Last active
July 11, 2018 03:40
-
-
Save cdeweyx/0b2fa9893d94daf7765c91ac7a1be76b to your computer and use it in GitHub Desktop.
Exploring data and analyzing metrics for user-specific Medium Stats
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Medium Stats Data Analysis" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"In the previous notebook, we worked on scraping and cleaning the data from Mediums stats page by leveraging `Selenium` and `BeautifulSoup`. Now that we have our data looking good, we've finally made it to the fun part. Enter exploratory data analysis. This is going to be the meat of this project where we'll dive into the more subtle aspects of analyzing engagement in respect to my work and later on a larger scale. This notebook directly corresponds to the Medium post linked below." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# Imports\n", | |
"import pandas as pd \n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns\n", | |
"%matplotlib inline\n", | |
"sns.set_style('whitegrid')\n", | |
"sns.set_palette('coolwarm')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# Read data\n", | |
"df = pd.read_csv('mystats.csv')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Title</th>\n", | |
" <th>Publication</th>\n", | |
" <th>Read Time</th>\n", | |
" <th>Views</th>\n", | |
" <th>Reads</th>\n", | |
" <th>Read Ratio</th>\n", | |
" <th>Fans</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>An Ode to the Type A Data Scientist</td>\n", | |
" <td>Towards Data Science</td>\n", | |
" <td>7</td>\n", | |
" <td>3224</td>\n", | |
" <td>699</td>\n", | |
" <td>21.681141</td>\n", | |
" <td>72</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>Choosing Your First Job: Size Matters</td>\n", | |
" <td>Hacker Noon</td>\n", | |
" <td>7</td>\n", | |
" <td>391</td>\n", | |
" <td>144</td>\n", | |
" <td>36.828645</td>\n", | |
" <td>19</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>Python for Data Science and Machine Learning B...</td>\n", | |
" <td>Towards Data Science</td>\n", | |
" <td>6</td>\n", | |
" <td>2175</td>\n", | |
" <td>795</td>\n", | |
" <td>36.551724</td>\n", | |
" <td>48</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>The Key to Optimal Internships</td>\n", | |
" <td>Hacker Noon</td>\n", | |
" <td>5</td>\n", | |
" <td>197</td>\n", | |
" <td>80</td>\n", | |
" <td>40.609137</td>\n", | |
" <td>9</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>9 Essential Newsletters for Data Scientists</td>\n", | |
" <td>Towards Data Science</td>\n", | |
" <td>5</td>\n", | |
" <td>5401</td>\n", | |
" <td>1216</td>\n", | |
" <td>22.514349</td>\n", | |
" <td>59</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Title Publication \\\n", | |
"0 An Ode to the Type A Data Scientist Towards Data Science \n", | |
"1 Choosing Your First Job: Size Matters Hacker Noon \n", | |
"2 Python for Data Science and Machine Learning B... Towards Data Science \n", | |
"3 The Key to Optimal Internships Hacker Noon \n", | |
"4 9 Essential Newsletters for Data Scientists Towards Data Science \n", | |
"\n", | |
" Read Time Views Reads Read Ratio Fans \n", | |
"0 7 3224 699 21.681141 72 \n", | |
"1 7 391 144 36.828645 19 \n", | |
"2 6 2175 795 36.551724 48 \n", | |
"3 5 197 80 40.609137 9 \n", | |
"4 5 5401 1216 22.514349 59 " | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Remove newsletter bias and reset index\n", | |
"df = df[~df['Title'].str.contains('Self Driven Data Science')]\n", | |
"df.reset_index(inplace=True, drop=True)\n", | |
"df.head()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Exploratory Data Analysis\n", | |
"This section will largely be free form; a combination of analyzing metrics and visualizations before diving deeper down interesting rabbit holes and examining possible relationships and statistics further. With that being said, here's an initial list of some questions that I wanted to further pursue:\n", | |
"* General overview of top performers from different metrics\n", | |
"* Distribution of views, reads, fans, etc\n", | |
"* Feature engineering new metrics ex. read-fan ratio\n", | |
"* Relationship between length of article and different engagement metrics\n", | |
"* Average claps and other engagement metrics by segments like publication" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Getting Started with an Overview" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's get started by looking at which of my posts have performed the best in different categories as well as some high level numerical stats too. We'll use these simple plots and stats as a jumping off point for more interesting analysis later in the notebook." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Read Time</th>\n", | |
" <th>Views</th>\n", | |
" <th>Reads</th>\n", | |
" <th>Read Ratio</th>\n", | |
" <th>Fans</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>29.000000</td>\n", | |
" <td>29.000000</td>\n", | |
" <td>29.000000</td>\n", | |
" <td>29.000000</td>\n", | |
" <td>29.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>6.000000</td>\n", | |
" <td>6668.827586</td>\n", | |
" <td>1417.862069</td>\n", | |
" <td>35.919137</td>\n", | |
" <td>136.068966</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>1.908627</td>\n", | |
" <td>18470.585968</td>\n", | |
" <td>3651.076971</td>\n", | |
" <td>13.979027</td>\n", | |
" <td>356.633458</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>4.000000</td>\n", | |
" <td>109.000000</td>\n", | |
" <td>60.000000</td>\n", | |
" <td>10.426731</td>\n", | |
" <td>3.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>5.000000</td>\n", | |
" <td>391.000000</td>\n", | |
" <td>140.000000</td>\n", | |
" <td>26.635656</td>\n", | |
" <td>10.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>6.000000</td>\n", | |
" <td>967.000000</td>\n", | |
" <td>334.000000</td>\n", | |
" <td>36.828645</td>\n", | |
" <td>29.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>7.000000</td>\n", | |
" <td>2484.000000</td>\n", | |
" <td>789.000000</td>\n", | |
" <td>42.553191</td>\n", | |
" <td>51.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>13.000000</td>\n", | |
" <td>85373.000000</td>\n", | |
" <td>14945.000000</td>\n", | |
" <td>63.893511</td>\n", | |
" <td>1447.000000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Read Time Views Reads Read Ratio Fans\n", | |
"count 29.000000 29.000000 29.000000 29.000000 29.000000\n", | |
"mean 6.000000 6668.827586 1417.862069 35.919137 136.068966\n", | |
"std 1.908627 18470.585968 3651.076971 13.979027 356.633458\n", | |
"min 4.000000 109.000000 60.000000 10.426731 3.000000\n", | |
"25% 5.000000 391.000000 140.000000 26.635656 10.000000\n", | |
"50% 6.000000 967.000000 334.000000 36.828645 29.000000\n", | |
"75% 7.000000 2484.000000 789.000000 42.553191 51.000000\n", | |
"max 13.000000 85373.000000 14945.000000 63.893511 1447.000000" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# General overview\n", | |
"df.describe()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"There's a couple things that I found interesting here. First of all, after removing the posts associated with my weekly data science newsletter, I've published 29 stories here on Medium. Certainly not an ideal sample size, but for our purposes - not bad! \n", | |
"\n", | |
"I can see that on average, my posts are 6 minutes long and gather about 6,500 views with around 1,300 reads. This leads to an average read ratio of ~35% and roughly 132 fans per post. I suspect these numbers are heavily skewed due to the success of a couple posts in particular, which would pull the mean up considerably, but let's look into that more later." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAE3CAYAAACpa9C9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3HlUVfX+//HnYXKCHFBxLsGJLC3B\nHNM0uppJFgqKeoq0zMwhvCKokDgGapJhZqZEHpxLW87dtNKu35zQm5YIiDmFY4KIXUCG3x8uzi8E\nFN3eyHo91mot2MPn8/589rZ1Xnz2PqaCgoICRERERERE5K7ZlHcBIiIiIiIi9zsFKxEREREREYMU\nrERERERERAxSsBIRERERETFIwUpERERERMQgBSsRERERERGD7Mq7ABH5e4uPjy/vEkRERETKzMPD\no8TtClYiUu5K+x+U/H8JCQm4u7uXdxl/apqjstE83Z7mqGw0T7enOSqb+2mebvUHYT0KKCIiIiIi\nYpCClYiIiIiIiEEKViIiIiIiIgaZCgoKCsq7CBH5+4qPj2djfO3yLkNERETuY5OHNfxD+omPjy/1\n3XCtWImIiIiIiBikYCUiIiIiImKQgpWIiIiIiIhBClYiIiIiIiIGKViJiIiIiIgYpGAlIiIiIiJi\nkIKViIiIiIiIQQpWIiIiIiIiBilYiYiIiIiIGKRgJSIiIiIiYpCClYiIiIiIiEEKViIiIiIiIgYp\nWImIiIiIiBikYCUiIiIiImKQgpWIiIiIiIhBClYiIiIiIiIGKViJiIiIiIgYpGAlIiIiIiJi0C2D\n1Z49e+jQoQNmsxmz2Yyfnx8Wi6XU4xMTE9m3bx8A3bt3Jzs7+54UmZeXx9ChQ/H39+fKlSt3dG5I\nSAje3t6YzWb8/f0ZMWIEp0+fvuU5X331FefPny9T+5cvX2bUqFEMHTqUIUOGEBoaSlZWVonHXrx4\nkfDw8Duq/15ISEjAz88Pf39/JkyYQH5+frFjkpOTGTZsGGazmb59+/L+++9TUFDwh9da1rmPiIjg\n7bfftv6el5eHr68vO3bsuOu+o6OjcXd3L9L/r7/+SsuWLVm7du1dt2s2m0lJSbH+np2dTffu3e+6\nvdL8/l4v/C81NfWe95Oens6GDRsASE1N5euvv77nfYiIiIjcb267YtW+fXssFgsWi4W4uDg++eQT\nMjIySjz2X//6F8eOHbvnRV68eJG0tDRWrFhB1apV7/j8oKAgLBYLK1asYMiQIbz11lu3PH7p0qVk\nZmaWqe3FixfTsWNHlixZQkxMDJUqVWLlypUlHlurVq1yCVbz58/nzTffZMWKFeTk5PDtt98W2Z+R\nkcHYsWOZOHEiFouF1atXk5SUVOo4/pfKOvdjx47lwIED/N///R8AS5YsoVWrVnTt2tVQ/w899BBb\ntmyx/r5582bq1q1rqM0/UuG9XvhfvXr17nkfiYmJ1jC1e/duDhw4cM/7EBEREbnf2N3JwZmZmdjY\n2GAymfDy8uLLL7/E1taW2bNn06RJE9atW4e9vT0tW7YEIDw8nDNnzgA3PtxXrlyZiRMncvr0afLy\n8njllVfo1asXZrOZFi1akJycTGZmJvPmzaN+/frWfsPCwjhx4gRvv/0248aNIygoiMzMTPLy8hgz\nZgwdOnSgd+/ePPTQQzg4ODB37txSx+Dp6Ym9vT0nT54kOzubiIgI8vPzycjIIDQ0lIyMDBISEggO\nDmb58uVER0fz448/cu3aNdzc3HjnnXeKtFe/fn2+/PJLHnzwQdq0aUNwcDAmkwmABQsWsG3bNvLy\n8vD396dz586MHTuW1atXs3fvXqKiorC1taVhw4ZMnTqVDRs2sGPHDrKysjh16hSvvfYaPj4+/PDD\nD8yYMYOCggJcXFyYM2cOJ0+eZPr06QBUq1aNmTNn4uTkxJAhQ1i4cCEODg7WGt3d3UlPT6egoIBr\n165hZ1f0sm/fvp127drx0EMPAWBra0tkZCT29vbAjdWh+Ph4AHr37s3LL79MSEgIDg4O/PLLL1y4\ncIGIiAhatmzJmjVrWLFiBfn5+Tz99NOMGjWKLVu2EBsbi42NDR4eHowbN47o6GiOHz/Or7/+ap37\nzMxM69zHxsYybtw4MjMzycrKIigoiHbt2llrdnBwIDIykrFjxzJv3jy2bt3KihUrADhz5gyTJk0i\nNzcXk8lEaGgoLVq0oFOnTuzatQuAwMBABgwYUKRNgF69erF161YCAgIA+Oabb+jWrRtwY1Xs7bff\n5ty5c6SlpdGlSxdGjx5Njx49WLNmDdWqVWP58uX89ttvvPrqq6Xeg7+3d+9e5s+fD0BWVhaRkZF8\n9913ZGRkMHLkSHJycnj++edZv349q1atYuPGjZhMJnr16sVLL71Upj6OHDnCtGnTsLW1pUKFCkyb\nNo38/HzeeOMNqlWrRpcuXWjXrh1TpkyhSpUqODs7U6FCBSIiIoiJiWHTpk3Y2dnh6elJUFAQCxcu\n5OjRo6xcuZLY2FiysrJ4/PHHadCgQbF78siRI3z88cfY29tz5swZevXqxRtvvFGmukVERETuJ7cN\nVrt378ZsNmMymbC3tycsLAwnJyc8PDz497//TefOndm5cydjxozhzJkz1KxZk1atWgHQt29fPD09\nCQkJYdeuXVy+fJnq1asze/ZsMjMz8fHxoX379gC0atWKSZMmERUVxaZNmxg2bJi1hsmTJzN27Fim\nTp1KZGQkHTt25OWXX+b8+fP4+/uzbds2fvvtN0aMGMHDDz9820E7OzuTlpZGamoqwcHBNG/enA0b\nNrB27VqmT5+Ou7s74eHh5OTk8MADD/DJJ5+Qn5/Pc889x/nz53FxcbG25e/vT4UKFViyZAljxozB\nw8ODyZMnk5aWxs6dO1mzZg05OTm8++67dOrUCYCCggLCwsJYvnw5zs7OvPfee6xbtw47OzsyMzNZ\nsmQJJ06cYPjw4fj4+BAWFkZUVBRubm4sW7aMlJQUpkyZwsyZM2nSpAlr1qxh8eLFBAYGEhMTU2y8\nDz30EFOnTuXDDz/EycmpWJi4cOECDRs2LLKtSpUqwI1gcebMGVavXk1ubi4DBw60XrN69eoxdepU\nVq9ezapVqxgzZgwff/wx69evx8HBgYiICFJTU4mOjubzzz+nUqVKBAUFWcNNxYoVWbp0KcnJyfzz\nn/9k/fr11rk/e/Ysly5dIjY2ll9//ZUTJ04UG1fLli3x9vYmICCA2NhYKlSoAMCsWbMwm814eXmR\nkJDAxIkTy/woX82aNalUqRKnT58mPz+fOnXqWNs9e/Ysjz32GL6+vmRnZ9OlSxfeeustvL292bRp\nE4MGDWL9+vXWoPR7wcHBVKpUCaDIo5jJycnMnj0bFxcXFi5cyNatWxk4cCADBw7kzTffZPv27XTr\n1o1Tp06xefNmli9fjslkIiAggM6dO+Pq6lqkn9mzZ/Pxxx8D0LFjR9544w1CQ0OZMWMG7u7ubNu2\njYiICMaPH8/Fixf5/PPPcXBw4MUXX2TWrFk0bdqUqKgozp8/T2JiIlu2bGHlypXY2dkxatQovvnm\nG4YPH87KlSsZMGAADg4OHD9+nKeffho/P79i92THjh1JTU1l/fr15OTk8OSTTypYiYiIyF/SbYNV\n+/btiYqKKrbd19cXi8VCfn4+HTt2LLJCUuiRRx4BbnxYzcrKIiUlhY4dOwLg6OiIm5ub9X2nwkBU\np04dLl26VGo9KSkpeHt7A+Di4oKjoyOXL18GoHHjxrcbDnDjvZA6deqQm5vLggULqFixIteuXcPR\n0bHIcRUqVODy5cuMHTuWypUr89tvv3H9+vUix+zZs4cXXniBfv36kZOTw8cff8zMmTPp2bMnrVq1\nwtbWlkqVKhEaGmpdvbt8+TIXLlywPpKYlZVFp06daNSoES1atACgbt265OTkADfe83FzcwNg0KBB\n1nmYMmUKANevX7/l2GfMmMGyZcto2rQpy5YtIyIigsmTJ1v316tXjyNHjhQ55/Tp05w7d46UlBQ8\nPT2twbp169bW94Xc3d2BG9fswIEDnD59mqZNm1KxYkUAJk6cyKFDh7h8+bI1KF+7ds16zQsDWtOm\nTYtd86ZNmzJo0CDGjh1Lbm4uZrO5xLG98MIL7Ny50zpvhXPTtm1ba43nzp0rdt6t3h977rnn2LRp\nE7m5uXh7e1uDYLVq1Th8+DC7d+/G0dHRen369etHYGAgbdu2pWbNmtSsWbNYm5GRkdZrmJ2dzbPP\nPgvcuIdnzJhB5cqVOX/+PG3atKFq1aq4u7sTHx/PunXrCA4OJjExkdTUVOtK2pUrVzh16lSxYBUU\nFESXLl2KbLtw4YL1WrVt25Z3330XgAYNGlj/3V64cIGmTZsC4OHhwebNmzl+/DitW7e2rlx6enqS\nnJxM69atS5y30u7JZs2aYWdnh52dnfXeEBEREfmruetvBfT09OT06dN89tln9OvXDwCTyVTkr/GF\nj8QVcnNzY//+/cCNxwqTkpJo0KDBHfX7+zbOnz9PRkYG1apVuzEYm9sPZ9euXVSsWJE6deowY8YM\nRo8eTWRkJM2aNbN+2DaZTBQUFLBz507Onj3L3LlzGTt2LFlZWcU+kH/66afW1RAHBweaNm2Kg4MD\nrq6uHDlyhPz8fK5fv84rr7xi/SBevXp16tSpw4IFC7BYLAwfPty6inTznAHUrl3bumKzaNEivvrq\nKxo3bkxkZCQWi4WgoKBbvltUtWpVa2isXbt2sXfkunXrxnfffcepU6eAGx+KIyIiSEpKws3NzfoY\n4PXr1zl48CAPPvhgibU2atSI48ePW8c5evRonJ2dqVu3LjExMVgsFgYPHmz9YP7TTz8BkJSUZF0F\nLJz7xMRErl27xqJFi4iIiGDatGmlju9mv79HEhISrEEnNzeXa9eukZOTc8t3AXv06MH27dvZv39/\nkdW9tWvX4uTkxLvvvsuQIUOs90O9evVwcnJi4cKF1n8LZRUaGsrMmTOJiIigdu3a1vvLz8+PTz/9\nlKysLNzc3HB1daVJkyYsXboUi8WCj48PzZo1K1MftWvX5ujRowDs27fP+sjn7/+91KlTxzonP/zw\nAwCurq4cOnSI3NxcCgoK2LdvH40bN8bGxsb67/z3P5d2T5Z0T4uIiIj81dzRO1Y38/b2ZuvWrda/\ndD/yyCPMmjXL+pf5m/n5+REWFoa/vz/Z2dmMHDkSZ2fnO+rz9ddfZ+LEiXz55ZdkZWUxderUYu8M\n3azw8SgbGxuqVKnCe++9B8Dzzz/PiBEjcHZ2pk6dOqSlpQHw+OOPM378eD788EMWLFiAn58fDg4O\nNGzYsNhjc1OmTGHKlCksX76cihUrUr16dcLDw3FxceHJJ5/E39+f/Px8/P39rasDNjY2TJo0iWHD\nhlFQUECVKlWYNWsWZ8+eLbH+KVOmMHHiRGxsbKhVqxYBAQHUrVuX4OBg8vLygBurUkCJ71hNnz6d\nwMBA7OzssLe3LxZSHB0diYiIIDQ01PoeVrdu3Rg4cCAmk4m9e/fSv39/rl+/Ts+ePa3v0N2sRo0a\nvPbaawwePBiTyUS3bt2oX78+AQEBmM1m8vLyqF+/vnW1JiEhgZdffpn//ve/1pp+P/d79+7liy++\nwN7entGjR9/yGv/e+PHjCQsLIyYmhtzcXOvcvPTSS/Tv358GDRrc8ksdnJycqFOnDg0bNiwSPjp0\n6MDYsWOJj4+nUqVKPPjgg1y4cAEXFxf8/PyYPn06s2fPLnOdAH369MHPz48HHniAmjVrcuHCBQCe\neOIJwsLCrI/NtWjRgg4dOuDv709OTg6tWrUq8kjqrUyfPp1p06ZRUFCAra0tM2fOLHbM5MmTmThx\nIpUrV8be3h4XFxeaN2/Os88+a72HPTw88PLy4sKFCyQlJREbG8sTTzzBhx9+SMuWLQkPDy92TxaO\nR0REROSvzlRg4Du1P/74Y6pXr37Hf6UXiY6OpmbNmvj7+5d3KffE5s2bSU5OZsyYMeVdyl1ZtmwZ\nzz77LDVq1CAqKgp7e3tGjhz5h/QdHx/Pxvjaf0hfIiIi8tc0eVjD2x90D8THx+Ph4VHivrtesQoJ\nCSEtLY3o6Oi7Lkzkr2Du3Lns37+fBQsWlHcpd83Z2ZkhQ4ZQuXJlnJyciIiIKO+SRERERO4rhlas\nRESM0oqViIiIGPVnWLG66y+vEBERERERkRsUrERERERERAxSsBIRERERETFIwUpERERERMQgBSsR\nERERERGDFKxEREREREQMUrASERERERExSMFKRERERETEIAUrERERERERgxSsREREREREDFKwEhER\nERERMUjBSkRERERExCAFKxEREREREYMUrERERERERAyyK+8CREQmD2tY3iX86SUkJODu7l7eZfyp\naY7KRvN0e5qjstE83Z7mqGz+KvOkFSsRERERERGDFKxEREREREQMUrASERERERExSMFKRERERETE\nIAUrERERERERgxSsREREREREDFKwEhERERERMUjBSkRERERExCAFKxEREREREYMUrERERERERAwy\nFRQUFJR3ESLy9xUfH8/5/OblXYaIiIgY1Kut412dl5CQgLu7+z2u5n8jPj4eDw+PEvdpxUpERERE\nRMQgBSsRERERERGDFKxEREREREQMUrASERERERExSMFKRERERETEIAUrERERERERgxSsRERERERE\nDFKwEhERERERMUjBSkRERERExCAFKxEREREREYMUrERERERERAxSsBIRERERETFIwUpERERERMQg\nBSsRERERERGDFKxEREREREQMUrASERERERExSMFKRERERETEIAUrERERERERg+7bYBUREYHZbKZn\nz5489dRTmM1mRo8ezZ49ewgMDLzj9tauXcucOXOKbAsMDGTPnj3s3LmTVatWAbBq1SquX79eYhul\n9W02m0lJSSmyLSEhgfnz5wPQqVOnO6735MmTvPnmm2U6Njc3l/nz5+Pr68vgwYMZPHiwdTylWbRo\nEYcOHSqyLTs7m+7du5epz/T0dDZs2FCmY8+cOUPz5s1ZtGhRke3Dhw/HbDaXqY1CpV2DGTNmkJqa\nekdt/V50dDQrVqy46/PLauTIkYbOv5NxPvLII5jNZsxmM/7+/oSGhpKbm1visb+/niEhIezcudNQ\nnSIiIiJ/NXblXcDdCgkJAW4EouPHjzNu3Djgxgfre61Lly7Wnz/66CNeeOEFw226u7vj7u5+1+c7\nOTnRuXPnMh0bFRVFfn4+K1euxNbWlmvXrvH666/j6emJm5tbiecMGzbsrmsDSExM5Ouvv8bb27tM\nxzdq1Igvv/zS2m96ejonT56kZs2ahuooNGnSpHvSzv9aYdi+W3cyzqpVq2KxWKy/v/XWW+zYsYOn\nn3662LF3ej1FRERE/m7u22B1KydPnuTVV1/l8uXLdOvWjVGjRpGYmMj06dMBqFatGjNnzsTJyalM\n7RWGtwcffJCLFy8SGBjI/PnzmT59OocOHeL69euMGjUKJyenEvsG+OCDD7h06RL//e9/mTt3Lqmp\nqaxcuZKoqChrP3PnzuXq1au8/fbbbN26ldjYWGxsbPDw8GDcuHFER0dz8OBBfvvtN2bMmIG/vz9w\nIzjt3r2b/Px8nnvuOQICAqxt5ubmsmXLFv71r39ha2sLQJUqVbBYLJhMJvbs2VOkjk6dOrFr1y5C\nQkLo1auXte+MjAwaNWpkbfd287lw4UKOHj3KqlWr6NSpE5MmTSI3NxeTyURoaCgtWrQoMsfVq1en\nWrVqpKSk4ObmxubNm+nZsyf79+8HYOvWrSxbtsx6/Lx586hWrVqZr4HZbCY8PJzNmzdz5swZfv31\nV1JTU5kwYQJPPvkke/fuJSoqCltbWxo2bMjUqVOxt7e/7b1hsVjYuHEjJpOJXr168dJLL5GUlERE\nRAT5+flkZGQQGhpKmzZt6NatG66urri6unL16lUcHBz45ZdfuHDhAhEREbRs2dI6/2azmRYtWpCc\nnExmZibz5s2jfv36fPDBB2zbto0aNWrw3//+lzFjxtCuXTtrPbcbZ2muX7/Ob7/9RuXKlRkwYADT\npk2jadOm7Nixg2+//ZYTJ05YryfcWLldvHgxmZmZhIeH06pVK2JiYti0aRN2dnZ4enoSFBREdHT0\nHdUhIiIicr+6bx8FvJXs7GwWLFjAsmXLiIuLAyAsLIzJkydjsVjo0qULixcvLnbexo0brY9Gmc1m\ndu/eXWS/r68vtWrVIioqiu3bt5OWlsZnn33G4sWLOXz4cKl9A3Tt2pWlS5fSpUsXtm7dWqzvyMhI\ncnNzmTx5MleuXCE6OprY2FhWrFjB+fPn2bVrFwCurq6sXLmyyErTF198wZw5c1i2bBkVK1Ys0m5a\nWhpVq1bFzu5Ghl6+fDlms5m+ffsSGxt727lct24dzZo1Y9myZQwYMMC6/XbzOXz4cNq3b0///v2Z\nNWsWZrOZZcuWMWnSJCZOnFhiX8899xybNm0CYPv27Xh5eVn3nThxgkWLFmGxWGjcuDH//ve/7/ga\nFHJwcGDx4sVMmjSJ2NhYCgoKCAsLY/78+cTFxeHi4sK6detuOzfHjh1j8+bNLF++nOXLl7Nt2zaO\nHz/OsWPHCA4OJjY2lldeeYW1a9cCcPbsWebMmWNdVapXrx5LlizBbDaX+Ghmq1atiI2NpVOnTmza\ntImjR4/y3Xff8dlnn/HBBx9w8eLFW9Z38zhvduXKFeu9PnToUJ544gk6dOiAr6+vdfyff/45/fr1\nK3I9AVq2bMnSpUsZPHgwa9euJTExkS1btrBy5UpWrlzJyZMn+eabb8pUh4iIiMhfwV9yxapp06Y4\nODgAWANFSkoKU6ZMAW78db5x48bFzuvdu7f1kULglu9q/fzzzzz22GMA1KpVy/o+Vkl9w433WQBq\n1qzJpUuXirR16dIlEhMTrStCp06d4vLly9bH4q5du8bp06cBSqx77ty5zJ07l0uXLhVbDahWrRrp\n6enk5eVha2vLwIEDGThwICtWrChWB0BBQUGR35OTk61ttm7d+o7ms1BKSgpt27YFbjwCee7cuRKP\n8/LyYtCgQfj4+FCrVq0iIdHZ2Zng4GCqVKnC8ePHeeyxx+74GhQqfASzTp065OTkcPnyZS5cuMBb\nb70FQFZWVpnee0tKSiI1NdW6QnjlyhVOnTpF7dq1WbBgARUrVuTatWs4OjoCN1blqlevXmIdBw4c\nKNb+ww8/bN1/6dIlUlJSePTRR7G1tcXW1tZ6T5Xm5nHe7OZHAQv16tWLF198kaFDh3Lu3DlatmxZ\n7BHbli1bAjfu56ysLI4fP07r1q2tq3yenp4kJyeXqQ4RERGRv4K/5IqVyWQqtq1x48ZERkZisVgI\nCgqia9eud912fn4+rq6u1hWSq1evMnTo0FL7vp2aNWuyZMkSjh07xs6dO2nQoAF169YlJiYGi8XC\n4MGDad26NQA2NkUvWU5ODlu3bmXu3Ll8+umnrFu3jl9++cW6397enn/84x+899575OfnAzdWdH74\n4QdMJhMVKlSwrnz88ssvXLlypUj7rq6u/Oc//wHgyJEj1i83uN182tjYWPtzc3OzPtKXkJBQ6ntT\nVapUoXHjxsyePZvevXtbt1+9epX333+fqKgopk+fToUKFSgoKLjra3Dz/urVq1OnTh0WLFiAxWJh\n+PDhRR6vK42rqytNmjRh6dKlWCwWfHx8aNasGTNmzGD06NFERkbSrFkza1i9+drd6b3SpEkTDh8+\nTH5+Pjk5ORw5cuSOxllWlSpVol27dsyYMYM+ffoARa9nSW27urpy6NAhcnNzKSgoYN++fdawfbd1\niIiIiNxP/pIrViUJDw8nODiYvLw84Ma3p90NT09Phg0bxtKlS/n+++/x9/cnLy+vzN/QVxqTycTM\nmTMZOnQoq1evJiAgALPZTF5eHvXr1+fZZ58t8TwHBweqVq1Knz59qFq1Kp06daJevXpFjgkKCmLx\n4sUMGjQIOzs7MjMz8fLy4pVXXsHBwQEnJyd8fX1xc3OjQYMGRc4dNGgQEyZMwN/fH1dXV+uKxO3m\ns1GjRiQlJREbG8v48eMJCwsjJiaG3NzcW869t7c3b7/9NnPnzuXEiRMAODo60qZNG1588UUqV67M\nAw88wIULF/Dx8bkn18DGxoZJkyYxbNgwCgoKqFKlCrNmzSp23KJFi1izZg3w/99T69ChA/7+/uTk\n5NCqVStcXFx4/vnnGTFiBM7OztSpU4e0tLS7qutmzZs3p2vXrvj5+VG9enXs7e1LXJG7F/z8/PD3\n9yc8PBwoej1Lq+3ZZ5/F39+f/Px8PDw88PLy4ujRo/+T+kRERET+bEwFNz/7JSJ/Sr/++itbt25l\n0KBB5OTk8Nxzz/Hpp58WC9L3wqFDh4iLiysxYN5r8fHxnM9v/j/vR0RERP63erV1vKvzEhISDH1b\n9h8pPj4eDw+PEvf9bVasRO531atX58cff6Rv376YTCZ8fX3/J6EqLi6Ozz//nPfff/+ety0iIiLy\nV6UVKxEpV1qxEhER+Wv4u69Y/SW/vEJEREREROSPpGAlIiIiIiJikIKViIiIiIiIQQpWIiIiIiIi\nBilYiYiIiIiIGKRgJSIiIiIiYpCClYiIiIiIiEEKViIiIiIiIgYpWImIiIiIiBikYCUiIiIiImKQ\ngpWIiIiIiIhBClYiIiIiIiIGKViJiIiIiIgYpGAlIiIiIiJikIKViIiIiIiIQXblXYCISK+2juVd\nwp9eQkIC7u7u5V3Gn5rmqGw0T7enOSobzdPtaY7+XrRiJSIiIiIiYpCClYiIiIiIiEEKViIiIiIi\nIgYpWImIiIiIiBikYCUiIiIiImKQgpWIiIiIiIhBClYiIiIiIiIGKViJiIiIiIgYpGAlIiIiIiJi\nkIKViIiIiIiIQXblXYCIyPGUlPIu4U+vgoPDfTdPrm5u5V2CiIjIH0YrViIiIiIiIgYpWImIiIiI\niBikYCUiIiIiImKQgpWIiIiIiIhBClYiIiIiIiIGKViJiIiIiIgYpGAlIiIiIiJikIKViIiIiIiI\nQQpWIiIiIiIiBilYiYiIiIiIGKRgJSIiIiIiYpCClYiIiIiIiEEKViIiIiIiIgYpWImIiIiIiBik\nYCUiIiIiImKQgpWIiIiIiIi7u19uAAAgAElEQVRBClYiIiIiIiIGKViJiIiIiIgYpGBVjiIiIjCb\nzfTs2ZOnnnoKs9nM6NGj2bNnD4GBgXfc3tq1a63tDBw4kICAAC5cuABAYGAgOTk5t23jzJkz+Pn5\nFds+Y8YMUlNTSzwnOzubNWvWlLnOqKgofHx82LNnT4m1Dxo0iMGDB/P9999b9y9atIiAgACGDBnC\n0KFD+fHHH637YmJi2L17N927d+fVV18t0tcnn3xC8+bNAYiOjmbFihWl1lXa2H9v1apVXL9+vcxj\nvdnOnTtZtWrVXZ9fKDo6mh49emA2mzGbzXh7e/Phhx8abldERERE7o5deRfwdxYSEgLcCBXHjx9n\n3LhxAEUCx53q3bu3tZ1Vq1axcOFC3n77baKiogzVOmnSpFL3Xbx4kTVr1uDr61umtjZv3sy6detw\ndHQssv33tV+6dIlBgwYRFxfHlStX+Prrr1mxYgUmk4mEhASCg4NZv349APHx8ZjNZgDOnz/P5cuX\nqVGjBgA7duygatWqdzze0nz00Ue88MILd31+ly5d7lktAQEB+Pv7A5CTk0OvXr3w8/PD2dn5nvUh\nIiIiImWjFas/qZMnT/Lqq6/i4+NDdHQ0AImJidYVilGjRnH16tVbtnHlyhXq168PQPfu3cnOzubk\nyZP4+/tjNpsJCQmxBpLbMZvNpKSkEB8fj5+fHwMHDmT48OFkZmaycOFCjh07xvz584ucc+TIEfz9\n/Rk8eDBDhw4lNTWV+fPnc+7cOV5//XWysrJK7a9mzZr06NGDb7/9lho1apCamspnn33G+fPncXd3\n57PPPgPg6tWrVK5cGXt7ewB69OjB1q1bAUhJSaFRo0bWfXfCbDYzY8YMAgIC6NevH7/88gtr1qzh\n4sWL1tXEd999lwEDBtC/f3+2bNliPW/06NEEBATw5ptvsnfvXgAOHTrEG2+8wdq1a5kzZw4AFouF\n/v37M2DAAJYuXUpaWhp9+vQB4ODBgzzxxBPk5eVx7tw5hg4dest609LSyM3NpUKFCly9epXRo0db\n75XExETgRpAfOHAgffv2ZfPmzQDs2rULX19fBg8ezMiRI8nIyCi2YtqpUyfr+cOHD2fAgAGkpaUx\ndepU+vXrR58+fdi2bVupc7Js2TJ8fX3p378/kZGRd3wtRERERO4HClZ/UtnZ2SxYsIBly5YRFxcH\nQFhYGJMnT8ZisdClSxcWL15c7LyNGzdiNpvx8fFhyZIlxVZIZs2axfDhw7FYLLRp0+aO69q2bRvP\nPPMMcXFx9OvXj4yMDIYPH06TJk0YOXJkkWNDQ0N5++23iYuLw9/fn4iICEaOHEmtWrWIiYmhYsWK\nt+zL2dmZtLQ0atSowYcffsiBAwfo378/PXv25JtvvgHgu+++s37whxurXoUf6NevX4+3t/cdj7FQ\nq1atiI2NpVOnTmzatAlfX19q1apFVFQUO3bs4MyZM6xcuZKlS5eycOFCMjIyAPD29iY2NhY/Pz/W\nrVsHwLp164o8Znjs2DE2b97M8uXLWb58Odu2bSMtLY1q1apx9uxZvvvuO+rUqcNPP/3E9u3b8fLy\nKlZfbGwsgwcP5umnnyYwMJDp06fj6OjIwoULad++PRaLhWnTphEeHk5mZiZ79uxh/vz5fPzxx+Tl\n5VFQUEBYWBjz588nLi6Otm3b3vZxwvbt27Ny5Ur2799PWloan332GYsXL+bw4cOlzsnatWuZNGkS\nq1atomHDhuTm5t71NRERERH5s1Kw+pNq2rQpDg4OVKpUCTu7G09spqSkMGXKFMxmM59//rn1/anf\n6927NxaLhbVr1/Lee+8xYsSIIvtTUlJ4/PHHAfDw8LjjuoYPH87ly5d5+eWX2bp1q7W2kly4cAF3\nd3cA2rZtS3Jy8h31lZqaiouLCydPnsTR0ZF33nmHb7/9ltmzZxMeHk56ejo7d+4sEh7r1q0LwNmz\nZzlw4ACenp53PMZCDz/8MAB16tQhOzu7yL6kpCR++uknzGYzr776Krm5udZ30Bo3bgzAk08+yeHD\nh0lPT2f//v1F6kxKSiI1NZWAgABefvll0tPTOXXqFM888ww7duzg4MGDvPbaa+zatYsdO3aUGKwC\nAgKIi4tj3rx5XLp0iYceesja9ueff47ZbCYsLIyMjAwcHR0JCwsjLCzM+r5dWloajo6OuLi4AKVf\no4KCAuvPhWP7+eefeeyxxwCoVasWgYGBpc7JO++8w8qVKxk8eDCpqalF2hMRERH5q1Cw+pMymUzF\ntjVu3JjIyEgsFgtBQUF07dr1lm3UrVu32BctNGvWjIMHDwLwww8/3HFdGzZs4MUXX8RisdC0aVNW\nr16NjY0N+fn5xY6tXbs2R48eBWDfvn3WD/5lceHCBbZv307Xrl1JTEwkPDzcGm4aN26Mk5MTtra2\nZGRkWN+nKtSrVy8iIiJ4/PHHS5xHI0wmE/n5+bi6utKuXTssFguffvopzz77LA0aNLAeA2BjY0PP\nnj0JDw/Hy8sLW1tbazuurq40adKEpUuXYrFY8PHxoVmzZnh5ebFx40YcHR3p0qUL27ZtIycnh1q1\napVa0yOPPMJrr73G2LFjrbUFBARgsVh477338Pb25sKFC/z000988MEHLFq0iNmzZ+Pk5ERmZqY1\noO/du5eHHnqIChUqcPHiRQB++eUXrly5UmT8hfUfPnwYuPE45tChQ0udk9WrVzNlyhTi4uJISEiw\n3n8iIiIifyX68or7SHh4OMHBweTl5QE3vqnvZhs3buSHH37A1taWa9euMWXKlCL7x40bx8SJE4mJ\nicHJyanEFafk5GR8fHysvxd+yQbAo48+SkhIiPW9pqlTp+Ls7Mz169eZPXs2QUFB1mOnT5/OtGnT\nKCgowNbWlpkzZ95yfIW129jYUFBQwDvvvEO1atX4xz/+QUpKCr6+vlSuXJmCggLGjx9PcnIyrVu3\nLtZOz549mTFjBl988UWxfYsWLbJ+g2GVKlWwWCy3rOlmnp6eDBs2jKVLl7J3714GDhzIb7/9hpeX\nV7Ev4wDo27cvXl5efPnll0W2t2jRgg4dOuDv709OTg6tWrXCxcUFW1tbsrOzad++PVWrVsXOzo6n\nnnrqtnX5+vqyZcsWVqxYwfDhw5k0aRKrV68mMzPT+vjlxYsXeeGFF6hcuTJDhgzB3t6e6dOnM2rU\nKEwmE1WrVuWdd97hgQcewMnJCV9fX9zc3KyB8feefvppvv/+e/z9/cnLy+PNN9+kS5cuJc5J8+bN\n6devH9WrV8fFxaXEayYiIiJyvzMV6Lmcv5X169fTunVrHnzwQdasWcOBAwd45513yrss+RuLj4+n\nerVq5V2G/A+4urn9of0lJCRYHz+W0mmebk9zVDaap9vTHJXN/TRP8fHxpb5OoxWrv5m6desSGBhI\npUqVsLGxue0qkoiIiIiI3J6C1d9M27ZtWbt2bXmXISIiIiLyl6IvrxARERERETFIwUpERERERMQg\nBSsRERERERGDFKxEREREREQMUrASERERERExSMFKRERERETEIAUrERERERERgxSsREREREREDFKw\nEhERERERMUjBSkRERERExCAFKxEREREREYMUrERERERERAxSsBIRERERETFIwUpERERERMQgu/Iu\nQETE1c2tvEv400tISMDd3b28yxAREZFSaMVKRERERETEIAUrERERERERgxSsREREREREDFKwEhER\nERERMUjBSkRERERExCAFKxEREREREYMUrERERERERAxSsBIRERERETFIwUpERERERMQgBSsRERER\nERGD7Mq7ABGRX7evLNf+nZ8eUK79i4iIyP1PK1YiIiIiIiIGKViJiIiIiIgYpGAlIiIiIiJikIKV\niIiIiIiIQQpWIiIiIiIiBilYiYiIiIiIGKRgJSIiIiIiYpCClYiIiIiIiEEKViIiIiIiIgYpWImI\niIiIiBikYCUiIiIiImKQgpWIiIiIiIhBClYiIiIiIiIGKViJiIiIiIgYpGAlIiIiIiJikIKViIiI\niIiIQQpWIiIiIiIiBilYiYiIiIiIGHRfBKu1a9diNpsxm834+fnx6KOPkpGRUeSYTp06WX9OSUmh\nR48efP/993fd5+/bK7Rz505CQkLuus3SmM1m+vXrZx2j2WwmJyfnnvZx+fJla9uenp7W/tasWcOi\nRYs4dOjQHbf5yCOPFKk5PDz8rmoLDAy85+O9nezsbLp3715se/fu3cnOzrb+npKSgtlsBspW563m\n+fcSEhKYP38+UPK9drdOnz5Nnz59CA4OLrK9e/fuvPrqq0W2ffLJJzRv3vyO+0hPT2fDhg2G6hQR\nERH5q7Er7wLKwsfHBx8fHwCmTJlC3759eeCBB0o8Njk5mVGjRhEREcHjjz/+R5ZpSGRkJG5ubv+z\n9mvUqIHFYgGwhiCj/VWtWtXaphFRUVGG2/gjlKXOss6zu7s77u7u97zGAwcO0KFDhxL/AHD+/Hku\nX75MjRo1ANixYwdVq1a94z4SExP5+uuv8fb2NlyviIiIyF/FfRGsCh0+fJhjx44xefLkEvcfPXqU\nMWPGMG/ePFq0aAHA1atXmTRpEmlpaQCEhoZy8eJFVq9ezfvvvw/AgAEDeP/996ldu3axNlNSUpg4\ncSKVKlWiUqVK1g+iW7ZsITY2FhsbGzw8PBg3bhznzp0jPDyc7Oxs0tPTefPNN/Hy8iIqKordu3eT\nn5/Pc889R0BAQJnG27t3bx566CEcHBwIDw8nKCiIzMxM8vLyGDNmDB06dMDb2xtPT0+SkpJo3Lgx\nzs7O7N+/HwcHBxYtWoS9vf1t+wkJCaFXr15cunSJb775hqysLC5evMhLL73E9u3bSU5OZvz48Xh5\neZWpbovFwsaNGzGZTPTq1YuXXnqJkJAQ0tPTSU9PZ+jQodba/Pz8eP/999myZQs7duzg448/xs7O\njvr16zNr1iwOHjxIZGQkdnZ2PPDAA8yZMwdHR0drX0lJSURERJCfn09GRgahoaG0adOGf/zjH7Rp\n04aff/4ZZ2dnoqOjycrKYty4cWRkZNCoUaMyjeX3unfvXmqdNja3X/y9eQ42b95MVFQUOTk5BAYG\ncvbsWZo3b054eDiZmZnF7tubV5ciIiKIj48HbtwrzzzzDB9++CFZWVk0atSIgQMHFjm+R48ebN26\nlYEDB5KSkkKjRo1ITk4G4OzZs4SFhZGdnU2FChWYNm0aeXl5/POf/6ROnTqcPn2aRx99lClTprBw\n4UKOHj3KqlWr6NSpE5MmTSI3NxeTyURoaCgtWrSgW7duuLq64urqStu2be9qvkRERETuJ/dVsPro\no4948803S9x37do1QkJCsLW15erVq9btCxcupH379gwcOJATJ04wYcIEli9fzvTp07ly5QoXL16k\nevXqJYYqgHnz5jF69Gg6derEokWLOH78OOnp6URHR/P5559TqVIlgoKC2LVrFyaTiVdeeYV27dpx\n4MABoqOj8fLy4osvviAuLg4XFxfWrl1bYj/BwcFUqlQJgOeffx5fX19+++03RowYwcMPP0xkZCQd\nO3bk5Zdf5vz58/j7+7Nt2zauXbtG79698fDwoGfPnkyYMIHAwEAGDx7MsWPH7nhV5Nq1a8TExLBp\n0yZiY2NZvXo1e/bsYenSpcWC1ZUrV6yPyRWOoWLFimzevJnly5djMpkICAigc+fOALRv356AgAD2\n7NlDdna29fG4woC7ceNGAgICeO655/jiiy/IzMxk27ZtPPPMMwwdOpSvv/6ajIyMIsHq2LFjBAcH\n07x5czZs2MDatWtp06YNp0+f5tNPP6Vu3boMGDCAw4cP8+OPP9KsWTMCAwP54Ycf2LNnT4lzMGTI\nEOsH///+97/W61KopDpLW0G92e/noFBh4Ktfvz5jxozh66+/5sCBA8Xu2xUrVljP+eabbzhz5gyr\nV68mNzeXgQMH0r59e4YNG8bx48eLhSq4Eb7CwsIYOHAg69evx9vbm+3btwM3VkzNZjNdu3bl+++/\nZ86cOQQGBnLixAmWLFlCpUqV8PLy4uLFiwwfPpyVK1fSv39/Ro8ejdlsxsvLi4SEBCZOnMjatWs5\ne/Ysa9eupXr16owePfqu50tERETkfnHfBKuMjAyOHz9O+/btS9xvMpn44IMPSE9PZ9SoUaxZswZn\nZ2eSkpLYvXs3W7ZssbZjMpl4/vnn2bhxI2fOnKFfv36l9pucnEyrVq0AaNOmDcePH+fUqVNcvnyZ\nYcOGATfCyOnTp/Hw8ODDDz/ks88+w2QykZubC8DcuXOZO3culy5d4sknnyyxn9IeBWzcuDFwY+Ws\n8NErFxcXHB0duXz5MgAtW7YE4IEHHrC28cADDxR5V6isCoOYk5MTbm5umEwmqlatWmJbJT0KuHnz\nZlJTU62rcleuXOHUqVNFxnLzz4UmTJjARx99xIoVK3B1dcXLy4vhw4ezcOFCXn75ZVxcXKzXolDt\n2rVZsGABFStW5Nq1a9bQVb16derWrQtA3bp1yc7OJjk52Tr/rVu3xs6u5Ns/JiaGChUqADfm/eZ3\nx0qqs6xKGne9evWoX78+AI8//jg///xzifft76WkpODp6YnJZMLe3p7WrVuTkpJyy74L5+Ps2bMc\nOHCAt956y7ovKSmJjz76iMWLF1NQUGBd6WzUqJF1TmvVqlXsPkhJSaFt27bAjXvn3LlzwI35r169\nOmBsvkRERETuF/fN8zj79u2jY8eOpe6vXLky9evXp2XLlgwaNIhx48aRn5+Pq6srAQEBWCwW3nvv\nPWs46du3L1u3bmXfvn107dq11HZdXV05ePAgAD/++CMADRo0oG7dusTExGCxWBg8eDCtW7dm3rx5\n9OnTh9mzZ9OuXTsKCgrIyclh69atzJ07l08//ZR169bxyy+/lHnchSsnbm5u7N+/H7jxrkxGRgbV\nqlUDboTKe8VoW66urjRp0oSlS5disVjw8fGhWbNmxdou6VGwVatWMWrUKOLi4gD46quv2LBhAy++\n+CIWi4WmTZuyevXqIufMmDGD0aNHExkZSbNmzSgoKCh1HK6urvznP/8B4MiRI9bge6dKqrOsSqrr\n3LlzXLhwAbjxjlTTpk1LvW8Lubm5WR8DvH79OgcPHuTBBx+8bf+9evWyvn/4+1pcXV0ZN24cFouF\nKVOm0KNHj1LrtbGxIT8/31pH4X2ZkJBAzZo1rccUMjJfIiIiIveL+2bF6ueff6ZBgwZlOnbIkCHs\n2rWLBQsWMHz4cCZNmsTq1avJzMxk5MiRwI1VnypVqvDYY4+VunIBMHnyZAIDA1myZAk1atSgQoUK\n1KhRg4CAAMxmM3l5edSvX59nn32Wnj17MmPGDD766CPq1q1LWloaDg4OVK1alT59+lC1alU6depE\nvXr17nj8r7/+OhMnTuTLL78kKyuLqVOn3rLu8tKiRQs6dOiAv78/OTk5tGrVChcXlzKd26pVK155\n5RWqVatGlSpVeOqppzh16hQhISFUrlwZe3t7pk6dWuSc559/nhEjRuDs7EydOnWs7ySVZNCgQUyY\nMAF/f39cXV3L9P5ZWes0olq1akyfPp3z58/z+OOP07VrV1q1alXifVuoW7du7N27l/79+3P9+nV6\n9uxJy5YtSUxMvGVfhffoF198UWR7cHCw9f3ArKwsJk2aVGobjRo1IikpidjYWMaPH09YWBgxMTHk\n5uYyY8aMYsff6/kSERER+TMyFRT+if9vqDCslOUv/SLyvxEfH89D6cnlWoPz0wPKtf+ySEhI+J98\nk+RfieaobDRPt6c5KhvN0+1pjsrmfpqn+Ph4PDw8Stx33zwKeC9lZWXh4+NDixYtFKpERERERMSw\nP9+zZH+AihUrlvrtfCIiIiIiInfqb7liJSIiIiIici8pWImIiIiIiBikYCUiIiIiImKQgpWIiIiI\niIhBClYiIiIiIiIGKViJiIiIiIgYpGAlIiIiIiJikIKViIiIiIiIQQpWIiIiIiIiBilYiYiIiIiI\nGKRgJSIiIiIiYpCClYiIiIiIiEEKViIiIiIiIgYpWImIiIiIiBikYCUiIiIiImKQXXkXICLi/PSA\n8i5BRERExBCtWImIiIiIiBikYCUiIiIiImKQgpWIiIiIiIhBClYiIiIiIiIGKViJiIiIiIgYpGAl\nIiIiIiJikIKViIiIiIiIQQpWIiIiIiIiBilYiYiIiIiIGGRX3gWIiBwJH/WH9fVwePQf1peIiIj8\nfWjFSkRERERExCAFKxEREREREYMUrERERERERAxSsBIRERERETFIwUpERERERMQgBSsRERERERGD\nFKxEREREREQMUrASERERERExSMFKRERERETEIAUrERERERERgxSsREREREREDFKwEhERERERMUjB\nSkRERERExCAFKxEREREREYMUrERERERERAxSsBIRERERETFIwUpERERERMQgBSsRERERERGDFKzK\nwUsvvcShQ4cAyMnJwcPDgyVLllj3Dx48mKNHj9K9e3eys7MN95eXl4efnx+bNm2ybjt37hxPP/00\n58+fN9z+zW5Xd6dOnW55fnR0NCtWrLhtP2fOnKFNmzaYzWYGDx6Mn58fcXFxd1xveQoJCcHb2xuz\n2Yy/vz8jRozg9OnTtzznq6++KvN1u3z5MqNGjWLo0KEMGTKE0NBQsrKySjz24sWLhIeH3+kQSExM\nZN++fQAEBgaSk5NT4nHp6els2LDhjtsXERERuR8oWJWDzp07s3//fgDi4+Pp3Lkz3377LQDZ2dmc\nPXuWFi1a3LP+bG1tiYyMZPbs2Vy6dAmA0NBQxo8fj4uLyz3rpzw0adIEi8VCXFwcy5YtY+fOnXz9\n9dflXdYdCQoKwmKxsGLFCoYMGcJbb711y+OXLl1KZmZmmdpevHgxHTt2ZMmSJcTExFCpUiVWrlxZ\n4rG1atW6q2D1r3/9i2PHjgEQFRWFg4NDicclJibed9dGREREpKzsyruAv6OOHTuyYMEChgwZwo4d\nO/D19WXOnDlcvXqVn376iSeeeMJ6bHh4OGfOnAFg/vz5VK5cmcmTJ3Py5Eny8/N56623aNeuHd7e\n3jzxxBMkJiZiMplYsGABTk5O1nYaN27M0KFDmTlzJl26dKF27dr06NEDgF27dvHee+9RoUIFqlWr\nxsyZM0lISGDlypVERUUBN1aZdu3aRUhICOnp6aSnp/PRRx9RtWrVUsd55swZJk2aRG5uLiaTidDQ\nUFq0aEFOTg6BgYGcPXuW5s2bEx4ejslkKnZ+dnY2Y8aMITMzk6ysLIKCgmjXrl2p/dnb2/PSSy/x\nxRdf0L17d2JiYti0aRN2dnZ4enoSFBREdHQ0Z86c4ddffyU1NZUJEybw5JNPsnfvXqKiorC1taVh\nw4ZMnToVe3t7a9tJSUlERESQn59PRkYGoaGhtGnThpCQEE6dOkV2djZDhw6lV69eRWp69913+fHH\nH7l27Rpubm688847t7o18PT0xN7enpMnT5KdnV2sz4yMDBISEggODmb58uVER0ffsv369evz5Zdf\n8uCDD9KmTRuCg4Otc71gwQK2bdtGXl4e/v7+dO7cmbFjx7J69eoS52PDhg3s2LGDrKz/1969B0VV\nNnAc/y7SogIm5gU1rfAyoQ6laKl5a6aL5iUzDFzdQp3KTIkspcQ1NbXUYrooClRiaKKm1XRxqmkq\n0vIymDmKVmiDk2mrsWVLcVn2ef9w3Fdw0Xy31x3x9/nLPfvsOc/5cVl++5xdyzl8+DAPPvggt9xy\nC++88w5XXHEFXbt2JTU1lc2bN/Pll1+Sk5NDaGgobdu2ZfHixaxYsYIDBw6wbt06EhMTz5mDiIiI\nyKVGK1ZB0KVLFw4dOoQxhp07d3LTTTfRp08fvv76a3bs2EH//v19Y++9917y8vJo27YtW7duZcOG\nDURFRbFmzRoyMzOZN28eAGVlZQwdOpTVq1fTsmVLCgoKzjruuHHjcLlcrFq1ivT0dACMMTgcDpYu\nXcrq1avp1asXy5cvP+f8e/fuTX5+/jlLFcDixYux2+2sWbOG9PR0Zs6cCUB5eTlPPvkk+fn5/P77\n73WuYhw+fJgTJ06wYsUKXnzxxTovYTtT8+bNcblcfP/992zevJn8/Hzy8/MpKSnh888/B8BqtfLa\na6+Rnp5Obm7uWRm0atWKd955p8Z+i4uLSUtLIzc3l/Hjx7Np0ybcbjfbt29n6dKl5OTkUF1dXeMx\nbrebJk2asHLlSvLz89m9e/c/uoTvqquuwuVy+T3moEGDiI2NZdGiRVRWVp53/2PGjGHYsGG8/vrr\n9O/fnylTpuB0OikqKqKgoIANGzaQn59PcXExxhjg7O+JM/Nwu91kZWWxfPlysrOzadWqFffccw/J\nycnExcX5jvvBBx+QnJzM2rVr6devH263m0mTJtG7d2+VKhEREamXtGIVBCEhIVx//fUUFBTQokUL\nrFYrAwYM4IsvvuDAgQPcf//9vrHdunUDThWG8vJyfvjhBwoLC33v0fJ4PLhcLuBUYQNo3bq13/c4\nWSwWhg8fzqFDhwgPDwfA5XIRERHhuySwV69eZGRkMGjQoBqPPf1HN5xa/art5MmTREZG+lZDLBYL\nBw8epFevXgDExsZy7NgxANq0aUPbtm0B6N69Oz/99JPfnDp16sTYsWOZNm0aHo8Hu91eZ6anHTly\nhOjoaA4dOsQNN9zgW3Xq2bMnP/74o28uANHR0VRWVlJaWorT6fRdgldeXn7W+8BatmxJZmYmDRs2\npKysjIiICCIiInA4HDgcDtxuNyNGjKjxmLCwMEpLS5k2bRqNGzfmr7/+oqqq6rzn8MsvvxAdHY3H\n4znrmBe6/+3btzNy5EgSEhKorKwkJyeHhQsXMnjwYOLi4mjQoAGNGjVi1qxZvpXRuvJo37697xLV\n1q1b1/leKoCnn36arKws1q5dS0xMDLfddtt5z1tERETkUqYVqyC55ZZbyMrK8q1OxcfHU1RUBEDT\npk1942pfIhcTE8PQoQqOvYQAAAwHSURBVEPJy8sjJyeHwYMH+1aO/F1Odz5RUVG43W6cTicAO3bs\n4NprryUsLIzjx48Dp8rKH3/8UeecAJKTk/n5558pLy/H6/VitVrp0KGD771k+/fvp3nz5sCpD844\nfbxdu3bRqVMnv3P7/vvvKSsrIzs7m+eff55nn332nOdSWVnJm2++ydChQ4mJiWHPnj14PB7fyuDp\nQlh7/lFRUURHR5OZmUleXh6TJk0665LDBQsWkJKSwqJFi+jcuTPGGJxOJ/v27WPZsmVkZ2ezZMkS\nPB6P7zEFBQUcPXqUjIwMpk2bRnl5eY2C6s/WrVtp2LAh0dHRfo95ev7GmH+0/1WrVrFp0ybg1Epd\np06dsFqtxMTEUFRUhNfrpaqqivHjx/uK0rny8Pe1t1gseL3eGtvWrVvH1KlTfR8m8umnnxISEnLW\nOBEREZH6QitWQdK3b19mzZrF4sWLgVN/9EZGRvpWneqSlJTErFmzGDduHG63G5vNRkjI/96PLRYL\n8+fPZ+rUqVgsFq688kqee+45mjRpQmRkJKNHj6ZDhw5cffXV59zP5MmTeeyxx7Barb6VjhkzZuBw\nOHjjjTfweDwsWLAAOFUc58+fz6+//kr37t0ZOHCg331ee+21LFu2jHfffZcrrriClJSUs8YUFxdj\nt9uxWCx4PB6GDx9O3759ARgyZAhjxozB6/USHx/PbbfdxoEDB87aR0hICOnp6Tz00EMYYwgPD/d9\nXU4bMWIEkydP5qqrriI6OhqXy0WLFi04fvw4I0eOpHHjxkyYMIHQ0P/+SMXFxZGZmcl9992H1Wql\nXbt2OJ1O2rVrV2PfS5YsIScnh5CQEMLDw3nppZfqPCacWuWbMWMGy5cvP+/+586dy9y5c3nrrbdo\n2LAhUVFRzJkzh1atWtG/f39fPmPGjPF96ERdeRw9etTv16lbt24sXryYDh061Dj38ePH07RpU8LD\nwxk0aBCVlZX88MMP5Obmkpyc7HdfIiIiIpcqiznfS+giIv9HhYWFNHo/96Idr8ucVy/asf5N+/fv\n913GKv4po39GOZ2fMvpnlNP5KaN/5lLKqbCwkPj4eL/36VJAERERERGRAKlYiYiIiIiIBEjFSkRE\nREREJEAqViIiIiIiIgFSsRIREREREQmQipWIiIiIiEiAVKxEREREREQCpGIlIiIiIiISIBUrERER\nERGRAKlYiYiIiIiIBEjFSkREREREJEAqViIiIiIiIgFSsRIREREREQmQipWIiIiIiEiAVKxERERE\nREQCpGIlIiIiIiISIBUrERERERGRAIUGewIiIl3mvBrsKYiIiIgERCtWIiIiIiIiAVKxEhERERER\nCZCKlYiIiIiISIBUrERERERERAJkMcaYYE9CRC5fhYWFwZ6CiIiIyD8WHx/vd7uKlYiIiIiISIB0\nKaCIiIiIiEiAVKxEREREREQCpGIlIiIiIiISIBUrEQkKr9fL7NmzSUxMxG63U1JSEuwpBVVVVRXT\np0/HZrORkJDAZ599RklJCWPGjMFms/HMM8/g9XoBWLp0KQkJCSQlJbFnz54gz/zi++233xg4cCAH\nDx5URnXIysoiMTGRUaNGsWHDBuVUS1VVFU888QRJSUnYbDZ9L/nx3XffYbfbAS4om7rG1kdnZrR/\n/35sNht2u52JEydy4sQJANavX8+oUaO47777+PzzzwEoLS1lwoQJ2Gw2UlNT+fvvv4N2DhfDmTmd\n9v7775OYmOi7XW9yMiIiQfDxxx+btLQ0Y4wx3377rZk0aVKQZxRcb7/9tpk/f74xxpjS0lIzcOBA\n8/DDD5tt27YZY4xxOBzmk08+MXv37jV2u914vV5z5MgRM2rUqGBO+6KrrKw0kydPNnfccYcpLi5W\nRn5s27bNPPzww6a6utq43W7zyiuvKKdaPv30U5OSkmKMMWbLli1mypQpyugM2dnZZtiwYWb06NHG\nGHNB2fgbWx/Vzmjs2LGmqKjIGGPM2rVrzcKFC43T6TTDhg0zFRUV5uTJk75/P/vss2bjxo3GGGOy\nsrLMypUrg3Ua/3e1czLGmKKiInP//ff7ttWnnLRiJSJBUVhYSP/+/QG48cYb2bt3b5BnFFyDBw/m\nscce891u0KAB+/bt46abbgJgwIABfP311xQWFtKvXz8sFgtt2rShurqa0tLSYE37olu0aBFJSUm0\nbNkSQBn5sWXLFjp37syjjz7KpEmTGDRokHKq5brrrqO6uhqv14vb7SY0NFQZnaF9+/a8+uqrvtsX\nko2/sfVR7YwyMjKIjY0FoLq6mrCwMPbs2UP37t2xWq1ERkbSvn17Dhw4UOP5rz5nBGfn5HK5eOGF\nF5g5c6ZvW33KScVKRILC7XYTERHhu92gQQM8Hk8QZxRc4eHhRERE4Ha7SUlJITU1FWMMFovFd/+f\nf/55Vm6nt18ONm3aRLNmzXxPtIAy8sPlcrF3715efvll5s6dy5NPPqmcamncuDFHjhxhyJAhOBwO\n7Ha7MjrDnXfeSWhoqO/2hWTjb2x9VDuj0y/27Nq1i9WrV5OcnIzb7SYyMtI3Jjw8HLfbXWN7fc4I\nauZUXV1Neno6M2fOJDw83DemPuUUev4hIiL/voiICMrKyny3vV5vjSepy9HRo0d59NFHsdlsDB8+\nnCVLlvjuKysro0mTJmflVlZWVuMJqT7buHEjFouFb775hv3795OWllZj9UAZndK0aVNiYmKwWq3E\nxMQQFhbGsWPHfPcrJ8jNzaVfv3488cQTHD16lAceeICqqirf/cqoppCQ/74Of75s/I29XHz00Ucs\nX76c7OxsmjVrVmdGp7c3bNjwsspo3759lJSUMGfOHCoqKiguLmbBggX07t273uSkFSsRCYoePXpQ\nUFAAwO7du+ncuXOQZxRcJ06cYMKECUyfPp2EhAQAunTpwvbt2wEoKCigZ8+e9OjRgy1btuD1evnl\nl1/wer00a9YsmFO/aNasWcPq1avJy8sjNjaWRYsWMWDAAGVUS3x8PF999RXGGH799Vf+/vtv+vTp\no5zO0KRJE19BuvLKK/F4PPp5O4cLycbf2MvBe++95/v91K5dOwDi4uIoLCykoqKCP//8k4MHD9K5\nc2d69OjBl19+CZzKKD4+PphTv2ji4uL48MMPycvLIyMjg44dO5Kenl6vcrq8Xx4WkaC5/fbb2bp1\nK0lJSRhjWLhwYbCnFFQrVqzg5MmTZGZmkpmZCUB6ejrz588nIyODmJgY7rzzTho0aEDPnj1JTEz0\nfbLi5SwtLQ2Hw6GMznDrrbeyc+dOEhISMMYwe/Zsrr76auV0huTkZGbOnInNZqOqqorHH3+cbt26\nKaM6XMjPmb+x9V11dTULFiygdevWTJ06FYBevXqRkpKC3W7HZrNhjOHxxx8nLCyMRx55hLS0NNav\nX09UVBQvvvhikM8guFq0aFFvcrIYY0ywJyEiIiIiInIp06WAIiIiIiIiAVKxEhERERERCZCKlYiI\niIiISIBUrERERERERAKkTwUUERGRS8bPP//MiBEj6Nq1q2/bzTffzJQpU4I4KxERFSsRERG5xHTs\n2JG8vLxgT0NEpAYVKxEREbmkVVdXM3v2bI4dO4bL5WLAgAGkpqby1FNPYbVaOXLkCE6nk+eff56u\nXbvy1FNPcfjwYSoqKpg4cSJ33XVXsE9BROoBFSsRERG5pBQXF2O32323U1NTufHGGxk9ejQVFRW+\nYgXQpk0b5s2bx/r161m3bh0zZsxg+/btbNy4EYCtW7cG5RxEpP5RsRIREZFLSu1LAd1uN++99x7b\ntm0jIiKCyspK332xsbEAREdHs2vXLiIiInA4HDgcDtxuNyNGjLjo8xeR+knFSkRERC5pmzZtIjIy\nknnz5lFSUsL69esxxgBgsVhqjHU6nezbt49ly5ZRUVHBwIEDufvuuwkN1Z9EIhIY/RYRERGRS1qf\nPn2YNm0ahYWFNGrUiGuuuQan0+l3bIsWLTh+/DgjR46kcePGTJgwQaVKRP4VFnP6JR0RERERERH5\nn+g/CBYREREREQmQipWIiIiIiEiAVKxEREREREQCpGIlIiIiIiISIBUrERERERGRAKlYiYiIiIiI\nBEjFSkREREREJEAqViIiIiIiIgH6D80q9DwLmVqdAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a11c4db70>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Top 5 performers by Fans\n", | |
"plt.figure(figsize=(10,5))\n", | |
"temp = df.sort_values(by='Fans', ascending=False).head()\n", | |
"g = sns.barplot('Fans', 'Title', data=temp, palette='coolwarm');\n", | |
"plt.ylabel('');" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"You can see here that even within my top 5 posts of all time (ranking by `Fans`), there is a huge descrepency between my top two posts and the next few. Note that there is also some bias here since Medium switched to the 'clap' feature after a couple of my earlier posts had already gone out. I've found that users are more likely to 'clap' than they were previously to 'like' a post. Just a hunch though. \n", | |
"\n", | |
"I'd imagine this is a common theme out there. Not every post that you put out will be a homerun, you are always going to have a couple that outperform the rest. If you're interested, here's the link to each post below:\n", | |
"* https://towardsdatascience.com/python-for-data-science-8-concepts-you-may-have-forgotten-i-did-825966908393\n", | |
"* https://medium.freecodecamp.org/the-hitchhikers-guide-to-machine-learning-algorithms-in-python-bfad66adb378" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAE3CAYAAAB2LD/OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xt8lPWd//33NefJzCSCgOIhVNHY\noFIItltvBVf5UdtKWxc10PRO25/2rtJaF4pd+rArdVmLdKvcbq3Y9l4Wd+lakqrbg3XbSuuPKFSr\nUaTooJVWPIEcC5nJnOd7/zGZkWBgkslMMofX8/FoYa7rysx1fSLkzfdoGWOMAAAAUDS20b4BAACA\nakPAAgAAKDICFgAAQJERsAAAAIqMgAUAAFBkBCwAAIAic4z2DRytu7t7tG8BAABg0GbMmPGeY2UX\nsKSBb7RcBINBNTc3j/ZtjDrqkEEdMqgDNciiDhnUIaMW6nCshiG6CAEAAIqMgAUAAFBkBCwAAIAi\nI2ABAAAUGQELAACgyAhYAAAARUbAAgAAKDICFgAAQJERsAAAAIqMgFVkh0JpHTycHu3bAAAAo4iA\nVUTGGN37UEhrfhEe7VsBAACjqCz3IqxUr+9O6fXdKY0JWKN9KwAAYBTRglVET7wQkyQdChuljRnl\nuwEAAKOFgFUk0ZjRM8G4nA4pnZZ6IwQsAABqFQGrSJ4JxhWLS7OmuSVlWrEAAEBtImAVyZMvxHTK\nOJumNTklZWYTAgCA2kTAKoLXdye1c3dKM6e51eDPlPRwmIAFAECtYhZhETz5QkxOh/Shc12y2zIz\nCA+F6CIEAKBWEbCGKRo3+sNLcc14v0s+T6b1yu2iixAAgFpGF+EwdQfjisaliz/gzh1r8Nl0iC5C\nAABqFgFrmLb8KaHxY2yafKo9d6zBb9NhZhECAFCzCFjDFOpNa1yDTZb17urtDT6LLkIAAGoYAWuY\nIjEjr7v/1jj1dBECAFDTCFjD1DtAwGrw2xSLZwbAAwCA2kPAGqaBWrAa/JnXrIUFAEBtImANQypl\nlEhqwC5CiaUaAACoVQSsYYjEMl2AA3URSiw2CgBArSJgDcMxA5aPLkIAAGoZAWsYcgHL0z9g+byW\n7DbpEGthAQBQkwhYw9B7jBYsy7JUz1pYAADUrLwBK51Oa9myZZo/f77a29u1c+fOfuc7Ozs1b948\ntba26vHHH+937v7779edd96Ze/3II4/ommuu0YIFC7Rs2TKl05UdQI7VRShJ9X6bDhOwAACoSXkD\n1oYNGxSPx9XR0aElS5Zo5cqVuXN79+7VunXrtH79eq1Zs0arVq1SPB5XNBrVzTffrAceeCB3bTQa\n1d13363//M//1Pr16xUKhd4TyCrN8QJWZj9CuggBAKhFeQNWd3e3Zs6cKUmaNm2atm3blju3detW\nTZ8+XS6XS4FAQI2Njdq+fbtisZiuvPJK3XDDDblrXS6X1q9fL6/XK0lKJpNyu92qZMcNWH6LQe4A\nANQoR74LQqGQ/H5/7rXdblcymZTD4VAoFFIgEMid8/l8CoVCamho0MUXX6yHH344d85ms2ncuHGS\npHXr1qm3t1cXXXTRgJ8ZDAYLfqBSi0ajuft7402fpIB2/vll2Y6KqvGITz29AW17MSh7FY50O7IO\ntYw6ZFAHapBFHTKoQ0Yt1yFvwPL7/QqHw7nX6XRaDodjwHPhcLhf4DpaOp3Wd77zHf3lL3/RPffc\n02+D5CM1NzcP+gFGWjAYzN3ftrd75XbGdO65773fvbGYnn65V6c2nqMxgepLWEfWoZZRhwzqQA2y\nqEMGdciohTp0d3cPeDzvT/6WlhZ1dXVJkrZs2aKmpqbcualTp6q7u1uxWEw9PT3asWNHv/NHW7Zs\nmWKxmFavXp3rKqxkkZiRZ4DuQemItbAY6A4AQM3J24I1Z84cbdq0SQsWLJAxRitWrNDatWvV2Nio\n2bNnq729XW1tbTLGaPHixcccV/Xiiy/qwQcf1AUXXKDPfe5zkqTPfvazmjNnTnGfaAQNtA9hVm41\nd8ZhAQBQc/IGLJvNpuXLl/c7Nnny5NzvW1tb1draOuDXzps3L/f7c889V9u3by/0PsvScQOWj+1y\nAACoVdU3OGgEReJGdccIWAG2ywEAoGYRsIYhEj12C5bDbsnvZTV3AABqEQFrGI7XRShlxmGx2CgA\nALWHgDUMx5tFKGVmEtKCBQBA7SFgFSiRNEqmBl7FPaveb9NhWrAAAKg5BKwCZbfJqfMcvwXrcDgt\nYwhZAADUEgJWgY63D2FWvd+mZEoKRwlYAADUEgJWgQYTsLJrYR1mLSwAAGoKAatAgwpY/sw5VnMH\nAKC2ELAKNKguwtxq7gQsAABqCQGrQINrwcruR0gXIQAAtYSAVaDBBCyPy5LbJR2mBQsAgJpCwCpQ\npG9moMd17IAlZboJGYMFAEBtIWAVKBIz8rgkm+34AavBZ9MhZhECAFBTCFgFyrcPYZbPa6mXdbAA\nAKgpBKwCReKDDFgeS71RuggBAKglBKwCDbYFy+u21BujBQsAgFpCwCpQJDq4gFXnsRSLS6k0IQsA\ngFpBwCrQYFuwsptBRxiHBQBAzSBgFSgSM/J68pcvG7DY8BkAgNpBwCqAMWZIY7CkdxcmBQAA1Y+A\nVYBEUkqlj7+Ke1ZdXysXSzUAAFA7CFgFGMw2OVl1fdcQsAAAqB0ErAIMKWD1jcFiqQYAAGoHAasA\nhQQsZhECAFA7CFgFGErAcjokh12s5g4AQA0hYBVgKAHLsixWcwcAoMYQsAqQHbA+mIAlZboJGeQO\nAEDtIGAVYCgtWFJmJiFjsAAAqB0ErAJEY0aWJbldg7u+zmMpTBchAAA1g4BVgEjcyOuyZLMG14Ll\n9dCCBQBALSFgFSASM/IMsntQyqzmzhgsAABqR96AlU6ntWzZMs2fP1/t7e3auXNnv/OdnZ2aN2+e\nWltb9fjjj/c7d//99+vOO+/Mvf7d736nq666SvPnz1dnZ2eRHmHkDXYfwqy6vlmExhCyAACoBY58\nF2zYsEHxeFwdHR3asmWLVq5cqfvuu0+StHfvXq1bt04PPfSQYrGY2tradNFFFymdTusf//EftXXr\nVn3kIx+RJCUSCd1xxx168MEH5fV69elPf1qXXnqpxo8fX9onLIHe6BADlsdSOi3FEpJnkOO2AABA\n5crbgtXd3a2ZM2dKkqZNm6Zt27blzm3dulXTp0+Xy+VSIBBQY2Ojtm/frlgspiuvvFI33HBD7tod\nO3aosbFRDQ0NcrlcmjFjhp599tkSPFLpRWMmt0L7YGTDGOOwAACoDXlbsEKhkPx+f+613W5XMpmU\nw+FQKBRSIBDInfP5fAqFQmpoaNDFF1+shx9+uN/7DHTtQILBYEEPMxKi0agOhWLyuRIKBt8Y1Ncc\n3O+WNEbbgjs0rj5Z2hscIdFotKy/TyOFOmRQB2qQRR0yqENGLdchb8Dy+/0Kh8O51+l0Wg6HY8Bz\n4XC4X4g63vsc79rm5ubB3f0oCAaDSqWdOmmCT83NpwzqayxvQo8+G9LJp7xPZ5/uLPEdjoxgMFjW\n36eRQh0yqAM1yKIOGdQhoxbq0N3dPeDxvF2ELS0t6urqkiRt2bJFTU1NuXNTp05Vd3e3YrGYenp6\ntGPHjn7njzR58mTt3LlTf/3rXxWPx/Xss89q+vTphTzLqDJm6IPcvX3dicwkBACgNuRtwZozZ442\nbdqkBQsWyBijFStWaO3atWpsbNTs2bPV3t6utrY2GWO0ePFiud3uAd/H6XTq61//uq677joZY3TV\nVVfppJNOKvoDlVoiZSltBr+Ku6TceK0Ii40CAFAT8gYsm82m5cuX9zs2efLk3O9bW1vV2to64NfO\nmzev3+vLLrtMl112WSH3WTbiiUxYqhviMg2SFKYFCwCAmsBCo0MUS2bC0pC6CJlFCABATSFgDVE8\nkSnZUAKWzWbJ42IMFgAAtYKANUSFtGBJfdvlMAYLAICaQMAaolhfC9ZQ9iKUMgPdacECAKA2ELCG\nqJBB7lImYDGLEACA2kDAGqJYAWOwstfTggUAQG0gYA1RPGnJZkmuIS7I7vNY6o2mS3NTAACgrBCw\nhiiWsOR1W7KsAlqw6CIEAKAmELCGKJaw5ba+GYo6j6VYXEqlCVkAAFQ7AtYQxZOWvK7CApbEYqMA\nANQCAtYQJZKW3MMIWGyXAwBA9SNgDVEiZcntGvrX5bbLYRwWAABVj4A1RImkTW5nIS1YmVKzVAMA\nANWPgDVEiZRVWMDqa8EiYAEAUP0IWEOUSFpyDWMMFks1AABQ/QhYQ5RIWfIMcZFRiVmEAADUEgLW\nEKTSRqm0JVcBXYROh+Swi9XcAQCoAQSsIYgnMr8WskyDZVms5g4AQI0gYA1BNJ4JR4UMcpcy3YQM\ncgcAoPoRsIYgnugLWAW0YEmZmYSMwQIAoPoRsIYg1teC5SpgkLuUacEK00UIAEDVI2ANQayvBctT\nYBeh10MLFgAAtYCANQSxeObXQmYRSpnV3BmDBQBA9SNgDUGsCGOwemNGxhCyAACoZgSsIcgFrGGM\nwUqnpViiiDcFAADKDgFrCIY7i9DrZjV3AABqAQFrCLJjsIazDpbEfoQAAFQ7AtYQZLoIjZyOwr4+\nF7DYLgcAgKpGwBqCWNzIaTeyrGG2YNFFCABAVSNgDUE8YeR0FB6O6rJjsOgiBACgqhGwhiCakJz2\nYQSsvhasMC1YAABUtbwBK51Oa9myZZo/f77a29u1c+fOfuc7Ozs1b948tba26vHHH5ckHThwQNde\ne63a2tq0aNEiRSIRSdKaNWs0b948XXXVVXrsscdK8DilNdwWLGYRAgBQG/IGrA0bNigej6ujo0NL\nlizRypUrc+f27t2rdevWaf369VqzZo1WrVqleDyu1atXa+7cuXrggQc0ZcoUdXR06PDhw7lr//3f\n/10rVqwo6YOVQnYMVqFsNkseF2OwAACodnkDVnd3t2bOnClJmjZtmrZt25Y7t3XrVk2fPl0ul0uB\nQECNjY3avn17v6+ZNWuWNm/eLK/Xq1NOOUWRSESRSKTggeKjKTbMFiypb7scxmABAFDV8i44EAqF\n5Pf7c6/tdruSyaQcDodCoZACgUDunM/nUygU6nfc5/Opp6dHkjRx4kRdccUVSqVSuv7664/5mcFg\nsOAHKqXDPScq4E0O6/5sOlF79vUqGHy9iHc28qLRaNl+n0YSdcigDtQgizpkUIeMWq5D3oDl9/sV\nDodzr9PptBwOx4DnwuGwAoFA7rjH41E4HFZ9fb26urq0Z88e/fa3v5UkXXfddWppadHUqVPf85nN\nzc3DfrBSsDYekseVHNb9jXm+R8ZIzc0Ti3hnIy8YDJbt92kkUYcM6kANsqhDBnXIqIU6dHd3D3g8\nbxdhS0uLurq6JElbtmxRU1NT7tzUqVPV3d2tWCymnp4e7dixQ01NTWppadHGjRslSV1dXZoxY4Ya\nGhrk8XjkcrnkdrsVCAR0+PDhYjzbiIklhjcGS5L8XkvhCAuNAgBQzfK2YM2ZM0ebNm3SggULZIzR\nihUrtHbtWjU2Nmr27Nlqb29XW1ubjDFavHix3G63Fi5cqKVLl6qzs1NjxozRXXfdpbq6Om3evFmt\nra2y2WxqaWnRRRddNBLPWDTFGIPlr7MUepMxWAAAVLO8Actms2n58uX9jk2ePDn3+9bWVrW2tvY7\nP27cOK1Zs+Y973XTTTfppptuKvReR1XaGMWHuQ6WJPm9NoUjRmljZKvAgf4AACA/FhodpHgi86vT\nMbzuPb/XUtqwmjsAANWMgDVI8UQmEA27Basu02oV6iVgAQBQrQhYgxSL9wWs4Y7B8mZKHo4QsAAA\nqFYErEGKFasFy9vXgsVMQgAAqhYBa5Bi8cyvw23B8tFFCABA1SNgDVLxWrAyJQ/RRQgAQNXKu0wD\nMnIBy2H0xJZYwe9jjJHNJm1/LSGvuzTLNMyc5i7J+wIAgMGhBWuQijWL0LIsuZ1WLrABAIDqQ8Aa\npGKNwZIkj+vd9wMAANWHgDVI2RYnxzBbsCTJ7bQUpQULAICqRcAapGKtgyVJbpeVez8AAFB9CFiD\nlNnoWbIVYVw6Y7AAAKhuBKxBiiUywagY3K7M3obpNCELAIBqRMAapHjCyFWsgNX3PvFkUd4OAACU\nGQLWIMXiRh5Xcd7L7bJy7wkAAKoPAWuQYsVswcoGLMZhAQBQlQhYgxSLm1wwGq5sFyEtWAAAVCcC\n1iDFizjIPdvVyGKjAABUJwLWIEUTRm5ncd4r29XIYqMAAFQnAtYgFXMWocNuyWGnixAAgGpFwBqk\nYo7BklhsFACAakbAGgRjTFEXGpXYLgcAgGpGwBqERFIyRkVuwcqsDg8AAKoPAWsQ4n1decUa5C7R\nggUAQDUjYA1CNBewGIMFAADyI2ANQrxvvapizSKUMi1YiaSUYsNnAACqDgFrELItTUUdg9W32Gic\ncVgAAFQdAtYgxEowBsuTXWyUcVgAAFQdAtYgZAejF7cFi/0IAQCoVgSsQch24xV7kLskBroDAFCF\nCFiDkO3GK/Ygd4kWLAAAqpEj3wXpdFq33XabXn75ZblcLt1+++2aNGlS7nxnZ6fWr18vh8OhhQsX\n6tJLL9WBAwd08803KxqNasKECbrjjjvk9Xq1ceNG3XvvvZKkKVOm6Jvf/KYsq3ihpVRy62C5ivee\n2fFcsXjx3hMAAJSHvC1YGzZsUDweV0dHh5YsWaKVK1fmzu3du1fr1q3T+vXrtWbNGq1atUrxeFyr\nV6/W3Llz9cADD2jKlCnq6OhQKBTSd77zHX3/+99XZ2enTj31VB08eLCkD1cssRKsg2WzWXI56CIE\nAKAa5Q1Y3d3dmjlzpiRp2rRp2rZtW+7c1q1bNX36dLlcLgUCATU2Nmr79u39vmbWrFnavHmznn/+\neTU1Nenb3/622traNG7cOI0dO7ZEj1VcsYRkt0kOe3Fb29wui1mEAABUobxdhKFQSH6/P/fabrcr\nmUzK4XAoFAopEAjkzvl8PoVCoX7HfT6fenp6dPDgQT399NP66U9/qrq6On3mM5/RtGnTdMYZZ7zn\nM4PBYDGerWh2vxOQw+5VMBhUNBrVrt27ivK+lnw6HDLatetAUd4vK+iOFPX9BhKNRsvu+zQaqEMG\ndaAGWdQhgzpk1HId8gYsv9+vcDice51Op+VwOAY8Fw6HFQgEcsc9Ho/C4bDq6+t1wgkn6Pzzz9f4\n8eMlSRdccIGCweCAAau5uXnYD1ZMz/wlrDpPQs3NzQoGg5o4cWJR3jewK6reqNHEiQ1Feb+s5mZ3\nUd9vIMFgsOy+T6OBOmRQB2qQRR0yqENGLdShu7t7wON5uwhbWlrU1dUlSdqyZYuamppy56ZOnaru\n7m7FYjH19PRox44dampqUktLizZu3ChJ6urq0owZM3TeeefplVde0YEDB5RMJvXCCy/orLPOKsaz\nlVwsYYo6gzArsx9h0d8WAACMsrwtWHPmzNGmTZu0YMECGWO0YsUKrV27Vo2NjZo9e7ba29vV1tYm\nY4wWL14st9uthQsXaunSpers7NSYMWN01113qa6uTkuWLNEXvvAFSdJHP/rRfmGtnMXipqiLjGa5\nXRbLNAAAUIXyBiybzably5f3OzZ58uTc71tbW9Xa2trv/Lhx47RmzZr3vNcVV1yhK664otB7HTWx\nRHFnEGa5nZZSaSmZMkUfQA8AAEYPC40OQixhiroPYRaLjQIAUJ0IWIMQj5doDFbfwqWMwwIAoLoQ\nsAYhljDylGIMlpMWLAAAqhEBaxBiieLuQ5iVDW0sNgoAQHUhYA1CyWYRZluw2C4HAICqQsDKI5ky\nSqVVkkHuTqdkiS5CAACqDQErj1Js9Jxlsyy5nAxyBwCg2hCw8ojHM7+WYgyWxGKjAABUIwJWHtkW\nrFLMIpT6tsshYAEAUFUIWHlkA5arBGOwJKnOYykcJWABAFBNCFh5ZFuXSjEGS5L83kzAShtCFgAA\n1YKAlUd2AHoplmmQJJ/XJmOkCK1YAABUDQJWHtkWrFINcvd7M+8bihCwAACoFgSsPOLZZRpcpXl/\nX1/AChOwAACoGgSsPEq5Dpb0bsCiBQsAgOpBwMojNwarRAHLbrPkdVsKR9IleX8AADDyCFh5xOJG\nliSno3Sf4fdatGABAFBFCFh5xBJGbpdkWaVpwZIy3YSMwQIAoHoQsPKIxU3JZhBm+b2WeqNG6TQh\nCwCAakDAyiOeMCVbAyvL77XJSOplLSwAAKoCASuPWKJ0A9yzmEkIAEB1IWDlEYkZed2l7yKUWAsL\nAIBqQcDKozdqVOcpbcCq81iyJIVYqgEAgKpAwMqjN5oueQuWzWapzsNSDQAAVAsCVh6RWOlbsCSW\nagAAoJoQsI4jlTaKxqW6ErdgSSw2CgBANSFgHUcklgk8I9OCZVMkZpRiLSwAACoeAes4sutSjUTA\nYiYhAADVg4B1HJG+gFXqQe7Su2thEbAAAKh8BKzjCI9CCxbjsAAAqHwErON4dwxW6cvk9ViyLCnM\nWlgAAFQ8AtZx5MZgjUAXoc2y5GMtLAAAqkLegJVOp7Vs2TLNnz9f7e3t2rlzZ7/znZ2dmjdvnlpb\nW/X4449Lkg4cOKBrr71WbW1tWrRokSKRSL/3+8IXvqAf//jHRX6U4uvta8HyjkAXoZTpJmQMFgAA\nlS9vwNqwYYPi8bg6Ojq0ZMkSrVy5Mndu7969WrdundavX681a9Zo1apVisfjWr16tebOnasHHnhA\nU6ZMUUdHR+5r7r77bh06dKg0T1NkvVEjm01yO0fm83xei+1yAACoAnkDVnd3t2bOnClJmjZtmrZt\n25Y7t3XrVk2fPl0ul0uBQECNjY3avn17v6+ZNWuWNm/eLEn61a9+JcuyNGvWrFI8S9FFomnVuS1Z\n1ki1YNkUjUvJFK1YAABUMke+C0KhkPx+f+613W5XMpmUw+FQKBRSIBDInfP5fAqFQv2O+3w+9fT0\n6JVXXtEjjzyi7373u7r33nuP+5nBYLDQ5ymq3Xsa5LA5+91PNBrVrt27SvJ5iZhTUp1ee32PfJ7C\nW7KC7kj+i4YpGo2WzfdpNFGHDOpADbKoQwZ1yKjlOuQNWH6/X+FwOPc6nU7L4XAMeC4cDisQCOSO\nezwehcNh1dfX66c//aneeecdfe5zn9Nbb70lp9OpU089dcDWrObm5mI827A99sceNdSbfvcTDAY1\nceLEknyew5PSS2/E5PWP08Tx9oLfp7nZXcS7GlgwGCyb79Noog4Z1IEaZFGHDOqQUQt16O7uHvB4\n3oDV0tKixx9/XB//+Me1ZcsWNTU15c5NnTpVd999t2KxmOLxuHbs2KGmpia1tLRo48aNmjdvnrq6\nujRjxgx98YtfzH3dPffco3HjxpV9V2Fv1Mg3AjMIs95dbDQtqfCABQAARlfegDVnzhxt2rRJCxYs\nkDFGK1as0Nq1a9XY2KjZs2ervb1dbW1tMsZo8eLFcrvdWrhwoZYuXarOzk6NGTNGd91110g8S9FF\nYkYnNozcShZetyWbjcVGAQCodHkDls1m0/Lly/sdmzx5cu73ra2tam1t7Xd+3LhxWrNmzTHf8ytf\n+cpQ73NU9EbNiKzinmX1rYXFUg0AAFQ2Fho9BmNMJmCNYBehJAXqLPX0slQDAACVjIB1DPGElEqP\nzDY5R6r32XQ4bGQMrVgAAFQqAtYxjPQq7ln1PptS6Xc3mgYAAJWHgHUMI7kP4ZEa/JnPOxQiYAEA\nUKkIWMcQ6WvBGslB7lKmBUuSDocZhwUAQKUiYB1DbzQTcEY6YHlcltxO6VCIgAUAQKUiYB1DtovQ\nO8JdhJJU788MdAcAAJWJgHUM2YDlG+EWLElq8NnoIgQAoIIRsI4hOwZrNFqwGnyWYgkpGqcVCwCA\nSkTAOoZw1Mjtkuz2Uegi7BvozjgsAAAqEwHrGCKjsIp7Vn3fUg10EwIAUJkIWMfQGzMjvop7ls9j\nyW5nLSwAACoVAesYeqNmVMZfSZlNnxt8Fi1YAABUKALWMfRGzYivgXWkep9Nh1iqAQCAikTAOoZI\nbHQDVoPPpt6oUSJJyAIAoNIQsI6hN5oetUHu0pED3QlYAABUGgLWAFJpo2hc8o5yC5bETEIAACoR\nAWsAo7XR85H8dZYsSzpEwAIAoOIQsAYQ6dsmZzS7CO02S4E6S4dZqgEAgIpDwBpAdh/C0WzBkrIz\nCWnBAgCg0hCwBtBbBl2EUmZPwp5eo3SaViwAACoJAWsA77ZgjW556v02GSP19BKwAACoJASsAWQD\n1mit5J7V4Mt8Pt2EAABUFgLWAMqli7A+t1QDLVgAAFQSAtYAIlEjmyW5naN7H06HpTqPpUMhWrAA\nAKgkBKwB9EbTqvNYsqzRbcGSxKbPAABUIALWAHpjZlRXcT9Sg9+mQyEjY+gmBACgUhCwBtAbHd2N\nno/U4LcplZZCEQIWAACVgoA1gEjUjOoq7kdq6Nv0mXFYAABUDgLWAHpjZdSC1TeT8BBb5gAAUDEI\nWAPoLaMWLJfTktdtsRYWAAAVxJHvgnQ6rdtuu00vv/yyXC6Xbr/9dk2aNCl3vrOzU+vXr5fD4dDC\nhQt16aWX6sCBA7r55psVjUY1YcIE3XHHHfJ6vbr//vv1y1/+UpJ0ySWX6MYbbyzdkxXIGFNWY7Ak\n6QQ/SzUAAFBJ8rZgbdiwQfF4XB0dHVqyZIlWrlyZO7d3716tW7dO69ev15o1a7Rq1SrF43GtXr1a\nc+fO1QMPPKApU6aoo6NDb7zxhn7+859r/fr16ujo0JNPPqnt27eX9OEKkUhKqbTkHeVtco7ETEIA\nACpL3hTR3d2tmTNnSpKmTZumbdu25c5t3bpV06dPl8vlUiAQUGNjo7Zv397va2bNmqXNmzfr5JNP\n1r/927/JbrfLZrMpmUzK7XaX6LEKF46WxyruR2ImIQAAlSVvF2EoFJLf78+9ttvtSiaTcjgcCoVC\nCgQCuXM+n0+hUKjfcZ/Pp56eHjmdTo0dO1bGGP3Lv/yLpkyZojPOOGPAzwwGg8N9roLtP+yQNE4H\n972tYDD6nvPRaFS7du8a0XtKRu2S/Hrtjf0aV5/Me33QHSn5PUWj0VH9PpUL6pBBHahBFnXIoA4Z\ntVyHvAHL7/crHA7nXqfTaTlrdIoCAAAVrUlEQVQcjgHPhcNhBQKB3HGPx6NwOKz6+npJUiwW0y23\n3CKfz6dvfvObx/zM5ubmgh9ouF59MympR2dPPk3NZ7x3r5xgMKiJEyeO6D2dmDDq3hGRzXmCJk7M\nv39Pc3PpWwaDweCofp/KBXXIoA7UIIs6ZFCHjFqoQ3d394DH83YRtrS0qKurS5K0ZcsWNTU15c5N\nnTpV3d3disVi6unp0Y4dO9TU1KSWlhZt3LhRktTV1aUZM2bIGKMvfelLOuecc7R8+XLZ7fZiPFfR\n9UYzg8m9ZTKLUGImIQAAlSZvC9acOXO0adMmLViwQMYYrVixQmvXrlVjY6Nmz56t9vZ2tbW1yRij\nxYsXy+12a+HChVq6dKk6Ozs1ZswY3XXXXdqwYYP+8Ic/KB6P64knnpAkffWrX9X06dNL/pBD0VuG\nY7AkZhICAFBJ8gYsm82m5cuX9zs2efLk3O9bW1vV2tra7/y4ceO0Zs2afsfmzJmjP/7xj8O51xER\niZVnwGrw2/SnN5IyxpTFJtQAAODYymctgjKRa8Eqoy5CiZmEAABUEgLWUXqjRm6nZLeXW8BiT0IA\nACoFAeso5baKexZ7EgIAUDkIWEfpjZmymkGYxUxCAAAqBwHrKHsPpnRiQ3kuIcFMQgAAKgMB6wip\ntNE7B9I6ZVx5loU9CQEAqAzlmSRGyd6DaaXS0sRx5dmCxUxCAAAqAwHrCLv2pyRJE08s14DFTEIA\nACoBAesIu/ZlAtZJ5RqwmEkIAEBFIGAdYde+lMbW2+Rxld8sQomZhAAAVAoC1hF27U9rYpkOcM8a\nE7C0/xABCwCAclbeaWIEpdNGu/enynb8VdaEsXYdDhtFY3QTAgBQrghYffYdSiuZKt8ZhFknjcl8\ny945mBrlOwEAAMdCwOqTHeB+SpkHrLH1Njns0jsH6CYEAKBcEbD67NqfCSwnl3kXoc1macIYm945\nQAsWAADlioDVZ9e+lMYErLLch/Bo2XFYEcZhAQBQlghYfXZVwAD3rOw4rD2MwwIAjJBQZOSGpoSj\naT3/Sryit4YjYElKm8wMwpPLfPxVFuOwAAAj6eddEd383UP69VPRkoeeUG9a/++PQ/rBf4f1iyej\nJf2sUnKM9g2UgwOH04onyneLnKMxDuvYXvxzQq/tSsrpsORySi6HpfMmO1Xv498SAFCIP7wU16O/\nj2psvU3/vTGi/YdSmj+nTnZb8YfUhCJp3d0R0jsHUpryPoce3RzV+BNsuvB8d9E/q9QIWJJ27cu0\nBJX7Eg1HmjDWrrdfSSgSMxUxbmwk/OXtpL73YEhH/+Nq4ok23fL5ejkd1AkAhuK1XUmt+5+wzjrN\nob+f79cjm6L69VNRHTic1hc+5S/qziehSFp3r8+Eq4Xz/Dqn0aF7fhLSj37Vq7ENNp3T6CzaZ40E\n/lmvd5domHhi5ZTj5LGMwzpSPGH0H78M6wS/pTtvatDdi07Qv9zYoP/nUz7t2p/Wo5srt5kZAEbD\nwZ607ns4pHqfTdf/nU9Oh6W/u8Srtsvr9OJfklr1QI+i8eJ0F4aj/cPVlDOcststffFKn8aPsekH\nD4e1e39l/byrnERRQrv2pVTvs+TzVk45xgQYh3Wknz8R0e4DabV/zCe/1yaP21K9z6YZ73fpw+e5\n9Ounonp9d3K0bxMAKkI8YfT9h0OKxo2+dJVfgbp3fz7OmubWDX/n0+vvpPTYH4rzj9efbYzo7X3v\nhqusOo9NN17tl90ufe/BUNEC3UionERRQrv2p8p+gdGjMQ7rXX96I6HfPhPTrGmufn8ws66Z7VXA\nZ+k/Hu1VMlU5fzgBYLT86vdR7dyd0v+e69Op49/78/EDZ7vUco5Tj/0hqr/2DO8f+rv3p/TkC3HN\nmuYe8O/wcSfY9cUrfdr317Q2FCnQjYSaH4NljNGu/Sn9XxU4gO4kxmEpGjf6j0d7dWKDTfMurRvw\nGp/HpraP1Om+h8P69VNRXXGRd4TvEgDK0xNbYu85Fo6k9euno5p0sl09YTPgNZJ02gS7tryS0P/3\ns5A+fN7AP0N37fJqX2zgr8/qej4mm006sd7W77NmTnv3Pc8+3ZkLdLOmuyti4lL532GJHewxisUr\nZwbhkU7qG4dVy61Y//1/Itr/17Q++/G64w62/MDZLn1wikuPbo7qrb21Wy8AyOeFVxMykqY1HX9Q\neaDOpnMmObTjrZQOHi6sFWvvwZTe2JPSlDOc8uRpKPjULK8SKemRTZXRilXzASs3wH1c5ZWi1sdh\nbX8toY3Px3TpBW41DWJ2yfzZXtV5LN3/SJiuQgAYwP5Daf3l7ZTeP8kh/yDGJZ97plMup/RcAYuC\nGmP0/CsJed2Wmifl71A7aaxdMz/g1pNbYhXRsFB5qaLIdu3PziCsvBYsm83SqePt+suu5IiusFsO\nIjGj//yfXp001qYrZw2uy89fZ1P7x+r0xp6UfvFEpMR3CACVxRij516Oy+2Uzh1gLNRA3E5L5092\navf+dG7Jo8F6c09Ke/+a1vmTnXIMchmdKy7yyOmUfrqx/P8Or/mA9fbelAJ1lvx1lVmK6U1OWZKe\nCVb2lgJD9ZPf9upgT1qfv8Inl3Pw48+mnuXSxR9w6TdPx/SnNxIlvEMAqCxv7k1pz8G0pp7lHNLf\nq2ef7lCgztJzr8SVSg/u51A6bbTlTwnV+yxNPnXwDRz1PpvmfNCj519J6M9vlffM8MpMFUWyc3dS\nT78YV/P7KmvxsiP5vDZNPcupt/em9cY75d9kWgx/3JHQ5j/GdfnfeHTGKUOfp3H1ZXUad4JNax/p\nZcNsAFAm8Dz/cibwnHXa0P5etdsstZzj1KGQ0eatcaXzhCxjMuHqcNho2tlO2Ya4Ivz/+pBH9T5L\nD/+fiNJl3LBQs7MIIzGjf/tZWPU+S63/q7JnlZ3T6NBru5J6dntCJ5d5V+exZqMMVixu9MvNUZ3g\nt3RCwCr4/aaf49RjT8d0T2dPvy0Yjpy1AgC1IJ02+v22uHp6jS6Z7h5y4JGk0yY41HKO0XMvJ+R4\nMa4Pn+eSZb33fbLjroKvJXX26Q6dNmHoP7M8LkufnOnVj37Vqx/9T6/+74/WFXTPpVaTLVjGGD3w\nm17tO5TWtZ/wDWogXzmz2Sx9aIpb0VjmXwXVKp4w+v22mKJxowvPdw9rH6zxJ9h17pkO/fntlP70\nRrKmulcBICuZMtq4JabXdqU09SxnQYEnq/l9Tp0/2ak/v53Ss8HEe/5ezYzxyoSrcxod+mCzc8AQ\nNhgXTXXpios82vzHuNY+ElaqDCcu5W3BSqfTuu222/Tyyy/L5XLp9ttv16RJk3LnOzs7tX79ejkc\nDi1cuFCXXnqpDhw4oJtvvlnRaFQTJkzQHXfcIa/XO+C1o+H32+J65qW4PnGxR2efXrndg0c6sSEz\nXXb7zqRefTM55CbecvfGO0k9E0woGjOa8X6nxtYPPxSfP9mpPQfT+sNLcb25x6YLml1FuFMAqAy9\n0bR+92xMe/+a1genONVUhJ+H5092KJkyCr6WlGVJXrtdDm9KDrulHW8m9fLrmXA14/2FhytJsixL\nn7jYK5fD0n9vjCiRCusLn/TJYS+flqy8P4U3bNigeDyujo4ObdmyRStXrtR9990nSdq7d6/WrVun\nhx56SLFYTG1tbbrooou0evVqzZ07V/PmzdMPf/hDdXR06IorrhjwWpdrZH+o7d6f0vrHenVOo0Mf\nu9Azop9dalPPcur1d1Ja9eMenT/ZqQvPd+n8MzP7OVUiY4zC0cy4gNffSWlMwNIl0z06saE4LY42\nm6XZF7j1yhtJvfCnhH65KSqbJV12gWdIAzwBoJL8tSetV99M6n9+H9X+Q2ld/AGXJp1cnH+UW5al\n6U1OJVPSy68nJfmlv7w7lOP9kxxqOWd44epIl3/YI6dD6vxtRPf8JKSLp7p11mkOjSnCP8KHK29F\nu7u7NXPmTEnStGnTtG3btty5rVu3avr06XK5XHK5XGpsbNT27dvV3d2t66+/XpI0a9YsrVq1Sqef\nfvqA106dOrVEjzawjc/H5HJY+t9zfWXZZzscToelOR9yqzdq9PSLcb3wp4QCdZbOPt0hr9uSx2XJ\n47bkHGA67ICVGOBg9tCePXV64/CxF3szff9njJGRZEzmfzt3pZQ50ncse71599dIzKgnbHS4N61E\nUrLZpA+c7dSU9zmK/j2z2Sy9f5JTjSfZ9WwwoZ92RfXTrqjGBCxNGGvXhBNsqvPaZFmSre9/lpW5\nJ5tlae/e49ehVuT776EWUIOMd97x6XXqoD1lUAdjpGTSKJE0SiSlUMToz28lte9QZjmFOo+lv21x\na2KRt4qzLEsfbHaq6XSH3t69Tw0nnKhUysjhsDTxRFvRwlVW9h/FP/ldr17emZlZOLbepulNTl11\nmVe2In/eYOUNWKFQSH6/P/fabrcrmUzK4XAoFAopEAjkzvl8PoVCoX7HfT6fenp6jnntQLq7uwt+\noHzOGiOddZG045XC36NO2/JfNErqXJJc0vsuLO3nnHiKJO0b8tedfMYwPtRIKtFEyTqn9NECsv64\nAutQbQr976GaUIOME0+VpL2jfRujbly51OHIXr8x0gdOGeCaEv296quTTjlTkva8e3AIS2UNJQp4\nJX121nuPP//c4N+j2PIGLL/fr3A4nHudTqflcDgGPBcOhxUIBHLHPR6PwuGw6uvrj3nt0WbMmDGs\nBwIAABhteTspW1pa1NXVJUnasmWLmpqacuemTp2q7u5uxWIx9fT0aMeOHWpqalJLS4s2btwoSerq\n6tKMGTOOeS0AAEC1sUye+enZWYSvvPKKjDFasWKFurq61NjYqNmzZ6uzs1MdHR0yxuj666/X5Zdf\nrn379mnp0qUKh8MaM2aM7rrrLtXV1Q14LQAAQLXJG7AAAAAwNKM/j7FCpNNpLVu2TPPnz1d7e7t2\n7tw52rdUUolEQl/72tfU1tamq6++Wr/97W+1c+dOffrTn1ZbW5u++c1vKp3OjFb83ve+p6uvvloL\nFizQ1q1bR/nOS2P//v265JJLtGPHjpqtww9+8APNnz9f8+bN009+8pOaq0MikdCSJUu0YMECtbW1\n1eR/Cy+88ILa29slaUjPfqxrK9WRdQgGg2pra1N7e7uuu+467duXmejQ2dmpefPmqbW1VY8//rgk\n6cCBA7r22mvV1tamRYsWKRIp/w2Lj+fIOmT94he/0Pz583Ova6EOx2QwKL/+9a/N0qVLjTHGPP/8\n8+aGG24Y5TsqrQcffNDcfvvtxhhjDhw4YC655BJz/fXXm6eeesoYY8ytt95qfvOb35ht27aZ9vZ2\nk06nzVtvvWXmzZs3mrddEvF43HzpS18yH/nIR8yrr75ak3V46qmnzPXXX29SqZQJhULmu9/9bs3V\n4bHHHjM33XSTMcaYJ5980tx44401VYMf/vCHZu7cueaaa64xxpghPftA11aqo+vwmc98xrz00kvG\nGGN+/OMfmxUrVpg9e/aYuXPnmlgsZg4fPpz7/T//8z+bhx56yBhjzA9+8AOzdu3a0XqMYTu6DsYY\n89JLL5nPfvazuWO1UIfjoQVrkI63Hlg1+uhHP6q///u/z7222+168cUX9aEPfUhSZn2zzZs3q7u7\nWxdffLEsy9Ipp5yiVCqlAwcOjNZtl8S3v/1tLViwQBMmTJCkmqzDk08+qaamJn35y1/WDTfcoL/9\n27+tuTqcccYZSqVSSqfTCoVCcjgcNVWDxsZG3XPPPbnXQ3n2ga6tVEfXYdWqVWpubpYkpVIpud3u\nfmtEBgKBfmtEZn+OVFsdDh48qDvvvFO33HJL7lgt1OF4CFiDdKz1wKqVz+eT3+9XKBTSTTfdpEWL\nFskYk1sg7sj1zY6sS/Z4tXj44Yc1duzY3F8GkmqyDgcPHtS2bdv0r//6r/qnf/on3XzzzTVXh7q6\nOr311lv62Mc+pltvvVXt7e01VYPLL788t0SPNLQ/BwNdW6mOrkP2H17PPfecfvSjH+nzn//8kNaI\nrFRH1iGVSukb3/iGbrnlFvl8vtw1tVCH46muDetK6HjrgVWrXbt26ctf/rLa2tr0iU98Qt/5zndy\n54a6vlmleuihh2RZln7/+98rGAxq6dKl/VojaqUOJ5xwgs4880y5XC6deeaZcrvd2r17d+58LdTh\n/vvv18UXX6wlS5Zo165d+tznPqdE4t3N1WuhBkey2d7993m+Zx/o2mry6KOP6r777tMPf/hDjR07\ndkhrRFaDF198UTt37tRtt92mWCymV199Vd/61rf04Q9/uKbqcDRasAbpeOuBVaN9+/bp2muv1de+\n9jVdffXVkqQpU6bo6aeflpRZ3+yCCy5QS0uLnnzySaXTab399ttKp9MaO3bsaN56Uf3Xf/2XfvSj\nH2ndunVqbm7Wt7/9bc2aNavm6jBjxgw98cQTMsbonXfeUSQS0YUXXlhTdaivr88FpYaGBiWTyZr8\nM5E1lGcf6Npq8bOf/Sz3d8Tpp58uaWhrRFaDqVOn6pe//KXWrVunVatW6ayzztI3vvGNmqvD0aq7\nCaaI5syZo02bNmnBggW59cCq2fe//30dPnxYq1ev1urVqyVJ3/jGN3T77bdr1apVOvPMM3X55ZfL\nbrfrggsu0Pz583MzLavd0qVLdeutt9ZUHS699FI988wzuvrqq2WM0bJly3TaaafVVB0+//nP65Zb\nblFbW5sSiYQWL16s8847r6ZqcKSh/DkY6NpqkEql9K1vfUsTJ07UV77yFUnSBz/4Qd10001qb29X\nW1ubjDFavHix3G63Fi5cqKVLl6qzszO3RmQ1Gz9+fE3XgXWwAAAAiowuQgAAgCIjYAEAABQZAQsA\nAKDICFgAAABFxixCABXrzTff1Cc/+Umde+65uWN/8zd/oxtvvHEU7woACFgAKtxZZ52ldevWjfZt\nAEA/BCwAVSWVSmnZsmXavXu3Dh48qFmzZmnRokX6+te/LpfLpbfeekt79uzRypUrde655+rrX/+6\nXn/9dcViMV133XX6+Mc/PtqPAKAKELAAVLRXX31V7e3tudeLFi3StGnTdM011ygWi+UCliSdcsop\nWr58uTo7O9XR0aF/+Id/0NNPP62HHnpIkrRp06ZReQYA1YeABaCiHd1FGAqF9LOf/UxPPfWU/H6/\n4vF47lxzc7Mk6eSTT9Zzzz0nv9+vW2+9VbfeeqtCoZA++clPjvj9A6hOBCwAVeXhhx9WIBDQ8uXL\ntXPnTnV2diq7YYVlWf2u3bNnj1588UXde++9isViuuSSS/SpT32q6jdyB1B6/C0CoKpceOGF+upX\nv6ru7m55vV5NmjRJe/bsGfDa8ePHa+/evbryyitVV1ena6+9lnAFoCjYixAAAKDIWGgUAACgyAhY\nAAAARUbAAgAAKDICFgAAQJERsAAAAIqMgAUAAFBkBCwAAIAiI2ABAAAU2f8PoCpwOsGLO00AAAAA\nSUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a121d2668>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Distribution of Fans per post\n", | |
"plt.figure(figsize=(10,5))\n", | |
"sns.distplot(df['Fans'], bins=12);" | |
] | |
}, | |
{ | |
"cell_type": "raw", | |
"metadata": {}, | |
"source": [ | |
"# Percentage of total views\n", | |
"df.sort_values('Views', ascending=False).head(2).sum()['Views'] / df.sum()['Views']" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"This confirms our thoughts about the top two posts significantly outperforming the others from a `Fans` perspective. We see that my top two performing posts alone make up over 70% of my total views, even with ~30 stories. Next we'll go into whether or not this is really a reliable metric and brainstorm possible other metrics that we can produce as a result of feature engineering. " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Feature Engineering and Metrics" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"In this section, I'll go into more detail on each specific metric while analyzing the pros and cons along with what it is trying to tell us. This includes engineering new features and discussing them along with exploring relationships between other features.\n", | |
"\n", | |
"Initial ideas: fans/read ratio, adjusted reads for read time, weighted average of reads/views and fans/reads" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Reads/Views Ratio\n", | |
"This metric has already found it's home on the current Medium stats dashboard, but let's look into a bit deeper. What exactly does this tell us? In a nutshell, this is trying to communicate how effective a post was at turning views into reads. It tells us how engaging a post is. This is probably the most valuable metric given to us at the moment, as it actually tells us something about how a post was percieved, contrary to counting vanity metrics." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAE3CAYAAACHLvEvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XlcVdX+//HXYRQEBSdUJBWcyHLC\nAUVRU7MgrLxBDmFaN0vLEpPEkMIBFSU1MdRUFI/iTHUdKtNS1HJCyzIcwJtKmqg4oTEI5/eHP883\nEhWLmwPv5+PRI9h7r7U++7OXj8f5nLX3xmAymUyIiIiIiIiUIRZ3OwAREREREZF/mgohEREREREp\nc1QIiYiIiIhImaNCSEREREREyhwVQiIiIiIiUuaoEBKRO5KSknK3QxAREREpkVt9brH6B+MQkQeE\niiERERG536kQEpE75uXldbdDeCCkpqbi6el5t8N4YCifpUe5LD3KZelRLktPWcqlVoREpFQNeu/7\nux3CA0S5LF3KZ+lRLkuPcll6lMvSc3dzOXNMs7s6PugZIRERERERKYNUCImIiIiISJmjQkhERERE\nRMocFUIiIiIiIlLmqBASEREREZEyR4WQiIiIiIiUOSqERERERESkzLllIbRjxw5CQkKKbIuJiSEp\nKelvD5yUlERMTMwN20+ePMlbb71FcHAwgYGBREZGkpeX97fGOnHiBF9//XWJj/fx8blhW3BwME8+\n+WSRbevXr6dhw4ZkZGTcts+wsDACAgIIDg4mODiYPn36cPjw4RLH9L9Q3PXNyMggKCjoLkX0v/Xa\na6/x2muvlUpfX331FadOnSqVvuDa/HruuecIDg6mV69eDB8+nHPnzt1RH6dPnyYyMrLUYhIRERF5\nkN1TK0IFBQUMHjyYl156CaPRyIoVK7CysmL69Ol/q9/t27ezZ8+eUokxNTXV/PPatWtxdXUtcdvQ\n0FCMRiNGo5FXX32VDz/8sFRikts7efIkV65c4cKFCxw/fvxv97dw4UKys7NLIbL/Ex0djdFoZOnS\npfj6+vLee+/dUfuqVauqEBIREREpIau/03jixImkpKQA8NRTT9GjRw/69+/PZ599xt69e3n11Vf5\n7rvvOH36NOHh4cybN++W/aWkpFC9enWaNm1q3hYaGkphYSEZGRkMGjQIJycnfH198fX1Zdy4cQA4\nOTkxfvx47O3tee+99/jtt984d+4cvr6+DBkyhI8//picnByaN29OrVq1im0XERFBWloabm5uN12B\n8vf3Z82aNXh6enLx4kVyc3OpUqUKAL169WLs2LHUr1+fzZs3s2nTJt5///2bnuuFCxewt7cHwGg0\nsmbNGgwGA35+fvTr14+wsDDOnz/P+fPniYuLY+jQoZhMJvLz8xk9ejQNGzYkPj6etWvXYmVlRcuW\nLQkNDSU2NpaMjAzOnj3LiRMnGDlyJB06dOCLL75g8eLF5vHvtAj7+eefGTt2LJaWltja2jJ27Fhq\n1qzJRx99xIYNG6hUqRK///47b731Fp6enoSGhpKdnU1BQQFvvfUWbdu2LdLfBx98wE8//cTly5fx\n8PBgwoQJpKSkEB0djZWVFRUqVCAmJgYHBwdzm0OHDjFx4kQKCwu5ePEio0aNokWLFjz++OO0aNGC\n//73v1SuXJnY2FgsLS2LjLdy5Uq6dOlCuXLlSExMZMSIEQB069aN5s2bc/ToUby9vbl06RL79u2j\nbt26TJ48udgxL168SGpqKiNGjCAxMZFly5YVe/38/Pzw9fUlOTmZdevWMXHiRDp37oy7uzvu7u6E\nh4ffNN89evRg2rRp5Obm8ssvv9wwZ/Pz82+YE+XLl2fYsGEsX76cb775hunTp+Pg4EDFihVp2LAh\nrVu3Zs6cOVhbW5ORkYGfnx+DBg3i5MmTREREkJuba762BQUFRf69vfLKK3c0X0RERETudbcthLZv\n305wcLD59+PHj/Pmm2/yzTffkJGRwfLly7l69Sp9+vTB29sbJycnTp48yZYtW6hevTr79+/nxx9/\npGvXrrcNJjMzEzc3tyLbbG1tzT+fPn2aVatWYWNjQ1BQEOPHj6devXqsWLGCuXPnEhgYSLNmzQgM\nDCQ3NxdfX1+GDh3KwIEDOXLkCF26dCm2XbNmzcjNzWX58uWcOHGCL7/8stj4HnvsMUaMGMHw4cP5\n8ssveeKJJ0hMTAQgMDCQTz75hHfeeYdVq1bx6quv3tB+8uTJzJkzBwsLC6pVq0ZoaChpaWmsW7eO\nxMREDAYD/fv3p3379gB4e3vTv39/Nm3ahKOjIx988AFpaWlkZ2dz8OBBPv/8c5YuXYqVlRVDhgzh\nm2++AcDGxoa5c+eybds24uPj6dChA7/88gsff/wxdnZ2vPfee2zduhUXF5fbXpPrRo0aRVRUFJ6e\nnmzYsIGJEycyePBgtmzZwsqVK8nPzycgIACAmTNn0q5dO1588UVOnTpF79692bBhAxYW1xYgs7Oz\nqVChAvPnz6ewsBB/f39OnTrFhg0b6NatGy+//DJff/01Fy9eLFIIpaWlMWLECBo2bMjq1atJSkqi\nRYsWHD9+nISEBGrUqEGvXr348ccfadasmbldYWEha9asYdmyZVhZWeHv789bb71FuXLl+PXXX0lI\nSKBq1aq0bt2aFStWEBERQZcuXbh48WKxY44bNw5PT08iIyM5duzYTa9fcU6ePElSUhLOzs63zXmF\nChW4ePEiERERN8zZ5s2b3zAnypcvD1xbWR03bhzLli2jSpUqvP322+Y+T5w4wX/+8x/y8vLo0KED\ngwYNIjo6muDgYDp27Mh3331HTEwMISEhRf69iYiIiDxoblsIeXt7M3XqVPPv15/rSU9Pp2XLlhgM\nBqytrWnatCnp6el069aNzZs3s3fvXl555RW2bdvG3r17iYqKum0wNWvWZP369UW2nTt3ju+//576\n9etTq1Yt84ey9PR0Ro8eDUB+fj5169bFycmJH3/8ke3bt+Pg4FDsyk5x7Q4fPkyTJk3MMdSoUaPY\n+GxtbfH09GTv3r189dVXTJ061VwI+fn58eyzz/Lyyy/z22+/0bhx4xvah4aG4uvrW2Tb7t27OXHi\nBP379weurRQdO3YMgLp16wLg6+vLL7/8wuDBg7GysmLQoEEcOXKEpk2bYm1tDUDLli3Nzxx5enoC\nUL16dXMOKleuzIgRIyhfvjxHjhwpUiiURGZmprnfVq1a8cEHH5Cens6jjz6KpaUllpaWPPLII+Yc\nXy+KXFxccHBwICsry7x6ZmtrS1ZWFsOGDcPe3p4rV66Qn5/Pa6+9xqxZs3jxxRdxcXExX5PrqlWr\nRlxcHOXKlePy5cvmIsnZ2dl8zWrUqEFubm6Rdlu2bOHy5cvmgqCwsJDVq1cTGBiIk5MTNWvWBMDe\n3p569eoB4OjoSG5u7k3HvO7QoUM3vX7XmUwm88/Ozs4lKoJMJhNnzpyhcuXKxc7Z4ubEdVlZWTg4\nOJjz3bJlS86cOQNAgwYNsLKywsrKinLlypnPYfbs2cydOxeTyWSeU3/89yYiIiLyoPnLzwh5eHiY\nb4vLz89n79691K5dm65du7JmzRocHBzw9fVlw4YN5OXlUbVq1dv22axZMzIyMti3bx9w7cPgjBkz\n2LVr17VgLf4v3Lp165qfqQgNDaVjx44kJSWZvyV/6aWXyMnJwWQyYWFhQWFh4U3bubu78/333wNw\n6tSpWz4E/9RTT7FgwQIqVqxo/gYewM7OjjZt2hAVFcXTTz9d4jy6u7tTr149Fi5ciNFopGfPnjRo\n0AAAg8EAXHupQbVq1YiPj2fQoEFMmTIFd3d39u3bx9WrVzGZTOzatctcOF1vd92lS5eYPn06U6dO\nZdy4cdja2hb5cF4S1apV48CBAwDs2rWLOnXqUK9ePX788UcKCwvJy8vj559/Bq7Njd27dwPX8nnx\n4kWcnJzMfSUnJ3Py5EmmTJnCsGHDzNdp9erVPPvssxiNRurXr8/y5cuLxBAVFcWbb75JdHQ0DRo0\nMJ/Dn8/3z1auXMm4ceOYN28e8+bNY9q0aeYC9nZtbzWmyWS66fWzsbHh9OnTAOa8QNE5fLuYvb29\nsbCwKHbOFjcnrqtcuTKXL18mKysLgB9++MG8r7jzdXd3Z/jw4RiNRkaPHk337t3vKFYRERGR+9Ff\nfkaoc+fO7Ny5k+eff578/HyeeOIJ8ypIbm4u3t7eVKxYESsrKzp16lSiPi0sLPjwww8ZM2YMv//+\nO1euXKFZs2YMHTqUzMzMIsdGRkYyYsQICgoKgGsfWD08PBg2bBgpKSnY2dlRu3ZtMjMzadCgATNn\nzqRx48bFtqtbty4pKSkEBgZSs2bNW35j7+PjQ1hYGBMmTLhhX1BQEL17976jB9YbNWpE27Zt6d27\nN3l5eTRp0uSGW9YaNWpESEgICQkJWFhY8Prrr9OwYUOefPJJevfuTWFhIV5eXnTt2tVcrPyRg4MD\nLVq04Nlnn8Xe3p4KFSqQmZlJrVq1io3p8OHD9OzZ0/x7WFgY48aNY+zYsZhMJiwtLRk/fjxubm50\n7NiRoKAgnJ2dsba2xsrKildffZV3332XL7/8kpycHMaMGYOV1f9NtSZNmhAXF0dQUBA2Nja4ubmR\nmZnJo48+SlhYGPb29lhbWzNmzJgicfXo0YPBgwdTuXJlqlevXqK3qp09e5YffvihyKqml5cXubm5\nJXqBxs3GbN68Oe+88w7x8fHFXr/AwEDeffddVq9eTZ06dW47DsCIESOws7MDrq2kXX/GrLg56+Tk\ndMOcuM7CwoKIiAheeeUVHB0dKSwspHbt2rccNzIyktzcXHJycm757JKIiIjIg8JgutOlAbmpffv2\nsWjRIiZNmnS3Q/lHnD17li+++IK+ffuSl5eHv78/CQkJ5lvN5O6ZPXs2AwYMwMbGhuHDh9O+fXue\neeaZUuk7JSWFuZ9Z3v5AERERkZuYOebOHtP4q1JSUvDy8ip23996a5z8n0WLFrFq1aq//arv+4mz\nszM//fQT//rXvzAYDOYVNbn7ypcvT1BQEOXKlcPV1RU/P7+7HZKIiIjIPUUrQiJyR7QiJCIiIn/X\nvbAipKehRURERESkzFEhJCIiIiIiZY4KIRERERERKXNUCImIiIiISJmjt8aJyB37px5wfNClpqbi\n6el5t8N4YCifpUe5LD3KZelRLkuPcnmNVoRERERERKTMUSEkIiIiIiJljgohEREREREpc1QIiYiI\niIhImWMwmUymux2EiNw/UlJS+PLHGnc7DBEREblPvNu/5l0bOyUlBS8vr2L3aUVIRERERETKHBVC\nIiIiIiJS5qgQEhERERGRMkeFkIiIiIiIlDkqhEREREREpMxRISQiIiIiImWOCiERERERESlzrO52\nAPeTiRMnsn//fk6fPk1OTg5ubm44OzvTt29fli5dytSpU++oP5PJhK+vL3Xq1AGgWbNmvP322+b9\nGRkZ9OjRg8aNGwOQl5dHmzZtGDZsWKmdU0mFhYWxf/9+nJycyMvLo379+rz//vtYW1uXuI/z58+z\nZcsWAgICzNt27drFxx9/zJw5cwCYPXs28+bN49tvv8XKyort27djNBr56KOPSu1cdu3ahaOjI40a\nNbrtsTk5OURGRpKZmYnBYMDBwYHIyEicnZ356quvaNKkCS4uLiUad9myZfTs2dOcs4KCAnr37s2L\nL76Iv78/AL/99ht9+/YlMTGxxP3eSlJSEtOnT8fNzY3CwkIMBgOvv/46bdu2/dt9i4iIiNzPtCJ0\nB8LCwjAajQwcOJCnnnoKo9HI9OnT/3J/x44do3HjxhiNRoxGY5Ei6Lp69eqZ9y9ZsoQdO3Zw4MCB\nv3Maf1loaChGo5Fly5bx+++/s3Hjxjtqf/DgQb7++usi25o1a8bBgwcpLCwEYOvWrXh7e7Nnzx4A\ndu7cSYcOHUrnBP6/VatWkZmZWeJjq1SpQnx8PPPmzaN58+bmomzhwoVkZ2eXeNzZs2ebzxPA0tKS\n6OhoJk+ezJkzZwAYNWoU77zzTqkUQdddn6uLFy9m2rRpREZGcvr06VLrX0REROR+pBWhUnL06FH+\n/e9/k5WVRefOnRkyZAgHDx5k3LhxADg5OTF+/HgcHR3Nbfbv38+pU6cIDg6mXLlyjBw5End395uO\nkZOTQ15eHnZ2doSFhXH+/HnOnz/P7NmzmTlzJikpKcC1D759+vTBz8+Pzz77DHt7e+bOnYuVlRXd\nu3cnIiKC3NxcbG1tGTt2LAUFBbz99ttUr16d48eP8+ijjzJ69OibxlFQUMDly5epWfPaXwk2Go2s\nWbMGg8GAn58f/fr1Y/369cyZMwcrKytcXV2ZNGkSs2bN4sCBAyxbtoznn38eAGtrax5++GEOHjyI\nq6srhYWF+Pn5sWnTJlq3bs2uXbuYOHEi2dnZhIeHc+nSJc6dO0dgYCABAQE8++yzfPnll1haWjJ5\n8mQeeeQRsrKy+PTTT7GwsKBFixaMGDHCHPtPP/3Eli1b2L9/P/Xq1WP37t0kJCRgY2NDnTp1GDNm\nTJFVLldXV1auXEmLFi1o3bo1wcHBmEwmNm3aRGpqKiNGjCAxMZHY2Fh++uknLl++jIeHBxMmTCA2\nNpa9e/dy5coVAgICOH36NCEhIcTFxZn7r1u3Li+//DLjx4/H19eXatWq0b17dwC2bdvGtGnTsLW1\nNc+f1NTUIquPPj4+bNu27Yb5ULFixWKvXZUqVejevTubNm3iySefLHFOn3zyyZvOBxEREZH7kVaE\nSklubi5xcXEsXryYRYsWARAREcH777+P0WjE19eXuXPnFmlTtWpVBg4ciNFo5NVXXyU0NPSGftPS\n0ggODiY4OJjBgwfTr18/ateuDYC3tzdLly5lz549ZGRksHz5chITE1mzZg1Hjhzh8ccfZ/369QCs\nW7eOp59+mujoaIKDgzEajbz88svExMQA8MsvvxAVFcWKFStITk4udsVg8uTJBAcH4+fnx5kzZ6hb\nty5paWmsW7eOxMREEhMT2bBhA0eOHGHNmjX079+fJUuW0L59e7Kzs3nttdfw9vY2F0HXtWvXjt27\nd7N161batWuHj48P3377Lbm5uVy6dAlXV1eOHj2Kv78/8fHxzJo1iwULFuDo6IiXlxdbt26loKCA\n5ORkunTpQlJSEuHh4Sxbtgw3NzeuXr1qHuuRRx6hQ4cOhIaGYmdnR2xsLAkJCSxZsgRHR0eWLVtW\nJLZOnToxaNAgVq5cSZcuXejfvz/p6el06tQJT09PoqOjycvLo0KFCsyfP5+lS5fy/fffc+rUKQDc\n3d1ZunQpffv2pWrVqsXePvnCCy9w7tw5EhISCA8PB67dNhkREcGMGTNYtGgRrVq1YubMmbeYgf83\nH25WBF1XuXJlzp07d0c5FREREXnQaEWolNSvXx8bGxsArKyupTU9Pd28spKfn0/dunWLtHnkkUew\ntLQEoGXLlpw6dQqTyYTBYDAfc/3WuOJc7y89PZ2WLVtiMBiwtramadOmpKenExgYSGRkJO7u7tSp\nUwdnZ2cOHTrE7NmzmTt3LiaTybz68dBDD+Hg4ABcK9Byc3NvGC80NBRfX18APvzwQyZOnIiPjw8n\nTpygf//+AFy4cIFjx44xcuRIZs+ezZIlS3B3d6dr1643zZ2Pjw/Tp0/H3t6evn374ujoiKOjI1u2\nbKF169bAtZWMhIQE1q9fj4ODg7m4CQwMxGg0UlhYSLt27bCxsWHChAnEx8cTExNDs2bNMJlMxY57\n/Phx6tWrZz7vVq1asXXr1iLH7N27l7Zt2/L4449TUFDAZ599xsiRI0lKSjIfY2trS1ZWFsOGDcPe\n3p4rV66Qn59f5BrdisFgICAggCNHjlC+fHkAzp07h4ODg/kWuVatWjFlyhQ6depUpO0fz60kYwGc\nOHGChx9++I5yKiIiIvKg0YpQKflj8XJd3bp1iY6Oxmg0EhoaSseOHYvsnzFjBgkJCQAcOHCAmjVr\nFtvP7cb08PAw3xaXn5/P3r17qV27NnXq1MFkMjF37lwCAwOBaysUw4cPx2g0Mnr0aPNtWHcyLkCN\nGjXIz8/H3d2devXqsXDhQoxGIz179qRBgwYsW7aMIUOGmFfHvvrqKywsLIo8I3Odh4cHmZmZHDp0\nyPxiiPbt2zNv3jzz80Hx8fE0a9aMmJgYnnjiCXMB0LJlS44fP87KlSt57rnnAFi+fDmjR49m0aJF\npKamsnfv3hvyZjKZqFWrFunp6Vy5cgW49jzSn4uJtWvXmlfyLC0tadiwobkwuN5PcnIyJ0+eZMqU\nKQwbNoycnBxzfBYWFkXGLe78i+Ps7Ex2drb5WaadO3dSp04dbG1tzat1v/76KxcuXCjS/+1kZmay\nceNGOnbseEc5FREREXnQaEXofygyMpIRI0ZQUFAAQFRUVJH9AwcOJDQ0lM2bN2NpacmECRP+0jid\nO3dm586dPP/88+Tn5/PEE0+YC4rnnnuODz/8EG9vbwBGjBhBZGQkubm55OTkmG/FKonJkyczZ84c\nc0Ezfvx43NzcaNu2Lb179yYvL8/8FrUmTZowYMAAnJycKF++PJ06dSIvL49Dhw6xYMEC8wrSddeL\ntusf5n19ffnoo4/MK0KdO3cmMjKS1atX4+TkhKWlJXl5edjY2BAQEMAXX3xB/fr1AWjYsCHPPfcc\nzs7OuLi40LRp0yJjNW3alJiYGKZNm8aQIUPo168fFhYWPPTQQwwfPrzIsUOHDmXs2LE8/fTT2NnZ\nYW9vb76OzZs355133mHmzJnExcURFBSEjY0Nbm5uxb6MoWXLlgwcOJCFCxfetmgxGAyMGzeOIUOG\nYDAYqFixIhMmTKBChQo4OjoSGBiIh4cHtWrVuu11W7NmDT/88AMWFhaYTCYmTJiAk5PTHeVURERE\n5EFjMN3sviGR+8ScOXNwdnbW6kUpulVOU1JS+PLHGnchKhEREbkfvdu/5l0bOyUlBS8vr2L3aUVI\n7mthYWGcO3eO2NjYux3KA0M5FRERkbJAhZDc1yZOnHi3Q3jgKKciIiJSFuhlCSIiIiIiUuaoEBIR\nERERkTJHhZCIiIiIiJQ5KoRERERERKTM0csSROSO3c3XYD5IUlNT8fT0vNthPDCUz9KjXJYe5bL0\nKJelR7m8RitCIiIiIiJS5qgQEhERERGRMkeFkIiIiIiIlDkqhEREREREpMxRISQiIiIiImWOwWQy\nme52ECJy/0hJSeHnc/XvdhgiIiLyPxLctcLdDqHUpKSk4OXlVew+rQiJiIiIiEiZo0JIRERERETK\nHBVCIiIiIiJS5qgQEhERERGRMkeFkIiIiIiIlDkqhEREREREpMxRISQiIiIiImWO1d0O4I+OHz/O\n5MmT+e233yhXrhzlypUjNDSU+vX/+b9Zsm/fPkaOHMljjz3G22+/DcCnn37KqlWryM3NJS0tjcaN\nGwMQExNDz5492bZt2z8e5x8VFhYSHR3NoUOHsLCwwNramvDwcNzc3O5aTLGxsaxZs4Zq1aoBkJ+f\nT0hICG3atCmV/qOiohgwYAA1a9b8231NnDiR/fv3c/r0aXJycnBzc8PZ2Znp06ffst0bb7zBjBkz\nOHjwIBcvXqRVq1bs2rULR0dHGjVq9Jdi+fjjj1m4cCEbN27E1tb2jtvHxsZSpUoVevfuXaLjT58+\nzUcffURkZOQdjyUiIiJyP7pnCqHff/+dQYMGMXbsWJo3bw5cK0bGjBmD0Wj8x+PZunUrvXr1Ijg4\n2LztmWee4ZlnniEjI4Nhw4bdlbhuZcuWLWRmZjJ//nwANmzYwPjx45k5c+Zdjat///7mD+Tp6ekM\nHz6cTz75pFT6Dg8PL5V+AMLCwgBISkriyJEjDB8+vETtZsyYAcD69eupUqUKrVq1YtWqVfj5+f3l\nQmj16tX4+fmxdu1aevbs+Zf6uBNVq1ZVESQiIiJlyj1TCH3zzTd4e3ubiyCAJk2asHDhQgAOHTrE\nxIkTKSws5OLFi4waNYoWLVrQrVs3mjdvztGjR/H29ubSpUvs27ePunXrMnnyZE6ePElERAS5ubnY\n2toyduxYatSoYR4jPz+fd999l+PHj1NQUMCAAQOoVasWK1euxNramurVq9OtW7fbxp+Xl8fbb7/N\niRMncHJyYvr06cyaNYu9e/dy5coVoqKi2Lx5M2vXrsXKyoqWLVsSGhpKbGwsGRkZnD17lhMnTjBy\n5Eg6dOjAzp07mTp1KpaWlri5uTFmzBgyMjIYOXIkVlZWWFpaMmnSJFxcXMwxVK9enZ9++ol169bh\n7e1Nly5d8PX1BSi2v9zcXMLDw7l06RLnzp0jMDCQPn36sHjxYj799FMsLCxo0aIFI0aMICMjg/Dw\ncK5evYrBYGDUqFE0atSIxx9/nBYtWvDf//6XypUrExsbi6Wl5U3zdP78eezt7QHo3Lkz7u7uuLu7\n89JLL91wnQoKCggJCaFGjRpkZGTg7+/P4cOH+fnnn+nUqRPDhg0jODiYyMhIqlWrRnh4OOfOnQNg\n1KhRNGzY8LZj/HEu3MzgwYMZNGgQjz76KN27d2f48OF069aNl156iQkTJtCzZ0+SkpL45JNPsLa2\n5uGHH2bLli3s37+fevXq8cMPP7BgwQIsLCzw8vJi+PDhxMbGFpkbHh4e5vF27NjBQw89RK9evQgN\nDTUXQsHBwTRq1IjDhw+TnZ3Nhx9+iKurKx988AE//fQTly9fxsPDgwkTJpj7mjJlCi4uLvTt25cL\nFy4wYMAA5s6dy9ChQzGZTOTn5zN69GjKly/PsGHDWL58OVOnTmX79u0UFhbi7+9P//79b5sjERER\nkfvNPVMIZWRk8NBDD5l/HzRoENnZ2WRmZpKQkEBaWhojRoygYcOGrF69mqSkJFq0aMGvv/5KQkIC\nVatWpXXr1qxYsYKIiAi6dOnCxYsXiY6OJjg4mI4dO/Ldd98RExPDBx98YB5n2bJlODs7M3nyZLKz\ns+nZsydLly7l2WefpUqVKiUqggCuXLlCSEgItWrVIjg4mNTUVADc3d0ZNWoUBw8e5PPPP2fp0qVY\nWVkxZMgQvvnmGwBsbGyYO3cu27ZtIz4+nvbt2xMREUFiYiKVK1dm2rRpfPLJJ+Tn59O4cWPCwsLY\nvXs3Fy5cKFIINWzYkLFjx7Kh9l+rAAAgAElEQVR8+XLGjRtH9erVCQsLo1WrVsX217hxY/z9/Xn8\n8cc5deoUwcHB9OnTh6SkJCIiImjWrBmJiYlcvXqVSZMmERwcTNeuXUlNTeXdd98lKSmJ48ePk5CQ\nQI0aNejVqxc//vgjzZo1K5KbBQsWsG7dOiwsLKhQoQJjx44F4OTJkyQlJeHs7MzQoUNvuE4hISEc\nP36c+Ph4cnJy6NKlC8nJydjZ2dG5c2eGDRtmHmPWrFl4e3vTp08ffvnlF0aOHMmSJUtuO8Yf58LN\nPP744yQnJ+Pk5IStrS3btm3D29ub3Nxcc/5dXFzMc6Zp06Z06NABPz8/7O3tiY2NZdWqVdjZ2REa\nGmq+hfL63PizFStWEBgYiLu7OzY2Nvzwww80bdoUuPblQHh4OFOnTmXt2rX06dOHChUqMH/+fHPh\ncurUKXNfgYGBDBs2jL59+7JmzRoCAgLYt28fjo6OfPDBB6SlpZGdnU358uXNbT799FMWLVqEi4sL\nSUlJt82PiIiIyP3onimErq9mXHf9dq6goCCuXr1KtWrViIuLo1y5cly+fBkHBwcAnJyczM+H2Nvb\nU69ePQAcHR3Jzc3l0KFDzJ49m7lz52IymbC2ti4ybnp6Ou3atQPAwcEBDw8Pjh8/fsfxV6xYkVq1\nagFQpUoVfv/9dwDq1q0LwJEjR2jatKl5/JYtW3L48GEAPD09zTnIy8sjKyuLzMxMhg4dCkBOTg4+\nPj4MGjSIOXPm8O9//xtHR0dCQkKKxHDgwAHq1q3LlClTMJlMbNu2jaFDh/Kf//yn2P46duxIQkIC\n69evx8HBgatXrwIwYcIE4uPjiYmJoVmzZphMJtLT02nVqpU53t9++w0AZ2dn86pKjRo1yM3NvSE3\nf7w17o+cnZ1xdnYGuOl1cnNzw9HRERsbG6pUqYKTkxMABoOhSF+HDh1i+/btfP755wBcvHixxGPc\nTufOnRk8eDDOzs688sorzJ8/n+TkZDp37nzbtseOHSMrK4uBAwcCcPnyZfP8uj43/ujChQskJyeT\nlZWF0WgkOzubRYsWmQuhhx9+GLg2V86cOYOtrS1ZWVkMGzYMe3t7rly5Qn5+vrk/Nzc3ypcvT1pa\nGqtXryYuLg4nJyd++eUXBg8ejJWVFYMGDSoSw5QpU5gyZQpnzpyhQ4cOJcqRiIiIyP3mnimEunTp\nwpw5c/j+++/NKwpHjx7lt99+w2AwEBUVRUxMDB4eHkyfPp1ff/0VuPED8Z9dvyWqRYsWpKens2vX\nriL7PTw82L17N926dSM7O5tDhw6ZC5o7cbM4LCwszHHMnz+fq1evYmlpya5du3jmmWc4cODADW2d\nnZ2pXr06cXFxODo6snHjRuzt7dm4cSNeXl688cYbrFmzhrlz5xa5Deq7777jwIEDjB8/HktLS+rX\nr4+dnR2VKlUqtr/4+HiaNWtGnz592L59O5s3bwZg+fLljB49GltbW15++WX27t1rzlOXLl1ITU2l\nSpUqtzzvkriem+v5Ke46lbR/d3d3evToQUBAAGfPnmXFihUlHuN2KlasSLly5fj888+JjY3lyy+/\nJCEhgZiYmCLHGQwGCgsLzT+bTCZq1apFjRo1iI+Px9ramqSkJDw9PdmwYUOR2K77z3/+w7/+9S9G\njBgBXHt2rkuXLmRlZRUbW3JyMidPnmTatGlkZWXx1VdfYTKZihwTFBTEzJkzcXFxoVKlSnz33XdU\nq1aN+Ph49u7dy5QpU8zzKC8vjy+++MJcTPv7++Pv74+rq2uJciUiIiJyv7hnCqHy5cszc+ZMPvjg\nA2JiYrh69SpWVlaMHTsWV1dXevToweDBg6lcuTLVq1c3PwtyOyNGjCAyMpLc3FxycnJueLg+KCiI\niIgIevfuTW5uLm+88QaVK1cu9fNr2LAhTz75JL1796awsBAvLy+6du3KgQMHbjjWwsKC8PBwBg4c\niMlkonz58kyaNInLly+bnyuysLBg5MiRRdoFBwcTHR3NM888g4ODAxYWFkyaNOmm/RkMBiIjI1m9\nejVOTk5YWlqSl5dHw4YNee6553B2dsbFxYWmTZtSs2ZNIiIiiI+P5+rVq0RFRZVqfm53nW7ntdde\nIzw8nOXLl5Odnc0bb7xRqmN06dKFpKQknJycaN++PYmJiUVu5QR45JFHmDRpEh4eHjRt2pSYmBim\nTZtG//79CQ4OpqCgAFdXV5588smbjrNixQomTZpk/t3Ozo7HH3+c5cuXF3t8kyZNiIuLIygoCBsb\nG9zc3MjMzCxyTNeuXRkzZgyTJ08GoFGjRoSEhJCQkICFhQWvv/66+VgbGxsqVqzI008/TcWKFfHx\n8SmVN/KJiIiI3GsMpj9/fSwiD5Tff/+dF154gRUrVhS7CnWnUlJS+PncP/9KexEREflnBHetcLdD\nKDUpKSl4eXkVu09/UFXkAbZnzx6CgoIYPHhwqRRBIiIiIg+Ke+bWOBEpfS1atGD16tV3OwwRERGR\ne46+IhYRERERkTJHhZCIiIiIiJQ5KoRERERERKTM0TNCInLHHqS3ydxNqamp5j+oLH+f8ll6lMvS\no1yWHuWy9CiX12hFSEREREREyhwVQiIiIiIiUuaoEBIRERERkTJHhZCIiIiIiJQ5KoRERERERKTM\n0VvjROSOff3DpbsdwgOiFieVy1KkfJYe5bL0KJel597I5WNNHe92CFJKtCIkIiIiIiJljgohERER\nEREpc1QIiYiIiIhImaNCSEREREREyhwVQiIiIiIiUuaoEBIRERERkTJHhZCIiIiIiJQ5KoT+YMeO\nHbRt25bg4GDzf2+++Wapj7Nr1y4OHDgAgI+Pzw37k5KS2Lhx498a48/97tq1i1deecX8++zZs2nd\nujVXr14FYPv27bz++uskJyezbNmyEvf7Z7GxsSxZsqTIth07dhASEmL+/YsvvuCpp57ixIkTJT6f\nOxEbG4unpyenTp0ybzt79iyNGzcmKSnptu2Lmwe3ysntJCUlERMT85fb34mCggKCgoJYu3atedtv\nv/1Gly5diuRDREREpKzTH1T9E29vb6ZOnfo/HWPVqlX4+fnRqFGjYvf37Nmz1Mds1qwZBw8epLCw\nEAsLC7Zu3Yq3tzd79uyhdevW7Ny5kw4dOuDr61vqY//R2rVrmTdvHgsWLKBKlSr/s3Hq1KnD559/\nTv/+/QFYt24dNWrUKHH7f2Ie/C9YWloSHR3NgAEDaNOmDVWqVGHUqFG88847uLi43O3wRERERO4Z\nKoRKICsri759+7Ju3ToMBgOjR4+mXbt2PPTQQ4wbNw4AJycnxo8fz88//0xMTAzW1ta0a9eOTZs2\nsXLlSgCGDh3KgAED2LJlC/v376devXrk5eXx9ttvc+LECZycnJg+fTqzZs2iSpUquLu7M2fOHKyt\nrcnIyMDPz49BgwZx9OhRwsLCsLKywtXVlV9//RWj0XjLc7C2tubhhx/m4MGDuLq6UlhYiJ+fH5s2\nbaJ169bs2rWLiRMnkpSUxJEjRxgyZAhvvfUW2dnZ5OTkEBoaSps2bYqN19raukR5/PTTT1m0aBHz\n58+nYsWKAAQHB9OoUSMOHz5MdnY2H374Ia6urhiNRtasWYPBYMDPz4+AgAD69+/PZ599xt69e3n1\n1Vf57rvvOH36NOHh4cybN6/IWH5+fnzxxRfmQuibb76hc+fOAEyZMgUXFxf69u3LhQsXGDBgQIlW\nipKSkli1ahWFhYW8+eabnD9/ngULFmBhYYGXlxfDhw8nJSWF6OhorKysqFChgnkl6IcffuCll14i\nKyuL3r178/zzzxMQEEDLli05dOgQdevWpXLlyuzevRsbGxs+/vhjzp49S2RkJLm5uZw/f57XX3+d\nrl27EhAQQOvWrTl48CAGg4G4uDgcHf/vr1zXrVuXl19+mfHjx+Pr60u1atXo3r07ADt37mTq1KlY\nWlri5ubGmDFjyM3NJTw8nEuXLnHu3DkCAwPp06cPwcHBODs7c/HiRebNm4elpWWJrrOIiIjI/UC3\nxv3J9u3bi9wSNXfuXCpVqkTDhg3ZvXs3eXl57Ny5k86dOxMREcH777+P0WjE19eXuXPnApCbm0ti\nYiJvvPEG5cqVIy0tjfPnz5ORkUHTpk3p0KEDoaGh1KxZkytXrhASEsKSJUvIzs4mNTW1SDwnTpwg\nNjaWZcuWmfufNGkSr732GkajkRYtWpT43Nq1a8fu3bvZunUr7dq1w8fHh2+//Zbc3FwuXbqEq6ur\n+dhjx45x5swZZs2axQcffEBOTg7AbeO9md27d7N8+XIuXLhAQUFBkX1NmjRhwYIF+Pj4sHbtWtLS\n0li3bh2JiYkkJiayYcMGzp07h5OTEydPnmTLli1Ur16d/fv3s3HjRrp27XrDeFWqVMHOzo7jx49z\n9OhRqlevjq2tLQCBgYF8+umnAKxZs4aAgIAb2v95HlyPuUKFCixZsgRPT09iY2NZsGABS5Ys4dSp\nU2zbto0NGzbQrVs3Fi1axHPPPcfFixcBsLKyYt68ecyYMYOEhAQALl++zFNPPcXixYvZvXs3LVq0\nYPHixeTn55OWlsaRI0cYMGAA8+fPJyIigsWLF5vb+fv7s2jRIqpVq0ZycvIN8b/wwgucO3eOhIQE\nwsPDATCZTERERDBjxgwWLVqEi4sLn3zyCUePHsXf35/4+HhmzZrFggULzP0EBASwYMECFUEiIiLy\nwNGK0J/c7JaooKAgPvnkE06fPs1jjz2GlZUV6enpjB49GoD8/Hzq1q0LYP4/XPvQnZSURM2aNenR\no8cN/VasWJFatWoB1z68//7770X2N2jQACsrK6ysrChXrhwA6enpNG/eHAAvLy9Wr15donPz8fFh\n+vTp2Nvb07dvXxwdHXF0dGTLli20bt26yLH169enb9++DBs2jKtXrxIcHFyieG+matWqzJ8/nxUr\nVhAaGsqcOXOwsLhWhz/88MMAVK9enTNnznDo0CFOnDhhXs25cOECx44do1u3bmzevJm9e/fyyiuv\nsG3bNvbu3UtUVFSxY/r7+7N27VquXr1KQEAA27ZtA8DNzY3y5cuTlpbG6tWriYuLu6HtzebB9Wt7\n7NgxsrKyGDhwIHCtODl+/DivvfYas2bN4sUXX8TFxYUmTZqYz9FgMFC1alVzUQnQuHFj4FqB5eHh\nYf45NzeXqlWrMnPmTFauXInBYDA/z/XHnNWoUYPc3Nwb4jQYDAQEBHDkyBHKly8PXFvZzMzMZOjQ\noQDk5OTg4+NDx44dSUhIYP369Tg4OBQZ549zWURERORBohWhEmrbti2pqamsWrWK5557Drj2ITE6\nOhqj0UhoaCgdO3YEMH/AB3jiiSfYtm0bX331lbkQMhgMmEwm88+3Utz+Bg0asHfvXuDaLVcl5eHh\nQWZmJocOHTJ/AG/fvj3z5s2jQ4cORY49ePAgly9f5uOPP2bixImMHTu2RPHeTO3atbG1teWFF17A\n2tqamTNn3vRYd3d36tWrx8KFCzEajfTs2ZMGDRrQtWtX1qxZg4ODA76+vmzYsIG8vDyqVq1abD/d\nu3dn48aN7N69mzZt2hTZFxQUxMyZM3FxcaFSpUolPo/r17ZWrVrUqFGD+Ph4jEYjL7zwAk2bNmX1\n6tU8++yzGI1G6tevz/Lly4Gb5+1W+fzwww95+umnmTx5Mm3atDHPmdu1uxlnZ2eqV69OXFwcRqOR\n1157jTZt2hAfH0+zZs2IiYnhiSee+NvjiIiIiNwPtCL0J9dvifqjOXPmUK5cObp37863335L7dq1\nAYiMjGTEiBHm26aioqLIzMws0tbW1pZWrVqRlZWFk5MTAE2bNiUmJsa8snKnhg8fzrvvvkt8fDyO\njo5YWZX8MtapUweTyWT+gOvr68tHH310w4pQnTp1+Oijj/j000+xtrYu1bfnjR8/nmeeeQYvL69i\n9zdq1Ii2bdvSu3dv8vLyaNKkCS4uLlhaWpKbm4u3tzcVK1bEysqKTp063XQcR0dHqlevjpubW5Hi\nFKBr166MGTOGyZMn/6VzqFSpEv379zffNufq6sqTTz5JXl4eYWFh2NvbY21tzZgxY9i1a9dfGuOJ\nJ54gKiqK2bNnU6NGDc6dO/eX+rnOwsKC8PBwBg4ciMlkonz58kyaNAmDwUBkZCSrV6/GyckJS0tL\n8vLy/tZYIiIiIvc6g+mPX//K/0RkZCTdu3enbdu2pdLff/7zH5o2bUrt2rVZsWIFe/bsYcKECaXS\nd1nx+++/88ILL7BixYobiiS5tZSUFC5YNbjbYYiIiNwVjzV1vP1B97jU1FQ8PT3vdhj/iJSUlJt+\n+a4Vof+xl156iWrVqpVaEQTXngsJCQnBzs4OCwsLxo8fX2p9lwV79uzh/fffZ+jQoSqCRERERMoo\nrQiJyB3RipCIiJRlWhG6v9xqRUhfh4uIiIiISJmjQkhERERERMocFUIiIiIiIlLmqBASEREREZEy\nR2+NE5E79iA8KHovKEsPq/4TlM/So1yWHuWy9CiXUtq0IiQiIiIiImWOCiERERERESlzVAiJiIiI\niEiZo0JIRERERETKHL0sQUTu2P60k3c7hAeDtZNyWZqUz9KjXJae+yyXjevVuNshiPxjtCIkIiIi\nIiJljgohEREREREpc1QIiYiIiIhImaNCSEREREREyhwVQiIiIiIiUuaoEBIRERERkTJHhZDccwoL\nC9m8eTMmk+luhyIiIiIiDygVQve4fv36sW/fPgDy8vLw8vJi3rx55v0vvPACBw4c4LHHHiM3N/eO\n+k5KSiImJuaG7Z988gn9+vVjwIAB9O/fn61bt/69k7iJkJAQduzYUWTb3r176dGjB5MnT6ZHjx7s\n378fgPnz5+Pv709wcDDBwcEcOXKkSLuwsDBatmxJXl6eedv+/ftp2LDhDWOUxLJly8jPz2fHjh2E\nhITcsD84OJj09PQ77rekSuN8YmJiSEpKIjU1lRkzZvyvQhURERG5L+kPqt7j2rdvz+7du2nSpAkp\nKSm0b9+eTZs28fLLL5Obm8vJkydp1KhRqY136dIl4uLiWLt2LTY2Npw6dYrAwEA2bdqEhcX/vm6e\nN28e77//Ptu3b6dVq1YcPHiQxo0bs3//fqKjo3nkkUdu2rZq1aokJyfTtWtXAFavXo2bm9tfimP2\n7Nk888wzf6ltaSmt8/H09MTT07O0wxMRERG5r6kQuse1a9eOuLg4XnrpJTZv3kxgYCAxMTFcunSJ\n/fv307p1a/OxkZGRZGRkADBjxgzGjBlDQEAAnTp1Ij09nejoaD7++ONbjmdvb09BQQFLliyhc+fO\nPPTQQ2zYsAELCwvCwsIwmUycPHmSK1euEB0djYeHB0ajkTVr1mAwGPDz86Nfv36EhYVhY2PDr7/+\nSmZmJhMnTqRx48YsXryYFStWULVqVc6ePXvD+LVr12bdunXY2dnh7e1t3r5//34+/vhjTp8+TadO\nnXj11VdvaOvv78+aNWvo2rUrhYWF7N+/n0cffRSA/Px83n33XY4fP05BQQEDBgzAz8+P4OBgGjVq\nxOHDh8nOzubDDz/k22+/5fTp04SEhPDiiy9y9OhR/v3vf5OVlUXnzp0ZMmSIecxevXoxduxY6tev\nz+bNm9m0aRPvv/++ef/PP//M2LFjsbS0xNbWlrFjx1JYWMjbb79N9erVOX78OI8++iijR4++4/N5\n//33OXr0KIWFhQwdOpQ2bdrw5ZdfMnPmTCpVqkR+fj7u7u7s2LGDpUuXMnXqVHx8fNi2bRtwbUWu\nV69e/Prrr3zzzTfk5ORw+vRp+vXrx8aNGzl8+DDvvPOOuRATEREReZDo1rh73MMPP8yRI0cwmUzs\n2rWL1q1b07ZtW7799lt27txJhw4dzMf+61//wmg04urqyrZt2wgMDOSTTz4BYOXKlTz33HO3Hc/S\n0pL58+ebP/x37tyZlStXmve7ubmxcOFChgwZwuTJk0lLS2PdunUkJiaSmJjIhg0bzLet1axZk3nz\n5hEcHMyyZcu4dOkSCxcuZPny5cTFxZGfn3/D+CEhIdSrV48vv/ySXr16ceDAAeBaURAZGUlCQgIp\nKSl88803N7Rt0qQJ//3vf7ly5Qrbt2+nTZs25n3Lli3D2dmZpUuXMn/+fKZNm0ZWVpa53YIFC/Dx\n8WHt2rUEBgZStWpVpk6dCkBubi5xcXEsXryYRYsWFRnzjzletWrVDTkeNWoU7733HosWLaJ3795M\nnDgRgF9++YWoqChWrFhBcnIyp0+fvqPzWbFiBc7OzixevJi4uDjGjBkDwOTJk5k/fz7z5s2jXLly\nxV7j4ly+fJk5c+bwyiuvsGTJEnMhnZSUVOI+RERERO4nKoTucRYWFjRq1Ijk5GSqVq2KjY0Nvr6+\n7Nmzh5SUFNq1a2c+9vptY1WqVCEnJ4c2bdpw5MgRzp49y7Zt2+jcufNtxzt16hQ5OTm89957rF+/\nnvj4eObNm8fBgwcBzKs0zZs357///S+HDh3ixIkT9O/fnxdffJHz589z7NgxAPPtWNWrVycvL48j\nR45Qr149bGxssLa2pkmTJjeMf/nyZfr27cszzzzD0KFDiYyMxGQy8eKLL1KpUiVsbGzo2LEjP//8\nc7HxP/bYY2zcuJHVq1fTo0cP8/b09HRatWoFgIODAx4eHhw/fhy4Vmxej7O456zq16+PjY0NdnZ2\nWFkVXUT18/Pj66+/5uzZs/z22280bty4yP7MzExzHlq1asXhw4cBeOihh3BwcMDS0pKqVave9Pmu\nm53PoUOHSE5OJjg4mDfffJOrV69y5swZHBwccHZ2xmAw0Lx582L7vO6PL6O4HqOjoyMeHh4YDAYq\nVqx4x8+diYiIiNwvVAjdB3x8fJg9e7Z59cfLy8tcCDg5OZmPMxgMRdoZDAYCAgKIiorCx8cHa2vr\n24515swZhg8fzoULFwBwdXXF2dnZ3Pb6ywv27NlD/fr1cXd3p169eixcuBCj0UjPnj1p0KBBsfG4\nubmRlpZGTk4OBQUFpKam3jD+kCFDzC+HcHZ2xtLSkuzsbJ566ikuX76MyWRix44dN31WKCAggE8/\n/ZTTp0/z0EMPmbd7eHiwe/duALKzszl06BC1atW6aR4MBgOFhYXFnscf2dnZ0aZNG6Kionj66adv\n2F+tWjXzqtauXbuoU6fObfssyfm4u7vj7++P0Whkzpw5PPHEE1SoUIFLly6ZV7p+/PHHG/q7evUq\nly9fJi8vj7S0tCLnKyIiIlKW6Bmh+0C7du0YNWoUkyZNAsDGxgZHR0fzSsat9OzZk06dOvHZZ5+V\naKzGjRvTr18/XnzxRcqVK0dBQQGBgYG4u7sDkJyczMaNGyksLGTChAm4ubnRtm1bevfuTV5eHk2a\nNMHFxaXYvitVqsRbb71Fr169qFSpEnZ2djccM3LkSKKiojhz5gzbt28nLCwMR0dHQkJC6NevHzY2\nNrRt25aOHTsWO4a7uzvnzp3jX//6V5HtQUFBRERE0Lt3b3Jzc3njjTeoXLnyTfPQsmVLBg4cyOuv\nv37bnAUFBdG7d28iIyNv2Ddu3DjGjh2LyWTC0tKS8ePH37a/kpxPr169GDVqFC+88ALZ2dn06dMH\nGxsbJkyYwMsvv0zFihVvWL2Ca28hfP7556lVqxY1a9a8o1hEREREHiQGk/5YywPt1KlTvPPOOyQk\nJPztvsLCwvDz88PX17cUIru12NjYIi8luJft27ePRYsWmQvVB11KSgrlKqqIEhF5EDWuV+Nuh3BT\nqampegtqKSlLuUxJScHLy6vYfVoReoB9+eWXzJgxg6ioqLsdyh27X4qgRYsWsWrVKqZPn363QxER\nERGRO6AVIRG5I1oREhF5cGlFqGwoS7m81YqQXpYgIiIiIiJljgohEREREREpc1QIiYiIiIhImaNC\nSEREREREyhy9NU5E7ti9/DDt/aQsPaz6T1A+S49yWXqUS5F7l1aERERERESkzFEhJCIiIiIiZY4K\nIRERERERKXNUCImIiIiISJmjlyWIyB379cAPdzuEB0IFg3JZmpTP0qNclp77JZeujZre7RBE/nFa\nERIRERERkTJHhZCIiIiIiJQ5KoRERERERKTMUSEkIiIiIiJljgohEREREREpc1QIiYiIiIhImaNC\nSEREREREyhwVQv8jGRkZBAUF3fKYZcuWkZ+fX2pjBgf/P/buPS7n+3/8+OO6OomySg6RQzmGaZPz\nIWw2hM18y2Rd05yGYUJERdaB5DQhRFNX5tCKH8MODtPYRmJrS0iOyZRDkkPH6/eHr+u7VpHD1rie\n99vtc7ut6/16v17P9/P99rldz16v9ysVaWlpT3TOmjVrSEpKeuI+o6OjK9R/XFwce/furVDbCxcu\nMGbMGEaOHMnw4cMJCQmhuLi4QueWp3Xr1qhUKu3//Pz8nqm/sjzJNT6pbdu2lYh59uzZDBw4UPtz\nbGwsQUFBT9RnaGgoGzdufGy7oKCgCrUTQgghhHgRyR9UrUSrV69m0KBBlRrDmDFjnuq8sLAw3Nzc\nHttu8ODBFe5z8eLFuLm54ejoiEajYcKECezdu5e33nrrqWIEeOWVV1Cr1U99fkU8yTU+qS5durBu\n3Trtz7///jsWFhakp6djbW3NkSNHGDBgwHMd88aNG0yfPp3z588zcuTI59q3EEIIIcR/hRRC/wKV\nSkWLFi1ITU0lNzeXzz//nJ9++omsrCw8PDxYuXIlixYtIiEhAY1Gg7u7O/369UOlUmFubk5OTg79\n+/fn4MGD3L9/n4sXLzJ69Ohyv4DHxcVx4MCBUm03bNjAtm3bUCqVtG3blhkzZuDl5YWTkxMdOnRg\n+vTpZGZmYmVlRUJCAgcPHgRgxYoVXLt2jXv37rF48WK+/vprbt26hZ+fH8OHD2fmzJno6+ujp6fH\nggULqF27tjaW0NBQLC0tsbW1JTw8HAMDA9LT03FycmLcuHEl4q5bty5bt26lWrVqtGnThqVLl6Kv\nr09RURGzZ8/mzz//5KOJNAgAACAASURBVObNmzg6OjJ58mS8vLwwNDTk8uXLZGZmMn/+fFq1avXY\n+5Gens64ceMwMzPD0dERe3t7li9fDsD9+/cJDg7GwMCAqVOnUqdOHS5dusSrr77K3LlzuX79Ol5e\nXty+fRuNRkNwcDA7duzA0tKSPn36MHnyZDQaDQUFBcydO5fmzZuzcuVK9uzZQ1FREa6urgwdOpSI\niAh27tyJvr4+7dq1w9PTkzNnzhAdHV1iBqhWrVooFAqys7O5evUqtra2tGzZkgMHDvDBBx+QlJTE\nZ599xu3bt/H29ubmzZsA+Pj40Lx5c3bv3s369etRKpU4ODgwbdo0bd8XLlxgypQpBAYG0qJFC+3n\nd+7cYeLEicTHxz82l0IIIYQQLypZGvcvadOmDevXr6dr167s3LkTFxcXatasyZIlSzhw4ADp6els\n2rSJqKgoVq1aRU5ODgADBw5k/fr16OnpkZuby+rVqwkLC2PNmjWPHK+stnFxcXh7e7N582bq169P\nYWGhtv3mzZuxtrZm06ZNTJgwgevXr2uP9ejRg6ioKBwdHfnmm28YN24cr7zyCn5+fvz000+0atWK\nL774grFjx3Lr1q1yY8rIyCA0NJTNmzezdu3aUsc9PDywt7dn8eLFdOnShZkzZ3L79m2uXLnCa6+9\nxrp169i4cWOJ5Vp169Zl3bp1qFQqNm/eXKrPW7dulVga98cffwCQlZXFunXrGD16NKmpqYSEhBAV\nFcUbb7zBN998A8D58+cJDAwkJiaG+Ph4srKyCAsL44033mDTpk1Mnjy5xLLCpKQkTE1NCQ8Px8fH\nh9zcXE6cOEF8fDwxMTFs2rSJM2fOcOrUKXbv3s2mTZvYtGkTFy5cYP/+/TRp0qTMpXudO3fm2LFj\nxMfH0717dxwdHfnxxx+5dOkS9erVw8jIiFWrVtGpUyfUajX+/v74+fmRnZ1NaGgo69evZ+PGjVy9\nepVDhw4BcO7cOaZOncqiRYtKFEEA9evXx97evtz7KIQQQgjxMpAZoX9Jy5YtAahTpw7Xrl0rcez0\n6dMkJyejUqkAKCwsJCMjAwAbGxttu4dfWK2srMjPz3/keGW1nTdvHhERESxcuJDXXnsNjUajbZ+W\nloajoyMAjRs3xsLCQnusdevWAFhaWpaK3dnZmfDwcEaNGoWpqSkeHh7lxtSsWTP09fXR19enSpUq\npY7/8ssvuLu74+7uzp07dwgODmblypVMmDCB33//nV9++QUTE5MS125nZwc8yOuxY8dK9VnW0riH\ny8oMDQ0BqF27NoGBgVStWpWrV6/Stm1bABo0aICJiQkANWvWJC8vj3PnzuHs7Aw8KFDgwawXgKOj\nI+fPn2f8+PHo6+szbtw4zp07R5s2bdDT08PY2BgfHx92796Nvb09BgYGALRr147U1FR69epVZt66\ndOnC4cOHSU5OZsmSJVhYWPDnn39y5MgRunfvDjx4hn755Rd2794NQE5ODhcvXuTGjRva5Y937tzh\n0qVLAMTHx2tn8YQQQgghdJHMCFUihUJBcXExtra2dOzYEbVaTWRkJP369cPa2lrb5q/tn6Tvv9uy\nZQtz584lOjqalJQUjh8/rj3WrFkz7c8XL17ULrEqz8Miau/evTg4OBAZGUnfvn3LnOmpaPwhISHa\nGYtq1aphY2ODoaEhcXFxmJqasmjRIkaMGMH9+/e14z9JTv5Kqfy/R9/Hx4egoCDmz59PrVq1Htl3\n48aN+f333wFISEggJCREe+zw4cPUqlWLiIgIxo0bx+LFi7G1teXEiRMUFxdTUFDARx99hI2NDUlJ\nSRQWFqLRaEhISChR8P5dhw4d+PXXXykoKNAWqG3atOGrr77SFkK2tra4u7ujVqtZunQpAwcOxNra\nGisrKyIiIlCr1bi5uWlneoYPH86sWbOYPn06RUVFT5VDIYQQQogXmcwIVaJ27doxZswYoqKiOHLk\nCMOGDePu3bv07t1bOxPxPDVv3hxnZ2fMzc2pXbs29vb2xMXFAQ9mdry8vPjggw+oW7cuRkZGj+yr\ncePGTJs2jUmTJuHp6UloaChKpZKZM2c+dXxLly4lICCARYsWYWhoiLW1NX5+fly5coUpU6aQmJiI\nsbExDRs2JDMz86nH+bt3332XIUOGUL16dSwtLR/Z99ixY5k1axbbt28HHuystm3bNuDBLJyHhweR\nkZEolUo++eQT7Ozs6N69O66urhQXF+Pq6kqLFi3o16+f9jMHBwd69+5d5jtCAMbGxujr69O+fXvt\nZ46Ojhw8eBBbW1ttXN7e3mzZsoXc3FwmTJiAhYUF7u7uqFQqioqKqFevHv369dP20aVLF7755hvC\nw8MZO3bs80qnEEIIIcQLQaH56/ooobOOHTvG3bt36datG+fPn2fUqFHs2bOnssMS/0GJiYnUqSa/\nQxFCiJdJvRb//XdDU1JStEvixbPRpVwmJibi4OBQ5jH5NiOABy/IT5kyheXLl1NYWMjs2bMrOyQh\nhBBCCCH+MVIICeDBZgD/9N/bEUIIIYQQ4r9CNksQQgghhBBC6BwphIQQQgghhBA6RwohIYQQQggh\nhM6RQkgIIYQQQgihc2SzBCHEE3sRtll9EejS9qX/Bsnn8yO5fH4kl0L8d8mMkBBCCCGEEELnSCEk\nhBBCCCGE0DlSCAkhhBBCCCF0jhRCQgghhBBCCJ0jmyUIIZ7Y9Z92VHYIL4VawPWfzlR2GC8Nyefz\nI7l8fv7pXNboMvAf61uIl53MCAkhhBBCCCF0jhRCQgghhBBCCJ0jhZAQQgghhBBC50ghJIQQQggh\nhNA5UggJIYQQQgghdI4UQkIIIYQQQgidI4WQEEIIIYQQQudIIfSSOHz4MB4eHtqfv/nmGwYMGEBG\nRsYz952SksLy5cufqQ+VSkVaWtozx/KkEhISOHnyJAATJkx4pr4CAwMrnM/WrVujUqlQqVS4urri\n4+NDYWHhM43/LLKzs9mx48Hf/lmzZg1JSUmVFosQQgghxH+BFEIvoZ07d7JmzRrWr19P3bp1n7k/\nOzu7Zy4iKktsbCyZmZkAz1zMeXt7Vzifr7zyCmq1GrVazcaNG8nNzeXAgQPPNP6zOHXqFPv27QNg\nzJgxtGnTptJiEUIIIYT4L9Cv7ADE87Vt2zaio6P54osveOWVV4AHX4IDAgIAMDMzIygoCFNTUxYt\nWkRCQgIajQZ3d3f69euHSqXCxsaGc+fOodFoWLJkCWfPnmXTpk0sWbKEt99+m7Zt23Lu3Dlq1KhB\naGgoBQUFTJ8+nczMTKysrEhISODgwYNlxhcXF8eBAwe4f/8+Fy9eZPTo0QwePBiVSkWLFi1ITU0l\nNzeXzz//nHr16hEREcHOnTvR19enXbt2eHp6MnjwYJYtW4a1tTW7d+8mMTGRUaNG4efnR15eHtnZ\n2XzyySfUqVOHH3/8keTkZJo0aYKLiwuHDh3ixIkT+Pv7o6enh5GREf7+/hQXFzN16lTq1KnDpUuX\nePXVV5k7d26J2FUqFX5+fuzatYv09HSuX79ORkYGM2fOpHv37uXek4KCAu7evUvVqlW5ffs23t7e\n3Lx5EwAfHx+aN29Or169sLW1xdbWlvbt2xMeHo6+vj716tVjwYIFrFixgrNnz3L9+nVycnLw8fGh\nXbt27N69m/Xr16NUKnFwcGDatGlcv34dLy8vbt++jUajITg4mFWrVnHy5Ek2b97M8ePHcXJyYsuW\nLXz44Yd06NCBpKQkwsLCWLZsGXPmzOHChQsUFxczefJkOnbs+DweTSGEEEKI/xQphF4iR48e5erV\nq9y6dYuioiLt576+vgQFBdGkSRNiYmJYu3Ytbdu2JT09nU2bNpGXl8eQIUPo2rUrAG3btuWzzz5j\nw4YNrF69mrfeekvb16VLl4iMjMTKyoqhQ4fy+++/89tvv2Ftbc2yZctIS0tjwIABj4wzNzeXdevW\ncf78ecaOHcvgwYMBaNOmDd7e3ixZsoSdO3fSo0cPdu/ezaZNm9DX12fixIns378fZ2dntm3bxoQJ\nE9i6dSvTpk3j7NmzfPTRR3Ts2JFjx44RGhrKF198Qffu3XFycioxk+Pj40NgYCB2dnbs2bOH+fPn\nM336dM6fP8+6deswNjamd+/eZGVlUbNmzTKvwdDQkLVr13Lo0CEiIiJKFUK3bt1CpVIBoFAocHR0\npHPnzoSEhNCpUyeGDRvG+fPnmTlzJhs3buTKlSvExcVhbm7OpEmTcHd3p3///mzbto3c3FwAqlSp\nQlRUFKmpqUydOpWoqChCQ0OJjY3F2NgYT09PDh06xP79+3njjTdwdXXl559/JikpibFjx7Jp0ybe\nf/99jh8/DoCLiwtbt26lQ4cObN26lSFDhhATE4O5uTlBQUHcvHkTNzc3du7cWaHnTwghhBDiRSKF\n0EukZs2afPHFF8TExODp6Ul4eDhKpZK0tDTt7EZBQQE2NjacPn2a5ORk7Zf1wsJC7fsvnTp1Ah4U\nRA+XUz1kbm6OlZUVAFZWVuTl5ZGWloajoyMAjRs3xsLC4pFxtmjRQnt+fn6+9vOWLVsCUKdOHa5d\nu8bZs2ext7fHwMAAgHbt2pGamsqwYcNwdXXFxcWF3NxcmjVrhkKhICwsjK+++gqFQvHI93EyMzOx\ns7MDoH379ixatAiABg0aYGJios1lXl5euX08PL9OnTolruGhh0vj/u706dP88ssv7N69G4CcnBzg\nQV7Nzc0BmDlzJqtXr2bjxo3Y2trSu3dv4P/uS9OmTbl27RoXL17kxo0bjBkzBoA7d+5w6dIlzp07\nh7OzMwCdO3cGHrxD9nfdu3cnJCSE7Oxsjh49io+PD/7+/iQmJmrfISosLOTmzZva2IQQQgghXhby\njtBLpGHDhhgZGeHm5oaBgQFhYWEA2NjYEBwcjFqtxtPTkx49emBra0vHjh1Rq9VERkbSr18/rK2t\nAfjjjz8AOHbsGE2aNCkxhkKhKDVus2bNtLMMFy9e1C77Kk9ZfZTF1taWpKQkCgsL0Wg0JCQkYGNj\ng4mJCa1bt2bevHna2aTPP/+cd999l5CQEDp27IhGo9GO9fC/H6pVq5Z2A4WEhAQaNWr0RHE9adu/\nX5O7uztqtZqlS5cycOBAAJTK//unuHnzZiZOnEh0dDQA33//PQDJycnAg2Kqdu3aWFtbY2VlRURE\nBGq1Gjc3N+zt7WncuDG///679vpCQkJQKpUUFxeXiEWpVNK3b1/8/Pzo3bs3enp62Nra0r9/f9Rq\nNeHh4fTt21e7xFIIIYQQ4mUiM0IvqaCgIAYNGoSDgwN+fn7MmDFDu1wuMDCQRo0aceTIEYYNG8bd\nu3fp3bu3djZk69atrF+/HmNjYxYsWMDp06cfOZazszNeXl588MEH1K1bFyMjo+dyDc2bN6dfv364\nurpSXFyMg4ODdnbExcWFUaNGERQUBEDfvn0JDAxk9erVWFlZaYsxe3t7Fi5cqC3yAAICAvD390ej\n0aCnp6ft498wduxYvL292bJlC7m5uWVuQtGmTRs++ugjzMzMqFatGj179iQ6OpqUlBSGDx/OvXv3\n8Pf3x8LCAnd3d1QqFUVFRdSrV49+/foxduxYZs2axfbt24EHz4KhoSGnT59m/fr1Jcb6n//5H3r3\n7s23334LwNChQ/Hx8cHNzY3c3FyGDRtWokgTQgghhHhZKDR//3W50GkPNwRo3Lhxhc85duwYd+/e\npVu3bpw/f55Ro0axZ8+efzBK3RMaGoqlpSWurq6VHQqJiYk0ynv2bdmFEEI8uxpdBlZ2CP+alJQU\n7dJ08Wx0KZeJiYk4ODiUeUxmhMQzq1+/PlOmTGH58uUUFhYye/bsyg5JCCGEEEKIR5JCSJRQ1gv+\nj1OzZs2nOk9U3MSJEys7BCGEEEKIl4os/hdCCCGEEELoHCmEhBBCCCGEEDpHCiEhhBBCCCGEzpFC\nSAghhBBCCKFzZLMEIcQT06XtWv9JurR96b9B8vn8SC6fH8mlEP9dMiMkhBBCCCGE0DlSCAkhhBBC\nCCF0jhRCQgghhBBCCJ0jhZAQQgghhBBC58hmCUKIJ/bn5mWVHcJLwRz4M+n7yg7jpSH5fH4kl8/P\nP53LOu9P+sf6FuJlJzNCQgghhBBCCJ0jhZAQQgghhBBC50ghJIQQQgghhNA5UggJIYQQQgghdI4U\nQkIIIYQQQgidI4WQEEIIIYQQQudIISSEEEIIIYTQOVIICSGEEEIIIXTOcy2EPvzwQ5KSkgDIz8/H\nwcGBdevWaY+7ublx8uTJJ+ozIyODffv2lfr8+++/5+rVqxXq48aNG0ycOJGRI0cyYsQIfHx8uH//\n/hPF8bTS09MZMmTIvzIWwJ9//kn37t25ePGi9rN9+/YxdOhQioqKnssYXl5eDBw4EJVKhUqlYtiw\nYaSmpj5VX0OGDCE9Pf2JzklISNA+RxMmTCi3XWBgIBkZGWRnZ7Njx45y2124cIEPPvgANzc3VCpV\nidwBHD58mM6dO6NSqXBzc2Po0KGkpaVVKNa4uDh69uyJSqXSjvHzzz8/8pw33niDvLy8CvX/kIeH\nB/n5+U90TnlUKlWFr08IIYQQ4kX1XAuhbt26cfToUQASExPp1q0bP/zwAwB5eXlcuXKFFi1aPFGf\nv/zyC8eOHSv1eVRUFLm5uRXqY+3atXTp0oV169YRERGBsbExmzZteqI4XhR16tRh6tSpzJo1C41G\nw61bt1iwYAEhISHo6ek9t3E8PT1Rq9Wo1Wo+/vhjPv/88+fW9+PExsaSmZkJwPLly8tt5+3tTd26\ndTl16lSZxfRDISEhfPjhh0RHR+Pm5kZISEipNp06dUKtVhMdHc2ECRNYsGBBheMdMGAAarWaDRs2\nsHTpUvz8/MjKyqrw+RWxZMkSDA0Nn2ufQgghhBAvM/3n2VmXLl1YuXIlI0aM4MCBA7i4uLBw4UJu\n375NcnIyHTp0AOCbb75hw4YN2vM+//xzUlNTCQ8Px8DAgPT0dJycnBgzZgxr1qzh/v37vP7667z5\n5psA/PDDD6SkpDBjxgy+/PJLoqOj2blzJ/r6+rRr1w5PT88ScdWrV49vv/2Whg0b0rZtW2bMmIFC\noSA9PZ0pU6awZcsW4MHsxOLFi9m6dStnz57l+vXr5OTk4OPjQ7t27di9ezfr169HqVTi4ODAtGnT\nCA0N5fjx49y9e5fAwEC+/fZb9uzZQ1FREa6urnTr1o0bN24wfvx4srKyaN68OQEBAZw+fZr58+dT\nXFysHaNt27b06tULW1tbbG1tcXNzw8vLC319ferVq8fly5dRq9VlxvFXgwYNYu/evWzevJmkpCTG\njh1L/fr1AYiIiCiVq9DQUCwtLXF1dSUtLQ0/Pz/UajUDBgygUaNGGBoasnjx4nLv+61bt6hatSrp\n6emMGzcOMzMzHB0d6dq1K/7+/ujp6WFkZIS/vz9169ZlyZIl/Pjjj9SpU4ebN28ClBvD/v37tcVO\ny5Ytef/99/nxxx9JTk6mSZMmuLi4sGPHDj744AN27dqFQqFg7ty5dOnShaioKPz8/Fi1ahUnT55k\n8+bNrF27lpiYGMzMzPjyyy+5e/cuPj4+WFpaAqCnp0e1atUe+Zzn5ORQr149AE6dOkVAQAAAZmZm\nBAUFYWpqWu65lpaW9OnThx9++IFBgwYxZ84cLly4QHFxMZMnT6Zjx47atl5eXjg5OeHo6Eh8fDy7\ndu1i/vz5eHl5cfHiRfLy8hg5ciROTk688cYb7N69m6ysLLy9vSksLEShUODj40OLFi14++23adu2\nLefOnaNGjRqEhoZy7949vL29uX37Njdv3sTFxYVhw4Y98tqFEEIIIV4Wz7UQatmyJWfPnkWj0ZCQ\nkMCUKVPo3LkzP/30E6dOnaJ79+4AnD9/njVr1mBsbMzs2bM5ePAgtWvXJiMjg+3bt5Ofn0/37t0Z\nN24cY8aM4ezZs9oiCKBnz57Y2dnh5+fHuXPn2L17N5s2bUJfX5+JEyeyf/9+evXqpW3v6uqKkZER\n69at49NPP8XBwYE5c+Y88lqqVKlCVFQUqampTJ06laioKEJDQ4mNjcXY2BhPT08OHToEgK2tLT4+\nPpw4cYL4+HhiYmLIz89n0aJFdO3aldzcXObNm4epqSlvvfUW169f58yZM8yYMYPmzZuzY8cO4uLi\naNu2LVeuXCEuLg5zc3M++eQTxo4dS48ePdiyZQuXL18mOzu7zDi6du1aIv65c+fy/vvv8+qrrzJo\n0CDgwZf2snJVnrt37zJ+/HhatmxZ6lhISAjh4eEolUpq1aqFp6cn+fn5ZGVlERsbi6GhIYMHDyYw\nMBA7Ozv27NnD/PnzmTBhAgkJCXz11VfcvXuXt99+u9zxCwsL8ff3JyYmhho1arB8+XIsLCzo3r07\nTk5O1K1bFwALCwuaN2/O0aNHsbe358iRI3h7exMVFQXA2LFj2bRpE++//z5Xr15l586dfPDBB2zf\nvp3ly5dri6CjR4+ycuVKwsLCSsXyyy+/oFKpyM/P59SpU6xevRoAX19fgoKCaNKkCTExMaxduxYP\nD49yrwmgRo0a3Lx5k5iYGMzNzQkKCuLmzZu4ubmxc+fOR56bm5vL4cOHiY2NBdA+gw8tWLAAlUpF\n7969SUlJYdasWcTFxXHp0iUiIyOxsrJi6NCh/P777xgYGNC/f3/efvttrl69ql3mKIQQQgihC55r\nIaRUKmnRogXx8fHUrFkTQ0NDHB0d+eGHHzh58iQffvgh8OCL4IwZM6hWrRpnz57ltddeA6BZs2bo\n6+ujr69PlSpVKjTm2bNnsbe3x8DAAIB27dqRmppaohA6fPgwgwYNwtnZmfz8fMLDwwkKCmLGjBkl\n+tJoNNr/7tSpEwBNmzbl2rVrXLx4kRs3bjBmzBgA7ty5w6VLlwCwsbEB4Ny5c7Rp0wY9PT2MjY3x\n8fEhPT2d+vXr88orr2iv/d69e9SqVYuVK1dSpUoV7ty5g4mJCQDm5uaYm5sDkJaWxuuvvw6Ag4MD\nO3bseGQcf2VhYYGDgwNOTk6PzdWjPLy2v/P09MTR0bHEZ+np6VhbW2uXaGVmZmJnZwdA+/btWbRo\nEWfOnKF169YolUpMTExo1qxZuWPfvHmT6tWrU6NGDeDR7wMNGTKErVu3kpWVxRtvvIG+ftmPtrOz\nMx4eHrRv3x5LS0ttEQQQFBREWFgYtWvXLnVep06dWLJkCfAgj0OHDiU+Pp60tDTmzp0LQEFBQbn5\n+quMjAxatmzJ8ePHSUxM1L5XV1hYqJ0h+7uHz6aJiQm+vr74+vqSm5vLO++8U6JdWloa7du3B8DO\nzo4///wTePBcWVlZAWBlZUVeXh5WVlZERkby3XffYWJiQmFh4WNjF0IIIYR4WTz3XeO6du3K6tWr\ntbM/Dg4OnDhxAniwdOj27dssW7aMJUuWEBAQgJGRkfZLnkKhKB2gUklxcXGpzxUKBRqNBltbW5KS\nkigsLNTORP39y2hkZCRxcXEAGBoa0rRpUwwNDTEyMuL69esUFRWRk5NT4qX95ORkAE6fPk3t2rWx\ntrbGysqKiIgI1Go1bm5u2Nvba2OEBzNDJ06coLi4mIKCAj766CPy8/PLvK7AwEAmTZpEcHAwzZo1\n0+bgYV/woDA8fvw4AL/99hvAI+N4nPJyZWRkpH1n5eF1/zX/T+Kv7WvVqqXd1CAhIYFGjRphY2ND\nUlISxcXF3L17lzNnzgCUGUONGjXIyckhOzsbgICAAJKSkrT3/q86d+5MSkoKsbGxODs7l4rp4TNU\nt25dTE1NWbVqVal27733XplF0N/9tXiysbEhODgYtVqNp6cnPXr0eOS5mZmZ7N27lx49emBra0v/\n/v1Rq9WEh4fTt29fbcEMD57Vhzl5+G8oMzOT5ORkVqxYwZo1awgJCSlRwDRu3Fj7nl5KSoo21rKe\nwYiICF577TUWLlxI3759S+VUCCGEEOJl9lxnhODBe0I+Pj7al8kNDQ0xNTXVLq8yMTGhbdu2vPfe\ne1StWpXq1auTmZmJtbV1mf01a9aMsLAwWrVqRf/+/bWfv/7660yfPp2IiAj69euHq6srxcXFODg4\n0Lt37xJ9zJ07l7lz5/Lll19SpUoVzM3N8fPzo2bNmnTt2hVnZ2caNGhAw4YNteekpKQwfPhw7t27\nh7+/PxYWFri7u6NSqSgqKqJevXr069evxDh2dnZ0795dG4urq2u5L7C/8847jB8/nho1apR4V+av\npk2bxqxZs4iIiMDU1BR9ff0KxVGe5s2bl5mr9PR0Jk+eTEJCAq1bt65QXxUREBCAv78/Go0GPT09\ngoKCqF+/Pn379sXZ2ZlatWppZ3v69etXKgalUsmcOXP4+OOPUSqVtGzZkldffZUTJ06wcOHCEs+M\nQqGgT58+/PTTTyXuI0CDBg04ffo069evx93dnSFDhhAQEFBiU4T8/Hz279+PSqUq81oeLo1TKpXc\nuXMHLy8vqlSpgp+fHzNmzNDuyBcYGFjq3K+//prffvsNpVKJRqNh3rx5mJmZMXToUHx8fHBzcyM3\nN5dhw4aVKCRdXFyYNWsWO3bsoFGjRgDUrFmTrKwsBg0aRNWqVRkxYkSJ2a/p06fj6+tLREQEhYWF\nZcbzUK9evfDz82PHjh2YmZmhp6dXYue5M2fOEB0djZ+fX7l9CCGEEEK8qBQa+TVwKX99cb8ybd++\nHXt7exo2bEhMTAzHjh1j3rx5lRrTy2DXrl2kpqby6aefVnYoL6TExETqnTn0+IZCCCH+cXXen1TZ\nIfxrUlJStEvuxbPRpVwmJibi4OBQ5rHnPiMknh8rKys8PDwwNjZGqVQSFBRU2SG98BYvXqzdFEEI\nIYQQQuguKYTKMHHixMoOAXiwwcDDd5vE8zFlypTKDkEIIYQQQvwHPPfNEoQQQgghhBDiv04KISGE\nEEIIIYTOkUJICCGEEEIIoXPkHSEhxBPTpV2K/km6tGvPv0Hy+fxILp8fyaUQ/10yIySEEEIIIYTQ\nOVIICSGEEEIIhA7Q0wAAHphJREFUIXSOFEJCCCGEEEIInSOFkBBCCCGEEELnSCEkhBBCCCGE0Dmy\na5wQ4omdnje1skN4KegBp7dVdhQvD8nn8yO5fH6edy6bzVz0/DoTQsfJjJAQQgghhBBC50ghJIQQ\nQgghhNA5UggJIYQQQgghdI4UQkIIIYQQQgidI4WQEEIIIYQQQudIISSEEEIIIYTQOVIICSGEEEII\nIXROpRdCgwYNQqVSoVKpmDlzZqnjXbt2rYSoKi40NJQ+ffpor0GlUpGUlPSPjHXixAlGjx7N0KFD\n+fDDD5k4cSJXr14tt31WVhZ+fn7PNKaXlxfx8fGlPn/W+3Lq1CkSEhIq1DYuLo6ePXtq8/v++++z\na9euCo+VkJDAyZMnyz2el5dHTExMhfurqMDAQDIyMirUdv369bi4uODi4sLy5ctLHEtLS8PBwYG8\nvLxS5/39PsTHx+Pl5fX0QQshhBBC6IhK/YOqD7/YqdXqygzjmbm7u+Pq6vqPjpGZmcm0adNYvnw5\ntra2AOzZs4cFCxawaFHZf1ytZs2az1wI/VO+++47LC0tad++fYXaDxgwgGnTpgGQnZ3NO++8Q79+\n/VAoFI89NzY2FicnJ1q0aFHm8aysLGJiYnBxcan4BVSAt7d3hdpdunSJ7du3ExMTg0KhYNiwYfTu\n3ZsWLVqQm5tLcHAwhoaGzzU2IYQQQghdV6mF0MmTJ7l37x4jRoygsLCQKVOm8Nprrz32vCtXruDr\n60teXh5GRkb4+/tjYWHBp59+Sm5uLvfv38fT05OOHTvi5eXFxYsXycvLY+TIkTg5OXHo0CGWLl2K\nkZERZmZmBAUFkZKSQnh4OAYGBqSnp+Pk5MS4ceP47rvvCA8PR19fn3r16rFgwQKUysdPpHl5eZGd\nnU12djarV68mLCyMxMRE4MGX+uHDh+Pl5YW+vj4ZGRnk5+fj5OTE/v37uXLlCitXrqRBgwba/rZt\n24aLi4u2CALo3bs3b775JvBgtsjf3x89PT1tToqLi5kyZQpbtmxh4MCBdOjQgVOnTqFQKFi5ciUm\nJibMnTuXP/74A0tLSy5fvkxYWBjW1talrqeoqAhfX1/OnDlD/fr1yc/PL/deWFlZsWjRIv744w/u\n3LlD48aNmTdvnravq1evsnXrVgwMDGjVqhW3b98udT+qV69ebm5v375NlSpVUCgUDBgwgEaNGmFo\naIifnx+enp7k5uZSVFTEp59+iqmpKT/++CPJyck0adKEo0ePEhkZiaGhIY0aNeKzzz5j1apVnDlz\nhuXLl3Pw4EH8/f1p2rQpBw4c4IcffsDCwoKzZ89y/fp1cnJy8PHxoV27duzevZv169ejVCpxcHDQ\nFmoPqVQq/Pz82LVrF+np6Vy/fp2MjAxmzpxJ9+7dte3q1KnD2rVr0dPTA6CwsBAjIyM0Gg2+vr5M\nmTKF8ePHP/aZ+7vt27eXutYdO3Zw9uxZpk2bRl5eHv369WPfvn2oVCrMzc3Jyclh9uzZzJo1C319\nffT09FiwYAG1a9d+4vGFEEIIIf7LKrUQqlKlCiNHjsTFxYXz588zevRovvnmG/T1Hx1WcHAwKpWK\nHj168PPPP7Nw4ULGjh3LtWvXWL9+PdevX+f8+fPk5uZy+PBhYmNjATh06JD2y+XGjRupXbs2kZGR\nhIWF0bNnTzIyMti+fTv5+fl0796dcePG8fXXX+Pu7k7//v3Ztm0bubm5pb6kr1+/XrtUq1mzZvj6\n+gLQqVMn3N3d2b9/P+np6WzZsoXCwkKGDRtGp06dAKhXrx4BAQHMnj2b9PR0wsPDWbZsGfv27cPd\n3V07Rnp6Oj169ADg/v37jB49GnhQiOzZswcfHx8CAwOxs7Njz549zJ8/n+nTp2vPv3PnDv3798fX\n15epU6cSHx+PkZER2dnZfPXVV9y4cYO333673JzHx8eTl5fHli1byMjI4Ntvvy33XsydO5fq1avz\nxRdfUFxcTP/+/bl69ar2y3Tt2rV57733sLS05NVXX+XNN98sdT9mzJhRYvyvv/6a3377DYVCgbGx\nMQsWLADg7t27jB8/npYtWxIcHEyXLl0YPnw4V69exdXVlT179tC9e3ecnJwwNjYmNDSUrVu3YmJi\nQlBQEJs3b2bs2LGcPn2aCRMmYGVlxdatW5k+fTqxsbF8/PHH7Nu3jypVqhAVFUVqaipTp04lKiqK\n0NBQYmNjMTY2xtPTk0OHDpW7ZNDQ0JC1a9dy6NAhIiIiShRCBgYGWFhYoNFoWLBgAS1btsTGxobQ\n0FB69OhR7kwWwK1bt1CpVNqfs7OzadWqFTdv3izzWqtWrVpuXwMHDuStt95iw4YNtGrVCi8vL44e\nPcqtW7ekEBJCCCHES6dSCyEbGxsaNmyIQqHAxsYGMzMzsrKysLKyeuR5p0+fZvXq1axduxaNRoOB\ngQFNmzblgw8+YMqUKRQWFqJSqTAxMcHX1xdfX19yc3N55513uHnzJiYmJtovdu3bt2fx4sX07NmT\nZs2aoa+vj76+PlWqVAFg5syZrF69mo0bN2Jra0vv3r1LxVPe0jgbGxvgwTse7dq1Q6FQYGBggL29\nPWlpaQC0bNkSgOrVq2tne6pXr66dcXnIysqK9PR04EEB+XA54cMv3pmZmdjZ2Wmvqazlcg/HsrKy\nIi8vj8uXL2tn4CwsLErMNv1damoqbdq0AaBu3brae1TWvTAyMuLGjRtMmTKFqlWrcvfuXQoKCsrs\nt7z78Xd/XRr3d3/N88CBA4EHxZaJiQk3btzQtrt06RJNmjTBxMREO9bBgwfp2bOnto2TkxPvvfce\nI0eO5M8//6RVq1bs27dPW7g2bdqUa9eucfHiRW7cuMGYMWOAB4XmpUuXys3fw3tTp06dUvcWHiwT\nnTVrFtWqVWPOnDnAgxmdOnXqEBsbS1ZWFiNGjGDDhg0lznvllVdKLC2Nj49n165d5V6rvb29tq1G\noykzj87OzoSHhzNq1ChMTU3x8PAo97qEEEIIIV5UlbpZwldffcX8+fOBB8ulcnNzqVmz5mPPs7W1\nZdq0aajVaubOnUufPn04deoUd+7cYc2aNcyfPx9/f38yMzNJTk5mxYoVrFmzhpCQEExNTcnNzSUz\nMxOAI0eO0KhRI4Ay3zfZvHkzEydOJDo6GoDvv/++wtf3sL/GjRtrl8UVFBRw/PhxGjZsWO6YZRk0\naBAxMTGcO3dO+9kff/zB3bt3AahVq5Z2Q4CEhATtNZUVz0NNmzbl119/BR7MLJw/f77c8W1tbbVt\nr169qt2koax7ER8fz5UrV1i8eDFTpkzh/v37pb50KxQKiouLMTc3L/d+VNTDpYqNGzfm6NGj2hhz\ncnIwMzNDoVCg0WiwtrYmLS1Nm7MjR45gY2ODUqmkuLgYAGNjYzp27EhgYCDvvvuudozk5GTgQeFX\nu3ZtrK2tsbKyIiIiArVajZubW4ki4+8edZ81Gg3jx4+nefPmfPbZZ9olct9//z1qtRq1Wk3NmjWJ\niIiocE7Ku1YjIyOysrJKXNPfY9y7dy8ODg5ERkbSt29f1q5dW+FxhRBCCCFeFJU6I+Ts7MzMmTNx\ndXVFoVAQFBRUallcdnY2gwcP1v48YsQIZsyYgZ+fH3l5edy/fx9vb28aNWrEihUr2LZtGwYGBkya\nNImaNWuSlZXFoEGDqFq1KiNGjMDAwICAgAAmTpyIQqHglVdeYd68eaSmppYZY5s2bfjoo48wMzOj\nWrVqJWYPKqpXr14cOXKE999/n4KCAvr27UurVq2eqA8rKysWLlxIcHAwd+7cIS8vj+rVq2u/HAcE\nBODv749Go0FPT4+goKDH9tmzZ0/i4+MZOnQolpaWVKlSBQMDgzLb9u7dm8TERFxcXKhbty7m5uYA\nZd4La2trVq5cyZAhQzA0NKR+/fpkZmZSv359bX+tW7dmwYIFNG7cuMz78TQ+/vhjZs2axbfffsv9\n+/f57LPP0NfXx97enoULF7J06VImTpzIhx9+iFKppEGDBtpZpoKCAkJCQvD09GTIkCG4urqW2Ggi\nJSWF4cOHc+/ePe07ae7u7qhUKoqKiqhXrx79+vV7qrj37NnDkSNHyM/P58cffwRgypQpvP7660/V\nHzyY4SvrWvPy8ti4cSOurq60atWKatWqlTq3devWeHp6EhoailKpLHM3RyGEEEKIF51C8/df1Qud\nkZaWxsmTJ+nfvz83b95kwIAB7N+/X+d3KEtKSiI6Olr7HlJoaCiWlpb/+M6AL4rExERMv/uyssMQ\nQgid1Gxm2TvF6oKUlBTtUnPxbHQpl4mJiTg4OJR5rFJnhETlejjLFBkZSVFREdOmTdP5Iig6OprY\n2FiWLVtW2aEIIYQQQoh/kBRCOqxq1aqEhYVVdhj/KW5ubri5uZX4bOLEiZUUjRBCCCGE+KdU6mYJ\nQgghhBBCCFEZpBASQgghhBBC6BwphIQQQgghhBA6R94REkI8MV3eteh50qVde/4Nks/nR3L5/Egu\nhfjvkhkhIYQQQgghhM6RQkgIIYQQQgihc6QQEkIIIYQQQugcKYSEEEIIIYQQOkcKISGEEEIIIYTO\nkV3jhBBPLP5D58oO4aWRVdkBvGQkn8+P5PL5qUguHaO++sfjEEKUJDNCQgghhBBCCJ0jhZAQQggh\nhBBC50ghJIQQQgghhNA5UggJIYQQQgghdI4UQkIIIYQQQgidI4WQEEIIIYQQQudIISSEEEIIIYTQ\nOVII6bj58+ejUqno27cvPXv2RKVSMWnSJA4fPoyHh8cT9xcXF8fChQu1P0dGRjJ06FBycnKeKr6M\njAz27dtX4faXLl1i4sSJqFQqhg4dip+fH7m5uY88Z/PmzRQUFJCSksLy5cufKs6HunbtWuozlUpF\nWlpaueecOnWKhISEZxq3LOXdw8DAQDIyMp77eEIIIYQQLxL5g6o6zsvLC3hQwJw9e5Zp06YBD75E\nP6u1a9dy8OBBIiIiqFq16lP18csvv3D27FneeOONx7a9f/8+48ePJyAgAHt7ewC2bt3K1KlTWb16\ndbnnrV69mkGDBmFnZ4ednd1TxfksvvvuOywtLWnfvv2/Mp63t/e/Mo4QQgghxH+ZFEKiXBcuXGDU\nqFHcuHGDXr16MXHiRE6dOkVAQAAAZmZmBAUFYWpqWurcVatWcfToUdasWYOhoSEAR44cYcmSJejp\n6VG/fn0+++wzvLy8GDhwID179iQtLY3g4GDWrFkDQFFREWvWrOH+/fu8/vrrWFlZ4e/vj56eHkZG\nRvj7+1O3bl3tmD/88APt27fXFkEA7733Hhs3buTSpUusWLECjUbDlStXuHv3LsHBwRw7doysrCw8\nPDwYPnw4mzZtYsmSJbz11lu8/vrrXLhwgU6dOnH79m2SkpKwsbEhJCSE06dPM3/+fIqLi8nJycHH\nx4e2bds+Mp9xcXEcOHCA+/fvc/HiRUaPHk3Xrl3ZunUrBgYGtGrVivv375fK0Y4dO4iNjaW4uJhJ\nkyYxZ84c2rZty7lz56hRowahoaFcvHiRmTNnoq+vj56eHgsWLCj3HqpUKvz8/Ni1axdnz57l+vXr\n2mto164dXl5eXLx4kby8PEaOHImTk9OzPUhCCCGEEP9BUgiJcuXl5bFy5UqKioro2bMnEydOxNfX\nl6CgIJo0aUJMTAxr164ttfxqx44dNGzYkJycHDQaDQAajQZfX1++/PJLatSowdKlS9m6dSsuLi5s\n3LiRnj178tVXX+Hs7KztR09PjzFjxnD27FnefPNNBg8eTGBgIHZ2duzZs4f58+ezbNkybftLly7R\noEGDUtdhbW2tXQpWv359goODOXDgACEhIaxatYqwsDCWLFnCr7/+qj3n8uXLREZGUrNmTTp06EBM\nTAy+vr68+eab5OTkcObMGWbMmEHz5s3ZsWMHcXFxjy2EAHJzc1m3bh3nz59n7NixDB48mPfeew9L\nS0teffVV+vbtWypH+vr6VK9enbCwMO11RkZGYmVlxdChQ/n9999JTk6mVatWeHl5cfToUW7dulXu\nPfyrKlWqEBUVRWpqKlOnTuXLL7/k8OHDxMbGAnDo0KHHXpMQQgghxItI3hES5WratCmGhoYYGxuj\nr/+gZk5LS2Pu3LmoVCpiY2PJzMwsdZ6dnR3r16+nc+fOfPbZZwDcuHGDzMxMJk+ejEql4tChQ2Rk\nZNCxY0ftrMShQ4fo1atXufFkZmZql661b9+e1NTUEsdr165Nenp6qfPOnz+vnTnq1KkTAK+//jrn\nzp0rdywzMzPq1q2LgYEBVatWpUmTJigUCkxNTcnLy6NWrVqsXLmSGTNm8O2331JYWPioVGq1aNEC\nACsrK/Lz80scKy9HADY2Ntp25ubmWFlZafvJy8vD2dkZc3NzRo0axYYNG9DT0wPKvod/9TAfTZs2\n5dq1a5iYmODr64uvry8eHh6lYhRCCCGEeFnIjJAol0KhKPWZjY0NwcHB1K1bl8TERLKyskq1adKk\nCUqlEg8PD4YOHcq2bdt45513qFOnDitXrsTU1JS9e/dStWpVFAoFAwcOJDAwkK5du2JgYFCiL6VS\nSXFxMQC1atXi5MmTtGjRgoSEBBo1alSi7ZtvvsmqVatISkqiTZs2AMTExGBhYUH9+vUBSE5Opl27\ndhw7doymTZtqr/PhGI+69r8KDAxk4cKFNG7cmGXLlnH58uVHtn9Uvw/HNzc3LzNHV65cQalUPrKP\nvXv34uDgwIQJE/j6669Zu3YtgwYNeux1JCcn8+6773L69Glq165NZmYmycnJrFixgry8PHr06MG7\n775bZhElhBBCCPEik2834on4+fkxY8YMioqKgAcFQXkMDQ1ZuHAhbm5utG7dGm9vb8aMGYNGo6Fa\ntWra91gGDx5Mz549+X//7/+V6qNZs2aEhYXRqlUrAgIC8Pf3R6PRoKenR1BQUIm21apVY9WqVQQF\nBZGdnU1RURHNmzdn8eLF2jbx8fHs3buX4uJi5s2bB0C7du0YM2YMn3zySYXz8M477zB+/Hhq1KhB\nnTp1uHnzZoXP/bvWrVuzYMECGjduXGaOrly5UqE+PD09CQ0NRalUMnPmzMfulgeQkpLC8OHDuXfv\nHv7+/tSsWZOsrCwGDRpE1apVGTFihBRBQgghhHgpKTQPX+IQopJcvXqV6dOnExkZ+Y+O4+XlhZOT\nE46Ojv/oOC+K0NBQLC0tcXV1faLzEhMTufP5vH8oKiGE0E2OUV9Vdgj/eSkpKZWyu+vLSJdymZiY\niIODQ5nH5B0hUam+/fZbRo0axdSpUys7FCGEEEIIoUNkzYuoVH369KFPnz7/yljz58//V8Z5Ufx9\nBzkhhBBCCF0iM0JCCCGEEEIInSOFkBBCCCGEEELnSCEkhBBCCCGE0DlSCAkhhBBCCCF0jmyWIIR4\nYrLN6/OhS9uX/hskn8+P5PL5kVwK8d8lM0JCCCGEEEIInSN/UFUI8UQSExMrOwQhhBBCiAor7w+q\nSiEkhBBCCCGE0DmyNE4IIYQQQgihc6QQEkIIIYQQQugcKYSEEEIIIYQQOke2zxZCVEhxcTF+fn6c\nOnUKQ0NDAgICaNiwYWWH9cL57bffWLhwIWq1mgsXLuDl5YVCoaBp06bMmTMHpVJ+P/U4BQUFzJo1\ni8uXL5Ofn8+4ceNo0qSJ5PIpFRUV4ePjw7lz59DT02PevHloNBrJ5zO4fv06gwcPJiIiAn19fcnl\nUxo0aBCmpqYAWFtb8/777xMYGIienh7dunVjwoQJlRzhi2P16tXs27ePgoICXF1d6dChgzyXyIyQ\nEKKC9uzZQ35+Pps3b2bq1KnMnz+/skN64YSHh+Pj40NeXh4A8+bNY/LkyXz55ZdoNBr27t1byRG+\nGLZv346ZmRlffvkl4eHh+Pv7Sy6fwf79+wHYtGkTkyZNYt68eZLPZ1BQUMDs2bOpUqUKIP/On9bD\n/59Uq9Wo1WrmzZvHnDlzWLRoERs3buS3334jOTm5kqN8MRw+fJjjx4+zceNG1Go1f/75pzyX/0sK\nISFEhSQmJtK9e3cAXnvtNf74449KjujF06BBA0JDQ7U/Jycn06FDBwAcHR356aefKiu0F0rfvn35\n9NNPtT/r6elJLp9B79698ff3ByAjIwNLS0vJ5zMIDg5m6NCh1KpVC5B/50/r5MmT3Lt3jxEjRvDh\nhx+SkJBAfn4+DRo0QKFQ0K1bN37++efKDvOFcPDgQZo1a8Ynn3zC2LFj6dmzpzyX/0sKISFEheTm\n5mJiYqL9WU9Pj8LCwkqM6MXTp08f9PX/b0WyRqNBoVAAUK1aNW7fvl1Zob1QqlWrhomJCbm5uUya\nNInJkydLLp+Rvr4+M2bMwN/fnz59+kg+n1JcXBwWFhbaXxqB/Dt/WlWqVGHkyJGsW7eOuXPnMnPm\nTIyNjbXHJZcVd/PmTf744w8+//xz5s6dy7Rp0+S5/F/yjpAQokJMTEy4c+eO9ufi4uISX+rFk/vr\neuw7d+5QvXr1SozmxXLlyhU++eQThg0bxsCBAwkJCdEek1w+neDgYKZNm8aQIUO0y5JA8vkkYmNj\nUSgU/Pzzz6SkpDBjxgxu3LihPS65rDgbGxsaNmyIQqHAxsYGU1NTsrOztccllxVnZmaGra0thoaG\n2NraYmRkxJ9//qk9rsu5lBkhIUSFtG3blvj4eAB+/fVXmjVrVskRvfhatmzJ4cOHAYiPj6ddu3aV\nHNGL4dq1a4wYMQJPT0+cnZ0ByeWz2LZtG6tXrwbA2NgYhUJB69atJZ9PYcOGDURHR6NWq7GzsyM4\nOBhHR0fJ5VP46quvtO+iXr16lXv37lG1alUuXryIRqPh4MGDkssKcnBw4Mcff0Sj0Whz2blzZ3ku\nAYVGo9FUdhBCiP++h7vGnT59Go1GQ1BQEI0bN67ssF446enpTJkyhS1btnDu3Dl8fX0pKCjA1taW\ngIAA9PT0KjvE/7yAgAB2796Nra2t9jNvb28CAgIkl0/h7t27zJw5k2vXrlFYWMjo0aNp3LixPJvP\nSKVS4efnh1KplFw+hfz8fGbOnElGRgYKhYJp06ahVCoJCgqiqKiIbt264eHhUdlhvjAWLFjA4cOH\n0Wg0eHh4YG1tLc8lUggJIYQQQgghdJAsjRNCCCGEEELoHCmEhBBCCCGEEDpHCiEhhBBCCCGEzpFC\nSAghhBBCCKFz5I+ACCGEEOKRDh8+zOTJk2nSpAnw4O+OWFtbs3DhQgwNDZ+63yFDhrB48WKsra21\nn3l5eZGcnIyZmRkajYbs7Gw++ugj/ud//qfcfr7//nvatGmDUqlkxYoV+Pn5PXVMQgjdITNCQggh\nhHisTp06oVarUavVxMXFYWBgwL59+/6RsTw9PVGr1URHRxMdHc2SJUt41Ca3UVFR5ObmUrNmTSmC\n/n87dxMK7RrHcfw7yku68xLNbSF5i5QNJaRYjMSGkmahpmQ5xY57M1PKDKPxNiVmO1mQZGNjSVIa\nOyXFLKXc0dTEhGTO4tRTT+nxPHWcjjO/z/7qX7/dr+v6XyLy23QjJCIiIn/k9fUV27YpLi4GYGlp\nibOzMzKZDGNjYwwMDBCPx1lbWwPg+fmZhYUFampqWFlZ4fj4mIqKCpLJ5Kez7u/vycvLw+FwcHV1\nRSgU4v39nVQqhc/nI5VKcXl5iWVZhMNhLMtiZ2eHk5MTVldXyc/Pp6SkhLm5OYqKir40FxH5XlSE\nRERE5FOnp6d4PB4eHh7IycnB7XbT2dnJ0dERNzc3bG9v8/Lygtvtpquri+vra8LhMKZpEo1GOTg4\nwOVycXZ2xu7uLul0mr6+vg9nhcNhotEot7e31NXVEYlEAEgkEliWRWNjI/v7++zt7REIBGhqamJm\nZobc3FwAMpkMfr+fra0tTNMkFouxsbGBZVn/Wl4i8t+nIiQiIiKf6ujoYGVlhWQyyfj4+I+9nqur\nKy4uLvB4PAC8vb1xe3uLaZoEg0EKCwu5u7ujtbWVRCJBc3MzOTk5GIZBQ0PDh7Ompqbo7u7m6OiI\nxcVFqqqqAHA6nayvr1NQUMDT0xOGYXx4PplMYhgGpmkC0NbWxvLy8j8diYh8c9oREhERkd9WWlpK\nOBzG5/Nh2za1tbW0t7ezublJLBZjYGCAyspKfD4fc3NzhEIhnE4nmUyGmpoazs/PeX9/J51Ok0gk\nfjmrp6cHl8uF3+8HIBgMMjk5ycLCAg0NDT/2hhwOx087RKWlpTw+PmLbNgDxeJzq6uqvCUREvi3d\nCImIiMgfqa+vx+PxEAgEiEQixONxRkdHSafT9Pb2YhgGQ0NDuN1uioqKKC8vx7Ztmpqa6O/vZ2Rk\nBKfTSVlZ2aezvF4vw8PDHB4eMjg4iNfrpays7Kcdo5aWFqanp5mdnQX+LkaBQICJiQkcDgfFxcXM\nz89/aSYi8v04Mr/6hkVEREREROR/SE/jREREREQk66gIiYiIiIhI1lEREhERERGRrKMiJCIiIiIi\nWUdFSEREREREso6KkIiIiIiIZB0VIRERERERyToqQiIiIiIiknX+AsNWlWMPPyjWAAAAAElFTkSu\nQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a17806ac8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Top read ratios\n", | |
"plt.figure(figsize=(10,5))\n", | |
"temp = df.sort_values(by='Read Ratio', ascending=False).head(10)\n", | |
"g = sns.barplot('Read Ratio', 'Title', data=temp, palette='coolwarm');\n", | |
"plt.ylabel('');" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"This is super interesting. My very first Medium post ever has the highest read ratio. Looking at these posts, I remember these all being somewhat short, mostly under 6 minutes or so. I also remember these all having plenty of pictures and bolded headers or lists for easy skimming which I'm guessing plays a big part as well. Let's follow that initial hunch and check out the relationship between read time and read ratio to check for any bias there." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 60, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAJHCAYAAABM5iiSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X+Y1WWd//HXGZDkh0BomkomKq5j\nurtfRWRXRFtRdL9tuoYgbMPX1c0tbRORgkwHdzWRC7VadkvrWiIh17yUyiuv1QJNFIO42M3dpWkD\nf2DiBqhYMCCMMN8/qimrcVDumTMHH49/DjPHc+733NeFPr3Pmc+ptLa2tgYAgGLqqj0AAMDeRmAB\nABQmsAAAChNYAACFCSwAgMIEFgBAYT2rPcBvWrlyZbVHAADYbSeeeOLv/X63Cqyk/UEBALqT1zsY\n8hIhAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMAC\nAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gAAIUJ\nrN20bNmyTJkyJcuWLav2KABAN9ez2gPUinnz5mX16tXZunVrRowYUe1xAIBuzAnWbtq6detrbgEA\n2iOwAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQW\nAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChM\nYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gAAIUJLACA\nwgQWAEBhAgsAoLCenfXE5513Xvbbb78kyeDBgzN+/Ph8+tOfTo8ePTJy5Mh89KMf7aylAQCqqlMC\na/v27UmS+fPnt33v3HPPzZw5c/Kud70rl156aVatWpX3vOc9nbE8AEBVdcpLhD/60Y+ybdu2XHzx\nxZk0aVJWrFiRHTt25LDDDkulUsnIkSPzve99rzOWBgCouk45wdp3331zySWX5IILLsgzzzyTD33o\nQ+nfv3/b/X379s1PfvKT3/vYpqamzhhpj+3YsaPttrvOCAB0D50SWEOGDMm73/3uVCqVDBkyJPvt\nt19efvnltvubm5tfE1y/qb6+vjNG2mO9evVqu+2uMwIAXWflypXt3tcpLxHec889uemmm5Ik69ev\nz7Zt29KnT588++yzaW1tzWOPPZZhw4Z1xtIAAFXXKSdYY8eOzSc/+clMmDAhlUolN954Y+rq6jJ1\n6tTs3LkzI0eOzB/90R91xtIAAFXXKYHVq1ev3HLLLb/z/bvvvrszlgMA6FZcaBQAoDCBBQBQmMAC\nAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gAAIUJ\nLACAwgQWAEBhAgsAoDCBBQBQmMCCbm7ZsmWZMmVKli1bVu1RANhNPas9APD65s2bl9WrV2fr1q0Z\nMWJEtccBYDc4waLTOYHZM1u3bn3NLQDdnxMsOp0TGADeapxg0emcwADwViOwAAAKE1gAAIUJLACA\nwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMAC\nAChMYAEAFNaz2gO8ERu/sKBqa+/82ea222rN8Y6PfLAq6wIAb4wTLACAwgQWAEBhAgsAoDCBBQBQ\nmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gA\nAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCB\nBQBQmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAK\nE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAK67TAevHFF3PaaaflySefzNq1\nazNhwoRMnDgxM2bMyK5duzprWQCAquuUwGppaUljY2P23XffJMnMmTMzefLk3HnnnWltbc3ixYs7\nY1kAgG6hUwJr1qxZufDCC3PggQcmSVatWpXhw4cnSUaNGpXHH3+8M5YFAOgWepZ+woULF2bQoEE5\n9dRT88UvfjFJ0tramkqlkiTp27dvNm/e3O7jm5qa2r3vgLKj1pzX25vubMeOHW23tfozVJP9A6g9\nxQPr3nvvTaVSyfe+9700NTVl2rRpeemll9rub25uTv/+/dt9fH19fbv3bfzuyqKz1prX25vurFev\nXm23tfozVJP9A+ieVq5sv0uKB9ZXv/rVtj83NDTkuuuuy+zZs7N8+fKcfPLJWbJkSUaMGFF6WQCA\nbqNLLtMwbdq0zJkzJ+PHj09LS0vGjBnTFcsW1bvnPq+5BQBoT/ETrN80f/78tj8vWLCgM5fqdBe8\n5//kWz/+77zv6OOqPQoA0M11amDtTU44+F054eB3VXsMAKAGuJI7AEBhTrDeQh790vuqsu62n7/y\ny9vnqzbDqR/6VlXWBeCtyQkWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1jAXm3ZsmWZMmVK\nli1bVu1RgLcQ18EC9mrz5s3L6tWrs3XrVh80D3QZJ1jAXm3r1q2vuQXoCgILAKAwgQUAUJjAAgAo\nTGABABQmsAAAChNYAACFuQ4W7IZZd42p2tqbNr/6y9t1VZtj2oUPVmVdgFrlBAsAoDCBBQBQmMAC\nAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gAAIUJ\nLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQ\nmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gA\nAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCB\nBQBQmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQWne5tPV97CwB7O4FFp3vv8fvk8APr8t7j96n2\nKADQJZwp0OmOPqRHjj6kR7XHAIAu4wQLAKAwgQUAUJjAAgAorMP3YG3ZsiX//M//nCeffDKHH354\nLrvssgwcOLArZgMAqEkdnmBdffXVOfjgg3PllVfm0EMPzfTp07tiLgCAmtXhCdamTZsyadKkJEl9\nfX0efPDBTh8KAKCWdXiCtX379mzcuDFJ8sILL2TXrl2dPhQAQC3r8ATriiuuyIUXXph+/fqlubk5\n119/fVfMBQBQszoMrFNOOSWLFy/OSy+9lEGDBnXFTAAANa3dwPqHf/iHNDY2Zvz48alUKq+57667\n7ur0wQAAalW7gXXZZZclSWbNmpV99vn1Z8j97Gc/6/BJd+7cmWuuuSZPP/10evTokZkzZ6a1tTXT\np09PpVLJ0KFDM2PGjNTVuQwXALD3abdwWltb8/TTT+cTn/hEWlpasmPHjrzyyitpbGzs8Ekffvjh\nJL846frYxz6WmTNnZubMmZk8eXLuvPPOtLa2ZvHixeV+CgCAbqTdE6wnnngiX/nKV/L000/n2muv\nTZLU1dVl5MiRHT7p6NGjc/rppydJnn/++RxwwAH57ne/m+HDhydJRo0alaVLl+bMM88s8CMAAHQv\n7QbW6NGjM3r06DzyyCM57bTT3vgT9+yZadOm5Tvf+U7+8R//MQ8//HDbe7n69u2bzZs3/97HNTU1\ntfucB7zhKfYur7c3vD57t2f2dP+mNlXv+nnbt7ycJHl+y8v5vws/W5UZbq4fU5V1gerp8LcIBwwY\nkMbGxrS0tCRJNmzYkH/5l3/ZrSefNWtWpk6dmnHjxmX79u1t329ubk7//v1/72Pq6+vbfb6N3125\nW+vurV5vb3bHo48VGqQG7ene3fdEoUFq1J7uX6oYWN3BHu8f0C2tXNl+l3T4LvMbbrghw4cPz5Yt\nW3LIIYfs1ucQfuMb38jtt9+eJOndu3cqlUqOO+64LF++PEmyZMmSDBs2bHfnBwCoKR0GVv/+/fO+\n970v/fr1y9/93d9l/fr1HT7pWWedlR/+8If5q7/6q1xyySW5+uqr09jYmDlz5mT8+PFpaWnJmDGO\nzAGAvVOHLxFWKpWsXr0627Zty1NPPdX2sTmvp0+fPvnc5z73O99fsGDBm5sSAKCGdHiCNX369Kxe\nvToNDQ2ZOnVqJkyY0BVzAQDUrA5PsIYOHZqhQ4cmSRYuXJhHHnmk04cCAKhl7Z5gLVy4MCNHjszo\n0aPzwx/+MJs3b84VV1yRm2++uSvnAwCoOe2eYH35y1/O/fffn40bN+amm27Khg0bcsYZZwgsAIAO\ntBtYAwcOzIABAzJgwIA8+eSTue66697UBUcBAN5q2n2J8FdXXU+SQw45RFwBAOymdk+wXn755Sxd\nujS7du3Kli1b8thjv74M+O58HiEAwFtVu4H1nve8J9/61reSJMcee2zuv//+tvsEFgBA+9oNrJkz\nZ3blHAAAe40OLzQKAMAbI7AAAApr9yXC559/vt0HHXLIIZ0yDADA3qDdwLryyiuT/OK3CZubmzN0\n6NCsWbMmBxxwQL7+9a932YAAALWm3cD62te+liS5/PLLM2vWrPTr1y9bt27NlClTumw4AIBa1OF7\nsH7605+mX79+SZI+ffpkw4YNnT4UAEAta/cE61dGjhyZD37wgznuuOPyn//5nzn33HO7Yi4AgJrV\nYWBdeeWVWb16dVavXp3zzjsvxxxzTFfMBQBQszp8iXDt2rV56KGH8tRTT2XRokVpbGzsirkAAGpW\nh4E1bdq0JMm///u/57nnnsvLL7/c6UMBANSyDgNr3333zd/+7d/moIMOyk033ZQXXnihK+YCfqlH\nr9feAtD9dRhYra2t2bhxY5qbm7N169b87Gc/64q5gF866sS6vP3gSo460QcvANSKDt/k/tGPfjTf\n+c53cu655+aMM87Ieeed1xVzAb/0jsPq8o7Dqj0FAG9Eh4F10kknpb6+PuvWrcuiRYvSt2/frpgL\nAKBmdRhYDz74YL7whS9k586dOfvss1OpVHLZZZd1xWwAADWpwzd1fPnLX87dd9+dgQMH5rLLLsui\nRYu6Yi4AgJrVYWDV1dWlV69eqVQqqVQq6d27d1fMBQBQszoMrGHDhuWqq67K+vXr09jYmOOPP74r\n5gIAqFkdvgdrypQpWbJkSerr63PEEUfkz/7sz7piLgCAmtXuCdarr76ab3/721m2bFlGjRqVv/mb\nv8nxxx+fyZMnd+V8AAA1p90TrKlTp6ZHjx7ZuHFj1qxZk8GDB+dTn/pUJk2a1JXzAQDUnHYD69ln\nn83ChQuzY8eOfOADH8g+++yTO+64I0ceeWRXzgcAUHPaDax+/folSXr16pVdu3Zl7ty5GThwYJcN\nBgBQq3brw832339/cQUAsJvaPcFas2ZNrrrqqrS2trb9+VduueWWLhkOAKAWtRtYn/3sZ9v+fOGF\nF3bJMAAAe4N2A2v48OFdOQcAwF5jt96DBQDA7hNYAACFCSwAgMIEFgBAYQILAKAwgQUAUJjAAgAo\nTGABABQmsAAAChNYAACFCSwAgMIEFgBAYQILAKAwgQUAUJjAAgAoTGABABQmsAAAChNYAACFCSwA\ngMIEFgBAYQILAKAwgQUAUJjAAgAoTGABABQmsAAAChNYAACFCSwAgMIEFgBAYQILAKCwntUeAADo\nnn46e221R6iqd3783W/6sU6wAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCaw\nAAAKE1jA3q1Xz9feAnQBgQXs1XoO/4PUHbp/eg7/g2qPAryF+F86YK/W4/CD0uPwg6o9BvAW4wQL\nAKAwgQUAUJjAAgAoTGABABQmsAAAChNYAACFCSwAgMIEFgBAYQILAKCw4ldyb2lpydVXX51169Zl\nx44d+chHPpKjjjoq06dPT6VSydChQzNjxozU1Wk7AGDvVDyw7rvvvgwcODCzZ8/Opk2b8pd/+Zc5\n5phjMnny5Jx88slpbGzM4sWLc+aZZ5ZeGgCgWyh+jHT22WfniiuuaPu6R48eWbVqVYYPH54kGTVq\nVB5//PHSywIAdBvFT7D69u2bJNmyZUs+9rGPZfLkyZk1a1YqlUrb/Zs3b2738U1NTe3ed0DZUWvO\n6+0Nr8/e7Rn7t2fsH7Xq7elT7RGqak/+7hYPrCT53//931x++eWZOHFi/uIv/iKzZ89uu6+5uTn9\n+/dv97H19fXt3rfxuyuLzllrXm9vdsejjxUapAbt6d7d90ShQWrUnu5fmh4sM0iN2uP9gyr56bfW\nVnuEquro7+7Kle13SfGXCF944YVcfPHF+fjHP56xY8cmSY499tgsX748SbJkyZIMGzas9LIAAN1G\n8cC67bbb8vOf/zyf//zn09DQkIaGhkyePDlz5szJ+PHj09LSkjFjxpReFgCg2yj+EuE111yTa665\n5ne+v2DBgtJLAQB0Sy5GBQBQmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQ\nmMACAChMYAEAFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gA\nAIUJLACAwgQWAEBhAgsAoDCBBQBQmMACAChMYAEAFCawAAAKE1gAAIX1rPYAALy+c+95sNojVM03\nx46p9gjwpjjBAgAoTGABABQmsAAAChNYAACFCSwAgMIEFgBAYQILAKAwgQUAUJjAAgAoTGABABQm\nsAAAChNYAACFCSwAgMIEFgBAYQILAKAwgQUAUJjAAgAoTGABABQmsAAAChNYAACFCSwAgMIEFgBA\nYQILAKAwgQUAUJjAAgAoTGABABQmsAAAChNYAACFCSwAgMIEFgBAYQILAKAwgQUAUJjAAgAoTGAB\nABQmsAAAChNYAACFCSwAgMIEFgBAYQILAKAwgQUAUJjAAgAoTGABABQmsAAAChNYAACF9az2AADQ\nWb6ycGO1R6iq/3f+O6o9wluWEywAgMIEFgBAYQILAKAwgQUAUJjAAgAoTGABABQmsAAAChNYAACF\nCSwAgMIEFgBAYQILAKAwgQUAUFinBdYTTzyRhoaGJMnatWszYcKETJw4MTNmzMiuXbs6a1kAgKrr\nlMD60pe+lGuuuSbbt29PksycOTOTJ0/OnXfemdbW1ixevLgzlgUA6BY6JbAOO+ywzJkzp+3rVatW\nZfjw4UmSUaNG5fHHH++MZQEAuoWenfGkY8aMyXPPPdf2dWtrayqVSpKkb9++2bx5c7uPbWpqave+\nA8qNWJNeb294ffZuz9i/PWP/3rw937u39n859nT/3p4+hSapTXuyf50SWL+tru7XB2XNzc3p379/\nu/9sfX19u/dt/O7KonPVmtfbm93x6GOFBqlBe7p39z1RaJAataf7l6YHywxSo/Z4/1Y9W2aQGrSn\ne/f9po2FJqlNe7p/P/3W2kKT1KaO9m/lyva7pEt+i/DYY4/N8uXLkyRLlizJsGHDumJZAICq6JLA\nmjZtWubMmZPx48enpaUlY8aM6YplAQCqotNeIhw8eHDuvvvuJMmQIUOyYMGCzloKAKBbcaFRAIDC\nBBYAQGECCwCgMIEFAFCYwAIAKExgAQAUJrAAAAoTWAAAhQksAIDCBBYAQGECCwCgMIEFAFCYwAIA\nKExgAQAUJrAAAAoTWAAAhQksAIDCBBYAQGECCwCgMIEFAFCYwAIAKExgAQAUJrAAAAoTWAAAhQks\nAIDCBBYAQGECCwCgMIEFAFCYwAIAKExgAQAUJrAAAAoTWAAAhQksAIDCBBYAQGECCwCgMIEFAFCY\nwAIAKExgAQAUJrAAAAoTWAAAhQksAIDCBBYAQGECCwCgMIEFAFCYwAIAKExgAQAUJrAAAAoTWAAA\nhQksAIDCBBYAQGECCwCgMIEFAFCYwAIAKExgAQAUJrAAAAoTWAAAhQksAIDCBBYAQGECCwCgMIEF\nAFCYwAIAKExgAQAUJrAAAAoTWAAAhQksAIDCBBYAQGECCwCgMIEFAFCYwAIAKExgAQAUJrAAAAoT\nWAAAhQksAIDCBBYAQGECCwCgMIEFAFCYwAIAKExgAQAUJrAAAAoTWAAAhQksAIDCBBYAQGECCwCg\nMIEFAFCYwAIAKExgAQAUJrAAAArr2VUL7dq1K9ddd13+53/+J7169coNN9yQd7/73V21PABAl+my\nE6xFixZlx44d+drXvparrroqN910U1ctDQDQpbossFauXJlTTz01SfLHf/zH+e///u+uWhoAoEtV\nWltbW7tioU996lM566yzctpppyVJTj/99CxatCg9e/76VcqVK1d2xSgAAEWceOKJv/f7XfYerH79\n+qW5ubnt6127dr0mrpL2hwQAqCVd9hLhCSeckCVLliRJfvCDH+Too4/uqqUBALpUl71E+KvfIvzx\nj3+c1tbW3HjjjTnyyCO7YmkAgC7VZYFV61588cWcf/75mTt3rjB8g84777zst99+SZLBgwdn5syZ\nVZ6ottx+++156KGH0tLSkgkTJuSCCy6o9kg1Y+HChfn617+eJNm+fXuampqydOnS9O/fv8qTdX8t\nLS2ZPn161q1bl7q6ulx//fX+3bebnnjiidx8882ZP39+1q5dm+nTp6dSqWTo0KGZMWNG6upcgrI9\nv7l3a9asybXXXpvW1tYcc8wxufbaa9OjR49qj7jbuuw9WLWspaUljY2N2Xfffas9Ss3Zvn17kmT+\n/PlVnqQ2LV++PP/xH/+Rf/3Xf822bdsyd+7cao9UU84///ycf/75SZK///u/zwc+8AFxtZseeeSR\nvPrqq7nrrruydOnSfPazn82cOXOqPVa396UvfSn33XdfevfunSSZOXNmJk+enJNPPjmNjY1ZvHhx\nzjzzzCpP2T399t7deuutmTJlSk466aRMnz49Dz30UE3tnYzeDbNmzcqFF16YAw88sNqj1Jwf/ehH\n2bZtWy6++OJMmjQpP/jBD6o9Uk157LHHcvTRR+fyyy/Phz/84Zx++unVHqkm/dd//VfWrFmT8ePH\nV3uUmjFkyJDs3Lkzu3btypYtW37nl5L4/Q477LDXhOiqVasyfPjwJMmoUaPy+OOPV2u0bu+3927O\nnDk56aSTsmPHjmzcuDH7779/Fad74/yN6cDChQszaNCgnHrqqfniF79Y7XFqzr777ptLLrkkF1xw\nQZ555pl86EMfygMPPOBf1rtp06ZNef7553Pbbbflueeey0c+8pE88MADqVQq1R6tptx+++25/PLL\nqz1GTenTp0/WrVuXc845J5s2bcptt91W7ZFqwpgxY/Lcc8+1fd3a2tr297Vv377ZvHlztUbr9n57\n73r06JF169blr//6r9OvX78MGTKkitO9cU6wOnDvvffm8ccfT0NDQ5qamjJt2rRs3Lix2mPVjCFD\nhuT9739/KpVKhgwZkoEDB9q/N2DgwIEZOXJkevXqlSOOOCJve9vb8tJLL1V7rJry85//PE899VRG\njBhR7VFqyrx58zJy5Mg8+OCD+eY3v5np06e3veTP7vvN91s1Nzd7ifoNOvTQQ/Ptb387EyZMqLlP\ngBFYHfjqV7+aBQsWZP78+amvr8+sWbPyjne8o9pj1Yx77rmn7S/F+vXrs2XLFvv3Bpx44ol59NFH\n09ramvXr12fbtm0ZOHBgtceqKStWrMif/umfVnuMmtO/f/+2X04ZMGBAXn311ezcubPKU9WeY489\nNsuXL0+SLFmyJMOGDavyRLXjwx/+cJ555pkkvzj9q7VfDvA6DZ1q7Nix+eQnP5kJEyakUqnkxhtv\n9PLgG/De9743K1asyNixY9Pa2prGxsaa+i2a7uDpp5/O4MGDqz1Gzbnoooty9dVXZ+LEiWlpacmV\nV16ZPn36VHusmjNt2rRce+21ufXWW3PEEUdkzJgx1R6pZlx66aWZPn169tlnn/Tu3Ts33HBDtUd6\nQ1ymAQCgsNo6bwMAqAECCwCgMIEFAFCYwAIAKExgAQAU5vflgapavnx5Jk+enKOOOirJLy7GOHjw\n4Nx8883p1avXm37ecePG5dZbb227RMNLL72UK664IknS1NSUww8/PL1798773//+bNq0KSNGjMgf\n/uEf7vkPBBCBBXQDI0aMyGc+85m2r6+66qo89NBDOfvss4utMWjQoLYPHW9oaMh1112XI488stjz\nA/wmgQV0Kzt27MiGDRsyYMCAJMktt9ySFStWpLW1NRdddFHOOeecfP/7388//dM/JUleeeWVzJo1\nK0OGDMlnPvOZPProo3nnO9+ZTZs27faa06dPz5//+Z/nhRdeyMMPP5xXXnklGzduzKRJk7J48eKs\nXr06n/jEJzJ69Oj827/9W+bNm5e6urqceOKJmTp1aqfsA1DbBBZQdcuWLUtDQ0NefPHF1NXVZdy4\ncfmTP/mTPPLII3nuuedy1113Zfv27Rk3blxOOeWUrF69OrNnz85BBx2U2267LQ888EDOOOOMrFix\nIvfcc0+2bt2as846603N0tzcnLlz5+b+++/PvHnzcvfdd2f58uW54447MmzYsMyZMyf33ntvevfu\nnY9//ONZunRpTjnllMI7AtQ6gQVU3a9eIty0aVMuvvjitvdN/fjHP86qVavS0NCQJHn11Vfz/PPP\n56CDDsqnP/3p9OnTJ+vXr88JJ5yQNWvW5LjjjktdXV369euXo48++k3NUl9fnyTZb7/9cuSRR6ZS\nqWTAgAHZvn17nn322bz00ku59NJLk/wixn7yk58U2AFgbyOwgG7j7W9/e2bPnp1JkyblG9/4Ro44\n4oicfPLJuf7667Nr1658/vOfz+DBg3PRRRdl0aJF6devX6ZNm5bW1tYMGTIkd9xxR3bt2pVXXnkl\na9aseVMzVCqVdu8bPHhwDj4R0mIBAAAAs0lEQVT44MydOzf77LNPFi5c2BZkAL9JYAHdylFHHZWG\nhobccMMN+dznPpfvf//7mThxYrZu3ZrRo0enX79+OffcczNu3Lj0798/BxxwQDZs2JD6+vqcffbZ\nGTt2bA488MDsv//+xWcbNGhQLrroojQ0NGTnzp059NBDc8455xRfB6h9PuwZAKAwFxoFAChMYAEA\nFCawAAAKE1gAAIUJLACAwgQWAEBhAgsAoDCBBQBQ2P8HkrD0VI6jMxcAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a1a4196a0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Read time vs. read ratio\n", | |
"plt.figure(figsize=(10,10))\n", | |
"sns.barplot(x='Read Time', y='Read Ratio', data=df);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"There appears to be a clear trend here. The shorter the post, the more likely a reader is to read it. This is intuitive, but nice to see that the data backs it up. What would be interesting to check out here is if longer posts are more likely to convert to fans? This would create a trade-off between engagement and value proposition. Which leads us to our next point..." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"collapsed": true | |
}, | |
"source": [ | |
"### Fans/Reads Ratio" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"We already looks at the more traditional `Read Ratio` metric above that you've probably already seen on the dashboard. I believe that it doesn't tell the whole picture however. By `Read Ratio` alone, you are simply seeing how engaging your post is, not necessarily how valuable it is to your readers, or how much they enjoyed it. You can litter buzzwords and infographics throughout your post, but chances are that readers didn't find it particularly special. \n", | |
"\n", | |
"So how do we judge how much readers enjoyed your post using what we have? With the data I have, I suggest `Fans Ratio`. This is simply calculated with `Fans/Reads` and I believe it will much more effectively describe how well recieved a given post is." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Title</th>\n", | |
" <th>Publication</th>\n", | |
" <th>Read Time</th>\n", | |
" <th>Views</th>\n", | |
" <th>Reads</th>\n", | |
" <th>Read Ratio</th>\n", | |
" <th>Fans</th>\n", | |
" <th>Fan Ratio</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>25</th>\n", | |
" <td>The 5 Proven Best Ways to Start Your Day</td>\n", | |
" <td>The Ascent</td>\n", | |
" <td>4</td>\n", | |
" <td>109</td>\n", | |
" <td>69</td>\n", | |
" <td>63.302752</td>\n", | |
" <td>10</td>\n", | |
" <td>9.174312</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>22</th>\n", | |
" <td>Everything I Wish I Knew My Freshman Year</td>\n", | |
" <td>The Ascent</td>\n", | |
" <td>6</td>\n", | |
" <td>112</td>\n", | |
" <td>60</td>\n", | |
" <td>53.571429</td>\n", | |
" <td>9</td>\n", | |
" <td>8.035714</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>Stop Cheating Yourself out of Great Ideas</td>\n", | |
" <td>The Startup</td>\n", | |
" <td>6</td>\n", | |
" <td>394</td>\n", | |
" <td>140</td>\n", | |
" <td>35.532995</td>\n", | |
" <td>27</td>\n", | |
" <td>6.852792</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>Why I Spend $5 Monthly on Medium</td>\n", | |
" <td>The Startup</td>\n", | |
" <td>5</td>\n", | |
" <td>536</td>\n", | |
" <td>243</td>\n", | |
" <td>45.335821</td>\n", | |
" <td>31</td>\n", | |
" <td>5.783582</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>Want to Supercharge Your Productivity? Be Delu...</td>\n", | |
" <td>The Startup</td>\n", | |
" <td>4</td>\n", | |
" <td>177</td>\n", | |
" <td>76</td>\n", | |
" <td>42.937853</td>\n", | |
" <td>9</td>\n", | |
" <td>5.084746</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Title Publication Read Time \\\n", | |
"25 The 5 Proven Best Ways to Start Your Day The Ascent 4 \n", | |
"22 Everything I Wish I Knew My Freshman Year The Ascent 6 \n", | |
"5 Stop Cheating Yourself out of Great Ideas The Startup 6 \n", | |
"9 Why I Spend $5 Monthly on Medium The Startup 5 \n", | |
"17 Want to Supercharge Your Productivity? Be Delu... The Startup 4 \n", | |
"\n", | |
" Views Reads Read Ratio Fans Fan Ratio \n", | |
"25 109 69 63.302752 10 9.174312 \n", | |
"22 112 60 53.571429 9 8.035714 \n", | |
"5 394 140 35.532995 27 6.852792 \n", | |
"9 536 243 45.335821 31 5.783582 \n", | |
"17 177 76 42.937853 9 5.084746 " | |
] | |
}, | |
"execution_count": 17, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Create feature\n", | |
"df['Fan Ratio'] = (df['Fans'] / df['Views']) * 100\n", | |
"df.sort_values('Fan Ratio', ascending=False).head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA10AAAE3CAYAAABRiytKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XlYVtX+///nzeQECiqiIg7gbDnh\njOKQpWGYeURFwbFstMREySFxAAc8WmrOoHjjQCh2cmjSMlM/TujJcwhRoByyABMHNAHh/v3hz/sb\nAYYlB7XX47q6gr33Wuu91tpe1/2+194Lg8lkMiEiIiIiIiIlwqK0AxAREREREXmcKekSEREREREp\nQUq6RERERERESpCSLhERERERkRKkpEtERERERKQEKekSkYdWXFxcaYcgIiIiUiz3+txi9T+MQ0Tk\nvinxEhERkUedki4Reai5u7uXdgjygCQkJNCkSZPSDkMeEM3n40Xz+fjQXJYerXSJyCPr1Xf/Xdoh\nyAOl+Xy8aD4fL5rPx4fm8reWz2xZ2iHonS4REREREZGSpKRLRERERESkBCnpEhERERERKUFKukRE\nREREREqQki4REREREZESpKRLRERERESkBCnpEhERERERKUH6O10Pqblz5xIfH096ejq3bt3CxcUF\nBwcHhg4dyubNm1m0aNF91WcymfD09KRu3boAtGzZkrffftt8/sKFC/Tt25dmzZoBkJ2dTfv27Rk/\nfvwD61NxBQUFER8fj729PdnZ2TRo0IDp06djbW1d7DquXLnCN998g7e3t/nY0aNHWbVqFatXrwZg\n5cqVhIeHc/DgQaysrDh06BBGo5EPPvjggfXl6NGj2NnZ0bhx4z+89tatWwQHB5OWlobBYMDW1pbg\n4GAcHBz44osvaN68OU5OTsVqNzo6mv79+5vHLDc3F19fX4YPH06fPn0A+Pnnnxk6dCgbN24sdr33\nEhsby+LFi3FxcSEvLw+DwcDrr79Ox44d/3LdIiIiIo8yrXQ9pIKCgjAajYwZM4bnnnsOo9HI4sWL\n/3R9586do1mzZhiNRoxGY76E66769eubz2/atInDhw9z6tSpv9KNPy0wMBCj0Uh0dDS//vore/bs\nua/yiYmJfPnll/mOtWzZksTERPLy8gDYv38/HTp04Pjx4wAcOXKELl26PJgO/P+2bt1KWlpasa+t\nWrUqERERhIeH06pVK3MCuH79ejIzM4vd7sqVK839BLC0tGTevHmEhYVx6dIlAKZOncrEiRMfSMJ1\n1917dcOGDbz33nsEBweTnp7+wOoXEREReRRppesRdPbsWV588UUuX75M9+7dGTt2LImJicyePRsA\ne3t7QkNDsbOzM5eJj48nNTUVf39/ypYtyzvvvIOrq2uRbdy6dYvs7GzKlStHUFAQV65c4cqVK6xc\nuZLly5cTFxcH3PmQPWTIELy8vPjXv/5F+fLlWbNmDVZWVvTq1Ytp06aRlZVFmTJlmDVrFrm5ubz9\n9ttUr16d8+fP8+STTzJjxowi48jNzeXGjRvUrFkTAKPRyI4dOzAYDHh5eTFs2DA+//xzVq9ejZWV\nFc7OzsyfP58VK1Zw6tQpoqOjGTRoEADW1tY0bdqUxMREnJ2dycvLw8vLi71799KuXTuOHj3K3Llz\nyczMZMqUKVy/fp2MjAx8fHzw9vbmhRde4LPPPsPS0pKwsDCeeOIJLl++zEcffYSFhQWtW7dm0qRJ\n5tj/+9//8s033xAfH0/9+vU5duwYkZGR2NjYULduXWbOnJlv9c7Z2ZktW7bQunVr2rVrh7+/PyaT\nib1795KQkMCkSZPYuHEjS5Ys4b///S83btzAzc2NOXPmsGTJEk6cOMHNmzfx9vYmPT2dgIAAli1b\nZq6/Xr16jB49mtDQUDw9PalWrRq9evUC4MCBA7z33nuUKVPGfP8kJCTkW1X18PDgwIEDBe6HSpUq\nFTp3VatWpVevXuzdu5dnn3222GP67LPPFnk/iIiIiDyKtNL1CMrKymLZsmVs2LCBqKgoAKZNm8b0\n6dMxGo14enqyZs2afGUcHR0ZM2YMRqORl19+mcDAwAL1JiUl4e/vj7+/P6+99hrDhg2jTp06AHTo\n0IHNmzdz/PhxLly4wIcffsjGjRvZsWMHKSkpPPPMM3z++ecA7Nq1i+eff5558+bh7++P0Whk9OjR\nLFiwAIAffviBkJAQYmJi2LdvX6ErIWFhYfj7++Pl5cWlS5eoV68eSUlJ7Nq1i40bN7Jx40Z2795N\nSkoKO3bsYMSIEWzatInOnTuTmZnJK6+8QocOHcwJ112dOnXi2LFj7N+/n06dOuHh4cHBgwfJysri\n+vXrODs7c/bsWfr06UNERAQrVqxg3bp12NnZ4e7uzv79+8nNzWXfvn089dRTxMbGMmXKFKKjo3Fx\nceH27dvmtp544gm6dOlCYGAg5cqVY8mSJURGRrJp0ybs7OyIjo7OF1u3bt149dVX2bJlC0899RQj\nRowgOTmZbt260aRJE+bNm0d2djYVK1Zk7dq1bN68mX//+9+kpqYC4OrqyubNmxk6dCiOjo6FPoLq\n5+dHRkYGkZGRTJkyBbjz6Om0adNYunQpUVFRtG3bluXLl9/jDvx/90NRCdddVapUISMj477GVERE\nRORxo5WuR1CDBg2wsbEBwMrqzhQmJyebV4xycnKoV69evjJPPPEElpaWALRp04bU1FRMJhMGg8F8\nzd3HCwtzt77k5GTatGmDwWDA2tqaFi1akJycjI+PD8HBwbi6ulK3bl0cHBw4ffo0K1euZM2aNZhM\nJvOqTu3atbG1tQXuJINZWVkF2gsMDMTT0xOA999/n7lz5+Lh4cHFixcZMWIEAFevXuXcuXO88847\nrFy5kk2bNuHq6krPnj2LHDsPDw8WL15M+fLlGTp0KHZ2dtjZ2fHNN9/Qrl074M4KTWRkJJ9//jm2\ntrbmRMrHxwej0UheXh6dOnXCxsaGOXPmEBERwYIFC2jZsiUmk6nQds+fP0/9+vXN/W7bti379+/P\nd82JEyfo2LEjzzzzDLm5ufzrX//inXfeITY21nxNmTJluHz5MuPHj6d8+fLcvHmTnJycfHN0LwaD\nAW9vb1JSUqhQoQIAGRkZ2Nramh8zbNu2LQsXLqRbt275yv62b8VpC+DixYs0bdr0vsZURERE5HGj\nla5H0G8Tpbvq1avHvHnzMBqNBAYG0rVr13znly5dSmRkJACnTp2iZs2ahdbzR226ubmZHy3Mycnh\nxIkT1KlTh7p162IymVizZg0+Pj7AnZWXCRMmYDQamTFjhvlRtvtpF6BGjRrk5OTg6upK/fr1Wb9+\nPUajkf79+9OwYUOio6MZO3asedXviy++wMLCIt87TXe5ubmRlpbG6dOnzZuGdO7cmfDwcPP7XBER\nEbRs2ZIFCxbQu3dvc7LRpk0bzp8/z5YtWxgwYAAAH374ITNmzCAqKoqEhAROnDhRYNxMJhO1atUi\nOTmZmzdvAnfeH/t94rJz507zCqWlpSWNGjUyJyF369m3bx8//fQTCxcuZPz48dy6dcscn4WFRb52\nC+t/YRwcHMjMzDS/e3bkyBHq1q1LmTJlzKuQP/74I1evXs1X/x9JS0tjz549dO3a9b7GVERERORx\no5Wux0RwcDCTJk0iNzcXgJCQkHznx4wZQ2BgIF9//TWWlpbMmTPnT7XTvXt3jhw5wqBBg8jJyaF3\n797m5GXAgAG8//77dOjQAYBJkyYRHBxMVlYWt27dMj/OVhxhYWGsXr3anDyFhobi4uJCx44d8fX1\nJTs727ybX/PmzRk5ciT29vZUqFCBbt26kZ2dzenTp1m3bp15Zeyuuwni3cTB09OTDz74wLzS1b17\nd4KDg9m+fTv29vZYWlqSnZ2NjY0N3t7efPrppzRo0ACARo0aMWDAABwcHHBycqJFixb52mrRogUL\nFizgvffeY+zYsQwbNgwLCwtq167NhAkT8l07btw4Zs2axfPPP0+5cuUoX768eR5btWrFxIkTWb58\nOcuWLWPgwIHY2Njg4uJS6EYdbdq0YcyYMaxfv/4PEySDwcDs2bMZO3YsBoOBSpUqMWfOHCpWrIid\nnR0+Pj64ublRq1atP5y3HTt28O2332JhYYHJZGLOnDnY29vf15iKiIiIPG4MpqKehxKRAlavXo2D\ng4NWZR6ge41pXFwca/5lWQpRiYiIyONi+cyW/5N24uLicHd3L/ScVrpEiikoKIiMjAyWLFlS2qE8\nNjSmIiIi8negpEukmObOnVvaITx2NKYiIiLyd6CNNEREREREREqQki4REREREZESpKRLRERERESk\nBCnpEhERERERKUHaSENEHmr/q21epeQlJCTQpEmT0g5DHhDN5+NF8/n40Fw+nLTSJSIiIiIiUoKU\ndImIiIiIiJQgJV0iIiIiIiIlSEmXiIiIiIhICTKYTCZTaQchIlKYuLg4PvtPjdIOQ0RE5JE0eUTN\n0g7hbyUuLg53d/dCz2mlS0REREREpAQp6RIRERERESlBSrpERERERERKkJIuERERERGREqSkS0RE\nREREpAQp6RIRERERESlBSrpERERERERKkJKuUnL48GE6duyIv7+/+b8333zzgbdz9OhRTp06BYCH\nh0eB87GxsezZs+cvtfH7eo8ePcpLL71k/n3lypW0a9eO27dvA3Do0CFef/119u3bR3R0dLHr/b0l\nS5awadOmfMcOHz5MQECA+fdPP/2U5557josXLxa7P/djyZIlNGnShNTUVPOxX375hWbNmhEbG/uH\n5Qu7D+41Jn8kNjaWBQsW/Ony9yM3N5eBAweyc+dO87Gff/6Zp556Kt94iIiIiPzdWZV2AH9nHTp0\nYNGiRSXaxtatW/Hy8qJx48aFnu/fv/8Db7Nly5YkJiaSl5eHhYUF+/fvp0OHDhw/fpx27dpx5MgR\nunTpgqen5wNv+7d27txJeHg469ato2rVqiXWTt26dfnkk08YMWIEALt27aJGjeL/Qd//xX1QEiwt\nLZk3bx4jR46kffv2VK1alalTpzJx4kScnJxKOzwRERGRh4aSrofM5cuXGTp0KLt27cJgMDBjxgw6\ndepE7dq1mT17NgD29vaEhoby3XffsWDBAqytrenUqRN79+5ly5YtAIwbN46RI0fyzTffEB8fT/36\n9cnOzubtt9/m4sWL2Nvbs3jxYlasWEHVqlVxdXVl9erVWFtbc+HCBby8vHj11Vc5e/YsQUFBWFlZ\n4ezszI8//ojRaLxnH6ytrWnatCmJiYk4OzuTl5eHl5cXe/fupV27dhw9epS5c+cSGxtLSkoKY8eO\n5a233iIzM5Nbt24RGBhI+/btC43X2tq6WOP40UcfERUVxdq1a6lUqRIA/v7+NG7cmDNnzpCZmcn7\n77+Ps7MzRqORHTt2YDAY8PLywtvbmxEjRvCvf/2LEydO8PLLL/N///d/pKenM2XKFMLDw/O15eXl\nxaeffmpOur766iu6d+8OwMKFC3FycmLo0KFcvXqVkSNHFmsFLDY2lq1bt5KXl8ebb77JlStXWLdu\nHRYWFri7uzNhwgTi4uKYN28eVlZWVKxY0bzC9e233zJq1CguX76Mr68vgwYNwtvbmzZt2nD69Gnq\n1atHlSpVOHbsGDY2NqxatYpffvmF4OBgsrKyuHLlCq+//jo9e/bE29ubdu3akZiYiMFgYNmyZdjZ\n2ZnjrFevHqNHjyY0NBRPT0+qVatGr169ADhy5AiLFi3C0tISFxcXZs6cSVZWFlOmTOH69etkZGTg\n4+PDkCFD8Pf3x8HBgWvXrhEeHo6lpWWx5llERETkUaDHC0vRoUOH8j1WtmbNGipXrkyjRo04duwY\n2dnZHDlyhO7duzNt2jSmT5+O0WjE09OTNWvWAJCVlcXGjRt54403KFu2LElJSVy5coULFy7QokUL\nunTpQmBgIDVr1uTmzZsEBASwadMmMjMzSUhIyBfPxYsXWbJkCdHR0eb658+fzyuvvILRaKR169bF\n7lunTp04duwY+/fvp1OnTnh4eHDw4EGysrK4fv06zs7O5mvPnTvHpUuXWLFiBf/85z+5desWwB/G\nW5Rjx47x4YcfcvXqVXJzc/Oda968OevWrcPDw4OdO3eSlJTErl272LhxIxs3bmT37t1kZGRgb2/P\nTz/9xDfffEP16tWJj49nz5499OzZs0B7VatWpVy5cpw/f56zZ89SvXp1ypQpA4CPjw8fffQRADt2\n7MDb27tA+d/fB3djrlixIps2baJJkyYsWbKEdevWsWnTJlJTUzlw4AC7d+/m6aefJioqigEDBnDt\n2jUArKysCA8PZ+nSpURGRgJw48YNnnvuOTZs2MCxY8do3bo1GzZsICcnh6SkJFJSUhg5ciRr165l\n2rRpbNiwwVyuT58+REVFUa1aNfbt21cgfj8/PzIyMoiMjGTKlCkAmEwmpk2bxtKlS4mKisLJyYlt\n27Zx9uxZ+vTpQ0REBCtWrGDdunXmery9vVm3bp0SLhEREXnsaKWrFBX1WNnAgQPZtm0b6enp9OjR\nAysrK5KTk5kxYwYAOTk51KtXD8D8f7jzAT82NpaaNWvSt2/fAvVWqlSJWrVqAXcShV9//TXf+YYN\nG2JlZYWVlRVly5YFIDk5mVatWgHg7u7O9u3bi9U3Dw8PFi9eTPny5Rk6dCh2dnbY2dnxzTff0K5d\nu3zXNmjQgKFDhzJ+/Hhu376Nv79/seItiqOjI2vXriUmJobAwEBWr16NhcWd7xeaNm0KQPXq1bl0\n6RKnT5/m4sWL5lWqq1evcu7cOZ5++mm+/vprTpw4wUsvvcSBAwc4ceIEISEhhbbZp08fdu7cye3b\nt/H29ubAgQMAuLi4UKFCBZKSkti+fTvLli0rULao++Du3J47d47Lly8zZswY4E4idP78eV555RVW\nrFjB8OHDcXJyonnz5uY+GgwGHB0dzQksQLNmzYA7yZybm5v556ysLBwdHVm+fDlbtmzBYDCY37/7\n7ZjVqFGDrKysAnEaDAa8vb1JSUmhQoUKwJ0V27S0NMaNGwfArVu38PDwoGvXrkRGRvL5559ja2ub\nr53f3ssiIiIijxOtdD2EOnbsSEJCAlu3bmXAgAHAnQ+k8+bNw2g0EhgYSNeuXQHMyQRA7969OXDg\nAF988YU56TIYDJhMJvPP91LY+YYNG3LixAngzmNrxeXm5kZaWhqnT582f9jv3Lkz4eHhdOnSJd+1\niYmJ3Lhxg1WrVjF37lxmzZpVrHiLUqdOHcqUKYOfnx/W1tYsX768yGtdXV2pX78+69evx2g00r9/\nfxo2bEjPnj3ZsWMHtra2eHp6snv3brKzs3F0dCy0nl69erFnzx6OHTtG+/bt850bOHAgy5cvx8nJ\nicqVKxe7H3fntlatWtSoUYOIiAiMRiN+fn60aNGC7du388ILL2A0GmnQoAEffvghUPS43Ws833//\nfZ5//nnCwsJo3769+Z75o3JFcXBwoHr16ixbtgyj0cgrr7xC+/btiYiIoGXLlixYsIDevXv/5XZE\nREREHgVa6SpFdx8r+63Vq1dTtmxZevXqxcGDB6lTpw4AwcHBTJo0yfzoWUhICGlpafnKlilThrZt\n23L58mXs7e0BaNGiBQsWLDCvGN2vCRMmMHnyZCIiIrCzs8PKqvi3TN26dTGZTOYP056ennzwwQcF\nVrrq1q3LBx98wEcffYS1tfUD3cUxNDSUfv364e7uXuj5xo0b07FjR3x9fcnOzqZ58+Y4OTlhaWlJ\nVlYWHTp0oFKlSlhZWdGtW7ci27Gzs6N69eq4uLjkS4QBevbsycyZMwkLC/tTfahcuTIjRowwP3ro\n7OzMs88+S3Z2NkFBQZQvXx5ra2tmzpzJ0aNH/1QbvXv3JiQkhJUrV1KjRg0yMjL+VD13WVhYMGXK\nFMaMGYPJZKJChQrMnz8fg8FAcHAw27dvx97eHktLS7Kzs/9SWyIiIiIPO4Ppt181yyMvODiYXr16\n0bFjxwdS38cff0yLFi2oU6cOMTExHD9+nDlz5jyQuv8ufv31V/z8/IiJiSmQkMm9xcXF8dl/ir8T\npIiIiPw/k0fULO0Q/lbi4uKK/KJfK12PkVGjRlGtWrUHlnDBnfd4AgICKFeuHBYWFoSGhj6wuv8O\njh8/zvTp0xk3bpwSLhEREZG/Ka10ichDSytdIiIif55Wuv637rXSpa/eRURERERESpCSLhERERER\nkRKkpEtERERERKQEKekSEREREREpQdq9UEQeanoJ+PGRkJBAkyZNSjsMeUA0n48XzefjQ3P5cNJK\nl4iIiIiISAlS0iUiIiIiIlKClHSJiIiIiIiUICVdIiIiIiIiJUhJl4iIiIiISAnS7oUi8lAz7r5W\n2iHIA+PMsR81n48Pzefj5dGfT/+eFUs7BJEiaaVLRERERESkBCnpEhERERERKUFKukREREREREqQ\nki4REREREZESpKRLRERERESkBCnpEhERERERKUFKukREREREREqQkq5HyKpVqxgxYgSjRo1i9OjR\n/Pe//wUgMTGRo0eP/qW6s7KymDdvHkOGDGHo0KG89NJL/PTTTwD06NGDrKysv1R/VFQUAPv27SM6\nOvpP12M0GnnxxRfzHRs7diybNm36S/EV1+HDhwkICABgw4YNPP/88+zatetP1xcdHU1OTk6xrt29\nezfPPfcc69evz3f88uXLBAUF4ePjg7+/PyNHjuTYsWN/Oqa7vvjiC1JTU/Mdu3DhAgMHDixw7aZN\nm1iyZMlfblNERETkcaSk6xGRlJTEl19+ydq1a4mIiGDChAlMnjwZgM8//5ykpKS/VH9ISAhOTk5s\n3LiRDRs2MHDgQMaNG/cgQgdg+fLlAHh6ejJo0KA/XY+fnx+5ubnExMQAsHPnTnJycvD19X0gcd6P\nL774gvnz5+Pl5fWn61i5ciV5eXnFuvarr75i/PjxDBs2LN/x1157jaeeeoqYmBiMRiMzZ85k9uzZ\nxU7mirJ+/XoyMzP/Uh0iIiIiAlalHYAUT+XKlbl48SJbtmzB09OTJk2asGXLFlJTU9m2bRvW1tY0\na9aM69ev895771GmTBns7e0JDQ0lISGBFStWYGFhQXp6OoMGDWLo0KHmurOzs/nyyy+ZMWOG+djT\nTz9NmzZtzL8HBwdz4cIFAJYuXUr58uWZPn06Z8+eJS8vj3HjxtG+fXs+/fRTNmzYYC73/vvvEx0d\nzdWrVwkODqZ58+akpKQwePBg3n77bapXr8758+d58sknmTFjBpcvX2bChAlkZ2dTr149Dh06xBdf\nfGGuz2AwMGfOHIYMGUKrVq1YsWIFkZGRAFy7do3AwEAyMzPJzc3lrbfeomPHjvTo0YNPPvmEMmXK\nsGDBAlxdXXF2dmbBggVYW1szcOBAvv/+ew4dOkReXh59+vRhxIgRJCYmMnv2bADzWN4VHR3Nf//7\nX6ZMmcKiRYtwcXEBICcnh8mTJ3P+/Hlyc3MZOXIkXl5e+Pv7ExwcjJubG5s2beLSpUtUr16d9PR0\nAgICWLZsmbnuwvpx8+ZN9u7dy8mTJ3FwcKBVq1YAfPvtt9jb2/P000+by7u4uLBt2zYMBgNLlizh\nxIkT3Lx5k5CQEA4ePMiOHTswGAx4eXkxbNgwTp8+zdy5c8nLy+PatWtMnTqVa9eukZCQwKRJk9i4\ncSM2NjYF7sljx44RGhpKpUqVsLCwoGXLlsCd1cjitNG6dWuCgoI4d+4cWVlZjB49+i8lsCIiIiIP\nKyVdj4jKlSuzfPlyoqKi+OCDDyhbtiwBAQH06tWLF154gapVq/Lkk0/y1FNPsWnTJpycnIiMjGT5\n8uV069aN1NRUPvroI/Ly8vD29qZ3795UqVIFgCtXrlC1alUMBkO+Nh0cHMw//+Mf/6BNmzYEBQVx\n4MABrly5goODA6GhoWRkZODn58fOnTv54YcfWLVqFeXKlePdd99l//79vPrqq0RFRREcHExsbKy5\nzh9++IHw8HDKlStHz549SU9PZ/Xq1Tz11FMMHTqUAwcOcODAgQJjUb16dd58800GDRrEwoULqVy5\nMnBnNa1Tp04MHz6c1NRUfH192b17d5FjmpWVZV4x69q1K1FRUTg5OZljnDZtGqGhodSvX5+YmBjW\nrFlDp06dABg0aBA7duwgODjYnHDBnWTMwcGBsLAwMjMz6d+/Px06dCi0fR8fH5YvX86iRYvyHS+q\nH126dMHLy8uccMGdx/3q1Klj/v3dd9/l+++/5/Lly4SEhADg6urK1KlTSUpKYteuXWzcuBGDwcCI\nESPo3LkzSUlJTJo0iUaNGrF9+3ZiY2OZPXs2TZo0ITg4uNCEC2DOnDn885//pF69ekyfPh3gvtpo\n2LAhhw8fZuvWrQCFzrWIiIjI40BJ1yPi7Nmz2NraMmfOHAD+85//MGbMGNq3b2++JiMjA1tbW5yc\nnABo27YtCxcupFu3brRq1cr84blBgwacO3fOnHQ5ODhw7do1TCZTvsRr+/bt9O7dG4AnnngCgKpV\nq3Lr1i1Onz5NXFwcJ0+eBOD27dtkZGRQpUoVJk2aRIUKFUhJSTGvfhSmdu3a2NraAuDo6EhWVhbJ\nycm88MILAPlW2n6vX79+hIWF0bVrV/Ox5ORkvL29AXBycsLW1pbLly/nK2cymcw/16tXz/zzwoUL\nWbhwIZcuXaJLly7m+u6u/uXk5OS7vijJycnmxMzW1hY3NzfOnz9fZAxF1fFH/birevXq+d4pmzlz\nJgABAQHm9/Duxn369GkuXrzIiBEjALh69Srnzp2jWrVqLFu2jLJly3Ljxg3znPyR1NRUc92tW7fm\n3Llz99WGra0t06ZNY9q0aWRmZtK3b99itSsiIiLyqNE7XY+IxMREgoOD832QtrOzw9LSEoPBQF5e\nHg4ODmRmZpKWlgbAkSNHqFu3LgAJCQnk5uby66+/kpSUlG91xNrams6dO2M0Gs3HPv30UyIjI7G2\ntgYosArm6upKnz59MBqNrF69mt69e2NlZcXixYtZtGgRs2fPpkyZMuYEo7BE4/d1AjRs2JATJ04A\n8O9///u+xsjNzc28gURqairXrl3D3t4eGxsb0tLSMJlMnDp1yny9hcWd2z87O5tPP/2UhQsXEhkZ\nybZt2/jxxx+pV68e8+bNw2jbdiQKAAAgAElEQVQ0EhgYmC/BK04MmZmZnD59mlq1amFjY0N6ejoA\n3333Xb4x+P07XUX1ozCtW7fm0qVL7Nmzx3wsPT2dlJQU8/je7aerqyv169dn/fr1GI1G+vfvT8OG\nDQkJCeHNN99k3rx5NGzY0DxXBoPhngmio6MjycnJwJ0vAe63jbS0NOLj4/nggw9YtWoVYWFh3L59\n+w/HWERERORRo5WuR8QzzzxDcnIyPj4+lC9fHpPJxMSJE7Gzs+OJJ55g/vz5uLm5MXv2bMaOHYvB\nYKBSpUrMmTOHM2fOcPv2bV566SWuXLnCq6++an4k76533nmHOXPmMHjwYAAqVap0z93oBg8ezNSp\nU/Hz8yMzM5MhQ4Zga2tL69ateeGFFyhfvjwVK1Y0J4Bubm5MmDDBvApUlJdeeomJEyfyySefUK1a\nNaysin+Lvvzyy0yePJnPPvuMW7duMXPmTKysrHjxxRcZM2YMzs7OVKxYsUA5GxsbKlWqxPPPP0+l\nSpXw8PCgZs2aBAcHM2nSJHJzc4E7m43c7U9RBg4cyLRp0/D19SUrK4s33niDKlWqMGzYMGbOnEmN\nGjWoVq2a+fo2bdowZswY1q9fb06SiupHYQwGA8uXL2fhwoWEh4cDd1YdR40aRdu2bTl8+LD52saN\nG9OxY0d8fX3Jzs6mefPmODk50bdvX1577TWqVKlC9erVycjIAKBVq1ZMnDiRiIiIQpO+sLAw86pm\nhQoVqFSp0n214ejoSHp6Ov369aN8+fKMGjXqvuZbRERE5FFhMP3Rs07yyDt8+DCbN28u8O7Qw+jr\nr7/GwcGB5s2bc/DgQVasWFFgi3T5+4iLi+O7jAalHYaIiDwC/HsW/GL17yghIYEmTZqUdhh/S3Fx\ncbi7uxd6Tl8ry0OlVq1aTJ48GUtLS/Ly8pgyZUpphyQiIiIi8pco6fobaN++fb4NNx5mbm5uf+mP\nJ4uIiIiIPGy0kYaIiIiIiEgJUtIlIiIiIiJSgpR0iYiIiIiIlCC90yUiDzXtRvX40I5ajxfN5+NF\n8ylSsrTSJSIiIiIiUoKUdImIiIiIiJQgJV0iIiIiIiIlSEmXiIiIiIhICVLSJSIiIiIiUoK0e6GI\nPNS+/PZ6aYcgD0wtftJ8PkY0nw+rHi3sSjsEEfkdrXSJiIiIiIiUICVdIiIiIiIiJUhJl4iIiIiI\nSAlS0iUiIiIiIlKClHSJiIiIiIiUICVdIiIiIiIiJUhJl/yt5eXl8fXXX2MymUo7FBERERF5TCnp\nErNhw4Zx8uRJALKzs3F3dyc8PNx83s/Pj1OnTtGjRw+ysrLuq+7Y2FgWLFhQ4Pi2bdsYNmwYI0eO\nZMSIEezfv/+vdaIIAQEBHD58ON+xEydO0LdvX8LCwujbty/x8fEArF27lj59+uDv74+/vz8pKSn5\nygUFBdGmTRuys7PNx+Lj42nUqFGBNoojOjqanJwcDh8+TEBAQIHz/v7+JCcn33e9xfUg+rNgwQJi\nY2NJSEhg6dKlJRWqiIiIyCNJfxxZzDp37syxY8do3rw5cXFxdO7cmb179zJ69GiysrL46aefaNy4\n8QNr7/r16yxbtoydO3diY2NDamoqPj4+7N27FwuLkv8+IDw8nOnTp3Po0CHatm1LYmIizZo1Iz4+\nnnnz5vHEE08UWdbR0ZF9+/bRs2dPALZv346Li8ufimPlypX069fvT5V9UB5Uf5o0aUKTJk0edHgi\nIiIijzQlXWLWqVMnli1bxqhRo/j666/x8fFhwYIFXL9+nfj4eNq1a2e+Njg4mAsXLgCwdOlSZs6c\nibe3N926dSM5OZl58+axatWqe7ZXvnx5cnNz2bRpE927d6d27drs3r0bCwsLgoKCMJlM/PTTT9y8\neZN58+bh5uaG0Whkx44dGAwGvLy8GDZsGEFBQdjY2PDjjz+SlpbG3LlzadasGRs2bCAmJgZHR0d+\n+eWXAu3XqVOHXbt2Ua5cOTp06GA+Hh8fz6pVq0hPT6dbt268/PLLBcr26dOHHTt20LNnT/Ly8oiP\nj+fJJ58EICcnh8mTJ3P+/Hlyc3MZOXIkXl5e+Pv707hxY86cOUNmZibvv/8+Bw8eJD09nYCAAIYP\nH87Zs2d58cUXuXz5Mt27d2fs2LHmNgcPHsysWbNo0KABX3/9NXv37mX69Onm89999x2zZs3C0tKS\nMmXKMGvWLPLy8nj77bepXr0658+f58knn2TGjBn33Z/p06dz9uxZ8vLyGDduHO3bt+ezzz5j+fLl\nVK5cmZycHFxdXTl8+DCbN29m0aJFeHh4cODAAeDOSuPgwYP58ccf+eqrr7h16xbp6ekMGzaMPXv2\ncObMGSZOnGhO+kREREQeJ3q8UMyaNm1KSkoKJpOJo0eP0q5dOzp27MjBgwc5cuQIXbp0MV/7j3/8\nA6PRiLOzMwcOHMDHx4dt27YBsGXLFgYMGPCH7VlaWrJ27VpzotG9e3e2bNliPu/i4sL69esZO3Ys\nYWFhJCUlsWvXLjZu3MjGjRvZvXu3+dG/mjVrEh4ejr+/P9HR0Vy/fp3169fz4YcfsmzZMnJycgq0\nHxAQQP369fnss88YPHgwp06dAu4kIMHBwURGRhIXF8dXX31VoGzz5s35/vvvuXnzJocOHaJ9+/bm\nc9HR0Tg4OLB582bWrl3Le++9x+XLl83l1q1bh4eHBzt37sTHxwdHR0cWLVoEQFZWFsuWLWPDhg1E\nRUXla/O3Y7x169YCYzx16lTeffddoqKi8PX1Ze7cuQD88MMPhISEEBMTw759+0hPT7+v/sTExODg\n4MCGDRtYtmwZM2fOBCAsLIy1a9cSHh5O2bJlC53jwty4cYPVq1fz0ksvsWnTJnPSHhsbW+w6RERE\nRB4lSrrEzMLCgsaNG7Nv3z4cHR2xsbHB09OT48ePExcXR6dOnczX3n30rmrVqty6dYv27duTkpLC\nL7/8woEDB+jevfsftpeamsqtW7d49913+fzzz4mIiCA8PJzExEQA8+pTq1at+P777zl9+jQXL15k\nxIgRDB8+nCtXrnDu3DkA8yNt1atXJzs7m5SUFOrXr4+NjQ3W1tY0b968QPs3btxg6NCh9OvXj3Hj\nxhEcHIzJZGL48OFUrlwZGxsbunbtynfffVdo/D169GDPnj1s376dvn37mo8nJyfTtm1bAGxtbXFz\nc+P8+fPAncT2bpyFvRfXoEEDbGxsKFeuHFZW+Reivby8+PLLL/nll1/4+eefadasWb7zaWlp5nFo\n27YtZ86cAaB27drY2tpiaWmJo6Njke/jFdWf06dPs2/fPvz9/XnzzTe5ffs2ly5dwtbWFgcHBwwG\nA61atSq0zrt+u1HJ3Rjt7Oxwc3PDYDBQqVKl+35PUERERORRoaRL8vHw8GDlypXmVS13d3dz0mFv\nb2++zmAw5CtnMBjw9vYmJCQEDw8PrK2t/7CtS5cuMWHCBK5evQqAs7MzDg4O5rJ3N7Y4fvw4DRo0\nwNXVlfr167N+/XqMRiP9+/enYcOGhcbj4uJCUlISt27dIjc3l4SEhALtjx071rxxiIODA5aWlmRm\nZvLcc89x48YNTCYThw8fLvLdLm9vbz766CPS09OpXbu2+bibmxvHjh0DIDMzk9OnT1OrVq0ix8Fg\nMJCXl1doP36rXLlytG/fnpCQEJ5//vkC56tVq2ZerTt69Ch169b9wzqL0x9XV1f69OmD0Whk9erV\n9O7dm4oVK3L9+nXzCt5//vOfAvXdvn2bGzdukJ2dTVJSUr7+ioiIiPyd6J0uyadTp05MnTqV+fPn\nA2BjY4OdnZ15heZe+vfvT7du3fjXv/5VrLaaNWvGsGHDGD58OGXLliU3NxcfHx9cXV0B2LdvH3v2\n7CEvL485c+bg4uJCx44d8fX1JTs7m+bNm+Pk5FRo3ZUrV+att95i8ODBVK5cmXLlyhW45p133iEk\nJIRLly5x6NAhgoKCsLOzIyAggGHDhmFjY0PHjh3p2rVroW24urqSkZHBP/7xj3zHBw4cyLRp0/D1\n9SUrK4s33niDKlWqFDkObdq0YcyYMbz++ut/OGYDBw7E19eX4ODgAudmz57NrFmzMJlMWFpaEhoa\n+of1Fac/gwcPZurUqfj5+ZGZmcmQIUOwsbFhzpw5jB49mkqVKhVYlYM7u2EOGjSIWrVqUbNmzfuK\nRURERORxYjDpDxTJA5KamsrEiROJjIz8y3UFBQXh5eWFp6fnA4js3pYsWZJvw4qH2cmTJ4mKijIn\nxY+7uLg4rlo1LO0wREQeKT1a2N13mYSEBO0++5jQXJaeuLg43N3dCz2nlS55ID777DOWLl1KSEhI\naYdy3x6VhCsqKoqtW7eyePHi0g5FRERERO6DVrpE5KGllS4Rkfunla6/N81l6bnXSpc20hARERER\nESlBSrpERERERERKkJIuERERERGREqSkS0REREREpARp90IReaj9mRfC5eGkl7sfL5pPEZHi00qX\niIiIiIhICVLSJSIiIiIiUoKUdImIiIiIiJQgJV0iIiIiIiIlSBtpiMhDLT7pp9IOQR4Ua3vN5+Pk\nbzyfzerXKO0QROQRo5UuERERERGREqSkS0REREREpAQp6RIRERERESlBSrpERERERERKkJIuERER\nERGREqSkS0REREREpAQp6RIRERERESlBj2zSNWzYME6ePAlAdnY27u7uhIeHm8/7+flx6tSp+6rz\n4sWLfPnllwWOf/HFF6SmpharjsuXLzN27FhGjx7NqFGjmDp1Krdu3bqvOP6sCxcuMHDgwP9JWwA/\n//wzXbp04dy5c+ZjX375JYMHDyY3N/eBtBEUFIS3tzf+/v74+/szZMgQzpw586fqGjhwIBcuXLiv\nMkePHjXfR2+88UaR14WEhHDx4kWuXLnC9u3bi7zu7NmzDB06FD8/P/z9/fONHcDhw4fp2LEj/v7+\n+Pn5MXjwYJKTk4sVa2xsLN26dcPf39/cxv/93//ds0yPHj3IysoqVv13BQQEkJ2dfV9liuLv71/s\n/omIiIg8qh7ZpKtz584cO3YMgLi4ODp37szevXsByMrK4qeffqJx48b3VeehQ4c4fvx4gePr168n\nMzOzWHWsWbOGTp06ER4eTkREBOXKlWPz5s33Fcejonr16rz99ttMnjwZk8nE1atXmT9/PmFhYVha\nWj6wdgIDAzEajRiNRl5++WXef//9B1b3H9m6dStpaWkALF26tMjrpkyZQs2aNUlMTCw0cb8rLCyM\nYcOGERUVhZ+fH2FhYQWu6dChA0ajkaioKN544w3mz59f7Hife+45jEYjGzZs4L333iM4OJj09PRi\nly+ORYsWYWNj80DrFBEREXmcWZV2AH9Wp06dWLZsGaNGjeLrr7/Gx8eHBQsWcP36deLj42nXrh0A\nn376KRs2bDCXe//99zlz5gyrV6/G2tqaCxcu4OXlxZgxY1i1ahW3bt2iVatWPPXUUwDs3buXhIQE\nJk2axMaNG4mKimLnzp1YWVnRpk0bAgMD88Xl7OzMZ599Rp06dWjdujWTJk3CYDBw4cIFxo8fz4cf\nfgjcWXVZuHAh27ZtIyUlhV9++YVr164xdepU2rRpwyeffMK6deuwsLDA3d2dCRMmsGTJEk6cOMHN\nmzcJCQnhs88+Y/fu3eTm5uLr60vnzp25fPkyr732Gunp6TRq1IjZs2dz+vRp5s6dS15enrmN1q1b\n0717d1xdXXF1dcXPz4+goCCsrKxwdnbmxx9/xGg0FhrHb/Xr1489e/YQHR3NyZMneeWVV3BxcQEg\nIiKiwFgtWbKEqlWr4uvrS3JyMsHBwRiNRp577jnq1q2LjY0NCxcuLHLer169Svny5blw4QKvvvoq\n9vb2eHp64uHhwaxZs7C0tKRMmTLMmjWLmjVrsmjRIr755huqV69ORkYGQJExfPXVV+bEqmnTpgwa\nNIhvvvmG+Ph46tevj4+PD9u3b2fo0KHs2rULg8HAjBkz6NSpE+vXryc4OJgVK1Zw6tQpoqOjWbNm\nDTExMdjb27Nx40Zu3rzJ1KlTqVq1KgCWlpZUqFDhnvf5tWvXcHZ2BiAxMZHZs2cDYG9vT2hoKHZ2\ndkWWrVq1Kr169WLv3r3069eP6dOnc/bsWfLy8hg3bhzt27c3XxsUFISXlxeenp7s27ePXbt2MXfu\nXIKCgjh37hxZWVmMHj0aLy8vevTowSeffEJ6ejpTpkzh9u3bGAwGpk6dSuPGjXnmmWdo3bo133//\nPVWqVGHJkiX8+uuvTJkyhevXr5ORkYGPjw9Dhgy5Z99FREREHhePbNLVtGlTUlJSMJlMHD16lPHj\nx9OxY0cOHjxIYmIiXbp0AeCHH35g1apVlCtXjnfffZf9+/fj5OTExYsX+fjjj8nOzqZLly68+uqr\njBkzhpSUFHPCBdCtWzeaNGlCcHAw33//PZ988gmbN2/GysqKsWPH8tVXX9G9e3fz9b6+vpQpU4bw\n8HDeeust3N3dmT59+j37UrZsWdavX8+ZM2d4++23Wb9+PUuWLGHr1q2UK1eOwMBADhw4AICrqytT\np07lu+++Y9++fcTExJCdnc0///lPPDw8yMzMZM6cOdjZ2fH000/zyy+/kJSUxKRJk2jUqBHbt28n\nNjaW1q1b89NPPxEbG4uDgwOvv/46r7zyCl27duXDDz/kxx9/5MqVK4XG4eHhkS/+GTNmMGjQIJ58\n8kn69esH3EkQChuroty8eZPXXnuNpk2bFjgXFhbG6tWrsbCwoFq1agQGBpKdnU16ejpbt27FxsaG\n/v37ExISQpMmTdi9ezdz587ljTfe4OjRo2zZsoWbN2/yzDPPFNn+7du3mTVrFjExMVSpUoWlS5dS\nuXJlunTpgpeXFzVr1gSgcuXKNGrUiGPHjtGiRQuOHDnClClTWL9+PQCvvPIKmzdvZtCgQaSmprJz\n506GDh3Kxx9/zNKlS80J17Fjx1i2bBnLly8vEMuhQ4fw9/cnOzubxMREVq5cCcC0adMIDQ2lfv36\nxMTEsGbNGgICAorsE0CVKlXIyMggJiYGBwcHQkNDycjIwM/Pj507d96zbGZmJocPH2br1q0A5nvw\nrvnz5+Pv70/Pnj1JSEhg8uTJxMbGcv78eSIjI6lRowaDBw/mP//5D9bW1vTp04dnnnmG1NRU86Oi\nIiIiIn8Hj2zSZWFhQePGjdm3bx+Ojo7Y2Njg6enJ3r17OXXqFMOGDQPufOicNGkSFSpUICUlhZYt\nWwLQsGFDrKyssLKyomzZssVqMyUlhRYtWmBtbQ1AmzZtOHPmTL6k6/Dhw/Tr148BAwaQnZ3N6tWr\nCQ0NZdKkSfnqMplM5p87dOgAQIMGDbh06RLnzp3j8uXLjBkzBoAbN25w/vx5AOrVqwfA999/T/Pm\nzbG0tKRcuXJMnTqVCxcu4OLiQqVKlcx9//XXX6lWrRrLli2jbNmy3LhxA1tbWwAcHBxwcHAAIDk5\nmVatWgHg7u7O9u3b7xnHb1WuXBl3d3e8vLz+cKzu5W7ffi8wMBBPT898xy5cuECtWrXMj7mlpaXR\npEkTANq2bcs///lPkpKSeOKJJ7CwsMDW1paGDRsW2XZGRgYVK1akSpUqwL3f3xo4cCDbtm0jPT2d\nHj16YGVV+D+jAQMGEBAQQNu2balatao54QIIDQ1l+fLlODk5FSjXoUMHFi1aBNwZx8GDB7Nv3z6S\nk5OZMWMGADk5OUWO129dvHiRpk2bcuLECeLi4szvQd6+fdu88vd7d+9NW1tbpk2bxrRp08jMzKRv\n3775rktOTqZt27YANGnShJ9//hm4c1/VqFEDgBo1apCVlUWNGjWIjIzk888/x9bWltu3b/9h7CIi\nIiKPi0f2nS4ADw8PVq5caV7Vcnd357vvvgPuPH51/fp1Fi9ezKJFi5g9ezZlypQxf6A0GAwF6rOw\nsCAvL6/AcYPBgMlkwtXVlZMnT3L79m3zCtvvP/hGRkYSGxsLgI2NDQ0aNMDGxoYyZcrwyy+/kJub\ny7Vr1/Jt6BAfHw/A6dOncXJyolatWtSoUYOIiAiMRiN+fn60aNHCHCPcWfH67rvvyMvLIycnh5Ej\nR5KdnV1ov0JCQnjzzTeZN28eDRs2NI/B3brgThJ64sQJAL799luAe8bxR4oaqzJlypjfMbrb79+O\n//347fXVqlUzb3hx9OhR6tatS7169Th58iR5eXncvHmTpKQkgEJjqFKlCteuXePKlSsAzJ49m5Mn\nT5rn/rc6duxIQkICW7duZcCAAQViunsP1axZEzs7O1asWFHguhdeeKHQhOv3fpuo1atXj3nz5mE0\nGgkMDKRr1673LJuWlsaePXvo2rUrrq6u9OnTB6PRyOrVq+ndu7c5OYc79+rdMbn7bygtLY34+Hg+\n+OADVq1aRVhYWL5kyc3NzfxeZUJCgjnWwu7BiIgIWrZsyYIFC+jdu3eBMRURERF5nD2yK11w572u\nqVOnmjcasLGxwc7OzvyImq2tLa1bt+aFF16gfPnyVKxYkbS0NGrVqlVofQ0bNmT58uU0a9aMPn36\nmI+3atWKiRMnEhERwbPPPouvry95eXm4u7vTs2fPfHXMmDGDGTNmsHHjRsqWLYuDgwPBwcE4Ojri\n4eHBgAEDqF27NnXq1DGXSUhIYPjw4fz666/MmjWLypUrM2LECPz9/cnNzcXZ2Zlnn302XztNmjSh\nS5cu5lh8fX2L3Nygb9++vPbaa1SpUiXfu02/NWHCBCZPnkxERAR2dnZYWVkVK46iNGrUqNCxunDh\nAuPGjePo0aM88cQTxaqrOGbPns2sWbMwmUxYWloSGhqKi4sLvXv3ZsCAAVSrVs28ivXss88WiMHC\nwoLp06fz8ssvY2FhQdOmTXnyySf57rvvWLBgQb57xmAw0KtXLw4ePJhvHgFq167N6dOnWbduHSNG\njGDgwIHMnj0734YZ2dnZfPXVV/j7+xfal7uPF1pYWHDjxg2CgoIoW7YswcHBTJo0ybwzZEhISIGy\nO3bs4Ntvv8XCwgKTycScOXOwt7dn8ODBTJ06FT8/PzIzMxkyZEi+pNXHx4fJkyezfft26tatC4Cj\noyPp6en069eP8uXLM2rUqHyrehMnTmTatGlERERw+/btQuO5q3v37gQHB7N9+3bs7e2xtLTMtwNi\nUlISUVFRBAcHF1mHiIiIyKPKYNJXzqXqt5s6lKaPP/6YFi1aUKdOHWJiYjh+/Dhz5swp1ZgeB7t2\n7eLMmTO89dZbpR3KIykuLo6ylWqWdhgiIvk0q1+jtEN44BISEsyP6cujTXNZeuLi4nB3dy/03CO9\n0iUPTo0aNQgICKBcuXJYWFgQGhpa2iE98hYuXGjeMENERERE/r6UdJWysWPHlnYIwJ3NJ+6+iyYP\nxvjx40s7BBERERF5CDzSG2mIiIiIiIg87JR0iYiIiIiIlCAlXSIiIiIiIiVISZeIiIiIiEgJ0kYa\nIvJQexy3Zv670jbGjxfNp4hI8WmlS0REREREpAQp6RIRERERESlBSrpERERERERKkJIuERERERGR\nEqSNNETkofbjqW9LOwR5QCoaNJ+Pk8dlPp0btyjtEETkb0ArXSIiIiIiIiVISZeIiIiIiEgJUtIl\nIiIiIiJSgpR0iYiIiIiIlCAlXSIiIiIiIiVISZeIiIiIiEgJUtIlIiIiIiJSgpR0/c2cOXOGMWPG\n4O/vzz/+8Q8WL16MyWTi8OHDBAQEPPD29u3bR3R09J8ubzQaefHFF/MdGzt2LJs2bfqroZn16NGD\noUOH4u/vj7+/P2+88QaA+f/FERUVdc/zHh4eRZ67cOECAwcOLHZbX3/9NcOHD2fkyJEMGzaMjz/+\nGIDY2Fj27NlT7Hp+r0ePHgXGeu3atTRq1Oie5b744gtSU1MBiI6OJicn50/HICIiIvI40h9H/hu5\ndu0a48ePZ8mSJdStW5fc3FzeeustNm/ejKura4m06enp+ZfK+/n58eWXXxITE4OPz//X3p3H13Tt\n/x9/ZUQkiAQxtklMuWaiqNYY30aIITUk4aC0rraoUMQQVVOD9GqrTWP8IuZUtFV0QC+tXkTo1WoI\nMY9JG0SQk+n8/vB1ftIk5tOg7+fj0ccjZ581fPbaO3o+Z6290pONGzeSlZVFUFDQI4rwpsWLF1Os\nWLE8xz7++ON7rv/pp5/St2/fRxpTYSZPnswXX3xBqVKlSE9Pp2vXrrRs2ZKAgICHbvvixYukpqZS\ntmxZ4GaCV7p06TvWWbZsGZMnT6ZChQrMmzePbt26PXQcIiIiIk8TJV1/I1u3bqVZs2Y8++yzANjY\n2DBz5kzs7OzYv38/J0+e5NVXXyU1NZW2bdsybNgwfvvtN6ZOnYqNjQ3FihVj6tSpVKpUicWLF7Nx\n40ZsbW3x9vZm9OjRxMfHM3PmTGxtbSlVqhQRERF8++23HDt2jMDAQEaNGoWbmxunT5+mXr16vPvu\nu6SmpvL222+TmZmJu7s7u3bt4rvvvjPHbGVlxXvvvUdwcDCNGjUiKiqKpUuXAjeTyNGjR5Oenm5O\nIFu0aEG7du3YvHkzxYoVIyIiAg8PDypXrkxERAR2dnb06tXrnhKDli1bsnPnTgwGA87OzqSlpTFp\n0iTGjx+Pra0tNjY2zJo1i9jYWK5cucLkyZOZPHnyHdssaDwBUlNTGTJkCKmpqbRu3Zo333yT//zn\nP8THx+ebcXNxcWHZsmW89NJLVK9enc2bN2Nvb8/cuXNxdXXF1dWVZcuWAXDhwgXc3NyIjo7m/fff\nJy4uDpPJxIABA+jYsWO++F566SW+/vprgoODSUpKolq1ahw5cgSAxMREwsPDyc3NJS0tjYkTJ5KW\nlkZCQgJjx46lR48epKSkEBISQmRkZIH93W0sK1SocNfrIiIiIvKkUdL1N5KcnEzVqlXzHCtZsqT5\nZ6PRSGRkJDk5ObRp04Zhw4YxceJEpk+fjpeXF1u2bCE8PJw333yTzZs3s3r1amxtbRk2bBjff/89\ne/bsoUOHDgwaNIht2x5YO1MAACAASURBVLaRlpaWp68TJ06waNEiSpQogY+PDykpKSxYsID27dvT\np08fdu7cyc6dO/PF7ebmxvDhw+nduzf/+te/zLMwn376Kc8//zz9+/fn4sWLBAUFsWXLlkLP32g0\nEhMTU+B7AwcOxNr65mrbQYMG0aZNmzzv+/v706FDB1asWEGdOnUIDQ1l7969XLlyhddff53ly5ff\nNeECChzPMWPGcP36dWbPno2DgwN9+vShffv2tGjRghYtWuRr49NPP2XJkiWMHDmS1NRUAgMD8yRm\nHTp0oEOHDpw5c4YRI0YQHh7O9u3bOXPmDKtXr8ZoNNKrVy9atmxJqVKl8rTduXNnwsLCCA4O5ssv\nv8Tf39+8ZPHo0aOMHTuWWrVqsWHDBmJjY5k2bRpeXl5MnjwZT09P5s+fz5w5cwrt725jqaRLRERE\nnkZ6putvpFKlSly4cCHPsdOnTxMXFwdAjRo1sLe3p0SJEtja3szHk5OT8fLyAqBp06YcOXKEY8eO\n0aBBA+zs7LCyssLb25sjR46YZ2r69+/P119/bW7jlmrVquHo6IiNjQ3lypXDaDSSlJRE48aNAfD2\n9i409m7dulG8eHFat25tPpaUlETTpk0BqFChAo6OjqSmpuapZzKZzD+7u7sX2v7ixYuJjo4mOjo6\nX8J1e90ePXrg7OzMq6++yooVK7CxsSm0zcuXL5t/trKyAgoeT4DatWvj5OSEjY0N9erV4/jx4wW2\neeXKFc6dO8fo0aPNic8PP/zA999/n6dcSkoKw4cPZ/r06VSuXJnExEQOHjyIwWDg1VdfJTs7m3Pn\nzuVrv2LFigCcP3+effv25bkm5cuXJzIykrFjx/LNN9+QnZ1d6Lnfqb8HGUsRERGRJ5mSrr+Rtm3b\n8sMPP3Dq1CkAsrKyCA8PJzExEfj/icHtypcvz6FDhwCIi4vj2WefxcPDgwMHDpCdnY3JZCIuLg53\nd3c2bNhA9+7diY6OpkaNGqxduzZPWwW1X7NmTfbv3w/Azz//fF/n4+npyd69e4GbzyKlpaVRpkwZ\n7O3tSU5OxmQymWMHzDNZD+JW7Fu3bqVJkyYsXboUX19fFi5cCORN7m7x9/cnIyODixcvmmfnChpP\nuJlAXrt2jezsbA4cOECNGjUKjCMzM5MRI0Zw/vx5AMqVK4erqyv29vbmMmlpabz55puMGzfOvAmG\nh4cHzZo1Izo6mqVLl9KxY0eqVKlSYB9+fn6Eh4fTqFGjPNds+vTpDB8+nJkzZ1KzZk3zOVtZWeX5\nOTc394793W0sRURERJ42Wl74N+Lo6Eh4eDgTJ07EZDJx7do12rZtS3BwMHv27CmwzrRp05g6dSom\nkwkbGxtmzJhB1apV6dixI0FBQeTm5tKkSRN8fHw4cOAAoaGhODg4YGdnx5QpU8yzaIV57bXXGDNm\nDJs3b6Z8+fL5Zsfu5J///Cfjx4/nm2++ISMjgylTpmBra8urr77K4MGDqVy5cr7lcw+rbt26jB49\nmrlz52Jtbc24ceOAmwng22+/TUREhLns66+/TnBwMPb29oSGhgIFjydA6dKlCQkJITU1FT8/P6pX\nr17gM13lypVj4sSJDB06FFtbW/NS0BdeeMGcvM6ZM4fk5GQ+/vhjcnNzsbOzY9GiRezZs4fg4GCu\nX7+Oj48Pjo6OBZ6jr68v06dP5/PPP89zvEuXLrzxxhu4uLjg5ubGpUuXAGjUqBFjxoxh8eLFeHt7\nM3jwYJYtW3bX/gobSxEREZGnjZWpoK/oRf4i27dvx9nZmfr16/PTTz8RFRVl3gRCJD4+HreS+m5I\nRCyncu0GRR3CYyEhIcG8/F2ebLqWRSc+Pp4mTZoU+J4+zUiRqlKlCuPHj8fGxobc3FwmTJhQ1CGJ\niIiIiDxSSrqkSHl6ej7UH08WEREREXncaSMNERERERERC1LSJSIiIiIiYkFKukRERERERCxISZeI\niIiIiIgFaSMNEXmsaTvnp4e2MX666HqKiNw7zXSJiIiIiIhYkJIuERERERERC1LSJSIiIiIiYkFK\nukRERERERCxIG2mIyGPtj582FHUI8oiUB/746WhRhyGPyONwPV2e9y/S/kVE7pVmukRERERERCxI\nSZeIiIiIiIgFKekSERERERGxICVdIiIiIiIiFqSkS0RERERExIKUdImIiIiIiFiQki4REREREREL\nUtIlf5nw8HAMBgO+vr60adMGg8HA8OHD2b17NyEhIffdXmxsLBEREebXS5cuJTAwkLS0tAeK79y5\nc2zbtu2ey58+fZphw4ZhMBgIDAxk8uTJpKen37HOmjVryMrKIiEhgY8//viB4rylZcuW+Y4ZDAaS\nkpIKrXP48GHi4uIeqt+CFHYNp0+fzrlz5x55fyIiIiJPEv1xZPnLhIaGAjeTpWPHjvH2228DNz+w\nP6yFCxfy448/snjxYhwcHB6ojV27dnHs2DHatWt317IZGRm88cYbTJs2jQYNGgCwfv16Ro0axbx5\n8wqtN2/ePLp164aXlxdeXl4PFOfD+Pbbb3F1daVp06Z/SX8TJkz4S/oREREReZwp6ZLHwsmTJ3n1\n1VdJTU2lbdu2DBs2jMOHDzNt2jQAypQpw4wZM3BycspXNyoqir179zJ//nzs7e0B2LNnD3PmzMHG\nxoaqVasyZcoUQkND8ff3p02bNiQlJTFz5kzmz58PQE5ODvPnzycjI4NGjRpRsWJFpk6dio2NDcWK\nFWPq1KlUqlTJ3Oe///1vmjZtak64ALp3786qVas4ffo0n3zyCSaTifPnz3P9+nVmzpzJvn37SElJ\nISQkhP79+7N69WrmzJlDhw4daNSoESdPnqR58+ZcvXqVAwcO4O7uzuzZs0lMTCQ8PJzc3FzS0tKY\nOHEijRs3vuN4xsbGsn37djIyMjh16hSvvfYaLVu2ZP369djZ2VGnTh0yMjLyjdGGDRtYt24dubm5\nDB8+nHfeeYfGjRtz/PhxXFxcmDt3LqdOnWLcuHHY2tpiY2PDrFmzCr2GBoOByZMns2nTJo4dO8Yf\nf/xhPgdvb29CQ0M5deoURqORQYMG4efn93A3koiIiMhjSEmXPBaMRiORkZHk5OTQpk0bhg0bRlhY\nGDNmzKB69erExMSwcOHCfEvYNmzYwDPPPENaWhomkwkAk8lEWFgYK1euxMXFhQ8++ID169fTs2dP\nVq1aRZs2bfjss8/o0aOHuR0bGxsGDx7MsWPHaN++PQEBAUyfPh0vLy+2bNlCeHg4H330kbn86dOn\nqVatWr7zqFKlink5XdWqVZk5cybbt29n9uzZREVF8emnnzJnzhx+/vlnc52zZ8+ydOlSypUrx3PP\nPUdMTAxhYWG0b9+etLQ0jh49ytixY6lVqxYbNmwgNjb2rkkXQHp6OosWLeLEiRMMGTKEgIAAunfv\njqurK/Xq1cPX1zffGNna2lKqVCk+/fRT83kuXbqUihUrEhgYyC+//MLBgwepU6cOoaGh7N27lytX\nrhR6DW9XvHhxli1bxpEjRxg1ahQrV65k9+7drFu3DoCdO3fe9ZxEREREnkR6pkseCzVq1MDe3p4S\nJUpga3vzu4CkpCTeffddDAYD69atIzk5OV89Ly8vlixZQosWLZgyZQoAqampJCcnM2LECAwGAzt3\n7uTcuXM0a9bMPNuyc+dO2rZtW2g8ycnJ5uV/TZs25ciRI3ner1ChAmfOnMlX78SJE+YZsebNmwPQ\nqFEjjh8/XmhfZcqUoVKlStjZ2eHg4ED16tWxsrLCyckJo9FI+fLliYyMZOzYsXzzzTdkZ2ffaSjN\nateuDUDFihXJzMzM815hYwTg7u5uLufs7EzFihXN7RiNRnr06IGzszOvvvoqK1aswMbGBij4Gt7u\n1njUqFGD33//HUdHR8LCwggLCyMkJCRfjCIiIiJPC810yWPBysoq3zF3d3dmzpxJpUqViI+PJyUl\nJV+Z6tWrY21tTUhICIGBgXz++ed06dIFNzc3IiMjcXJyYuvWrTg4OGBlZYW/vz/Tp0+nZcuW2NnZ\n5WnL2tqa3NxcAMqXL8+hQ4eoXbs2cXFxPPvss3nKtm/fnqioKA4cOED9+vUBiImJoWzZslStWhWA\ngwcP4u3tzb59+6hRo4b5PG/1cadzv9306dOJiIjA09OTjz76iLNnz96x/J3avdW/s7NzgWN0/vx5\nrK2t79jG1q1badKkCUOHDuWrr75i4cKFdOvW7a7ncfDgQbp27UpiYiIVKlQgOTmZgwcP8sknn2A0\nGmndujVdu3YtMGETEREReZLp0408tiZPnszYsWPJyckBbiYfhbG3tyciIoK+fftSt25dJkyYwODB\ngzGZTJQsWdL83FFAQABt2rThiy++yNdGzZo1+fTTT6lTpw7Tpk1j6tSpmEwmbGxsmDFjRp6yJUuW\nJCoqihkzZnD58mVycnKoVasW//rXv8xlduzYwdatW8nNzeW9994DwNvbm8GDB/Pmm2/e8zh06dKF\nN954AxcXF9zc3Lh06dI91/2zunXrMmvWLDw9PQsco/Pnz99TG6NHj2bu3LlYW1szbty4u+7aCJCQ\nkED//v25ceMGU6dOpVy5cqSkpNCtWzccHBwYOHCgEi4RERF5KlmZbj0II/I3cPHiRcaMGcPSpUst\n2k9oaCh+fn60atXKov08KebOnYurqytBQUH3VS8+Pp5njdpyXkQK5vK8f1GH8NRISEgokl115dHT\ntSw68fHxNGnSpMD39EyX/G188803vPrqq4waNaqoQxERERGRvxGt5ZG/jZdeeomXXnrpL+krPDz8\nL+nnSfHnnQxFRERE/k400yUiIiIiImJBSrpEREREREQsSEmXiIiIiIiIBSnpEhERERERsSBtpCEi\njzVtCf300DbGTxddTxGRe6eZLhEREREREQtS0iUiIiIiImJBSrpEREREREQsSEmXiIiIiIiIBWkj\nDRF5rF1Y81FRhyCPiDNw4cB3RR2GPCJ/1fV06z3c4n2IiFiaZrpEREREREQsSEmXiIiIiIiIBSnp\nEhERERERsSAlXSIiIiIiIhakpEtERERERMSClHSJiIiIiIhYkJIuERERERERC1LSJSIiIiIiYkFK\nuuS+7N69mxYtWmAwGOjbty+BgYFs2rTpvtu5du0avXv3BuDw4cPExcXlK1O3bl1zPwEBAXz33V/z\nR1U3bdpEw4YNuXjx4gPVHzp0aL5jO3bsYM2aNQ8V163xuP2/O8UYFxfHoUOHHqpPEREREXl4tkUd\ngDx5mjdvzpw5c4CbyZPBYMDd3R0vL697bsPOzo727dsD8O233+Lq6krTpk3zlCldujTR0dEAXL16\nlZdeegkfHx+srKwe0ZkULCYmhr59+7J27VqGDRt23/U//vjjfMdatWr10HHdPh73Yt26dfj5+VG7\ndu2H7ltEREREHpySLnkoJUuWpHfv3nz99dd4eXkRHh5OfHw8AJ07d6Z///6EhoZib2/P2bNnSU5O\nJjw8nDp16jB48GAuXrzI+vXrsbOzo06dOtSvX7/AftLT06lQoQJWVlZcvXqVCRMmcOnSJQAmTpxI\nrVq1zGVzcnKYNGkSFy5c4NKlS7Rq1YoRI0YUGsftTp8+zZUrV/jnP/9J9+7dGTJkCHZ2dnz77bcs\nWLAAW1tbKleuzKxZs/jkk084duwYf/zxB2lpaUycOBFvb29atmzJzp07MRgMODs7k5aWRqdOnTh5\n8iSBgYGMGjUKNzc3Tp8+Tb169Xj33XdJTU3l7bffJjMzE3d3d3bt2nXPM3tz587lzJkz/PHHH5w7\nd45x48bh7OzMDz/8wMGDB6levTp9+vTBw8MDDw8PBg4cSFhYGEajkWLFijF16lRycnJ46623KFeu\nHBcvXqRVq1aEhIQQGhrK5cuXuXz5MvPmzWPhwoXExcVhMpkYMGAAHTt2xGAwULt2bY4cOUJ6ejof\nfvghlStXJjo6mq+++gorKyv8/Pzo168foaGh+Pn50apVK3bs2MGmTZsIDw+nbdu25vgmTJjwILei\niIiIyGNLSZc8NBcXFw4ePMj333/PmTNnWLt2LdnZ2QQHB9O8eXMAKlWqxJQpU1i7di1r1qxhypQp\nAFSoUIHu3bvj6uqaL+G6cuUKBoOB3NxcEhMTGTRoEABRUVE0b96c4OBgTpw4wbhx41i1apW53vnz\n52nYsCE9e/bEaDSak647xXHLZ599xssvv4yTkxMNGzbku+++w8/Pj6+++ooBAwbQqVMnPv/8c9LT\n0wEoXrw4y5Yt48iRI4waNYovv/wyT3v+/v506NCB2NhY87ETJ06waNEiSpQogY+PDykpKSxYsID2\n7dvTp08fdu7cyc6dO/ON863xuKV8+fK8//77ANjb27Nw4UJ27tzJ4sWLWbRoES+++CJ+fn5UqlSJ\n8+fPExsbi7OzMyNGjMBgMNC6dWv+85//EBERQUhICGfPnmXRokU4OTkRHBzMwYMHgZszmwMGDGD7\n9u2cOXOG1atXYzQa6dWrFy1btgSgfv36TJgwgTlz5rBx40batWvHpk2bWLlyJVZWVgwYMIAXXnih\n0Hvo9vhEREREnjZKuuShnTt3Djc3N5KSkvD29sbKygo7OzsaNGhAUlISgHnpoZubG/v27bundm9f\nTpeenk5gYCDe3t4kJiaya9cuNm/eDEBaWlqeemXKlOGXX35h165dODo6kpmZaX7vTnHk5OSwYcMG\nKleuzLZt27hy5QrLly/Hz8+PcePGMW/ePFatWoWHhwc+Pj4A5qSyRo0a/P777/nOwd3dPd+xatWq\n4ejoCEC5cuUwGo0kJSXRvXt3ALy9ve86Hn92+3ndfr63ODs7mxOaxMRE86yVyWTCzs4OgNq1a1Om\nTBngZhJ1/PjxPOeQmJjIwYMHzYlfdnY2586dA+Af//iHuf/ff/+dxMREzp07x4ABA4CbCeOpU6fy\nxGQymQqMT0RERORpo4005KGkp6cTExODr68vnp6e5qWFWVlZ7N+/n2eeeQbgjs9hWVlZkZube8d+\nSpYsiZOTE1lZWXh4eDBgwACio6P54IMP8Pf3z1M2NjYWJycn3n//fQYOHEhGRob5A/6d4ti+fTt1\n69YlOjqaRYsW8dlnn/HHH39w6NAh1qxZw7Bhw1i+fDmAeenfrdmgxMREKlSoUOC53cuxmjVrsn//\nfgB+/vnnO45FQQrr59Z5W1v//191Dw8P3n77baKjo3n33Xd56aWXAEhKSuLGjRvk5ORw4MABqlev\nnqdtDw8PmjVrRnR0NEuXLqVjx45UqVKlwHg8PDyoXr06y5YtIzo6moCAAGrWrIm9vT0pKSkA/Pbb\nb+byt8cnIiIi8rTRTJfct127dmEwGLC2tiYnJ4dhw4aZn8fZs2cPvXv3JisrC19f33zPTBWkbt26\nzJo1C09PT/PMEeRdTpeZmUm9evVo3rw5tWvXZsKECaxdu5b09PR8uwW2aNGCkSNHEh8fT4kSJXjm\nmWdITk6+axxr166lZ8+eeY716NGDFStW0LZtW1555RXKlClDyZIladOmDcuXLychIYH+/ftz48YN\npk6dei/DV6DXXnuNMWPGsHnzZsqXL4+tbf5fzT8vLwQYOXJkoW02aNCAiIiIfInR2LFjmTx5Mkaj\nkYyMDPMzVHZ2drz11lv8/vvv+Pr65tuAo127duzZs4fg4GCuX7+Oj4+Pecbuz2rXrk2LFi0ICgoi\nMzOT+vXrU6FCBXr27Mn48ePZsGEDzz777L0MjYiIiMgTz8p0+xofEblnc+fOxdXVlaCgoIdua/v2\n7Tg7O1O/fn1++uknoqKiWLZs2SOI8t6cOXOGkSNHsnbt2r+sz3sRHx9P5aP5n28Tkb8Pt97DizqE\nv4WEhIT72oVYHl+6lkUnPj6eJk2aFPieZrpEHgNVqlRh/Pjx2NjYkJubqx38RERERJ4iSrpEHtCD\n/A2vwnh6ej70H09+GFWqVHnsZrlEREREnhZ6el1ERERERMSClHSJiIiIiIhYkJIuERERERERC9Iz\nXSLyWNPOZU8P7aj1dNH1FBG5d5rpEhERERERsSAlXSIiIiIiIhakpEtERERERMSClHSJiIiIiIhY\nkJIuERERERERC9LuhSLyWEt8b1RRhyCPiA2Q+HlRRyGPiiWvZ81x71umYRGRIqKZLhEREREREQtS\n0iUiIiIiImJBSrpEREREREQsSEmXiIiIiIiIBSnpEhERERERsSAlXSIiIiIiIhakpEtERERERMSC\nlHRJkTpz5gy9evXKd7xdu3YYjUbz66SkJAwGg8XiOHnyJG+++SYAcXFxHDp0KF+ZunXrYjAYzP9N\nnjzZIrG0bNky3zGDwUDHjh3zHPv222+pVasWZ86cuWN7p06dol27dphMJvOxrKws2rVrx9WrVwus\nExsby9atWx8geti2bRv+/v5kZmaaj7333ntEREQUWqewMRcRERF5GijpEgGcnJx44YUXAFi3bh3J\nycn5ypQuXZro6Gjzf5ZKuu4kISHB/PPGjRupXLnyXetUq1aNatWqsWfPHvOxbdu20axZM5ycnAqs\nExAQQPv27R8oxnbt2lGvXj0iIyMB2LdvH/Hx8bz11luF1ilszEVERESeBrZFHYDI/fr6669ZsWKF\n+fWHH37IvHnzqF27Nt27dyclJYV//vOfxMbG8v777xMXF4fJZGLAgAF07NgRg8FA7dq1OXLkCOnp\n6Xz44YdUrlyZoKAgfv31V3744QcOHjxI9erVqVSp0l3jWbx4MRs3bsTW1hZvb29Gjx7N3LlzcXV1\nJSgoiKSkJCZPnkx0dDT+/v4899xzHD58GCsrKyIjI3FwcCAsLIyjR49StWrVPDNEt+vUqRNfffUV\nXl5epKWlYTQacXV1BSAwMJCpU6dSo0YNtm/fzr///W/eeecdc91evXrx+eef06xZM+BmkvPGG2/c\nNf7evXszbdo0Dhw4QFZWFsOGDcPHx6fAcb3d+PHjCQgIoEOHDkybNo3Zs2djZ2dHVlYW77zzDidP\nniQ3N5cRI0ZQsmTJ+x5zERERkSeJZrrksTVw4EDzUr6xY8eaj584cYL58+cTHR2Nu7s7P/74I716\n9WL9+vUAfPHFFwQEBLB9+3bOnDnD6tWrWbZsGVFRUaSlpQFQv359lixZQsuWLdm4caO57bp16/Li\niy8yevTofB/+r1y5kmd54a+//srhw4fZvHkzq1evZvXq1Zw8eZLvv/++0HO6du0anTp1Yvny5ZQv\nX54dO3awY8cOjEYja9euZdSoUdy4caPAuu3atWPHjh2YTCa++eYbfH19ze/17NnTfP7r1q2jR48e\neer6+PgQFxdHRkYGycnJ/P777zRs2PCu8W/dupVLly7x2WefsXDhQn755Zc7justjo6OTJs2jf79\n+9OzZ088PT0BiImJwdnZmRUrVhAZGcmUKVPuOOYiIiIiTwPNdMlja/HixRQrVgzAPFsE4OLiwtix\nYylZsiTHjh2jYcOGeHp6kpOTw9mzZ9m0aRNLlixhzZo1HDx40PwsWHZ2NufOnQPgH//4BwBubm78\n/vvv9xTPreWFt9u8eTMNGjTAzs4OAG9vb44cOXLHdm71XbFiRYxGI2fPnqV+/foAVKpUiYoVKxZY\nr1ixYnh5ebF//36+++475syZw8qVKwHw8/Oje/fuDBo0iAsXLlCnTp08de3t7fHx8WHLli2cO3eO\nl19+GYBjx47dMf7jx4/TsGFDAMqVK0dISAgLFiwocFxLlSqVp8/nnnuOUqVKERAQYD6WmJhIfHw8\nBw4cMNe9dOnSHcdLRERE5EmnmS55oly9epWPPvqIOXPmMG3aNIoVK2beIKJHjx7Mnj2b6tWrU6pU\nKTw8PGjWrBnR0dEsXbqUjh07UqVKlbv2YWVllWfTiTvx8PDgwIEDZGdnYzKZiIuLw93dnWLFipGS\nkgLAwYMH87X/5zZ+/vlnAC5evMjFixcL7a9z584sWbKE0qVLU7JkSfPxEiVK0KxZM6ZPn07Xrl0L\nrNuzZ0+++uortmzZQpcuXe4Y/+2x/fLLL8DNsR80aNADj+ut9jp16kR0dDQLFizA19eX0qVL39eY\ni4iIiDxplHTJE8XR0ZHGjRvTvXt3+vTpQ/Hixc0bMPj6+vLjjz/Ss2dP4OZyPAcHB4KDg82zLY6O\njnfto0GDBkRERJCUlHTXsrVq1aJjx44EBQXRo0cPKleujI+PDx07dmT79u0YDIY8m18UxMfHBzc3\nN3r27MmMGTNwdnYutGzLli3Zu3cvnTt3zvder1692LJlC/7+/gXW9fT05Pr163h6epo30Cgs/lva\nt29P6dKlCQoKYtCgQfTr1++BxxVuPnt27Ngx+vbtS2BgIJUrV8ba2vq+xlxERETkSWNl0tfLIk+F\nAwcOsHz5cmbNmlXUoTwy8fHxOH27sqjDEJG/WM1x7xd1CH87CQkJeHl5FXUY8gjoWhad+Ph4mjRp\nUuB7eqZL5CmwfPly1q1bx0cffVTUoYiIiIjInyjpEnkK9O3bl759+xZ1GCIiIiJSAD3TJSIiIiIi\nYkFKukRERERERCxISZeIiIiIiIgF6ZkuEXmsaRezp4d21Hq66HqKiNw7zXSJiIiIiIhYkJIuERER\nERERC1LSJSIiIiIiYkFKukRERERERCxISZeIiIiIiIgFafdCEXms7ejXo6hDkEcopagDkAfWatln\nRR2CiMgTSzNdIiIiIiIiFqSkS0RERERExIKUdImIiIiIiFiQki4RERERERELUtIlIiIiIiJiQUq6\nRERERERELEhJl4iIiIiIiAXdMenavXs3LVq0wGAwYDAY6NWrF9HR0fnK7dixgzVr1txXx7GxsWzd\nurXQ9w0GA0lJSffV5u3WrFlDVlbWPZU1GAz06NEDg8FAnz598Pf3Z/v27Q/c98No2bLlQ7exZcsW\nOnfuzLJlyx5BRAXbvXs3ISEhD9XG9evXmT59Oj179jTfY999990d67Rr1w6j0ZjnWGxsLBEREfnK\nhoSEkJmZed9xSG7U6AAAFCVJREFU7d27l1deeQWDwcDLL7/MihUr7rnumTNnaNy4sfl8DAYDH3/8\n8X3HcDdGo5F27do9svbS0tLo3bs3AwcOLLCvli1bsnDhQvOxhISEAs8rNDSUHTt23FOfc+fOZdWq\nVQ8etIiIiMgT4q5/HLl58+bMmTMHgMzMTHx9fenatSulSpUyl2nVqtV9dxwQEHDfde7HvHnz6Nat\n2z2XnzlzJp6engAcO3aM4cOH07p1a0uFZ1Hff/89I0eOfKQfyi1h/PjxNG7cmAkTJgCQmprKoEGD\naNq0KWXKlHno9m/dt/fj9OnTTJs2jYULF+Lq6kpGRgb9+vWjatWq93yfV69evcAvJx5niYmJlC9f\nnrlz5+Z775tvvsHPz4/169czcOBArK2t8fLywsvLqwgiFREREXny3DXpul16ejrW1tbY2NhgMBhw\ndnYmLS2NTp06cfLkSQIDAxk1ahRubm6cPn2aevXq8e677/LHH38QGhrK1atXMZlMzJw5kw0bNuDq\n6oqHhwdRUVFYW1uTkpJC79696dOnj7nPq1evMmHCBC5dugTAxIkTqVWrFqGhoZw6dQqj0cigQYPw\n8/Mz14mJiSElJYWQkBAiIyMJDw8nPj4egM6dO9O/f/87nue5c+fMSeXhw4eZNm0aAGXKlGHGjBn8\n9ttvzJ8/Hzs7Oy5cuEBgYCC7du3i0KFD9OvXj+DgYPbs2cOcOXOwsbGhatWqTJkyhQ0bNvD999+T\nkZFBSkoK/fr1Y+vWrRw5coQxY8bg4+NDZmYmISEhnD9/nlq1ajF58mTS09MLHIO2bdvi4eGBh4eH\nOXHZunUr//73vzlw4ADOzs6MHDnSXKZ///5MmDCB7OxsrKysmDhxIrVr16ZDhw40atSIkydP0rx5\nc65evcqBAwdwd3dn9uzZd70vvvzyS5YuXYq9vT3PPvssU6ZMAeCdd97h5MmT5ObmMmLECJo1a2au\nk5KSwvHjx/nggw/Mx8qWLUtsbCxWVlZkZWUVWn/SpEmcPXsWFxcXZs6cCcDPP/9M//79SU9PZ9iw\nYbRp04Z27dqxefNmTp48SXh4OLm5uaSlpTFx4kQaN27MrFmz8PX1pX79+uYYvvjiC7p164arqysA\nxYsXZ9GiRTg4OJCVlcX48eM5ffo0OTk5vPLKK3nuu7sp6D4MDQ3Fz8+PVq1asWPHDjZt2kR4eDj/\n8z//Q+PGjTl+/DguLi7MnTuXjIwM3n77bdLS0qhWrZq53cLu0YiICOzs7OjVq1eeLyAWL17Mxo0b\nsbW1xdvbm7feeoupU6eSnJzMRx99xPDhw/PEHRMTw4QJE0hNTWX79u20bduW3bt3s3r1aubMmZPn\nPgRYuXIlixYtIicnh+nTp2NjY1Pgvwtwc1Z28+bNZGRkMHHixDzXQkRERORpcdeka9euXRgMBqys\nrLCzsyMsLIySJUsC4O/vT4cOHYiNjTWXP3HiBIsWLaJEiRL4+PiQkpLCvHnzaNeuHUFBQfznP//h\nwIEDefq4ePEin3/+Obm5ufj7++Pr62t+LyoqiubNmxMcHMyJEycYN24cCxYsYPfu3axbtw6AnTt3\n5mmvZ8+efPrpp8yZM4fvv/+eM2fOsHbtWrKzswkODqZ58+bUqlUrT52xY8dia2vLuXPnaNiwIe+9\n9x4AYWFhzJgxg+rVqxMTE8PChQt5/vnnuXDhAp9//jkHDx7krbfe4rvvvuPixYsMHTqUoKAgwsLC\nWLlyJS4uLnzwwQesX78eW1tbrl27Zv7Qu2TJEtauXcvu3btZtmwZPj4+5g/WlStX5q233mLbtm3s\n27cv3xisWrWK8+fPExsbi7Ozs/k82rdvz3fffYefnx+NGjXKU2b48OEYDAZ8fHxISEhg/PjxxMbG\ncvbsWZYuXUq5cuV47rnniImJISwsjPbt25OWlpZnVvPPLl26xNy5c1m/fj2Ojo7MmDGDNWvWYG1t\njbOzMzNmzODSpUv07duXjRs3muudPXuWqlWrml9/9NFHxMXFceXKFd544w1SU1MLrR8UFETDhg2Z\nNWsWa9euxdHRkRIlSjB//nxSU1Pp2bNnnlmpo0ePMnbsWGrVqsWGDRuIjY2lcePGjBkzJt/5JCcn\nU7t27TzHnJycAFi1ahXOzs7Mnj2b9PR0AgICaN68OWXLls1T/ujRoxgMBvPriIgIfvvttwLvw8Kc\nPn2apUuXUrFiRQIDA/nll1/49ddfqVmzJiEhIfz3v/9l9+7dd7xHjUYjMTExedo9fPgwmzdvZvXq\n1dja2jJs2DB27tzJ+PHjWb16db6E68SJE9y4cYPatWvz8ssvs3jxYtq2bZunzO33WGhoKI0bN2bw\n4MFs376d2bNnExoaWuC/CwCVK1dmypQp5i8e1q9fX+iYiIiIiDyp7mt54Z+5u7vnO1atWjUcHR0B\nKFeuHEajkePHj9OjRw8AWrRoAZBnGVOjRo2wt7cHoEaNGpw6dcr8XmJiIrt27WLz5s3AzWdPHB0d\nCQsLIywsjPT0dLp06VJo/ElJSXh7e5uTxgYNGpCUlJQv6bq1vHD16tV89dVXVKxY0Vz/1rfyWVlZ\n5nOuUaMGdnZ2ODk5Ua1aNezt7SldujRGo5HU1FSSk5MZMWIEABkZGbRs2ZJq1aqZl2Q5OTnh6emJ\nlZWVuR5ApUqVqFy5snlcjh8/XuAYADg7O+dJuApye5mkpCSaNm0KgJeXFxcuXABuzo5UqlQJAAcH\nB6pXr26O8fbnp3Jzc7l27Zo5CbGysuL06dNUr17dfM2bNm3Kjz/+iJWVFfHx8eYEOzs7m0uXLplj\ncXNz4+zZs+a2b33Yj4iI4Pr16yQmJhZY387OjoYNGwLQuHFjdu7cSb169WjSpAlWVla4uLjg5OTE\n5cuXzW2XL1+eyMhIihcvzrVr18yxFqRSpUrmcbnl0KFDmEwmkpKSeP755wFwdHTE09OTo0ePmu/l\n559/Hn9//wKXF27YsKHA+/B2JpMpz3W7dQ9WrFgRo9HIkSNHePHFFwFo0KABtrY3f30Lu0cL+v08\nduwYDRo0wM7ODgBvb2+OHDlCgwYNChyPmJgYbty4waBBgwDYt28fJ0+ezFPmz/eht7c3cPP+nTVr\nFlDwvwuA+X6sUaOGORETERERedo81O6FVlZW93TM09OTX375BYC4uLh8S9YSEhLIycnhxo0bHD16\nlGeeecb8noeHBwMGDCA6OpoPPvgAf39/kpOTOXjwIJ988gnz589n9uzZZGdn54sjNzcXT09P85Ku\nrKws9u/fn6f9PwsMDKRixYrmRNPd3Z2ZM2cSHR3N6NGjzc95FXSetzg7O+Pm5kZkZCTR0dEMGTLE\nvDTuTvUALly4QHJyMnDzA26NGjUKHAMAa+u7X77by3h6erJ3717g5pjfWkJ3t5huOXLkCK+//jpw\nc0aobNmyVKlShaSkJK5fvw7Anj17cHd3x8PDg06dOhEdHc2CBQvw9fWldOnS5rbc3NyoUqVKnk0q\nrl69SkJCAlZWVoXWz8rKIiEhAbi54UWNGjUAzPdXSkoK169fz5METJ8+neHDhzNz5kxq1qyZJ7n5\ns86dOxMTE0NqaioA165dY9KkSSQnJ+cZv/T0dBITE/H09CQ6Opro6Gjz2BSksPvQ3t7enGz89ttv\n5vIFXRMPDw9+/vlnc9lb93xh92hB94eHhwcHDhwgOzsbk8lEXFxcgckZ3Ex0N23axIoVK1i0aBGL\nFi1i8ODBrFy5Mk+5P/dzK1G+/foUdo/dKnv48GFz4i8iIiLytLmvZ7oe1JAhQxg/fjxffvklADNm\nzODzzz83v5+dnc1rr73G5cuXef311/Ms1xoyZAgTJkxg7dq1pKenM3ToUMqVK0dKSgrdunXDwcGB\ngQMHmr/1v8Xb25vBgwezbNky9uzZQ+/evcnKysLX15c6dercMd4JEybQpUsXunbtyuTJkxk7diw5\nOTnAzQ/wt5KiwlhbWzNhwgQGDx6MyWSiZMmSzJo1i/Pnz991rMqUKcO0adO4ePEijRo1onXr1tSv\nXz/fGDyIMWPGEBYWxuLFi8nOzmb69On3Vb9WrVpUqVKFwMBAihUrRnh4OGXLlmXYsGH069cPa2tr\nqlWrxttvv21+Zqxv376kp6cTHByc78P5zJkzmTt3LkFBQdjY2HD9+nW6d+9O586dMZlMBda3s7Mj\nOjqakydPUqlSJUaNGsWGDRvMG15cv36dKVOm5PmQ36VLF9544w1cXFxwc3MzPxtX0DNdVapUYfTo\n0QwdOhQbGxuuXbtGjx49aN26NZmZmYSFhREUFITRaGTo0KG4uLjc09i1bdu2wPuwZ8+ejB8/ng0b\nNvDss8/esY0+ffowbtw4goKC8PDwMM9W3c89WqtWLTp27EhQUBC5ubk0adIEHx8f9uzZk6/stm3b\nqFOnTp5NTQICAujatat5xq8g//3vf+nXrx9WVlbMmDHjjknumTNn6NevH5mZmeZnAUVERESeNlam\nO30i+gvc/kC+iMjt4uPjufbhe0UdhogArZZ9lud1QkKCdjF9iuh6Pj10LYtOfHw8TZo0KfA9/XFk\nERERERERC/pLlhfeSbNmzfJsJS4iIiIiIvI00UyXiIiIiIiIBSnpEhERERERsSAlXSIiIiIiIhak\npEtERERERMSCinwjDRGRO/nzNtXy5NI2xiIi8nelmS4RERERERELKvI/jiwiUpj4+PiiDkFERETk\nnhX2x5GVdImIiIiIiFiQlheKiIiIiIhYkJIuERERERERC1LSJSIiIiIiYkFKukTksZObm8ukSZPo\n3bs3BoOBkydPFnVI8oCysrIYPXo0wcHB9OjRg61btxZ1SPII/PHHH7Ru3ZqkpKSiDkUe0rx58+jd\nuzcBAQHExMQUdTjyELKyshg1ahSBgYEEBwfr9/Mxo6RLRB47W7ZsITMzkzVr1jBq1CjCw8OLOiR5\nQF9++SVlypRh5cqVLFiwgKlTpxZ1SPKQsrKymDRpEsWLFy/qUOQh7d69m/3797Nq1Sqio6O5cOFC\nUYckD2H79u1kZ2ezevVq3nzzTT744IOiDkluo6RLRB478fHxvPjiiwA0bNiQX3/9tYgjkgfl6+vL\nW2+9ZX5tY2NThNHIozBz5kwCAwMpX758UYciD+nHH3+kZs2avPnmmwwZMoQ2bdoUdUjyENzd3cnJ\nySE3N5f09HRsbW2LOiS5ja6GiDx20tPTcXR0NL+2sbEhOztb/wN5ApUsWRK4eU2HDx/OiBEjijgi\neRixsbGULVuWF198kfnz5xd1OPKQLl26xLlz54iKiuLMmTO8/vrrfP3111hZWRV1aPIAHBwcOHv2\nLB07duTSpUtERUUVdUhyG810ichjx9HRkWvXrplf5+bmKuF6gp0/f55+/frRtWtX/P39izoceQjr\n1q3jp59+wmAwkJCQwNixY0lJSSnqsOQBlSlThhdeeAF7e3s8PDwoVqwYqampRR2WPKAlS5bwwgsv\n8M033/DFF18QGhqK0Wgs6rDk/yjpEpHHTuPGjdmxYwcAP//8MzVr1iziiORB/f777wwcOJDRo0fT\no0ePog5HHtKKFStYvnw50dHReHl5MXPmTMqVK1fUYckDatKkCT/88AMmk4mLFy9y48YNypQpU9Rh\nyQMqVaoUTk5OAJQuXZrs7GxycnKKOCq5RV8di8hjp0OHDuzcuZPAwEBMJhMzZswo6pDkAUVFRZGW\nlkZkZCSRkZEALFiwQJswiDwG2rZtS1xcHD169MBkMjFp0iQ9d/kEGzBgAOPHjyc4OJisrCxCQkJw\ncHAo6rDk/1iZTCZTUQchIiIiIiLytNLyQhEREREREQtS0iUiIiIiImJBSrpEREREREQsSEmXiIiI\niIiIBWn3QhEREXksnTlzhi5dulCnTh3zsWbNmjF06NBH0p7RaMTBwYEPP/yQ0qVLF1jn8uXL/PDD\nD/j7+zN//nyaN29O/fr1H6h/Efn7UtIlIiIij63q1asTHR1tsfbef/99PvvsMwYNGlRg+cOHD7Nt\n2zb8/f0ZPHjwI4tDRP5elHSJiIjIEyUnJ4dJkyZx4cIFLl26RKtWrRgxYgShoaHY29tz9uxZkpOT\nCQ8PzzNL9mcmk4nz589TrVo14GYC9uuvv3Lt2jU8PT157733iIqK4tChQ6xZs4b9+/fj5+dHixYt\nGD9+PKdPnyYnJ4dXXnkFPz+/v+r0ReQJpKRLREREHltHjx7FYDCYX0dERJCVlUXDhg3p2bMnRqPR\nnHQBVKpUiSlTprB27VrWrFnDlClTCmzv8uXLGI1G/P396d69O+np6ZQqVYr//d//JTc3l06dOnHx\n4kWGDBnC6tWr6d27N/v37wdgzZo1ODs7M3v2bNLT0wkICKB58+aULVv2rxsYEXmiKOkSERGRx1ZB\nywvT09P55Zdf2LVrF46OjmRmZprf8/LyAsDNzY19+/YV2l5GRgZDhgzBxcUFW1tbihUrRmpqKiNH\njsTBwYHr16+TlZVVYExJSUk8//zzADg6OuLp6cnp06eVdIlIobR7oYiIiDxRYmNjcXJy4v3332fg\nwIFkZGRgMpkAsLKyuqc2ihcvTkREBJGRkRw6dIgdO3Zw/vx5/vWvfzFy5Ehzm9bW1uTm5uap6+np\nyd69e4GbCWBiYiJVqlR5tCcpIk8VzXSJiIjIE6VFixaMHDmS+Ph4SpQowTPPPENycvJ9t+Pq6sqY\nMWOYNGkSc+fOJTIykl69emFvb0/VqlVJTk6mWrVqJCYmsmTJEnO9Xr16ERYWRlBQEEajkaFDh+Li\n4vIIz1BEnjZWpltfDYmIiIiIiMgjp+WFIiIiIiIiFqSkS0RERERExIKUdImIiIiIiFiQki4RERER\nERELUtIlIiIiIiJiQUq6RERERERELEhJl4iIiIiIiAUp6RIREREREbGg/wfS2SFiwAYumwAAAABJ\nRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a1230b978>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Visualization\n", | |
"plt.figure(figsize=(10,5))\n", | |
"temp = df.sort_values(by='Fan Ratio', ascending=False).head(10)\n", | |
"g = sns.barplot('Fan Ratio', 'Title', data=temp, palette='coolwarm');\n", | |
"plt.ylabel('');" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"It appears my posts on self improvement garnered a far better `Fan Ratio` than my technical data science posts. I'm really curious if this is simply a built in bias dealing with the genre of post or not. Luckily, all my posts are published based on their goals. Startup is business, entrepreneurship, and self improvement. Ascent is all self improvement. Hackernoon and Towards Data Science and Freecodecamp are generally are technical, though some posts differ. Could also be that some publications just have generally more active readers. Or a small sample size. Hard to tell, but let's look into it." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Publication\n", | |
"The Ascent 8.605013\n", | |
"The Startup 3.985051\n", | |
"Hacker Noon 3.608070\n", | |
"Towards Data Science 2.440604\n", | |
"UX Planet 1.711613\n", | |
"freeCodeCamp 1.597695\n", | |
"Name: Fan Ratio, dtype: float64\n" | |
] | |
} | |
], | |
"source": [ | |
"# Group by publication\n", | |
"temp = df.groupby('Publication').mean()['Fan Ratio']\n", | |
"temp = temp.sort_values(ascending=False)\n", | |
"print(temp)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAAJHCAYAAABGlkSFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XuYlmW99//PDMOAxCjiBuUQCDCW\nZLkJK60gK22VmzaGG+TA1NKsNIWFQiYIKAiKmLGWUhKZA4KhmG3VqH5pJmaTuEGQwjRNBBTSBcIA\nM/fvD4/meXjcVCqcbF6vv5hrruu8vvd96XG8Pe8ZrKpUKpUAAEAh1aUHAABgxyZIAQAoSpACAFCU\nIAUAoChBCgBAUYIUAICiakoPwJvT0NBQegQAgH9Znz59XnFMkG4HXu3Bsv1ZuHBhevfuXXoMthDP\ne8fhWe9YdvTn/VobaT6yBwCgKEEKAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEAKKqqUqlUSg/B\nG9fQ0JCb79m19BgAwDbqsq/12GL3amhoeNW/P90OKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAF\nAKAoQQoAQFGCFACAogQpAABFCVIAAIoSpAAAFCVIAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkA\nAEUJUgAAihKkAAAUJUgBAChKkAIAUJQgBQCgKEEKAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEA\nKEqQAgBQlCAFAKAoQQoAQFGCFACAompKD7CljB8/PgsWLMiKFSuybt26dOnSJbvuumsGDhyYWbNm\n5aqrrnpD61588cV58MEH88Mf/vAtnnhTzzzzTBYtWpSPfvSjm/U+AABb2g4TpMOHD0+SzJkzJ48/\n/niGDh2aJLnvvvve8Jpr167NH//4x/Tq1Sv33Xdf3v/+978ls76aefPm5fHHHxekAMB2Z4cJ0tfz\n5JNP5otf/GJWrlyZj3zkIznnnHPy2GOP5dJLL02SdOjQIePGjUtdXd0m1/385z/PYYcdln79+mXG\njBktQXrVVVdl3rx5aW5uztFHH51TTz01Dz74YMaOHZtKpZJOnTpl4sSJefLJJ19xj0cffTTXXXdd\nWrdunaeffjpHHXVUzjzzzHznO9/JunXrcvDBB+djH/vYln2DAAA2Iz9DmqSxsTHXXHNNZsyYkenT\npydJRowYkYsvvjj19fXp169fpk6d+orrZs+eneOPPz4f+MAH8uijj2bZsmVJkh/+8IeZOHFiZsyY\nkbZt27asd9lll2X27Nk57LDDsmTJkte8xzPPPJPJkyfnpptuytSpU9OqVauceeaZOeaYY8QoALDd\nsUOa5B3veEdqa2uTJDU1L78lS5YsyejRo5MkGzZsSPfu3Te5ZsmSJfnTn/6U8ePHJ0mqqqoyc+bM\nnHfeeZk0aVImTZqU5557Ln379k2SPP/88+nZs2eSZODAga97j169eqWmpiY1NTUtQQsAsL0SpHk5\nJv9f3bt3z4QJE9K5c+c0NDRkxYoVm3x/9uzZGTx4cEtcPvPMMznxxBPzla98JbfffnsmTZqUSqWS\no48+OkcffXT23HPPPPHEE3n729+e73znO+nevftr3uPV5qmurk5zc/NmePUAAGUJ0tcwatSoDBs2\nLE1NTUmSsWPHtnxv/fr1+elPf5rbbrut5Vjnzp2z33775Y477sguu+yST3/609lll13ywQ9+MJ07\nd87o0aNz4YUXprq6OnvssUdOPfXU7L333q+4x/Lly191nl69euXaa6/N/vvvn6OPPnozvnIAgC2r\nqlKpVEoPwRvX0NCQm+/ZtfQYAMA26rKv9dhi92poaEifPn1ecdwvNQEAUJQgBQCgKEEKAEBRghQA\ngKIEKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAFAKAoQQoAQFGCFACAogQpAABFCVIAAIoSpAAA\nFCVIAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBAChKkAIAUJQgBQCg\nKEEKAEBRghQAgKIEKQAARQlSAACKEqQAABRVU3oA3rzLvtaj9AhsAQsXLkzv3r1Lj8EW4nnvODzr\nHYvn/erskAIAUJQgBQCgKEEKAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAFAKAo\nQQoAQFGCFACAogQpAABFCVIAAIoSpAAAFCVIAQAoSpACAFBUTekBePNm/n//W3oEtoh9Mn+ZZ70j\nGHB4XekRALYoO6QAABQlSAEAKEqQAgBQlCAFAKAoQQoAQFGCFACAogQpAABFCVIAAIoSpAAAFCVI\nAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBAChKkAIAUJQgBQCgKEEK\nAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAFAKAoQQoAQFGCFACAogQpAABFCVIA\nAIoSpAAAFFVTeoDNbfz48VmwYEFWrFiRdevWpUuXLtl1110zcODAzJo1K1ddddW/tV5zc3MmTJiQ\nxYsXp7q6Oq1bt843vvGNdOnSJffff3/q6uqy3377/Utr/eIXv8gBBxyQTp06vZGXBgCwXdjud0iH\nDx+e+vr6nHnmmTnmmGNSX1+fb33rW294vbvvvjvLly/P9773vXz3u99N//79M27cuCTJLbfckuXL\nl//La91www1ZvXr1G54FAGB7sN3vkL6eJ598Ml/84hezcuXKfOQjH8k555yTxx57LJdeemmSpEOH\nDhk3blzq6upartlrr73yyCOP5Gc/+1kOPfTQfOxjH0u/fv3yyCOP5O67786CBQuy77775le/+lXu\nvPPObNy4MXV1dZk8eXJ+8pOf5JZbbklzc3O+9KUvZeHChRk2bFiuuOKKDBs2LD/4wQ+SJCeccEIm\nTZqUW2+9NY8//nief/75vPjii7noootyyCGHFHmvAAA2l+1+h/T1NDY25pprrsmMGTMyffr0JMmI\nESNy8cUXp76+Pv369cvUqVM3ueY//uM/cskll2Tu3Lk55phj8rnPfS7z58/Pu971rvTt2zfnn39+\n9tprr/z973/P9ddfnxtvvDEbN27Mww8/nCTZeeedM3PmzBx++OHp3bt3JkyYkNatW7/mjG3bts0N\nN9yQK664ImPGjNl8bwYAQCE79A7pO97xjtTW1iZJampefiuWLFmS0aNHJ0k2bNiQ7t27b3LNokWL\n0r1790yaNCmVSiX33HNPzjvvvNxzzz0t5/zjZ0uHDBmSdu3a5dlnn83GjRuT5BXrvZpKpdLy50MP\nPbRl1ueee+5NvFoAgK3TDh2kVVVVrzjWvXv3TJgwIZ07d05DQ0NWrFixyffvvffeLFq0KOPGjUur\nVq3yjne8IzvttFOqqqpSVVWVSqWSRYsWZe7cuZk9e3bWrl2b4447riUyq6v/z6b0P85v06ZNnn/+\n+TQ1NWXNmjV5+umnW85ZsGBBPv3pT2fx4sV++QkA2C7t0EH6akaNGpVhw4alqakpSTJ27NhNvj9o\n0KBMmDAhn/nMZ9K+fftUV1fn8ssvT5IceOCBmThxYiZNmpSddtopxx13XGpra7PHHnu86i87HXzw\nwbngggsybdq0fPCDH0z//v3TtWvXdOvWreWchQsX5vOf/3zWrl2bSy65ZDO+cgCAMqoq//fnw2xV\nJk+enN133z0DBgx4zXMaGhqy+H97bcGpgM1twOF1WbhwYXr37l16FLYAz3rHsqM/74aGhvTp0+cV\nx3foX2oCAKA8H9lvxc4555zSIwAAbHZ2SAEAKEqQAgBQlCAFAKAoQQoAQFGCFACAogQpAABFCVIA\nAIoSpAAAFCVIAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBAChKkAIA\nUJQgBQCgKEEKAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAFAKAoQQoAQFGCFACA\nompKD8CbN+DwutIjsAUsXLgwvXv3Lj0GALzl7JACAFCUIAUAoChBCgBAUYIUAICiBCkAAEUJUgAA\nihKkAAAUJUgBAChKkAIAUJQgBQCgKEEKAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEAKEqQAgBQ\nVE3pAXjz/rj4udIjsCW02sOz3oq8p9fupUcA2G7YIQUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKk\nAAAUJUgBAChKkAIAUJQgBQCgKEEKAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAF\nAKAoQQoAQFGCFACAogQpAABFCVIAAIoSpAAAFCVIAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkA\nAEUJUgAAihKkAAAUJUgBAChKkAIAUNR2E6T33XdfBg8evMmxiRMnZs6cOf/WOsOHD89dd931pmb5\n6Ec/mhtuuKHl6yVLlmTQoEFvak0AgO3VdhOkW5vrr78+jz/+eOkxAAC2ejWlB9gSmpqaMnLkyDz7\n7LNZtWpV+vXrl/POOy9PPPFELrroomzYsCFt27bNVVdd1XLNgw8+mEsvvTTf+ta3kiQjRoxIY2Nj\n2rRpk0suuSRNTU358pe/nA4dOqRfv34544wzNrnn8OHDM3z48MycOXOT448++mguueSStGrVqmWt\nzp07Z9q0afnpT3+ampqaHHLIITn//PMzefLkPP3003n++efzzDPP5Otf/3r69u27+d8wAIAtaLsK\n0nnz5m3y0fhTTz2Vr33ta1m6dGkOOuigHH/88WlsbGwJ0gkTJuTMM89Mv3798rOf/SyPPvpokuSB\nBx7IvffemylTpmS33XbLeeedl0GDBuXDH/5w7r333kycODGDBw/OihUrcsstt6S2tvYVs3z4wx/O\nXXfdleuuuy5HHnlky/GLLrooY8eOTe/evTN37tyMHz8+X/3qV/Pzn/88s2bNSk1NTc4555z8+te/\nTpLU1tZm6tSpueeeezJt2jRBCgBsd7arID300EM32eWcOHFikqRDhw55+OGHM2/evLRv3z7r169P\nkvzlL3/JwQcfnCQ56qijkiQ/+clPcs8992TNmjWpqXn57Vm8eHG+/e1vZ+rUqalUKmndunWSZJ99\n9nnVGP2H4cOH53Of+1y6du3acmz58uXp3bt3kuS9731vrrzyyjz++OM58MADW9Y95JBD8qc//SlJ\nWs7da6+9WuYGANie7BA/QzpnzpzU1dXlyiuvzOmnn55169alUqmkZ8+eefjhh5MkP/rRj1JfX58k\nOfvss3Pqqadm1KhRSZIePXpk6NChqa+vz+jRo/Of//mfSZLq6td/+9q3b58xY8Zk7NixLcf23HPP\nLFq0KEly//335+1vf3t69OiRhx56KBs3bkylUsn999+f7t27J0mqqqre0vcCAGBrs13tkL6Www47\nLEOGDElDQ0N22mmndOvWLcuXL88FF1yQkSNH5tprr03btm1zxRVXZMGCBUmS448/Prfffnt+/OMf\nZ9iwYRk1alQaGxuzbt26fOMb3/iX7/3+978/Rx99dBYuXJgkufTSS3PJJZekUqmkVatWGTduXLp0\n6ZJPfvKTGTBgQJqbm9OnT58cccQRLeEKALA9q6pUKpXSQ/DGNTQ0pKquW+kxYIfznl67b9b1Fy5c\n2PIjO2zfPOsdy47+vBsaGtKnT59XHN8hPrIHAGDrJUgBAChKkAIAUJQgBQCgKEEKAEBRghQAgKIE\nKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAFAKAoQQoAQFGCFACAogQpAABFCVIAAIoSpAAAFCVI\nAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBAChKkAIAUJQgBQCgKEEK\nAEBRghQAgKIEKQAARdWUHoA37z29di89AlvAwoUL07t379JjAMBbzg4pAABFCVIAAIoSpAAAFCVI\nAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBAChKkAIAUJQgBQCgKEEK\nAEBRghQAgKIEKQAARQlSAACKqik9AG/esofnlR6BLaBjttyz7vTuQ7fIfQAgsUMKAEBhghQAgKIE\nKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAFAKAoQQoAQFGCFACAogQpAABFCVIAAIoSpAAAFCVI\nAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBAChKkAIAUJQgBQCgKEEK\nAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAFAKComtf75vjx47NgwYKsWLEi69at\nS5cuXbLrrrvmW9/61mYfbM2aNfnMZz6TX/ziF//03AEDBmTjxo1p27ZtNmzYkC5duuSiiy7KLrvs\n8prX3HjjjTnppJNSXf3Pm/wvf/lLxo0bl6ampjQ3N+eAAw7I4MGDU1VV9YpzH3nkkdx999358pe/\n/E/XBQDgnwTp8OHDkyRz5szJ448/nqFDh26Rod6IiRMnplu3bkmSW2+9NRdffHG++c1vvub5U6ZM\nyQknnPAvBemVV16Z0047LR/4wAdSqVTy5S9/Ob/+9a/z0Y9+9BXnvutd78q73vWuN/5CAAB2MK8b\npK9n7NixmT9/fpLk05/+dD75yU/mjDPOyJw5c/KHP/whZ599du69994888wzGT16dCZOnJiLLroo\nq1evzqpVqzJgwICccMIJGTBgQDp16pQXX3wxV199dc4///z87//+b7p27dpyrxtuuCE//vGPU11d\nnfe+973/NIw/85nP5Oqrr8769evT0NCQa6+9NknS2NiYK664Ivfee29WrlyZIUOGZNKkSRkxYkSW\nLVuWF154IYcffnjOOeecTdbr3LlzbrnllrRt2zbvfve7M3ny5NTU1KS5uTmjR4/OggULsnHjxpx7\n7rlp06ZN5syZk4kTJ+anP/1pbrjhhlRXV+d973tfBg8enKuuuirLli3Lc889l6VLl+bCCy/MBz/4\nwcydOzfXXnttKpVK3v3ud2fUqFGZN29err766tTU1KRbt24ZPXp0amre8CMDANgqvaGfIZ07d26W\nL1+eH/zgB5kxY0bmzJmTVatWpV27dlm2bFnuvvvu7Lnnnnn00Ufzy1/+MkceeWSefPLJfOpTn8q0\nadPyP//zP/ne977Xst4/jt9yyy155zvfmRkzZqR///4t358zZ05GjhyZWbNmZe+9905TU9PrzldV\nVZW6urqsXr06f/7znzNp0qTccMMN6du3b26//faceOKJ6dixYyZNmpSlS5emT58+mTZtWmbMmJEZ\nM2a8Yr2hQ4fmXe96VyZOnJgPfOAD+cY3vpHVq1fnjjvuyJo1a3LzzTfn29/+dh566KGWa1auXJlr\nr7023//+9zNz5sw89dRTmTdvXpKkbdu2mTp1ai644ILccMMNWb9+fcaNG5frrrsuc+bMye67756l\nS5fm4osvzjXXXJPp06enY8eOue22297I4wIA2Kq9oe22JUuW5JBDDklVVVVqa2tz4IEHZsmSJTni\niCNy11135cEHH8wXvvCF3HPPPbnvvvtyxRVXpLGxMfX19bnjjjvSrl27bNy4sWW97t27J0n+/Oc/\n54gjjkiSHHzwwS0fp0+YMCHTpk3L3/72t7znPe9JpVJ53fkqlUpWrlyZXXfdNZ06dcqYMWPSrl27\nPPvss3nf+963ybkdOnTI/Pnzc++996auri4bNmx4xXr33XdfTjvttJx22mlZs2ZNLrvsskyZMiVv\ne9vbcvDBBydJOnXqlHPPPTe/+93vkiRPPPFEnn/++ZxxxhlJktWrV+epp55Kkrzzne9Mkuy9995p\nbGxsmbVjx45JknPOOadlF/Xcc89Nkqxduza1tbX/6iMCANhmvKEd0p49e6ahoSFJsn79+syfPz/d\nunXLkUcemdtuuy277LJL+vbtmzvvvDNJ0rFjx3z3u9/NIYcckiuuuCIf//jHN4nKf4Rnjx498sAD\nDyR5+ZeDmpubkySzZ8/OJZdckunTp+fBBx/Mgw8++LrzzZo1K3379k1VVVVGjBiR8ePHZ/z48dlt\nt91a7ltdXZ3m5ubcfPPN2W233XLllVfmlFNOydq1a1+x3vjx41t2N9/2trelW7duqa2tTc+ePfPw\nww8nSV544YV88YtfbLmma9eu2XvvvTNt2rTU19dn4MCBOeCAA5LkFb8Mtfvuu2fVqlV58cUXkySj\nR4/OihUr0qlTp1x77bWpr6/PWWedlfe///3/9NkAAGxr3tAO6cc+9rH8/ve/z0knnZT169fnmGOO\nyX777Zckeemll3LsscemY8eOqVQqOfzww5MkH/3oRzN69Ojceuut6dixY6qqqrJ+/fpN1h00aFCG\nDx+eAQMGZN99902rVq2SvBzAn/vc57Lrrrtm7733zrvf/e5XzDR06NC0bds2ycs7jyNHjkySHHvs\nsenfv3923nnn7Lbbblm+fHmSpE+fPjnjjDPy9a9/PUOHDs19992Xdu3apUuXLnnuueey++67t6z9\nzW9+M2PHjs3ll1+e1q1bp2vXrhk1alTatWuXe++9NwMGDEhzc3POPvvslmt23333DBo0KIMGDUpT\nU1O6dOmSY4455tUfQk1NRowYkTPOOCPV1dXZf//9s//++2f48OE544wzUqlU0r59+1x++eVv5HEB\nAGzVqir/7PNvtmoNDQ3Zp/aVP2YAb0andx9aeoQd3sKFC9O7d+/SY7AFeNY7lh39eTc0NKRPnz6v\nOO4vxgcAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBAChKkAIAUJQgBQCgKEEKAEBRghQA\ngKIEKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAFAKAoQQoAQFGCFACAogQpAABFCVIAAIoSpAAA\nFCVIAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBACiqpvQAvHmd3n1o\n6RHYAhYuXJjevXuXHgMA3nJ2SAEAKEqQAgBQlCAFAKAoQQoAQFGCFACAogQpAABFCVIAAIoSpAAA\nFCVIAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBACiqpvQAvHnLb51S\negRex56fPav0CACwVbNDCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBAChKkAIAUJQgBQCgKEEK\nAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAFAKAoQQoAQFGCFACAogQpAABFCVIA\nAIoSpAAAFCVIAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBAChKkAIA\nUJQgBQCgqB06SO+7774MHjx4k2MTJ07MnDlzsnjx4nzsYx/LypUrkyRr1qzJZz/72SxatGiT8wcN\nGpT+/ftn0KBBGTRoUE499dQsW7bsVdd+M6ZPn/6WrQUAsDXZoYP09fTq1Sunn356hg0blkqlkgsv\nvDADBw7Mfvvt94pzJ0yYkPr6+tTX1+fjH/94pk2b9pbPc+21177lawIAbA1qSg+wNRs4cGB+97vf\n5Utf+lJ222239O/f/59e88ILL6Rdu3abHJs+fXruvPPObNy4MXV1dZk8eXJ+8pOf5De/+U3WrVuX\nv/71rznjjDNy3HHH5bHHHsull16aJOnQoUPGjRuX6dOn54UXXsioUaMyatSozfFSAQCKEaSvoqqq\nquXPAwcOzGmnnZaZM2e+5vnDhg3LTjvtlKqqqnTv3j3nn39+FixYkCRpbm7O3//+91x//fWprq7O\nF77whTz88MNJktWrV+e73/1unnjiiZx11lk57rjjMmLEiIwbNy777rtvZs+enalTp2bw4MGZPn26\nGAUAtks7dJC2bds269ev3+TYSy+9lDZt2iRJXnzxxYwdOzajR4/ORRddlNmzZ+dtb3vbK9aZMGFC\nevbs+ar3qK6uTuvWrTNkyJC0a9cuzz77bDZu3JgkLR//77333i1zLFmyJKNHj06SbNiwId27d39r\nXiwAwFZqhw7Snj17ZuHChVm+fHn23HPPNDY25v7778/nP//5JMnXv/71DBw4MCeddFKWLl2a0aNH\n5/LLL/+37rFo0aLMnTs3s2fPztq1a3PcccelUqkk2XQn9h+6d++eCRMmpHPnzmloaMiKFSuSpOUa\nAIDtzQ4dpO3bt8/w4cPzpS99KW3bts2GDRsyaNCgdOvWLdOmTUt1dXVOPvnkJMk555yTgQMH5oc/\n/GE+85nP/Mv36NatW3baaaccd9xxqa2tzR577JHly5e/5vmjRo3KsGHD0tTUlCQZO3ZskpfjeejQ\noZk4ceKbeMUAAFufqoqtt21aQ0NDuvz1/tJj8Dr2/OxZb8k6CxcuTO/evd+Stdj6ed47Ds96x7Kj\nP++Ghob06dPnFcf9tU8AABQlSAEAKEqQAgBQlCAFAKAoQQoAQFGCFACAogQpAABFCVIAAIoSpAAA\nFCVIAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBAChKkAIAUJQgBQCg\nKEEKAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAFAKAoQQoAQFGCFACAogQpAABF\nCVIAAIqqKT0Ab96enz2r9AgAAG+YHVIAAIoSpAAAFCVIAQAoSpACAFCUIAUAoChBCgBAUYIUAICi\nBCkAAEUJUgAAihKkAAAUJUgBAChKkAIAUJQgBQCgKEEKAEBRghQAgKIEKQAARQlSAACKqik9AG/e\ngxecUXqEHd6Bl19XegQA2GbZIQUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAUJUgBAChKkAIA\nUJQgBQCgKEEKAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEAKEqQAgBQlCAFAKAoQQoAQFGCFACA\nogQpAABFCVIAAIoSpAAAFCVIAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkAAEUJUgAAihKkAAAU\nJUgBAChKkAIAUFRN6QH+FU0YmNT5AAAM00lEQVRNTTnzzDPz0ksvZcqUKdlll13+7TVeeOGFTJgw\nIU8++WSampqy9957Z8yYMamrq/un1zY2NuaTn/xkfvWrX73mOUuXLs348eOzcuXKrFu3Lvvvv38u\nvPDC1NbW/tuzAgDsSLaJHdIVK1Zk1apVmTlz5huK0SQZMmRIPvKRj2TGjBmZNWtWDjzwwIwcOfIt\nma+pqSlf+cpXcvrpp6e+vj6zZ89OTU1NvvWtb70l6wMAbM+2iR3SESNG5IknnsjIkSPz9NNP56WX\nXsrYsWPzu9/9Lj/5yU9SVVWVo446KqecckqWLl2aESNGpLGxMW3atMkll1yS5ubmPPfccznyyCNb\n1hw0aFA+97nPJUl+9KMf5fvf/35qa2vz9re/PWPGjMn69eszdOjQvPjii+natWvLdY899lguvfTS\nJEmHDh0ybty4LFy4MHvttVcOPPDAlvPOP//8NDc3J0muvPLKPPLII1mzZk169uyZyy67LJMnT86T\nTz6ZVatW5YUXXsjJJ5+cO++8M3/5y18yYcKE7L777jn33HOzxx57ZNmyZenXr18GDx68Jd5uAIAt\napvYIb344ouz7777Zo899kiPHj0ya9asVCqV/OxnP8uNN96YG2+8MXPnzs3jjz+eCRMmZNCgQamv\nr88XvvCFTJw4McuXL88+++yzyZqtWrVKXV1dVq1alcmTJ+f73/9+Zs6cmbq6utx000259dZb06tX\nr8yYMSMnnXRSy3UjRozIxRdfnPr6+vTr1y9Tp07N8uXL06VLl03Wb9OmTXbaaaesXr06O++8c773\nve9l1qxZmT9/fpYtW5Ykadu2bb773e/m4x//eH7zm99kypQpOfPMM/PTn/40SfK3v/0t48ePz803\n35x58+ZlwYIFm/mdBgDY8raJHdL/W/fu3ZMkixcvzjPPPJNTTz01ycs/I/rXv/41ixcvzre//e1M\nnTo1lUolrVu3TufOnfPss89uss6GDRty++23p1u3btl3333Tvn37JMl73/ve/Pa3v02S9O3bN0ly\n4IEHpqbm5bdqyZIlGT16dMsa3bt3z4c//OHceeedm6y/atWqzJ8/Px/60IeycuXKDBkyJO3atctL\nL72UDRs2JEne+c53Jknq6uqy7777Jkl22WWXNDY2Jkn222+/dOjQIUlywAEH5C9/+Uv233//t+id\nBADYOmxzQVpd/fKmbo8ePbLvvvtm6tSpqaqqyvXXX59evXqlR48eOf300/Oe97wnS5Ysyf33359O\nnTpl1113zdy5c3PEEUckSW644YY89NBDufjii7NkyZK89NJLadeuXX7/+9+ne/fuqaqqyvz583PE\nEUfk0UcfzcaNG5O8HMQTJkxI586d09DQkBUrVuSggw7K008/nYceeigHHHBAKpVK/vu//ztt2rRJ\nc3Nzli5dmm9+85tZuXJlfvGLX6RSqSRJqqqqXve1LlmyJGvXrk1tbW0eeuihlh8xAADYnmxzQfoP\n++23Xw477LAMGDAg69evzwEHHJBOnTpl2LBhGTVqVBobG7Nu3bp84xvfSJJcfvnlGTNmTKZNm5YN\nGzaka9euufTSS1NXV5dzzjknp5xySqqrq9O1a9cMHTo0rVq1yte//vUMGDAgPXr0SOvWrZMko0aN\nyrBhw9LU1JQkGTt2bKqrq3P11VdnzJgxWbt2bV566aUcdNBBOe+88/LCCy/kmmuuyQknnJDa2tp0\n6dIly5cv/5deY+vWrXPuuefmueeeyyc+8Ynst99+m+fNBAAoqKryj+06tipPP/10hgwZkh/84Aev\ne15DQ0NqbpqyhabitRx4+XWb/R4LFy5M7969N/t92Dp43jsOz3rHsqM/74aGhvTp0+cVx7eJX2oC\nAGD7JUi3Uvvss88/3R0FANgeCFIAAIoSpAAAFCVIAQAoSpACAFCUIAUAoChBCgBAUYIUAICiBCkA\nAEUJUgAAihKkAAAUJUgBAChKkAIAUJQgBQCgKEEKAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEA\nKEqQAgBQlCAFAKAoQQoAQFGCFACAogQpAABFCVIAAIoSpAAAFCVIAQAoSpACAFCUIAUAoKia0gPw\n5h14+XWlRwAAeMPskAIAUJQgBQCgKEEKAEBRghQAgKIEKQAARQlSAACKEqQAABQlSAEAKKqqUqlU\nSg/BG9fQ0FB6BACAf1mfPn1ecUyQAgBQlI/sAQAoSpACAFCUIN0GNTc3Z+TIkTnxxBMzaNCgPPnk\nk6VHYjPasGFDzj///Jx88snp379/fvnLX5Yeic3s+eefz4c//OEsWbKk9ChsZt/+9rdz4okn5rjj\njsvs2bNLj8NmsmHDhvzXf/1XTjrppJx88sn+3X4VgnQbNHfu3Kxfvz433XRT/uu//ivjx48vPRKb\n0Y9+9KN06NAhN954Y6677rpccsklpUdiM9qwYUNGjhyZtm3blh6Fzey+++7LAw88kJkzZ6a+vj7P\nPvts6ZHYTH7zm99k48aNmTVrVr761a/mm9/8ZumRtjqCdBvU0NCQvn37JkkOOuigPPLII4UnYnP6\nxCc+kXPPPbfl61atWhWchs1twoQJOemkk7LnnnuWHoXN7Le//W169eqVr371qznrrLNy+OGHlx6J\nzaR79+5pampKc3NzVq9enZqamtIjbXW8I9ug1atXp3379i1ft2rVKhs3bvQP+HbqbW97W5KXn/vX\nvva1nHfeeYUnYnOZM2dOOnbsmL59++Y73/lO6XHYzFatWpVnnnkmU6ZMydNPP50vf/nLuf3221NV\nVVV6NN5i7dq1y9/+9rd88pOfzKpVqzJlypTSI2117JBug9q3b581a9a0fN3c3CxGt3NLly7NKaec\nkk9/+tM59thjS4/DZnLLLbfkd7/7XQYNGpSFCxdm2LBhWbFiRemx2Ew6dOiQD33oQ6mtrU2PHj3S\npk2brFy5svRYbAbXX399PvShD+WOO+7IbbfdluHDh6exsbH0WFsVQboNes973pO77rorSTJ//vz0\n6tWr8ERsTs8991xOP/30nH/++enfv3/pcdiMZsyYkenTp6e+vj69e/fOhAkTsscee5Qei82kT58+\nufvuu1OpVLJs2bKsXbs2HTp0KD0Wm8HOO++curq6JMkuu+ySjRs3pqmpqfBUWxfbatugI488Mvfc\nc09OOumkVCqVjBs3rvRIbEZTpkzJiy++mGuuuSbXXHNNkuS6667zSy+wjfvIRz6S+++/P/3790+l\nUsnIkSP9jPh26tRTT82FF16Yk08+ORs2bMjgwYPTrl270mNtVfyfmgAAKMpH9gAAFCVIAQAoSpAC\nAFCUIAUAoChBCgBAUf7aJ4Bt2NNPP51PfepT2X///VuOvf/978/ZZ5/9lqzX2NiYdu3a5eqrr84u\nu+zyqtf8/e9/z913351jjz023/nOd3LooYfmgAMOeEP3B3ZMghRgG7fvvvumvr5+s6135ZVX5uab\nb84XvvCFVz3/sccey69+9asce+yxOfPMM9+yOYAdhyAF2A41NTVl5MiRefbZZ7Nq1ar069cv5513\nXoYPH57a2tr87W9/y/LlyzN+/PhNdlf/X5VKJUuXLk3Xrl2TvBynjzzySNasWZOePXvmsssuy5Qp\nU7Jo0aLcdNNNeeCBB3LUUUflsMMOy4UXXpinnnoqTU1NOe2003LUUUdtqZcPbGMEKcA27s9//nMG\nDRrU8vXEiROzYcOGHHTQQTn++OPT2NjYEqRJ0rlz54wZMyY/+MEPctNNN2XMmDGvut7f//73NDY2\n5thjj81nP/vZrF69OjvvvHO+973vpbm5OUcffXSWLVuWs846K7NmzcqJJ56YBx54IEly0003Zddd\nd80VV1yR1atX57jjjsuhhx6ajh07brk3BthmCFKAbdyrfWS/evXqPPzww5k3b17at2+f9evXt3yv\nd+/eSZK99torf/zjH19zvXXr1uWss87KbrvtlpqamrRp0yYrV67MkCFD0q5du7z00kvZsGHDq860\nZMmSfOADH0iStG/fPj179sxTTz0lSIFX5bfsAbZDc+bMSV1dXa688sqcfvrpWbduXf7xf4quqqr6\nl9Zo27ZtJk6cmGuuuSaLFi3KXXfdlaVLl2bSpEkZMmRIy5rV1dVpbm7e5NqePXvmD3/4Q5KX43jx\n4sXZZ5993toXCWw37JACbIcOO+ywDBkyJA0NDdlpp53SrVu3LF++/N9eZ/fdd88FF1yQkSNHZvLk\nybnmmmtywgknpLa2Nl26dMny5cvTtWvXLF68ONdff33LdSeccEJGjBiRAQMGpLGxMWeffXZ22223\nt/AVAtuTqso//pMZAAAK8JE9AABFCVIAAIoSpAAAFCVIAQAoSpACAFCUIAUAoChBCgBAUYIUAICi\n/n8hC8S7GONf6wAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a0f33c780>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Visualize publications effect on Fan Ratio\n", | |
"plt.figure(figsize=(10,10))\n", | |
"sns.barplot(x=temp, y=temp.index);\n", | |
"plt.ylabel('');" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Grouping my publication reconfirms this thought. Honestly, my best guess is that self improvement posts get more claps in general. I mean they absolutely kill it on Medium through and through. Let's examine that trade-off we talked about earlier and check out the relationship between `Fan Ratio` and `Read Ratio`." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a122f06a0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAGoCAYAAAANe0FzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl0XHd9///nvXfmzmiXLdmWLNuy\n5VVeZceJ48R2CilOwtIWSnDiQwilHPhSCBBom5DQQOEUCJRv2y/8AiRtKA0BJyShBJISQyix4zWx\nLduy5diWd1verW00M3fuvZ/fH1erI1nr7O/HOTmyJqOZz9Uyr/ls74+mlFIIIYQQKUJPdgOEEEKI\nniSYhBBCpBQJJiGEEClFgkkIIURKkWASQgiRUiSYhuHYsWPJbkJSZOt1Q/Zeu1y3SAYJpmEIh8PJ\nbkJSZOt1Q/Zeu1y3SAYJJiGEECnFl+wGCJFsG2ujA96nsTGHi9GB7zeQlTWBET+GEJlOekxCCCFS\nigSTEEKIlCLBJIQQIqVIMAkhhEgpEkxCCCFSigSTEEKIlCLBJIQQIqVIMAkhhEgpEkxCCCFSigST\nEEKIlCLBJIQQIqVIrTwhOtiOImaD6yo0DQJ+DcPQkt0sIbKOBJPIOq5SnD7vcPiUzclzDgeOx2gL\nK6zY2+/r90FRvk7ACBLFprzUIOCXsBIiniSYRFaIRBV1R2LsPhxj/9EYobACoCBXIy9Ho7LIIDeo\nYfpB1zSUgmhMEY4omtpczl4xOX3JQgMmjNWZPsnH5AkGhi4hJcRok2ASGct1FQeO22yts9h10CJm\nQ36OxoLpfuZU+pg1xc+YAo3Xd1sDPtaZM42YueM5dcHh2BmHTXssgiZUT/Uza7IPn08CSojRIsEk\nMs7ZSw5b6iy21UVpalPkBjRunG9yw1yT6RU+9GH0cjQNSosNSosNFs1QNF5yOXAsxq6DXg9s4Qw/\nMyb70DUJKCFGSoJJZIRQxOXN+hhb9kY51uigazCvys+dt5osnOHHP4o9Gk3TmFhqMLHU4EKTw+6D\nMd6oj3H4lM31c03GFRuj9lxCZCMJJpG2OofqNu+NUnswhu1AxTiDD74zhxvmmhTmxX83xLhig1uv\n1zl5zmHHWzHWb4syp9LHopl+fLKiT4hhkWASaefCFYctey221EW50qrIDWqsWBTgpoUmUyYk/lda\n0zSmlPkoLzXYdTDGgeM2Zy46rFwUoLhAtgoKMVQSTCItXGlx2fGWxY56i6ONDpoGc6f6+OA7A6M+\nVDdcfp/GDXNNpkww2LQnym+3Rrh+rknVRANN5p6EGDQJJjGgjbVRABobc7gYjSbkOZVSNIcUjRcd\nTp5zuNDkAjCmQKNmpp9pEw1ygzrtEcXWuoFX1SVSWYnBu2/KYfOeKFvrLM5dNrih2pSVe0IMkgST\nSBmRqKLxksPZSw6Nl1zCUW+vUVG+xsIZfirLjITMG42GnIDGO5YGqGuw2dsQ41JzhFU1gWQ3S4i0\nIMEkksZxFBeaXBovOjRecrjS6gWR6fd6HeUlBuUlOnk56RFGV9M1L1DHj9G7hvYqxhksnm0mu2lC\npDQJJpEwSima27xeUeNFh/NXXBwXdA1Ki3UWzfRRXqIzplDPqP1AZSUGdywPsqHW4kf/HeL25Q5/\ntiI4rP1UQmQDCSYRV+Go6hiaczjbY3iuME9jxiRvJdv4MXpKLF6Ip9ygzruuD3DyvMNvt0Q4edbm\nY3+WR14wPXuDQsSTBJMYVa6ruNjscvp87+G5QI/hubI0Hp4bCcPQ+PDtuVSW+3jmd+186yet/J8P\n5FMxTjbkCtGTBJMYsajlDc+dvuBw5oKDZXslfMZ1Dc8ZjC3UZMk03p6nVTUBJo0z+NF/t/HoUy18\n5I48llbLvJMQnSSYxLC0R1xOnHU4ed5byq0UBEyYNN6gYpxBWYmBKcdD9KuqwsdD9xbyo/9u499f\nDHH8rM1f3JIj1cqFQIJJDIFlaxw8EeP4WW/hAkBxvsbcaT4mjTMYW5RZixbirShf5wt3F/CLV8P8\nbnuUk+ccPv5neeTnZt8wpxA9STCJawpHFQ2nbI6dtTl7qQCIUZinsXC6n8ry9NlXlKp8hsbdq3Op\nLDP42fp2vvGTVv7PB/KSUlpJiFQhv/3ibVylOHTSZvMei51vdZ9jVDk+yrwZxRTny3zRaLtpYYCJ\n4wx+9Ms2vvPTVj50ay4rFpnyfRZZSYJJdLnc4rK1LsrmvRYXm1yCJiyfb5IT0Cgp0jl7tokxUpQ0\nbqaW+/jSvYU8+esQT7/STu0hiw/fniffc5F1JJiyXMxW7D4UY/OeKPXHbBQwu9LH+1YEWTzLxPRr\nXbXyRPwV5ul8dk0+r+2M8sIfw3z9P1r40J/msGye9J5E9pBgylInznlDddv3W7RHFGMKNN59U5Dl\nC0xK5aC7pNI1jXdcF2RelZ+fvBTiP19qZ+dbMdb8aQ4lRfKzEZlPgimLtIVd3thvsXmPxcnzDj4D\namb5uWlBgDmVwztyXMTP+DEGX1xbwKtvRnlxY5iv/nuMd90QZPUNQYIB+VmJzCXBlOFcV1F/zDvl\ndfch75TXKWUGd70rh+vnmlISJ8Xpusa7bghy3RyTX74W5uXNEV7bFWX1siC3LA4QNCWgROaRYEpD\ng5nzaQm5HDltc+SMQziqCPhheoWP6RU+xhR6YbTzQCzeTRWjZGyhzl+/L493XhfgN6+H+eUfw7yy\nJcLNi0xuWRKgtJ8hvpHODw71DK6VcrSHGAUSTBnEiimOn3U4csbmYpOLpkF5qc7SiX4qxhtSVSAD\nTJvo474PFXDktM3v34jw6htRfrc9yszJPpbNM1k4wy97y0Tak2BKc65SnLvk0nDa5tR5B8eFojyN\nxbP8TJvoI0fmIjJSVYWPT1Tkdy3x31pn8dPftgMwtdxg9hQf0yf5aI+45ARk35lILxJMaaol5HLk\njM3RMw7tEYXp84bqqioMxhbq8kKUJcYW6rz7phzuWB7k1HmHvQ0x6hpi/P6NKK9s84bgfAYU5ekU\n5msU5OoETY2gCQFTI2hqmD4Nnw8MHfm9ESlBgimNNLe57Dhg8eqbUS41u2h4Q3VLZvuZNM7AMORF\nJVtpmsbkCT4mT/Dx7ptyOoZ1bV7bFaUlpGgJuZy77HL0jHONxwC/Af6OoPL7NFw7l8Pnovg7Pjf9\nGjkBjdyARk7Q+2j6JdDE6JJgSnHhqGLXQYs39lscOG6jFIwp8IbqppYb5MqqOtEH068xc7Kfs5fc\nXrc7riJqKSIWHR8Vlq2wbW+zdczxPnZ+3u5oNLW5xDo+t/vINdPvbQwuytMIRxUTSw0qyw0KpBit\nGCYJphQUsxV1DTG277fY2+At8S4t1rnjxiBL55o0nLKT3USRpgxdIzeokRsc3P0bG69QXl7e9bnj\nKsJRRXuk+2Nnj+z0BYeG0+Gu+5YU6UwtN6gs8zFzso8pZbIARwyOBFOKiFqKfUdj1B6MseewRcSC\nglyNlTUBbphrMrXc6BoukWASyWLoGvk5Gvk5ff//JXP8nDrvcLzR4VijNwe6o2NbQtCEGZN8zJri\nZ3alj8njDdnULfokwZREobDLnsMxag/F2H80RsyGvKDG4lkm1881mV3pk3eYIq3kBXVmT9GZPcXf\ndVtzm8uhkzZvnYhx8IRN3RGvV5UT0Jg52cfsSh/VlX7KS2XRjvBIMCWQUoozF132HYmx72iMQyds\n3I45oxWLAtTM9DNjsoSRyCxF+TpLq82u4+ObWl0OnrR567gXVHsOx4AwhXkacyr9zKn0MWeqn7GF\nMkeVrSSY4uxSs8PhUzYHjtnsPxajuU0BMLFUZ/WyIDWz/FSWGfJOMUtIpXYoLtC5Ya7JDXO9oLrY\n7PDWMZsDx2PUH/PmVgHGj9GZU+ljdqWfGZN8FOVLUGULCaZRFLMVZy44HD/rhdHhUzaXW7xVUblB\njeqpPuZO8zN3qr+rLJAQ2a60yKB0kcHNiwJdowoHjsU4cNxm236LDbVeUJUW611ltaaWG5SXGvh9\n8oYuE0kwDYOr4MIVh7OXXc5ddjhzweHEOYczFx3cjtW5hXkaMyb5eNcNAWZM8lExTiZ6hRiIpmlU\njDOoGGdw6/XgOF6ZrYbTNkdO29Qfi7FtnxdUhg7lpQaTxxtMmmBQNtZgwlidsYW6/K2lOQmmHlyl\niEQVobAiFPE+NodcrrS4XGn1Pl5ucTl/ZQKO29L1dQW5GlMmGMyfHmTKBIMpEwxKimQiV4iRMgyN\nqgofVRXeS5VSiotNLsfPOpw873DynE3dkRhb6qyur/EZ3jBgabFBcYHOmAKNMQU6xfk6eTkaeTk6\nuUGNgGwMTllpH0yOo9i816K13UUpcF2vR+Mq78iHnrfFbIUVU1g2xDo+Wra34TAU9vZkuKrv5ynI\n9X65x481mFjcwtyZ45lQYlA2VidfNhIKkRCapjFujMG4MQZLq73blPL2Up2/4nCuYxTj3GXvTWTD\naZtQuO8/akOHvJzuKhamT+uqcNEeKuLNYyFMv4ahg657BzjqGmg66Br4fBrL55tSNDcONKVUPy/F\nibdjx45kN0EIIRLiuuuuS3YTUlZKBZMQQgghfVAhhBApRYJJCCFESpFgEkIIkVIkmIQQQqQUCSYh\nhBApRYJJCCFESpFgEkIIkVIkmIQQQqQUCSYhhBApJaWCKV1KEh07dizZTUiKbL1uyN5rl+tOvnR5\nXRxNKRVM6SIcDie7CUmRrdcN2Xvtct0iGSSYhBBCpBQJJiGEEClFgkkIIURKkWASQgiRUiSYhBBC\npBQJJiGEEClFgkkIIURKkWASQgiRUnzJboAQIv18//vf549//CM+n4+HHnqIhQsX9vr/P/7xj3nu\nuecYO3YsAP/4j/9IVVUVAA0NDXzoQx9i8+bNBAKBuLUxEonwd3/3d1y6dIm8vDweffTRrvZc6zqO\nHz/Ol770JXJzc5k5cyZf+cpX0HWdRx99lJ07d2LbNmvWrOFDH/oQ//RP/8SBAwcAuHDhAoWFhTz7\n7LNxu6ZsIcEkhBiSffv2sX37dn7xi1/Q2NjIfffdx/PPP/+2+zz66KPMnz+/1+1tbW08+uijmKYZ\n93b+/Oc/Z9asWdx333289NJLPPbYY3z5y18e8Dq++c1vsnbtWj70oQ/xyCOP8Oqrr1JQUMCJEyd4\n5plnsCyL97znPdx22208/PDDAMRiMdauXcvXv/71uF9XNpBgEiIBXnjhBV599VXa2tq4cuUKn/70\np7ntttvYvn07//Iv/4JhGEyePJmvfe1rRKNRHn74YVpbW7ly5Qp33nkna9eu5Z577mHMmDG0tLTw\nyCOP8NBDD+Hz+TAMg29/+9tMmDCBb33rW1211d773vdy77338uCDD2KaJqdPn+b8+fN861vfYt68\nebzjHe+gqqqKqqqqrhdYgE9+8pO0t7cDEAqFWLhwIV/96le7/v+OHTtYsWIFmqYxceJEHMfh8uXL\nvXoj+/bt4/HHH+fChQv8yZ/8CZ/85CdRSvEP//APfOELX+Bv/uZvuu77+OOPM2fOHFatWjXg96vT\n8ePHe4VM5/WuWbOmVzs//vGPA7Bq1Soee+yxXvfv7zr27dvHZz/72a6v27RpEw8++CDV1dVdX+s4\nDj5f98vnT3/6U26++WZmz5490K+CGAQJJiESpL29nR//+MdcvnyZO++8k3e+8538wz/8Az/72c8o\nKSnhX//1X/nlL3/JvHnzeM973sPq1as5d+4c99xzD2vXrgXgfe97H+9617t4+umnmTdvHg8++CBv\nvvkmzc3N7N+/n1OnTvHss89i2zZr167lxhtvBGDixIl87Wtf49lnn+WZZ57ha1/7Go2NjbzwwguM\nGTOmVzt/9KMfdf27vr6+1wsyeL2e4uLirs/z8vJobW3tFUzvec97WLt2Lfn5+XzmM5/hf//3f6mr\nq+OWW25hzpw5vR7vE5/4xKC+X7feemtXGFRWVvLUU09d8/vd1tZGQUFBrzYO5jqUUmia1uu2QCBA\nIBAgFovx4IMPsmbNGvLy8gCwLIt169bx3HPPXbM9YvAkmIRIkOuvvx5d1yktLaWwsJDz589z/vx5\nPv/5zwPenMjNN9/MLbfcwk9+8hPWr19Pfn4+tm13Pca0adMA+OAHP8gTTzzBxz/+cQoKCrj//vtp\naGhg6dKlaJqG3+9n0aJFNDQ0AHSFS1lZGTt37gRgzJgxbwslGLjHlJ+fTygU6vo8FAp1BQCAUop7\n772367ZbbrmF/fv38+KLL1JWVsbzzz/PhQsX+NjHPsbTTz896O/X5cuXGT9+PDC4HlPPdoZCIQoL\nC3vdv7/r0HW9122dX9fc3MxnP/tZbrjhBj75yU923WfLli1cf/31vb4HYmQkmIRIkH379gFw8eJF\n2traKCsro6ysjMcee4yCggJeffVVcnNzefLJJ6mpqWHt2rVs3bqV1157resxOt/Jv/rqq1x33XV8\n5jOf4Te/+Q3//u//zurVq3nhhRf46Ec/SiwWY9euXbz//e/v9XU99XwB7mmgHtOSJUv4zne+w1//\n9V9z9uxZXNft1Vtqa2vjve99Ly+//DK5ubls27aNv/zLv+TTn/50133e+c538uSTTw7p+1VSUtL1\n/wbTY1qyZAmvvfYaCxcuZMOGDVx33XWDuo65c+eyd+9eqqur2bBhAzfeeCORSISPfvSj/NVf/RV/\n9md/1utxNm/e3GsYUoxcXINp9+7d/PM//zNPPfUU9fX1fP3rX8cwDEzT5NFHH6W0tDSeTy9ESrl4\n8SL33nsvra2tfOUrX8EwDB5++GE+8YlPoJQiLy+Pb3/722iaxle/+lV+/etfU1xcjGEYWJbV67Hm\nz5/P3/3d3/G9730PXdf50pe+xLx589i+fTtr1qwhFotx++23M2/evFG/jvnz57N06VLWrFmD67o8\n8sgjAPz617+mvb2dNWvWcP/99/ORj3wE0zRZvnw5t9xyS7+P19ccU3/fr6G4++67eeCBB7j77rvx\n+/1897vfBeDb3/42t99+OwsXLuzzOh544AG++MUv8vzzz1NVVcVtt93GU089xcmTJ/nFL37BL37x\nCwC+8Y1vMHnyZI4ePcpf/MVfDKlt4to0pZSKxwM/8cQTvPjii+Tk5PDss8/y4Q9/mIcffpjq6mrW\nrVvH0aNH+dKXvtTra3bs2PG2dzWpqK93kdkgW68bRn7tL7zwAkeOHOFv//ZvR7FV8ZeIn3lnT3H5\n8uVdtyX7+5VKv+vp8ro4muK2wXbKlCl873vf6/r8//7f/9v1g3YcJ677F4QQ6aO6urpXKAkRtx4T\nwKlTp/jCF77Qa8PZzp07efjhh3n66affttltx44d5Obmxqs5oyYSiRAMBpPdjITL1uuG7L12ue74\nGEpvLF1eF4fqWt+DhC5+ePnll/nBD37A448//rZQ6pQq3edrSaVufiJl63VD9l67XHdqSKW2JELC\ngulXv/oVzzzzDE899VSvvQNCCCFETwkJJsdx+Kd/+ifKy8u57777AG+PQufuaiGEEKJTXINp0qRJ\nXfNL27dvj+dTCSGEyBBy7IUQQoiUIsEkhBAipUgwCSGESCkSTEIIIVKKBJMQQoiUIsEkhBAipUgw\nCSGESCkSTEIIIVKKBJMQQqS4ONbaTkkSTEIIkUDDCRnbiUNDUpgEkxBCJIjjKC63uEP+OgkmIYQQ\no86KeaE0nJCJ2dk1lJfQ85iEECIbhaOKltDQe0qdrJgEkxBCiFHSFnYJhUcWLBFLgkkIIcQIKaVo\nCalRCZVwVIJJCCHECLhK0dymRm0IToJJCCHEsLmuoqlNjeqCBQkmIYQQw+I4iiutLs7w1zn0KWKN\n7uOlOgkmIYQYBTFb0dTq4sahcyM9JiGEEEMStRTNIZd4VQ6SYBJCCDFoI92jNKjniMT38VONBJMQ\nQgxTKOzSNsI9SoPR0i49JiGEEANoCbkJG2JrbpUekxBCiH6ojj1K0QSWCWpqk2ASQgjRh3jsURqM\n5pDCVQpd0xL6vMki1cWFEGIQHFdxudVNSqVv14W2LJpnkmASQogBxGzvyAonieciNWfRcJ4EkxBC\nXIMV86o5uEnOhaa27OkxyRyTEEL0IxL1Ns6mgmzqMUkwCSFEH9ojLq0pNK+TTcEU16G83bt3c889\n9wBw/Phx7r77btauXctXvvIV3GT3i4UQoh/tUS2lQqkgV8uqJeNxC6YnnniCL3/5y0SjUQC++c1v\n8vnPf56f/exnKKV49dVX4/XUQggxLN4eJZdoLLWm34vydZqzaI4pbt/9KVOm8L3vfa/r83379nHD\nDTcAsGrVKjZv3hyvpxZCiCFzlaKpdXROnB1tRfnZ1WOK2xzTbbfdxqlTp7o+V0qhdWwOy8vLo7W1\ntc+vq6+vj1eTRk0kEkmLdo62bL1uyN5rz5brdl1oi+g4rvcaFY1GaWhoiNvzTRg7a2hfYLdw6Uog\no34W1dXV/f6/hC1+0PXuzlkoFKKwsLDP+12rsamivr4+Ldo52rL1uiF7rz0brjtmK5raXEp7dEga\nGhqYPn168hp1lamTxrL/ZIRZs+dg6Jlf/SFhA6lz585l27ZtAGzYsIGlS5cm6qmFEKJPqbJHaSBF\nBTpKQUso9YYZ4yFhwfTAAw/wve99jzVr1hCLxbjtttsS9dRCCPE24agXSvE63G80Fed7vaRsWTIe\n16G8SZMm8eyzzwIwbdo0fvrTn8bz6YQQYlDawi6hBJyjNFqK8r0+RLYsgJANtkKIrKGUoiWUmivv\nrqW4I5iyZcm4BJMQIiu4StHcqrCSUB18pApyNTQtew4MlGASQmQ8x1U0tbrYSawOPhK6rlGYlz17\nmSSYhBAZzYp51Rzc9Oso9VKcr8viByGESHfhqKIlRaqDj1RRvs6l5sy4loGkVkEoIYQYBd4iBzdj\nQgm8JePZ0mOSYBJCZBTXVVxpVYSjaT52d5WifJ22sErK0e6JJsEkhMgYMVtxqcXNyBfvziXjmdQL\n7I/MMQkhhq3uiMX6bVEuNbuUFOmsXhZgfpWZlLZk0nxSXwp77GUqKUpyY+JMekxCiGGpO2Kxbn2Y\n5pBLbhCaQy7r1oepO2IltB1KKVrbM2s+qS+FeV5Zopb2zL5OkGASQgzT+m1RDB8E/BqaphHwaxg+\n7/ZEcV3vDKX2SOYN3V2tMNd7uW7NgkKuMpQnhBiWS81eT6kn00fCljTHbG9/kpP5HQg21kZxOjZi\n7W2Idd2+siaQrCbFlfSYhBDDUlKkY9m9b7Ns7/Z4i0QVl1uyI5Q6GbqG6SPt6vwNhwSTEGJYVi8L\n4NgQjSmUUkRjCsf2bo+n1naX5gyfT+pPMKARybBl8H2RYBJCDMv8KpO7VudQlKfTHoGiPJ27VufE\nbVWe6yqutLhZMZ/Un4CpZUWPSeaYhBDDNr/KTMjy8GyaT7qWHDM7CrlKMAkhUlokqmhpT4+TZuMt\nYGbHUJ4EkxAiZbW1u4SyeOjuaqYPYo63d0vTtGQ3J24kmIQQKcdViuY2hRWTUOrJZ2goBa4CI3Nz\nSYJJCJFabEfR1ObipOmhfvHk63jFtm0wklP5KSEkmIQQKSNiefXuZD6pb76ObpLtKAJkbpdJgkkI\nkRLawi6hsCTStfgM72O6HhE/WBJMQoikcpWipc3boCuurWePKZNJMAkhksZxFU2tbsb3AEZLZ48p\nZl/7fulOgkkIkRQx21vk4Gb+ftFR4+9c/JDhQS7BJIRIuKilaJZFDkMmQ3lCCBEHmX7SbDzJ4gch\nhBhlUslhZKTHJIQQo0QpRUtIZUVl7HjyyRyTEEKMnKsUza0Ky5ZQGildA00DO8O/lxJMQmSAuiMW\n67dFudTsUlKks3pZICHHUQzEdRVXZDn4qNE0DZ+R+T2mhB0UGIvF+OIXv8hdd93F2rVraWhoSNRT\nC5HR6o5YrFsfpjnkkhuE5pDLuvVh6o5YSW2X43jHn2f6i2ii+Qwt4+eYEhZMr732GrZts27dOj79\n6U/zr//6r4l6aiEy2vptUQwfBPwamqYR8GsYPu/2ZInZXihl+8F+8eAzvKMvMlnChvKmTZuG4zi4\nrktbWxs+X99PXV9fn6gmDVskEkmLdo62bL1uSO1rP3uhlIBfEelRDUApOHtRo77+1IgeezjXHbMh\nFDFI5/f00Wg0rqM6E8bOGtL9Gxsbuz9R+YRCLo2Nl6kPhEe5ZYlTXV3d7/9LWDDl5uZy+vRp7rjj\nDq5cucIPf/jDPu93rcamivr6+rRo52jL1uuG1L72stpWmkMuAX93teloTFFWrI+4zUO97kjU2zib\n7hoaGpg+fXqym9GlvLy869/BkxE0oLy8iOrqQPIaFUcJG8r7z//8T1asWMErr7zCr371Kx588EGi\n0eQNNQiRKVYvC+DYXhgp5RVDdWzv9kQKRdyMCKVU55fFD6OnsLCQgoICAIqKirBtG0dOAhNixOZX\nmdy1OoeiPJ32CBTl6dy1Oiehq/Ja213a2tN58C59ZMPih4QN5X30ox/loYceYu3atcRiMe6//35y\nc3MT9fRCZLT5VWZSlofLxtnEy4bl4gkLpry8PP7t3/4tUU8nhIgzVyma2xSWnKOUUD6fJhtshRDi\naq6raGpTxDL8BTIVSY9JCCGu4jiKK20uMkWcHD5Dw1XeIYuZSoJJCDFocrhf8mXD0RcJW5UnhEhv\nVsyreyehNDy2o9j5lsX/91zbiB5n7jQ/AEtmJ78WYrxIj0kIMaBM2TibDDFbseNAjM17ojSHRj78\nlhPwNlKHozKUJ4TIUu0Rl1bZozRkEUvxxn6LLXUWobD3/dM1mD/dP6LHlWASQmS1cFSTUBqiUMRl\na53F9n0WkY4C74YOi2f5uXlRgLGFI5tB6Qym9kjm9mAlmIQQfWoJuURiMg09WC0hl817LN48YBHr\nKKhr+mBptcnyBSaFeaPzvZQekxAi66iOjbNR2Tg7KJdbXF7fHaX2YKzrmI+gCcvmmSybb5IXHN1w\nzw1KMAkhsohsnB28c5cdXt9tsbchhur4duXnaNw43+T6uSZBU7v2AwxT91Be5v6MJJiEEIC3YfNK\nq2ycHcjpCw4bdkU5cLz7AKyifI2bFwZYMtuP3xefQOrk92nkBjRaRmGFX6qSYBJCYDuyR+lalFIc\na3TYWBul4XR3cpcU6axcZLIjoIraAAAgAElEQVRwph9Dj28g9VSUr9Hclrk/LAkmIbKcFVM0t7lk\ncIWbYVNKceikzYZai5PnugOpbKzOypoAc6f50BMYSJ2K8nWaJJiESG91RyzWb4tyqdmlpEhn9bJA\nUo6JSDVRS2X0C9xwuQrqGmJsrI1y9nL392fyBINVNSYzJ/vQtMQHUqfiAp2DJ+yB75imJJhExqs7\nYrFufRjDB7lBaA65rFsf5q7VZHU4haOKFqnm0IvjKvYcivGHN8fQ0h7uun16hcHKmgBTy42kBlKn\nony9o5er0FOgPaNNgklkvPXbohg+CPi9P+CAH6Io1m+LZm0wtYXdrmoEwisbtPOtGJv2RGluU3S+\nNM6p9LFqcYCKcUZyG3iV4nwNx4W2dkVhngSTEGnnUrNLbrD3babPuz3buErRInuUuvRXNmjq+Ah3\nrChh/NjUCqROndUjLjW7o7ZxN5VIMImMV1Kk0xxyCfQoUWbZ3u3ZxHG8+aRMPi5hsNo7ygZt66ds\n0JULFxg/dnxyG3kNEzoC89xlh2kTM+9lPPOuSIirrF4WYN36MFEUps8LJcf2bs8WMVvR1Cor71pC\nLpv3Wuyot7A61g74fbB0jslNC7vLBl25kMRGDkJpsY6uwbnLmdnrl2ASGW9+lcldq8naVXlyZIVX\nNmjT7ii7ElQ2KN58hkZpsc65y5nZ/ZVgEllhfpWZNUHUUyjs0pbFixzOX3bYuNuiriHW1VvMy9FY\nHueyQYlQVmJw5oIEkxAiTSilaAkpIlZ2htLpC16VhvpjPcoG5WnctDDAkjl+zDiXDUqEKRMM9h6O\nEYkqgoH0v56eJJiEyDCO61UHz8ZCrMcabTbsuqpsUKHOyhqTBTP8+IzMeQGfUmaggJPnbWZOHtnh\ng6lGgkmIDBKzvZV32VTzTinF4VM2G3ZZnOhRNmjCWJ1VSSwbFG+VZd7L94mzjgSTECI1ZdsiB9dV\n1B+z2VAb5eylHmWDxhusWpz8skHxVpSvU5Svcawx80oTSTAJkQGyqZKD4yr2HI7xeq3FxR6bpKsq\nDFalUNmgRJg52cfBkzZKqYy6ZgkmIdJYNi1yeHvZIM+cSh8ra0wmjc++l7PZU/y8WR/j3GWXspLU\nrFIxHNn3kxQiQ2TLIoeopXij3mLLXqtr6bumwfwqHytrAl1VELLRrCneS/jBE7YEkxAiubJhkUN7\nxGXrPottdb3LBtXM8rNiUaCrXlw2Gz9Gpzhf48DxGKsWZ04lEwkmIdJMpi9yaG132bzH4s2eZYMM\nuK7a5KYFJkX5EkidNE1jXpWfHQcsYraK+7HuiZLQYPrRj37EH/7wB2KxGHfffTd33nlnIp9eiLTX\n1u4SimTm0N2VFpdNe7yyQZ2FZgN+r2zQjfNN8nIkkPqyaKafTXssDp6wmVeVGcvGExZM27ZtY9eu\nXfz85z8nHA7z5JNPJuqphUh7mXxcxfkrDq/XWuztWTYoqHHjApMb0rxsUCLMqfRj+mH34VjGBJOm\nlErIb/p3v/tdNE3j0KFDtLW18fd///csWLCg13127NhBbm5uIpozIpFIhGAwOPAdM0y2Xjck99od\nF0IRHcdN/At0NBolEIjP3MWlFh97j+dy4oIJeNeWG3CYNyXMzIlhfEmcy4/ndQPcdP2sQd93x44d\nNJwv6fp8wdTw2+7zm+3FnGvy87F3XSBdVo1XV1f3+/8S1mO6cuUKZ86c4Yc//CGnTp3iU5/6FL/9\n7W/ftvb+Wo1NFfX19WnRztGWrdcNybt2K6Y6jtBO+FMD0NDQwPTp00f1MY83eptiD5/qrtIwtlBn\nxSKTRTP9+Iwxo/p8wxGP6x6J8vLyrn9XV789MFvcKD/+TTv+ghkZUQUiYcFUXFxMVVUVpmlSVVVF\nIBDg8uXLlJSUDPzFQqSpuiPWsI/bCEcVLRmyyOFaZYNW1gSYl6Flg+JhY230bbfZtsJnwK82hFk2\nb3C/MytrUncVX8JmE6+77jo2btyIUopz584RDocpLi5O1NMLkXB1RyzWrQ/THPKOdm8OuaxbH6bu\niDXg17aE3IwIJVcp9h+N8aP/DvHT34a7QmnSeIO1q3P41AfyWDDdL6E0Qj6fxqTxBsfPOjhO+s9D\nJqzH9I53vIM33niDD37wgyileOSRRzCMzNkQJsTV1m+LYvgg4PdedAN+iKJYvy3ab6/JdRXNIYWV\n5oscHFex93CMjbstLjb1KBs00WDV4uwqG5QoVRN9HGt0OH3RYcqE9N4JlNDW//3f/30in06IpLrU\n7PWUejJ93u19sWLe/qR03jQbsxW7DsbYtDtKU4+yQbMrfaxcZDI5zV8wU9mEsTo5AY2G03Z2BFNT\nUxMnTpxg0qRJjB07Nt5tEiIjlBTpNIdcAj3moi3bu/1q6X7SrJQNSj5d16iqMNh/xCYUdtN639eA\nwfTyyy/zb//2b0yfPp1Dhw7xmc98hj//8z9PRNuESGurlwVYtz5MFIXp80LJsb3bO6V7Edb2iGLb\nvijb9lmEO+bkDd3b9LliUaDPEBbxM2OSj31HbA6fslk0c3CLbFLRgMH0k5/8hBdeeIG8vDza2tq4\n9957JZiEGIT5VSZ3rabfVXmuq2hK0yKsre0uW/ZavFFvYcW826RsUPLl5+hMLNVpOO2wYLpK20Ul\nAwaTpmnk5eUBkJ+fH9dNZ0JkmvlVZp8LHWxH0dTq4qTZfNKV1o6yQW/1Lht0Q0fZoPw0Hj7KFDMn\n+3htl8WpC+m7CGLAVk+ZMoVvfetbLF26lDfffJMpU6Ykol1CZKxIVNHS7pKYmiuj40KTw8Zai72H\nu8sG5QY1ls83uX6uSU4gPd+ZZ6KJ4wzycjTeOp6+iyAGbPU3vvENnnnmGTZv3sz06dP54he/mIh2\nCZFxlFK0hRXtaVSE9VKrjzd/3079UZvOVhfmady00OS62SamXwIp1eiaxuwpPna+FeNyi5uWx4P0\nG0x79+5lwYIFbN26lcrKSiorKwGvGOuKFSsS1kAhMkG6Hep3/KzNhl1RDp8aA3hnT4wt1FixKNBR\nNkgCKZVNr/Cx53CMA8dj3LQg/aZf+g2mLVu2sGDBAl566aW3/T8JJiEGL2p5pYWSVe9usJRSNJxy\n2FAb5fjZ7rJB48forKoJMLfKh5Gmk+nZxvRrTK/wceikzeJZKu2GWvsNpk984hMALFmypNe5Sf/1\nX/8V/1YJkSHS4fwkVykOHLPZWBvlzMXu1RgV43RmlV1h1bJJ6FKlIe3MmuLjrRM2h07GWDgjvZaO\n9xtMv/nNb/jDH/7Atm3b2Lp1KwCu63Lw4EE+8pGPJKyBQqS6vgq1Vk/1p/zQneMq6hpibKy1uNCj\nbNC0cq9s0LSJBkeOnJNQSlOFeToV4wwOnrSZN82PkUbDr/0G08qVKxk3bhxNTU2sWbMGAF3XmTx5\ncsIaJ0Sq6yzUavjoKtT681faeffNQWZMSs3jB/otGzTFx8oaKRuUSeZU+nj1TYdjZx2mV6TPz7Xf\nlhYVFbFs2TKWLVvG+fPnsW0bpRRnzpxhwoQJiWyjECnr6kKtfkNhO7Cx1kq5YIrGFG92lA1qbe8u\nGzSvysfKRQHKSqRsUKaZMFanOF/jwLEYVRPTp3DugBH60EMPUVtbSzgcJhwOM2XKFJ599tlEtE2I\nlNdZqFUpheuCq7wKCE2tqbNztj2i2L7fYmudRTjqBVJ32SCTkiIJpEylaRqzK/1s22dx/oqbNjUL\nBwymI0eO8NJLL/HII49w//3387nPfS4R7RIirkZygF9PJUU6TW0OPkPr2jAbc6C4IPl7R9raXTb3\nUTZoyRyTmxdK2aBsMbXcoPYgvHXczpxgysvLQ9M02tvbGTt2LLFYLBHtEiJu+poXWrc+zF2rGXI4\n3brUZN3vwjiuwm94oeTacPOi5K2CauooG7TzqrJB1881Wb5AygZlG5+hMWOSj/1HbdrCblr8/AcM\npnnz5vEf//EfjB8/nvvvvx/bthPRLiHiZjgH+PUlainKS328++Ygm3ZbNLW6FBfo3LzIZNbkxM8v\nXWhyeL3WYk/PskEBjRsXmNwgZYOy2szJPvYfszl4wmbJ7NRfOj5gMH3hC1+gra2NYDDIhg0bWLBg\nQSLaJUTcDPUAv76EIi5tHQsIZk32JyWIOjVectiwK9qrbFBBrsbNC02umyNlgwTk5ehMHm/QcMpm\n4XQ/Pl9q/070G0ytra0899xzFBYW8v73vx9d15k4cSL33Xcf69atS2QbhRhVQznAry8tIbdrEUEy\nnThrs6HW4tDJ7lGMMQVe2aCaWVI2SPQ2u9LHiXMORxttZibxjdRg9BtMn/vc55g/fz779++nsbGR\n0tJSvv/97/PAAw8ksn1CjLrBHODXF1d59e6sWPJCSSlFw2mvh3R12aCVNQHmSdkg0Y9xxTpjC72q\n4zMmpfaepn5bFwqF+MIXvoBSittvv52Kigp+9atfUVJSksj2CTHqBjrA72p1Ryx++foYQv/bTHF+\ncuaQXKV465jNhj7KBq2qCTCr0icVGsQ1aZrG7Cl+ttRZnLucOtsZ+tJvMJmm90eqaRqBQIAf/OAH\nckigyBj9HeB3tbojFj9/pZ1YzCA3F1rDLi+/HoEVJCScrlU2aOXiQFptmhTJV1lmsPMgvHUitRex\n9RtMPX/Zi4uLJZRERutvX9P/bImADj5DoWmaN/SHYtNuK67BFLMVtQdjbNoT5Upr99DhrMk+Vi2W\nskFieAzDqzpef8zuWkWaivr97d63bx933XUXSikOHz7c9W9N02Txg4iL0dr0Opzn7Wtf05/forjU\n5BIMePNQneJZ2SEaU+yot9jcs2wQHWWDaqRskBi5GRXenqbNe6O8+6acZDenT/0G04svvpjIdogs\nN5qbXofq6n1Npk8RdhWvvhGluECnNdw7hOJR2SEcVWzbZ7GtzqK9Y8WfrnWXDSotlkASo6MgT2fC\nWJ1NeyxuXx5MybnJfoOpoqIike0QWW60Nr0OR899TUopHBd8utcres+KIC+/HsFxNEylRr2yQ19l\ng3wGLJnt5+ZFAYqlbJCIgxmTfGzaY3HgmM3caam3dFwGqkVKGI1Nr8PVua/J71O4Dii6e0WzJvth\nBfx+a5RIlFGr7HDNskHzTfJzJZBE/EyeYJCXo7GxNirBJER/RrrpdSTedYPJz18JYzv0We9u1mQ/\nhtXM9OnTR/xcF5scNu622HOou2xQTkDjxvkmy+ZJ2SCRGIausXy+yR92RGkJuRTmpdYboQGDqb6+\nnmeeeYZoNNp12ze/+c24Nkpkn+Fueh0p21FMLPVxR5zr3TVecthYG2X/kd5lg25aYHJdtdk1hClE\noqxYFOD3b0TZts/iXTcEB/6CBBowmB588EE+/OEPU1ZWloj2iCw11E2vo6E94natfItXvbsT52w2\n7JKyQSL1lJUYTJtosGVvlD+9PpBS++EGDKbS0lLuvPPORLRFZLnBbnodKVcpWtoU0TiVFlJKceS0\nw4baKMcau8sGjSvWWVljMn+6X8oGiZRw04IAT7/SzvGzDlPLU2dmZ8CWVFRU8Pjjj1NdXd2VqCtW\nrBj2E166dIkPfOADPPnkk6MyZi/EUMRsRXObixOHNRWuUrx13GZjbZTTF7qfYGKpzqrFAWZL2SCR\nYpZWmzz7ajub91rpFUyxWIyjR49y9OjRrtuGG0yxWIxHHnmEYDC1xjNFZhhog244qmgJjX4iOa5i\n3xEvkM5f6X78qeUGK2sCTK+QskHZTNdA08HQNAzDO9Y+VeQENGpmmby53+LOd+bgT5HjMAYMpqsX\nOpw/f37YT/boo49y11138fjjjw/7MYToy7U26M6b5qe1XY36URW2o6g9FGPT7iiXW7ofe+ZkH6tq\nTKaUpc47UBE/muadEmvo3h40Q9fQdTCMjlBK8TclNy0weWO/Re3BGNfPTY1DBAf8y/l//+//8bOf\n/YxYLEYkEmHq1Km89NJLQ36iF154gbFjx7Jy5cprBlN9ff2QHzvRIpFIWrRztKXydf/3pjE4toGO\nItqxzsCxNX75apj265qxnZG9OESjURoaGgBvOfmh0znsO5FD2OqsyKCoHB9lQWU7YwscYiHouHta\n63nd2aTndXvhojB076Ouga6DrqmOj0N//Orq6iHdv7GxcehPMoD6QBgApaAgZxy/23qZfO3KqD9P\nf671PRgwmDZs2MCGDRv4xje+wV/91V/xj//4j8NqxPPPP4+maWzZsoX6+noeeOABfvCDHzBu3LhB\nNzZV1NfXp0U7R1sqX3f4tWby83u/O/U7LqGwn8qp467xlYPT0NDAxElVbN9nsfWqskELZ/pZucik\ntLhoxM+TahoaGjJ6LtjQQde1jo/ef4aucejgAebOnZkyi1TKy8tH/TGrq7u3Yqy8FOZ/NkeYUDGb\nsYXJH2scMJiKi4sxTZNQKERlZSXhcHhYT/T00093/fuee+7hq1/96ttCSYjh6rlB11UK14VobHRq\n2rW1u+xsyOOZja1Ery4btDCQshWas52m9Q4ew+ie5+kMoP50Dslli+ULTF7eHGFrXWoUdh0wmMrK\nynjuuefIycnhu9/9Lm1tbYlolxBDsnpZgJ+/0o7jKnz626s3DEdTm8vmPRY7DljYTi4Aph+urzZZ\nvsCkQMoGJY3WMZxmaB3zOT16O93zO9kTLCM1rthg5mQfW+os7lgeTPq82IDB9LWvfY3GxkZuv/12\nfvnLX/Iv//IvI37Sp556asSPIUQnpRRVE328++YgG2tHXr3hUrPDxlqL3T3KBpk+l5sX5WRN2aCD\nJ2Ns2m1x4fIYxtWHknJqb88eTmfPx9fj32J03bTA5Ccvt3P4lM3MBP+sr9ZvMD322GP8zd/8Dbqu\n4/f7yc/P55577klk24S4Jtf1Vtq1RxSughmT/MyYNPw/qLMdZYP2HbVRHYFUkKuxfIFJSeAUc2Zn\n7lxLTwdPxnj59Qi6zzsCJF6n9nrDaz2G2TqH3CR4kmLJbJN1v29ny14r6cHU71jE1q1bu/79t3/7\ntwlpjBCDFYq4XGx2aQurrl7NcJ08Z/P0K+384IUQdUe8UBpToPHeFUE+tyafmxcG8GfRyu9Nu62O\nUNLQNO+j7vNuHyxDB79PI2hq5AY18nM0CvN0xhTolBbpjB+jU1psMKZApzBPJy+oEzQ1/D5NQilJ\nAqbGdbNNdrxlERnlrRVD1e+fm1Kqz38LkUwxW9HarojZI/udVEpx5IzDhl39lw1qOG3z09+209Tq\nEvAV8admbNg9hs6hsXgViR1NTa3eqb099XVq79X7d3xGx1Cb1P9LWysWBdi812J7vcWqmvgWUL6W\nfoOp5+RXsifChHAcRSgy8k2yrlIcPG6zoa+yQTUBZk/1ygb1HM4KBqC9XR/2cNbVjxWvobHR0nlq\nr+nzwkfTvMUkJUVe76bn0JvILNMmGkweb7BhV5SVi8ykvfb3G0z79u3jrrvuQinF4cOHu/6taRrr\n1q1LZBtFFovZ3hxSxBpZIPVXNqiyzGBVTYDpk3qXDeo5nAXgMxRax3DWUMPk6scyfWChhvVY8aLr\nXo/Hb3grHJ//QxjH9TaTOi7gatxxUzArFn5kM03TWLXYK+x69IxDVUVyxrD7fdYXX3wxke0Qoour\nFJGo1zuynYHvfy3XKhu0ssaksp+yQYMdzhqM0Xys0eD3aR1Db93Dbz3ndZbMDmD6NdZvi3L2okZZ\ncfyPIBGp4/q5Js//bzsbaqOpF0wVFRWJbIcQXcN1EUsx0mlNK6bYccBi816LlpD3YBpQPc3HypoA\nE0uNa359cYHOpRaHiKVwHNAxyFGKksJrf11/j9U5NNap8+j2eOrZC/IZGj4fgz7/qfMIkvr6Uylb\n7UPER9DUWDYvwKY9UT74zhzycxK/Xy+L1hqJVGQ7CiumiMa8MBmpcFSxfX9H2aBIj7JBM/ysqDEZ\nVzy4YJk2Ued4o9M1x+K4Gm0hWDpn6H+kNy8yefn1CBaqz6PbR4Pf17EIwQf+PnpBQgzFqsUBXtsV\nZcve5JxuK8EkEkYpRcz25o06P450qXentrDL1jqL7fusXmWDFneUDRozxN7J0TMuebleWSPHBkNX\nBIMaR8+4/MmSobVt1mQ/rGBUVuV17v0ZTi9IiMGqGGcwvcJgY22UW68PJLyKhgSTiCtXKSwLojHv\nxNjR3nnQ3OayaY/FzgMWsY75qNEoG9TU6pKfo1GQ6/1BRiMxzIAx7HmhoR7d3jkM13sZtpTZEYmz\nanGAH/+mnbeO21RPTewiHQkmMeqUUkQtiFjxO778UrPL67uj7D4U6zqNNicAy+YFWDbPJDc4shfw\nRMwLdR2foHcHUOdwnASQSLYls01+8WqYDbuiEkwiPTmuwop5YTQac0X9OXvJYePuKPuOdJcNys/R\nuGmhydI5JgFzdF7Qr54Xsh0Ng6HPC+maN/TW2eMxelS6lvARqczv88pxvfpmlOY2l6L8xC2CkGAS\nQxazvfCxbC+QnBEu6R6Mk+dsNtZavHXC7rqtOF/j5kUBFs/yj/qR0FfPC+UEXP70xuDbhuM6g6e7\nurVUuBaZY8WiAL/bHmXTnsQehyHBJAbkdvSGQhGdC00OboK23yilOHrGYUNtlKNn+i4bFM/qA53z\nQpoGR4+cZ1bVuF5zPj5DqqKIzDZhrMGcSh+v77a4/cZgwlZ6SjCJLo7rHbDnumC7CtuGmNPdI7Js\nLSGh5CrFwRNeD+nU+e5AKu8oGzSno2xQPOi6V6Hh6mXXl3KdIa/sEyITrKwJ8MSvQuw7arNgemLm\nmiSYsoxSCscFx+kOH9sZeYWF0eB2lg3aHeXc5e4EnDLBYNXiAK7yDu57ZWtk1AqhdlZB8Ps0/LL0\nWoi3qZnppzBPY2NtVIJJjJzjeCEUc1IrgK5mO4rdh2K8vtvickt3IM2Y5NWxqyz3cfBkjP/ZFB1R\nIVS/T8P0yf4fIYbCMDRuWhDglW2RhC2CkGBKc6ncAxqIZSt2HrDYtKePskGLAkwc112lYbiFUP0+\njYAJQb8mxzEIMUw3zDP57dYIO9+yeMd18a8EIcGUBlzXCx/b6V4F57jdc0LpJmJ1lA3aaxHqUTZo\nwXQ/K2tMxo15e9mgoRRClTASYnRNLDWYWKqz40BMgimbdIZPZ8+nK3yc0Svbk2yhsMuWq8oGgXd8\n+TuXmiyZ3f/BZANtePVOS/VO4ZRzgoQY2Mba6JDuX1pssOdwjFe2hskNDn84b+UgDiCUYEoApbyh\nNdvpnvdxXW/1matIy17PUDS3uWzea7GjvrtsEHhzRQW54CrYsNMiP1fvd1iuz0KoDvzpDQFKi3UJ\nIyHibMoEL5hOnnOYXRnfeSYJplHUs9fjuF4Y9VxunW36Kxtk+jV0XRE0u3+5B5ov6trwuseiudWl\ntFjnthuDckaQEAlSlK9TkKvReMlldmV8n0uCaQCdPRyvl+P9OxTRudLqopTXG8qGXs9QnLvssLE2\nSt1VZYOWLzC5vtrksefbCPh793CudXCerkPAr7FsboAVCwOyqVWIJJkw1uD4WRtXqbhWNcn6YOq5\nmKBXj0f139OxbC2u9eDS1anzXpWGt45fu2zQYAukBk2NnICG6ZcgEiIVjCvWOXwKWkOKonwJphFx\nrxpW6xxqc6SXM2JKKY41OmzYFeVIj7JBpUVe2aAFM95eNuhaB+fpGuQENHKCsohBiFTT+ebxSmt8\n9zNlTDD17PnYnQHUET6jfQaQgLdOWPx+u8WlZrdXwJeX6KysCVA91ddvXa2+Ds5btdikZqZJTkCT\noTohUlRRnve32doe3xfVtAmmnnM5PYfaHMcLokxZUp3qXFfx+zcjbN0b6xVIhg4rF5v8yeLBzQH1\nPDgvN6iRn5O4QKo7YrF+W5RLzS4lRTqrlwVkEYUQg2AYXvWUcDTLgilmq4zZSJpJbEdx6EyQl94M\ncalH2SDTD/m5GpoGx844aEsGHy6GDoV5ekLnkOqOWKxbH8bwQW4QmkMu69aHuWs1Qw4nCTiRjQJm\n/OfYUy6YetZKE8nnlQ2KsXlPlOZQAeD9fAKmt9KuM1SUUkM6djxoahTkaQk/r2j9tiiGj65VgQE/\nRFGs3xYdUqiMZsAJIXpLuWASqSFiKd7Yb7GlziIU7qhjpykWTje50OQQtVVX3ToY/LHjmgaFuTrB\nQHLmkS41u+ReVVHF9Hm3D8VoBZwQ6UYp7+84nhIWTLFYjIceeojTp09jWRaf+tSnuPXWWxP19GKQ\nQhGXrXsttu+3iFjebYYOi2f7mVx8ltyiSfxum83lJoVhKApyIOZCJAKRiMOPfxPq9zgKv0+jKC+5\n9etKinSaQy6BHs2zbO/2oRitgBMinSilCEcVOXF+Y5mwYHrxxRcpLi7mO9/5DleuXOH973+/BFMK\naQm5bNpjseOARaxjG5Lpg6XVJssXmBTm6WzYZvDHvRF0HxQXQGs7XGnzCrDm5UJeUOv3OIq8HI38\nnOQftLd6WYB168NEUV6Fchsc27t9KEqKdM5dtolYYNvg80HQhAljZRBCZK6I5c3752ZKMN1+++3c\ndtttXZ8bxtsrSIvEu9zilQ2qPdi9yi5owrJ5JjfON3sVa6w7kdt99IRPIxiAC1e8L+oMnauPo9B1\nKErwAodrmV9lctdqRrxoYfYUg8MnbTTNG9awbWiNwaoa+b0WmatzRGDsEEcYhiphwZSXlwdAW1sb\nn/3sZ/n85z/f5/0aGhoS1aRhi0ajKdHO0xf91J3IpS2sk5/jMn9KOxWlsYG/EGhqM9h7PJdj5wIo\nvNAI+l3mTmlnVkUE06doPN37a9raizH9FtHuwg44jg8FRCPdlYqVggsRjZPHG8kNuFxMjUzqYgB3\n1PS4IQr19df+moMn4flNZ2lpNyjMdYjEdHICGlZMx1EahqYwTZdd9VGqxh6PZ/MTKhKJUD/QNycD\nxfu6q6urh3T/xsbGOLVkaI42BtEwsdrP0xgZ3mPUB8LAtb8HCR13aGxs5NOf/jRr167lfe97X5/3\nmT59eiKbNCwNDQ1Jabln+y8AABgNSURBVOfBk7GuTammH0JhRTCoUZDvLT7YeSRA2cTgNQ/OO33B\nq9JwoEfZoKJ8jZsXBlgy24/fV9zv1+bvvIhNoNeiByPcsUqvx2FJlq0oH6OzdPHskVxuyqg7YrHp\nrWZyckyKCr3hv8utLmOLNEqKu985KqVoj0B1dVkSWzu66uvrh/wimglS7brLy8uT3QSUUrxxOMKE\nEo1JFcNvT3V1Ch17cfHiRT72sY/xyCOPsHz58kQ9bcY4eDLGy69Huo4Wv9jk7e0y/QrNp1/zRNeu\nskG1UY6c7i4bVNJRNmhhH2WD+jJ/Sjs7jwR6lRIK+AHNCyO/AbYLuHD78vgfJpYo67dFMbTeK/AM\nA5rbVK8FEMNZRCFEurjc4tLarqie2v8b39GSsGD64Q9/SEtLC4899hiPPfYYAE888QTBYOa8gMXT\n1UeLu0qBBm0Ruk52vbpCt1KKQydtNuyyOHm+O5DKSnRWDVA2qC8VpTHKJgZ7lRK6/Uazq33NIZdx\nxUbGbTS91OziM3pvKCzKg8stEI2NbBGFEOniwHEbnwGVZfGfR01YMH35y1/my1/+cqKeLuNcfbS4\nYXgvhE6P+Z7OvUSuq9h/1GZjbZSzl7uDavIEg1U1JjMn+zh0yuYnL7d3BUx/S7yv1rOUUCe/T+Om\n+YGMPca8pEjnwqXe12b4dMpKID9Xl8oPIuO1hV2On3WYPcWXkIVMsrY1TVx9VER+jkZzq0LXvZ5R\nzAEnpiibpPP950K99tNMrzBYtThAZZmBpmlvGxbsb4n3YCS6zl0yrF4W4L9eirytd3Tn6hwJIpEV\ndh+KoWswpzIxkSHBlCauPipC1yEn6O0dCkcUhqFhORpb67pX5c2p9LFqcYCKcb273lcPC15rfqo/\nuubVuQuYmRtIneZXmbxjQQv1jeOld9QPqRuYuS40ORxrdJhX5SMvQXsRJZjSRF9HRdy61M/lZsWW\nOovmkDcHomswf7qflYtMxo/teyz46mFBuPYJslfz+zSK8rPrvKSpEyzu+JOCZDcjJUndwMzlOIqt\ndRa5QY150+K/6KGTBFMa6ZzfCUVcttZZvLgh0qtsUM0sPysWBRhbeO13NYM9QbYv8Ry6k3fd6Unq\nBmauPQ0xWkKKdywJdJ1AnQgSTGmkJeSyeY/Fmz3KBvk7ygbd1FE2aDCudYLsteQGXApy49OVl3fd\n6UvqBmamMxcd9h+1mV5hMHFcYiuaSDClgWuVDVo23yQvOLSw6GtY8Fqr8nQNivJ1LvvjdwaLvOtO\nX6NVGFekjlDYZfOeKMX5GkurE//3J8GUws5fcdhYa1HXEOs6oTcvR2P5fJPr55oER7DwoK9l330x\nDCjO1/HFeSm4vOtOX6NVGFekhpit+OPOKI4LK2sCcf/b74sEUwo6fcFhY22U+mM9ygblady8KMDi\n2f5eJYHiKZGH+cm77vQ1WoVxRfK5rmJDbZTmjnmlwU4PjDYJphShlOL4Wa+OXcPVZYMWmSyY4U/o\nO5eCXK1XZfF4k3fd6W1+lSlBlOaUUmzfb3H2ksuN803KS5NXKV+CKck6ywZtrLU4ca5H2aCxOitr\nAsydNrSyQSNl6N580lBW4IzGajp51y1EctUdsWk47TC/ysf0iuRGgwRTkriuov6YzYbaKGcv9Sgb\nNN5g1WKvbFCiqykE/BqF+UMbuhvN1XTyrluI5Dh4IsaewzGmlhssnJG4/Ur9kWBKMMdV7Dkc4/Va\ni4tXlQ1aWRNgarmRlPI++bnakFf3gaymEyLdHT5l80Z9jIpxOjfON1OivJgEU4LEbMXOt2Js2hOl\nua172fWcSh8rawJMGp+c8dyRnjArq+mEiL+VNfGZa91aF2X7Pou503x86gP5Cd1Eey0STHEWtRRv\n1Fts2WvRFvYCSdNgwXQ/KxaZTOinbFAimB2lhUYyhyWr6YRIT2/WW/zk5XZmVfr4P+9PnVACCaa4\naY+4bN1nsX2f9f+3d+9RUZX9HsC/e8+wZ4DNAKJgbxwNJBJTUkzC11vvsjraWtW7zEXmWpS5VmeV\nntQyhGVSlCNCeOOsSjudVRnmpQu9b52z6l2Z5S1DmyOpvAShXY4igobJDMLMMPv8MYqXUgady96z\nv5//mNt+nnGc7+z9PM/vwdlzu473pWxQoEWaBMREXX9pIc6mI9Ke/fVOvPmJA0NuNGLONDkoW1n0\nBYPJz844PNhz0Ilv65xwni8bZABGZ0gYl+l72aBAskSLiDT554PI2XRE2nKg0Yn/+tiBm24w4N+n\ny6rcIYDB5CdtZzzYdaAL++svLRuUPUxCznApaOXir+Z8aSF//zribDoibag94sJ//s2B5EQDnsqN\ngdlPP1D9jcF0nVraurGrxomDF5cNMgvIGSEh+zrLBvmT0eCtHq6nrSqI6ILvf3Jh3Ud23JBgwLyH\nZL9dNQkEBtM1amrtxo7LygZZogWMyzQha2jwygb54lrWJxFR+Gg86sZrVXYMiBMx/yH5mpaGBBOD\nqY9+Ou7G1ppYNP3q6LktwSJi/EgJmUEuG+SL6EgBsgouIxJRaPzS7MYr77cjPkbEghkxkAO0dY0/\nMZh8oCgKGo+6sWP/+bJB3vGUpHNlg24NctkgX8VGi6q9hkxEgdd8qhv/8Z4dUWYR8x+KUcXkK18w\nmK7Coyio+9GNnTVdOH5R2aD+FhfuybEgfVDwywb5QhS9W1WoaV0CEQXXqd+6UbGlHYIAzH9IDvkS\nlb5gMP2Bbo+Cg40u7PzOiZOnLwRS6p8MmDjKhO6On5E2OCGELbwyTnIgojMODyq22NHpBBbOlEO6\nkP9aMJgu4nIr2N/gwu7vunD6d2WDJCQnet+uw4dD1cKrk4wCYmM4yYFIz1xuBeuq7Ghr92D+QzE9\n31taor0WB0CXU8G33zvx9YFLywYNT/XWsdPCrw2zJMASff2VHIhIuxRFQeWnHTjS1I3HH4hGWrI2\nv+K12Wo/6ehUUF3bheo/KBs0LtOkmXpvnHlHRADw2Ted2PtPJ+6fYMboodpd9K7LYGrv8ODrg058\n+8/flw368wgJsbJ2vuT9WV6IiLRrf70Tf9/RiTHDJEwda+79CSqmq2Bqa/dg93dd2N/ggvvcZrGm\nCCD7VgljVVI2yFcG0RtKaiu+SETB13yqG2//jwMpNxjwyNQozV/S10UwtbZ1Y+d3ThxsvFA2KMos\nYOxwCWOGSZo74zBLAmKiOcmBiACnS8Ebf3cgwijg31S2fcW1CutgajrZjZ01Xaj70Y3zc+ws0QL+\nnClh9FBJVWWDfCEIgCWKi2aJ6IKPtp/FsdZuzJ0uIz5GO1d9riaoweTxeFBcXIz6+npIkgSr1YrB\ngwf7/Tg/N7uxY38XGo9299zWzyJi/G0SbrtZfWWDfBFhFBAbLcCgwbYTUWA0/OLCl7Yu/GW0CSOG\nRPT+BI0IajBt3boVTqcTW7ZsQU1NDUpLS7F27Vq/vLa3bJD3DOnn5guBdL5s0LAUo2YXncqRgqbG\nv4go8JwuBe982oEBcSL+OjEy1M3xq6AGk81mw4QJEwAAI0eOxKFDh677NT2Kgu9/8pYNajp5oUpD\ncqIBE0ZKSB9k1OxYjEH07p8UDteMici//lHdiZOnPXh6hjo3+7seQQ0mu90OWZZ7/jYYDHC73TAa\nLzTjsI9lFTwe4McTJhz6OQq/dVx4/sB4J0YM7sDAeBcEN/DjEf+1/7yuri6f23mtJKOCKJMHrSr6\nvHV2dqKuri7UzQgJvfad/Q6MjIyMPj3+8rac6TDgsz39kX5jJzwdzdDiP9HV3oOgBpMsy3A4LmwX\n4fF4LgklABgyZMhVX+NKZYNuGeQtG/QvSRb/NvoPHD58uNd2Xg+1rk2qq6vr83+ocKHXvrPf6nB5\nW976bwdE0YnH7h+IeMufQtSqwAlqMGVlZeHLL7/Evffei5qaGqSnp/v83C6Xgm/rnNhz0In2jgtl\ng25N8ZYNGpig/rJBveGlOyLqTVNrN/bWOnFXtgnxGqoY3hdBDaa7774bu3fvxowZM6AoCkpKSnp9\njrdskBPVtV2XlA267eYIjL9NQkKs9gMJAKQI76w7Ne7rRETq8Y/qTkgRwL/maLu6w9UENZhEUcRL\nL73k02PbOzzYc9CJfXVOOF3e2yIMQNZQCeMytVU2qDdRZgExGthVkohC69czHuyrc+LOLFNY18dU\n3QLb0+0e7D7Qhf+tv7Rs0JhhEsaOkMLuH0Ot40lEpD67arqgKMDk202hbkpAqS6YKrbYw6JsUG+4\nyywR9UW3R8Hug124NcUYNkMYV6K6YPIo58oGjThXNigMi5RKRgGxMseTiMh33//kxm92BTPuDu+z\nJUCFwXTfBDNGarRskC+izQJkjicRUR/ZvnfCLAHDU8On9NCVqC6Ybtfw5la94XgSEV0Lj6LgQKML\nI9IkXVz+V10whSNB8I4nheNlSSIKvKbWbtjPKrg1RR9f2froZQgZRCAuRgzbS5NEFHj1P3u32k4f\nFP6X8QAGU0BFGAXEcZIDEV2n+l/cSIwX0S9MKz1cTh+9DAGzJCA+hqFERNfvh/9z45ZB+jmP0E9P\ng4j7JxGRP53tUjBooH6+rvXT0yAQBO/MO3OY7Y1CRKF344DwXlR7MQaTn7AyOBEF0g39GUzUB5zk\nQESB1M+irzWQDKbrFGkSEBMlQNDo9u1EpH4D4vU1Zs1gug5ylIBos74+MEQUfPEx+vqeYTBdo9ho\nEWYdnVoTUejoLZj01Vs/EAUgJrKboUREQcNgoisyiEC8RYRRP5NjiEgFLNH6+iHMS3k+4sw7IgqV\nSLO+vncYTD4wRXg39uPMOyIKBT1NFQcYTL2KMguI4cZ+RBRCDCbqwY39iEgN9PY9xGD6A4LgnQ5u\nYs07IlKBSJ19FzGYLiMK3o39WPOOiNTCoLONRhlMFzEYgHhZ1N2HgIhITRhM53A6OBGROjCYwOng\nRERqovtgijQJsERzOjgRkVroOphYHZyISH10G0yxMrdAJyJSo6AFU3t7O/Lz82G32+FyuVBYWIhR\no0YF6/A9OB2ciEjdghZMb731FnJycjBr1iwcOXIECxcuxEcffRSswwMAjAZvKBk4846ISLWCFkyz\nZs2CJEkAgO7ubphMpmAdGgBglgRYojnzjohI7QRFURR/v+j777+P9evXX3JbSUkJMjMz0draiscf\nfxyLFy9Gdnb2JY+x2Wzo8sT4uzmIlDwwS/7rZmdnJ8xms99eTyv02m9Av31nvwMjIyPD58fabDZE\nRUUFrC2hcrX3ICDBdCX19fV45plnsGjRIkyaNOl399tsNiSnjPTb8QJV866urq5PH6xwodd+A/rt\nO/sdejabDaNHjw51M4IqaJfyGhsbMX/+fKxZswZDhw4N+PEMonc8ycjyQkREmhK0YFq5ciWcTieW\nLVsGAJBlGWvXrg3IsSSjt5IDywsREWlP0IIpUCF0OW7sR0SkbWG1wJYb+xERaV9YBJMoeCs5SBEM\nJSIirdN8MEWcG0/iolkiovCg6WDiolkiovCj2WCSIwVER3KSAxFRuNFcMAVq0SwREamDpoLJYADi\nZC6aJSIKZ5oJJunc9ucix5OIiMKaJoKJi2aJiPRD9cHERbNERPqi2mASRe94EneaJSLSF1UGExfN\nEhHpl+qCyXRukgMXzRIR6ZPqgikuhpMciIj0jClARESqwmAiIiJVYTAREZGqMJiIiEhVGExERKQq\nDCYiIlIVBhMREakKg4mIiFSFwURERKrCYCIiIlVhMBERkaowmIiISFUYTEREpCoMJiIiUhVBURQl\n1I04z2azhboJRERBMXr0aJ8eZ7PZfH5suFBVMBEREfFSHhERqQqDiYiIVIXBREREqmIMdQO0wuPx\noLi4GPX19ZAkCVarFYMHDw51swLG5XJh8eLFOHbsGJxOJ5588kmkpaWhsLAQgiDg5ptvxgsvvABR\nDM/fNqdOncK0adPw5ptvwmg06qbfr7/+OrZt2waXy4WHH34Y2dnZYd93l8uFwsJCHDt2DKIoYunS\npbr6N1cjvtM+2rp1K5xOJ7Zs2YKFCxeitLQ01E0KqI8//hhxcXHYuHEj3njjDSxduhTLly/HggUL\nsHHjRiiKgi+++CLUzQwIl8uF559/HmazGQB00+/q6mrs378fmzZtQmVlJZqbm3XR9+3bt8PtdmPz\n5s2YO3cu1qxZo4t+qxmDyUc2mw0TJkwAAIwcORKHDh0KcYsCa8qUKZg/f37P3waDAbW1tcjOzgYA\nTJw4EV9//XWomhdQZWVlmDFjBhITEwFAN/3etWsX0tPTMXfuXDzxxBO48847ddH3lJQUdHd3w+Px\nwG63w2g06qLfasZg8pHdbocsyz1/GwwGuN3uELYosKKjoyHLMux2O+bNm4cFCxZAURQIgtBzf3t7\ne4hb6X9VVVXo169fz48QALroNwC0tbXh0KFDqKiowIsvvohnn31WF32PiorCsWPHMHXqVBQVFSEv\nL08X/VYzjjH5SJZlOByOnr89Hg+MxvB++44fP465c+di5syZuO+++1BeXt5zn8PhgMViCWHrAuPD\nDz+EIAjYs2cP6urqUFBQgF9//bXn/nDtNwDExcUhNTUVkiQhNTUVJpMJzc3NPfeHa9/ffvttjB8/\nHgsXLsTx48fx6KOPwuVy9dwfrv1WM54x+SgrKws7duwAANTU1CA9PT3ELQqskydPYvbs2cjPz8f0\n6dMBAMOGDUN1dTUAYMeOHbj99ttD2cSAePfdd7FhwwZUVlYiIyMDZWVlmDhxYtj3G/BWIti5cycU\nRcGJEydw9uxZjB07Nuz7brFYEBMTAwCIjY2F2+3WxWddzVj5wUfnZ+U1NDRAURSUlJRgyJAhoW5W\nwFitVnz66adITU3tue25556D1WqFy+VCamoqrFYrDAZDCFsZWHl5eSguLoYoiigqKtJFv19++WVU\nV1dDURQ8/fTTSE5ODvu+OxwOLF68GK2trXC5XHjkkUcwfPjwsO+3mjGYiIhIVXgpj4iIVIXBRERE\nqsJgIiIiVWEwERGRqjCYiIhIVcJ7hShpXnV1NRYsWIC0tDQA3qm9ycnJWLFiBSRJuubXzc3NxapV\nq5CcnNxzW2FhIWpraxEXFwdFUXD69Gk89thjePDBB6/4Op9//jkyMzMhiiJeffVVFBcXX3ObiMiL\nZ0ykejk5OaisrERlZSWqqqoQERGBbdu2BeRY+fn5qKysxIYNG7BhwwasXr0aV1tR8c4778But2PA\ngAEMJSI/4RkTaYrT6URLSwtiY2MBACtXrsS+ffugKApmzZqFqVOnYu/evXjllVcAAJ2dnSgrK0NK\nSgpWr16NnTt3YuDAgWhra+v1WCdPnoQkSRAEAQ0NDSgtLYXH48GZM2ewZMkSnDlzpqdsUXl5OQoK\nCvDee+9h9+7dWLNmDUwmE+Li4lBSUsKSNkR9wGAi1fvmm2+Ql5eHU6dOQRRF5ObmYuzYsdi+fTuO\nHj2KzZs3o6urC7m5uRg3bhx++OEHlJeXIykpCevWrcNnn32GyZMnY9++ffjggw/Q0dGBe+655w+P\nVV5ejnXr1qGpqQlDhgxBRUUFAKCxsREFBQW45ZZb8Mknn6CqqgpWqxUZGRkoLi5GREQEAG/B16Ki\nImzatAlJSUlYv3491q5di4KCgqC9X0Rax2Ai1cvJycHq1avR1taG2bNn94wLNTQ0oLa2Fnl5eQAA\nt9uNpqYmJCUlYdmyZYiKisKJEyeQlZWFxsZGDB8+HKIoQpblK9Y6zM/Px8SJE7F9+3asWLECgwYN\nAgAkJibitddeg9lshsPhuKTS/MXa2togyzKSkpIAAGPGjMGqVav8/ZYQhTWOMZFmxMfHo7y8HEuW\nLEFLSwtSU1Nxxx13oLKyEuvXr8fUqVORnJyMJUuWoKSkBKWlpUhMTISiKEhJScGBAwfg8XjQ0dGB\nxsbGqx5r0qRJmDx5MoqKigAAy5Ytw7x581BWVob09PSecSdBEC4Zg4qPj4fdbkdLSwsAYO/evbjp\nppsC84YQhSmeMZGmpKWlIS8vD1arFRUVFdi7dy9mzpyJjo4O3HXXXZBlGQ888AByc3NhsVjQv39/\ntLS0ICMjA1OmTMH06dORmJiIhISEXo81Z84cTJs2DV999RXuv/9+zJkzBwkJCZeMUY0aNQqLFi3C\n0qVLAXiDymq14qmnnoIgCIiNjcXy5csD+p4QhRsWcSUiIlXhpTwiIlIVBhMREakKg4mIiFSFwURE\nRKrCYCIiIlVhMBERkaowmIiISFX+H4gBUU3xK0e+AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a120a4cf8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Fan Ratio vs. Read Ratio\n", | |
"plt.figure(figsize=(10,5));\n", | |
"sns.jointplot('Read Ratio', 'Fan Ratio', df, kind='reg_fit');" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"With a nearly 0.6 pearson correlation, there's some strong evidence to suggest a relationship between `Read Ratio` and `Fan Ratio`. This is exciting stuff and makes a lot of sense intuitively. Better posts are not only engaging, but also enjoyable for the reader and more likely to receive applause." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Wrapping Up" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"I hope this was informative for anyone reading. I know I learned a lot. It's worth noting that this type of analysis should be available to all writers, not just those that are data science practioners. Data analysis should be democratized for writers and content creators. Even with my ~30 post sample size, I was able to walk away with some interesting insights:\n", | |
"* 2 out of my 30+ posts make up over 70% of my total lifetime views\n", | |
"* `Read Ratio` and `Read Time` appear to be strongly correlated\n", | |
"* Publication choice matters for enjoyment stats like Fan Ratio\n", | |
"* `Read Ratio` and `Fan Ratio` correlated - strong posts do both well\n", | |
"\n", | |
"Note that this analysis is just from using the fraction of data available to users on the Medium Stats page. Imagine if we had more of our data and information at our disposal; if writers were empowered to use Medium Stats for improving their work and understanding how readers perceive it rather than boosting their ego with simple vanity stats. It's no small task, but I believe it can be done.\n", | |
"\n", | |
"Hope you enjoyed this project, I know I did. Once again, reiterating that I am in no way affiliated with or working for Medium. However, you can follow my writing at the link below if interested. Thanks for reading!\n", | |
"\n", | |
"https://medium.com/@conordewey3" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment