uPccXgqDqbU7+7eB9rD55Er9Xw6BV9z+oNtHhnIp8uP8SvW47zn+sH0yHYy3Ld3sQcdidko9dqrJLA02g03DW5O/d8tkGtkhmUq06Zq/b7tgQSs4rxdnNm1pjO9R8oegpwH6RuUKfxufi0LLCSdIYmPcePriY8Lv26dqIJ1Al/Nb2bAtQEWAjw6k0RlFUaWz2xKsSFbv/+n0hP342zs6dMoLMBSTYJIYQQQjRSaYWRj5YdYNORDLzdnAn0ciHQy5U7J3e3vEDPL6nASafFvY4X7Lb20bIDJGQWkV9SyfSh0WctyUnOLmZpbDIxId6MaWIVRUM2HEqnoLSSAE8X3pszkqW7kyzVM+dSXmXiye+2kl9SSbifOy9eN8ihGuxWmcx8tOwAXq7OZBaUkZ5fSkZ+GTlF5SjAwicuxlC9DGfX8SyWxabUeZzDqfkUlFbWSvY0xpT+kXy//hgl5UYKy6rwbmIPqX2JOTjpdXQN8zn7yu3/g6oSCB7AJ8c78Of2o2w9msHLM4eclXCaMbwje07kcP/UXnU2Th/UKYj2gR4kZhXz8Debef6agfSJ8gfUqYhOOi2T+4bXvaStGTqGeHNxvwiW7E7m42UHePe2kei0GrIKy5i/Ng6A28Z3bbipuE8H8OsKuYchcXmjp/DVa/OLOBkLcWo3GGKms+VoBu8s3lfv7ndM7M6YnqFoNRrcDa3/eCHEhcxkqmTVKjXBNGLEY7i7W38gxIVOkk1CCCGEaLTc4nI8XZ0tvWNyi8spqzTZvfdGa4g7WcBLv+0iLbcUgOLyKlJzSwC4f+qpZTqfrzjM8r0p+HkYmDG8I5cNbG+zCWqnW70/lSW7k9EAj1/Zt87eL1uOZrBg83G6h/taNdl0PKMQUEeKq9U4UZbrFEXh438OMqlPOB1DvM+6rYuTjvsu6cniXUk8dVV/PF0d50W3oig8/u0WDiTn1Xm9Qa8lp6jc0uh7UKcgfNwMuDjrcHHW4+KkUz+cdbg664nw92hyDD7uBt67bQTtgzyb3Ni9sKySl3/fTV5xJS9cO5DBMUGnrizJgNj31e3hL3CJeyRrDpzk6MkCnvxuK6/cOAQXZ51lylxkgAdf3DOm3r/lIG9X3pg9nOd/3sH+pFye/n4bj13Rl4u6t2PaoCiGdg62+v3g5rFdWHvwJMfSC1m+J5mL+0XyyT+HKK8y0T3cl4l9ws99kOiparIpYXHLkk25R2Hvp+r2Ra+BRkOl0UxucUW9N6kwmpp/PiHqoChmTKZK9HoXe4fi8Hbs+IT8/AQ8PEIYOvQhe4dzXtIoiqLYOwh7KywsxNvbm4KCAry8vM59AyGEEMIO8oor+Hr1EZz0Wu6a3KNVmiYrikJCZhFbjmaw5WgmR9Ly+c/1gxjUKYhFO07w/pIDjOgawrMzBtg8Fnvam5jDk/O3YjQrBHm7cv+UnhicdGQWlFFQWsn00yZiPffTDrYczbB8Hernxm3jujKia4jNlsmk5BRz7+cbKKs0ccOoTswe06XO/XKKypn5zirMisLnd4229HOyhtTcEjxcnM6qvPlz+wk+XHoAg17Lv6b1YUyPUKpMZjLzy2pVMCmK4pDLiDYdSWdZbAr+ngaCvd0I9nElxMeNEB9XvN2cHTJmUH+eL/22m3UHTxLu584Hc0fVboS85mHY+SaEDIYbtoBGw/GMQh7/dguFZVV0budNaYWRey7pSf8OjV/SWGk08crvsWw8nI4GuHNyd64YbLs+KL9uOc6nyw/h52Hggam9eO6nHWg1Gj64fWStpXz1SloFv4xXl7bdebLBBukNWjQDji6ADlPhynQPAB0AAKVjSURBVL8ANSF9+vSyMwV6uzRceSXEaUymStavf4n09FgqK4upqiqhsrKYysoSy9dVVeqbId7e7YmIGE5ExAgiIoYTHNwLrVbqTGpUVBTy7rsdKS3NZurUjxk48A57h3Rekr84IYQQog1Yd/Ak7/29j8LqBsx+HgarjEKvT6XRxLdr41hzII3Mgtovlo5nFDKoU5Dlhdz+pFyHTRRYS9cwH6KCPAn2duXBy3o3+ALxhWsHUlZpZM2BNOatOUpabin/XrCLnpF+zJ3YjS7n6AXUVJVGE//9dTdllSZ6t/dj5kX196jx93RhYKdAtsVlsnxvCrdacdJafdVt43qGsfVoBjuPZ/Pyb7s5mpZP3MkCkrNLePe2EZZJYo769zO8SwjDu4TYOwxA/V0nZhUT0+7sCrEzrd6fxrqDJ9FpNTx2Zd/aiabik7DnQ3V7+AvqxDSgQ7AXr8wcyhPzt3D0ZAEAX6w8RN/okY2uqnLW63h6en8+WnaARTsSOZZeSFmlEVdn27zsmDYoimMnC7h8cDTz1hwB4PLBUY1LNAGEjQRnT7Vpd8YuCBnY9CBOblUTTWhg1CuWiz1cnPAIcZxKPdF2VVWV8fPP0zl2bEmj9i8oSKSgIJH9+38AwMnJnfDwIYSHDycycgTh4UNxaWmPsjZs06bXKS3Nxt+/M/363WrvcM5bkmwSQgghHNzinYm8+/d+AIK9XckoKOPbtXH0jQ6gu42m+sxfF8fPm9Qx6Qa9ln7RAQzpHMyQmCD8PdXy/Jh23jjptBSUVpKcU0KkFatkHMHRtHw6hnih02px1ut4ZeZQPFz0jUqKuDrruaRfJGN6hPLzpnh+3Xyc/Um5bDqcbvVk06fLD3E8oxBvN2eeuLLfOSveJvUOZ1tcJiv3pjJ7TJcWVciVVxopqTBa/ibq4unqxL+vH8xXqw7zy+bj/LolAQA3Zz0n80rrHFsvzpaUXcwj32zGrCjMf2D8WePaT5dZUMb7S9THjBtHxZz9N7ftFTCWQ7thEDW51lUdQ9SE03M/bSfQy5VnZwxo8vI9nVbDPRf3IMDThe83HGN093YM6hR07hs2g5NOy+NX9gPg2WsG8vvWBKYNan+OW50erDO0nwhxv8HxxU1PNikKrFOnWdFjtqXxtxDWUlFRxI8/TuPEiTXo9a6MHfsiHh7tcHb2wNnZHWdnD5yc3Ku/9kCj0ZKeHkty8iZSUjaRnLyZiooCEhJWkZCwCgCNRsell35C//632fm7a33Fxels3vwGAOPGvYTuzEb+wmok2SSEEEI4uJqExbheYdwwKoY3Fu5h9f40Xv19N5/cObrBF53NYTKb2RmfBcA9F/dgUt+IOs/hrNfRLdyHvYm57E/KPW+STSazwg8bjvHduqNcN/LUkrTm9BJyddYze0wXpvSP5KeN8Vw74tQkrrTcErzdnVvcGDg6yBMPFz2PXdG3waRPjSGdg/B0dSK7qJzdCdl1NnturBX7UvlgyQGuHBLF3Ind691Pp9UwZ0I3OoZ48dZf+/B1d+aFawcRFeTZ7HNfaML83HF11pGeX8bHyw7U+tlFBnhalrpVGk089NUmSiqMdAvz4bqRHWsfqDQT9n6ibp9W1XS6jiFezLt/XJOTTKfTaDRcN7ITM4Z3sPR9sjUXJx3Xj2zGtLvoKWqyKeFvGP5c026bsARS1oLOAMNfbPq5hWhAWVke3313CampW3F29uSGGxbTvv2oc96uQ4fxdOgwHlD7OGVlHSQ5eRPJyZtIStpAXl48y5c/Qo8eMzAYLqw2MmvXvkhVVSlhYYPp1u0qe4dzXpNkkxBCCOFgisurWBabzFVDotFoNLi7OPHpnaMtE6/uu6QnJzKLmDGsg9UTTQA6rZZ3bh3B5iMZjOzWcJ+hnhF+lmTTlP6RVo+lNVUaTew5kcPPm+LZm5gLqD2OrLFEMNDLlXsvOVXxoCgKr/4RS0Z+Ga/MHNKipMvUAe0Z1yus0cuUnPU6xvYMZeH2RP6JTW52sklRFP7akYhZUQjwalx10tieYQyOCcKg16Fvhabp5xOdVsO0QVF8uvwQS3Yn17ru4r4RlmRTldFMdlE5Lk46Hr2i79mJnmN/gKkCgvpB+wn1nq8liabacbeB33P0Jern9O1qMs6tkVVYZhOsr65q6nc/eEXYJj5xQSopyeTbbyeRkbEHV1c/brxxKWFhg5p8HI1GS1BQT4KCejJgwFwUxcyHH/YgO/sw27d/yMiRT9ggeseUk3OUnTvVRv4TJrzmsMu3zxeSbBJCCCEcyM74LN5ctJfsonLcDOpSLMCSaAJwd3Hiw7mjrPZisC56nZZR3dudc7+ekX6A2reprdp+LJOlu5PZeTyLskp1OpSLk477p/RkfO9GTLNqhtziCorKqsgrqeDVP2J559bhOOubljg0mRXLErim9sOZ1CeCNfvTWrSE7WBKHgmZRRj0WiY24eckI96b79IB7cksKCO/pLLW5V3CfCzbOp2WsT1DGd8rrO4+WnG/q587X11nVdMFySNUTb5l7oaEpdBjVuNud2g+ZO8Hgw8MedKmIYoLS2FhKt9+O4Hs7MO4uwdx000rCA7uZZVjazRaRo58kj/+mM3mzW8yZMj9ODm5WeXYjm7Vqv9DUUzExEwhKmq0vcM570mySQghhHAAiqLwyfJD/L5V7WcT6ufW4LK00xNN+SUVVBrNLe59U1phZOnuJC4bFNXoEeXdwn3RaiCjoIzMgrI20X8nNbcEPw+DJUETn17IhsPpAPh7GhjaOZjpQzrUmpRmbf6eLrw+eyh3frKe4xmFzF8bx63jG9+sOyGjkBcX7OSuST1qj7NvpE4hXnz/0IQWjaJfvDMJgNE9Qpu1xLBeFYWw8y1wcgOv9uAVpX52C2packQxQ2URVBZDVcmpD+Np25XF4B4MHadBG5jUZHDScdfkHg3u4+Kk44nqHkZnqSiApJXqdqcrrRxdG9dhqppsOr64cckmYzlsfEbdHvIUuNimf5648OTlJTBv3njy8xPw8gpn1qyV+PvXP/ihOXr2vJ41a54jP/8Eu3Z9zpAh91v1+I4oNXUbBw/+AmgYP/6Vc+4vWs7x/6sKIYQQF4CV+1ItiabLB0Vx67guuDSiWuVgSh7//mUnwd6uvHHzsBYtWflufRwLNh9nd0I2/75+cKNu42bQc9PozoT4uOHu4jhPK8yKQnZhOSfzSknLKyEtt5S03BJOZBaRklvCE1f2ZWzPMABGdguhwmhiWOdgYtp5t1pZvZ+HCw9M7cWLv+zk503xDI4JslSKNcRkVnh78T7ScktZujupWckmjUaDk67532d+SQXrDp4E4NKBTWjG3BgbnoLYD86+XO8Cnu2rE1DtwTNcfcFfngvleVCRd8Z2PqA07py974AJH53/lT7H/wZzFfh1Bf9u9o7GsURPgS3/gcRlYDaeO/m4+30oSgbPCOh3X+vEKM572dmHmTdvAkVFqfj6dmTWrBX4+ERZ/Tw6nRMjRjzO4sV3sWnT/xg48E50uvqnrJ4PVq9+FoA+fWZZrUpMNMxxnhUKIYQQF6iconI+WnYQgNljOnPDqJhG39bfw0BFlYlDqfnMXxdnaWbdVCcyiyzJrssGRjXptk2JtyUqjSayCsoprqiipNxISXkVJRVVFFdv92zvx4AOav+h/Um5PDpvS53H0Wk1nMwrtXwd7u/R7J9bS43oGsLEPuEs35PCa3/G8tHcUedcZrZ4ZyKHU/Nxc9Zz98Utm3xlVhT2JuYQ4uNGiE/jl1H8syeFKpOZzu28rTtdrzQT9n+hbnecBmU5UHgCitPUxFLeEfWjKTQ6cHI/7cPj1LbOAMf/Uhtm+3SCQY9Y73txRMeql9BJVdPZQgaDiz+U50DaZghvoAlzeR5se0ndHv6imggVooXS0/fw7bcTKS3NIjCwOzfdtBxPz1Cbna9v35tZu/ZFCgtT2LNnHv37z7HZueytqqqUhAS1qnPkSFny2lok2SSEEELYkaIovPf3forLq+gU4sU1wzue+0anCfZx4/4pvXj59938uOEY/TsE0qsR1TFnxvDB0v2YzArDuwQ3q1KmNSRmFXPv5xvqvf5ac0dLsinU1x2dVkOIjxuhfm6E+rrTzlfd7hHhh4eL4/QNumtyd/aeyCEjv4wvVx7mvin1v+OaXVjOV6vUZMut47sQ4NWyF7nvLN7H0t3JzBjWgTkTGl/psmpfKmCDqqZd76hJpZDBcPkfpyqNTJVQlAKFiWryqTARilNB76YuX3LxBRc/MFR/rrnM4KMmlBqqWNr5Nqx5CNY9Ct7R0Hm6db8nR2EsV6etAcRIsuksWh1EXwyHvlOX0jWUbNr2ippwCugJ3W9qvRjFeauoKI1588ZRVpZLSEg/brrpH9zcAmx6Tr3eheHDH+Gffx5mw4ZX6Nv3ZrRtYDlxc6SmbsdsNuLh0c7qSxJF/c7PvyYhhBCijdBoNIzvHUZcegEPT+vTrAldY3qGsiM+i+V7U3j19918NPeiJvXQWb0/jb2JuRj0Wu6cVP/4+oYcTs1jX2Iuk/tF4OVqm1J8Dxcn3Ax63A16y7aHi5Nlu1v4qZ4p/p4GFj15cZuYhOVucOLRy/swb+1RZpwj2fjh0v2UVqoj7acOaHmiZ0inIJbuTmblvlRuGdel0T+v12cPY+W+VEb3sOK77hWFp5bPDX6ydoJI5ww+HdQPa+v/AOTHQ+z7sGSmujyv3RDrn8feEperfao8wiF4oL2jcUzRU9Vk06H56pJMYykYy9SPqtO2cw+r+496RU1SCdFCK1Y8Xp1o6svs2atwcfFplfMOGHAH69e/RF5ePAcO/EyvXje0ynlbW1KS+kZVZORImUDXiiTZJIQQQtjZqG7tGNo5uEXNmu++uAf7k3M5mVfKu3/v46mr+jXqCVVJeRWfrTgEwPWjYghuwlKq073+5x6Sc0oI9/dgWJfgZh2jPoqioNFoaOfrxu+PTW7UbTQaDbo29ISyV3t/XrtpaIO/s42H09l4JAOdVsMDU3tZZRrh4JggvN2cyS2uYEd8FkNiGve783Bx4vJBUS0+fy17PlIbWPt1g07TrHvshmg0MPYtKExQK1r+mAY3bAXvqNaLoTXUTKHrdMX535uquaImq72ailNh32cN7xs5Qe3zJEQLJSdvYu/e+YCGSy/9tNUSTQDOzu4MHfogq1c/w/r1L9Gz53VoNI7/Jk1TJSdvBCAiYoSdI7mwnH9/SUIIIUQboCgKxeVVlq9bkmgCtVH3E1f2Q6fVsO7gSVbvT2vU7eaviyO3uIJwP3emD41u9vlrGlvvS8pp9jHqUlFlYua7q3j1992UVhitemxHc3qiKe5kAYpSu7l17IlsAGYM60B0sJdVzqnXaRnXS22U/k9syjn3N5rMVjnvWarK1Al0AIMfh9Z+saPVw9QfIbCv2jfqtynVDcbPE2YjxC9Ut2UJXf1c/eDyP9XpciP+DaNfh/EfwuSv1L+Py/+E6f/AdRvhioWStBMtpihmlixRJ8H163crYWGDWj2GwYPvxWDwIivrAEeOLGz189uaophJTt4EqJVNovVIZZMQQghhB+sOnuT9Jfu595KeVluK1DXMh1mjO5OUXcyQzqf6LpnMCjpt3S+Kpg6IJDGriOnDOuCsb/5ykJ6RfizZncz+pLxmH6MuuxOyyS4sZ19SLq7OF8Zylc9XHOKXzcd58NJeXNIv0nL5PRf3ZHCnIHq397fq+Sb1Cef3rQlsOZpBYWklXm71L4Ocvy6OnfFZzBrTmUGdrNjb68DXUJoBnpHQ1U7LOJw94Mq/4PshkHsIFk2Hq5aoS/jautQNauNrFz8Iv8je0Ti2DlPUDyFawe7dX3Hy5E4MBi/Gj3/JLjG4uPgwaNA9bNjwMuvX/5cuXS4/r5aaZWYeoKKiACcnd0JC+tg7nAuKVDYJIYQQrSy/pIIPlh6gsKyK5Oxiqx772hEdeeyKvpaJZmm5Jcx6dxXfrDlCVmHZWfuH+3vw3xsGWxprN1dNU/Jj6QWUV1qvAmnz0QwAhnYOPq+e/DbE211Nbny87CBpuSW1rhvUKQiDk3WTbh2CvegU4oXRrPDXzkTL5fHpBSzacaLWx9LdyRw9WUB5pcl6AZiNsON/6vbAR0Bnx+btnmFw5WJ1Yl3SKlhxF5xRYdYm1Syh6zhNreISQthdeXk+K1eqk9FGj34ed3f7DecYOvQh9HpX0tJ2cPz4crvFYQs1S+jCw4eetw3QHZUkm4QQQjiM1NwSkqycfHFE7y85QEFpJR2Cvbh2ZCerHvvMhMzyvSlkF5Xz/fpjzHp3Fc//tIOd8Vm1lvBZI4kT7ONGoJcLJrPCodT8Fh8PwKwobD2aCcCwztbtA+XIrhrSgd7t/SivMvG/P/fw+YpD5BVX2PScE/uEA9Rqsh57Iof3lxyo9ZFXUoGfh8G6fbmO/AQFCeAaCL1us95xmyuoD1z6k7qUb/+X6uSxtkxR4FhNvyZZQieEo1iz5gVKS7MICOjK4MH32jUWd/dABgy4A4D16/9r11israY5uPRran2S2hNCCGFXhWWVrDt4kpV7UzmYksdF3dvx9PT+AJRWGDE46epdAtZSiqKQlF1MsI8bLlauFqnPuoMnWX/oJDqthocv693iXk3ncsOoGKICPflrZyJ7E3PZfDTDUi00pX8kcyd2w9XZOk8Hekb6sXp/GvuTcukX3fKRzUdS88krqcDNoKd3lHWXjjkynVbDI9P6cOcn6zmYksfBlDw2H8ng07tG2+y+cHG/SFJzSwjwdLFcFubnzqhuIbX202g0XNw3ollTE+ukKKeSOf0fAKfmNai3ug5TYNx7sPIe2PAUeHeArtfaO6rmydgJRcng5A7tJ9o7GiEEkJV1kO3b3wfg4ovfQWfPis5qw4c/wo4dH5KYuI6kpA3nTX+jmsqmyEhJNrU2STYJIYRodVUmMzuOZbFibwpb4zKpqm46rNVAldGMoij8svk4P208xoOX9mZUt3Y2ieP/2bvr+Kbu/Y/jr6Tu7i1taaEUa5HiOtzd2QbzDebbnf3udrd771zvhPnGhrs7DPcipbSFurt7I+f3x4FChxVIm7T9Ph+PPJImJ+d8kpSSvPP9fr5bz6Tw9bZILE2NGdDeg6Eh3nT0cWiw6VpF5dV8sz0SkKe7BXrYNchxrmdipGRgB08GdvAkObeUreEp7I5Io6JaTWRKge5CA66FTVFpuunbdDUUCwtwafBQztC42VvyzMgOfLrpPACz+wc2WNAEYG5ixIKRHetc16utG70aekRZwlbIiwRTGwhd0LDHuluhz0BRnNy4fMfDYOcPHj30XdXduzqqyW8kmFjotxZBEJAkiR07XkCrVRMUNIGAgOH6LgkAW1svQkLmcebMjxw69F/mzNmu75LuW0lJOkVFSSgUSry9e+m7nBZHhE2CIAhCo3tl8TFirptq5e9qw9DO3gzu6InTlZEVldVqyqrUrDoaT7927joPgFQaLcsPxwFQUaNmx7lUdpxLZfHCwbg7NMzoiu92yNPn/F1tmN2/TYMc43Z8XWx4ZmQHHnkgiDOJebTzstdpiNM3yB0/FxvaeuomRDt26Vq/ppZoaGcv8kurUGul2hXjmhVJgpMfyJdDnoZGXO673gZ8AkXx8kpum6fBg2fAoomNsrvar0msQicIBuHSpU0kJOzGyMiU4cM/03c5dfTr9xpnz/5CXNwOMjLC8fTspu+S7svVUU1ubp0xM9PNKq5C/bWsrwkFQRAEvUjJLa0dvQTwQEdPHK3NmNLLn+8e78/3Tw5gau/WtUETwIQefpgaK7mcUUxEcoHOa9ofmUFeSRUOVmZ8OLcnw0O86dHGtU7QtHj/JXaeS6Wi+v4bXmu0WqwtTOTpc+ND9DpSx9zUmD5B7jham99547vgYG1Gx1aO97Wq3VUarZb+wR608bDT7apnTYhCoWBmv0DmDmjTPJujpx+CjKNgZAZdX9B3NTenNIJRf4B9IJSmwPaHQNLe+X6GouCSvLKe0hj8x+i7GkFo8dTqKnbufBGA3r1fwdExQM8V1eXg0JpOnWYBzaN3U0qKHDb5+DSPKYFNjRjZJAiCIDQISZI4n5TP2uMJnIzL5ZXxIbVNiEd382Vsd1+MlLcOXOytzBge4s2W8BRWHY0nRIc9e+RpevEATOrpRxd/Z7r4OyNdt+pUUXk1K4/Eo9FKfLs9ki7+znQNcKF7axc8HS3v+OG/skbNics55JZWMq13AEZKJc+N7sT0PgG42xtIXxoDZqRU8tCgtjw0qK2+SxEayokro5o6zAPrhpkqqxNmdjBuDSzvBYnb5B5TPd/Ud1X1c3VUU6shhjlyTBBamKNHP6OoKBEbGy/6939D3+XcVL9+bxARsYSYmPXk5FzE1bWDvku6Z6Jfk36JsEkQBEHQKbVGy8GoTNYeTyAuqwQABZCcW1q7TX1H9UztHcC2Mymcjs8lPquEAHfdDIHWSjClV2u2hqcwpptv7fXXB0hGSiUPDWzL7og00vLLOR6bw/FYeWU0N3sLZvYNZHTXVnX2W63ScDIuhwMXMzkZm021WoupsZIxXX2xNJP/y23uQVNKXhkbTyZibKTk6RFN9w2q0MCyz0LSDnnFt7BX9V3NnbmGwAPfwq5H4cg/waM3tBqs76ruTKxCJwgGo6QkjcOH3wdg2LCPMTW11nNFN+fi0p7g4MlER69j6dJRjBjxBcHBk5vcCNuamjKyss4BYiU6fRFhkyAIgqAzsZnF/Ht1ONnFlQCYGSsZHurDpB7+eDlZ3fX+PBws6R/swYGoTNYci+e1SV10UqeRUsGIUB9GhPrcchsbCxNm9gtkRt8A4rNKCE/IIzwhl4spBWQXVdYZBZVVVMGinVGcT8qjskZTe72noyUD23ui1jahaTf3qbJGzZbwFKzNTXhyeHuU9/DmtLRSRURyPt1aO2Ouo5XyBANzdQW6oBlgb1jTSG6p0yOQfhgu/gZbZ8GDZw17RFZpGmSdBBQQOEHf1QhCi7d79z9QqSrw8elLx46z9F3ObQ0Z8iEZGeEUFyezevVUWrcexqhR/8PZuZ2+S6u3tLQTSJIGO7tW2Nnd+v2e0HDEOzhBEIQWqkatITm3jDbXrYh2/HI2VmbGdPK9+ylrkiTx5ZYIsosrcbAyY3yYL2O7+WJraXpfdU7rE8CBqEwORWfx9Iia+97f3VIoFAR62BHoYceMvgFU1qiJSM6v87ydjM3h+JWV01ztLBjY3oOBHTwJdLdtct8E3q9Ad1vMTYwoq1KRnFOKv9vdj0Y7EZvNJxvP09bDjq8fE30Wmp3CWIhdI1/u8bp+a7lbQ76BnHDIjYCtM2HaXrkfkiGK2yCfe/YGK3e9liIILV1KymEiI5cDCkaN+trg3xs4ObVhwYIoDh/+kCNHPiYhYTeLFnWmV68XGTDg/zAzs9F3iXd0dQqdGNWkPwb6v6MgCIKga1pJIiGrhLOJeZxJzCMypQBJgjWvDsfcxIiknFLeX3cWjUbL82M7MTzk7r4FUigU/HNqN3776xLPjemIlZmJTupu42HHU8Pb06ONq06CpkU7L+LtZM3wEG/MTO6+kbWFqTE929RdHc3L0Yo5/dsQFuhCOy97g38T2ZCMlEqCvR04m5hHZGrBPYVNV1eh6x7gouvyGo+mBlTlYO6g70oMz6lP5CbbrceAS2d9V3N3TCzl/k1LukHaQTj8fzDgQ31XdXNiCp2gQ1VVxeTmXsTbuxcKhVhj6m5otRq2b38OgK5dH8fDQzejtBuaiYklgwe/R0jIw+zY8TyxsVs5evRjLlxYwvDhn9GhwwyDfr+TknIYgFatxJdW+iLCJkEQhGZOK0n8vCea3efTKKlU1bnN0dqMzIJy/N1scXewpEegK4eiM/lsUwSpeeXMfyDojtOgisqrsbcyA8DdwZI3Juv+TdSknv462Y/cTygJCQjxdaSVi26+mesW4EK3phyM6FinVo5y2JRSyLjufnd13xq1htPxuQD0DnK7w9YGqKoQzn8PZ/8H5VnyB/3+H4KjaHROVRGc/kSehgbQwzCb496RQxsY8StsnganPgKvvhAwTt9V1VWZD6kH5MttRNgk3J+EhD1s2PAwpaUZeHp2Z9iwT/DzG6TvspqM8+f/ICvrLGZmdjzwwH/0Xc5dc3QMYPbsLVy+vIUdO56nsDCBtWtnER7+A6NGfY2ra0d9l3gDrVZNWtoxQIxs0icRSwuCIDRz608ksvZ4IiWVKixMjejZxpWnhrfnx6cGsOyFIbUjT8xNjHhzShdm9wsEYNXReP6zOpyqGvUt930oOpOHvv6Lo5eyGuWxAFRU37qeO1lzLB4J6N3WTWdBk3Cjjq0cAbiQkl+nt1V9nE/Kp0qlwcnGjMDrpioavOIk+OsF+NEHDr8pB00gjy5Z3AH2LoSKXH1WqD+qCjj5EfzSGk68D1q13KvJqwl/AGg7Fbo+L1/e/hAUJ958O0mC/BiI+BG2Pwy7noDU/fLIrrtVGAeH3oRf28GK/nD8P5B5ErSaG7dN2AKSRh451lR6YgkGR62uYufOl/jzz2GUlmYAkJFxmsWLB7N8+Thyc6P0XKHhq6kpY98+efXKAQP+iZVV0/1iqm3bsTzzzEUGDXoPY2NzkpL288MPXcnICNd3aTfIzr5ATU0ZZma2BhmGtRRiZJMgCEIzNyzEm/D4XHoHuTOqiw/Gt1kJTqlQ8PDgILydrPhiywWOXMrm5cXHeHdGGM625nW23RuRxqebItBKEkdisugT1LA9QUoqavjftgtcSClg8bMPYH6XU+DyS6vYG5EOwPS+4sNXQ2rnZY+xUkF+aTVZRZV4ONR/Bb6jV6bQ9Wrrdk/NxRtddrg8Lezy6msBgktn6P4KOHeCI/8HCVvh3LcQ9Yfco6jrC/J0rOZOo4LIX+DYe1CeKV/n1B76vQ8B4/Vbmy4M+BgyT0DmcXmU08wjcv+m3POQfkieZpd2CCr/FjJe+AnsWkOHedDhYbBtddPdA6CqhLh1cOFnOaS6qvCS3Kz8yD/B3BFaDQW/EeA3HGy8IVZMoRPuT07ORdatm012dgQA3bs/Td++/+DIkU8ID/+By5e3EBu7jS5dHmPw4HexthZ9wW7myJGPKSvLwsEhgB49Fuq7nPtmbGzOwIH/JCTkQdavf5CUlMOcOfMTnp7d9F1aHVf7NXl790apvPuWCYJuKKS7/cqxGSopKcHOzo7i4mJsbXWzrLYgCIIhkSTprufVX0wt4N1V4RRX1DC7fyAPDwqqvW3bmRT+t/UCEnKY9eLYzhgpGzYY0Gi1PPLtfrKKKlkwsgPjw/zu6v4/74lm9bEEOvg48Pm8Pg1TpFDrhd+OUFhWzasTQmtHOt2JVpKY+9Ve8kur+c+sMMICXRu4ynskaSFxhzwlLHX/tet9h0H3V8F3KFz/7y3lLzjwCuSckX+29oK+/4H2D0JzfBMsaSFmJRz9JxTFy9fZ+kGfdyF4TvN6zCWp8GcXqMqXg7TSNKgpqbuNsTl49AKv/nLodmkl1JReuVEBrYZAx/lyMGRiIV+dfVYO6qKXQnXRtW39RsghVXURJO2ElL03Hs8xGIoTQFMND54D15CGevRCMyRJEidPfsPu3a+i0VRjaenC+PG/EBR0bapoXt4l9u59nZiYDQCYmFjRp8+r9OnzMqam1nqq3PAUF6fyzTdBqNWVTJ++luDgyfouSafi43exZMkILC1dePnlTIMKddaunUVk5AoGDXqPgQP/qe9yWiwRNiHCJkEQmp+SyhpOXM5hWIj3fe0nq6iCdccTeXJ4MEZKeUTUuhOJ/LBLHjo/rrsvz4zs0GgjUDafTuKb7Rdxs7fgtwWDamu6k7IqFQ9+tY+KGjXvzuhOr7ZNsBdQE1NVo8bc9O4GUCdkl/D0j4ewMDVi1cvDMDU2nDeutdRV8iiWhC3yz0pjaDcLur18+w/1khZilsvToEpT5OtcOsOAT8FvWMPX3ViSdsPBV+XRPQCWrtDrn9DpcTA2029tDSVxB6wbDVx5S21qC1795HDJewC4dav72FXlELsOIn+D1L+uXW9mJwdOuRHXgkkAW1/o+IgcMv19FJRWLY+uStoFyTsh69S1EXZ2reHRuLrBpyDcRllZFhs3zicubgcAgYGjmDDhN6ytb/5/ZnLyIXbvfpX09BMAWFu7M3jwv+nS5VGDbhzdWNatm8uFC0vx9R3Aww/vb3bPiUaj4tNP3aiqKuThh/8yqD5eX3zhQ0lJGg89tA9//8H6LqfFEmETImwSBKF50Wgl/rn8JOEJeczp34aHBumuMfG5xDxeWyK/qZzWuzWPDmnXqG+eqlQaHvrfPooranh9UiiDO3rV634rj8Tx675L+LpY8/2TA5rG9KwWKqOgnJS8MsMMBFUVsGECpOyRR6uELoQuz4HtXazcqK6Cs1/Dif9CdbF83dDvIeTJhqm5MWUcg+V9AUkOXML+Ifc1agkjHRK2yn2bPPvKIWJ9v+EvToTI3yFqMZQkX7veyFQOnjo+Cr5DoL6rf1UWQOo++bUInATeYhUm4c4kSeLy5c1s2vQoFRV5GBubM2zYJ4SFLbjj//GSJBEVtZq9e9+gsDABgKFDP6Zv31cbo3SDlZ5+kp9/7gkoePzxUwY3zUxXNm58hHPnfiMsbCGjR3+t73IAKC5O4csvfVEojHj99WJMTa30XVKLJXo2CYIgNDO/7YshPCEPM2MlfdvproeCJEnsvyg3CH1wQBvmDGjT6N/SmZsYMSHMjz8OXGb10QQGdfCsVw2dfZ3o2caV/sEeImhqZBqthCRJt+0Vdj1PRys8HQ3wjWFNKawfK/fhMbGGyVvlUSt3y9gcwl6VR6ocflNuHL1vobzCWasHdF93Y5G08NfzgAQBE2DEL2DhpO+qGk/rMfd2Pzt/6Psu9HlHnm4ZvwnsW0Pw3Ht7/iwc5eblbafeWz1CiyBJEoWF8SQl7a89lZbKPQ3d3DozefIyXF071GtfCoWCDh2m067dRA4dep8DB95l37438fcfjKdn94Z8GAZLkiR27nwJgJCQh5pt0AQQHDyFc+d+Izp6LaNGfYWivsF4A0pJkfs1eXh0EUGTnomwSRAEoRnZH5nB6mPyN4svjQ8hwF13ozUVCgU92rjSI9CVPjoMse7WuDBfVh6NJz67hDMJeXQLuPPKLsHeDrw3M6wRqhOut2jnRXafT+PFsZ3p395D3+Xcu+piWDsKMo/JI3am7ADP3ve3TwsneUSTqlzuy7N5Ksw+IYdOTVH0UnkKl6kNDPuhZQVNuqBQyiOYfIfouxKhGZIkiYKCOJKS9pOcfDVcyqizjZGRKT16PMcDD/wH43uY8mpkZMrAge+QkxNJdPRa1q6dzZNPnmmRPZyiolaTmnoEExNLhgx5X9/lNKjWrYdiZmZLWVkmqanHaNVK/6uMpqQcBsDHR4zs1DcRNgmCIDQT8VnFfL5Z7pMyvU8Agzp46vwYDb3iXH3YWpgyqosPG04msfl0cr3CJkE/NFqJ8mo1kakFdwybtp1J4WRsDmO6tTKsxuCVBbB2BGSfBnMHmLIL3HX0bb1CAcN/lptoZx6XR07NPi4fpympKYNDr8uXe74FVgY4BVIQWqi0tBOsXTuToqKkOtcrlSZ4e/fCz28Qfn6D8Pbuhcl9rpKpUCgYN+5H0tNPUFAQy/btzzNhwi/3tc+mRq2uYs+e1wDo2/c1bGx0/17MkBgbmxEUNJ6IiCVER681iLDp6kp0hlBLSyfCJkEQhGaguKKGd1eFU63W0i3AhXmDg+58pyZsSq/WuNlZMLKL3Cz36KUstp9JuWG75LwyOvs68dDAtrjaWTR2mS1ex1aObD6dTGRKwR23PXAxg3NJ+XTydTScsKkiF9YMk5tdWzjD1N3gGqrbYxibw4QNsDQMCi/D5ukweRsYmej2OA3p1MdQliE3pO76gr6rEQThioqKPFatmkJpaTpGRqZ4e/fC13cQfn4DdRIu3YyFhSOTJi1h8eLBnDv3K4GBI+jQYbrOj2Oojh//iqKiJGxsvOjd+2V9l9MogoOnEhGxhKioNQwf/pleG6FXVRWTnR0BgI+PCJv0TYRNgiAIzcDZxDxyiivxdLTkjUldMFI2775ErnYWTO7Vuvbn7KJKTsbl3nTb3UVpuNpa6LRRulA/nVo5AhCfVUJ5lQor85sHKKWVKiKS5UCqt6E0Bi/PgtVDIf8iWLrBtL3gXL8eJnfNyg0mboYVfeXm4/tfhCHfNMyxdK0kGU5/Il8e+EnzXXFOEJoYSdKyYcPDlJam4+TUlsceO4m5uV2jHNvPbyD9+7/FoUP/YfPmJ/Dy6om9vW+jHFufysqyOXTovwAMGfJBi+kXFBAwHBMTK0pKUsnIOIWXVw+91ZKWdhyQcHBojY1NE56+30yIsEkQBMGAVak0RKYUUFReTUmlitKKGkoqayipVFFSWcOsfoGE+jkzqIMnVmbGuNhaYGPRhEZE6EgXf2deGtf5preZmxjptcdUS+ZkY46HgyWZhRV8vjmCbgEujO56ben2b7ZHApBbXIlWkvB1sW645uCqcsg5B/lRcoNvS1f5ZOUG5k51Vw8rTYfVD8gjjaw9Ydo+cGzg0YKuITB6GWycCOe+Bcdg6LKgYY+pCwdfl1fY8xkkr34mCIJBOHr0M2Jjt2FkZMbUqasaLWi6auDAt0lM3ENa2nHWrZvDvHn7USqb90fP/fvfoaamFE/P7nTuPEff5TQaExML2rYdy8WLK4mKWqPXsOnqFDoxqskwNO9/8YIgCE3cdzsi2Xku7Za3D+rgSaiffNlgph7pgZ+rDX6uNvouQ7iJED8nMgsrOByThQR1wqat4clopWvb9tVVT7CaMsg5C9nh8innDBTEyCum3ZRCniZ3NXwqjIXSVLBpBdP3gX2Abuq6k8Dx0P9DOPSavLKbQ1vwG9Y4x74X6Ufg0gpAAYO+kHtQCYKgd6mpx9i79w0ARo78Cnf3kEavwcjIhMmTl/L996Gkph7h0KH3GTjw7Uavo7FkZ1/gzJmfABg+/HODWJWtMbVvP5WLF1cSHb2WoUM/0ttUuqvNwVu1Es3BDYEImwRBuC/JuaUk55ZhYqTEwsyIUD/n2tuyCivQaCWMjRQ4WJthamx0mz0JN/PEsPak5JVhYWqMjbkJtpam2FiYYGthiq2FCcHeTayRsNDizBsUhIe9JTVqLa2c665KNLt/G6QrYZOFmVGdIOquVRXCkX9Cyl4ouARIN25j7QnOnUFTDRU5UJENlfnytpW58in/orytXWs5aLJt5KkfYa/KNUT9AVumwazj4NSucWuoD0krB2IAnR7TfS8rQRDuSWVlAWvXzkSSNHToMINu3Z7QWy0ODq0ZM2YR69fP5cCBd/H3H9IsmzZLksSuXS8jSVrat5+Kr29/fZfU6AIDR2FsbEFhYQJZWefw8OjS6DVoNCrS008AYmSToRBhkyAI9yw5t5SFPx+mRi2PFnCyMWPZC0Nrb/9ww1mi04oAsDY3Znx3Pyb08MPeSvT0uJ2MgvLaqUTW5iZ8OV/8hyk0XQ7WZszsF3jT2x4cqKM+WqkHYNtcKLtuFKC1F7h1q3uyusnIKa1aDpwqsq8EUDmgroSACWDpfOP2DU2hgGE/yivUZRyBDeNg9gmwcGz8Wm4n6k951JipDfT7j76rEQQBOfTYuHE+xcUpODoGMm7cj3pt1gzQufMc4uN3EBGxhHXr5vDUU+cwN7fXa026Fhe3nYSE3RgZmTJ06Ef6LkcvTE2taNNmFNHR64iKWqOXsCk7+zwqVQXm5g64uAQ3+vGFG7Ws8X2CIOiMSqPlo/XnqFFrcbO3IMjTngD3uv0AzE2MsTIzxsRISVmVmmWH43jof/v4ZnskWYUVeqrcsB24mMET3x9k3fEEfZciCIZPo4LDb8GqwXLQ5NAGxq+Hp7LgyTSYuBF6vw2tx9w8aAJQGstT51w6g+9QCJ4NnR7VT9B0lbEZTFgnj6oqipNHON1yCqAe1JTBIXmKDr3+KU8/FARB744f/5JLlzZhZGTK1KmrMDOz1XdJAIwe/S0ODq0pLk5my5ankKSbjDxtoiRJYs+e1wDo2fN5HBxa3+EezVdw8FQAoqPX6OU1vjqFzsenT4ubxmioxMgmQRDuyZ8HLhOfXYKthQlfzOuDk435Ddt8OLcnABqtxLFLWaw8Gs/ljGI2n04mu7iSf88M02lNGq3EicvZlFapsLW4Ot3MBC8n6yaxOtuGk4l8vzMKCYhKK2KSJOn9G0lBMFiFcbBtDmSdlH/u+AgM/gpMrW9/v6bC0lVeoW55b0jZBzHLIdhAGs6e/BDKM+VeVl2e03c1ggGTJIn8/MtIkgYTE0uMjS0wMbHA2NgCI6OWt5hFQ0pPP1kbegwf/rleRpbcipmZLZMnL+PXX/ty8eJKAgNHERr6sL7L0onExH3k5ERiampN//5v6rscvWrbdgxGRqbk518mN/cirq4dG/X4zb05+P79/yImZgNPPXVO36XUmwibBEG4a5EpBaw+Gg/A82M63TRoup6RUkG/YA/6tnPnfHI+q47EM733tW9+8kuryCgop2Mrx3sOV9QaLZ9sPM/+ixk33Lbu1eG1S67/ti+GqLRCHh8aTFtP+3s6lq5JksSv+y6x6spzOq67L0+P6CCCJqEudTWUpcsnKw9wuPnUtGZPkuR+RnsXgqoMzOzlaWdB0/Rdme65dIKeb8HhN+WRRIGTwcRCvzUVJ8HpT+XLAz6VR2EJwt9UVhZw/vyfhIf/QF5e9E23USqNa8MnGxtPBg16j6CgcY1cafNQVVXEmjUz0GpVtG8/lbCwZ/Rd0g28vXsyePB77Nv3Ftu2LcDdPQR391B9l3XfTp78HwAhIfOa3fTAu2VmZktAwAguX95MVNSaRg2b0tNPkZCwF7ixOfjvvw/C3T2UkSO/rHP9uXO/s2PHC7z+ehEAKlUFBw78m6ioVZSUpGNmZoOLS3t69XqJdu0m1LlvSUkaX33VGientjzzTOQd6ysvz+Wvv94mNnYr5eXZmJs74O4ewoABbzfLPmZXibBJEIS7Zm1ugp+rLQFutvQL9qj3/RQKBaF+znWaiAOsPZ7A2uOJhPo58fqkLjhY392Hlxq1hg/XneXIpWyMlApC/Zwoq1JTUllDRbUaS7Nrf+pS88uJSC7grWUn+WxenxsaFutSSUUNEvLzdauRVWqNli+2RLAnIh2AeYODmNk3QARNLVV+lNwHpzTtyilVnh5WmiY3r75ewATo9Ra463aEoEGrKoI9T8GllfLP3gNg1J9gex+NxQ1d1xfg/CL5d+HMl9DzjcavQaMCdQWoKuDAK3KD9VYPQOCEO99XaDEkSSI19Sjh4T8QFbUatboKACMjM0xNrVCpKlGrK2u312rV1NSUUlNTSnl5DitWjKdTp9mMHPkVlvqcxtrEyH2aHqGoKAl7e3/GjfvZYN9D9O37GgkJu0lK2s/vvw9k5syN+PkN0ndZ96ywMIFLlzYD0KPHQj1XYxjat5/K5cubiY5ey6BB/2rw46lUFfz119scP/4FkqTFwSEAL697e1+0ZctTpKefYNSor3FxaU9FRT6pqUeprMy/Ydtz536nQ4fpJCcfJC3tBN7ePW+771WrpqDR1DBx4mIcHFpTXp5NQsLem+67IWk0qkYdVSrCJkEQ7pqfqw1fPdIHjVY387EVCgUmRkrOJeWz8JfDvDu9O4Eedne+4xXp+eWEJ+RhYqTk/6Z2pVdbt1tuO6tfIBkF5STmlPLWspN8Pq83Lra6Hymw5MBllh6KRSuBAuQpfZam2FmaMndAW7q2dkYrSfxr1WlOxeWiVCh4YWwnRoT66LwWoREk7YTME+DzAHj1gbvpFSBJkLQDTn8OKXtuv62RmTyqqSQZ4jfKJ99h0Ov/5OClOUs7LE+bK00BhRH0fQ/CXgNlM1/l0sQC+r0P2x+Ekx9c6SfVAD2SyjJh37NQeEkOla6GS+oKuYn69RRKGPSF3MxcaPGqqoo4f/5Pzpz5kZyca9/wu7mF0K3bk3TuPKe2d5AkSWg01ahUFbXhk0pVQUTEUo4d+5QLF5YRH7+b0aO/pX37qQYbmhiSkye/ISZmPUqlCdOmrcLcvP7vnxqbUmnEjBkbWLFiAsnJB1iyZASTJy+lffup+i7tnpw69R0gERg4EmfnIH2XYxDath2HUmlCTk4keXkxODs33GqqSUkH2Lz5MQoK4gDo1GkOI0d+ibHx7Wdc3MqlS5sYOfIr2rQZDYC9vR+ent1u2E6SJM6d+43Ro7/D1tabs2d/uW3YVFVVRErKIR5+eD9+fgOv7NsXL68edbYrLk5h+/ZnSUjYi0KhJDBwJKNGfY219c0/16Snn2LfvjfJzDyLVqvC3T2UESO+wMOja+02776rYPTo74iL205i4l769Hm1UULAq0TnLEHQkfJqFauPxVNRrb7zxvchp7iSjzecY/vZFNSaxm0YW1lz7bGZGhthYaqbvPrxocF8/2R/vJ2syCup4qXfj3IwKrPe9/d3s+Xfs8J4d0b32wZNAG087Phwbk+8Ha3IKa7krWUnKa1U3e9DqONUXA5/HpSDJpAXYC+pVJGWX87F1EKqVRoAlAoF3Vq7YGas5F8zuomgqSkqSYGNk2DtSDj6DqzsDz+3hkNvQt4dhlWrqyDiZ1jcEdaNloMmhRJ8BkGHeXKANHSR3LfnwbPwdC48XwmPJ8K8i9D+ITl0Sd4NKwfCiv6QuF0Or5qb4iRYM1QOmuxaw6wj0PPN5h80XRU8W15Nr6YUjv5L9/vXqGDzNIhdK//eFidAeRbUlNQNmhRKMLWVm4K7dNZ9HUKTUl6ey8aNj/LZZ57s2PEcOTmRGBtbEBo6n0cfPc6TT54lLOzpOk2qFQoFxsbmWFg4YmvrhaNjIG5unRk27CMeffQ4Li4dqKjIZc2a6axaNYWysiw9PkLDl50dwe7drwAwbNgneHp213NFd2ZubsfcuTsIDp6MRlPD6tXTOX36e32Xdddqaso4c+ZnAHr0eFbP1RgOCwsHWrceAkBU1NoGOUZ1dQlbtjzN4sWDKCiIw8bGi1mztjB58pL7GhVpbe1OXNw2qqtLb7tdUtJfqFQVtG49lM6d5xIZuYKamvJbbm9qao2pqTUxMRtQq6tvuo0kaVmxYgKVlQXMm3eABx/cTWFhAmvWzLjlfmtqSgkJeZhHHjnMo48ex9GxDUuXjr6h/gMH/kW7dpN4+ukLdOnyyG0fm64ppOa0HMA9Kikpwc7OjuLiYmxtDWPVBqHp0Wi1LNoZhUqj5cWxDfcm/IN1Z2v7EvUJcuOd6Y3zxqKgrIoFPx1mTNdWzOofiJFS91l1WZWKD9ad5XS8PF1odv9AHhzYFuVNvtmsqFaTU1yJn6vNPR0rq6iCl34/Sn5pNR18HHh/Tk/MTXTzwVWSJBbtjMLFzpxJPfwprVRRXFFDcUUNJRU1dGjlgKP1tW9dcoorcbXTcx8W4e5oaiD8Czj2njzyQ2kMvsMh/ZAcCFzl0hnazYZ2s65N9arIgXOL4Ny316bGmdpAp8ehy7Ng51f/OooT4dTHEPmrXBOAa1c5iGkz6e5GWBmyE+/Lq865h8G0vfLz1dKkHoBVg+SA8eEL4KTDZZ3/egHOfCUHSaP+kEdOGVuCiWXdcyNTMZpJAKCiIp/FiweTk3MBAFfXTrWjmO6nb41aXc2hQ+9z+PD7aLVqzM0dGDnySzp3flCMcvobjaaGn37qQXb2edq2HcvMmZua1HOk1WrYuvUZzpz5EYCBA99h4MB3msxjOH36e7ZufRpHx0AWLrwkVj+7zpkzv7B582O4u4fy5JNndbrv2NhtbNnyJCUlaQB06/YkQ4d+dNsRffXt2ZScfJB16+ZQVpaNu3sIPj79aN9+6g09ldatm4OlpSsjR34BwPffh9Kr1wuEhs67ZQ1RUWvZvPlx1OpKPDy64us7kI4dZ+LmJn9mjI/fzdKlo3j++UTs7OQvn3Nzo/juuw489thJvLzC7tggXJK0fPihPVOmLKNt27GAPLKpZ88XamttbGIanSDcpxq1BlNjIy5lFHP8cjaFZdXM6d+mQcKD3JLK2hE/dpamdUbCVKs0KJXydDRdkySJL7ZcoKCsmiOXspneN4AGOAzW5ia8NzOMn/dGs+54IltOJzO2m+8NDcjLqlS8tewkGQXlfPJQ73sKnNztLfnvrB68vPgYF1ML2RuRxphuvvdVv1aSUCoUKBQKnh7RvvYNk4O12W37UImgqYlJ3Q97noGCK01vvQfAkO/AuQOoKiFhC0QvhcRtkBshnw69Lm9n6yf3G9Jc+WbLphV0fV6eGmV2D1Mf7Pzl0U+9/gmnP4Pz30POGdg8FVxC5eDApZNuHrc+xayQzzs/1TKDJgCfgXKfrviNcPAfMGmzbvYbs0IOmkD+fRF9mIQ7qKoqYsmSEeTkXMDa2oNp01bh49NXJyGBsbEZgwe/S3DwZDZteoTMzDNs2PAwkZErGDv2h9oPYQIcPPgfsrPPY2HhxLhxPzWZkOYqpdKIsWO/x9ranYMH3+PAgXcpK8tm9OhvUBr4qFVJkjhxQm4M3qPHsyJo+pt27SawZcuTZGWdo6AgHkfHgPveZ0VFHjt3vkhExBIAHBwCGDfuJ/z9B9/3vq/y9R3Ac88lkJZ2nNTUoyQm7uW3375i0KB3GTjwn4D89y86eh3z5x+uvV/nznM5e/aX24ZN7dtPoW3bMSQnHyIt7Thxcds5cuRjxo//mdDQeeTlRWNn51Pnb5yLS3vMze3Jy4u+aR+qsrJs9u37P5KT91NenoNWq0GlqqC4OKXOdvoc8WjQ/zI++OADwsLCsLGxwdXVlYkTJ3Lp0qU621RVVbFgwQKcnJywtrZmypQpZGdn66lioSXRaCUW7bzIP1ecQq3R0t7bAS9HK9RaqXZVMV3bfCoZrSQR4ufEn889QM821/p2rDuRyCPf7mfbmRRUd5heJ0kSxRU15JdW1eu428+mcjI2BxMjJa9NDMXUuOHeBBgpFTw5rD0vj+/MW1O73hA0lVTU8Nqfx4lJL0IryWHfvfJ3s+XdmWE8PKgto7veX4PhtccT+Pfq8Nrnvqm96RPqoTwbtj0IqwbLQZOFi/zhfPp+OWgCub9O0DSYuAGezpZXSfMZBCgg7aC8ipqmWh6hM2YFPBYP3V+6t6DpetaeMOgzeDxZnn5nZge552BpdzmEkhp3yq1O5V2EvAugNJFHa7VkAz6SR9ElbIGUffe/v/wo2PWYfLnH6yJoEu6ourqUpUtHk5kZjqWlCw89tJdWrfrp/P88d/cQHnvsBEOGfICRkRlxcdv57rsOREev1+lxmqr09FMcOvQ+AGPGLMLa2l3PFd0bhULB4MHvMnr0t4CC8PDvWbNmem1zeUOVmLiXvLxoTE2tbxswtFSWls61jd+jo+9/Kl1ZWTY//tidiIglKBRKevd+maefjqh30GRmZkt1dfEN11dVFd0wIsrIyARf3/706/caDz64i8GD3+PgwX+juTJ6/MKFZajVVfz8c0/ee8+Y994zZs+e10hJOUx+/uXb1mFsbE5AwDAGDvwnjz56lNDQeezf/049n4UbbdjwMNnZ5xg58iseeeQoTz11DktLp9parzI1tbrnY9wvgx7ZdODAARYsWEBYWBhqtZo333yT4cOHExUVhZWV/KS9+OKLbN26ldWrV2NnZ8fChQuZPHkyR44c0XP1QnNWUa3mg/VnORmbA8DZxDzCAl2Z3b8N55Ly2XE2lZl9A3G2vbcGdTdTpdKw9YycVE/q4Y/ZdVO+JElif2QGOcWVfLX1AssPxzG1d2tsLUzIK63C19mGHleCqZziSh75dn9tKOJmb0GonxOhfs6E+DndEO6kF5Tz/a4oAOY/EHTP09bu1vCQut9enorLoUqlYcmBWJJyS7GzNOXDuT1p7XZ/U187tXKkUyvH2p+vjk66GxtOJvLjbnmUy6GoTB7o5HVfNQkGRquGiB/l5eeriwEFhDwN/f4D5g63vp+5A3R+XD6VpMKlFXJj76CZ4NW3YaYjWTpD33/L0/F2PgYJm+XVwxK2wsjFYNsERwVcXXnOb8Ttn++WwDFIHt117hv5dZ17+t6nSlaXwMbJoCqXV5br+2/d1io0OypVBcuXjyUt7RgWFo489NAeXFx0OJ3zb5RKY/r1e52goAls2vQoaWnHWLVqMoMGvcuAAf/XYkeTqFSVbNjwMJKkoWPHmXToME3fJd23sLBnsLJyZd26OURHr2PJkpHMnLnRYJudXx3VFBIyr05PMuGa9u2nkpi4l6ioNfTt+4973o9GU8OqVVMoLk7GwaE1U6Ysv6Gx9p04OQWRkLDrhuszM8/g5NT2tvd1cWmPVqtGra7CyMiUs2d/oXfvl28IGbdufYazZ39l6NAP612Xi0t7YmI2AODsHExxcSrFxal1ptFVVRXh4tL+pvdPTT3C6NHf1TY0Ly5OpaIir97HbwwG/Vd6x44dzJs3jw4dOhASEsLvv/9OSkoK4eHhABQXF/PLL7/w+eef88ADD9CtWzd+++03jh49yvHjx/VcvaBr1SoNCdklHIzKpLz6WkNnSZJqGy43hpziSl76/SgnY3MwNVby1pSuhAXKQU5nX0c6+Dig0mhZfUy3o5v2RqRRVqXCw8GyNji6SqFQ8L9H+/L0iPY4WpuRU1zJdzsu8uH6c/y8J6ZOs207S9PaoEmpgOyiSnaeS+OjDeeY/eVefrgSLIHch+rjDeeoVmkI8XNiUk9/nT6m+krLL+P9tWf5z5ozJOWW4mhtxqcP9brvoOnvqmrUvL3iFBtOJtb7PptPJ7Fop/yczeoXyOCOnjqtSdAjrRou/gG/BcPeBXLQ5NYN5pyAod/eXfBh6wNhr8KQb8C7X8P3vbF0hYkb5ZFVxpaQ+hf80QmilzXscXVNkuSQDqDdTP3WYih6vy33Vso5C1FL7m0fkgQ7H5FXnrP2hjHL5RFTgnALanXVlRXEDmJmZsvcubtqe400NBeXYObPP0iPHs8BsH//O6xePf22DXmbs7/++id5edFYW7szatQ3+i5HZ9q3n8qcOdsxNbUhOfkAf/wxBI1Gtwu46EJhYQKXL28BoEePhXquxnC1azcJUJCRcYqiouR72ockSWzbtpDU1COYmdkxe/a2uw6aAMLCniY//zLbtz9HdnYEeXmXOHbscyIjl9O798u12/3++yBOn/6BjIxwioqSiI3dxt69b+LvPxgzM1uyss6RmXmGrl0fw9W1Y51Tx46zOH9+Mdq/r97K1R53DxARsYTs7AgKCxO5eHE1R458TFCQPKK4deuhuLl1Yt26OWRmniE9/STr1z+Er+/AW06Dc3RsQ0TEn+TmRpOWdoJ16+ZgbGxYrTma1DuL4mJ5+JujozwKITw8HJVKxdChQ2u3adeuHa1ateLYsWP06tXrpvuprq6muvpaJ/iSkpIGrFq4V6ficjgdn0tqfjlp+WXkFFVytZv9pw/3rh2N8tu+S5xPzuffs8KwtTBt0JouZRTxzorTFJZX42Blxr9mdKedl33t7QqFgjkD2vDm0pNsO5PCzL6Bt+3Vcze6B7gwpZc/Ps7WGClv/KBqZmLExB7+jOrSiu1nU9h3IQMzEyXONuZ0aOVQZ7s/nh2Mg7UZGq1EZEoB55PyOZeUT1xmMa1crGu3PXopm5j0IqzMjHllfMhdj/jRFWdbC3q0cWX/xQxc7Sz4cG5PvBx1PyT0QFQmp+JyORWXi72lGYPuEBxtO5PCN9svAjC9TwAPD2orps81B1oNxCyH4+9BYax8nYUz9P4XhDzVdFZAUyjkUVU+g2D7g5B5ArbNgfjNMPS7pjFKKOes/BoYm0PAeH1XYxgsXaDnW3DoNXm0XdupcgPvu3H6M3nlOaUJjF8jh5OCcAvyyIKpJCTswcTEijlzdtx0OfCGpFQaM2rUV7i5dWbr1qeJjl5LQUEcM2duxN7+/votNiXJyYc4duxzAMaO/RFLSyc9V6Rb/v4PMG+eHDRlZoYTFbWaTp1m67usOk6e/BaQCAwcibNzkL7LMVjW1m74+vYnOfkg0dHr6N37xbvex+nTizhz5idAwZQpy+/5+XZwaM28eQfZt+8t/vhjKBpNDc7O7Zg2bTWBgSNrtwsIGMH584vZt+9NVKoKbGw8adNmLAMHvg3Ijc9dXNrj7NzuhmMEB09i+/aFxMZuIyio7vsVU1NrvLx6cvz4FxQUxKPVqrC19aFr18fp3/9NQP4MOXPmRrZvf5bffhuAQqEkMHAko0Z9fcvHNX78L2zZ8gQ//tgVW1sfhgx5n127Xrmn56ihNJnV6LRaLePHj6eoqIjDh+WGXMuWLWP+/Pl1giOAHj16MHjwYD766KOb7utf//oX77777g3Xi9XoDMfGk4l8tzPqhuutzY3xdrLm0SHt6OzrRH5pFU/+cJDSShX+rjZ8MKenzsKdvzt+OZv3156hWq3F39WG92aG3bSxsyRJvPDbUWLSi5jeJ4BHh9z4B8lQlVaqMFIqsDSTc+irr8NrE0P1PjVMkiQiUwvxdbFusFDx6ipyG08loVQocLK59rsU4ufEqxNCa39+9Lv9pOXL36pO6eXP40ODRdDU1Gk18iiaY+9B4ZV59+ZO8oik0AVgan37+xsyrRqO/xeO/xskjTyaZdRiefqUITvwDzj9iRyojFut72oMh7oKfmsnT8vs+x/o9Vb975t6AFYPkX8PhnwLoc80XJ1Ck6fVqlmzZgbR0eswNrZgzpzt+PkN1GtNKSlHWLVqMuXlOVhaOjN9+lp8fQfotabGUFNTxvffh1BYmEBo6HwmTPhV3yU1mIMH/8tff/0fbm4hPPnkWYN5f1VTU8bnn3tTXV3M7NnbaNNmlL5LMmgnTnzNjh3P4ePTh0ceubsWN0lJ+/nzz2FotWqGDv2Yvn1fbaAqhYZk0NPorrdgwQIiIyNZsWLFfe/rjTfeoLi4uPaUmpqqgwoFXeod5I6jtRkjQ314YWwnPn24NytfGsqaV4bz1SN96ewrf5PjZGPOpw/1xtHajMScUl5efIyc4soGqcnNzgIjpZIegS58Nq/3LVcQUygUPDSwLTP7BjC1d+sGqaWh2FiY1AZNAAM7ePLTUwP0HjSB/Lx2auXYoKPXFAoFT41ozwMdPdFKErklVbWn4oq6zfbySuTmlZN7iqCpydNq5Ollv3eAbXPloMncEfp9AI8nQY/XmnbQBPIUqT7vwKwjYB8IZWly4HD8P/qu7NYk6Vq/piAxha4OY3P59xPg5IdQnlW/+5VlwJYZctAUPFfuPSYIt6DVali//iGio9dhZGTGzJkb9R40AbRq1ZfHHz+Nh0dXKiry+OOPIZw+/b2+y2pwu3e/RmFhAra2PowYoZ9lzBtLWNjTmJhYkZ19nvj4G3vt6Mv5839SXV2Mo2MbAgNH6LscgxccPBmA1NSjFBbWv0VFUVESq1ZNRatV06nTHPr0MazROkL9NYmRTQsXLmTjxo0cPHgQf/9rPWP27dvHkCFDKCwsxN7evvZ6X19fXnjhBV58sX7D9UpKSrCzsxMjm/SsqkaNuem1oKO0UoWNhUm97pteUM4bS06QXVyJi605H87tibeT7j8cJuWU4uNshZGy8XLa5NxSft13ick9/Qnxa17DpQ2VJEmk5pVRrb62gpelqTFeTtem7sVlFmNpZoxnA0znExpRSQqsGyWvygVyyNT9ZbnBtmnjNMNvdKpy2P8yRPwg/zzoc+h298PbG1zGMVjeB0ys4ekceaU/4RpJgmW9IOskdH4Sht3hw7ZGJa+kmHEEXDrDrGN3P/1OaDEkScumTY9y7tzvKJUmzJixjrZtx+q7rDpUqgo2bXqUyEj5i+ju3Z9m5MivMDKq33vHpiQ+fjdLlgwH4MEHd9O69dA73KPp27nzJY4f/wJ//wd46KG9+i4HSZL47rv25OXFMHLkV/Ts+Zy+S2oSfv21H6mpR7CwcGL48E8JCXn4tl/Q1tSU8euvfcnOjsDDoxvz5x/CRPz/32QZ9MgmSZJYuHAh69evZ9++fXWCJoBu3bphYmLC3r3X/gBdunSJlJQUevfu3djlCvchJr2Q+d/u53D0tUbW9Q2aALwcrfj04d54O1mRW1LFy4uPkZB9f724qlQa3l97hsiUgtrr/Fxt7ilo0mjvPdPdcDKJ45ez2XgXTauF+6NQKGjlYkMbD7va0/VBE0Cgh50ImpqDkx/KQZO5gzwd6bFE6Plm8w2aAEys5GCi33/ln/e/BBcX67emm4m5MpI5cKIImm5GoYCBn8mXL/wEeRdv3EarhopcKLgMfz0vB01mdjBurQiahFvSajW1QZNCYcTUqSsMLmgCMDGxZPLkZQwZ8gGg4PTpRfz55zCDW43pflVVFbNp0yMAhIUtaBFBE0CvXi+gVBqTmLiPjIzT+i6HhIQ95OXFYGpqfcNKZMKtjRv3I66unaiszGfjxvn88ccQ8vMv33RbSZLYsGEe2dkRWFm5MXPmBhE0NXEGHTYtWLCAJUuWsGzZMmxsbMjKyiIrK4vKSnmalJ2dHY8++igvvfQSf/31F+Hh4cyfP5/evXvfsjm4YHj2R2bwyuLjFJRVs+ZYAtp7HGznamfBZw/3JsDNlqLyGpJySu+5pqLyal778zgHojJ5f90ZatT3ttpddFohr/5xjOWHYu/p/iUVNeyNSAPQ20pwgtBsSVqI2yBfHr1U7nvTkpYw7vEGdHtJvrzzUYjbqN96rqfVwOVV8mWxCt2tefeDNpPl3+VNk2DVA/BHKPzoC1/bwhcmsMgVfguC84vk+4z8AxwC9Vq2YLi0WjUbN86rDZomT15aOxXGECkUCvr1e51ZszbVrmL288+9yMuL0XdpOrNz5wuUlKTh4BDA0KE370fbHNnZtaJjx1kAHDnysZ6rgZMn5UbNoaHzMWtJ7xXuk4tLe554IpwhQz7E2NiCpKS/WLSoEwcOvIdaXbfv8sGD/yE6em3taEpbW289VS3oikGHTYsWLaK4uJhBgwbh4eFRe1q5cmXtNl988QVjx45lypQpDBgwAHd3d9atW6fHqoX6kiSJP/Zf5oP1Z1FptPRs48r7c3re14pn9lZmfPxQL/5vatd77jOUnl9e2+DbxsKENyd3xdT43lafyimuJCK5gPUnEymvvvvlW7efTaFarSXQ3ZaOV1bfEwRBR7JOQXmmPIrJx8AbZTcEhQIGfgod5ss9fLbMgNT9+q5KlnZQ7kNk7gC+w/RdjWHr/6G8qlxhLKT+BbnnoTQFaq77wsXUFuz84YFvIFCs6ifcnFarZv36B4mIWIJSaczUqSvp2HGGvsuql7Ztx/LYY8ext/ensDCen3/uRULCHn2Xdd8uXdrEuXO/AwomTlyMqWnLGlHdp4/cFPrq6oP6UlAQz+XLWwDo0WOh3upoqoyMTOjX7zWeeSaSgIARaDQ17N//Dj/8EEpy8iEAYmI2sH+/vOrbmDGL8PHpo8+SBR1pEj2bGpro2dT4qlUaPt10noNR8rS5qb1b88gD7TBS6r7Jcn5pFeeT8ukd5IbFdT2hbiYqrZB3VpyipFKFu70F/5nVAx/ne+/9pNFKPPn9AVLzy5k/OIiZ/er/bbJao+Xhr/8ir7SKV8aHMCxEpPuCoFOH3pCn0QXNgLH3v/hEk6VVw+Zp8igvUxuYtg/cu+u3pt1PQsSP0OkxGP6TfmtpCtKPQM45ueeYucOVkyOYOYC5vdwgXhBuQ6NRsW7dbKKi1qBUmjBt2iratZuo77LuWnl5LqtWTSYl5TAKhRGjR39D9+5P6buse1JdXcLXX7elvDybPn1eZdgw/Y/u0Ydly8YQG7uNbt2eYuzYRXqp4Wr/qMDAUcyZs00vNTQXkiRx8eJKdux4nvLyHAA6dZrDpUsbqakpo0ePZxk16n96rlLQFYMe2SQ0TzVqDc//eoSDUZkYKRW8OLYTjw8NbpCgqaxKxZtLT/LRhnNM/ngXz/5ymB93R3H0UhYlf1td7EhMFq/9eZySShVtPez4cn7f+wqaAIyUCmZdCZjWnUikqkZd7/sejs4ir7QKByszBnbwuK86BEG4idj18nngRL2WoXdKYxizHFo9II+GWTcK8vU4BUWjgstr5MtiFbr68eoLXRZA8CzwHwkePcGhDVg6i6BJuCONpoY1a2YQFbUGIyNTZsxY1ySDJgArKxcefHAPnTs/iCRp2Lr1aXbseBGt9t7aIehTePiPlJdn4+jYhsGD39N3OXrTp88/ADh37jfKyrIb/fg1NWWcPfsLAD16PNvox29uFAoFHTvOZMGCGLp2fRyACxeWUlNThp/fYIYP/0zPFQq6JMImodGZGhsR6u+MnaUpH87tycgurRrsWOYmRoQFuuBmZ4FWkricUcza44m8uyqcaZ/t5uXFx2q3PRiVSY1ans73yUO9cLA200kNgzp64uFgSXFFDVvCU+p1H0mSWHdCbgg+rrvvPU/jEwThFvJjoPCSPP3If5S+q9E/Y3OYsAHcukNlHqwZJq/Upw8pe6CqACzdwGeQfmoQ9Er+cPcbZ878QmzsNjIzz1BamtkkAwNDp1ZXs2rVVGJi1mNkZMaMGesNshn43TA2NmPixMU88IC8CMKJE1+yYsUEqqvvvZdnY9Noajh+/EsA+vV7A2Njc/0WpEe+vgPw8uqJRlNd2zepMf3119tUV5fg6NiGwMARjX785srCwoFx435k/vxDeHh0xcOjG9OmrW6Wq0m2ZGIaHWIa3VVVNWreXHaSwR09GdfdT6f7jkorxM7CtHZFr6oaNdVqLXaWpjo9zu3kFFcSmVLAhZQCIlMKSMkro1cbV96dGQbII642n05mYg+/e1px7nZ2nkvl880ROFiZsfjZwZiZ3D480koSW8NT2HYmhQ/m9MDeSjfBlyDcQKuB4gTIi5RP5o4QPFuehtOcnfgQDr8BfiNhynZ9V2M4KvJgZX8oiAGHIJh5CCxdGreG7Q9D1B8QuhCGNP4HC0G/ystzWLp0NJmZ4TfcplAosbR0wcbGA2trD6ysXJEkDSpVJSpVBWp1JSpV5ZXzClSqSpRKYzw8uuDl1RMvrx54eoZhZtaMV5u8C2p1FatWTSE2dhvGxubMnLmRgIDh+i5Lp6Ki1rB+/UOo1ZW4unZi1qzN2Nv76rusOzp3bjEbN87DxsaT555LwNi4Zb8PjI5ex6pVUzA3t+fFF1MxNb2/mQf1lZx8kN9/HwRIzJ69lTZtRjfKcQWhuRBhEyJsukqt0XIwKpP/bbvAo0OCGdf9/v8zrlJpWLz/EuuPJ9Lex4FPHurdINPl7kVxRQ1lVSq8GmH5erVGyyPf7ie7uJLnx3RidNeGG80lCDclSVCRDbkXIO/ClXDpAuRfBHVl3W2NLaDdLAh9Bty66afehrasF2SegKHfQ8iT+q7GsJSkwop+cpNp164wba/c96cxqKvk1dNqSmHmYXl6mNBiFBYmsmTJCAoKYrG0dMbLqwelpZmUlWVSXp6DJGl1cBQFLi7ta8Mnb++euLp2RNnCphuqVJWsXDmR+PhdGBtbMGvWZlq3HqLvshpEevopVqwYT1lZFlZWrsycuRFvb8NdtVqSJBYt6kRu7kWGDv2Ivn3/oe+S9E6r1fDdd+3Jz7/M8OGf07v3iw1+zJqaMhYt6kxRUSJdujzK+PE/N/gxBaG5EWETImySJAnFlRXgftsXw4oj8QC8PL4zw0N87nm/F5Lz+XxLBBkFFQAM6+zNwtEdMb/DqJ7m6lBUJlUqDYM7emJspCQl99bDuZ1tLbA0a1lvfAUdkSQoS4f8KCiIls/zr5xX5d/8Psbm4NgenDtC7jnIjbh2m3sPCF0AQdPl7e5Eq4ayDLD2NNxeMaXp8KM3oIAn08Fa9ES7QcFlOXCqzJVfR+fO4B527eTUvmFe39j1sGky2PjA40mgELP9W4rs7AssWTKCsrJM7Ox8efDBXTg5ta29XavVUFGRS1lZ1pUAKovy8hyUSiNMTCwxNrbAxMTihss1NWWkp58iPf0E6eknKS5OvuHYZmZ29Ov3Or16vdAipitptWqWLh1FQsIeTEwsmT17K35+g/RdVoMqLk5lxYrxZGWdw9TUmmefjcXa2l3fZd1UbOw2li0bg6mpDS++mIq5uZ2+SzII4eE/sWXLE9jaevPccwkNPt1q69ZnOH16EXZ2rXj66QuYmbW8z4iCcL9E2ETLDpuqVRreWXmaKb38CQt0RZIkftgdzfoTiSgV8NrELgzq6HlX+6yqUfPrvktsPJUEgLONOc+P6USPNq4N8AiarhH/3nrT6xXAs6M7MrSz9x2n2wkCmhp5FbHE7dcCpppbBZkKcAgE5051T/YBoLzyuyZJkHEMzn0Ll1eDViVfb+4EHR+BkKfAvjVUFcpTrQouyb2Prl4uipPv49UfJm+VVzczNOcWwd5nwKM3zD6q72oMV/YZ2DwVihNvvM3YEly7XAmfeoBnL7D1A8V9jlzdPAMur4Lur8DAT+5vX0KTkZJymOXLx1FVVYSra0fmzt2Jjc3dvfeor7KyLNLTT5KWdoL09BNkZJyiuroEAHt7f4YP/5R27SbVfgnXHJ09+yubNj2KiYkVc+Zsx9e3v75LahQ1NWX8/vtAMjPP0KvXi4wY8bm+S7qp338fRHLyAXr3foXhw8XfwavU6iq+/NKP8vJsJk78g5CQBxvsWPHxu1myRJ5S+uCDe5rtqD9BaGgibKLlhk1aSeKDdWc5GJWJvZUpvy8cjIWpMZIk8b9tkWw7k4JSoeCfU7vSp139vv3JKCjn9aUnyC6Sp+WM7OLDE0ODsTIXzd7+btqnu255m4WpMa9NCqWDj2MjViQ0KUXx8tLwkb/Jo0+upzCSV6JyDJZHoDi1ly87BoGJZf2PUZEDF36B89/LU6rknYOFk9xE+k68+sPkbdBIvRXqbc0ISN4F/T+CHmJ6wm1JkvzaZ52CzJOQfQqyw28eaFq6gWdvOcTz7C03GzexqP+xasrkKXTqSph7uvlO4RTquHRpE2vWzECtrsLHpy+zZm3GwqLxesZJkpaIiCXs2fM6ZWWZAPj5DWLEiC9wdw9ttDoai0aj4ptv2lJUlMSwYZ/Sp8/L+i6pUcXH72LJkhEYG5vz3HMJ2NgY1sjW9PST/PxzT5RKE55/PgFbW299l2RQDh/+kL1738DVtSNPPRXRIKFwVVUxixZ1pKQkjbCwBYwe/Y3OjyEILYUIm2i5YdMf+y+z9FAsxkoFH87tSSdfp9rbtJLEpxvPs/dCOiZGSt6d0Z1uAXduEqvWaHnulyOUVql4YWwnurVu5MaygtCcaVQQvxHO/yCv2HWVtScEPwju3eVgyT4QjHTYfF+rgYStcP47SNp53XG95QDLIUg+dwwCx3ZQngVrhkNNCXgPlEc4mTR8b7R6qSqCRS7ydL/5l8Cx7R3vIvyNpJVHsWWdgqyT8innrPycXk9pDC6hcvDk2QdaDbl9s/Ho5bBttvz7+8jl+x8lJRi8s2d/Y/Pmx5EkDW3bjmXq1JWY3E0grkM1NWUcPvwRx459ilpdBSjo2vUxBg/+N9bWbnqpqSFcnYpkZeXG888n6O351hdJkvjtt/6kph6hR4/nGDXqK32XVMfq1dOIilpDSMjDTJz4u77LMThVVUV88YUPNTVlDdawe+PGRzh37jccHAJ46qnzmJoayPsXQWiCRNhEywyb/opM58P15wB4aVxnRoTe2JtJo9XywbpzRKcX8tHcnng73Tg6QZIkTsTm0LW1M6bG8jSczMIK7K1MsTA10H4tgtDUFCdCxE8Q+avc5BsABfiNgM5PQsDYxuuPVJIMlQXyyKnbjVjKPHEtcPIZBJO23t2oqoYSvQy2zZFDuXkX9V1N86GqlEc8ZR6Tp2FmHpNDxzoU4NED/EfLJ7eudXsybZgA8Zug1/9B3383avlC45IkiaNHP2HPntcACAl5mHHjfjKIJa+LipLZs+c1Ll5cCYCpqQ0DBvyTnj2fa/Irgmk0NXz9dRuKi1MYMeJLevV6Xt8l6UVCwl7+/HMoRkZmPPdcnMGMHiooiOPrr9sCEk8/fQFX1476Lskg7dr1CseOfYav7wDmzTug031fvryF5cvHAQrmzz9Iq1b9dLp/QWhpRNhEywubotMKefWP46g0Wqb2bs3jQ4Nvua1ao6WovAZn2xsbZuaXVvH1tkiOXc5m7oA2PDhQjBAQBJ1RlUPsOri4GFL2AVf+VFu5y72TOj0Odn76rPDOMo7D2uHylKtWD8DEzfoPnDZPl3tR9XwT+v1Xv7U0Z5IkB5NXg6e0A3UbzwNYuoL/KDl4cu8BvwXJPcgejgTnDvqpW2hwkqRl9+5/cOzYZwD06fMPhg790OB6JKWkHGHHjufJzAwHwNExkFmztuDsHKTnyu7d6dPfs3Xr01hbe/Dcc/GY3M0012ZEkiQWLx5EcvJBund/hjFjvtV3ScC1htRt2oxm9uyb9/UUoKQkja++ao1Wq+LRR4/pbGXBiop8Fi3qSFlZFr17v8zw4Z/qZL+C0JKJsImWFTbllVSx8OfDFJZX06utG29P64aRsv5v8E7H52JrYUJcVgk/7YmmolqNsVLBnAFtmN2/TQNWLggtgKSF1AMQtRgur5EDp6t8h10ZxTQeDODb/3pLPwprR4CqDFoNhYmb7q6Pjy6pq+A7F7mWOSfl5tZC4ylNh6QdkLgNknffvO+TUweYF9n4tQmNQqOpYePG+Vy4sAyAYcM+oU+fV/Rc1a1Jkpbz5/9k7943KCvLxN7ej0cfPWawq5jdjlpdxddft6GkJI1Ro76mR4+F+i5Jr5KS9rN48WCMjEx59tlY7Oxa6bWe8vIcvvzSF7W6iocf3o+f30C91mPoNm6cz7lzv9Ou3USmT1+nk7B67drZREYux9m5HU88cabFhrGCoEtiTeEWxt7KlN5Bbvi72vD6pNC7CprOJ+XzzopTPP/rEb7aeoGKajVBnvZ8+3h/ETQJwv0ojIUj/4SfW8PqB+TRTKpyeZW4Pu/CYwkwdRe0ndK0giYArz4wZYfcsyllD2ycIE+50oeUvXLQZO0lmk/rg40XdHoUxq+FZ/Jg2j551Tmn60YxdZint/LqS6tVExGxlF27XqGkJE3f5TQZ1dUlLFs2hgsXlqFUGjNx4mKDDpoAFAoloaEP89RT53F0DKSoKImlS0dTXX2rFT8N15kzP1NSkoatrTdduz6m73L0zs9vEH5+g9Foajh06H19l8PJk9+gVlfh5dUDX98B+i7H4PXp8yoAMTEbWLNmBhUV+fe1v6ioNURGLkehMGLixMUiaBIEHREjm2g+I5ue/fkwWUUVN73Nw8GK/z3aF5CHD1fUqLEyu7sPrRXVat5YeoKY9CLMTIyYN6gtE3r431VgJQjCFRV58hLvUUvkaUZXmdpC0Axo/xB49W0+TZLTDsG6UXKI5jcCJmwA4xun5zaoXY/DhZ8hdAEMEavLGJSSZCi4LE+3VBrpu5qb0mrVXLiwjIMH/0NBQSwAZma2DB/+OV26PGJw08AMSVlZFkuXjiYr6ywmJlZMn76GwMCR+i7rrhQUxPPLL72pqMglIGA4s2ZtMYgeU/WhUlXy9deBlJZmMHr0d4SFPa3vkgxCcvIhfv99AEqlCc8+exl7ez+91FFTU86XX7aisrKAadNW0779VL3U0dQcO/YFe/b8A61WjbW1BxMm/EZg4Ii73k95eQ7ffdeBioo8+vd/iwce+E8DVCsILZMIm2g+YdO8b/4is/DmYZO3oxW/LBh038cor1Zx4GImXf2dcXcwgGa/gtCUqMohbiNEL4XkXddW71IowXc4dHgYAibob5pZQ0s7CGtHgbpC7tUzfj00VsNdrQZ+8ISKHJi6G3yHNs5xhSZPHsm0hEOH/ktBQRwAFhZO2Np6k519HoCAgOGMHfsj9va++izVIOXnX2bJkpEUFSViaenCnDnb8PTsru+y7kl6+ikWLx6ESlVBSMhDTJjwe5MIGY8f/4qdO1/Azq4VCxdebvKNznXpzz+HkZCwhy5dHmP8+J/0UsOJE1+zY8dzODgEsHDhJZQGGrgbooyM06xbN5f8/EsAhIUtYNiwj+u9yqJGU8OaNTOIidmAm1tnHn/8FEa6XM1XEFo4ETbRfMKm9IJyNBrtTW8zNlLi6SiW7hSERqdRyf1popdC3AY5aLnKtSsEz4Z2s8DaU28lNqrU/bBuNKgr5T5U49aAWSP83U07DCv7g5k9PJ3T9KYjCo1Oo1FdCZn+Q2FhAgCWls707v0KYWHPYGJiyfHjX/LXX/+HWl2Fqak1Q4d+TPfuT6JQiC4FAGlpJ1i+fCwVFXk4OAQwd+4OHB0D9V3WfYmN3cby5eORJA39+r3JkCGGvdCASlXBV1+1prw8m7Fjf6Rbt8f1XZJBSU09yq+/9kWhMOLZZy/j4NC6UY+v1ar5+us2FBUliVFn90ilqmDPntc5efJrAJyc2jJp0hK8vG7el1GlqiAubifR0Wu5fHkz1dUlKJUmPP74KdzdQxqzdEFo9kTYRPMJmwRBMCBVRXD0bYhZDpV51663aw3Bc+SAyenWK0E2ayl/wfqxcvDmEgKTtsr9fBrS/lcg/DMInguj/2zYYwkGS5K0pKQcoaqq8LbblZSkcfTopxQVJQJyyNSnz6uEhT2Dqal1nW3z8y+zadOjpKQcBsDPbzDjx//c6B9aDc3ly1tZs2Y6KlUFHh7dmDNnG1ZWrvouSyfOnv2VTZseBWD06G8JC3tGzxXd2rFjn7Nr18vY2/uzcOGlJjP1rzEtWTKS+PidhIbOZ8KEXxv12JGRK1i7dhaWli688EKy6BV0H+Ljd7Fx43xKSzNQKIwYOPBt+vd/E6XSmOrqEi5f3kp09Fri4rajUl374s/a2oOhQz8kJOQhPVYvCM2TCJsQYZMgCDomSbBxIsRvkn+2dJX7MAXPkZd4bwLTLhpc1mk5cKrIBmtvmLwNXDo1zLEkCX5tA0Xx8kiqtlMa5jiCQdNq1axf/xCRkcvrfR8rK1f69HmV7t2fxtT01qODJUnLyZPfsGfP66jVlZiYWDJkyAf06LGwRY5yOnv2VzZvfgJJ0hAQMILp09fcENI1dQcOvMf+/e8ACmbMWEe7dhP1XdINamrK+eorfyoqchk//he6dHlE3yUZpLS0E/zySy8UCiMWLIjGyalxFr2RJIkff+xGVtZZBg16l4ED326U4zZnlZUFbNnyFFFRqwHw8uqBpaULCQm70Whqarezs/MlOHgK7dtPwdu7V4v8Oy0IjUGETYiwSRAEHYv8HXbOB6UJjF0FAWNBaazvqgxPcaI8pa4gRm6MPmG93CBa13IvwB+dwchMXgWtmX3oFe5Mo1Gxbt0coqJWo1Qa4+HRFbh16GtkZEJQ0ES6d3/qtiHT3xUUxLNp06MkJx8AoFWrfkyduhIbmxYyTRY4dOh99u17C4CQkIcYN+7nZjmaRpIktmx5kjNnfsLY2JyHHtqLj08ffZdVx5EjH7Nnz2s4OASwYEF0s3wddGXZsjHExm6jc+cHmTTpjwY/nlpdxc6dL3P69HeYmFjywgspWFo6NfhxWwJJkrhwYRnbti2gurq49nonp7YEB08hOHgKHh5dm0S/NUFo6kTYhAibBEHQoZIUWNwJakqg3/vQ8w19V2TYKgvkUWDph+RwbsQv0P5B3R7j2L/lKY2tx8GkTbrdt2DwNJoa1q6dRXT0OpRKE6ZNW027dhMa7HiSpOX06e/ZvfsfqFTl2Nn5MnfuTpydgxrsmIYiKWk/ixcPBqBv39cZMuT9Zv2BTqtVs3LlJC5f3oKFhSOPPHIEZ+d2+i4LgOrqUr76yp/KynwmTlwspgjdQUbGaX76KQyFQskzz0Q16L/XvLwY1qyZQXZ2BADDh39O794vNtjxWqri4lROnPgKMzNbgoOn4OLSvln/PRIEQyTGDAqCIOiKpIWdj8hBk0cvCHtV3xUZPgtHmLpLnmaoVcH2h+D4f+Spb7oSt0E+D5you30KTYJGU8Pq1dOJjl6HkZHplelODRc0ASgUSsLCnuGpp87j6NiG4uJkfv21L2lpJxr0uIbgwIF3Aeja9XGGDv2g2X+wUyqNmTJlBV5ePaisLODPP4eTl3dJ32UBcPLkN1RW5uPo2IZOnWbruxyD5+nZnaCg8UiSloMH32uQY0iSxNmzv/Hjj93Izo64sjrjDhE0NRA7Ox+GD/+UgQPfxtW1Q7P/eyQIhkiETYIgCLpybhGk7AVjCxi5WEydqy9jcxizDML+If985J+w+wl5Jb/7VZIMOWdAoYSAcfe/P6HJUKurWbVqCpcubcTIyIyZMzfStu3YRju+o2MAjzxyBE/PMCor81m8eDCXL29ttOM3tuTkgyQl7UepNGHAgP/TdzmNxtTUilmztuDk1JaSklR+/bUPqanH9FpTSUkax459CsDAge+gFP8X1cvAgf8C4MKF5eTmRut039XVJaxfP5dNmx5BparA338ITz11nsDAETo9jiAIgiER0+gQ0+gEQdCBwlj4IwTUlTD4f9D1WX1X1DSd/Rb+ek4eJeY7DAInyeHd308mV84VxlBdCBW58qp/fz8VxUJ+FHj1h5kH9f3ohEaiVlexcuUk4uJ2YGxszsyZmwgIGKaXWmpqyli9ehpxcTtQKIwYN+4nunSZr5daGtIffwwlMXEv3bo9ydix3+u7nEZXXp7L8uVjSU8/ibGxOVOnriQoaHyj1iBJEhERf7J9+3NUVxfj7BzM009fQKk0atQ6mrKVKycTE7OeDh2mM3XqSp3sMyPjNGvWzKSwMB6FwojBg/9Nv36viabUgiA0eyJsQoRNgiDcJ60GVvSHzGNyg+upu+WRNMK9idsEW2fKwZ2uDP0eQp7U3f4Eg6VSVbJixQQSEnZjbGzB7Nlb8PdvgMbzd0GjUbF582OcPy83Hn7ggf/Sr98bzWZaR0rKEX77rR9KpTHPPhuLvb2fvkvSi5qactasmUFs7FYUCiWjR39H9+6N83entDSTLVue5PLlzQB4eoYxefLSRltZrbnIzo7g++9DgKt9x/57z6GQJEkcP/4le/a8hlarws6uFVOmLDe4RvKCIAgNRYRNiLBJEIT7dPIjOPS6vKLawxfAtpW+K2r6ss/A2W+gukgOnW510qrA3BEsnK87udT92cYH3MPAgD/Ya7UaSkrSKCiIQ6k0xtW1o1iZ6B6oVBUsXz6OxMR9mJhYMXv2Vvz8Buq7LED+4Ll37xscOfIRAGFhCxk58stmMepkyZIRxMfvokuXxxg//id9l6NXWq2aLVue4uzZXwAYMOCfDBr0boMFi5IkERm5nG3bFlJVVYiRkSmDBr1Lnz6viOlz9+jw4Y/Yu/d1ADp1msOECb9iZGR6V/soLc1k8+bHiY2Vp84GB09m3LifsbBw0Hm9giAIhkqETYiwSRAMglYNKKCpffDKvQBLu4OmBkb8Bh3n6bsiwUBJkpbCwkQKCuJqT4WFV88T0Ghq6mxvbe2Bq2tHXF074ebWCVfXTri4tMfExEJPj8CwVVUVs2LFBJKTD2Bqas3s2dvw9e2v77JucPz4V+zc+QIA7dtPZdKkPzE2NtdvUfchLe04v/zSG4XCiGefvYyDQ2t9l6R3kiRx4MC7tQ3TQ0PnM3bsDxgZmej0OOXlOWzd+jTR0esA8PDoysSJi3F17ajT47RE5879zubNj6PVqvH3H8L06WsxN7e74/0kSeLcud/ZteslqqqKMDIyY8SIL+je/almM5JREAShvkTYhAibBOG+ZJ+BkhSwdJVPVm5gYn3rUSQaFRTFQf5FuZdO3kUoiIKCS3JDbdeu4NED3HvK57Z+hjsiRVMDS3tC7jloPQ4mbjTcWgW9KSpK5ty53zl//neKipJuuZ1SaYKDgz8ajYqiosSbbqNQKHFwCKB162EMHvyeGP10RVFRMsuWjSE39yKmpjbMnbvDoKeqREauYP36h9BqVfj6DmTcuJ+a7HSnpUtHExe3ndDQ+UyY8Ku+yzEo4eE/sXXrU0iSlsDAUUybtgpTU2ud7PvixdVs2/YMFRV5KJXGDBjwNv36va7zQKsli4/fxapVU6ipKcPNrTOzZ2/D1tbrltsXFSWxefMTJCTsBsDDoxsTJvyGm1unxipZEATBoIiwCRE2CcJdkyRI3Q/H/w2pf914u7E5WLpdCaCunNeUyuFS4WV56lN9WTiDew/w6ClPhTIyh5oSeX81pdddvnKurpRXHWs3u+GDnyP/hOP/AXMnmBcJVu4NezyhyVCpKomOXse5c7+RmLgPkP+rNTIyw9Ex8KYnW1uf2ilV1dWl5OZeJCcnkuzsC+TkyKeKirzaY1haujBq1P/o0GFGi/7GPD39FMuXj6O8PBtraw9mz96Ch0dXfZd1R4mJ+1ixYiI1NaUoFErat59Kv35v4O4equ/S6i09/SQ//9wThcKIhQsv4egYoO+SDM7ly1tYvXo6anUlnp7dmT17K1ZWrve8v+rqUjZvfpyLF+Xm1W5unZk4cXGT+r1pSjIzz7Js2WjKyrKwtfVmzpwduLp2qLONJGk5efJb9u59A5WqHGNjcwYNepfevV8SUxkFQWjRRNiECJsEod4kCZJ3wbF/Q8YR+TqlCbiEQFU+VOSAqvzO+zGxBqf24NThyvmVk6Yask5C5gn5POfc3QVT1/MfBcN+BBvvu7tfeRYceRsurZSbfJtYgrHljefG5hC7HiQNjFsNbafeW51CsyFJEhkZpzh79lciI1dQXV1ce5uf32C6dHmE4ODJmJhY3vP+y8uzSU8/xd69b5CbexGAtm3HMnr0d9jZ+ejkcTQlMTEbWLt2Nmp1Ja6unZg9e2uTeh5yciLZs+f12r4uAIGBo+jX7w2DnAL4d8uXj+Py5S2EhDzExImL9V2OwUpLO8GyZWOorMzHwSGAuXN33lMwV1lZwNKlo0hPP4lCYUT//m8yYMD/3XU/IeHuFBUlsXTpKPLyYjAzs2PmzI21veDy8i6xadOjpKbK74laterP+PE/4+TUVp8lC4IgGAQRNiHCJkG4I0mChC3ySKasU/J1RmbQ6TEI+0fdhtiqcjl0qsiB8uwrl7PlcOZquGTjU79RR+pqeYpa5skr4dMZ+XpTG7kZd53zK5erCuHMl3JwZWoLg76AjvPvfDxVJZz5Ak58AKqy+j837WbBmGX1315odvLyYoiOXseFC0vJzY2qvd7OrhWhofMJCXkYBwd/nR5To6nh0KEPOHTov2i1KkxNbRg69MMrfUGa/0qIV1d52rXrZUAiMHAkU6euxMysaf4fnp0dweHDH3Lx4kokSQuAj09f+vd/k8DAUQY5ci0jI5yffuqOQqFkwYJo8eH6DvLzL7NkyUiKihKxsnJl9uxteHp2q/f9S0sz+PPP4eTmXsTCwpFZs7bg49O7ASsWrldZWcDy5eNJTT2CkZEp48f/SnFxCgcOvItGU42pqTVDh37UYv4GC4Ig1IcImxBhkyDUIWnlXkSaavk87aA8VSz3nHy7sQWEPAXdXwFrT72Wekv50bBzvjxCCsBvBAz7CWxvMuJBkiBmhbyaXGmKfJ17GPT/EKy9QFUB6oqbnysUcpBlYtV4j+061dWlJCcfJCFhDyUlKXh59cLf/wHc3UObxQpXhkqSJLKyzhIdvY7o6HXk5UXX3mZsbE5w8BRCQ+fj7z+4wT905OZGsWnTY6SlHQPAx6cP48b9jItLcIMeV5+0WjU7drzAqVPfAtCt25OMHv1Ns5iuUlAQx5Ejn3D+/O+1DePd3EIYNOhd2rWboOfq6lqxYiKXLm2kU6c5TJ68RN/lNAllZVksXTqarKyzmJpaM336OgICht3xfoWFCfz55zAKCxOwsfFk7txdN0zlEhqeSlXJ+vUPEh29ts71gYEjGTPme+ztffVUmSAIgmESYRMibBJaoKoiOPYviN8s9zjSVF8Ll241bc3EGroshG4vyj2YDJ1WA+FfwJH/uzLKyQYGfiaPxro6SiDjGOx/8VooZeMjh0ztZspT6AyMRqMiI+MUCQl7SEjYTVracbRa9Q3bmZvb4+c3CD+/B/D3fwAXl/YGOTKiKZEkLampx4iOXkdMzLo6jb6VShNatx5Cu3aT6dBhGubm9o1e26lTi9i793VqasowMjKlf///o1+/15rd9Jrq6lLWrp1JbOw2QMGwYZ/Qu/dLze73u7Q0g2PHPuf06e9RXZma3K/fGzzwwH8MYtREVtY5fvihC6BgwYIonJ3b6bukJqO6uoSVKyeTmLgXpdKYCRN+p3PnObfcPifnIn/+OYyyskwcHFrz4IN7dD5SUqg/rVbDzp0vcfLk/zA3d2DkyC/p3PnBZvc3SBAEQRdE2IQIm4QWRNJC1J9w8B/y9Lb6sHCGkGeg6/Ng4diw9TWE/BjY+QhkyiM/8B0Gvd6Gc9/IfZlAHpnU4w05SLvHfjoNpbQ0g6iotSQk7CYpaT81NaV1bndwaI2//1AcHFqTmnqE5OQDVFeX1NnGysr1yoinrlhZuWJl5YKVlSuWli5YWbnccw+hlkClquDkyW85fvwLysoya683NragTZtRtGs3mbZtx9ZrSeyGVlycwtatT18JYsDJKYiBA9+mQ4cZzWKkW0lJOsuXjyUr6xzGxhZMnryE4ODJ+i6rQVVWFnDw4H85fvxzANq3n8rEiX9gYmKh17pWrZpCdPQ6OnacxZQpYhrx3dJoatiwYR6RkcsBGDbsU/r0efmG7dLTT7F06UgqKwtwde3I3Lm7sLHxaOxyhb+RJInMzHDs7f3FiqCCIAi3IcImRNgktBA552HvgmuNvR3bQb8PwM5P7r9UezKte7k5fFun1cCZr+DIW6Cuuu4GBXR8BPr+G6wN6w18YWECR458zLlzv9VOpwGwsHDE338IrVsPpXVrOWS6nlarJjPzDImJ+0hM3EdKymHU6srbHsvExPJK8OSKu3sovXq92KynYdWHRlNDePhPHDr0H8rKsgAwM7MjKGgc7dpNJjBwhEGGdJIkERm5gh07nqtduc7JqS39+79Fp06zm+xUs5SUw6xZM4PS0gysrFyZNWszXl499F1Wozl//g82bXoMrVaFl1cPZs7chLW1m15qyc6O4PvvQwAFzzwTiYtLe73U0dRJkpZdu16tDRJ79XqR4cM/rR25lpj4FytWjKempgwvr57MmbMNi6b4hY8gCILQYomwCRE2Cc1cVREcfUceySNp5VE8vd6Gbi/IYVJLUnBZHuWUcQRaPQADPwfXEH1XVUdubhSHD3/AhQvLkSQNAN7evQgKmkhAwDDc3UPvahqNWl1NevoJEhP3UVgYT3l5DuXluVRU5FJenlMnyLpeUNAE+vV7HW/vXjp5XE2FVqvm/Pk/OXDgXYqLkwGwt/dj4MB36NRpdpOZllZVVczJk99w/PjnVFYWAODgEED//m/RufNcjIxM9Fxh/UiSlsOHP+Svv95GkjS4uLRn9uyt2Nv76bu0RpecfJCVKydRWVmAnZ0vs2dvwdW1Y6PXsXr1dKKiVtOhw3SmTl3Z6Mdvbo4e/Yzdu18BoGPHWUyY8Bvx8TtZvXo6Gk01/v5DmDlzA6am1nquVBAEQRDujgibEGGT0ExJ0pUpc69emzLXdjoM+gxsvPVbmz5JWihNq/+KeI0kI+M0hw69T0zM+trrAgJG0L//Ww22BLokSdTUlFJeLgdPZWWZREQsqVODr+9A+vZ9jcDAkc26J4Ukabl4cTX7979Dfv4lAKytPRgw4P/o2vWxJhMy/V11dSmnTn3HsWOf1o50srf3o1+/NwkNfdigH1dZWTbr1z9IQsJuADp3nsuYMYta9Ifu/PxYli0bQ0FBLKamNkybtprAwBGNcuzc3ChOnfqOU6e+AySefvqCXsKu5igiYikbN85Dq1Xj7t6F7OwIJElDu3YTmTJlOcbG5vouURAEQRDumgibEGGT0AxIElRkQ1E8FCfI50m7rvUpcgiCId+A71D91incIDn5IIcO/Zf4+F211wUHT6ZfvzfvallsXcrNjebo0U+IiFiC9krDeDe3EPr2fY0OHaY12alYNyNJErGx29i37y2ys88DYGHhRL9+rxMW9oxBTpW7FzU15Zw+/T1Hj35MebkcPtva+jBq1NcGt8oZQELCXtavn0tZWRYmJpaMHv0tISEPN+vAs74qKvJZtWoyyckHUSiMGDXqa8LCnm6QY2m1amJiNnLq1LckJf1Ve33Xro8zbtyPDXLMlio+fherVk2hpqYMgJCQhxg//pdm9fdWEARBaFlE2IQIm4QmRlUJMcsh/+K1cKk4Aa6sWFSHsSX0fltufH2XIxjKy3PIyYmksrIAd/dQHBwCxAc9HcrLi2HnzpeIi9sOgEJhRKdOs+nX73WD6YFSUpLGsWNfEB7+Q+2KWPb2/vTr9zpdujzSLD4EXT+FxdTUhj59XqFXrxcwM2ue/xeoVBWEh//EkSMfUVaWiUJhxNSpK2jffqq+SwPklZ4OHHiPgwf/DUi4uHRg2rRVBvNvwlBoNDVs3vwE588vBqBnzxcYPvxTnTWCLyvL5syZnwgP/4GSkjQAFAolQUETCAtbgL//A+L/gwaQkRHOtm0LaN16KIMHv2cQKw8KgiAIwr0SYRMibBKakMoCWD8GMo/feJtCKU8Nsw8Au9Zg3wbazQJbn9vvsrKQ3NyL5OREkpNzkdzcSHJyImun3FxlYeGEt3dPvLx6XTnv0ehLvDcHlZUF7N//LqdPf4dWq0apNKZLl0fp2/cfNzT7NhSVlQWcOvUdJ058Vft74eraiZEjv8Tf/wE9V3fvMjPP8PPPvdBqVfTo8SwDB77TYlYWUqur2LLlKc6fX4xSacy0aWv0PsKppCSddevmkJx8AIAuXR5j1Kivms3oMl2TJInDhz9g3763APDzG0yfPq8SEDD8nkInSdKSmnqUU6e+IypqTe2oRktLF7p2fZzu3Z/Ezq6VTh+DIAiCIAjNlwibEGGT0ESUpMLaEVAQDWb20HE+2AVcC5fs/Oo9eqmkJJ3Dhz8kJmYdpaUZt9hKgaNjAObm9mRnR9y0kbSzczu8vXvh5haCnV0r7Ox8sbNrhaWls/jW+2+0WjWnT//A/v1v1zZsbtt2HMOHf4qTU1s9V1c/V0fFHDjwLlVVhYA85W/YsE9xcPDXc3V3R6Wq4IcfupKff4ng4MlMm7amxf3OarUaNmx4mAsXlqJUmjBjxnrath3T6HVIkkR09Dq2bn2Kioo8TE2tGTv2Bzp1mt3otTRFFy+uYv36h9BoqgF5emSXLo/QpcsjdwyHtFo1yckHiY5eR0zMBkpL02tv8/buRVjYAtq3n4axsVmDPgZBEARBEJofETYhwiahCciPhjXDoSwNrL1gyk5w7nDXuykpSefIkY8ID/+x9oMJgJ1dK1xdO+Li0gFX1464unbE2bld7YgCtbqa7OzzpKUdJz39BGlpxyksTLjlcYyNza+ET62wtW2Fvb0vzs7B+PoO0Nty3foUH7+LnTtfJDc3CgAXlw6MGPEFAQHD9FzZvamoyGf//n9x+vQiJEmDkZEZvXu/TP/+bzSZ5s1btz7D6dOLsLHx5KmnIlrMiKa/02rVrFs3h4sXV2FkZMrMmZsareE0QGFhItu3LyQ2dhsA7u6hTJ26CienNo1WQ3OQl3eJ06cXcf78H7VBMCgIDBxB166P07btuNoVCNXqKuLjdxMTs45LlzbVht8ApqbWtG8/jbCwBXrrGScIgiAIQvMgwiZE2CQYuIzj8tS5qgK50ffUXWB7d1MZSkszOHz4wzohU6tW/ejX7018fPpgbm5312WVl+deCZ5OUFBwmaKiZIqLUygry7zt/Zydg/HzG4Sf3yB8fQc26/ApL+8Su3a9TGzsVkCeijh48Ht06/ZEs+h3lJMTyY4dL5CYuBeQV28bOvQjOneeY9C9Ri5f3sLy5eMAmDt3V5MN/XRFo1GxZs0MYmLWY2xszuzZWxt8eqRGU8PRo59x8OB7qNVVKJUm9Ov3Ov37vylW3roPanUV0dHrOXPmpzoNva2sXOnUaQ6lpenExm6rbUIN8t+loKAJBAdPonXroeL5FwRBEARBJ0TYhAibBAOWuB02TQV1BXj0hIlbwNK53neXQ6aPCA//oTZk8vHpy6BB7zZYg1e1uprS0nSKi1NqA6ji4mQyMk7XrvZ1PWfndvj6DqoNoJpL+HTq1CJ27Hiuti9TWNhCBg58GwsLB32XplOSJHHp0iZ27XqpdrSbl1dPxoz5Dg+Prnqu7kZlZdksWtSJiopcevV6kREjPtd3SQZBo6lh1aqpXL68GRMTS+bM2Y6v74AGOVZS0gG2bn2avLxoQO41NGbMdzg7t2uQ47VU+fmxnD37K+fO/UZ5eXad22xtvWnXbhLBwZNp1apfswi/BUEQBEEwLCJsQoRNgoGKWgI754NWDX4jYfwaMLG64900GhUZGaeIjFzJmTM/olZXAQ0fMtVHRUU+KSmHSEraT3LyAbKyzgN1/wR5enYnMHA0bdqMxtOzu85WV2oskqRl7963OHLkQwACA0cxYsTnzf6DtFpdzfHjX3Lo0H+oqSlDqTRh+PDP6NFjocH0QpIkieXLxxIbuw03t8489tgJMYrjOmp1NStXTiQubgcmJlbMnbuTVq366mz/5eW57N79au0KalZWrgwf/jmdOs02mN+R5kijUREbu5Xo6HXY2HgRHDwZT8/u4jkXBEEQBKFBibAJETY1KTVlkHsess9AzlnIPQfqSrD2lHsZ3exk5QaG8q2tJEFRnBwgKU3kum52fn4RHHhZvk/wXBjxK1zpt3HjLiXy8mJISNhDQsJukpL2U1NTWnu7j0+fKyHTEIP7cFFZWUByshw+JSX9dcPIJ0tLZwIDRxIYOJqAgOEG31dHo6lh48ZHuHBhKQCDBr3HgAH/Z3DPe0MqLc1k27ZniInZAMgNxMeP/8UgVi48efJbtm9fiJGRGU88EY6r6933PWvuVKpKVqwYT0LCHkxNbXjwwd14e/e8r31KkpazZ39l9+5/XOknpKBbtycZMuT9ZjfSTxAEQRAEQZCJsAkRNhmsqkLIOg05V4KlnLNQGMvfR8LckUIJzh2h3RwIngM2Xg1S7h0VJ8GOeZB2oP736fYSDPxEfgzXKS3NJDFxLwkJu0lI2HPDinIWFo74+w+ha9fHad16aJMJO8rKsoiL20Fs7Dbi43dSXV1Se5tCocTbuxd9+rxKu3YT9VfkLVRVFbNq1RQSE/eiUBgxbtxPdOkyX99l6YUkSZw8+TW7dr2CVqvC3t6PqVNX4uXVQ2815eZG8eOP3VCrqxg58it69nxOb7UYOpWqgmXLxpCUtB8zMztmzdp0z1PqkpL2s2vXK2RmhgNyA/AxY76/7wBLEARBEARBMGwibEKETQZDq4Hs05C4A5J2QNZJkLQ3bmftBa5drp1MbaE8A0rToezK6erP5Zkgaa67swJ8h0L7ByFwEjTGylmSBBd/h7+eh5pSeeSSqQ1oVfIIp6vn1zMyg77/hu6vwN+CovDwH9m69Rmk6x6XkZEZvr798fcfSkDAMNzdQw26QXN9aDQq0tKOERu7jdjYbeTkXKi9rX//txg8+D2DeYwlJeksWzaa7OwITEysmD59baOu6GWoMjJOs3r1dIqKElEqTRg69CN69Xqh0cNPtbqaX37pRVbWOQICRjBnzvYmE8DqS01NGUuXjiIl5TAAgYEjGTDgbXx8etfr/nl5MezZ8xqXLm0CwNTUhsGD36NHj4WiP5AgCIIgCEILIMImRNikV2UZkLRLDpeSd8srrl3PPhBcu8qhkltXcA0FS9f671+rgfIsudF21B+QfujabSZW0GYytH8IfAZDQ/QGqsiBXU9A/Eb5Z8++MGox2AfU3U6S5FDsavikMAYTixt2d+nSJlaunIQkaXF3DyUgYAStWw/Dx6cPJjfZvjkpLk7l2LHPOHHiKwCCgsYzadKfmJnp999sTs5Fli4dSUlJGlZWbsyZs80gG2PrS1VVEZs2PUZ09FpAft0mTPgNCwvHRqth165XOXbsUywtnXnqqQhsbDwa7dhNWXV1KTt2vMD584trw+3WrYcyYMDb+Pr2v+l9ystz2L//X4SH/4gkaVAojOje/SkGDnwHKyuXxixfEARBEARB0CMRNiHCJp2RJKjIhvxoKE0BVYW8itqtzoviIe9CnV0UG9uSZBdEEmakFKdRVpGPkZEJSqUxSqV8/vefbWw8adWqH61a9cPTMwxjY7Nb11icKDfejvpD7p10lbUXePQCG58bT1bu9xZExW2EXY9DZa48munqSKV7DLXS00/y+++DUKsr6dLlMcaN+7FFjs44f/4PNm9+Ao2mGheX9sycuQlHx4A737EBJCUdYMWKCVRXF+PkFMTcuTuwt/fTSy2GTJIkTp36jl27XkKjqcHOrhVTp67E27tXgxxPpaogNzeK7OwIMjPPcOrUd4DEzJkbCQoa3yDHbM4KCxM4dOgDzp//He2VUZh+foMYMOBt/PwGoVAoUKkqOX78Cw4f/rC2Z1xQ0ASGDv0IZ+cgfZYvCIIgCIIg6IEImxBh013TquXQJj8aCmKg4Lrz6uK72lWRFpKs/Uk2siWpLJeiv/UeultGRmZ4eYXRqlV/WrXqh49Pn5s3JpYkyDwhh06XVsj9oW5FaQxWnnLw5NwR3LqDe3dw6nDzpt3VJfDXC3DxN/ln504w6k9wDbnnx1VQEM8vv/SmoiKXwMBRzJy5EaNbNAxvCdLSTrBy5STKyjIxN3dg2rTVtG49pFGOrdWqSU4+REzMesLDf0CjqcHHpy8zZ240+Abm+paZeYbVq6dTWBiPUmlMt25P0bnzHLy8et5TcCpJEkVFSWRnR5CdHUFOjnyen39jb7euXZ9g3LgfdPRIWqaiomQOH/6Qs2d/QatVAdCqVT+CgiZw4sRXlJSkAeDh0Y3hwz/Dz2+gPssVBEEQBEEQ9EiETYiw6bY0Ksi/eKVRdzhkh0NuBGiqb7q5hIIsSy/SjWyoURijQkENUCOBCgmVVkuNVkONVk1xZRHFFXl17q9QGOHp2Q1f30H4+Q3E0bENWq36ykmFVqtGo1HV/qzRqMjPv0RKymFSUg5RXp7zt4oUuLl1wtd3EIGBI/HzG3TjdDN1NaT+JTcfL02VR2WVpsqnsoy/9Xy6jpGZPK3Prfu1AKoiF3bOh5JkQAFhr0Kf9+B2o63uoKIij19+6UNBQSweHl2ZN+8Apo3Ra8rAlZZmsGLFRDIyTqFQGDFixOf06PFsg4z2UqkqiY/fRUzMei5f3kxl5bXpnsHBk5k0aUmzn8aoK9XVJWze/AQXL66svc7e3p+OHWfRqdMsXF073vb+JSVpJCTsJTFRPv29Of5VlpbOuLmF4ObWGU/PMDp0mI6yIabKtkDFxakcOfIxZ878hOa6/wvs7FoxZMgHdOw402D6qQmCIAiCIAj6IcImRNhUS5LkYCnzpNyoOzsccs/fPFgytgCHIHBsh+QYRLpkTFReHNFJBygqSqr3IZVKYzw9u9eGSz4+fTEzs7nH8iUKCuJISTl0JXw6TEFBbN2yjc3x8xtEYOAoAgNH4ujY5vbhhFYt93wqTZVXk8s9d+25ud0oLjt/GLkYvG/e16S+VKpK/vhjCGlpx7Cz8+Wxx45jbe1+X/tsTtTqKjZvfoKIiD8B6NLlUUaP/vb2UynrqbKykMuXtxATs574+J2oVBW1t1lYOBEUNI527SbTtu0Y8cH6LkmSRFzcDi5cWEJMzIY6z62ra0c6dpxFx44zcXBoTWVlIUlJf9UGTPn5l+rsS6k0wdW1A25unXF17YybWyfc3DpjZeXWIqeZNqbS0gyOHPmYuLgdhIbOp1ev5zE2Ntd3WYIgCIIgCIIBEGETImwCIC8S9r8kN+n+OzM7cOsGrt3k0TuuXdHa+pKadoyoqDVER6+jtDS9dnNjYwv8/AZiaemMiYkVJiZWmJpeOzc1tcbExApLS2e8vMIadJROWVkWKSmHiY/fTVzcdkpKUuvc7uDQ+krwNAp//8GYmFjWb8eSFooS5OAp6/S1AEpVDh0fgcFfyCvO3QetVsPq1dOIiVmPubkDjzxyBBeX4PvaZ3MkSRLHjn3Onj3/QJK0+Pj0YejQj7C398Pa2qNeo1kqKwvIyjpX55SbG1VnxT87u1a0azeJdu0m0qpVP7Gilo7U1JRz+fIWIiOXExe3HY2mpvY2B4fWFBYmcv2UOIVCiYdHN/z9h9C69RB8fPqKUWWCIAiCIAiCYGBE2EQLD5sqcuHoOxDxgxygGJnKK6a5dZcDJrduYB+ARqsmNzeKrKyzpKYe49KlDXWmrJma2tC27Vjat59KYODI+oc2jUiSJHJzo4iL205c3HaSkw/V9h0BMDGxJCBgBO3aTaRt27F3v1qWpAV1pbzKnQ5q3bHjBU6e/B9GRqY8+OCeW67+JMji4nawZs1Mqq8bcSY3kPfCzq5VnZO5uT25udFkZZ0lK+vcDSHkVa6unWjXbiLt2k3C3T1UjJRpYJWVhcTErCcycjmJifuQJC0Azs7BteGSn9+gm/dhEwRBEARBEATBYIiwiRYaNmlq4OzXcPzf16aDtZkCAz6mxtKN7OwIsrLOkpl5lqysM+TkRNYZcQBgbu5AUNB42refSuvWQ5vc9Inq6lKSkv4iNnY7cXHbKC5Oqb1NoTDCz28g7dpNIihoAnZ2Po1a27Fjn7Nr18sATJmygo4dZzTq8Zuq/PzL7Nz5Ejk5kZSUpNUZmXQnDg6tcXcPxc0tFHf3UDw8umBr692A1Qq3U1aWRWbmGdzdQ7Gx8dR3OYIgCIIgCIIg3AURNtHCwiZJgvhNcOAVKIqTr3PtQk7Ic1zIjeXSpQ3k5cXUjii4npmZHR4eXXB373Kl2fbgZrMimiRJZGWdIyZmPTExG8jJuVDndk/P7gQFTcTPbxDu7iE6n/p3dVWtpKT9JCXtIyJiCQDDhn1Cnz6v6PRYLYVWq6GsLJPi4pQbTpWV+Tg5tcPdPfRKwNQZc3M7fZcsCIIgCIIgCILQLIiwiWYSNqUfkadwSRrQauTG1pLmys9XLmtUEP0npOwDoMjMmUj3gVzIvXxDuGJt7Y67exc8PLpeOe+Cvb1/i5lGVFAQR0zMRmJi1pOaepS6y6grcHYOuvLcdK0N4CwsHOq9fzlcSrwSLsmnv0/l6tHjWUaO/KrFPOeCIAiCIAiCIAhC8yDCJppJ2LTIHSqy77hZuRYuao2JNHMjtfhaU2+l0oQ2bUbTseNM/PwGiRXPrlNWls2lS5uIjd1CRsbpWy61bm/vj5tbJ4yNLVAolLUnuUH1tcvV1SWkpBy+IVxSKk3w8uqBn98g/P3l3jQiaBIEQRAEQRAEQRCaGhE20UzCplWDoTIfFEagNAKlsXxZYYRWoSC2vJjwogziSvOQakfpKPDzG0SnTrMJDp5yVyNzWjK5l8xZMjPPXOlrdYaiosS73o9SaYK3d098fQfh5zcQb+/emJref3NxQRAEQRAEQRAEQdAnETbRTMKmmygpSePMmZ85e/YXSkrSaq/39OxOx46z6dBhOra2XnqssPmorCwkK+sceXkxaLVqJEl75aS57rIWrVaDUmmMl1cPfHx6G+SqfYIgCIIgCIIgCIJwP0TYRPMKm7RaDXFxOwgP/4HY2K21jb4tLJwIDZ1H166P4+wcpOcqBUEQBEEQBEEQBEForoz1XYCgGyUl6Zw9+wtnzvxcpxeQr+9AunV7kuDgSRgbm+uxQkEQBEEQBEEQBEEQWgIRNjUDlZUF/O9/rdFoagCwsHAkJORhunV7AmfndnquThAEQRAEQRAEQRCElkSETc2AhYUjAQEjqKoqolu3J2jffqoYxSQIgiAIgiAIgiAIgl6Ink00j55NanU1xsZm+i5DEARBEARBEARBEIQWTqnvAgTdEEGTIAiCIAiCIAiCIAiGQIRNgiAIgiAIgiAIgiAIgs6IsEkQBEEQBEEQBEEQBEHQGRE2CYIgCIIgCIIgCIIgCDrTbMKmb7/9Fj8/P8zNzenZsycnT57Ud0mCIAiCIAiCIAiCIAgtTrMIm1auXMlLL73EO++8w5kzZwgJCWHEiBHk5OTouzRBEARBEARBEARBEIQWRSFJkqTvIu5Xz549CQsL45tvvgFAq9Xi4+PDs88+y+uvv37D9tXV1VRXV9f+XFJSgo+PD8XFxdja2jZa3YIgCIIgCIIgCIIgCM1Nkx/ZVFNTQ3h4OEOHDq29TqlUMnToUI4dO3bT+3zwwQfY2dnVnnx8fBqrXEEQBEEQBEEQBEEQhGatyYdNeXl5aDQa3Nzc6lzv5uZGVlbWTe/zxhtvUFxcXHtKTU1tjFIFQRAEQRAEQRAEQRCaPWN9F6APZmZmmJmZ6bsMQRAEQRAEQRAEQRCEZqfJj2xydnbGyMiI7OzsOtdnZ2fj7u6up6oEQRAEQRAEQRAEQRBapiYfNpmamtKtWzf27t1be51Wq2Xv3r307t1bj5UJgiAIgiAIgiAIgiC0PM1iGt1LL73Eww8/TPfu3enRowdffvkl5eXlzJ8/X9+lCYIgCIIgCIIgCIIgtCjNImyaMWMGubm5vP3222RlZREaGsqOHTtuaBouCIIgCIIgCIIgCIIgNCyFJEmSvovQt5KSEuzs7CguLsbW1lbf5QiCIAiCIAiCIAiCIDRZTb5nkyAIgiAIgiAIgiAIgmA4RNgkCIIgCIIgCIIgCIIg6Eyz6Nl0v67OJCwpKdFzJYIgCIIgCIIgCIIgCA3LxsYGhULRYPsXYRNQWloKgI+Pj54rEQRBEARBEARBEARBaFgN3bNaNAgHtFotGRkZDZ7sNaSSkhJ8fHxITU0VTc4NmHidmgbxOjUN4nVqGsTr1HSI16ppEK9T0yBep6ZBvE5Ng3idGoYY2dQIlEol3t7e+i5DJ2xtbcU/wCZAvE5Ng3idmgbxOjUN4nVqOsRr1TSI16lpEK9T0yBep6ZBvE5Ni2gQLgiCIAiCIAiCIAiCIOiMCJsEQRAEQRAEQRAEQRAEnRFhUzNhZmbGO++8g5mZmb5LEW5DvE5Ng3idmgbxOjUN4nVqOsRr1TSI16lpEK9T0yBep6ZBvE5Nk2gQLgiCIAiCIAiCIAiCIOiMGNkkCIIgCIIgCIIgCIIg6IwImwRBEARBEARBEARBEASdEWGTIAiCIAiCIAiCIAiCoDMibBIEQRAEQRAEQRAEQRB0RoRNBuSDDz4gLCwMGxsbXF1dmThxIpcuXaqzTVVVFQsWLMDJyQlra2umTJlCdnZ2nW2ee+45unXrhpmZGaGhoTc9liRJfPrpp7Rt2xYzMzO8vLz473//21APrVlprNfpX//6FwqF4oaTlZVVQz68ZqMx/z3t3LmTXr16YWNjg4uLC1OmTCEpKamBHlnz0piv06pVqwgNDcXS0hJfX18++eSThnpYzY4uXqfz588za9YsfHx8sLCwIDg4mK+++uqGY+3fv5+uXbtiZmZGYGAgv//+e0M/vGajsV6nzMxMZs+eTdu2bVEq/7+9ew+Kqn7DAP4srIpgaDoIKF6gBsxLiDaYOl5QEGfETEcj1NASDYUJLHVMmZBmytFRaUjNaSjMWyZq3iY15aKJ6CSuCQqC4mVM8FKBkLri7vv7o2FzA39hnHOQ3eczs3949uv3vO88cxb2Bc46ID4+Xov2bIZWOe3cuRMhISFwc3ODq6srBg4ciIMHD2rSoy3QKqdjx45h8ODB6NChA1q3bo0ePXogOTlZkx5tgZZfn2rl5ORAr9c/8fsNqp9WWWVnZ9f7Hqq8vFyTPulvHDY9Q44cOYKYmBicOHEChw4dQk1NDUaNGoU///zTsmbu3LnYu3cv0tPTceTIEdy4cQMTJkyos9c777yD8PDwJ54rLi4OqampWLFiBYqKirBnzx4EBgaq0pet0SqnefPmoayszOrRs2dPTJo0SbXebIlWOV2+fBnjxo3DiBEjcObMGRw8eBB37typdx+qS6uc9u/fjylTpiA6OhoFBQVYu3YtkpOTsXr1atV6syVK5JSXl4eOHTti06ZNOHfuHBYvXowPP/zQKoPLly9jzJgxCAoKwpkzZxAfH4+oqCi+QW4grXIyGo1wc3NDQkIC/P39Ne3RFmiV09GjRxESEoIffvgBeXl5CAoKwtixY2EwGDTtt7nSKicXFxfExsbi6NGjKCwsREJCAhISEvDll19q2m9zpVVOtSoqKhAZGYmRI0dq0p8t0TqrCxcuWL2P6tixoyZ90mOEnlm3bt0SAHLkyBEREamoqJAWLVpIenq6ZU1hYaEAkNzc3Dr/PzExUfz9/escP3/+vOj1eikqKlKtdnuiVk7/dObMGQEgR48eVax2e6JWTunp6aLX68VkMlmO7dmzR3Q6nTx8+FD5RmycWjlFRETIxIkTrY6lpKSIl5eXmM1mZZuwA43NqdacOXMkKCjI8u8FCxZIr169rNaEh4dLaGiowh3YB7VyetywYcMkLi5O0brtjRY51erZs6ckJSUpU7id0TKn8ePHy9SpU5Up3M6onVN4eLgkJCQ0+Pt3ejK1ssrKyhIA8scff6hWOzUMf7PpGVZZWQkAaN++PYC/Jrk1NTUIDg62rOnRowe6du2K3NzcBu+7d+9e+Pj4YN++ffD29kb37t0RFRWF33//XdkG7IRaOf1TamoqfH19MWTIkMYVbKfUyql///5wcHBAWloaTCYTKisrsXHjRgQHB6NFixbKNmEH1MrJaDTCycnJ6ljr1q1x/fp1XL16VYHK7YtSOVVWVlr2AIDc3FyrPQAgNDS0Ua+d9kytnEhZWuVkNptRVVXFLP8jrXIyGAw4fvw4hg0bplDl9kXNnNLS0lBaWorExEQVKrc/al9Tffv2haenJ0JCQpCTk6Nw9dQQHDY9o8xmM+Lj4zF48GD07t0bAFBeXo6WLVuiXbt2Vmvd3d2f6m9QS0tLcfXqVaSnp2PDhg1Yv3498vLyMHHiRCVbsAtq5vS4Bw8eYPPmzZgxY0ZjS7ZLaubk7e2NH3/8EYsWLUKrVq3Qrl07XL9+Hdu2bVOyBbugZk6hoaHYuXMnMjIyYDabUVxcjJUrVwL46/4z1HBK5XT8+HF89913mDVrluVYeXk53N3d6+xx9+5d3L9/X9lGbJyaOZFytMxpxYoVqK6uxhtvvKFY/fZCi5y8vLzQqlUrvPLKK4iJiUFUVJTifdg6NXMqKSnBwoULsWnTJuj1etV6sBdqZuXp6Yl169Zhx44d2LFjB7p06YLhw4fj9OnTqvVD9eOV8oyKiYlBQUEBjh07pvjeZrMZRqMRGzZsgK+vLwDgq6++Qv/+/XHhwgX4+fkpfk5bpWZOj/v+++9RVVWFadOmqXoeW6VmTuXl5Zg5cyamTZuGiIgIVFVV4aOPPsLEiRNx6NAh6HQ6xc9pq9TMaebMmbh06RLCwsJQU1MDV1dXxMXFYcmSJXBw4M9dnoYSORUUFGDcuHFITEzEqFGjFKyOajGn5kGrnLZs2YKkpCTs3r2b9y35D7TI6aeffkJ1dTVOnDiBhQsX4sUXX0RERERjyrY7auVkMpkwefJkJCUlWd47UeOoeU35+flZvZ8dNGgQLl26hOTkZGzcuLFRddPT4XfYz6DY2Fjs27cPWVlZ8PLyshz38PDAw4cPUVFRYbX+5s2b8PDwaPD+np6e0Ov1Vi+WL730EgDg2rVrjSvejqid0+NSU1MRFhZW5yf+9O/UzmnNmjVo27Ytli9fjoCAAAwdOhSbNm1CRkYGTp48qVQbNk/tnHQ6HZYtW4bq6mpcvXoV5eXllg9F8PHxUaQHe6BETufPn8fIkSMxa9YsJCQkWD3n4eFR55MGb968CVdXV7Ru3VrZZmyY2jmRMrTKaevWrYiKisK2bdvq/Jkq/TutcvL29kafPn0wc+ZMzJ07F0uWLFG6FZumZk5VVVU4deoUYmNjodfrodfr8fHHH+OXX36BXq9HZmamqr3Zmqb4GhUYGIiLFy8qUj89haa+aRT9zWw2S0xMjHTq1EmKi4vrPF9707Tt27dbjhUVFT31jXIPHjwoAOTixYuWY7U3n75w4YIyzdgwrXKqVVpaKjqdTvbu3atI/fZCq5zef/99CQwMtDp248YNASA5OTmNb8TGaX09Pe6tt96SgQMH/ufa7YlSORUUFEjHjh1l/vz59Z5nwYIF0rt3b6tjERERvEF4A2mV0+N4g/Cnp2VOW7ZsEScnJ9m1a5eyTdiBprieaiUlJUm3bt0aVb+90CInk8kk+fn5Vo/Zs2eLn5+f5OfnS3V1tTrN2ZimvKaCg4Nl/PjxjWuAnhqHTc+Q2bNnS9u2bSU7O1vKysosj3v37lnWREdHS9euXSUzM1NOnTolAwcOrPNmqaSkRAwGg7z77rvi6+srBoNBDAaDGI1GEfnrBbNfv34ydOhQOX36tJw6dUoGDBggISEhmvbbXGmVU62EhATp1KmTPHr0SJP+bIVWOWVkZIhOp5OkpCQpLi6WvLw8CQ0NlW7dulmdi+qnVU63b9+WL774QgoLC8VgMMh7770nTk5OcvLkSU37ba6UyCk/P1/c3Nxk6tSpVnvcunXLsqa0tFScnZ1l/vz5UlhYKGvWrBFHR0c5cOCApv02V1rlJCKWa6x///4yefJkMRgMcu7cOc16bc60ymnz5s2i1+tlzZo1VmsqKio07be50iqn1atXy549e6S4uFiKi4slNTVVnnvuOVm8eLGm/TZXWr7uPY6fRvf0tMoqOTlZdu3aJSUlJZKfny9xcXHi4OAghw8f1rRf4rDpmQKg3kdaWpplzf3792XOnDny/PPPi7Ozs4wfP17Kysqs9hk2bFi9+1y+fNmy5tdff5UJEyZImzZtxN3dXaZPny6//fabRp02b1rmZDKZxMvLSxYtWqRRd7ZDy5y+/fZbCQgIEBcXF3Fzc5PXXntNCgsLNeq0edMqp9u3b8urr74qLi4u4uzsLCNHjpQTJ05o2GnzpkROiYmJ9e7xz5/eZ2VlSd++faVly5bi4+NjdQ76/7TMqSFrqH5a5fSk18Vp06Zp12wzplVOKSkp0qtXL3F2dhZXV1cJCAiQtWvXislk0rDb5kvL173Hcdj09LTKatmyZfLCCy+Ik5OTtG/fXoYPHy6ZmZkadkq1dCIiICIiIiIiIiIiUgBvEE5ERERERERERIrhsImIiIiIiIiIiBTDYRMRERERERERESmGwyYiIiIiIiIiIlIMh01ERERERERERKQYDpuIiIiIiIiIiEgxHDYREREREREREZFiOGwiIiIiIiIiIiLFcNhERERERERERESK4bCJiIiIqBGmT58OnU4HnU6HFi1awN3dHSEhIfj6669hNpsbvM/69evRrl079QolIiIi0giHTURERESNNHr0aJSVleHKlSvYv38/goKCEBcXh7CwMDx69KipyyMiIiLSFIdNRERERI3UqlUreHh4oHPnzujXrx8WLVqE3bt3Y//+/Vi/fj0AYNWqVejTpw9cXFzQpUsXzJkzB9XV1QCA7OxsvP3226isrLT8ltSSJUsAAEajEfPmzUPnzp3h4uKCAQMGIDs7u2kaJSIiImoADpuIiIiIVDBixAj4+/tj586dAAAHBwekpKTg3Llz+Oabb5CZmYkFCxYAAAYNGoTPPvsMrq6uKCsrQ1lZGebNmwcAiI2NRW5uLrZu3YqzZ89i0qRJGD16NEpKSpqsNyIiIqL/Ryci0tRFEBERETVX06dPR0VFBXbt2lXnuTfffBNnz57F+fPn6zy3fft2REdH486dOwD+umdTfHw8KioqLGuuXbsGHx8fXLt2DZ06dbIcDw4ORmBgID799FPF+yEiIiJqLH1TF0BERERkq0QEOp0OAHD48GEsXboURUVFuHv3Lh49eoQHDx7g3r17cHZ2rvf/5+fnw2QywdfX1+q40WhEhw4dVK+fiIiI6L/gsImIiIhIJYWFhfD29saVK1cQFhaG2bNn45NPPkH79u1x7NgxzJgxAw8fPnzisKm6uhqOjo7Iy8uDo6Oj1XNt2rTRogUiIiKip8ZhExEREZEKMjMzkZ+fj7lz5yIvLw9msxkrV66Eg8Nft8zctm2b1fqWLVvCZDJZHQsICIDJZMKtW7cwZMgQzWonIiIiagwOm4iIiIgayWg0ory8HCaTCTdv3sSBAwewdOlShIWFITIyEgUFBaipqcHnn3+OsWPHIicnB+vWrbPao3v37qiurkZGRgb8/f3h7OwMX19fTJkyBZGRkVi5ciUCAgJw+/ZtZGRk4OWXX8aYMWOaqGMiIiKiJ+On0RERERE10oEDB+Dp6Ynu3btj9OjRyMrKQkpKCnbv3g1HR0f4+/tj1apVWLZsGXr37o3Nmzdj6dKlVnsMGjQI0dHRCA8Ph5ubG5YvXw4ASEtLQ2RkJD744AP4+fnh9ddfx88//4yuXbs2RatERERE/4qfRkdERERERERERIrhbzYREREREREREZFiOGwiIiIiIiIiIiLFcNhERERERERERESK4bCJiIiIiIiIiIgUw2ETEREREREREREphsMmIiIiIiIiIiJSDIdNRERERERERESkGA6biIiIiIiIiIhIMRw2ERERERERERGRYjhsIiIiIiIiIiIixXDYREREREREREREivkf4MJAvdJHkTgAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"df_filtered['Date'].max()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "s3yvqZdjrp9H",
"outputId": "451f5782-e736-44a2-b6e0-38e4f312f533"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Timestamp('2025-05-01 00:00:00')"
]
},
"metadata": {},
"execution_count": 68
}
]
},
{
"cell_type": "code",
"source": [
"df_filtered[['Date', 'Area', 'Value']].sort_values('Date').tail(10)\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "5aLPHnd3sU1k",
"outputId": "c07308ff-0c99-42c8-d5aa-4b17df0c9f94"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Date Area Value\n",
"86959 2025-03-01 China 84.82\n",
"86957 2025-03-01 China 42.81\n",
"468793 2025-04-01 United States of America 35.38\n",
"87004 2025-04-01 China 41.10\n",
"468790 2025-04-01 United States of America 58.01\n",
"87006 2025-04-01 China 95.08\n",
"87053 2025-05-01 China 103.84\n",
"87051 2025-05-01 China 38.40\n",
"468840 2025-05-01 United States of America 62.22\n",
"468843 2025-05-01 United States of America 39.97"
],
"text/html": [
"\n",
" <div id=\"df-ebd6f3c2-3d5b-436d-b5c0-0cd59be15e99\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Date</th>\n",
" <th>Area</th>\n",
" <th>Value</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>86959</th>\n",
" <td>2025-03-01</td>\n",
" <td>China</td>\n",
" <td>84.82</td>\n",
" </tr>\n",
" <tr>\n",
" <th>86957</th>\n",
" <td>2025-03-01</td>\n",
" <td>China</td>\n",
" <td>42.81</td>\n",
" </tr>\n",
" <tr>\n",
" <th>468793</th>\n",
" <td>2025-04-01</td>\n",
" <td>United States of America</td>\n",
" <td>35.38</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87004</th>\n",
" <td>2025-04-01</td>\n",
" <td>China</td>\n",
" <td>41.10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>468790</th>\n",
" <td>2025-04-01</td>\n",
" <td>United States of America</td>\n",
" <td>58.01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87006</th>\n",
" <td>2025-04-01</td>\n",
" <td>China</td>\n",
" <td>95.08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87053</th>\n",
" <td>2025-05-01</td>\n",
" <td>China</td>\n",
" <td>103.84</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87051</th>\n",
" <td>2025-05-01</td>\n",
" <td>China</td>\n",
" <td>38.40</td>\n",
" </tr>\n",
" <tr>\n",
" <th>468840</th>\n",
" <td>2025-05-01</td>\n",
" <td>United States of America</td>\n",
" <td>62.22</td>\n",
" </tr>\n",
" <tr>\n",
" <th>468843</th>\n",
" <td>2025-05-01</td>\n",
" <td>United States of America</td>\n",
" <td>39.97</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-ebd6f3c2-3d5b-436d-b5c0-0cd59be15e99')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-ebd6f3c2-3d5b-436d-b5c0-0cd59be15e99 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-ebd6f3c2-3d5b-436d-b5c0-0cd59be15e99');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
" <div id=\"df-f8b319f0-8c7f-48af-a947-074e54f1803a\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-f8b319f0-8c7f-48af-a947-074e54f1803a')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-f8b319f0-8c7f-48af-a947-074e54f1803a button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"df_filtered[['Date', 'Area', 'Value']]\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2025-03-01 00:00:00\",\n \"max\": \"2025-05-01 00:00:00\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"2025-03-01 00:00:00\",\n \"2025-04-01 00:00:00\",\n \"2025-05-01 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Area\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"United States of America\",\n \"China\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Value\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 25.612103497283382,\n \"min\": 35.38,\n \"max\": 103.84,\n \"num_unique_values\": 10,\n \"samples\": [\n 62.22,\n 42.81\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 70
}
]
},
{
"cell_type": "markdown",
"source": [],
"metadata": {
"id": "zixACE7Kfbvb"
}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment