Last active
July 31, 2018 06:29
-
-
Save cdeweyx/6dc2a54db998531e6d4637f938a41cf7 to your computer and use it in GitHub Desktop.
Exploratory data analysis of job rejection emails
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Job Rejection Data Analysis" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's dive into some interesting questions and analysis regarding job rejection emails. We have over 80 emails to work with including features such as `Time`, `Day`, `Subject`, and `Text`. A couple interesting questions that I thought of initially are the following:\n", | |
"* What day of the week are most job rejections sent out?\n", | |
"* What time do most job rejections get sent out?\n", | |
"* What are common phrases and words used in the subject of the email?\n", | |
"* What are common phrases and words used in the body of the email?\n", | |
"* How do different companies rejection emails differ in sentiment and verbage?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# Imports\n", | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns\n", | |
"import re\n", | |
"from nltk.corpus import stopwords\n", | |
"from collections import Counter\n", | |
"import nltk\n", | |
"%matplotlib inline\n", | |
"sns.set(style='whitegrid', palette='muted', font_scale=1.3)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Date</th>\n", | |
" <th>Time</th>\n", | |
" <th>Day</th>\n", | |
" <th>Hour</th>\n", | |
" <th>Subject</th>\n", | |
" <th>Text</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2018-07-12 12:31:08</td>\n", | |
" <td>12:31:08</td>\n", | |
" <td>Thurs</td>\n", | |
" <td>12</td>\n", | |
" <td>Your IBM Application</td>\n", | |
" <td>Ref: 110127BR - 2018 Data Scientist Internship...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2018-06-12 16:30:28</td>\n", | |
" <td>16:30:28</td>\n", | |
" <td>Tues</td>\n", | |
" <td>16</td>\n", | |
" <td>Thank you from Workday!</td>\n", | |
" <td><!doctype html><html xmlns:o=3D\"urn:schemas-mi...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2018-05-17 08:43:38</td>\n", | |
" <td>08:43:38</td>\n", | |
" <td>Thurs</td>\n", | |
" <td>8</td>\n", | |
" <td>An Update Regarding Your Visa Job Application</td>\n", | |
" <td>\\r\\nDear Conor,\\r\\nThank you for giving us the...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>2018-05-01 15:21:05</td>\n", | |
" <td>15:21:05</td>\n", | |
" <td>Tues</td>\n", | |
" <td>15</td>\n", | |
" <td>Thank you for your interest in Zynga for Inter...</td>\n", | |
" <td><html><head>\\r\\n<meta http-equiv=3DContent-Typ...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>2018-04-26 14:49:02</td>\n", | |
" <td>14:49:02</td>\n", | |
" <td>Thurs</td>\n", | |
" <td>14</td>\n", | |
" <td>Your Application with Cambia Health Solutions</td>\n", | |
" <td>Dear Conor,\\r\\n=C2=A0\\r\\nThank you for the int...</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Date Time Day Hour \\\n", | |
"0 2018-07-12 12:31:08 12:31:08 Thurs 12 \n", | |
"1 2018-06-12 16:30:28 16:30:28 Tues 16 \n", | |
"2 2018-05-17 08:43:38 08:43:38 Thurs 8 \n", | |
"3 2018-05-01 15:21:05 15:21:05 Tues 15 \n", | |
"4 2018-04-26 14:49:02 14:49:02 Thurs 14 \n", | |
"\n", | |
" Subject \\\n", | |
"0 Your IBM Application \n", | |
"1 Thank you from Workday! \n", | |
"2 An Update Regarding Your Visa Job Application \n", | |
"3 Thank you for your interest in Zynga for Inter... \n", | |
"4 Your Application with Cambia Health Solutions \n", | |
"\n", | |
" Text \n", | |
"0 Ref: 110127BR - 2018 Data Scientist Internship... \n", | |
"1 <!doctype html><html xmlns:o=3D\"urn:schemas-mi... \n", | |
"2 \\r\\nDear Conor,\\r\\nThank you for giving us the... \n", | |
"3 <html><head>\\r\\n<meta http-equiv=3DContent-Typ... \n", | |
"4 Dear Conor,\\r\\n=C2=A0\\r\\nThank you for the int... " | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Read data\n", | |
"df = pd.read_csv('rejections.csv')\n", | |
"df.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"RangeIndex: 86 entries, 0 to 85\n", | |
"Data columns (total 6 columns):\n", | |
"Date 86 non-null object\n", | |
"Time 86 non-null object\n", | |
"Day 86 non-null object\n", | |
"Hour 86 non-null int64\n", | |
"Subject 86 non-null object\n", | |
"Text 86 non-null object\n", | |
"dtypes: int64(1), object(5)\n", | |
"memory usage: 4.1+ KB\n" | |
] | |
} | |
], | |
"source": [ | |
"# Data overview\n", | |
"df.info()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"As you can see, we have a little over 80 different job rejections to review from my internship search over the course of the last year. For a little background, let's go over my internship search by the numbers and get a better feel for what we're working with.\n", | |
"* Applications: 234\n", | |
"* Replies: 93\n", | |
"* Rejections: 90 \n", | |
"* Offers: 3" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Which Companies Are Included?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Update - Data Analytics Intern - Undergraduate & Masters Degrees,\\r\\n 1765077 2\n", | |
"Your application to Software Engineer, Intern 2018 (San Francisco)\\r\\n at Airbnb 2\n", | |
"Your Uber Application 2\n", | |
"Thanks for your Application! 2\n", | |
"Illumina: Status of your application 2\n", | |
"BlackRock | We Wish You Success 2\n", | |
"Thank you for your interest 2\n", | |
"Your application for Data Scientist Intern - New York at Spotify. 1\n", | |
"Your application to Airware: Data Science Intern - Fall 1\n", | |
"Important information about your application to PlayStation 1\n", | |
"Thank You for Your Interest in Expedia 1\n", | |
"Thank you for your interest in TripAdvisor 1\n", | |
"Thanks for your interest in Wealthfront, Conor 1\n", | |
"Your application for Data Scientist: Ads & Markets Analytics -\\r\\n Summer Internship - New York at Spotify. 1\n", | |
"Update on Your Application for Interns@swissre 2018 - Data\\r\\n Scientist Intern 1\n", | |
"Important information about your application to LendUp 1\n", | |
"Your OpenAI application 1\n", | |
"b'Avvo, Inc. - Big Data Engineer Intern \\xe2\\x80\\x93 Summer 2018 Update (Conor Dewey)' 1\n", | |
"Update on your application at Squarespace 1\n", | |
"Your application for Software Developer Intern - Seattle & San\\r\\n Francisco at Redfin 1\n", | |
"Conor Dewey - Medallia Application 1\n", | |
"Your application for Intern-Big Data Engineer at Palo Alto Networks 1\n", | |
"Thank you from Thumbtack 1\n", | |
"CareDash Application 1\n", | |
"UPDATE: Status of Your Application With Red Hat 1\n", | |
"Bazaarvoice - Data Analyst Intern 1\n", | |
"RE: Application for Data Science Graduation Program and Internships\\r\\n from Conor Dewey 1\n", | |
"Thank You - LiveRamp 1\n", | |
"Thank you for your interest in Twilio 1\n", | |
"Thanks for your interest in Wish, Conor 1\n", | |
" ..\n", | |
"Thank you for your application - Asana 1\n", | |
"Your application for Data Engineer Intern - Boston at Spotify. 1\n", | |
"Merck 2018 MRL Data Scientist Intern - Boston 1\n", | |
"Interview Follow-Up: Your application for Data Science Intern at\\r\\n Chegg 1\n", | |
"Pandora Media, Inc.- Your application for Intern 2018 - Product\\r\\n Analytics 1\n", | |
"Atlassian - 2018 Summer Software Developer Intern - Austin, TX Application 1\n", | |
"Thanks for your interest in Cogo Labs, Conor 1\n", | |
"P&G 1\n", | |
"Yext - Software Engineering Internship Application (Conor Dewey) 1\n", | |
"Your Zocdoc Application 1\n", | |
"Thanks for your interest in TripAdvisor 1\n", | |
"2018 Summer League Rookie Program Update 1\n", | |
"Your IBM Application 1\n", | |
"Your Application for Intern, Big Data Developer 1\n", | |
"An Update Regarding Your Visa Job Application 1\n", | |
"b'Bloomberg Application Follow-up' 1\n", | |
"GitHub Application Follow Up for Conor Dewey 1\n", | |
"Thank you from Workday! 1\n", | |
"b'Twitter Application Status' 1\n", | |
"Thank you for your interest in Definitive Healthcare 1\n", | |
"Your application for Software Engineer (Intern) at Pinterest 1\n", | |
"Following up on your application to Logikcull 1\n", | |
"Thank you for your interest in Zynga for Intern/Co-op Software\\r\\n Engineer - Current Students (Summer 2018) 1\n", | |
"Salesforce: Thank You! 1\n", | |
"Thank you for your interest in Visa 1\n", | |
"Note from Addepar 1\n", | |
"Your Application with Cambia Health Solutions 1\n", | |
"Your application for Intern Data Scientist at ExtraHop Networks,\\r\\n Inc. 1\n", | |
"Thank you for your interest in Datto 1\n", | |
"Your BuzzFeed Application 1\n", | |
"Name: Subject, Length: 79, dtype: int64" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Subject list\n", | |
"df['Subject'].value_counts()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## What Day Are Job Rejections Most Frequent?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHmCAYAAAA/XYmLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XlUlfXe//8Xg0CgKZqkpy+aQyni\nvBHIAZQSPdwMJ4fMU2o4onasNE3NNOuYOSu5khzKn3Z343Eop07eamoaioEWZYpDiBpZ4kAhMsrv\nj1b7bh8UKWF/UJ6PtVjL/bnYe7/3ldiT67pgOxQXFxcLAAAARjiaHgAAAKAqI8YAAAAMIsYAAAAM\nIsYAAAAMIsYAAAAMIsYAAAAMcjY9wO1ITk42PQIAAECZWSyWEmt3dIxJN35RAAAAlc3NDiJxmhIA\nAMAgYgwAAMAgYgwAAMAgYgwAAMAgYgwAAMAgYgwAAMAgYgwAAMAgYgwAAMAgYgwAAMAgYgwAAMAg\nYgwAAMAgYgwAAMAgYgwAAMAgYgwAAMAgu8ZYUlKS+vbtK4vFoscee0zx8fGSpJSUFPn4+Khdu3bW\nj7i4OHuOBgAAYISzvZ4oKytLo0aN0pQpUxQeHq6jR48qOjpaDRo00Llz5xQUFKR33nnHXuMAAABU\nCnaLsYyMDAUHBysyMlKS5Ovrq4CAAB06dEiZmZlq3ry5vUYBAACoNOx2mtLHx0dz5syx3s7KylJS\nUpKaN2+uo0eP6tChQwoJCVHXrl01a9Ys5efn22s0AAAAY4xcwP/LL78oJiZGvr6+CgkJkaenp0JC\nQrRlyxatXr1aiYmJio2NNTEaAACAXTkUFxcX2/MJz549q5iYGHl7e2vhwoVyc3Mr8Tnbtm3T/Pnz\ntW3btlIfKzk5uaLGBG7LjhOTTY9g1GMPvWF6BAColCwWS4k1u10zJklHjhzR0KFDFRkZqZdeekmO\njo7KyspSXFycRo8ererVq0uS8vLy5OrqWqbHvNGLAkzbccL0BGbxdQkAJd3sIJLdYiwzM1NDhw5V\ndHS0hg8fbl2vUaOGtm/fruLiYo0bN04ZGRmKi4vTE088Ya/RAAAAjLFbjK1bt06XLl3SkiVLtGTJ\nEuv6wIEDFRcXp3/+858KDAyUm5ub+vXrp0GDBtlrNAAAAGPsFmMxMTGKiYm56faVK1faaxQAAIBK\ng7dDAgAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgY\nAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAA\nMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgY\nAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAA\nMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgY\nAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAA\nMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgY\nAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMIgYAwAAMMiuMZaUlKS+ffvKYrHoscce\nU3x8vCQpKytLo0ePlsViUdeuXbV27Vp7jgUAAGCMs72eKCsrS6NGjdKUKVMUHh6uo0ePKjo6Wg0a\nNFB8fLzc3d2VkJCg1NRUDRs2TK1atVLz5s3tNR4AAIARdjsylpGRoeDgYEVGRsrR0VG+vr4KCAjQ\noUOHtGPHDo0ZM0aurq5q3bq1wsPDOToGAACqBLvFmI+Pj+bMmWO9nZWVpaSkJEmSs7OzvL29rdsa\nNWqkEydO2Gs0AAAAY+x2mvL3fvnlF8XExFiPjq1atcpmu5ubm3Jzc8v0WMnJyRUxIoDbcLtfl1PT\n95bTJHem1xp2MT0CADuye4ydPXtWMTEx8vb21sKFC3Xq1KkS4ZWbmyt3d/cyPZ7FYqmIMYHbsqOK\nH9i97a/LKh5j/LsG3J1u9o2qXX+a8siRI3riiSfUuXNnvf3223Jzc1PDhg1VWFiojIwM6+elpaWp\nadOm9hwNAADACLvFWGZmpoYOHaro6GhNmjRJjo6/PnX16tX16KOPat68ebp27ZpSUlK0ZcsWRURE\n2Gs0AAAAY+x2mnLdunW6dOmSlixZoiVLlljXBw4cqNdff13Tpk1TcHCw3N3dNX78eLVp08ZeowEA\nABhjtxiLiYlRTEzMTbcvWrTIXqMAAABUGrwdEgAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHE\nGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAA\ngEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHE\nGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAA\ngEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHE\nGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAA\ngEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHE\nGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAA\ngEHEGAAAgEFGYiwlJUWdO3e2ue3j46N27dpZP+Li4kyMBgAAYFfO9nyy4uJirV+/Xm+++aacnJys\n68eOHVNQUJDeeecde44DAABgnF2PjMXFxWnVqlWKiYmxWf/222/VvHlze44CAABQKdj1yFjv3r0V\nExOjgwcP2qwfPXpULi4uCgkJ0fXr1/XXv/5VL7zwglxcXOw5HgAAgN3ZNca8vLxuuO7p6amAgAD1\n69dPFy9e1HPPPafY2Fi9+OKLt3zM5OTk8h4TwG3i6/L2sP+AqsWuMXYzv79Y393dXSNGjND8+fPL\nFGMWi6UiRwP+lB0nTE9g1m1/XabvLZ9B7lD8uwbcnW72jZbxX22RlZWlWbNmKTs727qWl5cnV1dX\ng1MBAADYh/EYq1GjhrZv367FixeroKBA6enpiouLU69evUyPBgAAUOGMx5ijo6Pi4uJ07NgxBQYG\n6u9//7t69uypQYMGmR4NAACgwhm5ZiwgIECJiYnW202bNtXKlStNjAIAAGCU8SNjAAAAVRkxBgAA\nYBAxBgAAYBAxBgAAYBAxBgAAYBAxBgAAYBAxBgAAYBAxBgAAYFC5xFhmZmZ5PAwAAECVU+YY8/Hx\n0aVLl0qsnz17Vt27dy/XoQAAAKqKUt8Oad26dYqPj5ckFRcXa8iQIXJycrL5nIsXL8rLy6viJgQA\nALiLlRpjYWFhOn/+vCTpm2++UWBgoDw8PGw+x8PDQ6GhoRU3IQAAwF2s1Bhzd3fXs88+K0l64IEH\n9F//9V9ycXGxy2AAAABVQakx9nuPP/64UlNTlZKSooKCAhUXF9tsf+qpp8p9OAAAgLtdmWNs6dKl\nmj9/vmrWrFniVKWDgwMxBgAA8CeUOcbWrFmj5557TiNHjqzIeQAAAKqUMv9qi8uXLyssLKwiZwEA\nAKhyyhxjoaGh2rx5c0XOAgAAUOWU+TRl9erVFRcXp08++UQNGjRQtWrVbLYvWrSo3IcDAAC425U5\nxq5evaqIiIiKnAUAAKDKKXOMzZw5syLnAAAAqJLKHGN79uwpdXtwcPBtDwMAAFDVlDnGRowYccN1\nV1dX1atXjxgDAAD4E8ocY8eOHbO5XVRUpDNnzui1115TVFRUuQ8GAABQFZT5V1v8JycnJzVq1Egv\nvfSSYmNjy3MmAACAKuNPx9hvcnJydPny5fKYBQAAoMop82nK2bNnl1i7evWqdu7cqS5dupTrUAAA\nAFVFmWPs66+/trnt4OCgatWqqU+fPho8eHC5D1YeLix53/QIxtQd+fRt3X/vsvBymuTO1GXYFtMj\nAACqiDLH2OrVqytyDgAAgCqpzDEmSefOndPKlSv13Xff6fr162rSpIn69++vpk2bVtR8AAAAd7Uy\nX8CfmJiosLAwpaSk6OGHH9ZDDz2kr776Sr169VJycnJFzggAAHDXKvORsblz5+rpp5/WhAkTbNZn\nzZqluXPn6n/+53/KfTgAAIC7XZmPjKWmpuqJJ54osd6vXz8dPXq0XIcCAACoKsocY/Xr11dqamqJ\n9WPHjqlWrVrlOhQAAEBVUebTlP3799fUqVN1/vx5tW7dWg4ODvryyy+1ZMkSRUdHV+SMAAAAd60y\nx9igQYN09epVxcXF6fLly3JwcFDdunU1atQoDRw4sCJnBAAAuGvdMsaKioq0ZcsWhYSEaPTo0Ro9\nerQyMzP18ccfq3r16oqKipKDg4M9ZgUAALjrlHrN2NWrVzVo0CC9/PLLOnHihHX9vvvu05kzZzRt\n2jQNHTpU165dq/BBAQAA7kalxlhcXJwuXryorVu3qn379jbbpkyZoo8++khnzpzRsmXLKnRIAACA\nu1WpMfbJJ59o0qRJatiw4Q23N2nSROPHj9fWrVsrZDgAAIC7Xakx9tNPP6lJkyalPoCvr69+/PHH\nch0KAACgqig1xurVq6f09PRSH+Ds2bOqU6dOuQ4FAABQVZQaYz179lRsbKzy8/NvuD0/P1+LFy9W\nt27dKmQ4AACAu12pv9pi+PDh2rFjh3r37q0BAwaoZcuWqlGjhrKysvT111/r/fffV2FhoUaNGmWv\neQEAAO4qpcaYh4eH1qxZozlz5mj27NnKzs6Wg4ODiouLVbNmTUVERGj06NHy9PS017wAgFuIWrfN\n9AjGbOzTw/QIwB92y1/6Wr16dU2fPl0vv/yyzp49q59//lmenp5q0KCBHB3L/NaWAAAAuIEyvx2S\ni4vLLX+yEgAAAH8Mh7YAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYA\nAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAM\nIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMIsYAAAAMMhJj\nKSkp6ty5s/V2VlaWRo8eLYvFoq5du2rt2rUmxgIAALA7Z3s+WXFxsdavX68333xTTk5O1vVXXnlF\n7u7uSkhIUGpqqoYNG6ZWrVqpefPm9hwPAADA7ux6ZCwuLk6rVq1STEyMde3q1avasWOHxowZI1dX\nV7Vu3Vrh4eEcHQMAAFWCXWOsd+/e2rhxo1q1amVdS09Pl7Ozs7y9va1rjRo10okTJ+w5GgAAgBF2\nPU3p5eVVYi0nJ0dubm42a25ubsrNzS3TYyYnJ990W4M/Nt5dpbT9gltj/90e9t/tYf/9eew73Ins\nGmM3cs8995QIr9zcXLm7u5fp/haL5abbLhw8eluz3clK2y9lsfdQOQ1yh7rd/bejih/Yvd39p/S9\n5TPIHeq291/atvIZ5A502/sOqEA3+2bB+K+2aNiwoQoLC5WRkWFdS0tLU9OmTQ1OBQAAYB/GY6x6\n9ep69NFHNW/ePF27dk0pKSnasmWLIiIiTI8GAABQ4YzHmCS9/vrrKiwsVHBwsMaMGaPx48erTZs2\npscCAACocEauGQsICFBiYqL1dq1atbRo0SITowAAABhVKY6MAQAAVFXEGAAAgEHEGAAAgEHEGAAA\ngEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHE\nGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAA\ngEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHE\nGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAA\ngEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHE\nGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAA\ngEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHEGAAAgEHE\nGAAAgEHEGAAAgEHEGAAAgEGVJsaWL1+uli1bql27dtaPpKQk02MBAABUKGfTA/zm6NGjeuGFFzRk\nyBDTowAAANhNpTkydvToUfn4+JgeAwAAwK4qRYxdu3ZNp0+f1qpVq9SpUyf99a9/1bp160yPBQAA\nUOEqxWnKzMxMtW/fXv3791dsbKxSUlIUExOjunXrKjg4uNT7Jicn33Rbg/Ie9A5S2n7BrbH/bg/7\n7/aw//489h3uRJUixry9vfX+++9bb/v5+SkqKko7d+68ZYxZLJabbrtw8Gi5zXinKW2/lMXeQ+U0\nyB3qdvffjhPlNMgd6nb3n9L3ls8gd6jb3n9p28pnkDvQbe87oALd7JuFSnGa8siRI1q6dKnNWl5e\nnlxcXAxNBAAAYB+VIsbc3d21ePFiffLJJ7p+/br279+vrVu36vHHHzc9GgAAQIWqFKcpGzVqpIUL\nF2rBggWaOHGi7r//fs2cOVO+vr6mRwMAAKhQlSLGJCkkJEQhISGmxwAAALCrSnGaEgAAoKoixgAA\nAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwi\nxgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAA\nAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAwixgAAAAxyNj0AAACVxf+34YLpEYwa1Kuu\n6RGqJI6MAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAA\nGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESM\nAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAA\nGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESM\nAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGESMAQAAGFRpYuzbb79Vnz59\n1LZtW0VFRenLL780PRIAAECFqxQxlpeXp5iYGPXq1UtffPGFBgwYoGeffVb5+fmmRwMAAKhQlSLG\nDhw4IEdHR/39739XtWrV1KdPH3l6emrXrl2mRwMAAKhQlSLG0tLS1KRJE5u1Ro0a6cSJE4YmAgAA\nsA+H4uLiYtNDvP322/r222+1ePFi69qECRPk5eWlF1988ab3S05Otsd4AAAA5cJisZRYczYwRwn3\n3HOPcnNzbdZyc3Pl7u5e6v1u9IIAAADuJJXiNGXjxo2VlpZms5aWlqamTZsamggAAMA+KkWMPfLI\nI8rPz9fq1atVUFCgdevWKTMzU507dzY9GgAAQIWqFNeMSdKxY8f06quvKjU1VQ0bNtSrr76qtm3b\nmh4LAACgQlWaGAMAAKiKKsVpSgAAULorV64oOzvb9BioAMTYH9CsWTO1adOmxBdDQUGBAgICFBIS\nYmiyymvo0KFq166d2rVrpxYtWqhly5bW21OnTjU9XqU0fPhwzZ4922Zt8ODB8vX11c8//2xdS0pK\nUrt27f7QO1Xs2rXrrv97WtrfuZ49eyogIMD0iHeFkJAQtW7d2rpvf/vYtm1bic8dOnSo1qxZY2DK\nyictLU0jR45Uhw4d1K5dO0VGRmrt2rVlum+PHj2UkZFRwRNWTrez3+4EleJXW9xJ3NzctHPnTkVF\nRVnX9u7dq4KCAoNTVV7Lly+3/nnMmDF66KGH9I9//MPgRJVfp06dtHXrVuvtnJwcHT58WA8//LD2\n7dunsLAwSb++c0VAQIBcXFxMjVoplfZ3LjExUWPGjDE12l1n0aJF6tat2y0/7/f/Taqy69eva+jQ\noerVq5cWLFggFxcXJSUl6dlnn9W9996rHj16lHr/K1eu2GnSyuV299udgCNjf1CPHj1s/kcpSZs3\nb1ZoaKjN2pYtWxQWFiaLxaInn3xSX331lSTp3Llz8vPz09KlS9WpUyc98sgjeuONN+w2f2WSmJhY\n4ihFQECAEhMTJUkZGRmKiYlRQECAQkNDtX79euvnJSQkKCIiQn5+foqIiNDGjRvtOntF6ty5s779\n9ltdu3ZNkrR//361aNFCPXr00O7du62fl5iYqC5duujKlSsaP368HnnkEYWEhGjp0qX67VLQvLw8\nTZkyRRaLRSEhIdZ9K0n5+fmaNGmSAgIC1LlzZ40ZM0aXL1+262s1obi4WPPmzVOXLl0UGBioFStW\nWLc1a9ZMx48ft94eM2aM3nrrLUnSgAEDNHHiRHXs2FHDhw/Xzz//rFGjRsnf31/dunXTyy+/rLy8\nPLu/nsrm3Llzslgsmjhxovz8/LRx40YNGDBA77//vunRjLt8+bLOnTunyMhIubm5ydHRUf7+/ho/\nfrwKCgqUm5urV199Vd27d1fbtm0VGhqqHTt2SJJ69eolSerbt691raq41X576623bL7JOn78uJo1\naybp138nIyIiNHPmTPn7+ysoKEjLli0z9VJuihj7g8LCwpSYmGj9n1Z2dra++OILm+8O9+7dq6lT\np2r69OlKTExUnz59NGTIEF24cEGS9Msvv+jcuXPatWuXlixZog8++ECHDx828noqq6KiIsXExOih\nhx7S3r17FRsbqwULFujAgQOSpEmTJunZZ59VUlKSJk+erFdfffWuuZaiSZMmuu+++/Tll19Kkvbs\n2aPg4GAFBQXps88+0/Xr15WXl6evvvpKQUFBmjBhghwcHLRz506tWrVKmzZt0oYNGyRJCxcu1MmT\nJ7V9+3Z98MEH+vzzz63Ps3HjRp06dUq7du3S9u3blZOTo1WrVhl5zfaUlZUlR0dH7d69W7NmzdLs\n2bN1/vz5Mt33yJEj2rZtm+bNm6d3331XTk5O2rdvnz766CMdOXJEmzZtquDp7wzZ2dl64IEHlJCQ\nUOIb1aqsTp068vf3V3R0tGJjY3XgwAHl5OSob9++Cg8P14oVK3Tq1Clt2LBBycnJ6tWrl15//XVJ\nsn5Nr127Vo899pjJl2F3t9pvt3L8+HHVrFlTCQkJeuWVVzR//vwyf83bCzH2B9WuXVsdOnTQ//7v\n/0qStm/frq5du9qcKtq0aZMef/xxdejQQc7OzurTp4+aNGli893MsGHD5OLiorZt26px48ZKT0+3\n+2upzL7++mv98MMPeuGFF+Ti4qLmzZvrySeftF4jUKNGDW3ZskX79++XxWJRcnKyqlevbnjq8tOp\nUyd98cUXkqTPPvtMQUFB8vHxkbOzs77++msdPnxY9evXl5ubmz777DNNmjRJ7u7u+n//7/9pyJAh\n1v3073//W8OGDVPt2rVVr149DRs2zPocNWrUUHp6uj788ENdvnxZS5cu1XPPPWfk9dpTtWrV9I9/\n/ENOTk4KDg6Wh4eHzp07V6b7hoSEqEaNGtaPI0eOaOvWrSooKNCGDRvUt2/fCp6+chk7dqz8/Pys\nHy+99JJ1W0REhFxcXHTPPfcYnLDyWb58uZ5++mkdOHBAQ4cOlb+/v8aOHavLly/rqaeeUmxsrNzd\n3fXDDz/Iw8NDP/74o+mRK4XS9tutODk5adiwYXJ2dlb37t3l7u6us2fP2mHqsuOasT8hPDxc69ev\nV79+/bR582bFxMTo6tWr1u2XLl1S8+bNbe7zl7/8xabEa9eubf2zs7Ozrl+/XvGD30EyMjKUnZ0t\nf39/61pRUZF8fX0lSUuWLNGiRYs0duxY5ebmql+/fho3bpyqVatmauRy1alTJ8XHxys1NVXXr1+3\n/n3q0qWLEhISlJ+fry5duuiHH35QcXGxunfvbr3v9evXVatWLUlSZmam7r//fuu2Bx54wPrnnj17\n6tKlS9qwYYNmzJihhx9+WK+99ppat25tp1dphoeHh5yd/++fvmrVqqmoqKhM973vvvusf37mmWeU\nn5+vd999V5MnT5bFYtE///lPPfjgg+U9cqU1f/78EteM/Ra2v99X+D+urq565pln9MwzzygvL0/J\nycmaM2eOJk+erMmTJ2v69OlKSUmRt7e3vL29xW+f+lVp+61Fixal3rdGjRo2/2+ojP/P5cjYn9C9\ne3d98803OnLkiM6cOaMOHTrYbK9fv76+//57m7Vz587xj9N/cHJysvnBh4KCAmvUenl56f7771dS\nUpL1Y/v27VqwYIHy8/N15swZzZ07VwkJCXr33Xe1adMm69HKu0HHjh31zTffaM+ePQoKCrKuBwcH\nW/dHUFCQ6tatK2dnZyUkJFjXd+3aZb0+x8vLy+anr37/Xfbp06cVGBiodevW6fPPP5efn58mTJhg\nvxdZCTk6Otr8nfzP77odHBysfz5x4oSioqK0efNm7d69W3Xq1LGeUoLtvsKvPv74Y4WEhFgDy9XV\nVR07dtTIkSN17NgxTZs2TY3xS27+AAAMT0lEQVQaNVJCQoLWr1+vp556yvDElcOt9pujo6PNT5Xf\niT/oQIz9CR4eHuratasmTJigsLCwEv/o/O1vf9NHH32kL774QoWFhVq3bp1OnjxZ5c7z30qDBg10\n7do1bd++XYWFhVq2bJkKCwslSW3atJGbm5uWL1+ugoICnT9/XtHR0frv//5vSb+eHvntVJyXl5cc\nHBysR4PuBrVq1VLjxo0VHx9vE2OdOnXSsWPHdPz4cfn7+6t+/fqyWCyaM2eOcnNzdeXKFY0ZM0YL\nFiyQJEVGRurtt9/Wjz/+qAsXLthcuLpz506NGzdOmZmZqlmzpjw8PO6qffhnPPjgg9qyZYsKCgr0\n+eefW6/bu5F//etfmjZtmrKzs+Xp6Sk3N7cqv/9QukceeUQ5OTmaMWOGLl68qOLiYqWnpys+Pl7d\nunVTdna23Nzc5OTkpB9++EGLFi2SJOs3CNWqVbtrro39I2613xo1aqRDhw7pzJkzys7O1sqVK02P\n/IcRY39SRESETp48qcjIyBLb/Pz8NH36dE2bNk0dOnRQfHy8li1bpvr16xuYtPLy8vLS+PHjNWPG\nDHXs2FHZ2dnWw83VqlXT0qVLdfDgQXXu3Fm9evVSQECARo8eLRcXF8XGxuqDDz5Q+/bt1a9fPw0Y\nMECdOnUy/IrKV+fOnfXTTz+pY8eO1rUaNWqoUaNGatmypdzc3CT9eqro4sWLCgkJUY8ePeTl5aVp\n06ZJkkaPHi0/Pz+Fh4erd+/eNo81cOBAtW7dWhEREbJYLDp06JBmzpxp3xdZybzyyivat2+f/P39\n9f7775d6cfALL7wgDw8PPfroowoMDFRWVpYmTZpkx2lxp/H09NQHH3ygn376SeHh4Wrbtq2io6PV\nqlUrTZw4UZMmTdLu3bvVvn17Pf300woODpa7u7tOnTol6defqIyOjtaHH35o+JXY163222OPPaaQ\nkBD17dtXkZGRCg4ONj3yH8bbIQEAABjEkTEAAACDiDEAAACDiDEAAACDiDEAAACDiDEAAACDiDEA\nAACDiDEAty0kJETNmjWzfrRu3Vrh4eFas2aNsZmuXr2qIUOGqFWrVho3btwNt//2i4MlacCAAZo1\na1a5PPf06dPVu3dvm7Xs7Gz5+vqqR48eNuu5ubny9fUtl3eQmDhxosaMGXPbjwPAvnhvSgDlYuzY\nserVq5eKi4uVnZ2tffv26Y033lBWVpaGDx9u93l27typgwcPas2aNapXr16J7e+9954+/fTTCnlz\nb39/f61du1Z5eXlydXWVJB08eFB16tTR6dOndf78eetMKSkpKioqKvG2agCqDo6MASgXHh4eqlu3\nrry8vNS4cWMNHDhQ48eP1+LFi5WZmWn3eX755Rfdd999atGihWrXrl1ie0X+vmt/f38VFBToyJEj\n1rWEhASFhISocePGSkhIsK5/+eWXatasmTw9PStsHgCVGzEGoML06tVLjo6O2r17t6RfT9W98sor\n6tSpk3x9fRUSEqLVq1dL+vXNgNu1a6dr165Z73/q1Cn5+Pjo/PnzJR77+vXrWrlypUJDQ9WqVSv1\n7t1bBw4ckCS99dZbeu2115SRkaFmzZopMTHR5r4bNmzQ4sWLdeTIETVr1sy6funSJY0aNUqtW7dW\nt27dtHHjRuu2goICzZo1Sx07dpSfn59GjBihs2fP3vB116lTR40bN1ZKSop17cCBAwoMDFRAQID2\n799vXT906JACAgKst3ft2qWIiAjrW1Vt2bLF5rHXr1+v0NBQtWnTRr1797YJu9+7du2annzySQ0Y\nMEC5ubk3/BwAlQMxBqDCuLu764EHHtDJkyclSTNnztSRI0cUFxenf//734qKitIbb7yhs2fPKiQk\nRI6Ojtq1a5f1/lu3blWHDh1ueJpxyZIlevvtt/X8889r48aN8vf317Bhw3T27FkNHjxYY8eOVb16\n9bRv3z61a9fO5r5hYWEaPHiwmjdvrn379lnXN2/erE6dOmnr1q0KDQ3Vyy+/rIsXL0qSFixYoP37\n9ys2NlZr1qxR3bp1NWjQoJuGjr+/v/WNxjMzM3Xq1Cn5+/srMDDQJsa++uora4ylpqbq+eef18CB\nA7VlyxYNGTJEU6dO1Z49eyRJe/bs0axZszR27Fht2rRJUVFRGjFihFJTU22eu7CwUM8995yKioq0\nZMkS6/uYAqiciDEAFeree+9Vdna2JMlisWjGjBlq1aqVGjRooJEjR+r69ev67rvv5ObmptDQUH38\n8cfW+27dulURERElHrO4uFirV6/WyJEjFRYWpsaNG+ull15S8+bNtXLlSnl4eMjDw0NOTk6qW7eu\nXFxcbO7v5uYmd3d36/bfBAUF6amnnpK3t7dGjx6tgoICHT9+XLm5uVq9erWmTZsmPz8/NWnSRK+9\n9poKCwu1bdu2G75uf39/65GxhIQEPfzww6pdu7YCAgKUmZmpkydP6vTp07py5Yr1erEVK1YoKipK\nffv2VYMGDfS3v/1NTz/9tN577z1J0tKlSzVkyBD17NlTDRs21MCBAxUaGqpVq1bZ7JvJkyfr/Pnz\nWr58uapXr/5n/rMBsCMu4AdQobKzs1WjRg1J0uOPP65PP/1UGzZsUFpamo4ePSrp11OOkhQZGakR\nI0YoOztb6enpysjIKPHTh5J08eJFXb58Wa1bt7ZZb9++fYmjRH9EgwYNrH++9957JUl5eXk6c+aM\n8vPzFR0dLQcHB+vn5ObmKi0t7YaP1aFDB33//ffKzMzU/v37FRgYKEny9PRUs2bNlJSUJFdXV/n4\n+Fif6+TJkzp+/Lg2b95sfZzCwkLrNW8nT55USkqK4uLirNsLCgps9sPu3btVUFAgi8VifVwAlRsx\nBqDCXLt2TWlpaRoyZIgkadKkSTpw4ICioqLUp08ftWnTRl27drV+fkBAgGrWrKlPP/1Uqamp6tq1\n6w2D4rfTbr8PI0kqKiqyht2f4eTkVGKtuLhYRUVFkqR3331XderUsdn+W2j+Jy8vLz344INKSUlR\nYmKipk6dat0WEBCgQ4cOyc3NzeZ6saKiIg0YMEBPPvmkzWM5Ojpat48bN07dunWz2f77I3+1a9fW\n3LlzNWTIEK1fv159+vQpy0sHYBCnKQFUmA8//FDOzs7q2rWrsrOztXHjRr355pt64YUX1LNnT129\nelXS//1ko6Ojo8LDw7Vz507rhew3Ur16ddWtW9d6TdZvDh8+rMaNG5dptv8MudI0aNBAzs7OunTp\nkho2bKiGDRvqL3/5i+bNm1fqkTh/f3/t3r1bP/74o/z8/KzrgYGBOnbsmA4fPmw9YiZJTZo0UXp6\nuvU5GjZsqN27d2vdunXW7d9//73N9vXr12v79u3Wx2jTpo06dOigYcOGac6cObp8+XKZXycAM4gx\nAOXi6tWrunDhgi5cuKDvvvtOy5cv1+zZs/X888+rVq1acnV11T333KMdO3bo3LlzOnjwoF588UVJ\nUn5+vvVxIiMjtWvXLv300082R83+09ChQ60/CJCWlqZZs2YpNTVV/fv3L9O87u7uunjx4k1/IvL3\nPDw81L9/f82YMUOfffaZTp8+rSlTpujAgQNq0qTJTe/XoUMHbd68WS1btrS5dsvf319nzpzR6dOn\nZbFYrOuDBw/W7t279c477yg9PV2bNm3S3LlzVb9+fetrjo+P15o1a3TmzBmtXLlSy5Yt04MPPlji\nuYcPH64aNWpo9uzZZdofAMzhNCWAcjF//nzNnz9fklSrVi01btxYb7zxhsLCwiRJ1apV07x58/Tm\nm2/qX//6l+rVq6e+ffvK1dVVR48eVc+ePSVJPj4+8vb2Vtu2bUtceP97AwcOVE5OjmbOnKkrV66o\nRYsWeu+992x+VUVpQkNDFR8fr/DwcJsjSzczYcIEOTo6auLEicrJyZGvr69WrFghLy+vm97H399f\nOTk5Nke/pF+P7D300ENycHCwibSWLVtq0aJFio2N1VtvvSUvLy+NGzfOetqye/fumjJlilasWKHX\nX39d3t7emj17toKCgko8t6urqyZPnqxRo0apd+/eNkfmAFQuDsUV+ZsPAeAPKiwsVJcuXbRw4UKb\n66kA4G7FkTEAlca2bdu0b98+eXp6yt/f3/Q4AGAXxBiASmPRokXKycnRokWL/tAF9gBwJ+M0JQAA\ngEH8NCUAAIBBxBgAAIBBxBgAAIBBxBgAAIBBxBgAAIBBxBgAAIBB/z89XgQQIvFxDwAAAABJRU5E\nrkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a19761710>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Visualization\n", | |
"plt.figure(figsize=(10,8))\n", | |
"sns.countplot(df['Day'], order=['Mon', 'Tues', 'Weds', 'Thurs', 'Fri', 'Sat', 'Sun']);\n", | |
"plt.xlabel('Day of the Week')\n", | |
"plt.ylabel('Count');" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Key Insights\n", | |
"* Rejections most frequently came on Wednesdays\n", | |
"* Thursdays also appear to be a popular day for bad news\n", | |
"* Sundays are smooth sailing but apparently Saturdays are fair game..." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Who Sends Rejection Emails on Saturdays?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Date</th>\n", | |
" <th>Time</th>\n", | |
" <th>Day</th>\n", | |
" <th>Hour</th>\n", | |
" <th>Subject</th>\n", | |
" <th>Text</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>46</th>\n", | |
" <td>2017-12-16 15:04:42</td>\n", | |
" <td>15:04:42</td>\n", | |
" <td>Sat</td>\n", | |
" <td>15</td>\n", | |
" <td>Important information about your application t...</td>\n", | |
" <td>Hi Conor,\\r\\nThank you for applying to Softwar...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>63</th>\n", | |
" <td>2017-11-04 07:27:04</td>\n", | |
" <td>07:27:04</td>\n", | |
" <td>Sat</td>\n", | |
" <td>7</td>\n", | |
" <td>Thank you for your interest in TripAdvisor</td>\n", | |
" <td>Hi Conor,\\r\\n\\r\\nThank you for your interest i...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>69</th>\n", | |
" <td>2017-09-30 13:02:53</td>\n", | |
" <td>13:02:53</td>\n", | |
" <td>Sat</td>\n", | |
" <td>13</td>\n", | |
" <td>Thank you for your interest</td>\n", | |
" <td><div><img src=\"https://performancemanager4.suc...</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Date Time Day Hour \\\n", | |
"46 2017-12-16 15:04:42 15:04:42 Sat 15 \n", | |
"63 2017-11-04 07:27:04 07:27:04 Sat 7 \n", | |
"69 2017-09-30 13:02:53 13:02:53 Sat 13 \n", | |
"\n", | |
" Subject \\\n", | |
"46 Important information about your application t... \n", | |
"63 Thank you for your interest in TripAdvisor \n", | |
"69 Thank you for your interest \n", | |
"\n", | |
" Text \n", | |
"46 Hi Conor,\\r\\nThank you for applying to Softwar... \n", | |
"63 Hi Conor,\\r\\n\\r\\nThank you for your interest i... \n", | |
"69 <div><img src=\"https://performancemanager4.suc... " | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Subset data\n", | |
"sat = df.loc[df['Day'] == 'Sat']\n", | |
"sat.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Important information about your application to LendUp\n", | |
"Hi Conor,\r\n", | |
"Thank you for applying to Software Engineering Intern. After reviewing with the team, we have decided not to move forward with your candidacy. Due to the number of applications we receive we are not able to provide specific feedback.\r\n", | |
"\r\n", | |
"We will keep your details on file and let you know if any suitable openings arise.\r\n", | |
"\r\n", | |
"Thanks again for your interest in LendUp and we wish you the best of luck in your search!\r\n", | |
"\r\n", | |
"Regards,\r\n", | |
"LendUp Recruiting Team\n" | |
] | |
} | |
], | |
"source": [ | |
"# First offender: LendUp\n", | |
"print(sat.iloc[0]['Subject'])\n", | |
"print(sat.iloc[0]['Text'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Thank you for your interest in TripAdvisor\n", | |
"Hi Conor,\r\n", | |
"\r\n", | |
"Thank you for your interest in the 17-18 Campus - Machine Learning Intern p=\r\n", | |
"osition at TripAdvisor. We have received your application and it is current=\r\n", | |
"ly being reviewed by the hiring team. We will be in touch if there is inter=\r\n", | |
"est in moving forward.\r\n", | |
"\r\n", | |
"In the meantime please be sure to visit our careers page ( http://www.tripa=\r\n", | |
"dvisor.com/careers ) for more information about:\r\n", | |
"\r\n", | |
"- our benefits and unique perks ( http://www.tripadvisor.com/careers/benefi=\r\n", | |
"ts )\r\n", | |
"\r\n", | |
"- who we are and what we value ( http://www.tripadvisor.com/careers/culture=\r\n", | |
" )\r\n", | |
"\r\n", | |
"We encourage you to learn more about our people, our offices, our =E2=80=9C=\r\n", | |
"speed wins=E2=80=9D culture and the work we do by visiting our Twitter ( ht=\r\n", | |
"tps://twitter.com/gotripadvisor ),Instagram ( https://www.instagram.com/got=\r\n", | |
"ripadvisor/ ) and LinkedIn ( https://www.linkedin.com/company/tripadvisor/c=\r\n", | |
"areers ) pages. These pages provide an inside glimpse of life at TripAdviso=\r\n", | |
"r offices around the world.\r\n", | |
"\r\n", | |
"Thanks again for your interest in joining the TripAdvisor team!\r\n", | |
"\r\n", | |
"Best regards,\r\n", | |
"\r\n", | |
"Your TripAdvisor Recruiters\n" | |
] | |
} | |
], | |
"source": [ | |
"# Second offender: TripAdvisor\n", | |
"print(sat.iloc[1]['Subject'])\n", | |
"print(sat.iloc[1]['Text'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Thank you for your interest\n", | |
"<div><img src=\"https://performancemanager4.successfactors.com/doc/custom/ElectronicArts/EA_Logo.png\" /></div>\r\n", | |
"\r\n", | |
"<div> \r\n", | |
"<p>Dear Conor:</p>\r\n", | |
"\r\n", | |
"<p>Thank you for applying to the Machine Learning Scientist Intern (Summer 2018) position. We’ve had a very competitive pool of applicants. We appreciate your interest in the role but we have decided not to move your application forward.</p>\r\n", | |
"\r\n", | |
"<p>We will keep your resume on file for future opportunities, and we encourage you to check our website often and apply for other EA positions.</p>\r\n", | |
"\r\n", | |
"<p>Best Regards,<br />\r\n", | |
"The Global Recruiting Team at EA</p>\r\n", | |
"</div>\r\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"# Third offender: EA\n", | |
"print(sat.iloc[2]['Subject'])\n", | |
"print(sat.iloc[2]['Text'])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## What Times Are Job Rejections Most Frequent?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHmCAYAAAA/XYmLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xt8zvX/x/HnZsZmmMIX/dCcGnPc\nhGw1llNCkkNyKL4yh6SU+EYSiZFjDov8CJXDKhXaL+SrbiqyYZFRDJPDchhfY3b6/P7oZt/WDjb7\nXHuv7XG/3dxu7X25ntfL2mfX8/p8Ptf1cbIsyxIAAACMcDY9AAAAQHFGGQMAADCIMgYAAGAQZQwA\nAMAgyhgAAIBBlDEAAACDXEwPkB8RERGmRwAAAMg1Pz+/TGt/6zImZf2PAgAAKGyy24nEYUoAAACD\nKGMAAAAGUcYAAAAMoowBAAAYRBkDAAAwiDIGAABgEGUMAADAIMoYAACAQZQxAAAAgyhjAAAABlHG\nAAAADKKMAQAAGEQZAwAAMIgyBgAAYBBlDAAAwCDKGAAAgEGUMQAAAIMoYwAAAAZRxgAAAAxyMT0A\nAMB+3cO225KzsefDtuQAyB57xgAAAAyijAEAABhEGQMAADCIMgYAAGAQZQwAAMAgyhgAAIBBlDEA\nAACDKGMAAAAGUcYAAAAMoowBAAAYRBkDAAAwiDIGAABgEGUMAADAIMoYAACAQZQxAAAAgyhjAAAA\nBlHGAAAADKKMAQAAGEQZAwAAMIgyBgAAYBBlDAAAwCDKGAAAgEGUMQAAAIMoYwAAAAZRxgAAAAyi\njAEAABhkpIxFRUUpICAg/etz585pxIgRatmypfz9/TV16lQlJSWZGA0AAKBAFWgZsyxLYWFhGjx4\nsJKTk9PXx44dqypVquibb77Rxo0b9dNPP2nRokUFORoAAIARBVrGQkNDtWrVKg0bNix9LSkpSW5u\nbho+fLhKlSqlSpUqqWvXrtq3b19BjgYAAGBEgZaxJ554Qp999pkaNWqUvubq6qqlS5eqUqVK6Ws7\nduyQt7d3QY4GAABghEtBPljlypVzvN2yLE2bNk3Hjx/XrFmzcpUZERFhx2gAkMnrMdG2Zb3h9fd8\ngcnvWMDxCrSM5SQxMVGvvPKKjhw5otWrV+vuu+/O1f38/PwcPBmAYsvGMlbgv6tittsSw+9YwD7Z\nvbgpFGUsPj5eQ4YMkbu7u9atWydPT0/TIwEAABQI42XMsiyNGjVKFStW1DvvvKOSJUuaHgkAAKDA\nGC9j+/bt0549e1SqVCm1aNEifb1Bgwb64IMPDE4GAADgeEbKWMuWLbV7925Jkq+vr44cOWJiDAAA\nAOO4HBIAAIBBlDEAAACDKGMAAAAGUcYAAAAMoowBAAAYRBkDAAAwiDIGAABgEGUMAADAIMoYAACA\nQZQxAAAAgyhjAAAABlHGAAAADKKMAQAAGEQZAwAAMIgyBgAAYBBlDAAAwCDKGAAAgEGUMQAAAIMo\nYwAAAAZRxgAAAAyijAEAABhEGQMAADCIMgYAAGAQZQwAAMAgyhgAAIBBlDEAAACDKGMAAAAGUcYA\nAAAMoowBAAAYRBkDAAAwiDIGAABgEGUMAADAIMoYAACAQZQxAAAAgyhjAAAABlHGAAAADKKMAQAA\nGEQZAwAAMIgyBgAAYBBlDAAAwCDKGAAAgEGUMQAAAIMoYwAAAAZRxgAAAAyijAEAABhEGQMAADCI\nMgYAAGAQZQwAAMAgyhgAAIBBlDEAAACDKGMAAAAGUcYAAAAMoowBAAAYRBkDAAAwyEgZi4qKUkBA\nQPrXV65c0ciRI+Xn56c2bdpow4YNJsYCAAAocC4F+WCWZenjjz/WjBkzVKJEifT11157Te7u7vru\nu+905MgRPfvss2rUqJG8vb0LcjwAAIACV6B7xkJDQ7Vq1SoNGzYsfS0hIUHbtm3T888/r1KlSqlx\n48bq0qULe8cAAECxUKBl7IknntBnn32mRo0apa+dPHlSLi4uql69evqal5eXfvnll4IcDQAAwIgC\nPUxZuXLlTGvXr19X6dKlM6yVLl1aiYmJucqMiIiwZTYAcKS/6++qv+vcwN9JgZaxrLi5uWUqXomJ\niXJ3d8/V/f38/BwxFgBIMdG2RRX476qY7bbE8DsWsE92L26Mf7RFzZo1lZKSojNnzqSvxcTEqE6d\nOganAgAAKBjGy5iHh4cefvhhzZ49Wzdu3FBUVJQ2bdqkrl27mh4NAADA4YyXMUmaOnWqUlJSFBgY\nqOeff15jx45VkyZNTI8FAADgcEbOGWvZsqV2796d/rWnp6fmz59vYhQAAACjCsWeMQAAgOKKMgYA\nAGAQZQwAAMAgyhgAAIBBlDEAAACDKGMAAAAGUcYAAAAMoowBAAAYRBkDAAAwiDIGAABgEGUMAADA\nIMoYAACAQZQxAAAAgyhjAAAABlHGAAAADKKMAQAAGEQZAwAAMIgyBgAAYBBlDAAAwCDKGAAAgEGU\nMQAAAIMoYwAAAAZRxgAAAAyijAEAABhEGQMAADCIMgYAAGCQi+kBAJjXeeNLtmVt6T7btiwAKA7Y\nMwYAAGAQZQwAAMAgyhgAAIBBlDEAAACDKGMAAAAGUcYAAAAMoowBAAAYRBkDAAAwiDIGAABgEGUM\nAADAIMoYAACAQZQxAAAAgyhjAAAABlHGAAAADKKMAQAAGEQZAwAAMIgyBgAAYBBlDAAAwCDKGAAA\ngEGUMQAAAIMoYwAAAAZRxgAAAAyijAEAABhEGQMAADCIMgYAAGAQZQwAAMAgyhgAAIBBhaaMRUZG\nqkePHvL19VXHjh31xRdfmB4JAADA4QpFGUtNTdXIkSM1dOhQRUZGatq0aRo/frxOnz5tejQAAACH\nKhRl7OrVq7p06ZJSU1NlWZacnJxUsmRJlShRwvRoAAAADuViegBJqlChgp566imNGTNGY8eOVVpa\nmqZNm6aqVauaHg0AAMChCkUZS0tLU+nSpTV//nwFBQXpu+++00svvSQfHx95e3vneN+IiIgCmhJA\nbrBNZu3v+n35u84N/J0UijL21VdfKSoqSuPGjZMktWnTRm3atNHGjRs1fvz4HO/r5+dXECMCRVvs\nh7ZFFaltMibatqgC/77EbLclpkj9/wQMy+7FTaE4Z+zs2bNKSkrKsObi4iIXl0LRFQEAABymUJSx\n1q1b6/Dhw/r4449lWZb27NmjrVu3qmPHjqZHAwAAcKhCsevpvvvu04IFCzR//nxNmzZN1apVU0hI\niBo1amR6NAAAAIcqFGVMkoKCghQUFGR6DAAAgAJVKA5TAgAAFFeUMQAAAIMoYwAAAAZRxgAAAAyi\njAEAABhEGQMAADCIMgYAAGAQZQwAAMAgyhgAAIBBlDEAAACDKGMAAAAGUcYAAAAMoowBAAAYRBkD\nAAAwyJYyduHCBTtiAAAAip1cl7H69evr0qVLmdZjY2PVvn17W4cCAAAoLlxyujEsLExr166VJFmW\npX/+858qUaJEhr9z8eJFVa5c2XETAgAAFGE5lrHOnTvr3LlzkqSDBw+qVatWKlOmTIa/U6ZMGXXo\n0MFxEwIAABRhOZYxd3d3Pffcc5Kke+65R48++qhcXV0LZDAAAIDiIMcy9mePP/64jhw5oqioKCUn\nJ8uyrAy39+vXz/bhAAAAirpcl7GlS5dqzpw5Kl++fKZDlU5OTpQxAACAO5DrMrZu3TqNHj1aw4cP\nd+Q8AAAAxUquP9ri8uXL6ty5syNnAQAAKHZyXcY6dOigL774wpGzAAAAFDu5Pkzp4eGh0NBQhYeH\nq0aNGipZsmSG2+fPn2/7cAAAAEVdrstYQkKCunbt6shZAAAAip1cl7Hp06c7cg4AuCOPfrzUlpzN\nTwy1JSe3uoZttC3ri57dbcsCUPByXcZ27tyZ4+2BgYH5HgYAAKC4yXUZCw4OznK9VKlSqlKlCmUM\nAADgDuS6jEVHR2f4OjU1VadOndKUKVP02GOP2T4YAABAcZDrj7b4qxIlSsjLy0vjxo3TggUL7JwJ\nAACg2LjjMnbL9evXdfnyZTtmAQAAKHZyfZhy5syZmdYSEhK0fft2Pfjgg7YOBQAAUFzkuoz99NNP\nGb52cnJSyZIl1bNnTw0ePNj2wQAAAIqDXJex1atXO3IOAACAYinXZUySTp8+rZUrV+r48eNKS0tT\n7dq11bdvX9WpU8dR8wEAABRpuT6Bf/fu3ercubOioqJUr1491a1bVwcOHFCPHj0UERHhyBkBAACK\nrFzvGXv77bfVv39/vfLKKxnWQ0JC9Pbbb+ujjz6yfTgAAICiLtd7xo4cOaLevXtnWu/Tp48OHz5s\n61AAAADFRa7LWNWqVXXkyJFM69HR0fL09LR1KAAAgOIi14cp+/btq0mTJuncuXNq3LixnJyctH//\nfi1ZskSDBg1y5IwAAABFVq7L2NNPP62EhASFhobq8uXLcnJyUqVKlTRixAgNHDjQkTMCAAAUWbct\nY6mpqdq0aZOCgoI0cuRIjRw5UhcuXNCWLVvk4eGhxx57TE5OTgUxKwAAQJGT4zljCQkJevrppzVh\nwgT98ssv6esVK1bUqVOn9Prrr2vIkCG6ceOGwwcFAAAoinIsY6Ghobp48aI2b94sX1/fDLdNnDhR\nGzdu1KlTp7Rs2TKHDgkAAFBU5VjGwsPD9a9//Us1a9bM8vbatWtr7Nix2rx5s0OGAwAAKOpyLGNx\ncXGqXbt2jgE+Pj46f/68rUMBAAAUFzmWsSpVqujkyZM5BsTGxuruu++2dSgAAIDiIscy1qlTJy1Y\nsEBJSUlZ3p6UlKSFCxeqbdu2DhkOAACgqMvxoy2GDh2qbdu26YknntCAAQPUsGFDlS1bVleuXNFP\nP/2kNWvWKCUlRSNGjCioeQEAAIqUHMtYmTJltG7dOs2aNUszZ87UtWvX5OTkJMuyVL58eXXt2lUj\nR45UhQoVCmpeAACAIuW2H/rq4eGhN954QxMmTFBsbKyuXr2qChUqqEaNGnJ2zvWlLQEAAJCFXF8O\nydXV9bbvrAQAAEDeFJpdW+fOnVNwcLB8fX310EMPadWqVaZHAgAAcLhCUcYsy9KIESNUq1Yt7d69\nW8uXL9fChQsVGRlpejQAAACHyvVhSkc6cOCA4uLi9PLLL6tEiRKqW7eu1q5dyxsDAABAkVco9owd\nOnRIdevW1axZs+Tv76+OHTvqwIEDlDEAAFDkFYo9Y1euXNHu3bvVqlUr7dixQwcPHtSQIUNUvXp1\nNW/e3PR4AAAADlMoypirq6vKly+v4OBgSZKvr686duyo7du337aMRUREFMSIQK6E//qqLTmd6ryV\naW3hqQm2ZEvSczWm2Zb1V1ltk5NOfW1L9pQaQbbkZMXRv0scmV/Q2dNPONmS/a97rUxr75+qbEu2\nJD1dI862LMCRCkUZ8/Ly0o0bN5SSkiIXlz9GSk1NlWVl3lD/ys/Pz9HjAbkW/qs9OVn+XJ+yJzvL\n/NgPHZctSTaVsSyzT9hTRLLMjom2JTvL/JhYx2VLUsx2x2WfsOfNVVllv3/Kwd8XwKDsXjgVinPG\n/P39Va5cOc2ePVspKSmKjIzU1q1b1alTJ9OjAQAAOFSh2DNWunRprV69WlOmTFHr1q3l4eGhiRMn\nqmnTpqZHAwAAcKhCUcYkqWbNmlq+fLnpMQAAAApUoThMCQAAUFxRxgAAAAyijAEAABhEGQMAADCI\nMgYAAGAQZQwAAMAgyhgAAIBBlDEAAACDKGMAAAAGUcYAAAAMoowBAAAYRBkDAAAwiDIGAABgEGUM\nAADAIMoYAACAQZQxAAAAgyhjAAAABlHGAAAADKKMAQAAGEQZAwAAMIgyBgAAYBBlDAAAwCDKGAAA\ngEGUMQAAAIMoYwAAAAZRxgAAAAyijAEAABhEGQMAADCIMgYAAGAQZQwAAMAgyhgAAIBBlDEAAACD\nKGMAAAAGUcYAAAAMoowBAAAYRBkDAAAwiDIGAABgEGUMAADAIMoYAACAQZQxAAAAgyhjAAAABlHG\nAAAADKKMAQAAGEQZAwAAMIgyBgAAYBBlDAAAwCDKGAAAgEGUMQAAAIMoYwAAAAZRxgAAAAyijAEA\nABhEGQMAADCIMgYAAGAQZQwAAMCgQlfGLly4oAceeEA7duwwPQoAAIDDFboyNmHCBMXHx5seAwAA\noEAUqjL20Ucfyc3NTVWrVjU9CgAAQIEoNGXsxIkTWrFihSZPnmx6FAAAgALjYnoASUpJSdHYsWM1\nYcIEeXp65um+ERERDpoKMMfRP9eOzCe74PMLPtvJgdmVbcnOPh8ofApFGVu8eLHq16+vwMDAPN/X\nz8/PARMBdyb8V3tysvy5PmVPdpb5sR86LluSTn3tuOwT9jzhZpkdE21Ldpb5MbGOy5akmO2Oyz4R\n6bDs9085+PsCGJTdC4RCcZhyy5Yt2rx5s5o3b67mzZvrzJkzGjNmjJYuXWp6NAAAAIcqFHvGwsPD\nM3wdFBSk1157TW3btjU0EQAAQMEoFHvGAAAAiqtCsWfsr77+2p7zSwAAAAo79owBAAAYRBkDAAAw\niDIGAABgEGUMAADAIMoYAACAQZQxAAAAgyhjAAAABlHGAAAADKKMAQAAGEQZAwAAMIgyBgAAYBBl\nDAAAwCDKGAAAgEGUMQAAAIMoYwAAAAZRxgAAAAyijAEAABhEGQMAADCIMgYAAGAQZQwAAMAgyhgA\nAIBBlDEAAACDKGMAAAAGUcYAAAAMoowBAAAYRBkDAAAwiDIGAABgEGUMAADAIMoYAACAQZQxAAAA\ngyhjAAAABlHGAAAADKKMAQAAGEQZAwAAMIgyBgAAYBBlDAAAwCDKGAAAgEGUMQAAAIMoYwAAAAZR\nxgAAAAyijAEAABhEGQMAADCIMgYAAGAQZQwAAMAgyhgAAIBBlDEAAACDKGMAAAAGUcYAAAAMoowB\nAAAYRBkDAAAwiDIGAABgEGUMAADAIMoYAACAQZQxAAAAgwpNGdu7d6969eolPz8/tWvXTmvXrjU9\nEgAAgMO5mB5Akq5cuaIRI0Zo4sSJ6tKliw4fPqxBgwapRo0aat26tenxAAAAHKZQ7Bk7c+aMAgMD\n1a1bNzk7O8vHx0ctW7ZUZGSk6dEAAAAcqlCUsfr162vWrFnpX1+5ckV79+6Vt7e3wakAAAAcr1Ac\npvyz//znPxo2bJh8fHwUFBR0278fERFRAFMBBcvRP9eOzCe74PMLPtvJgdmVbcnOKn/fyeq2ZTer\nGWtbFlCoylhsbKyGDRum6tWra968eXJ2vv2OOz8/vwKYDMid8F/tycny5/qUPdlZ5sd+6LhsSTr1\nteOyT9hTRLLMjom2JTvL/Bj7nsyznn2747JP2HMKSVbZ759y3Pdl38k4h2UDuZHdC6dCcZhSkg4d\nOqTevXsrICBAixcvVunSpU2PBAAA4HCFYs/YhQsXNGTIEA0aNEhDhw41PQ4AAECBKRR7xsLCwnTp\n0iUtWbJEzZo1S/8zd+5c06MBAAA4VKHYMzZs2DANGzbM9BgAAAAFrlDsGQMAACiuKGMAAAAGUcYA\nAAAMoowBAAAYRBkDAAAwiDIGAABgEGUMAADAIMoYAACAQZQxAAAAgyhjAAAABlHGAAAADKKMAQAA\nGEQZAwAAMIgyBgAAYBBlDAAAwCDKGAAAgEGUMQAAAIMoYwAAAAZRxgAAAAyijAEAABhEGQMAADCI\nMgYAAGAQZQwAAMAgyhgAAIBBlDEAAACDKGMAAAAGuZgeAH9P/7e8s21ZHf+5JcPX61Z0si27z6Dw\nTGvvru5oS3bwgP+zJQdA0fDlugu25DzSp2KmtR9XxNmSff+gyrbkFBbn539vS84/Rj9gS86dYs8Y\nAACAQZQxAAAAgyhjAAAABlHGAAAADKKMAQAAGEQZAwAAMIgyBgAAYBBlDAAAwCDKGAAAgEGUMQAA\nAIMoYwAAAAZRxgAAAAyijAEAABhEGQMAADCIMgYAAGAQZQwAAMAgyhgAAIBBlDEAAACDKGMAAAAG\nUcYAAAAMoowBAAAYRBkDAAAwiDIGAABgEGUMAADAIMoYAACAQZQxAAAAgyhjAAAABhWaMvbzzz+r\nZ8+eatq0qR577DHt37/f9EgAAAAOVyjK2M2bNzVs2DD16NFDP/74owYMGKDnnntOSUlJpkcDAABw\nqEJRxn744Qc5OzvrqaeeUsmSJdWzZ09VqFBBO3bsMD0aAACAQxWKMhYTE6PatWtnWPPy8tIvv/xi\naCIAAICC4WRZlmV6iMWLF+vnn3/WwoUL09deeeUVVa5cWS+//HK294uIiCiI8QAAAGzh5+eXac3F\nwByZuLm5KTExMcNaYmKi3N3dc7xfVv8gAACAv5NCcZiyVq1aiomJybAWExOjOnXqGJoIAACgYBSK\nMvbAAw8oKSlJq1evVnJyssLCwnThwgUFBASYHg0AAMChCsU5Y5IUHR2tyZMn68iRI6pZs6YmT56s\npk2bmh4LAADAoQpNGQMAACiOCsVhSgAAgOKqyJexgrjMUlRUlEPOb9u7d6969eolPz8/tWvXTmvX\nrrUte8uWLXrkkUfUrFkzPfroo9q2bZtt2bdcuHBBDzzwgK0f3vvee++pYcOGatasWfqfvXv32pZ/\n7tw5BQcHy9fXVw899JBWrVplS+7nn3+eYeZmzZrJ29tbr732mi35kZGR6tGjh3x9fdWxY0d98cUX\ntuRK0vfff6/u3burWbNm6tOnjw4cOGBL7l+3mytXrmjkyJHy8/NTmzZttGHDBtuyb7l06ZLatm2r\nY8eO3XF2Vvnnzp3TiBEj1LJlS/n7+2vq1Kl3fAWRv2ZHR0erX79+6T+TixYt0p0e0Mju+5KWlqYB\nAwYoJCTkjnKzyo6KilL9+vUz/MyHhobalp+UlKSpU6eqZcuWatmypSZMmGDL9/zMmTOZtlUfHx91\n7NjRlrnPnz+vYcOG6f7771dAQIBmz56ttLQ0W7JjY2P17LPPqnnz5urQoYM+/fTTO8rN7rnHjm30\nds9rly9f1sMPP6yjR4/alm3H9pldtm3bp1WEJSYmWg8++KD1wQcfWElJSdaGDRssf39/6+bNm7bk\np6WlWRs2bLD8/PysFi1a2JJ5S3x8vHX//fdbn332mZWammodPHjQuv/++61du3blO/v48eNWkyZN\nrIiICMuyLGvXrl2Wj4+PdfHixXxn/9nQoUMtb29v6+uvv7Ytc8yYMdZ7771nW96fpaWlWY8//rg1\nY8YMKykpyTp69Kh1//33p3+f7PTdd99Z/v7+1tmzZ/OdlZKSYrVq1cr68ssvLcuyrB9//NFq0KCB\nFRsbm+/s2NhYq0mTJta6deus5ORka8eOHVaLFi2suLi4O87MbrsZNWqU9fLLL1uJiYnWgQMHrBYt\nWliHDx+2JduyLGvPnj1Whw4drHr16lm//vqrrbP379/feuONN6zExEQrLi7O6tWrlzVnzpx8Z6em\nplpt2rSxVq5caaWmplq//fab5e/vb23bts2WuW9ZtmyZ5e3tbc2YMSNPuTllr1u3zho6dGie83Kb\nP336dGvAgAHW5cuXrcuXL1u9e/e2lixZYkv2n8XFxVkBAQHWzp07bcl+7rnnrGnTplnJycnW2bNn\nraCgIOvTTz/Nd3ZKSorVpUsXa/z48db169et48ePW23btrX+/e9/5yk7p+ee/G6jt3te+/HHH61O\nnTpZ9erVs44cOWLb3PndPrPL/vbbb23ZPi3Lsor0njFHX2YpNDRUq1at0rBhw2zJ+7MzZ84oMDBQ\n3bp1k7Ozs3x8fNSyZUtFRkbmO9vLy0u7du2Sr6+vEhISFBcXpzJlysjV1dWGyf/w0Ucfyc3NTVWr\nVrUtU5IOHz6s+vXr25p5y4EDBxQXF6eXX35ZJUuWVN26dbV27Vp5eXnZ+jgJCQkaN26cJk+erCpV\nquQ77+rVq7p06ZJSU1NlWZacnJxUsmRJlShRIt/Z33zzjerVq6fevXvLxcVFbdq0UePGjRUeHn7H\nmVltNwkJCdq2bZuef/55lSpVSo0bN1aXLl3y/Mo7u21yz549evHFFzV8+PA7nju7/KSkJLm5uWn4\n8OEqVaqUKlWqpK5du2rfvn35znZ2dtbmzZs1cOBApaamKi4uTmlpaSpfvny+s2+Jjo7WJ598ovbt\n2+cp83bZP//8s7y9ve8o83b5ycnJWrdunSZNmiRPT095enpqwYIF6tq1qy2z/9nrr7+uTp066aGH\nHrIl+8SJE0pNTU3fG+bs7KxSpUrlO/vEiRP69ddf9dprr8nNzU1eXl7q27evwsLC8pSd03NPfrfR\nnLL37t2r0aNHKzg4OE/z5iY7v9tndtn79++3ZfuUivhhSkdfZumJJ57QZ599pkaNGtmS92f169fX\nrFmz0r++cuWK9u7da8svN0kqU6aMYmNj1bx5c40fP14vvviiPDw8bMk+ceKEVqxYocmTJ9uSd8uN\nGzd04sQJrVq1Sv7+/nrkkUfy/IsmJ4cOHVLdunU1a9Ys+fv7q2PHjjpw4IAqVKhg22NIfxxqrVev\nntq1a2dLXoUKFfTUU09pzJgx8vHxUb9+/fTaa6/ZUoTT0tJUunTpDGvOzs46efLkHWdmtd2cPHlS\nLi4uql69evranWyr2W2T9erV0/bt29WlS5c7nju7fFdXVy1dulSVKlVKX9uxY0eet9XsZnd3d5eT\nk5M6duyoPn36qHXr1vL19bUlOykpSePGjdOUKVNu+yHbec0+fPiwIiMjFRQUpDZt2igkJOSODiNm\n9/OSmpqqAwcOqEOHDnrwwQe1cuVKVa5c2ZbZb/n+++8VGRmpF154wZa5Jemf//yn1q9fr6ZNmyow\nMFB+fn565JFH8p2dmpqqEiVKZHhR7ezsrBMnTuQpO7vnHkn53kZzel6rW7eutm/fru7du+dp3txk\n53f7zCnbju1TKuJl7Pr163Jzc8uwVrp06Uyf9n+nKleuLCcnJ1uycvKf//xHw4YNk4+Pj4KCgmzL\nrVq1qqKiorRixQqFhITo+++/z3dmSkqKxo4dqwkTJsjT09OGKf/rwoUL8vX1Vd++fbVjxw5NnTpV\nM2bM0M6dO23Jv3Llinbv3p2+93T69OmaOnWqreekJSQkaM2aNXruuedsy7xVmObPn6/9+/crNDRU\nb731lqKjo/OdHRAQoKioKH3ASdE6AAARR0lEQVT55ZdKTk7WN998ox9++EE3b96848ystpvr169n\nKn13sq1mt016enrmee9DXvJvsSxLb775po4fP57nV/i3y/7yyy+1detWHTp0SIsWLbIle/bs2QoI\nCFDz5s3zlJeb7AoVKigoKEibNm3S6tWrtXv3bi1YsMCW/Pj4eCUnJ2vHjh0KCwvT+vXrtWvXLi1b\ntsyW2W9ZunSpBg8erDJlytgy9y3BwcGKiIjQ5s2btXfv3jyfD5xVdq1atXTPPfdo9uzZSkxMVExM\njNavX3/H59FJGZ97WrZsacs2mlV2UFCQypcvnyn/TmX3nJmf7fN22fnZPqUiXsbu9DJLhUlsbKye\nfPJJlS9fXgsXLpSzs33/y1xcXFSyZEk98MAD6tChg7Zv357vzMWLF6t+/foKDAy0YcKMqlevrjVr\n1igwMFCurq5q3ry5HnvsMVvmlv7Yw1G+fHkFBwfL1dU1/WR4u/Iladu2bapWrZqtn6H31VdfKSoq\nSp06dZKrq6vatGmjNm3aaOPGjfnOvvfeezVv3jwtWbJEAQEB2rRpk7p27aqyZcvaMPl/FYVtNTEx\nUaNHj9a3336r1atX6+6777Y1v1SpUqpRo4aGDBmir776Kt9533//vX744QeNHj3ahukyCw0N1aBB\ng+Tu7q7q1asrODhYW7dutSXb1dVVaWlpeuGFF1SuXDlVrVpVgwYNsvWNSGfPntWPP/6onj172pYZ\nFxen119/XUOHDpWbm5vq1KmjZ599VuvXr893touLixYvXqzo6GgFBgZq4sSJ6tOnzx1vq3997nF3\nd7dtG3Xk81p22XZsnznNnd/ts0iXsb/7ZZYOHTqk3r17KyAgQIsXL7btVcPOnTv1zDPPZFhLTk62\n5Ql2y5Yt2rx5s5o3b67mzZvrzJkzGjNmjJYuXZrv7EOHDmXKuXnzpm3nunl5eenGjRtKSUlJX7t1\nHpZdduzYkedDErdz9uzZTK9+XVxc5OKS/0vPXrt2TVWrVtXnn3+u3bt3a+bMmTp69KgaNGiQ7+w/\nq1mzplJSUnTmzJn0tb/TthofH6/+/fsrPj5e69aty3AoJz8uXbqkhx9+WPHx8elrycnJKleuXL6z\nt2zZolOnTql169Zq3ry5Nm3apDVr1tzxHoM/u3LlikJCQnTt2rX0tZs3b9qyd1L640WCs7Ozrl69\nmr6WmppqS/YtO3bsUIsWLXTXXXfZlvn7778rOTk5w/Zq17aalpam69ev67333tPu3bv1wQcf6NKl\nS3e0rWb13GPXNuqo57Wcsu3YPrPKtnP7LNJl7O98maULFy5oyJAhGjRokP71r3/Z+sqhQYMGOnjw\noDZu3Ki0tDTt3LlTO3fuzPf5NJIUHh6uiIgI7d27V3v37lW1atU0Z84cDR06NN/Z7u7uWrhwocLD\nw5WWlqbvv/9emzdv1uOPP57vbEny9/dXuXLlNHv2bKWkpCgyMlJbt25Vp06dbMmX/niTgN1Xlmjd\nurUOHz6sjz/+WJZlac+ePdq6desdvxX/z+Lj4/Xkk0/q0KFDSkpK0gcffKAzZ87Yerhckjw8PPTw\nww9r9uzZunHjhqKiotL3whV2lmVp1KhRqlixopYvX27r4fm77rpLd999t+bOnaukpCQdO3ZM7733\nni17a6ZOnap9+/alb6tdunRR//799e677+Y7u2zZstq6dasWLlyo5ORknTx5UqGhoerRo0e+syWp\nXLlyateunebOnaurV6/q/Pnzev/99wv9tlq3bl1VqVJFM2fOVFJSkk6fPq3//d//VefOnfOd7ezs\nrDFjxmj9+vVKS0vTnj17tGHDBvXu3TtPOdk999ixjTryeS27bDu2z+yy7dw+81/HCzFXV1ctW7ZM\nkydP1pw5c1SzZk0tWbLkb3HoIywsTJcuXdKSJUu0ZMmS9PWBAwfqxRdfzFd2pUqV0s8rmjJliu69\n914tWrQo05sdChsvLy/NmzdPc+fO1fjx4/WPf/xD06dPl4+Pjy35pUuX1urVqzVlyhS1bt1aHh4e\nmjhxom2/kFNTU3Xu3LkMJ5La4b777tOCBQs0f/58TZs2TdWqVVNISIgtbyz5n//5H02ePFmjRo1S\nfHy8fHx8tGLFCodsQ1OnTtXrr7+uwMBAubu7a+zYsWrSpIntj2O3ffv2ac+ePSpVqpRatGiRvt6g\nQQN98MEH+c6fP3++3njjDfn7+6t8+fJ65plnbHsB4ijOzs4KDQ3Vm2++qVatWql06dLq06ePnn76\nadseY/r06QoJCVHnzp2VnJys7t27a/Dgwbbl//bbb7aXsVtv9njrrbcUEBCgMmXKqGfPnho4cKAt\n+XPmzNHkyZM1c+ZMVatWTW+++aYaNmyYp4ycnnvyu4068nktu+yGDRvme/vMaW67tk8uhwQAAGBQ\nkT5MCQAAUNhRxgAAAAyijAEAABhEGQMAADCIMgYAAGAQZQwAAMAgyhhQjAUFBWnNmjWZ1o8ePar7\n7rtPp0+fNjBV1nbv3q2goCA1btxY//73vzPdHh0drR9++EGSdPr0ad133306evSoLY99K+/WH29v\nb/n6+qp///7as2ePLY+RnZSUFPXq1UuxsbGSlGGOv/7ZvHlz+v1++OEHDRgwQM2aNVOzZs305JNP\nZrhc0IABA3LM+uSTT/TTTz/Z+tlgALJWpD/0FUDRERoaqjp16mR7XbkRI0Zo8ODBatWqlcNmWL16\ntby8vJSWlqZLly5pw4YNGjx4sFauXJmvi23n5P3331ejRo0yXMJl5syZat26daa/e+syLIcPH9az\nzz6rUaNG6Y033pAkbd26VaNGjdLixYvVtm1bvfPOO0pOTpb0x6WRFi9erE2bNqVnlS1bVqVLl1b5\n8uW1ceNGde/e3SH/PgCUMQB/E1evXlVgYKDuueceYzN4enqmX0HhH//4hyZNmqQLFy5o2rRp+vTT\nT21/vMTERC1btizTJ4WXK1cuxys5fPbZZ/L19c1wGbLg4GAdOnRIa9euVdu2bTNcFubWdWmzyhww\nYIBeffVVdevWzdbL1wD4L7YsALeVlJSkuXPnqm3btmrcuLEGDBig6Ojo9Nv/erjzr4cJg4KCNGvW\nLAUGBiooKEgJCQmZHuP8+fN66aWX1KpVKzVv3lwvv/yyLl++nH7/gwcPatGiRVleF3PAgAH67bff\nNHXqVI0fPz59/dtvv9Ujjzyixo0bq3///umH+iTp2LFjGjx4sJo0aaKgoCDNmzcvfU9RXjz11FP6\n+eef07OPHz+uoUOHys/PTw0bNlT37t3TD5++/vrrGjBgQIb7f/jhh9leR/SLL77QXXfdledLlTk5\nOen48eOKi4vLsD5p0qT0PWW55efnp4SEBH3zzTd5uh+A3KOMAbityZMn6/PPP9eUKVP0ySefqEqV\nKho0aJCuXr2a64ywsDAtWrRI77zzjsqUKZPhtuTkZD399NP6/ffftXz5cr333ns6duyYXnrppfT7\nent7a/DgwQoLC8uU/c4776hKlSoaM2aMJkyYkL6+YcMGvfnmm1q/fr3i4+P11ltvSZJu3rypIUOG\nqE6dOtq4caPeeusthYeHa+7cuXn+3tSrV0+S9Msvv8iyLA0fPlx33XWXwsLC0r9Xt2bq1q2b9u7d\nm6EkbdmyJduLLX/zzTcKCAjI80y9evVSQkKCHn74YQUHB2vFihU6evSoKlasqCpVquQpy9nZWa1b\nt87yPD0A9uAwJVDMzZgxQ7Nnz86wlpaWlv7fV69e1caNGzVv3jw9+OCDkqRp06apffv2CgsLy/XF\nmR999NFsL1r87bff6vTp01q9enX6obK3335bnTt31sGDB9WwYUOVKFFC7u7uuuuuuzLd39PTUyVK\nlFCZMmVUtmxZXblyRZI0ZswY+fn5SZJ69uyplStXSvpjj5Orq6teffVVSX9chH7ixIkaPny4xowZ\nIxeX3P9qvHWe1rVr13Tjxg316tVLffr0ST/0169fPw0ZMkSJiYny8/PTPffco/DwcA0cOFDnz59X\nRESEpk2blmX2oUOHsixjo0ePVokSJTKsubu7a9euXZKkWrVq6ZNPPtHSpUv19ddfpxcpPz8/zZo1\nK8+HeuvUqaOtW7fm6T4Aco8yBhRzwcHB6tatW4a1EydOpJ9vFBMTo9TUVDVp0iT9dldXVzVq1EjH\njh3L9ePkVAB+/fVXVatWLcM5S7Vr11b58uV17NixbEvc7dSoUSP9v8uVK6fExERJfxyijI2NVbNm\nzdJvtyxLSUlJOnPmTIb73c61a9ck/XHelbu7u/r166fPP/9cBw8eVExMjA4dOiRJSk1NlSR16dJF\nW7Zs0cCBA7VlyxY1atRINWvWzDL74sWLqlChQqb1iRMnqmXLlhnW/no+17333qu33npLaWlp+vnn\nn7V161atXr1azz//vD7++ONc//ukP8rupUuX8nQfALlHGQOKuQoVKmQqAzdv3kz/71KlSmV5v9TU\n1Ax70P56219ll3PrNicnpyxzLMvK9n6389eCcisrJSVFTZs21fTp0zPdJ6+H8Q4fPizpj4+cuH79\nunr37i03Nze1b99e7du3V1JSkkaOHJn+97t166bQ0FCdPXtWW7ZsyVSE/zp/Vt/jSpUqZVvgJCkk\nJCT9XDlnZ2c1bNhQDRs2VP369TV69GhdunQpyz2M2UlNTc3y/w8Ae3DOGIAc1ahRQyVLltT+/fvT\n15KSknTo0CHVqlVLklSyZMkMJ+X/+UT53Khdu7Z+++03/f777+lrv/zyi65du5b+GHaqXbu2Tp48\nqSpVqqhmzZqqWbOmzp49q9mzZ+e5/K1bt05NmzZVtWrVtGfPHp04cUJr1qzR0KFD9dBDD+n8+fOS\n/lsEa9WqpQYNGmjDhg06fPiwOnfunG12xYoV72iP1K5du7Ru3bpM6x4eHipVqpQ8PDzylHf58uUc\n370JIH/YMwYgR+7u7urbt69mzJghd3d3Va1aVe+++64SExP12GOPSZIaNWqkjRs3KjAwUDdv3tS8\nefPytCeldevWqlu3rl566SWNHz9eycnJmjx5spo1a6ZGjRrlKqNMmTKKiYlJfwdmTrp166ZFixZp\n/PjxGjFihOLj4zVhwgQ1adIkxz148fHx+v3335WWlqaLFy/qo48+0rZt29LfSerp6ank5GR9+eWX\nuv/++7V//34tWLBA0h8F9s+PP2fOHLVq1SrLz0y7xcfHR0eOHMm0fvXq1QzF9RY3Nzd5eHjo+eef\n16hRo1S6dGn16NFDZcuWVXR0tN5++20NHDhQrq6ut/0e/dmRI0dy/f8BQN5RxgDc1tixYyVJr7zy\nim7cuCFfX1+tWbNGlStXliS9+OKLmjBhgnr16qVq1arp1Vdf1fDhw3Od7+zsrMWLF+vNN99Uv379\nVLJkSbVr107jxo3Ldanr16+fQkJCdObMmQzvqMyKu7u7li9frunTp6tnz55yd3dX+/btM3wsRlZu\nfSyFs7OzKlasqMaNG+vDDz9U48aNJUlNmzbV6NGjNWvWLF2/fl1eXl6aNGmSxo0bp8OHD8vf31/S\nH+eNzZgxI9t3Ud7Spk0bLVu2LNP6K6+8ku33YNKkSWrXrp3effddLV++XM8884xu3LihGjVq6Kmn\nntLAgQNzfMy/SktLU2RkpEJCQvJ0PwC552Tl54QMAECeRUdHq2/fvtq1a5fc3d2z/Xs3btxQ27Zt\ntXLlSnl7exfghP/17bffaurUqQoPD+dDXwEHYcsCgAJy8eJFhYeHa8qUKeratWuORUz647Dj4MGD\n9eGHHxbQhJl9+OGHCg4OpogBDsTWBQAF5Pr163r11VeVmpqqF154IVf3GTRokA4ePJjnN0XYISoq\nSteuXVOPHj0K/LGB4oTDlAAAAAaxZwwAAMAgyhgAAIBBlDEAAACDKGMAAAAGUcYAAAAMoowBAAAY\n9P+86iyqzBoLygAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a197614e0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Visualization\n", | |
"plt.figure(figsize=(10,8))\n", | |
"sns.countplot(df['Hour'], order=np.arange(0,24));\n", | |
"plt.xlabel('Hour of the Day (EST)')\n", | |
"plt.ylabel('Count');" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Key Insights\n", | |
"* We seem to see the normal distribution that we would expect\n", | |
"* There are spikes at 9am and 12am signaling the start of the workday for EST and PST respectively\n", | |
"* Only one rejection came in well after end of day for EST and PST..." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Who Sent Out the Late Email?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Date</th>\n", | |
" <th>Time</th>\n", | |
" <th>Day</th>\n", | |
" <th>Hour</th>\n", | |
" <th>Subject</th>\n", | |
" <th>Text</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>79</th>\n", | |
" <td>2017-09-21 22:08:37</td>\n", | |
" <td>22:08:37</td>\n", | |
" <td>Thurs</td>\n", | |
" <td>22</td>\n", | |
" <td>P&G</td>\n", | |
" <td><!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//...</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Date Time Day Hour Subject \\\n", | |
"79 2017-09-21 22:08:37 22:08:37 Thurs 22 P&G \n", | |
"\n", | |
" Text \n", | |
"79 <!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//... " | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Subset data\n", | |
"late = df.loc[df['Hour'] == 22]\n", | |
"late.head()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Looks like P&G sent out an automated rejection email at 10pm EST on a Thursday... Shame... " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Common Subject Words & Phrases" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Tokenize and remove stop words\n", | |
"subject_str = df['Subject'].to_string()\n", | |
"words = nltk.word_tokenize(subject_str)\n", | |
"clean = [word for word in words if word not in stopwords.words('english')]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 40, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Remove punctuation and numbers\n", | |
"punctuation = re.compile(r'[-.?!,\":;()|0-9]')\n", | |
"clean = [punctuation.sub(\"\", word) for word in clean]\n", | |
"clean = [word.lower() for word in clean if len(word) > 0]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 41, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Get most common words\n", | |
"words = [item[0] for item in Counter(clean).most_common(10)]\n", | |
"counts = [item[1] for item in Counter(clean).most_common(10)]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 59, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAokAAAFDCAYAAABWTJRuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XlUlGX/x/EPOoAbLiSay+PykFta\nisOaC4oWqaEpmv0qH/WxQrPH0sy1MkVLpcwyLTUz1zLNFNxIf5JLoclUmvm4hCuQEormyjq/PzzO\nT7oRl2QGhvfrnM6Zua77vuZ7z9XRj9e9jIvVarUKAAAAuE4pRxcAAACAooeQCAAAAANCIgAAAAwI\niQAAADAgJAIAAMCAkAgAAAADk6MLcDYWi8XRJQAAANwys9mcbzshsRDc6MuG87FYLMx3CcFclyzM\nd8lR0ue6oMUtTjcDAADAwIVfXLm7LBaL6vzwX0eXAQAAiimvQc/Y7bMKWkllJREAAAAGhEQAAAAY\nEBIBAABgQEgEAACAASERAAAABoREAAAAGBASAQAAYFBsQ+IPP/yg8PBw+fj4qEuXLtq+fbsuXryo\n8ePHq1WrVmrVqpXGjh2r8+fPS5JmzJih4cOHKyIiQj4+PurcubO2b99uG2/NmjXq3LmzzGaznnzy\nSe3evVuSlJSUJLPZrFGjRsnX11erV692yPECAADYU7EMiadPn9bAgQP11FNPKSEhQa+88or+85//\n6OWXX9bhw4cVExOjdevWKS0tTW+88YZtvw0bNqhfv37auXOngoODFRkZKUnatm2b3njjDY0fP147\nd+5Uz549NWDAAP3xxx+SpAsXLqhWrVr6/vvv9cgjjzjkmAEAAOypWIbEb7/9VnXq1FF4eLhKly6t\nkJAQzZ49W99//71effVVeXp6qlKlSho5cqTWr1+vy5cvS5JatGihoKAgubm5KSwsTMeOHZMkRUdH\nq3v37vLz85PJZFLPnj3l7e2tTZs22T4zLCxMbm5uKlu2rEOOGQAAwJ6KZUg8ffq07r333jxt9erV\nU3Z2tmrWrGlrq1WrlqxWq1JTUyVJnp6etj6TyaRrv0h45syZPPtJUs2aNXXy5Enb+6pVq9714wAA\nACiqimVIrFatmk6dOpWn7auvvpKLi4uSk5NtbUlJSSpVqpSqVKlS4Hg1atTIs9+1fa8Phi4uLneh\ncgAAgOKhWIbE4OBgJScna/Xq1crJydHmzZs1f/58de/eXe+8847OnDmjc+fOaerUqQoODlbFihUL\nHO/xxx/XqlWrtGvXLmVnZ2vFihX67bff1LFjRzsdEQAAQNFicnQBd6JKlSqaPXu23n77bU2YMEG1\na9fWzJkz1aRJE0VFRalr167KyMhQhw4dNGbMmJuO5+vrq/Hjx2vcuHH6/fff5e3trblz56pGjRpK\nSkqywxEBAAAULS7Waxfm4a6wWCyq88N/HV0GAAAoprwGPWO3z7JYLDKbzfn2FcvTzQAAAChchEQA\nAAAYEBIBAABgQEgEAACAASERAAAABsXyEThFnT3vSoJjFXRXGJwLc12yMN8lB3N9Y6wkAgAAwICQ\nCAAAAANCIgAAAAwIiQAAADAgJAIAAMCAu5sLwf6Z3RxdAuykvKT9OxxdBeyBuS5Zbne+Gw9eXWi1\nAI7CSiIAAAAMCIkAAAAwICQCAADAgJAIAAAAg2IbEk+ePKns7GxHlwEAAOCUCgyJnTp10pkzZ+64\n/5rMzEy1b99eOTk5d9T/V2lpaXr00UeVkZEhSRo1apSmTJlyS/vejpCQEMXFxd31cQEAAIq6AkNi\ncHCwtm7desf917i5ualZs2b68ccf76j/r65cuaLLly/f0rYAAAC4fQWGxPbt2+dZSZsxY4YiIiLU\nuXNntW3bVn5+fob+4cOHKyIiQj4+PurcubO2b9+e71ijRo3S0KFD1b59e4WFhSk4ONjQP3HiRD31\n1FPy8fFRjx499Ouvv0qSwsPDJUmtW7fWvn37JEnJycnq37+/zGazunbtamvPzc3V9OnT9eijj8rH\nx0fBwcH64osvJElJSUny9fXVnDlz1KpVKwUFBemtt97K97uYPXu2OnTooJSUlFv8agEAAIqvAkOi\n2WzWL7/8oqysLFvbjh07NH36dK1du1bBwcGG/g0bNqhfv37auXOngoODFRkZKUlq166dYdVx165d\n+uKLL7R06VKFhIQY+levXq033nhD8fHxqlu3rqZNmyZJ+uqrryRJ27dv1/333297PXToUO3cuVMN\nGzZUVFSUJCk6OlrffPONFi1apB9//FGvvPKK3nrrLV28eFGSdP78eSUlJSkuLk4fffSRli5dqp9+\n+ilPHYsWLdKyZcu0cOFC1axZ8xa/WgAAgOKrwJBoMpnk4+OjhIQEW1uTJk3UsGFDeXh45NvfokUL\nBQUFyc3NTWFhYTp27JgkydPTUxUqVNDx48dt2wYEBKh69ery8PDItz8kJESNGzdWmTJl1LlzZx09\nevSGtT766KN68MEHZTKZ9MgjjygpKUmS1LFjRy1YsEBVq1bVqVOn5O7uroyMDJ07d86273PPPSc3\nNze1aNFC//znP201S9KqVas0efJkffrpp6pVq9bNvk8AAACncNO7m9u3b6/Nmzfb3nt5eRXY7+np\naXttMplktVoLZay/qlSpku21q6ur7SaYrKwsTZw4UQEBAYqIiLCd0s7Nzb3h51zf9/PPP6tOnTpa\nu3btDT8bAADA2dw0JLZt21bbtm2zvXdxcSmwvyDt27fXt99+e8Ox/tp/N0ybNk1Wq1Xbtm3T6tWr\nNWTIkNvaf+zYsZo0aZJmz56txMTEu1obAABAUXXTkFixYkV5eXndMCDdrP96DRs21O+//64LFy7c\nUf81bm5uknTT7a5t4+bmptKlSys9Pd32qJxbfcaiq6urWrZsqW7dumns2LF5VhkBAACc1S09TPtm\nzwu8necJtmnTpsCVx5v1S1dPUwcHBys0NFQ7duwocNshQ4bo+PHj8vPz0+OPP666deuqTp06t70q\nOHz4cB0/flxLliy5rf0AAACKIxdrQRf64bZZLBaV3zHB0WUAAOyo8eDVji4Bd8hischsNju6DIcp\n6PiL7c/yAQAAoPAQEgEAAGBASAQAAIABIREAAAAGhEQAAAAYEBIBAABgYHJ0Ac6IRyGUHCX90Qkl\nCXNdsjDfACuJAAAAyAchEQAAAAaERAAAABgQEgEAAGDAjSuFYMX8Rx1dAuzoyB5HVwB7Ya6Lhp79\nNzi6BKBEYCURAAAABoREAAAAGBASAQAAYEBIBAAAgAEhEQAAAAYlLiRarVYlJyc7ugwAAIAizSlD\nYlJSkho1aqSLFy8a+qZOnarFixff9pg7d+5UQEDA3SgPAACgyHPKkFiQ9PR0R5cAAABQ5Dn1w7QX\nLFigr776SmfPnlWvXr1UvXp1xcTEyMXFRcnJyRoxYoTCw8M1cOBAzZkzR7m5uRo+fLjOnDmj+fPn\nq3Tp0ho1apTCwsIcfSgAAAB25dQricePH9f69eu1ePFiLV68WA8++KDCwsLUp08fffDBB5Kks2fP\nKjk5WVu3btUrr7yicePG6cyZM9q2bZsGDx6siRMnOvgoAAAA7M+pQ+JLL70kNzc3NWnSRPXr11dS\nUlK+2/Xv31+urq4KDAxUTk6O7X2bNm109uxZXb582c6VAwAAOJZTh8SKFSvaXru6uionJyff7SpV\nqiRJKlXq6tfh4eEhSXJxcZEk5ebmFmaZAAAARY5Th8RbdS0MAgAA4KoSFxLd3Nx04cIFR5cBAABQ\npJW4kBgaGqrY2FgNGDDA0aUAAAAUWU75CJzatWvrwIEDedpWrlxpe/3DDz/YXl+/3V/3u/59QECA\ndu7cWVglAwAAFCklbiURAAAAN0dIBAAAgAEhEQAAAAaERAAAABgQEgEAAGDglHc3O1rP/hscXQLs\nxGKxyGw2O7oM2AFzDaCkYSURAAAABoREAAAAGBASAQAAYEBIBAAAgAE3rhSCN78MdXQJsKOYREdX\nAHthrouGN5+IdXQJQInASiIAAAAMCIkAAAAwICQCAADAgJAIAAAAA0IiAAAADAiJAAAAMCAk/kVS\nUpIaNWqkixcvGvq6dOmirVu3OqAqAAAA++I5ibdh7dq1ji4BAADALlhJvIEFCxaoQ4cOMpvNmjx5\nsiQpJCREcXFxDq4MAACg8LGSeAPHjx/X+vXrlZiYqF69eunhhx92dEkAAAB2w0riDbz00ktyc3NT\nkyZNVL9+fSUlJTm6JAAAALshJN5AxYoVba9dXV2Vk5PjwGoAAADsi5AIAAAAA0IiAAAADAiJAAAA\nMODu5r+oXbu2Dhw4kKdt5cqVkqQePXo4oiQAAAC7YyURAAAABoREAAAAGBASAQAAYEBIBAAAgAEh\nEQAAAAbc3VwI3nwi1tElwE4sFovMZrOjy4AdMNcAShpWEgEAAGBASAQAAIABIREAAAAGhEQAAAAY\ncONKIej89URHlwB7Or7e0RXY1brurzm6BACAHbCSCAAAAANCIgAAAAwIiQAAADAgJAIAAMCAkAgA\nAACDYhkSs7OzdfLkSbt+ptVqVXJysl0/EwAAwFGKVEhMSUmRj4+PLl26VOB2w4YN06ZNm+xU1VVT\np07V4sWL7fqZAAAAjlKkQmLNmjX1008/qVy5cgVul56ebqeKHPuZAAAAjlKkQmJSUpIaNWqkuLg4\nhYWF6e2335a/v7/atm2ruXPnSpImTZqkhIQETZ48WZMnT5Yk7dq1S+Hh4fL19VWvXr20Z88e25iN\nGjXS+PHj5efnp9mzZysnJ0cffvihQkJCFBQUpNGjR+vChQuSpD///FMvvPCC/P391b59e40dO1YZ\nGRmaP3++YmJitGjRIg0ZMsT+XwwAAICdFdlfXDl48KA6deqk77//XnFxcRoyZIjCwsI0duxY7d+/\nX6GhoXrmmWeUkpKiiIgITZ06Ve3atdPGjRv13HPPKTY2VpUrV5YkZWRk6LvvvlNmZqbmz5+vjRs3\nasmSJfLw8NDrr7+uyMhITZkyRZ9++qlKly6t7du36/Lly+rbt6+io6PVv39/HThwQFWqVNHIkSMd\n/M0AAAAUviK1kni90qVL67nnnpPJZNLDDz+scuXK6cSJE4bt1qxZo4CAAHXs2FEmk0mdOnVSw4YN\nFRsba9umS5cucnNzU4UKFbRixQq9+OKLqlGjhipUqKDhw4crOjpaGRkZ8vDw0K+//qq1a9cqKytL\nK1euVK9evex52AAAAEVCkV1J9PDwkKurq+29yWRSbm6uYbuUlBRt27ZNvr6+trbs7GyZzWbb+6pV\nq9pe//777xoxYoRKly6dZ+yUlBT169dPmZmZ+vTTTzVmzBiZzWZNnDhR9erVu8tHBwAAULQV2ZB4\nq7y8vNS5c2dNnTrV1nbixAlVqVLF9t7FxSXP9pGRkQoKCpIkZWVl6cSJE6pTp44OHTqkbt26adCg\nQTp16pTeeustRUZGat68efY7IAAAgCKgyJ5uLoibm5vtZpMuXbooLi5O8fHxslqtslgs6tq1q375\n5Zd893388cc1c+ZMpaamKisrS9OnT9ezzz4rq9WqL7/8UuPGjdOFCxdUpUoVlSlTxnZd4/WfCQAA\n4OyK5UriY489pgkTJig5OVmRkZGaPn26oqKidPToUXl6emr06NG2lcK/ioiIUFZWlnr37q0///xT\n999/v+bMmSOTyaShQ4fq9ddfV4cOHZSVlSV/f39NnDhRkhQaGqqhQ4cqJSWFlUUAAOD0XKxWq9XR\nRTgTi8Wi14+vd3QZQKFZ1/01R5fgEBaLJc+1znBuzHfJUdLnuqDjL5anmwEAAFC4CIkAAAAwICQC\nAADAgJAIAAAAA0IiAAAADIrlI3CKupJ692dJVNLvigMAOC9WEgEAAGBASAQAAIABIREAAAAGhEQA\nAAAYEBIBAABgwN3NheCxFUscXQLs6ch+R1fwt6zp+bSjSwAAFEGsJAIAAMCAkAgAAAADQiIAAAAM\nCIkAAAAwICQCAADAwClCYlJSkho1aqSLFy8W2mdcvHhRjRo1UlJSUqF9BgAAQFHhFCERAAAAd5dT\nhcQFCxaoQ4cOMpvNmjx5siTp7NmzevXVVxUUFKSQkBDNmTNHVqtVkpSenq5XXnlFISEhat68ucLC\nwmSxWGzjffbZZ2rdurUCAgL02WefOeKQAAAAHMKpQuLx48e1fv16LV68WIsXL5bFYtGIESPk4uKi\n//3f/9XChQsVHR2tlStXSpKioqIkSevWrdOuXbtkNpv17rvvSpK+/fZbffzxx/rkk0/07bff6siR\nIw47LgAAAHtzql9ceemll+Tm5qYmTZqofv36SkpK0tatWxUfH69y5cqpXLlyGjBggJYtW6bw8HAN\nHTpUZcuWVenSpZWcnKyKFSvq1KlTkq4Gx27duqlx48aSpFdffVUxMTGOPDwAAAC7caqQWLFiRdtr\nV1dXpaamymq16uGHH7a15+bmqnLlypKk1NRUTZo0SYmJiapfv74qV65sOxWdlpZmC4iSVL16dZlM\nTvV1AQAA3JBTp57MzEyZTCZ9//33cnNzkySdO3fOdhf0sGHD1Lt3by1ZskQuLi5atWqVDh48KEmq\nVq2aUlJSbGOdPn1a2dnZ9j8IAAAAB3CqaxL/qkaNGjKbzYqKitKVK1d09uxZDRkyRO+9954k6cKF\nCypbtqxcXFyUmJiouXPnKisrS5LUrVs3ff3119q9e7cyMjL0zjvvOPJQAAAA7MqpQ6IkTZs2TadP\nn1ZISIhCQ0NVrVo1jRs3TpI0YcIEzZs3Ty1bttSLL76o7t27Kz09Xenp6QoKCtLIkSM1ZMgQtWrV\nStWqVbOtRgIAADg7F+u1i/BwV1gsFo07st/RZQC3bE3Ppx1dQrFgsVhkNpsdXQbshPkuOUr6XBd0\n/E6/kggAAIDbR0gEAACAASERAAAABoREAAAAGBASAQAAYODUD9N2FO4WLTlK+l1xAADnxUoiAAAA\nDAiJAAAAMCAkAgAAwICQCAAAAANCIgAAAAy4u7kQdP9qu6NLgD0dLd7z/XV4a0eXAAAoglhJBAAA\ngAEhEQAAAAaERAAAABgQEgEAAGBASAQAAIBBiQmJnTp10pkzZ+64HwAAoCQpMSExODhYW7duveN+\nAACAkqTEhMT27dsrLi7O9n7GjBmKiIhQ586d1bZtW/n5+Rn6hw8froiICPn4+Khz587avr14Pw8P\nAADgVpWYkGg2m/XLL78oKyvL1rZjxw5Nnz5da9euVXBwsKF/w4YN6tevn3bu3Kng4GBFRkY6onQA\nAAC7KzEh0WQyycfHRwkJCba2Jk2aqGHDhvLw8Mi3v0WLFgoKCpKbm5vCwsJ07NgxR5QOAABgdyUm\nJEpXTzlv3rzZ9t7Ly6vAfk9PT9trk8kkq9Va+EUCAAAUASUqJLZt21bbtm2zvXdxcSmwHwAAoKQq\nUSGxYsWK8vLyUmJi4h31AwAAlBQlKiRKUkhISJ67mG+3HwAAoCQwOboAe+vfv/8d9Tds2FAHDhwo\njJIAAACKnBK3kggAAICbIyQCAADAgJAIAAAAA0IiAAAADAiJAAAAMCAkAgAAwKDEPQLHHr4Ob+3o\nEmAnFotFZrPZ0WUAAHDXsZIIAAAAA0IiAAAADAiJAAAAMCAkAgAAwIAbVwrBzK9POboE2E1t7The\nvOd7cPfqji4BAFAEsZIIAAAAA0IiAAAADAiJAAAAMCAkAgAAwICQCAAAAANC4nWys7N18uRJR5cB\nAADgcITE6wwbNkybNm1ydBkAAAAOR0i8Tnp6uqNLAAAAKBKcIiQmJSUpICBA8+fPV1BQkAICArR8\n+XLNnj1bgYGBatWqlWJiYiRJu3btUnh4uHx9fdWrVy/t2bNHkjRp0iQlJCRo8uTJmjx5siRp4cKF\nCgsLk9ls1kMPPaQZM2Y47BgBAADsyWl+ceXs2bNKTk7W1q1b9fXXX2vcuHHq06ePtm3bpuXLl2vi\nxIkym82KiIjQ1KlT1a5dO23cuFHPPfecYmNjNXbsWO3fv1+hoaF65plnlJCQoI8//lhLly5VvXr1\nlJCQoGeeeUZdu3ZV3bp1HX24AAAAhcopVhKv6d+/v1xdXRUYGKicnBzb+zZt2ujs2bOKjo5WQECA\nOnbsKJPJpE6dOqlhw4aKjY01jNW0aVOtXLlS9erVU1pamrKyslSmTBmlpqY64MgAAADsy2lWEiWp\nUqVKkqRSpa5mXw8PD0mSi4uLJOnYsWPatm2bfH19bftkZ2fLbDYbxipVqpRmzZql2NhY3XPPPWrW\nrJkkKTc3t1CPAQAAoChwqpB4LQzeSO3atdW5c2dNnTrV1nbixAlVqVLFsO38+fN18OBBbdq0SR4e\nHsrKytK6devues0AAABFkVOdbr6Zjh07Ki4uTvHx8bJarbJYLOratat++eUXSZKbm5suXLggSbpw\n4YJcXV3l6uqqixcvasqUKcrKylJ2drYjDwEAAMAunGol8WZq166t6dOnKyoqSkePHpWnp6dGjx6t\noKAgSdJjjz2mCRMmKDk5WS+//LKGDx+uoKAglS9fXiEhIWrZsqUSExPVqlUrBx8JAABA4XKxWq1W\nRxfhTCwWi3Ycr+3oMoBbNrh7dUeXUCxYLJZ8r1+Gc2K+S46SPtcFHX+JOt0MAACAW0NIBAAAgAEh\nEQAAAAaERAAAABgQEgEAAGBQoh6BYy/cLVpylPS74gAAzouVRAAAABgQEgEAAGBASAQAAIABIREA\nAAAG3LhSCH76JNXRJcBefBxdAAAAhYOVRAAAABgQEgEAAGBASAQAAIABIREAAAAGhEQAAAAYEBIB\nAABgQEi8BStXrlRISIhCQkK0cuVKR5cDAABQ6HhO4i1wd3eXu7u7rFarypQp4+hyAAAACh0h8RZ4\ne3urQYMGysnJ0X333efocgAAAAodIfEWNG7cWB988IGjywAAALAbrkkEAACAASERAAAABoREAAAA\nGBASAQAAYEBIBAAAgAEhEQAAAAaERAAAABgQEgEAAGBASAQAAIABIREAAAAGhEQAAAAY8NvNhcDn\n2WqOLgF2YrGccHQJAAAUClYSAQAAYEBIBAAAgAEhEQAAAAaERAAAABhw40ohODXd4ugSYC9tHF0A\nAACFg5VEAAAAGBASAQAAYEBIBAAAgAEhEQAAAAaERAAAABgQEgEAAGDgNCFx5cqV6tGjx02369Kl\ni7Zu3WqHigAAAIqvEvecxLVr1zq6BAAAgCLPYSuJa9euVY8ePeTn5yd/f3+98cYbslqtCgkJ0Ycf\nfqh27drJbDbr9ddfV0ZGhiRp1KhRGjdunHr06CEfHx/17dtXycnJhrE7duyomJgY2/uDBw/Kz89P\nmZmZCgkJUVxcnCSpUaNGWrhwodq3by9/f38NHz5cmZmZkqRTp05pwIABatmypcLDwzVlyhT16dPH\nDt8MAACA4zkkJCYlJem1117Tm2++qV27dmnp0qVas2aNduzYIelqgFyyZIliY2O1b98+zZgxw7bv\nqlWrNHLkSO3YsUN16tTR0KFDDeM/9thjWrdune19TEyMQkND5ebmZtg2Pj5eMTExWrZsmbZv365v\nvvlGkjRs2DDde++9io+P1/jx47Vy5cq7/TUAAAAUWQ4JidWqVVNMTIwefPBBpaen6+zZs6pUqZJO\nnTolSRo0aJBq1aqlqlWratCgQXlOEYeFhSkgIEDu7u4aPny4du/erRMnTuQZPywsTNu3b9f58+cl\nXQ2dYWFh+dbSt29fVahQQfXr15ePj4+OHj2qlJQUJSQkaMSIEXJ3d1ezZs30xBNPFNK3AQAAUPQ4\n5JpEk8mk5cuXa8WKFSpXrpzuv/9+ZWVlKTc3V5JUt25d27bVq1fXH3/8YXtfp04d2+tKlSqpXLly\nSktLyzO+t7e3GjRooE2bNqlu3brKycmRn59fvrV4enraXru6uspqtSo1NVXlypVTpUqVbH01a9bU\nzz///PcOHAAAoJhwSEhcu3at1q1bp1WrVsnLy0uS1KFDB1t/amqq7XVKSopq1KiRb196erouXbqk\ne++9V0eOHMnzGV27dlVsbKzq1aunLl26qFSpW180rVGjhi5duqRz587ZguLJkydv7yABAACKMYec\nbr5w4YJMJpPc3NyUmZmpuXPnKikpSdnZ2ZKkOXPm6PTp00pNTdXHH3+sxx9/3LZvdHS09u3bp4yM\nDE2dOlWBgYF5QuQ1Xbp00Q8//KDNmzera9eut1Vf9erV9dBDDykqKkoZGRk6ePCgVqxY8fcOGgAA\noBhxyEpi9+7dFR8fr/bt26tMmTLy8/PTww8/rMTERElS48aN1bt3b50/f149evRQRESEbd+WLVtq\n3LhxSkxMVGBgoN599918P8PLy0stWrRQamqqGjdufNs1Tpo0SaNHj1ZgYKC8vb0VGBio9PT0Oztg\nAACAYsYhIbFMmTL64IMP8u3buHGjQkJCFBkZmW9//fr19fHHHxvae/ToYXiYds2aNRUYGJinbfPm\nzbbXBw4cyNN3fU3Hjh3TvHnzZDJd/YqioqIKOCIAAADn4jS/uHK9U6dOKT4+Xhs3blS3bt3uaIzx\n48fryy+/lNVq1dGjRxUTE6M2bdrc5UoBAACKJqcMievXr9cLL7ygwYMHq3r16nc0xrvvvqvVq1fL\nbDbrX//6l3r37n3HgRMAAKC4KXI/y3f96eC/mjx58i2N0a9fP/Xr1+9v1dG0aVMtW7bsb40BAABQ\nXDnlSiIAAAD+HkIiAAAADIrc6WZnUP1ls6NLgJ0kWSyOLgEAgELBSiIAAAAMCIkAAAAwcLFarVZH\nF+FMLJx+BAAAxYjZnP9lcoREAAAAGHC6GQAAAAaERAAAABgQEgEAAGBASAQAAIABIREAAAAGhMS7\nZN++ferZs6datGihbt266eeff3Z0SSgEe/bsUevWrW3vz507p8GDB8tsNqtdu3Zavny5A6vD3ZCQ\nkKBevXrJbDarY8eO+uKLLyQx185q3bp16tSpk3x8fNSlSxdt2rRJEvPtzNLS0hQUFKS4uDhJUlJS\nkvr27SsfHx+Fhoba2iHJir/typUr1jZt2liXLFlizczMtC5fvtzaqlUra0ZGhqNLw12Sm5trXb58\nudVsNlv9/f1t7f/5z3+sw4cJ7kAYAAAO4klEQVQPt165csW6e/duq7+/v/W///2vAyvF33H27Fmr\nn5+fdfXq1dacnBzr3r17rX5+ftbvvvuOuXZChw8ftjZv3txqsVisVqvV+t1331mbNm1qPX36NPPt\nxJ5//nlr48aNrZs3b7ZarVZrjx49rO+88441MzPT+u2331p9fHysp0+fdnCVRQMriXfBjh07VKpU\nKT311FNydXVVz549VaVKFf414kQ+/vhjLVy4UAMHDrS1Xbx4UZs2bdKQIUPk7u6uBx98UI899hgr\nDsVYSkqKgoOD1bVrV5UqVUpNmzZVQECAfvzxR+baCdWvX1/fffedWrZsqYsXLyo1NVXly5eXm5sb\n8+2kPv/8c5UtW1Y1atSQJCUmJurgwYMaPHiwXF1dFRwcLH9/f61atcrBlRYNhMS74MiRI/L29s7T\nVr9+fR06dMhBFeFuCw8P1+rVq/XAAw/Y2o4dOyaTyaR//OMftjbmvXhr0qSJoqKibO/PnTunhIQE\nSWKunVT58uV14sQJ+fr6atSoURo6dKiOHz/OfDuho0ePav78+XrzzTdtbYcPH1atWrVUpkwZWxtz\n/f8IiXfBpUuXVLZs2TxtZcqU0ZUrVxxUEe62atWqycXFJU/bpUuX8vzBIjHvzuT8+fMaOHCgbTWR\nuXZeNWrU0J49ezR//nxNmTJFmzdvZr6dTHZ2tl599VWNHTtWlStXtrXz93fBCIl3QdmyZQ3/Q125\nckXlypVzUEWwB+bdeZ04cUJPPvmkKlWqpA8//FDlypVjrp2YyWSSq6urgoKC9Mgjj2jv3r3Mt5OZ\nNWuWmjRpouDg4Dzt/DleMELiXfDPf/5TR44cydN25MgR3XfffQ6qCPZQt25dZWdnKyUlxdbGvBd/\nv/76q5544gm1bt1as2bNUpkyZZhrJ7Vlyxb169cvT1tWVpbq1KnDfDuZdevWae3atfL19ZWvr69S\nUlI0bNgwHTlyRMnJycrMzLRty1z/P0LiXRAUFKTMzEwtWrRIWVlZWrFihdLS0vI8KgXOp0KFCurQ\noYPeffddXb58WXv27NGaNWsUFhbm6NJwh9LS0vTss8+qf//+Gj16tEqVuvpHJHPtnO6//37t3btX\nq1atUm5urrZs2aItW7aod+/ezLeT2bBhgywWixISEpSQkKCaNWtq2rRpioiI0H333afp06crMzNT\nW7Zs0c6dO/Xoo486uuQigZB4F7i5uWnu3Llau3at/P39tXjxYn300UcsV5cAkZGRys7OVnBwsIYM\nGaJXX31VzZs3d3RZuEMrVqzQmTNn9NFHH8nHx8f233vvvcdcOyEvLy/bkwt8fX31/vvva+bMmfL2\n9ma+S5AZM2bowIEDCgoK0ltvvaVp06bZ7n4u6VysVqvV0UUAAACgaGElEQAAAAaERAAAABgQEgEA\nAGBASAQAAIABIREAAAAGhEQAAAAYEBIBOExISIh69OihnJycPO1JSUlq1KiRDh48WCif26dPH02Z\nMqVQxr5V69atU6tWreTj46P9+/fnu82ZM2c0ceJEtW/fXg888IA6duyoqKgonTt3zs7VAiiJCIkA\nHOrXX3/VkiVLHF2G3U2fPl0hISGKiYnJ9yfAUlNT1atXL+3bt0+TJk3Shg0bNG7cOCUkJKh3795K\nS0tzQNUAShJCIgCHqlWrlqZPn65Tp045uhS7+vPPP9WiRQvVrl1bJpPJ0D9x4kR5eXlpwYIFeuih\nh1SrVi21adNGCxculLu7u95++20HVA2gJCEkAnCoPn36qFq1apo0aVKB2/z19HCjRo0UFxcnSRo1\napTefvttjR49Wi1atFBISIi2bt2qFStWqG3btvLz8zOEqtOnT2vAgAF64IEH1LVrV+3Zs8fWl5WV\npSlTpuihhx6Sr6+vIiIidOLEiTyf/f777ysoKEjh4eHK74erEhMTFRERIV9fXwUGBioyMlJXrlyx\n7Z+enq4xY8aoT58+hn1Pnz6tjRs36vnnn5erq2uePnd3dw0cOFAbNmxQenq6JCklJUUvvPCCfHx8\n1KpVK02ZMsV2Cv/cuXMaOXKk/P39FRAQoNGjR+vixYuSrp7uX7x4sW3sv57mDwkJUVRUlIKDgxUS\nEqKDBw+qUaNGmjVrlvz9/TV48GBJ0k8//aTevXvrwQcfVGhoqBYsWGD7TlauXKknnnhCc+bMUatW\nrRQYGKgRI0bo8uXLts/dsGGDwsLC1Lx5c4WFhWnLli22voLGvnDhgoYNGyZ/f3/5+Pho0KBBOnny\npOH7BHBnCIkAHMrV1VVvvvmmYmNjbaHvTixZskTe3t6Kjo5W06ZNNWzYMK1du1bz5s3TiBEj9Nln\nn8lisdi2j46OVmBgoFavXi1/f3/17dtXZ86ckSS99957io+P1wcffKBly5bJy8tLffv2tYU86eo1\nhYsWLdKkSZPk4uKSp5b09HQ988wzKleunJYuXapp06YpLi7OFoS3b9+uypUra8yYMZoxY4bhWPbu\n3avc3Fy1aNEi32P19fVVdna2fv31V2VmZqp///7KyMjQ559/runTp2vNmjWaM2eOJOnFF1/UoUOH\nNHfuXH366afau3fvba1CrlixQjNnztSMGTNsv0e/fft2ffnllxo2bJjS0tL07LPPqkOHDoqJidGI\nESM0d+5cLV261DbGvn379NNPP+mzzz5TZGSkYmNj9eWXX0qSduzYoaFDh6pHjx6Kjo5Wt27d9OKL\nL+rEiRM3Hfv999/XkSNHtHDhQq1YsULnz59XZGTkLR8bgIIZz3EAgJ0FBgbq8ccfV2RkpAIDA+9o\njPr16+vZZ5+VJPXs2VPffPONRo4cqQYNGqhBgwZ67733lJiYKLPZLElq27atnnvuOUnSmDFjFBcX\np+joaD355JNatGiRFi5cKB8fH0nShAkT1K5dO8XGxqpbt26SpCeeeCLfawklac2aNZKkyZMny93d\nXQ0bNtS4ceM0cOBADR06VF5eXpIkDw8PVa5c2bD/tRtTKlasmO/4lSpVkiSdPXtW33//vZKTk/X5\n55/L09PTVm9aWpoOHTqkH374QatXr1bjxo1tfQkJCbf8vXbp0kXNmjWTdHWlUZL+9a9/qV69epKu\nBrUWLVro+eeflyTVrVtXaWlp+uSTT/T0009LuroyGxkZqapVq6pBgwZq06aNbeV26dKl6tChg/r3\n7y9JevbZZ3XlyhVduHBBK1euLHDspKQklS9fXrVr11aFChU0efJk2+oqgL+PkAigSBg5cqQ6deqk\nGTNm6Kmnnrrt/f/xj3/YXpcpU0aSVLt27TxtmZmZtvfNmze3vS5VqpSaNGmiQ4cO6fjx47bVuetX\nCK9cuaIjR47Y3teqVeuGtfz2229q3Lix3N3dbW1ms1m5ubk6fPiwLczdyLUQ+Mcff6hGjRqG/mvX\nb1auXFn79+9XrVq18ozZvn17SdL69evl5uamRo0a2fp8fHxs4fdW5Hec17clJiZqx44decbMyclR\nVlaW7fsuX768qlatauuvUKGCLl26ZNu/a9euecZ/8cUXJUkfffRRgWM///zzev755xUUFCR/f391\n7NhR3bt3v+VjA1AwQiKAIsHT01PDhw/Xm2++aVvtu5Hs7GxDW343f/z1NPD1Spcuned9bm6uXF1d\nbdfyffrpp7rnnnvybOPh4WF7fX0A/Ct3d3fDZ18bN7/rF//qgQcekMlk0t69e/MNib/88otMJpPu\nv/9+JSYm3nCca9czFvQ95Ffj9fI7zuvbsrOz9cgjj+jll182bHdtTv56XWV+NebnZmP7+PgoLi5O\ncXFx2rJli9555x19/fXX+vzzzw3zC+D2cU0igCKjZ8+eat68ueEmFjc3N9vNFpLy3ERyp65/NmF2\ndrb27dsnb29v1alTRyaTSWfOnFHdunVVt25d1axZU++++64OHDhwS2N7e3vrv//9rzIyMmxtP/30\nk1xcXGynaQvi6emp0NBQzZgxQ1lZWXn6MjMzNXPmTD3yyCPy9PRUvXr1lJKSorNnz9q2+eKLL9S3\nb1/Vr19fmZmZ+u2332x9W7duVWhoqC0U/93v1dvbW4cPH7Z9V3Xr1tXevXs1d+5clSp1879i6tWr\np3379uVp69Onj7788subjj1//nxZLBaFhYXpnXfe0bx587R7924lJyff9nEAMCIkAigyXFxcNH78\neKWmpuZpb9asmTZt2iSLxaL9+/dr/PjxcnNz+1uftXHjRi1cuFCJiYkaP368MjIy1L17d5UvX17/\n8z//o0mTJmnr1q06evSoXnvtNe3YsUPe3t63NHZYWJhMJpNGjRqlQ4cOKT4+XhMmTFDnzp1t1yPe\nzNixY5WZmal+/fopPj5eKSkpio+PV79+/ZSdna3XXntNktS6dWvVrVtXY8aM0aFDh7Rz50599NFH\nat26tby9vdW6dWu99tpr2rt3r/bs2aOoqCgFBQWpVKlSeuCBB7Rq1Srt379fu3fv1vTp02951fGa\np59+WseOHdPEiRN1+PBhbdmyRRMmTFCVKlVuaf++fftq06ZNWrJkiY4fP665c+dq7969CgoKuunY\nqampioyMVEJCgk6cOKHo6Gjdc889uvfee2/rGADkj9PNAIqUBg0aqH///ra7cyXp3//+tw4fPqx/\n//vfqlKlioYMGfK3V4uefvppxcbGaurUqWrcuLHmzp2rChUqSJJGjBihUqVKadSoUbp06ZKaNm2q\nefPmqVq1arc0drly5TRv3jxNmjRJ4eHh8vDwUNeuXfM9bXoj99xzj5YtW6bZs2fr9ddf16lTp1S9\nenWFhoYqIiLCdlNL6dKlNWvWLE2YMEE9e/ZUxYoVFR4ergEDBkiSpk6dqsjISPXp00fu7u569NFH\nNXLkSEnS0KFDNXbsWPXq1Us1a9bUmDFjNGjQoNv5GnXvvffqk08+UVRUlLp166YqVaroySef1JAh\nQ25pfx8fH7399tuaOXOmJk+erPvuu0+zZs2yXWNa0NgvvfSSLl68qCFDhuj8+fNq1qyZ5syZ87f/\nAQHgKhfrrVwgAwAAgBKF080AAAAwICQCAADAgJAIAAAAA0IiAAAADAiJAAAAMCAkAgAAwICQCAAA\nAANCIgAAAAwIiQAAADD4P5HCy0crz0j6AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a22bde0b8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Visualization\n", | |
"plt.figure(figsize=(10,5))\n", | |
"sns.barplot(counts, words);\n", | |
"plt.ylabel('');\n", | |
"plt.xlabel('Number of Occurrences');" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Key Insights\n", | |
"* It appears that common practice was some form of 'Thank you for your interest'\n", | |
"* Next most popular was a variation of 'Update on your application for x role'" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Common Body Words & Phrases" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 52, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Tokenize and remove stop words\n", | |
"subject_str = df['Text'].to_string()\n", | |
"words = nltk.word_tokenize(subject_str)\n", | |
"clean = [word for word in words if word not in stopwords.words('english')]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 53, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# Remove punctuation and numbers\n", | |
"punctuation = re.compile(r'[-.?!,\":;()<>//``//]|0-9]')\n", | |
"clean = [punctuation.sub(\"\", word) for word in clean]\n", | |
"clean = [word.lower() for word in clean if len(word) > 0]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 55, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Get most common words\n", | |
"words = [item[0] for item in Counter(clean).most_common(10)]\n", | |
"counts = [item[1] for item in Counter(clean).most_common(10)]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 60, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAokAAAFDCAYAAABWTJRuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XlUlGX/x/EPOoAbLiSay+PykFta\nisOaC4oWqaEpmv0qH/WxQrPH0sy1MkVLpcwyLTUz1zLNFNxIf5JLoclUmvm4hCuQEormyjq/PzzO\nT7oRl2QGhvfrnM6Zua77vuZ7z9XRj9e9jIvVarUKAAAAuE4pRxcAAACAooeQCAAAAANCIgAAAAwI\niQAAADAgJAIAAMCAkAgAAAADk6MLcDYWi8XRJQAAANwys9mcbzshsRDc6MuG87FYLMx3CcFclyzM\nd8lR0ue6oMUtTjcDAADAwIVfXLm7LBaL6vzwX0eXAQAAiimvQc/Y7bMKWkllJREAAAAGhEQAAAAY\nEBIBAABgQEgEAACAASERAAAABoREAAAAGBASAQAAYFBsQ+IPP/yg8PBw+fj4qEuXLtq+fbsuXryo\n8ePHq1WrVmrVqpXGjh2r8+fPS5JmzJih4cOHKyIiQj4+PurcubO2b99uG2/NmjXq3LmzzGaznnzy\nSe3evVuSlJSUJLPZrFGjRsnX11erV692yPECAADYU7EMiadPn9bAgQP11FNPKSEhQa+88or+85//\n6OWXX9bhw4cVExOjdevWKS0tTW+88YZtvw0bNqhfv37auXOngoODFRkZKUnatm2b3njjDY0fP147\nd+5Uz549NWDAAP3xxx+SpAsXLqhWrVr6/vvv9cgjjzjkmAEAAOypWIbEb7/9VnXq1FF4eLhKly6t\nkJAQzZ49W99//71effVVeXp6qlKlSho5cqTWr1+vy5cvS5JatGihoKAgubm5KSwsTMeOHZMkRUdH\nq3v37vLz85PJZFLPnj3l7e2tTZs22T4zLCxMbm5uKlu2rEOOGQAAwJ6KZUg8ffq07r333jxt9erV\nU3Z2tmrWrGlrq1WrlqxWq1JTUyVJnp6etj6TyaRrv0h45syZPPtJUs2aNXXy5Enb+6pVq9714wAA\nACiqimVIrFatmk6dOpWn7auvvpKLi4uSk5NtbUlJSSpVqpSqVKlS4Hg1atTIs9+1fa8Phi4uLneh\ncgAAgOKhWIbE4OBgJScna/Xq1crJydHmzZs1f/58de/eXe+8847OnDmjc+fOaerUqQoODlbFihUL\nHO/xxx/XqlWrtGvXLmVnZ2vFihX67bff1LFjRzsdEQAAQNFicnQBd6JKlSqaPXu23n77bU2YMEG1\na9fWzJkz1aRJE0VFRalr167KyMhQhw4dNGbMmJuO5+vrq/Hjx2vcuHH6/fff5e3trblz56pGjRpK\nSkqywxEBAAAULS7Waxfm4a6wWCyq88N/HV0GAAAoprwGPWO3z7JYLDKbzfn2FcvTzQAAAChchEQA\nAAAYEBIBAABgQEgEAACAASERAAAABsXyEThFnT3vSoJjFXRXGJwLc12yMN8lB3N9Y6wkAgAAwICQ\nCAAAAANCIgAAAAwIiQAAADAgJAIAAMCAu5sLwf6Z3RxdAuykvKT9OxxdBeyBuS5Zbne+Gw9eXWi1\nAI7CSiIAAAAMCIkAAAAwICQCAADAgJAIAAAAg2IbEk+ePKns7GxHlwEAAOCUCgyJnTp10pkzZ+64\n/5rMzEy1b99eOTk5d9T/V2lpaXr00UeVkZEhSRo1apSmTJlyS/vejpCQEMXFxd31cQEAAIq6AkNi\ncHCwtm7desf917i5ualZs2b68ccf76j/r65cuaLLly/f0rYAAAC4fQWGxPbt2+dZSZsxY4YiIiLU\nuXNntW3bVn5+fob+4cOHKyIiQj4+PurcubO2b9+e71ijRo3S0KFD1b59e4WFhSk4ONjQP3HiRD31\n1FPy8fFRjx499Ouvv0qSwsPDJUmtW7fWvn37JEnJycnq37+/zGazunbtamvPzc3V9OnT9eijj8rH\nx0fBwcH64osvJElJSUny9fXVnDlz1KpVKwUFBemtt97K97uYPXu2OnTooJSUlFv8agEAAIqvAkOi\n2WzWL7/8oqysLFvbjh07NH36dK1du1bBwcGG/g0bNqhfv37auXOngoODFRkZKUlq166dYdVx165d\n+uKLL7R06VKFhIQY+levXq033nhD8fHxqlu3rqZNmyZJ+uqrryRJ27dv1/333297PXToUO3cuVMN\nGzZUVFSUJCk6OlrffPONFi1apB9//FGvvPKK3nrrLV28eFGSdP78eSUlJSkuLk4fffSRli5dqp9+\n+ilPHYsWLdKyZcu0cOFC1axZ8xa/WgAAgOKrwJBoMpnk4+OjhIQEW1uTJk3UsGFDeXh45NvfokUL\nBQUFyc3NTWFhYTp27JgkydPTUxUqVNDx48dt2wYEBKh69ery8PDItz8kJESNGzdWmTJl1LlzZx09\nevSGtT766KN68MEHZTKZ9MgjjygpKUmS1LFjRy1YsEBVq1bVqVOn5O7uroyMDJ07d86273PPPSc3\nNze1aNFC//znP201S9KqVas0efJkffrpp6pVq9bNvk8AAACncNO7m9u3b6/Nmzfb3nt5eRXY7+np\naXttMplktVoLZay/qlSpku21q6ur7SaYrKwsTZw4UQEBAYqIiLCd0s7Nzb3h51zf9/PPP6tOnTpa\nu3btDT8bAADA2dw0JLZt21bbtm2zvXdxcSmwvyDt27fXt99+e8Ox/tp/N0ybNk1Wq1Xbtm3T6tWr\nNWTIkNvaf+zYsZo0aZJmz56txMTEu1obAABAUXXTkFixYkV5eXndMCDdrP96DRs21O+//64LFy7c\nUf81bm5uknTT7a5t4+bmptKlSys9Pd32qJxbfcaiq6urWrZsqW7dumns2LF5VhkBAACc1S09TPtm\nzwu8necJtmnTpsCVx5v1S1dPUwcHBys0NFQ7duwocNshQ4bo+PHj8vPz0+OPP666deuqTp06t70q\nOHz4cB0/flxLliy5rf0AAACKIxdrQRf64bZZLBaV3zHB0WUAAOyo8eDVji4Bd8hischsNju6DIcp\n6PiL7c/yAQAAoPAQEgEAAGBASAQAAIABIREAAAAGhEQAAAAYEBIBAABgYHJ0Ac6IRyGUHCX90Qkl\nCXNdsjDfACuJAAAAyAchEQAAAAaERAAAABgQEgEAAGDAjSuFYMX8Rx1dAuzoyB5HVwB7Ya6Lhp79\nNzi6BKBEYCURAAAABoREAAAAGBASAQAAYEBIBAAAgAEhEQAAAAYlLiRarVYlJyc7ugwAAIAizSlD\nYlJSkho1aqSLFy8a+qZOnarFixff9pg7d+5UQEDA3SgPAACgyHPKkFiQ9PR0R5cAAABQ5Dn1w7QX\nLFigr776SmfPnlWvXr1UvXp1xcTEyMXFRcnJyRoxYoTCw8M1cOBAzZkzR7m5uRo+fLjOnDmj+fPn\nq3Tp0ho1apTCwsIcfSgAAAB25dQricePH9f69eu1ePFiLV68WA8++KDCwsLUp08fffDBB5Kks2fP\nKjk5WVu3btUrr7yicePG6cyZM9q2bZsGDx6siRMnOvgoAAAA7M+pQ+JLL70kNzc3NWnSRPXr11dS\nUlK+2/Xv31+urq4KDAxUTk6O7X2bNm109uxZXb582c6VAwAAOJZTh8SKFSvaXru6uionJyff7SpV\nqiRJKlXq6tfh4eEhSXJxcZEk5ebmFmaZAAAARY5Th8RbdS0MAgAA4KoSFxLd3Nx04cIFR5cBAABQ\npJW4kBgaGqrY2FgNGDDA0aUAAAAUWU75CJzatWvrwIEDedpWrlxpe/3DDz/YXl+/3V/3u/59QECA\ndu7cWVglAwAAFCklbiURAAAAN0dIBAAAgAEhEQAAAAaERAAAABgQEgEAAGDglHc3O1rP/hscXQLs\nxGKxyGw2O7oM2AFzDaCkYSURAAAABoREAAAAGBASAQAAYEBIBAAAgAE3rhSCN78MdXQJsKOYREdX\nAHthrouGN5+IdXQJQInASiIAAAAMCIkAAAAwICQCAADAgJAIAAAAA0IiAAAADAiJAAAAMCAk/kVS\nUpIaNWqkixcvGvq6dOmirVu3OqAqAAAA++I5ibdh7dq1ji4BAADALlhJvIEFCxaoQ4cOMpvNmjx5\nsiQpJCREcXFxDq4MAACg8LGSeAPHjx/X+vXrlZiYqF69eunhhx92dEkAAAB2w0riDbz00ktyc3NT\nkyZNVL9+fSUlJTm6JAAAALshJN5AxYoVba9dXV2Vk5PjwGoAAADsi5AIAAAAA0IiAAAADAiJAAAA\nMODu5r+oXbu2Dhw4kKdt5cqVkqQePXo4oiQAAAC7YyURAAAABoREAAAAGBASAQAAYEBIBAAAgAEh\nEQAAAAbc3VwI3nwi1tElwE4sFovMZrOjy4AdMNcAShpWEgEAAGBASAQAAIABIREAAAAGhEQAAAAY\ncONKIej89URHlwB7Or7e0RXY1brurzm6BACAHbCSCAAAAANCIgAAAAwIiQAAADAgJAIAAMCAkAgA\nAACDYhkSs7OzdfLkSbt+ptVqVXJysl0/EwAAwFGKVEhMSUmRj4+PLl26VOB2w4YN06ZNm+xU1VVT\np07V4sWL7fqZAAAAjlKkQmLNmjX1008/qVy5cgVul56ebqeKHPuZAAAAjlKkQmJSUpIaNWqkuLg4\nhYWF6e2335a/v7/atm2ruXPnSpImTZqkhIQETZ48WZMnT5Yk7dq1S+Hh4fL19VWvXr20Z88e25iN\nGjXS+PHj5efnp9mzZysnJ0cffvihQkJCFBQUpNGjR+vChQuSpD///FMvvPCC/P391b59e40dO1YZ\nGRmaP3++YmJitGjRIg0ZMsT+XwwAAICdFdlfXDl48KA6deqk77//XnFxcRoyZIjCwsI0duxY7d+/\nX6GhoXrmmWeUkpKiiIgITZ06Ve3atdPGjRv13HPPKTY2VpUrV5YkZWRk6LvvvlNmZqbmz5+vjRs3\nasmSJfLw8NDrr7+uyMhITZkyRZ9++qlKly6t7du36/Lly+rbt6+io6PVv39/HThwQFWqVNHIkSMd\n/M0AAAAUviK1kni90qVL67nnnpPJZNLDDz+scuXK6cSJE4bt1qxZo4CAAHXs2FEmk0mdOnVSw4YN\nFRsba9umS5cucnNzU4UKFbRixQq9+OKLqlGjhipUqKDhw4crOjpaGRkZ8vDw0K+//qq1a9cqKytL\nK1euVK9evex52AAAAEVCkV1J9PDwkKurq+29yWRSbm6uYbuUlBRt27ZNvr6+trbs7GyZzWbb+6pV\nq9pe//777xoxYoRKly6dZ+yUlBT169dPmZmZ+vTTTzVmzBiZzWZNnDhR9erVu8tHBwAAULQV2ZB4\nq7y8vNS5c2dNnTrV1nbixAlVqVLF9t7FxSXP9pGRkQoKCpIkZWVl6cSJE6pTp44OHTqkbt26adCg\nQTp16pTeeustRUZGat68efY7IAAAgCKgyJ5uLoibm5vtZpMuXbooLi5O8fHxslqtslgs6tq1q375\n5Zd893388cc1c+ZMpaamKisrS9OnT9ezzz4rq9WqL7/8UuPGjdOFCxdUpUoVlSlTxnZd4/WfCQAA\n4OyK5UriY489pgkTJig5OVmRkZGaPn26oqKidPToUXl6emr06NG2lcK/ioiIUFZWlnr37q0///xT\n999/v+bMmSOTyaShQ4fq9ddfV4cOHZSVlSV/f39NnDhRkhQaGqqhQ4cqJSWFlUUAAOD0XKxWq9XR\nRTgTi8Wi14+vd3QZQKFZ1/01R5fgEBaLJc+1znBuzHfJUdLnuqDjL5anmwEAAFC4CIkAAAAwICQC\nAADAgJAIAAAAA0IiAAAADIrlI3CKupJ692dJVNLvigMAOC9WEgEAAGBASAQAAIABIREAAAAGhEQA\nAAAYEBIBAABgwN3NheCxFUscXQLs6ch+R1fwt6zp+bSjSwAAFEGsJAIAAMCAkAgAAAADQiIAAAAM\nCIkAAAAwICQCAADAwClCYlJSkho1aqSLFy8W2mdcvHhRjRo1UlJSUqF9BgAAQFHhFCERAAAAd5dT\nhcQFCxaoQ4cOMpvNmjx5siTp7NmzevXVVxUUFKSQkBDNmTNHVqtVkpSenq5XXnlFISEhat68ucLC\nwmSxWGzjffbZZ2rdurUCAgL02WefOeKQAAAAHMKpQuLx48e1fv16LV68WIsXL5bFYtGIESPk4uKi\n//3f/9XChQsVHR2tlStXSpKioqIkSevWrdOuXbtkNpv17rvvSpK+/fZbffzxx/rkk0/07bff6siR\nIw47LgAAAHtzql9ceemll+Tm5qYmTZqofv36SkpK0tatWxUfH69y5cqpXLlyGjBggJYtW6bw8HAN\nHTpUZcuWVenSpZWcnKyKFSvq1KlTkq4Gx27duqlx48aSpFdffVUxMTGOPDwAAAC7caqQWLFiRdtr\nV1dXpaamymq16uGHH7a15+bmqnLlypKk1NRUTZo0SYmJiapfv74qV65sOxWdlpZmC4iSVL16dZlM\nTvV1AQAA3JBTp57MzEyZTCZ9//33cnNzkySdO3fOdhf0sGHD1Lt3by1ZskQuLi5atWqVDh48KEmq\nVq2aUlJSbGOdPn1a2dnZ9j8IAAAAB3CqaxL/qkaNGjKbzYqKitKVK1d09uxZDRkyRO+9954k6cKF\nCypbtqxcXFyUmJiouXPnKisrS5LUrVs3ff3119q9e7cyMjL0zjvvOPJQAAAA7MqpQ6IkTZs2TadP\nn1ZISIhCQ0NVrVo1jRs3TpI0YcIEzZs3Ty1bttSLL76o7t27Kz09Xenp6QoKCtLIkSM1ZMgQtWrV\nStWqVbOtRgIAADg7F+u1i/BwV1gsFo07st/RZQC3bE3Ppx1dQrFgsVhkNpsdXQbshPkuOUr6XBd0\n/E6/kggAAIDbR0gEAACAASERAAAABoREAAAAGBASAQAAYODUD9N2FO4WLTlK+l1xAADnxUoiAAAA\nDAiJAAAAMCAkAgAAwICQCAAAAANCIgAAAAy4u7kQdP9qu6NLgD0dLd7z/XV4a0eXAAAoglhJBAAA\ngAEhEQAAAAaERAAAABgQEgEAAGBASAQAAIBBiQmJnTp10pkzZ+64HwAAoCQpMSExODhYW7duveN+\nAACAkqTEhMT27dsrLi7O9n7GjBmKiIhQ586d1bZtW/n5+Rn6hw8froiICPn4+Khz587avr14Pw8P\nAADgVpWYkGg2m/XLL78oKyvL1rZjxw5Nnz5da9euVXBwsKF/w4YN6tevn3bu3Kng4GBFRkY6onQA\nAAC7KzEh0WQyycfHRwkJCba2Jk2aqGHDhvLw8Mi3v0WLFgoKCpKbm5vCwsJ07NgxR5QOAABgdyUm\nJEpXTzlv3rzZ9t7Ly6vAfk9PT9trk8kkq9Va+EUCAAAUASUqJLZt21bbtm2zvXdxcSmwHwAAoKQq\nUSGxYsWK8vLyUmJi4h31AwAAlBQlKiRKUkhISJ67mG+3HwAAoCQwOboAe+vfv/8d9Tds2FAHDhwo\njJIAAACKnBK3kggAAICbIyQCAADAgJAIAAAAA0IiAAAADAiJAAAAMCAkAgAAwKDEPQLHHr4Ob+3o\nEmAnFotFZrPZ0WUAAHDXsZIIAAAAA0IiAAAADAiJAAAAMCAkAgAAwIAbVwrBzK9POboE2E1t7The\nvOd7cPfqji4BAFAEsZIIAAAAA0IiAAAADAiJAAAAMCAkAgAAwICQCAAAAANC4nWys7N18uRJR5cB\nAADgcITE6wwbNkybNm1ydBkAAAAOR0i8Tnp6uqNLAAAAKBKcIiQmJSUpICBA8+fPV1BQkAICArR8\n+XLNnj1bgYGBatWqlWJiYiRJu3btUnh4uHx9fdWrVy/t2bNHkjRp0iQlJCRo8uTJmjx5siRp4cKF\nCgsLk9ls1kMPPaQZM2Y47BgBAADsyWl+ceXs2bNKTk7W1q1b9fXXX2vcuHHq06ePtm3bpuXLl2vi\nxIkym82KiIjQ1KlT1a5dO23cuFHPPfecYmNjNXbsWO3fv1+hoaF65plnlJCQoI8//lhLly5VvXr1\nlJCQoGeeeUZdu3ZV3bp1HX24AAAAhcopVhKv6d+/v1xdXRUYGKicnBzb+zZt2ujs2bOKjo5WQECA\nOnbsKJPJpE6dOqlhw4aKjY01jNW0aVOtXLlS9erVU1pamrKyslSmTBmlpqY64MgAAADsy2lWEiWp\nUqVKkqRSpa5mXw8PD0mSi4uLJOnYsWPatm2bfH19bftkZ2fLbDYbxipVqpRmzZql2NhY3XPPPWrW\nrJkkKTc3t1CPAQAAoChwqpB4LQzeSO3atdW5c2dNnTrV1nbixAlVqVLFsO38+fN18OBBbdq0SR4e\nHsrKytK6devues0AAABFkVOdbr6Zjh07Ki4uTvHx8bJarbJYLOratat++eUXSZKbm5suXLggSbpw\n4YJcXV3l6uqqixcvasqUKcrKylJ2drYjDwEAAMAunGol8WZq166t6dOnKyoqSkePHpWnp6dGjx6t\noKAgSdJjjz2mCRMmKDk5WS+//LKGDx+uoKAglS9fXiEhIWrZsqUSExPVqlUrBx8JAABA4XKxWq1W\nRxfhTCwWi3Ycr+3oMoBbNrh7dUeXUCxYLJZ8r1+Gc2K+S46SPtcFHX+JOt0MAACAW0NIBAAAgAEh\nEQAAAAaERAAAABgQEgEAAGBQoh6BYy/cLVpylPS74gAAzouVRAAAABgQEgEAAGBASAQAAIABIREA\nAAAG3LhSCH76JNXRJcBefBxdAAAAhYOVRAAAABgQEgEAAGBASAQAAIABIREAAAAGhEQAAAAYEBIB\nAABgQEi8BStXrlRISIhCQkK0cuVKR5cDAABQ6HhO4i1wd3eXu7u7rFarypQp4+hyAAAACh0h8RZ4\ne3urQYMGysnJ0X333efocgAAAAodIfEWNG7cWB988IGjywAAALAbrkkEAACAASERAAAABoREAAAA\nGBASAQAAYEBIBAAAgAEhEQAAAAaERAAAABgQEgEAAGBASAQAAIABIREAAAAGhEQAAAAY8NvNhcDn\n2WqOLgF2YrGccHQJAAAUClYSAQAAYEBIBAAAgAEhEQAAAAaERAAAABhw40ohODXd4ugSYC9tHF0A\nAACFg5VEAAAAGBASAQAAYEBIBAAAgAEhEQAAAAaERAAAABgQEgEAAGDgNCFx5cqV6tGjx02369Kl\ni7Zu3WqHigAAAIqvEvecxLVr1zq6BAAAgCLPYSuJa9euVY8ePeTn5yd/f3+98cYbslqtCgkJ0Ycf\nfqh27drJbDbr9ddfV0ZGhiRp1KhRGjdunHr06CEfHx/17dtXycnJhrE7duyomJgY2/uDBw/Kz89P\nmZmZCgkJUVxcnCSpUaNGWrhwodq3by9/f38NHz5cmZmZkqRTp05pwIABatmypcLDwzVlyhT16dPH\nDt8MAACA4zkkJCYlJem1117Tm2++qV27dmnp0qVas2aNduzYIelqgFyyZIliY2O1b98+zZgxw7bv\nqlWrNHLkSO3YsUN16tTR0KFDDeM/9thjWrdune19TEyMQkND5ebmZtg2Pj5eMTExWrZsmbZv365v\nvvlGkjRs2DDde++9io+P1/jx47Vy5cq7/TUAAAAUWQ4JidWqVVNMTIwefPBBpaen6+zZs6pUqZJO\nnTolSRo0aJBq1aqlqlWratCgQXlOEYeFhSkgIEDu7u4aPny4du/erRMnTuQZPywsTNu3b9f58+cl\nXQ2dYWFh+dbSt29fVahQQfXr15ePj4+OHj2qlJQUJSQkaMSIEXJ3d1ezZs30xBNPFNK3AQAAUPQ4\n5JpEk8mk5cuXa8WKFSpXrpzuv/9+ZWVlKTc3V5JUt25d27bVq1fXH3/8YXtfp04d2+tKlSqpXLly\nSktLyzO+t7e3GjRooE2bNqlu3brKycmRn59fvrV4enraXru6uspqtSo1NVXlypVTpUqVbH01a9bU\nzz///PcOHAAAoJhwSEhcu3at1q1bp1WrVsnLy0uS1KFDB1t/amqq7XVKSopq1KiRb196erouXbqk\ne++9V0eOHMnzGV27dlVsbKzq1aunLl26qFSpW180rVGjhi5duqRz587ZguLJkydv7yABAACKMYec\nbr5w4YJMJpPc3NyUmZmpuXPnKikpSdnZ2ZKkOXPm6PTp00pNTdXHH3+sxx9/3LZvdHS09u3bp4yM\nDE2dOlWBgYF5QuQ1Xbp00Q8//KDNmzera9eut1Vf9erV9dBDDykqKkoZGRk6ePCgVqxY8fcOGgAA\noBhxyEpi9+7dFR8fr/bt26tMmTLy8/PTww8/rMTERElS48aN1bt3b50/f149evRQRESEbd+WLVtq\n3LhxSkxMVGBgoN599918P8PLy0stWrRQamqqGjdufNs1Tpo0SaNHj1ZgYKC8vb0VGBio9PT0Oztg\nAACAYsYhIbFMmTL64IMP8u3buHGjQkJCFBkZmW9//fr19fHHHxvae/ToYXiYds2aNRUYGJinbfPm\nzbbXBw4cyNN3fU3Hjh3TvHnzZDJd/YqioqIKOCIAAADn4jS/uHK9U6dOKT4+Xhs3blS3bt3uaIzx\n48fryy+/lNVq1dGjRxUTE6M2bdrc5UoBAACKJqcMievXr9cLL7ygwYMHq3r16nc0xrvvvqvVq1fL\nbDbrX//6l3r37n3HgRMAAKC4KXI/y3f96eC/mjx58i2N0a9fP/Xr1+9v1dG0aVMtW7bsb40BAABQ\nXDnlSiIAAAD+HkIiAAAADIrc6WZnUP1ls6NLgJ0kWSyOLgEAgELBSiIAAAAMCIkAAAAwcLFarVZH\nF+FMLJx+BAAAxYjZnP9lcoREAAAAGHC6GQAAAAaERAAAABgQEgEAAGBASAQAAIABIREAAAAGhMS7\nZN++ferZs6datGihbt266eeff3Z0SSgEe/bsUevWrW3vz507p8GDB8tsNqtdu3Zavny5A6vD3ZCQ\nkKBevXrJbDarY8eO+uKLLyQx185q3bp16tSpk3x8fNSlSxdt2rRJEvPtzNLS0hQUFKS4uDhJUlJS\nkvr27SsfHx+Fhoba2iHJir/typUr1jZt2liXLFlizczMtC5fvtzaqlUra0ZGhqNLw12Sm5trXb58\nudVsNlv9/f1t7f/5z3+sw4cJ7kAYAAAO4klEQVQPt165csW6e/duq7+/v/W///2vAyvF33H27Fmr\nn5+fdfXq1dacnBzr3r17rX5+ftbvvvuOuXZChw8ftjZv3txqsVisVqvV+t1331mbNm1qPX36NPPt\nxJ5//nlr48aNrZs3b7ZarVZrjx49rO+88441MzPT+u2331p9fHysp0+fdnCVRQMriXfBjh07VKpU\nKT311FNydXVVz549VaVKFf414kQ+/vhjLVy4UAMHDrS1Xbx4UZs2bdKQIUPk7u6uBx98UI899hgr\nDsVYSkqKgoOD1bVrV5UqVUpNmzZVQECAfvzxR+baCdWvX1/fffedWrZsqYsXLyo1NVXly5eXm5sb\n8+2kPv/8c5UtW1Y1atSQJCUmJurgwYMaPHiwXF1dFRwcLH9/f61atcrBlRYNhMS74MiRI/L29s7T\nVr9+fR06dMhBFeFuCw8P1+rVq/XAAw/Y2o4dOyaTyaR//OMftjbmvXhr0qSJoqKibO/PnTunhIQE\nSWKunVT58uV14sQJ+fr6atSoURo6dKiOHz/OfDuho0ePav78+XrzzTdtbYcPH1atWrVUpkwZWxtz\n/f8IiXfBpUuXVLZs2TxtZcqU0ZUrVxxUEe62atWqycXFJU/bpUuX8vzBIjHvzuT8+fMaOHCgbTWR\nuXZeNWrU0J49ezR//nxNmTJFmzdvZr6dTHZ2tl599VWNHTtWlStXtrXz93fBCIl3QdmyZQ3/Q125\nckXlypVzUEWwB+bdeZ04cUJPPvmkKlWqpA8//FDlypVjrp2YyWSSq6urgoKC9Mgjj2jv3r3Mt5OZ\nNWuWmjRpouDg4Dzt/DleMELiXfDPf/5TR44cydN25MgR3XfffQ6qCPZQt25dZWdnKyUlxdbGvBd/\nv/76q5544gm1bt1as2bNUpkyZZhrJ7Vlyxb169cvT1tWVpbq1KnDfDuZdevWae3atfL19ZWvr69S\nUlI0bNgwHTlyRMnJycrMzLRty1z/P0LiXRAUFKTMzEwtWrRIWVlZWrFihdLS0vI8KgXOp0KFCurQ\noYPeffddXb58WXv27NGaNWsUFhbm6NJwh9LS0vTss8+qf//+Gj16tEqVuvpHJHPtnO6//37t3btX\nq1atUm5urrZs2aItW7aod+/ezLeT2bBhgywWixISEpSQkKCaNWtq2rRpioiI0H333afp06crMzNT\nW7Zs0c6dO/Xoo486uuQigZB4F7i5uWnu3Llau3at/P39tXjxYn300UcsV5cAkZGRys7OVnBwsIYM\nGaJXX31VzZs3d3RZuEMrVqzQmTNn9NFHH8nHx8f233vvvcdcOyEvLy/bkwt8fX31/vvva+bMmfL2\n9ma+S5AZM2bowIEDCgoK0ltvvaVp06bZ7n4u6VysVqvV0UUAAACgaGElEQAAAAaERAAAABgQEgEA\nAGBASAQAAIABIREAAAAGhEQAAAAYEBIBOExISIh69OihnJycPO1JSUlq1KiRDh48WCif26dPH02Z\nMqVQxr5V69atU6tWreTj46P9+/fnu82ZM2c0ceJEtW/fXg888IA6duyoqKgonTt3zs7VAiiJCIkA\nHOrXX3/VkiVLHF2G3U2fPl0hISGKiYnJ9yfAUlNT1atXL+3bt0+TJk3Shg0bNG7cOCUkJKh3795K\nS0tzQNUAShJCIgCHqlWrlqZPn65Tp045uhS7+vPPP9WiRQvVrl1bJpPJ0D9x4kR5eXlpwYIFeuih\nh1SrVi21adNGCxculLu7u95++20HVA2gJCEkAnCoPn36qFq1apo0aVKB2/z19HCjRo0UFxcnSRo1\napTefvttjR49Wi1atFBISIi2bt2qFStWqG3btvLz8zOEqtOnT2vAgAF64IEH1LVrV+3Zs8fWl5WV\npSlTpuihhx6Sr6+vIiIidOLEiTyf/f777ysoKEjh4eHK74erEhMTFRERIV9fXwUGBioyMlJXrlyx\n7Z+enq4xY8aoT58+hn1Pnz6tjRs36vnnn5erq2uePnd3dw0cOFAbNmxQenq6JCklJUUvvPCCfHx8\n1KpVK02ZMsV2Cv/cuXMaOXKk/P39FRAQoNGjR+vixYuSrp7uX7x4sW3sv57mDwkJUVRUlIKDgxUS\nEqKDBw+qUaNGmjVrlvz9/TV48GBJ0k8//aTevXvrwQcfVGhoqBYsWGD7TlauXKknnnhCc+bMUatW\nrRQYGKgRI0bo8uXLts/dsGGDwsLC1Lx5c4WFhWnLli22voLGvnDhgoYNGyZ/f3/5+Pho0KBBOnny\npOH7BHBnCIkAHMrV1VVvvvmmYmNjbaHvTixZskTe3t6Kjo5W06ZNNWzYMK1du1bz5s3TiBEj9Nln\nn8lisdi2j46OVmBgoFavXi1/f3/17dtXZ86ckSS99957io+P1wcffKBly5bJy8tLffv2tYU86eo1\nhYsWLdKkSZPk4uKSp5b09HQ988wzKleunJYuXapp06YpLi7OFoS3b9+uypUra8yYMZoxY4bhWPbu\n3avc3Fy1aNEi32P19fVVdna2fv31V2VmZqp///7KyMjQ559/runTp2vNmjWaM2eOJOnFF1/UoUOH\nNHfuXH366afau3fvba1CrlixQjNnztSMGTNsv0e/fft2ffnllxo2bJjS0tL07LPPqkOHDoqJidGI\nESM0d+5cLV261DbGvn379NNPP+mzzz5TZGSkYmNj9eWXX0qSduzYoaFDh6pHjx6Kjo5Wt27d9OKL\nL+rEiRM3Hfv999/XkSNHtHDhQq1YsULnz59XZGTkLR8bgIIZz3EAgJ0FBgbq8ccfV2RkpAIDA+9o\njPr16+vZZ5+VJPXs2VPffPONRo4cqQYNGqhBgwZ67733lJiYKLPZLElq27atnnvuOUnSmDFjFBcX\np+joaD355JNatGiRFi5cKB8fH0nShAkT1K5dO8XGxqpbt26SpCeeeCLfawklac2aNZKkyZMny93d\nXQ0bNtS4ceM0cOBADR06VF5eXpIkDw8PVa5c2bD/tRtTKlasmO/4lSpVkiSdPXtW33//vZKTk/X5\n55/L09PTVm9aWpoOHTqkH374QatXr1bjxo1tfQkJCbf8vXbp0kXNmjWTdHWlUZL+9a9/qV69epKu\nBrUWLVro+eeflyTVrVtXaWlp+uSTT/T0009LuroyGxkZqapVq6pBgwZq06aNbeV26dKl6tChg/r3\n7y9JevbZZ3XlyhVduHBBK1euLHDspKQklS9fXrVr11aFChU0efJk2+oqgL+PkAigSBg5cqQ6deqk\nGTNm6Kmnnrrt/f/xj3/YXpcpU0aSVLt27TxtmZmZtvfNmze3vS5VqpSaNGmiQ4cO6fjx47bVuetX\nCK9cuaIjR47Y3teqVeuGtfz2229q3Lix3N3dbW1ms1m5ubk6fPiwLczdyLUQ+Mcff6hGjRqG/mvX\nb1auXFn79+9XrVq18ozZvn17SdL69evl5uamRo0a2fp8fHxs4fdW5Hec17clJiZqx44decbMyclR\nVlaW7fsuX768qlatauuvUKGCLl26ZNu/a9euecZ/8cUXJUkfffRRgWM///zzev755xUUFCR/f391\n7NhR3bt3v+VjA1AwQiKAIsHT01PDhw/Xm2++aVvtu5Hs7GxDW343f/z1NPD1Spcuned9bm6uXF1d\nbdfyffrpp7rnnnvybOPh4WF7fX0A/Ct3d3fDZ18bN7/rF//qgQcekMlk0t69e/MNib/88otMJpPu\nv/9+JSYm3nCca9czFvQ95Ffj9fI7zuvbsrOz9cgjj+jll182bHdtTv56XWV+NebnZmP7+PgoLi5O\ncXFx2rJli9555x19/fXX+vzzzw3zC+D2cU0igCKjZ8+eat68ueEmFjc3N9vNFpLy3ERyp65/NmF2\ndrb27dsnb29v1alTRyaTSWfOnFHdunVVt25d1axZU++++64OHDhwS2N7e3vrv//9rzIyMmxtP/30\nk1xcXGynaQvi6emp0NBQzZgxQ1lZWXn6MjMzNXPmTD3yyCPy9PRUvXr1lJKSorNnz9q2+eKLL9S3\nb1/Vr19fmZmZ+u2332x9W7duVWhoqC0U/93v1dvbW4cPH7Z9V3Xr1tXevXs1d+5clSp1879i6tWr\np3379uVp69Onj7788subjj1//nxZLBaFhYXpnXfe0bx587R7924lJyff9nEAMCIkAigyXFxcNH78\neKWmpuZpb9asmTZt2iSLxaL9+/dr/PjxcnNz+1uftXHjRi1cuFCJiYkaP368MjIy1L17d5UvX17/\n8z//o0mTJmnr1q06evSoXnvtNe3YsUPe3t63NHZYWJhMJpNGjRqlQ4cOKT4+XhMmTFDnzp1t1yPe\nzNixY5WZmal+/fopPj5eKSkpio+PV79+/ZSdna3XXntNktS6dWvVrVtXY8aM0aFDh7Rz50599NFH\nat26tby9vdW6dWu99tpr2rt3r/bs2aOoqCgFBQWpVKlSeuCBB7Rq1Srt379fu3fv1vTp02951fGa\np59+WseOHdPEiRN1+PBhbdmyRRMmTFCVKlVuaf++fftq06ZNWrJkiY4fP665c+dq7969CgoKuunY\nqampioyMVEJCgk6cOKHo6Gjdc889uvfee2/rGADkj9PNAIqUBg0aqH///ra7cyXp3//+tw4fPqx/\n//vfqlKlioYMGfK3V4uefvppxcbGaurUqWrcuLHmzp2rChUqSJJGjBihUqVKadSoUbp06ZKaNm2q\nefPmqVq1arc0drly5TRv3jxNmjRJ4eHh8vDwUNeuXfM9bXoj99xzj5YtW6bZs2fr9ddf16lTp1S9\nenWFhoYqIiLCdlNL6dKlNWvWLE2YMEE9e/ZUxYoVFR4ergEDBkiSpk6dqsjISPXp00fu7u569NFH\nNXLkSEnS0KFDNXbsWPXq1Us1a9bUmDFjNGjQoNv5GnXvvffqk08+UVRUlLp166YqVaroySef1JAh\nQ25pfx8fH7399tuaOXOmJk+erPvuu0+zZs2yXWNa0NgvvfSSLl68qCFDhuj8+fNq1qyZ5syZ87f/\nAQHgKhfrrVwgAwAAgBKF080AAAAwICQCAADAgJAIAAAAA0IiAAAADAiJAAAAMCAkAgAAwICQCAAA\nAANCIgAAAAwIiQAAADD4P5HCy0crz0j6AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a22cca6a0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Visualization\n", | |
"plt.figure(figsize=(10,5))\n", | |
"sns.barplot(counts, words);\n", | |
"plt.ylabel('');\n", | |
"plt.xlabel('Number of Occurrences');" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Key Insights\n", | |
"* Less to report here, more of the same\n", | |
"* More than half of the emails included my name in them" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Wrapping Up\n", | |
"That's it for now. Moving forward, I think it would be interesting to continue this analysis further and look into sentiment and fundamental differences between key companies. For more on this analysis, stay tuned for an accompanying blog post breaking it down further." | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment