Created
February 6, 2015 18:13
-
-
Save cfriedline/d08dd9e61bd736b6e0d5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "import numpy as np\nimport scipy as sp\nimport pandas as pd\nimport statsmodels as sm\nimport seaborn as sn\nimport matplotlib.pyplot as plt", | |
"prompt_number": 95, | |
"outputs": [], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "ls -lrt", | |
"prompt_number": 119, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "total 3920\r\n-rw-r--r--@ 1 chris staff 21768 Jan 27 16:05 main.fls\r\n-rw-r--r--@ 1 chris staff 53156 Jan 27 16:05 main.dvi\r\n-rw-r--r--@ 1 chris staff 20698 Jan 27 16:06 main.fdb_latexmk\r\n-rw-r--r--@ 1 chris staff 491 Jan 27 16:09 main.toc\r\n-rw-r--r--@ 1 chris staff 397 Jan 27 16:09 main.snm\r\n-rw-r--r--@ 1 chris staff 43804 Jan 27 16:09 main.pdf\r\n-rw-r--r--@ 1 chris staff 448 Jan 27 16:09 main.out\r\n-rw-r--r--@ 1 chris staff 1956 Jan 27 16:09 main.nav\r\n-rw-r--r--@ 1 chris staff 39036 Jan 27 16:09 main.log\r\n-rw-r--r--@ 1 chris staff 4939 Jan 27 16:09 main.aux\r\n-rw-rw-r--@ 1 chris staff 181 Jan 27 16:32 session2.tex\r\n-rw-rw-r--@ 1 chris staff 166 Jan 27 16:33 session3.tex\r\n-rw-r--r--@ 1 chris staff 6012 Jan 27 16:35 beamercolorthemesolarized.sty\r\n-rw-r--r--@ 1 chris staff 266 Jan 27 16:40 session1.fls\r\n-rw-r--r--@ 1 chris staff 266 Jan 27 16:40 session2.fls\r\n-rw-r--r--@ 1 chris staff 972 Jan 27 16:40 session3.log\r\n-rw-r--r--@ 1 chris staff 266 Jan 27 16:40 session3.fls\r\n-rw-r--r--@ 1 chris staff 584 Jan 27 16:40 session3.fdb_latexmk\r\n-rw-r--r--@ 1 chris staff 964 Jan 27 16:40 session2.log\r\n-rw-r--r--@ 1 chris staff 584 Jan 27 16:40 session2.fdb_latexmk\r\n-rw-r--r--@ 1 chris staff 33736 Jan 27 16:40 slides.dvi\r\n-rw-r--r--@ 1 chris staff 181123 Jan 27 20:31 slides.key\r\n-rw-r--r--@ 1 chris staff 7377 Feb 1 11:13 session1.log\r\n-rw-r--r--@ 1 chris staff 845 Feb 1 11:13 session1.fdb_latexmk\r\n-rw-r--r--@ 1 chris staff 437566 Feb 1 11:47 sork.pdf\r\n-rw-rw-r--@ 1 chris staff 105 Feb 1 12:46 references.tex\r\n-rw-r--r--@ 1 chris staff 662 Feb 1 23:09 *.aux\r\n-rw-r--r--@ 1 chris staff 80 Feb 4 02:35 makefile\r\n-rw-r--r--@ 1 chris staff 21 Feb 4 02:37 missfont.log\r\n-rw-rw-r--@ 1 chris staff 133 Feb 4 03:10 README.md\r\n-rw-rw-r--@ 1 chris staff 140 Feb 4 09:34 scratch.tex\r\n-rw-rw-r--@ 1 chris staff 2662 Feb 6 11:32 refs.bib\r\n-rw-r--r--@ 1 chris staff 131423 Feb 6 12:02 salvo_fig1.pdf\r\n-rw-r--r--@ 1 chris staff 1072 Feb 6 12:09 slides.blg\r\n-rw-r--r--@ 1 chris staff 1132 Feb 6 12:09 slides.bbl\r\n-rw-rw-r--@ 1 chris staff 4829 Feb 6 12:14 session1.tex\r\n-rw-rw-r--@ 1 chris staff 1230 Feb 6 12:21 slides.tex\r\n-rw-r--r--@ 1 chris staff 493 Feb 6 12:21 slides.toc\r\n-rw-r--r--@ 1 chris staff 31972 Feb 6 12:21 slides.synctex.gz\r\n-rw-r--r--@ 1 chris staff 160 Feb 6 12:21 slides.snm\r\n-rw-r--r--@ 1 chris staff 626400 Feb 6 12:21 slides.pdf\r\n-rw-r--r--@ 1 chris staff 571 Feb 6 12:21 slides.out\r\n-rw-r--r--@ 1 chris staff 3037 Feb 6 12:21 slides.nav\r\n-rw-r--r--@ 1 chris staff 57099 Feb 6 12:21 slides.log\r\n-rw-r--r--@ 1 chris staff 28126 Feb 6 12:21 slides.fls\r\n-rw-r--r--@ 1 chris staff 1896 Feb 6 12:21 slides.aux\r\n-rw-r--r--@ 1 chris staff 1317 Feb 6 12:21 session3.aux\r\n-rw-r--r--@ 1 chris staff 1345 Feb 6 12:21 session2.aux\r\n-rw-r--r--@ 1 chris staff 3425 Feb 6 12:21 session1.aux\r\n-rw-r--r--@ 1 chris staff 956 Feb 6 12:21 scratch.aux\r\n-rw-r--r--@ 1 chris staff 1323 Feb 6 12:21 references.aux\r\n-rw-r--r--@ 1 chris staff 49014 Feb 6 12:25 slides.fdb_latexmk\r\n-rw-------@ 1 chris staff 52925 Feb 6 13:07 heritability.ipynb\r\n" | |
} | |
], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "%matplotlib inline", | |
"prompt_number": 96, | |
"outputs": [], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "loc = 50\nscale = 2", | |
"prompt_number": 97, | |
"outputs": [], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "parent_heights = sp.random.normal(loc=loc, scale=scale, size=500)", | |
"prompt_number": 98, | |
"outputs": [], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "plt.hist(parent_heights)\nplt.show()", | |
"prompt_number": 99, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"metadata": {}, | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAECCAYAAAD0JMwBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEUBJREFUeJzt3X9sXXd5x/G3s8TpXLumiZxOtFGmhe5ZNsRY2caWbU0q\n2qKw0W4gxMQ2RIF2jIAyUZUfYUJsagdalkLKtAoljPBjgoqooDBU6JSVhOUP0KCii1KewrYmLnSN\nl+s4cdPiJvb+uDfCuE7se319f3zzfklR7j333vM8OTrfT46/55zrnqmpKSRJ5VnS7gYkSYvDgJek\nQhnwklQoA16SCmXAS1KhDHhJKtTSud4QES8HPpyZ10XES4F7gLPAj4E3ZuaxiLgVuA04A9yZmV9Z\nzKYlSXO74BF8RLwb2Aksry36KPCOzLwOuB94T0RcAbwTWA+8EvhQRPQuXsuSpPmYa4rmB8BrgJ7a\n8z/OzEdqj5cBzwC/CRzMzOcy82TtMy9ZjGYlSfN3wYDPzPupTruce/6/ABGxHtgMfAS4DBib9rFT\nwGDTO5Uk1aXuk6wR8XrgXuBVmXkcOAkMTHvLADDanPYkSY2a8yTrdBHxp1RPpm7MzHMh/i3grohY\nDlwCrAMOXWg9U1NTUz09PRd6iyTp+eoKzvkG/FRELAF2AEeA+yMC4OuZ+dcRcQ/wDao/EWzNzIkL\ndtjTw8jIqXr67ChDQwP230b23z7d3DuU0X895gz4zHyc6hUyACvP855dwK66KkuSFpU3OklSoQx4\nSSqUAS9JharrKhpJzzcxMcHw8JF5v390tJ9KZXzBdVevXkNvrzeN6/wMeGmBhoePsGXbXvoGV7Ws\n5umxY+y44ybWrr26ZTXVfQx4qQn6BlfRf/mV7W5D+inOwUtSoQx4SSqUAS9JhTLgJalQBrwkFcqA\nl6RCGfCSVCgDXpIKZcBLUqEMeEkqlAEvSYUy4CWpUAa8JBXKgJekQhnwklQoA16SCmXAS1KhDHhJ\nKpQBL0mFMuAlqVAGvCQVyoCXpEIZ8JJUqKVzvSEiXg58ODOvi4gXAbuBSeAQsDkzpyLiVuA24Axw\nZ2Z+ZRF7liTNwwWP4CPi3cBOYHlt0d3A1sy8FugBbo6InwPeCawHXgl8KCJ6F69lSdJ8zDVF8wPg\nNVTDHOCazDxQe/wAcD3wG8DBzHwuM0/WPvOSxWhWkjR/Fwz4zLyf6rTLOT3THp8CBoHLgLFZlkuS\n2qjek6yT0x5fBpwATgID05YPAKML7EuStEBznmSd4eGI2JCZ+4FNwD7gW8BdEbEcuARYR/UE7AUN\nDQ3M9ZaOZv/t1Un9j472t6XuihX9bdkOnbTtG9Ht/ddjvgE/Vfv7dmBn7STqYWBP7Sqae4BvUP2J\nYGtmTsy1wpGRU4302xGGhgbsv406rf9KZbxtdVu9HTpt29erhP7rMWfAZ+bjVK+QITO/D2yc5T27\ngF11VZYkLSpvdJKkQhnwklQoA16SCmXAS1KhDHhJKpQBL0mFMuAlqVD13skqdbSJiQmGh4+0tObR\no62tJ82XAa+iDA8fYcu2vfQNrmpZzeNPPMrKq9a1rJ40Xwa8itM3uIr+y69sWb3TY0+1rJZUD+fg\nJalQHsFLXWjy7Jm2zP2PjvZz6aUr6e31l7Z1AwNe6kLPjh9n+30V+gafbGnd02PH2HHHTaxde3VL\n66oxBrzUpVp9rkHdxzl4SSqUAS9JhTLgJalQBrwkFcqAl6RCGfCSVCgDXpIKZcBLUqEMeEkqlAEv\nSYUy4CWpUAa8JBXKgJekQhnwklQoA16SCmXAS1Kh6v6FHxGxBNgF/CIwCdwKnAV2154fAjZn5lTz\n2pQk1auRI/gbgUsz83eBvwH+FtgObM3Ma4Ee4ObmtShJakQjAf8MMBgRPcAgMAG8LDMP1F5/ALi+\nSf1JkhrUyO9kPQhcAnwPWAm8Grh22uvjVINfktRGjQT8u4GDmfn+iLgKeAhYNu31AeDEXCsZGhpo\noHTnsP/2Ol//o6P9Le7k4rNiRX9X7z/d3Hu9Ggn4S4GTtcejtXU8HBEbMnM/sAnYN9dKRkZONVC6\nMwwNDdh/G12o/0plvMXdXHwqlfGu3X9K2Pfr0UjAbwM+GRHfoHrk/j7g28DOiOgFDgN7GlivJKmJ\n6g74zDwB/NEsL21ccDeSpKbxRidJKpQBL0mFMuAlqVAGvCQVyoCXpEIZ8JJUKANekgplwEtSoQx4\nSSqUAS9JhTLgJalQBrwkFcqAl6RCGfCSVCgDXpIKZcBLUqEMeEkqlAEvSYUy4CWpUAa8JBXKgJek\nQi1tdwMq18TEBMPDR5q+3tHRfiqV8VlfO3q0+fWkbmXAa9EMDx9hy7a99A2ualnN4088ysqr1rWs\nntTJDHgtqr7BVfRffmXL6p0ee6pltS5Gk2fPtOWnpNWr19Db29vyut3OgJc0b8+OH2f7fRX6Bp9s\nWc3TY8fYccdNrF17dctqlsKAl1SXVv9UpsZ5FY0kFcqAl6RCGfCSVKiG5uAj4n3Aq4FlwD8AB4Hd\nwCRwCNicmVNN6lGS1IC6j+AjYiPw25m5HtgI/AKwHdiamdcCPcDNTexRktSARqZobgT+MyK+BHwZ\n2Au8LDMP1F5/ALi+Sf1JkhrUyBTNELAa+AOqR+9fpnrUfs44MLjw1iRJC9FIwP8f8GhmngEei4hn\ngekXxQ4AJ+ZaydDQQAOlO4f9z210tH/Ra+jisGJFf9P22W4fu/VoJOD/HdgC3B0RLwT6gH0RsSEz\n9wObgH1zrWRk5FQDpTvD0NCA/c/D+b4QTKpXpTLelH22hLFbj7oDPjO/EhHXRsS3qM7hvx14HNgZ\nEb3AYWBPveuVJDVXQ5dJZuZ7Zlm8cWGtSJKayRudJKlQBrwkFcqAl6RCGfCSVCgDXpIKZcBLUqEM\neEkqlAEvSYUy4CWpUAa8JBXKgJekQhnwklQoA16SCmXAS1KhDHhJKpQBL0mFMuAlqVAGvCQVyoCX\npEIZ8JJUKANekgplwEtSoQx4SSqUAS9JhTLgJalQBrwkFcqAl6RCGfCSVCgDXpIKtbTRD0bEKuDb\nwCuASWB37e9DwObMnGpGg5KkxjR0BB8Ry4CPA08DPcDdwNbMvLb2/OamdShJakijUzTbgHuBJ2vP\nr8nMA7XHDwDXL7QxSdLC1B3wEfEmYCQzH6wt6qn9OWccGFx4a5KkhWhkDv4WYCoirgdeCnwKGJr2\n+gBwYq6VDA0NNFC6c9j/3EZH+xe9hi4OK1b0N22f7faxW4+6Az4zN5x7HBEPAW8DtkXEhszcD2wC\n9s21npGRU/WW7hhDQwP2Pw+Vyvii19DFoVIZb8o+W8LYrUfDV9FMMwXcDuyMiF7gMLCnCeuVJC3A\nggI+M6+b9nTjwlqRJDWTNzpJUqEMeEkqlAEvSYUy4CWpUAa8JBXKgJekQhnwklQoA16SCmXAS1Kh\nDHhJKpQBL0mFMuAlqVAGvCQVyoCXpEIZ8JJUKANekgplwEtSoQx4SSqUAS9JhTLgJalQC/ql25K0\n2CbPnuHo0SNNWdfoaD+Vyvi83rt69Rp6e3ubUrddDHhJHe3Z8eNsv69C3+CTLat5euwYO+64ibVr\nr25ZzcVgwEvqeH2Dq+i//Mp2t9F1nIOXpEIZ8JJUKANekgplwEtSoQx4SSqUAS9Jhar7MsmIWAb8\nE7AGWA7cCTwK7AYmgUPA5sycal6bWoiJiQmGh39yo0g9N3ssRLNuTpHUmEaug/8TYCQz/ywiLge+\nCzwMbM3MAxFxL3Az8KUm9qkFGB4+wpZte+kbXNXSusefeJSVV61raU1JP9FIwH8B2FN7vAR4Drgm\nMw/Ulj0A3IgB31HacaPI6bGnWlpP0k+rO+Az82mAiBigGvZ/Bfz9tLeMA4NN6U6S1LCGTrJGxGrg\n34BPZ+bnqM69nzMAnGhCb5KkBWjkJOsVwIPA2zPzodrihyNiQ2buBzYB++Zaz9DQQL2lO0o39T86\n2t/uFqSus2JFf1eN89k0Mge/leoUzAci4gO1ZVuAeyKiFzjMT+boz2tk5FQDpTvD0NBAV/Xfiitm\npNJUKuMdN87r/Q+nkTn4LVQDfaaN9a5LkrR4vNFJkgplwEtSoQx4SSqUAS9JhTLgJalQBrwkFcqA\nl6RCGfCSVCgDXpIKZcBLUqEMeEkqlAEvSYUy4CWpUAa8JBXKgJekQhnwklSoRn6jkyQVbfLsGY4e\nPdLyuqtXr6G3t7dp6zPgJWmGZ8ePs/2+Cn2DT7as5umxY+y44ybWrr26aes04FtsYmKC4eHWHhm0\n40hE6nZ9g6vov/zKdrexIAZ8iw0PH2HLtr30Da5qWc3jTzzKyqvWtayepM5gwLdBq48MTo891bJa\nkjqHV9FIUqEMeEkqlAEvSYUy4CWpUAa8JBXKgJekQhnwklQoA16SCtW0G50iYgnwj8BLgB8Db83M\n/2rW+iVJ9WnmEfwfAr2ZuR54L7C9ieuWJNWpmV9V8DvAVwEy85sR8etNXPeiOHlyjEOHv1f3514w\n2MeJsdMN1fzhD59o6HOSVK9mBvxlwMlpz89GxJLMnGxijab65n98h11f+xFLe3+2ZTXHKz9ief8L\nWlZP0sWrmQF/EhiY9ryjwx1g2dJlLPvxD1k6ubyuz/3M0iWcPdPYP23Zc8c4PTbR0Gcb9cypCtDT\n0prtqmvN8upeLDVPjx1r+jqbGfAHgVcDX4iI3wIeucB7e4aGBi7wcmu87rWbeN1rN7W7DUlaFM0M\n+C8CN0TEwdrzW5q4bklSnXqmpqba3YMkaRF4o5MkFcqAl6RCGfCSVCgDXpIK1bJfuh0Rq4BvA68A\n+oB7gLNUv7fmjZnZ/ItAm2h6/5n5WG3ZG4B31L6eoaPN2P4ngJ3AC6he7PvGzHy8fd3NbUb/S4Bd\nwBTwGNXvPerYqwUi4jvAWO3pfwMfAnYDk8AhYHOn9j+j9/+hOm4/BpyhC8buzG2fmW+pLe+KsTvL\nvvNeqvv+vMZuSwI+IpYBHweerjX1Uaob95GIuA14D3B7K3ppxIz+zy37NeDNbWuqDrNs/78DPpOZ\neyJiI/Bi4PG2NTiHWfr/IHBnZn41Ij4L/D7wL+3r8Pwi4hKAzLxu2rK9wNbMPBAR9wI3A19qU4vn\ndZ7ev071P6SOH7uz9V9b3hVj9zzbfzd1jN1WHcFvA+4F3kf1qOv1mflU7bVlwDMt6qNR0/snIlYC\ndwF/SfVIuNP9VP/AeuC7EfGvVHeOLW3qa75m9v8MsDIieqjePd3aW4Pr86tAX0R8jep4ez9wTWYe\nqL3+AHAjHRjwPL/3rXTX2J2t/x/QPWN3tn2nrrG76HPwEfEmYCQzH6wt6jm3g0TEemAz8JHF7qNR\ns/S/DPgE8C5gvF19zdds2x/4eaCSmTcAR6kehXWkWfqH6hTBDuAwsArY34bW5utpYFtmvhJ4G/DP\nM14fBwZb3tX8zNb7CHTH2OX5/X+e6tRYV4xdZt/+L6KOsduKk6y3UL3D9SHgpcCnIuKKiHg91aOy\nV2Xm8Rb00aiZ/T8C/ArV3j8H/HJE3N3G/ubyvO1Pdf50b+31LwOd/M2fM/v/NPAF4Pcycx3wGTr7\nq6kfoxbqmfl94DhwxbTXB6ieE+lEs/X+wi4auzP7XwP8Et0zdmfb/mepY+wu+hRNZm4497g2SP8c\nuAG4DdiYmaOL3cNCzNb/tJOsa4DPZ+a72tXfXM6z/e+iOm/9WWAD1RN9HWmW/t8GfA04VVv8JNUf\nWzvVLVR/Cc7miHgh1UB/MCI2ZOZ+YBOwr50NXsDM3i8DNtIlY5fn9/894MWZOdkNY5fZ950vUsfY\nbdlVNDVTtZo7gCPA/REBsD8zP9jiXpqhh+q/qdvcDuyKiL+gevT4hjb3U6+3Ansi4lmqV3Lc2uZ+\nLuQTwCcj4tyc+y1Uj8R2RkQv1WmmPe1qbg7Te58C3kL1qLFbxu7Mbf/mad9w2w1jd7Z950fUMXb9\nLhpJKpQ3OklSoQx4SSqUAS9JhTLgJalQBrwkFcqAl6RCGfCSVCgDXpIK9f+EV9BCKI3vYwAAAABJ\nRU5ErkJggg==\n", | |
"text": "<matplotlib.figure.Figure at 0x11ce00610>" | |
} | |
], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "h2 = 0.8", | |
"prompt_number": 107, | |
"outputs": [], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "offspring_heights = []\nfor p in parent_heights:\n r = sp.random.random()\n if r < h2:\n if sp.random.random() > 0.5:\n offspring_heights.append(p + p*sp.random.uniform(0, 0.1))\n else:\n offspring_heights.append(p - p*sp.random.uniform(0, 0.1))\n else:\n offspring_heights.append(sp.random.normal(scale=scale, loc=loc))", | |
"prompt_number": 108, | |
"outputs": [], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "plt.hist(offspring_heights)\nplt.show()", | |
"prompt_number": 109, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"metadata": {}, | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAECCAYAAAAMxDf2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE5FJREFUeJzt3XGQnHV9x/H3BXPieevJMRumQIpjhF+xHbXgtEo1CTWg\naZXYTmfs2EpBdEpNWzoyqETH2o5VxxjaWC3jBCXUUsuYQYrjRGlTJlE6U0fFaib4BbUkcUrhzF5C\njhBDctc/doPHzeWeZ/d29zl+937N7GR3n939febyu88+9+zzPDswNTWFJOnZbUnVASRJ82eZS1IG\nLHNJyoBlLkkZsMwlKQOWuSRl4DlzLUwpDQK3AC8BngL+HHgC2ApMAruB9RHh/o2SVKGiNfN3Akci\n4pLW9VuBTcCGiFgJDADrehtRklSkqMxfCnwVICIeBM4BfjMidrWWbwfW9C6eJKmMojL/LvBGgJTS\nq4A6MDRt+QQw0ptokqSyisr8c8DjKaWvA28GAmhMW14DDvYomySppKIy/zXgPyLitcA24P+A/0wp\nrWotXwvsOtWTT5pqngDGixcvXry0dyltYK4TbaWURoE7gOcDR2l+CLoE2AIMAnuAd5bYm2VqbOxw\nO7l6rl6vYaZiCzETLMxcZirHTOXV67WBso+dc9fEiGgAl82yaHWbmSRJPeRBQ5KUgTnXzKVnq2PH\njrF//96+jjk+PkyjMQHA8uXnMTg42NfxtbhZ5srS/v17uW7j3QyNLOv72EcOPcbmG65gxYrz+z62\nFi/LPHPzXUOdvrbZrqeeegqApUuXdjz+qRTl2rdvL0Mjyxg+45yujy0tRJZ55qpcQz3wkwd4Xu3M\nysY+89wL+z6uVBXLfBGoag31yKFHKx1bWkzcm0WSMmCZS1IGLHNJyoBlLkkZsMwlKQOWuSRlwDKX\npAxY5pKUActckjJgmUtSBixzScrAnOdmSSktAW4BLgAmaX5t3Alga+v2bmB9ia+NkyT1UNGa+eXA\n8yPiNcBfAx8BNgEbImIlMACs621ESVKRojJ/EhhJKQ0AI8Ax4OKI2NVavh1Y08N8kqQSik6Bex9w\nOvAD4EzgTcDKacsnaJa8JKlCRWX+HuC+iHh/Sulc4F5g+tfG1ICDZQaq12udJeyhxZBpfHy4q6+n\nckZHhxfM/FooOaYzU/cVlfnzgcdb18dbj78/pbQqInYCa4EdZQYaGzvcccheqNdriyJTp1/5pvlp\nNCYWxPxaLPN8vhZiJmjvDaaozDcCt6aUvk5zjfxG4NvAlpTSILAH2NZhTklSl8xZ5hFxEPidWRat\n7kkaSVJHPGhIkjJgmUtSBixzScqAZS5JGbDMJSkDlrkkZcAyl6QMWOaSlAHLXJIyYJlLUgYsc0nK\ngGUuSRmwzCUpA5a5JGXAMpekDFjmkpQBy1ySMlD0tXGklP4IuKp183nAy4HXAJuBSWA3sD4ipnqU\nUZJUoHDNPCJui4hLI+JS4FvAnwEfBDZExEpgAFjX25iSpLmU3sySUnol8NKIuAW4OCJ2tRZtB9b0\nIpwkqZx2tplvAP6qdX1g2v0TwEjXEkmS2la4zRwgpfRC4IKI2Nm6a3La4hpwsOg16vVa++l6bDFk\nGh8f7urrqZzR0eEFM78WSo7pzNR9pcocWAnsmHb7/pTSqla5r52xbFZjY4c7iNc79XptUWRqNCa6\n+noqp9GYWBDza7HM8/laiJmgvTeYsmV+AfCjabevB7aklAaBPcC20iNKkrquVJlHxCdm3H4IWN2L\nQJKk9nnQkCRlwDKXpAxY5pKUActckjJgmUtSBixzScqAZS5JGbDMJSkDlrkkZcAyl6QMlD03i6SS\nJk8cZ9++vZWNv3z5eQwODlY2vqphmUtddnTiAJvuaDA08kjfxz5y6DE233AFK1ac3/exVS3LXOqB\noZFlDJ9xTtUxtIi4zVySMmCZS1IGLHNJyoBlLkkZKPwANKV0I/AmYCnwKeA+YCvNL3XeDayPiKke\nZpQkFZhzzTyltBp4dURcQvNr4l4MbAI2RMRKYABY1+OMkqQCRZtZLge+n1K6C/gycDdwcUTsai3f\nDqzpYT5JUglFm1nqwHLgjTTXyr9Mc238pAlgpDfRJEllFZX5T4EHIuI48GBK6Sgw/UiIGnCwzED1\neq2zhD20GDKNjw939fW08I2ODj9jHi2Ged4NCzFTO4rK/BvAdcBNKaWzgSFgR0ppVUTsBNYCO8oM\nNDZ2eF5Bu61ery2KTI3GRFdfTwtfozHx9DxaLPN8vhZiJmjvDWbOMo+Ir6SUVqaUvklz+/q7gIeB\nLSmlQWAPsK3zqJKkbijcNTEi3jvL3au7H0WS1CkPGpKkDFjmkpQBy1ySMmCZS1IGLHNJyoBlLkkZ\nsMwlKQOWuSRlwDKXpAxY5pKUActckjJgmUtSBixzScqAZS5JGbDMJSkDlrkkZaDwyykAUkrfAQ61\nbv4Y+CiwFZgEdgPrI2KqFwElScUKyzyldDpARFw67b67gQ0RsSuldDOwDrirZyklSXMqs2b+cmAo\npfS11uPfD1wUEbtay7cDl2OZS1JlymwzfwLYGBGvB64Fbp+xfAIY6XYwSVJ5Zcr8QVoFHhEPAQeA\ns6YtrwEHux9NklRWmc0sVwMvA9anlM6mWd73pJRWRcROYC2wo+hF6vXavIL2wmLIND4+3NXX08I3\nOjr8jHm0GOZ5NyzETO0oU+afBW5NKZ3cRn41zbXzLSmlQWAPsK3oRcbGDnccshfq9dqiyNRoTHT1\n9bTwNRoTT8+jxTLP52shZoL23mAKyzwijgNvm2XR6vKRJEm95EFDkpSBUgcNaX6OHTvG/v17Cx83\nPj7c9c0i+/YVjyvp2c8y74P9+/dy3ca7GRpZ1vexD/zkAc4898K+jyupvyzzPhkaWcbwGef0fdwj\nhx7t+5iqzuSJ48/4a6wXf+3NZfny8xgcHOzbePo5y1zKyNGJA2y6o8HQyCN9H/vIocfYfMMVrFhx\nft/HlmUuZaeqvwJVLfdmkaQMWOaSlAHLXJIyYJlLUgYsc0nKgGUuSRmwzCUpA5a5JGXAMpekDFjm\nkpQBy1ySMlDq3CwppWXAt4HXAZPA1ta/u4H1ETHVq4CSpGKFa+YppaXAZ4AngAHgJmBDRKxs3V7X\n04SSpEJlNrNsBG4GTp5T86KIOPnlztuBNb0IJkkqb84yTyldBYxFxD2tuwZal5MmgJHeRJMklVW0\nzfxqYCqltAZ4BXAbUJ+2vAYc7FE2SVJJc5Z5RKw6eT2ldC9wLbAxpbQqInYCa4EdZQaq12vzydkT\n/co0Pj7cl3Gkqo2ODpf6vVrMfdAr7X7T0BRwPbAlpTQI7AG2lXni2NjhNofqrXq91rdM/fwORqlK\njcZE4e9VP3/3ylqImaC9N5jSZR4Rl067ubqNPJKkHvOgIUnKgGUuSRmwzCUpA5a5JGXAMpekDFjm\nkpQBy1ySMmCZS1IG2j0C9Fnr2LFj7N+/9+nb4+PDfTsyc9++vcUPkqR5WDRlvn//Xq7beDdDI8v6\nPvaBnzzAmede2PdxJS0ei6bMAYZGljF8xjl9H/fIoUf7PqakxcVt5pKUActckjJgmUtSBixzScqA\nZS5JGbDMJSkDhbsmppROA7YAF9D82rhrgZ8BW4FJYDewPiKmehdTkjSXMmvmbwQmI+I1wAeAjwCb\ngA0RsRIYANb1LqIkqUhhmUfEvwJ/3Lr5ImAcuDgidrXu2w6s6Uk6SVIppbaZR8SJlNJWYDNwO821\n8ZMmgJHuR5MklVX6cP6IuCqldBbwTeD0aYtqwMGi59frtfbTddH4+HCl40uLwejocKnf9ar7YDYL\nMVM7ynwA+jbg3Ij4KPAkcAL4VkppVUTsBNYCO4peZ2zs8Hyzzku/zpAoLWaNxkTh73q9Xqu8D2Za\niJmgvTeYMmvm24CtKaWdwFLgOuAHwJaU0iCwp/UYSVJFCss8Ip4E3jLLotVdTyNJ6ogHDUlSBixz\nScqAZS5JGbDMJSkDlrkkZcAyl6QMWOaSlAHLXJIyUPrcLJI0l8kTx9m3b2/h48bHh3tyeo3ly89j\ncHCw66/7bGGZS+qKoxMH2HRHg6GRR/o+9pFDj7H5hitYseL8vo+9UFjmkrpmaGQZw2ecU3WMRclt\n5pKUActckjJgmUtSBixzScqAZS5JGbDMJSkDc+6amFJaCnwOOA94LvBh4AFgKzAJ7AbWR8RUb2NK\nkuZStGb+B8BYRKwE3gB8GtgEbGjdNwCs621ESVKRojL/IvDBaY99CrgoIna17tsOrOlRNklSSXNu\nZomIJwBSSjWaxf4B4BPTHjIBjPQsnSSplMLD+VNKy4E7gU9HxBdSSh+ftrgGHCwzUL1e6yxhl4yP\nD1c6vqTeGh0dnlfPVN1R81X0AehZwD3AuyLi3tbd96eUVkXETmAtsKPMQGNjh+cVdL56cZY2SQtH\nozHRcc/U67XKO2o27bzBFK2Zb6C5GeWDKaWT286vAz6ZUhoE9gDbOgkpSeqeom3m19Es75lW9ySN\nJKkjHjQkSRmwzCUpA5a5JGXAMpekDFjmkpQBy1ySMmCZS1IGLHNJyoBlLkkZsMwlKQOWuSRlwDKX\npAxY5pKUActckjJgmUtSBixzScqAZS5JGSj8QmeAlNKvAx+LiEtTSi8BtgKTwG5gfURM9S6iJKlI\nYZmnlN4D/CFw8huRbwI2RMSulNLNwDrgrrID/uXHPslzTn9BJ1nnZfzAY8Av9H1cSeqHMmvmPwR+\nF/h86/ZFEbGrdX07cDltlPneA1MsOfMX2wrZDRPHTuv7mJLUL4XbzCPiTuD4tLsGpl2fAEa6HUqS\n1J5S28xnmJx2vQYcLPOker0GwJLT/MxVUveNjg4/3TOdmM9zF4JOyvz+lNKqiNgJrAV2lHnS2Nhh\nACZPTLoLjaSuazQmnu6ZdtXrtY6f20vtvMG0U+Yn91i5HtiSUhoE9gDb2ngNSVIPlCrziHgYuKR1\n/SFgde8iSZLa1clmFklaUCZPHGffvr0dP398fJhGY6L4gaewfPl5DA4Odvz8brDMJT3rHZ04wKY7\nGgyNPNL3sY8ceozNN1zBihXn933s6SxzSVkYGlnG8BnnVB2jMu5YIkkZsMwlKQOWuSRlwDKXpAxY\n5pKUActckjJgmUtSBixzScqAZS5JGbDMJSkDlrkkZcAyl6QMWOaSlIGOzpqYUloC/APwMuBnwDsi\n4kfdDCZJKq/TNfM3A4MRcQnwPmBT9yJJktrVaZn/BvBVgIj4L+CVXUskSWpbp2X+AuDxabdPtDa9\nSJIq0Ok3DT0O1KbdXhIRk2We+LND+3luh4POx+Shn3J0yQsrGBmePNwABhzbsR07w7GPHHqsknFn\n6rTM7wPeBHwxpfQq4HsFjx+o15vd/+9f+kyHQ0qSTqXTMv8ScFlK6b7W7au7lEeS1IGBqampqjNI\nkubJDy0lKQOWuSRlwDKXpAxY5pKUgU73ZplTSmkZ8G3gdcAQ8EngBM3zuFwZEZXsmDk9V0Q82Lrv\nrcCftk5NUGkm4CCwBXghzZ1mr4yIhyvOtAS4BZgCHqR5Hp6+fmqeUvoOcKh188fAR4GtwCSwG1jf\n70yz5PofmvP874HjVDTXZ/6sIuKa1v2VzfNZ/v/eR3NOVTbPZ8m0kern+Y00d/leCnyK5i7gWyk5\nz7u+Zp5SWgp8BniC5n/U39GcRJcCdwLv7faYHeQ6ed+vAm+vIs8smQaAjwOfj4hVwAeBX1kAmT4E\nfDgiXgs8F/jtPuc5HSAiLm1drgFuAjZExMpWxnX9zHSKXG+nOdfXVzXXT/GzqnSenyLTRiqc56fI\n9CGqneergVe33mxXAy+mec6r0vO8F2vmG4GbgRtpvsu9JSIebS1bCjzZgzHbzUVK6Uzgb4C/oLk2\nXHkm4BLgv1NK/wY8DFy3ADI9CZyZUhqgedTvsT7neTkwlFL6Gs35+n7goojY1Vq+HbgcuKviXBuo\nfq7PlumHVDvPZ/v/q3qez5ap6nl+OfD9lNJdNE+XcgNwTTvzvKtr5imlq4CxiLinddfAycmdUroE\nWA/8bTfH7DDXUuCzwLuBiX7nOUWmAeBFQCMiLgP20f81u5mZoLnZYDOwB1gG7OxnJpp/IWyMiNcD\n1wK3z1g+AYz0ORPMnmsMKp3rMzP9C80/0yub57Nkuh14CRXO81ky/RPNU3pXOc/rwMXA77Uy/TPP\nPD9B4Tzv9maWq2keGXov8ArgtpTSWSmlt9Bc2/utiDjQ5TE7yfU94Jdbmb4AvDSldFPFmW6jua31\n7tbyL9P/s1HOzPSPwBeB10bEhcDn6f/pjh+kVeAR8RBwADhr2vIazc8a+m22XGdXPNdnZjoP+CWq\nneez/ZxOUO08n5mpAdxBtfP8p8A9EXG89XneUZ5Z3oXzvKtlHhGrImJ1a5vhd4ErgctorqWsruLD\nvFPkujAizm/d/n1gT0S8u+JMbwO+ws+31a2i+aFHlZmuBE4DDrce8gjND6366Wpav1gppbNpTup7\nUkqrWsvXArtO8dx+5noBzW2dVc71mZl+AKQq5/ksmWo0TwdS2Tw/RaalVDvPvwG8YVqmIWBHO/O8\nJ3uztEy1Xn8zsBe4M6UEsDMiPtTDcds1QDPrQnA9cEtK6U9ovgu/teI8AO8AtqWUjtLcQ+OdfR7/\ns8CtKaWTE/lqmmt3W1JKgzT/LN7W50wzc00B19Bcy6xyrs/8Wb192tlMq5rns/3//S/VzvPZMg1T\n4TyPiK+klFamlL5JcyX7XTQ/Tyg9zz03iyRlwIOGJCkDlrkkZcAyl6QMWOaSlAHLXJIyYJlLUgYs\nc0nKgGUuSRn4f3AYXQjVBICGAAAAAElFTkSuQmCC\n", | |
"text": "<matplotlib.figure.Figure at 0x11ce0b7d0>" | |
} | |
], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "reg = sp.stats.linregress(parent_heights, \n offspring_heights)\nprint reg\nslope, intercept, r_value, p_value, std_err = reg", | |
"prompt_number": 110, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "(0.84671228358383677, 7.714965372193241, 0.5042741991270504, 1.3106705905507895e-33, 0.064973865557779134)\n" | |
} | |
], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "plt.scatter(parent_heights, offspring_heights)\nplt.xlabel(\"Parent height (cm)\")\nplt.ylabel(\"Offpring height (cm)\")\nplt.title(\"y=%.5fx + %.5f ($r^2$ = %.2f, $p$ = %.5f)\" % (slope, \n intercept, \n r_value**2,\n p_value))\nplt.plot(parent_heights,parent_heights*slope+intercept, 'r-')\nplt.show()", | |
"prompt_number": 111, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"metadata": {}, | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEfCAYAAACjwKoqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXt4FNXd+D8BA1s0kYpBW60SK5zWFrVICakK9VIiBmIi\noimvkRRBsRTxCtZUpWpag4riDSsXE2M1gJCYcEesoDUE0cpr689TbRewvkVoakwUNqyY3x9nJjuz\nO7s7m+zmxvk8Tx7Yndt3ZnfP95zvNamlpQWNRqPRHNn06mwBNBqNRtP5aGWg0Wg0Gq0MNBqNRqOV\ngUaj0WjQykCj0Wg0aGWg0Wg0GrQy0Gg0Gg1aGWg0Go0GOKqzBdBoeiJCiMHAD4EzgRop5TudLJJG\nExG9MtBoEsM44BNgPnBbJ8ui0URFrww0mgQgpXwEQAhxBuDtZHE0mqhoZdDJCCGygd8BfYH/Ba6V\nUjY57HcFcDdwGPgMmCql/Kdley5QJqU81vLeUOBxINU47nop5TtCiGuAmy2n7w+cBJwkpdwvhEgC\nngXek1I+HNcbDshWANwSTga3+0WTNcxzmQn8EjgEvG/8fzwRnonDeR8AXpVSboxyq3lAcZR9XBPD\n9+Vq1IqkBTgA3CilfNvY9jBwBfBfY/cPpJQ/j5eMbojhPsLuF25bW46Jcr5jgOXA5VJKXyKeR1dA\nm4k6ESFEGrAU9SX7HvBP4AGH/foB5UCulPJHQDXwmGX7YOAhICnomI3AA1LKYcB9wIsAUsrnpJQ/\nMs71Y+DfwAxjcP0+sBmYiBpIEoKUsjycDG73iyZrmOdyAXA78FMp5VnANuCZSM/E4bwjge9HUwRC\niBzU53SSy8cSkRi+LwKYB2QZ93M/sMqySyZwlXm/naAI3N5H2P3CbWvLMdG2SSm/QP127ov/0+g6\n6JVBnBBCLAL2SSmLjNf/A0wAnkQNSFZagDuANGC7lPIfxvsLgZ3ADIf9v0TNVgFSgIPGdUxFcTPw\nguWYMcCHUsr1xusanM0VdwCfSikXGa9/CSwBdmMfRCejViZnGm/tAIqllM87nBMhxNdSSreTjWAZ\n3O7nKKtx/XDPZRjwipTyU+N1FVAihDhKSvmVS3nmYlHGTggh8oA7gZnAa0RYHQghLiL0OwIwW0q5\nyfJ6DO6+Lz7UrNa8x7eBE4UQRwG9gR8Btwshvgt8BNwspfw40v24IQH3EWm/cNv+DLwV4zHRtgGs\nQH1PHpRS7ov6MLohWhnEjyeAtUKIu6SUXwPXA/dJKTejfnwhCCHuAP5leesTIFUIcYwxGwFASnlQ\nCHEb8KYQoh71g/6JsfkPwNOoZa2VIcCnQojFwFlAAzA76PrHo0wwrfJJKWca2y627iulLBNC/Aw1\n4/QAW8IpglhwksHtfuFkNQj3XN4CZgohvmMMgAVAH2AA6nlFlEcI0R84D+UgRggxDBgM3ABUApOB\ny6SUlcbrqET6jgTxHdx9X3ajFCSGGW0+8LKU8ishxHdQq6k7pJQfGt+rl1FK0hEhxFnAOYAA3gQG\nAs1SyucSeR8R9ksJtw34LvBxLMdE2XaMlPILKaVPCPEGcClQ6uIeux1aGcQJKeVOIYQXGCeE+BD4\nlpRykzFQPehwyByCZrMWDltfCCEyUUvU70spvYbNe5WxGvFLKUuFEIOCzpGM+uL+VEr5lmGyWCuE\nOFVKecjY5zqgyhg83DAdNbgewGHwEEJkYVnuCyH+Yvw3eGZoxa0MrmUVQvySMM9FSrlVCFEMVAsh\nmoFnUM/b7TM5Hfi3ZRXhB/4f8JWUcoEQ4mkpZXM0GYPkDfsdCTJFufq+WM57NGrgOgm4BEBK6cVQ\nZMbrh4QQdxnfi3D3fAIgUWanOcZ5/wLYlEEC7iPcfl8R3sTt+CyiHOP2fP9AKcQeiVYG8eVJYArw\nd9TMFCnlK4SfZaYBGZa3TgI+k1IeDNr1PGCz8UMGeAp4FGUCOWgMun2Abwgh3gGyUTObD6SUbxly\nVBurhHTUDxvgSpQZwy0nopxryYasNrOTlHIDsMG4t68Ne3U03MoQi6yTgX5hnsvnqGe5yJBTAI1S\nys9cXudr1MoMACnle0KIW1FmBGJVBMYxYb8jQezB3fcFIcQpKNPg34ALTLmMoIKzpZTlxusk1KDr\njyDfRiHEb43zYcj6nw64j7D7CSF2AyOCt6FWRCHvRzom2jbLe70JTBp6HNqBHF9eQv0YLkc5o6Kx\nCRgphDjdeD0dZcMOZhswWggx0HidC/xDSnm6lHKoMeheChyUUg6TUv4bWAcMMswYCCFGoQYyr/H6\nm6hZ7ptubkwIkYxyot0F3Au8aNigwxHV+exWhlhllVJmRHgupwBbhBApxkBYBPwxhuv8ExgohOhj\nee9ilLM+0bj6vgghjgO2AC9JKScFKagWYIFlxXQDsFNK+X9Rrn2xcU5QytbJN+AWt9/7SPuF27ax\nDce4lem7qFVgj0QrgzgipfSjFEKtlPK/LvbfB/wCeEkI8T7wA+BWACHEGiHEOGO/11Hmlz8JId5F\nOU4vCzpdEpYB2HAe5gJPCSHeAx5GRUqYM5vTgf+TUoZbVoN9QP+dsf9SY1Zdj4pSCXdvvcNts+Ao\ng/Xe2yirleDn8gHqWW5DrZCaUdFFrq4jpWwAXgcuNGRNAvpZVm0JI9L3xZBljRBiPGog+w5wuRDi\nL5a/b0op/4pa+dQY57gM+LnlHH8WQpxjva4Q4ljgOOBCIcQ0oE5KaY1OSsR9jIu0X7htUkV/xXSM\nS5n6AiMJrI56HEm6B3L8MGypW4AbTPOMpudh+HCKpJTjou7czRBC3AWsMJSm+V4eMFJKOafzJOtc\nhBCFKJ9dj30GCfcZCCF+jUroSUZF3PwZ5dT6GvgrKpa722skw3n6ArBEK4KejZSyVgghhRBZhp+k\nJ/GvIEXwPVR01UdCiFQpZWPnidY5GNFGP0ettHssCV0ZCCF+CtwipcwxZs2zgbOBh42ojoXABiml\nk71Qo9FoNB1Eon0GY4D3hBBVKFtbNXCOlHKrsX0dyjGl0Wg0mk4k0WaiNJQjaxxwGkohWGOHvwCO\ndThOo9FoNB1IopXBf4D/ZyTo/F0I4cNepyUFlRmr0Wg0mk4k0WaiNzAyH4UQ3wb6AZuFEKON7WOB\nrWGOBaBFOTX0n/7Tf/pP/8X2FxMJDy0VQpQAF6AUz6+BXcAiVGbo+8C0KNFELfv3h1S27XKkpaWg\n5YwP3UFG0HLGGy1nfElLSwlXzsORhIeWhonL/Wmir6vRaDQa9+gMZI1Go9FoZaDRaDQarQw0Go1G\ng1YGGo1Go0ErA41Go9GglYFGo9Fo0J3ONBpND8bn81FRofJa8/NH4fF4OlmirotWBhqNpkfi8/m4\n6qpKamt/AUBl5bMsW5anFUIYtJlIo9H0SCoqthqKIBlIpra2sHWVoAlFKwONRqPRaGWg0Wg6Dp/P\nR2npRkpLN+Lz+RJ6rfz8UWRmPgscAg6RmVlKfv6ohF6zO6N9BhqNpkPoaBu+x+Nh2bI8KipUD/v8\nfO0viIRWBhqNpkOw2/AxbPg1FBaOSdg1PR5PQs/fk9DKQKPRxIwO2ex5aJ+BRqOJCdPcM3t2DrNn\n53DVVZWu7P/aht+10SsDjUYTE20192gbftdGKwONRpMQnExJ2obfddFmIo1GExNuzD1tNSV1FB0Z\n4tpd0CsDjUYTE27MPZ0ROeQWXabCGa0MNBpNzNFB3dnc05UVVWeizUQazRFOLCYdt+YVHTnU/dDK\nQKM5wnFb0C0WpWGakubNq6G4eCXjxqVSUbG1S9jntaJyRpuJNBqNK2I1r3g8HvLzR3U5+7wOcXVG\nrww0miOcRM6Uu2oZadPnUVg4RisCA70y0GiOcNzOlPPzR1FZ+Sy1tYUAhtLI60hRNQlEKwONRuMq\nOqgt5hWtQLoPWhloNEcw7QkpNSOLIh1rKpDy8pXs2PERw4cPjvMdaOKFVgYazRFKe5KvnI4tKxtL\nVdV2IFQ5rF7dRG3tHVRWwurVne9E1oSiHcgazRFKe5y7ocfmk5X1gmPYaVd1ImvsaGWg0WjiwKt4\nvbcQrwFf1w7qeLQy0GiOIKyDbG7uiDaHlAaHo6anb3O9b7TrdPUidz0V7TPQaI4Qwtv5I0cHhStF\nbY0sys2dweTJzlFDHo+HsrKxzJlTAkBJSWFEf4GuHdQ5aGWg0RwhOA2yVVWRB9lITubgcNRwYac+\nn4/Jk9dRW3sHAHv3agdyV0SbiTSaI5ja2vcj2uVjcf6Gy+qN1YGsawd1DnploNF0I5xMNm5zBYIT\nwFJT51FZeROVlZ4uUTPIRNcO6hySWlpaOluGaLTs39/U2TJEJS0tBS1nfOgOMkLHyxlsssnMVDZ/\nZYIJvBc8qFvlNBVHbe37VFbeBKQYex1i3rxQk1HgmoXG+Utt53ejiKKdw0nOrkw3kjMplv31ykCj\n6SY42fznzCkxbPHuK4ma2yoro8+2I83S3Sat6Zl+90D7DDSaLo4ZDlpb+z4QnxDLWOzy4XwB5eWb\n2+1P0HQd9MpAo+nC2GffOaSk3E9T01DgKDIyPqGkpJC9e5+ltjYfeJX09G2MHXutrWZQwBQUwDpb\n9/sPAar5jJv6RKZcixe/C0yI491qOhOtDDSaLozdNOSjqek7wGUAJCUtaY3hz8paiNd7C15vNuee\nW0Jj4yxAOYZfffWasLZ9v/8QixfvMbKH3dcnqqjYitdbBJQDVwOQnv4I+flT4v4MYi2mp2kbWhlo\nNN2GzcBkTP/Atm1TjJm931IKAhobZwObgGxqawtZtGgtL764LyTZTDmeTwACx8aW4OUBJhnX8jN1\n6ilxH6jbU0xPExvaZ6DRdBGc6vHYbfv+kGP8fr9hrgnPm29+EGLbnzOn1HivbfPBgFy9gJ+RmbmP\ngoKLXR/vtvaQLnLXceiVgUbTyfh8PsrLXwlrrrHa9mtqlrBtmzLFZGaWAikh5hqPpxif71ZMx/BP\nfiKoqAh39Ytsx7ptPtOeCKFws30n34am49B5BnGiG8Ued3k5u4OMEB85AwPjCcClmOaaSHH/Vvt5\nRcVWZs/OAQ6jzEh+5s79nH79jmndJy0thQsvfM4W5x8wExUCPtLTf8fUqWdTUHBRwk0wpaUbDZnt\n93r77RNCnqfbHIWOpBt9P3WegUbTXQiYQTa62j+4HpA9q/hnZGaWMmWKfbAMN4u3v3drl7TD6xyF\njkMrA42mSxDeXBMpmsbtYOnU49hN3+NEEGtf5M6S80hDm4niRDdaOnZ5ObuDjBBvM1EhTuaahoYG\nsrJeaPUlOJWbcCtnOKXSGaGbTtc8kj73jkCbiTSaTibWwXXcuFROPLGE4cNPp6DgVtsgnZX1JF7v\nfTiFfsZynfBOWzoldFPP9rseCVcGQoh3gM+Nl/8EHgfWAH833lsopVyeaDk0mo4glrj44H337n2W\ngoLAdpXYldnu65jncmoYo/7/C0wHdG3tQMrLX2HatHFtuPvEoJPOOoaE5hkIITwAUsoLjL9rgeHA\nw5b3tCLQ9BhiiYt3t++FKF+C2V7ykdYoovjF3/uAF4AxQDaLF+/pMm0mdQvMjiPRSWdnAf2EEBuE\nEJuFECOBYUC2EGKLEGKxEOKYBMug0XQrzIQsv99PRsZzwBXAWtLT72bDhkltmhmHK0yXnz+K9PRi\noABTsXi9N3eZxC6ddNZxJFoZfAk8KKXMAqYDzwNvA7dJKUejzEb3JFgGjSbhBAbwQ4wcuQQ31UCd\nBujc3BGtM+GiogkkJfWmuHgN8+YdZsuWW+nfv3/YYyN1AzOjjubNq2HevBpb68qpU8+O89PQdEcS\nGk0khOgD9JJS+ozXdcAEKeW/jNdnAI9JKSPlsXf5cCfNkY3P5+OSS15gyxZl8D///KVMnHgCycnJ\nFBZGTuJSSmQzAIWFF1FaupkbbhiDNSFr4cJNTJ+eHfZYv98PtJCc3Cfq9SLLr8JaBw9ewMyZpzNt\n2tiYZA/eN9r2tsg2evTzrF8fujqKx7V6IDFFEyVaGVwPnCmlnCGE+DYqRfIL4JdSyreEEDOBk6SU\nd0Q4jQ4tjSPdQc6uLqPp0PR4etHU1MyOHR+66hrm5ryzZj1NZeWZQBaqEFzkczl1P4vU6SzStcvL\nN7N48btGeQsPI0cuYfz4Y0lO7hPiuI12XTdyBRNOzmgO5LZcy5HDhzlm9i18o/xZvhoi+OyNt2KS\ns6vR1UJLlwDPCiFMI98vgIPAk0IIP/Bv4LoEy6DRxI3AwPNzYBmqiihAGSphLPZZeUXFVqPu0Ods\n22bOi8qAK8nMrIiYkBUuSihWReTxeEhOTraFsW7bNoVt29YBl4ZEK0W7bnvkchr8Ix3X3meQ9HkD\nx16ZS/Jf3ml9r7f3n66O7UkkVBlIKb9CeaaCOS+R19Vo4oVTLaBA+YhAOWm4BlgLXOq62JvP52Pi\nxOXU1Z0MfADcaDtfXl4JCxZMD9v03ufzGd3PjiKwkog3RxFw3MauZGKlI0tW9/7w73xzVAZJhw/b\n3m98ahHNV1wV9+t1dXQJa40mDE5hjaormDN5ee/ZnLPRKC9/hbq6vqgCdbNRK41A2GRm5hmtg36w\nHA0NDVx1VSWVlXcYxz8PNLY6kt2WiLYS7JSG51BlMqLvG+zAjtXBbdKW6KFYr9Vn03rSBqZy3LnD\nbYrgs42vsX9f4xGpCEBnIGs0IZiz8DfeeI/a2h+gVgEXUVtbyLhxq8jMNNtMlqFWBKq+jjmLj3RO\nCMzsd+z4CAg0s7euLkaOXEp+vmop6WQGmTOnhNpa+7E5OfeTkXEG5eWbqa6up65OWWDXrCmnvHx8\nVAVlL5ftp7q6mbq6XgQG2DzHfdU9uSuOlwhcXaulhW88/gjH3D/X9vbhQel8VrORlhNOSIhs3Qmt\nDDQaC8E9h9WAfwkqKesKkpOTjYFnEx7PAJqaVpGcnNw6AIUz5ziZPs46axCVlcESbAb+xiWXnBzj\n4OnjvfeOprra7Elchsoq9rBly9WuTTxW+3xBgS/sAOsmK7gtJSdiLWIX9VrNzaTMuA5Ptf1B+3Ly\naHryGejbNyb5ejK6UF2c6KgIg/am5neHSIjOlHHRojUUFU3AGtqp2jr+jPT0u9myJVA7KFhOuw8A\nMjL+xYoVV1p6Dtjr9/v9hygq+hJzdQEPovwGHtLT57Nly5QgZVIIOPUjgPT0u23O34Dc2bQ1uikc\ncYveCSJaQb1YSPr0U745fgy9d3lt739RdA8Hb7wFkmIKtHGUs6vT1aKJNHFE94NNLA0NDcyfvwmY\n4Lh96tSzIz5ruw8A6urKWLp0HTt37katMnyYDWj8/kMkJ/cBxqFMQ2uA+ZjhqSoLWA3gphmkvHwl\nO3Z8xPDhg0NMI37/2RQVBUvkBw4xevTz5OePb9MzcSJeEUzhaE8RO8/zZaTcMjPk/c+fX8ahMWPb\nK1qPJqIyMJLGJqG+yYOBr4GPgCqgQkoZ2pRVkzAS/SPs6USacaoKoS9QX/8oVl8APALcQGrqPCZO\nnGzb/+mnt9LU5IvoA3j88RuMcy423lfnqKlZwnPPZVNZ+aIxu/+KaNFAq1c3UVt7B5WVsHq1mgiY\nn73P52P16oB5ZeTIpUaOQA0zZ06iqSnwU+2Jhd/SBqaGvNfSqxefbdnGYfG9TpCo+xFWGQghsoHf\nAG8AzwJ7UFONdOAC4EYhxH1SyuqOEFSjaQ/RVlWqQugtqAH7atRs/W+o+c/rNDbeSFXVptbS0U7n\nGj58cIgPoL7+JOBJoBm4E2sMf1VVjc1hG9zf2GorjzYRCHWiTmi9N4/H06oM4rG6bKtdP+589RVp\n3z7OcdN//vYPWtLSOlig7k2klcFgYJTD7P99YI2xavhVwiTThNBlfoTdkNhWVR6UqacOVTpLZQJH\nO1dBwUW2Ab1v3/tobv42MBWlXByu5NJh6wY35pVYnkO4FURntqL0+Xy89uBSCh53Llqw/+P92inc\nRsIqAynlo5EOlFIeQhk5NR2E7gebOIIV7amnPkR9fS+++EKFVqamziM3d7LDkT5gPbW175OfP4rl\nyydQXr6S5ctfZ+fO44HjUaGpo7Gan9LTHyE3d5LtTJEG8/ZMBMycA8CoY+TumEgriM5oTvONWTNI\ne7HcMYt1/77GDpWlJxI1mkgIMRH4NfBNy9stUsrTEimY9VrdxHPfXSIMuryciZDRKSIn2DxinQmr\nSJ9xgJnwdD7z5gWbifKB5Zh+gJEjl3DJJd+grGxva5tKpQCuAlYAFzNgwEPU118EXEhm5ouUlY2l\nqmo74K5bWay2fp/PR0FBTWsRvREjnmbfvi/YtetWx+dgXqO29v241FuKhXCfu5M/wOTBeS91uFLq\nDr8hSEw00cMoI+qeNkmk0XQBnFZVQOuMObgGjnrfgwrNBKuZyDzX7NlPUVFxK/ZaPg+isomtiWSb\ngKsZMOAG6uufJmCiyScra2Gr4ohmv482G3dSFhUVWw1FoK65ffv1wMvAOtLTaykrmxGmuJyZYxF7\nvaV4EU4JLOUXXMtS4BDzqOlYoXowbpTBR8AbUsqvEy2MRpNIrINpsBlk4cL5TJ16ChMnnkdV1Xaj\nscwz1NVNA0LNMh6Ph9Gjh1JREXyV3mGvf+6536HaFm7xqsVpHd5+72ZFEM6s42wW6gdk4/WOpaoq\nfHG5ttRbai9Jn/2X48Ugx22fvryOvAf2GKu70KxoTftwowweAl4TQryGSmkEZSa6N2FSaTQJJnjg\n83pvpqiohpKSMhob5wDK7FNcvNIo4RyaYTxt2kU891zAjq9q+UxHtam82vLelWRmlvLQQ9eyf79Z\nyuJVBgyoMUxG5uAbitvoHyfHcHn5Kqqr67GHypZa/h+dvLz3yMw8nHD/VN+KP8KNN3C8w7b9n9RD\ncjK9gGXLzmld3eXmju1xIbKdiRtl8DvgHQKKAGJsmqDRdA8+NBRBwOxz+eU1YVcTa9aUGzZ/ay2f\nfsAVpKffzeTJPyA5+WiSkze1DqZlZWNbTUP19dmkppbQ2Kiyjp1muu3JLdmx40Pq6u5A/XQ3AX5O\nPfXv7N7tXG/IyUkdqd5SPIjkD3ByCpurO52AGX/cKIOjpJRTEi6JRtOBBA98quqniHiMfWD2sWXL\nccyZExgw7aGht4YMTD6fj9tuW2I0j1GDe2PjbPLySsjMPKNds2+ngXz48NONvAfT93GIX/yiiX79\nOr+4XKxKIBidgBl/3CiD1UZHsnVYvGhSSu1Q1nRbAiUeVhndve4EsMzUXyU9fRu5uTMcjvahCtcV\nUFmZzd69gVlppI5kV165km3bhoZsy8w8I+xxubkjuP/+EhobZxvyOYe4Bg/kubljWbHiDQYNeqg1\ncgieY926ZlasuKTNTup20dJC2gnHOm46MP1X9Fv4eLeI0umpuAkt3YVDH2IpZXpiRApBh5bGke4g\nZyQZYw2vdOt8NfcZO/ZMcnJWtUb4WIuwBUwTA1EzbXvhuUiDaGnpRmbPHoNSIr0x7faDBj3M1q1T\nw95H4LjQENdI9xwwofhQlt4MVPXVXgkPEQ2m998lx533Y8dt/32tlsNn/ACI7bvpJlQ4UXSH3xAk\nILRUSjlICJEspfQbWcd9pJRftFlCjaaNONmJI8Xph7MrA2HbKpaWbgwb4WPOvlWf4tAG9dF5FZiC\n1YZ/5pkHXQxgppknkOCWmzsi7H0HN4iB3xrXs2dSO2FVjJGu4YZjZt/MN0qXOG7b/+nn7aocqhMw\n409UZSCEuBK4CxgKnIKKLPqVlLIq0cJpNFac7MRZWWbpZhUeumHDJPr37x92//LylUbBt7Y5Hj0e\nDwsWTGfv3tiygfPzR7Fw4YN4vZditeFnZETuQhbwBQQS3Cors9m8uYTGxlmAx+U9qAqmkWQNXlHc\nf/+C1siqWJ5Te/0BbnEyafXEInwdhZu2l3cBFwNIKT8ChqGmGhpNhxHo92vH683EnAF7vTeQmTmX\nRYvWhG31uGPHRxHbKrppoWjOShcu3OS6zaXH42HDhpkMGvRQ67lHjlxKQYFzW8nga+XlLSDQcznZ\n8CFsdXUP559fRnHxwaiy2pXnVktklbv2k2kDU8Mqgv37Gtm/rzFiO862tOoMPj64PWhbznOk4saB\nnCyl/NR8IaXcJ0TkqAuNxi2xJVTdRHB9H6/3l+ZewHLq65+mqEiVeC4rG+sQYWOtLGqvK+TxeFyb\nHzweD9OnZ8dkO+7fvz9bt051rCwaCY/HQ2bmGQ5d0cLvb72HmTMLbCWs40pzM2nfca4O+uUdv+HA\nLbNbX0cKB1WNgVa0ls1oS6iojjBqH26UwZ+FEC8Cf0TlF1wJ1CZUKk2XINFL7sDg8HPgVRYufJgN\nG2aQlpZi28/+I1flpfPy3qOkpJCsrKfwem8G1hOYOauBwFoiWt2DMo+ouv92s4s1IiiRETVtPXdw\n6Ghq6jwj6snZ9GO9jrWEtftrnG9EVqnBPPgafdau5tjCSY7n+c9fP6Jl4MCQ9yMN1sFlM/RA3vG4\nUQYzgJnA9SjD41bgqUQKpel8OiKpRw0OP0cVcSvA672UrKz5vP/+rAhHqfLSmZmH6d+/Pxs2TDL8\nBikE6ghZ9nYYfJUTeAGVlYFGNNEGn2iKMRGKM/ic9tDRyVRVbTK2xedzCQ1PnUxVlV2R9ks/maO/\ndLb7f7xnX8xymKY/t9VUI6FLvLePsKGlQoizpZTvRjrYzT5xQIeWxhG3cqqQxtC+vfGcqalrHIXq\nHRC4zsKFm5gwIWCnjxZG6PP5KC9/hcWL9xirhOihhrHcX7jext/5Tlprz9549wSO5znj8d2M5BRO\nMiKUoskY/Dmq1Y1ygmdkPEOfPn14/fXJxrnaFiraEQ7kbvRbjylcK5IyeBA4EVVo5XUp5UHj/X6o\n4uy/AD6WUt7qeIL4oZVBGNryxW+PMiguXsW0aW0JqXTG5/MxevTDIY3cg5WBuW8s+QJuykG7jVNf\ntGi10bjeTPYqo7j4aO688+d8/PF+I9TU2u7SneKMJG84ZZWfP8p2DISGyQafPyXFQ3b2iLYpknAO\nYY7n+rwbY77vSCWyH3tsDT7f14730pXoqcogUnOb24UQZwG3Ai8aTuOvUBFI64D7pZT/2w5ZNe0g\n0Wac/PwMRWbxAAAgAElEQVRRrFoV6NoFz1Fd3UxBgS9uNfdVhM0MsrLm22b0hYXXhNi43djaY7HH\nh3MUB8sPsHz568ACrNU8d+wosXwGZ7q6ppW2fH5+/yHbMatWLeHrr/1s3z699fXy5ROCEuQCK4vg\nnAxwViRJ+/Zx/A9Pd5Qhj1VUkQccIo+SmO/b+hlVVtrvVRUEHOV0mKYDiJqBDCCESEK1bPpaSlmf\ncKns6JWBA20148Qip5oR90PNGS4iWvZqW00bwQOwaX6JtI/bxi6xZitb5R85cgktLYcN85DdlFVc\nvIrjjkvhhhvGoJLIXsCsVBpplWGfGYefVdtXLj7S03/H0KEeqquLbMeoedllNrmmTct2/H6kpwdy\nMjIyniEpqTfbtl1ryPwsa8/fTf95v3N8Nh/99UPGjF9pU9plZWOZPHmdbXXltlmP08rs1VdDJwFd\nkSNuZWBFStkC7G+TRJpuS3JyH4IHwUiEixYJNm20xQ4c6yw6+JiVK58hJ2cAycnJYWUIOLRVw5tt\n2yYBfwKysJalHjToYWCQxenpASZhRjkFV/o0FYDff4iams+NATjyTy9QO2ml4Qu5D6/XuY+yleXL\nt4bNXQjkZEBd3UmYJTVaSFLxgQ4xgmZuwDVXVRphvIGmOP379w+ph6SUQ/TPKdzKrDsog56KK2Wg\n6Xp0ROREPK7h9/sjDuROA/2rr14T1ILSH3P8eHCF0bq6vtTVTXCUISDrIWAZVt8AHIt1sB8woIZd\nux6lqMjD+ecvZeRI05TWi8zMfY6KIOB8/oBAF7QsrDkT4cJDk5P7WMpj2I8ZNOhhdu3qT0BJP8fO\nnSVcddWLITkWKidjCrDG2PcrWugT9vlZM4Xtz/IyW1Oc4FIesXxOndFHWROeNikDIUQfKWXkaaIm\noXREbZZYr+GkPCAl4gDhtJp46qmXeeKJt42Z7IWkpxcDE9pxJ5sJzkFwHqSSbPvBNQwaVMSuXZcB\nvUhPl3i9j6Kcnj5ef/0EcnLeobh4lbHiCH0+5eWvUFfXF7XCsuIBrmwtXx3cqCXwbN5HtaB0OuZq\nCgqqqat7EPghZovK4ByLlBQP5513Oeee+wcaG2fTQl/Hp3RgbDZflr3o6olaE/U0PQM3tYlqpZSZ\nlte9gbdRtYo0nUhHzKza65SNVsLAiQceeIP9+x8yXpXj9d5CerrdyeymFlBAMYWaHvz+QyH9j50o\nLDyztf6/338KRUUerCWsq6uz2b8/vDlkx46PANM3ELwaqGDBAuX8DXYMK1/FdcCYoOSvCtvqY8WK\nK41oJqs5T2F+dmlpKZTPfIDPG+9CVZexM3v0dUxb9JvWmk6RnyXAc1RW3sTevS/a7lvH+XdvIoWW\n/gkVQhrMYeBlKeUViRTMgnYgx5GOltNNjoB1e6DERCDkENaSk/MOvXsnM3z44FabuNtQ0wMHvuTh\nh3fT1KSKrqWkFPP975/A9u1mf2M1mC9dupa5c/cCNxtneI7i4qOZNm1c6/lUT4ITcVvCetGiNRQV\nTbDs20hOznzOO29oq9xOzl67Y7iRs866g9NO+xYlJYUhg3akZ9z/0otJ3rHd6aPhtEG/x2v0OnCT\nI6CUzpkopeZxvO/2xPnr31B8iWdo6QUAQojHpJQ3tlcwzZFJNFNT8PbA7DtA374bqa4uATzs3fss\nEyf6XDkqzZlxaelGmppuQpVxhqamoWzffhnB/YLLyvYCykkKdcBNJCe/bjvf+PHHsm3b33DKdg7G\n5/Ph9/vp23cWzc0PAB5SUhbw0EPXhp2FO+Nh584sdu681FY2wypX8DP+zimh5SBMkmhmwIDbqN91\nK7HY91V9pNAVSPB+2g/QPXFTtfQ2IcRYIUSBEOIa8y/hkml6DOYAYTocI22fOPE8Tj/9HqAKaGTA\ngPtpbv4taqWgqmfOmVMasfJoGClQA3g2TnOgHTs+NBy1KagZ+VzS0+eHxL2rCKsbUdFFqipoevoj\nIfuZs/W5c/Npbl4A/AFYQ1PTrNbQS5PgKqMjRvyBQYPeaH0G8BxqNh79Xm+ffUVYRfDh3/fwu+IX\nSU+/m/p6p0V/ZNxUdNV0X9wogxXAXFSg+QWWP40mrjQ0NJCV9SQffZQBXER6+kJmzvwuEMssOpTg\nQSwj4xNGjlyCdVAbPtyaZOUD1jJ0aKjiUud6EbgCWMugQUVMmjSAWbOetpXODm0wMwvog1JKdsyZ\n/bx5NRQXr6RXr2R27fodkM2AAQ+hlFN4c0vzZ//lO6cM5PbZoZbbedxOEp+TxP1kZT2J33/IyDXI\nxqrQ3AzsVjndlu7WdB/ctL38APi+kWvQGWifQRzpinKatYXmz/9/1NebDs5y4AqKi9eyenVjSGJT\ncLKTm7yDSGUcwHTiBqqZqnOHmmXMc3k8vXj++X+xfXtfVHUWGDFiES+9NJGKiq0OfoC1ZGbui7lm\nkkoWuzfkXj2LnyblztmO5zmZxXzCtSjF9nzr/QwYcB/19bdjRkTBesfciLaifQZdh7jVJjIRQqwB\nfiml3N0ewdqBVgZxpKvJGXB+nkBogtta5s077Ji0Fm7Qac9gFHCS2jODzdDR4HOuXLmVG27woUI/\nA/vPnbuM5OSjbIXz0tMfYerUUygouDiiTOFqQlmvH9kf0IJdgawl2NkdTrm0l/YW1+tq381wdCM5\n4+NANqKJANKA94QQO1G1iQBapJQXtk1EzZFEtME5YE7ZGHLsoEF/xu8/h4qKrSHHhmt52J56TeGa\nyCxe/G5rGQdr3+V33vkQFbaaY9v/8cdfo77+aVQZibuZOvVsCgqmuJLDKTyzoEDdQ9rAVJWz5sBP\nMv9gHHPIWD3NYMWKVcyfv4n6eruze+rUs0lOjn9+Skc2l9HtLeNPpDwDs7VlCyobx/r/zjIZaboA\nbn+IsQ3OFxFc8mHgwFOMsEx3A3t5+eZ2D0bBg7EKdQ3UA6qtzScra6HhbIY+fWZw6FAgdwCeo77+\nEgKtOO8FVsWkkGKJDDJ7CCzz+UIitqZNy2bixHPJzn6UDz9UPSKsyqW70hG9No5E3JiJRmNXCF8D\nB4GPpJQNiRUP0GaiuNJeOWMxBbgppheI3Z+EWh1UM2jQcRQWDmPu3J9HPDZYLqdy2E5ln2MpnHfg\nwBfMndsf9bVPAv6GiiYy8yAa6dfvXg4cOA+AU0/9K7t3z8KaJ5GefjcbNsxwVcDNpNfHexhwzg8d\nt83gEZ7iJlfPxPRtNDU1R6zLFInYlX8hELsJqiv12ohEN/qtx2QmchNNdBdQgwqHmAW8DCwC3hZC\nOPe90/RYgqNk3IV1hsfj8XDRRb2BeaiomSXs2nU8b73195jlUjN4e8hnbu6ImJukmyao/PxRrF9/\nELgQqEfZ3mej6heZ5/Bw4EAG6enbKC72sWnTZNLTn2qVAZ7H672FMWOedyVDyvQppA1MdVQE3+Bz\nkjjEU6QCDcBaamvfdzyXtTn8jTeOo7q6Hr/fT0XF1piaxMfSZN5c1RQXryQvr4Rx48I3xNF0Pdwo\ngyRgqJTycinl5agiKPuBYcDtiRRO071xG5e+evVfgHsIhGHOZs+e/SHH5uaOoLR0I6WlG8MMSGZB\nuU3AWqZOPYWqqu0hyqu8fLMr+SsqthoVRrcSqFmUjDIJrccc7GE8Xu+9JCcn4/F4GDr0S1Ti2iZD\nnjfZtes2IinQtIGppA1MxbPqpRA5Ls+7lyQO4SOVQB/oEiCbyso7HAdou9I+TF1dX4qKJrhWiKHn\nOQxspLZ2IOXlr0Q8ZvXqJior76CoaEJM1wrG5/M5ft463yExuFEGJ0kp95gvpJT/B3xLSvl54sTS\ndFVi+SG6jUs/9dRQm3h6+rdsx5rhpOFmqAG5egE/IzNzHwUFFzvKtXjxu20eoEzOOmsjasCfhJkD\nYDafqa6+HVWh9GeGPM7lICCgBJzYv6+R/fsaGT58sMPWkbhfnVkL9bVlNWfWYhoDZLN48Z6wzy9e\nK8dIKxKd75AY3CiDPwshXhBCZAshcoQQLwBvCiGygS8SLJ+mixHrDzFa9rHP52PYsNPweOZiKpjU\n1Hk89NC1tmOdZvjWQSacXPn5o0hPn4/dbHOn7dhwM9Dc3BGkppYA56MKzAUU4IoVv2b06HrUT+iQ\nUaE1ySLjV8CDqJLRs+3Hj3yW22df4agEDp/4rVYlYFJQcJEtSU71U4gczGdX2m3vEaCeXzFQQMAp\nfgOzZj0dYYXWfqIplWjfK03suClhPd34uw61VtyE8hmMQX1DNEcY1rBOcyCFtsX1B5zRPgYMuI1z\nzz2OsrKb8Pt7t0su63tTp55CUdE61Nd9EtDIH/+4mdra97n33nyuu+5PjpEpVVXbjYbtW4EBQDU5\nOX/liSdm4PF4WL9+Eo8/Hlyh1YdK2jdjQBcDrwB/J4u7WU8JbAuVveHldfgzzw17X8uXT7A0kbma\nyZNfjFgd1BqV5PH04oUXAi1MY6kmqp7f2RQVme/4gOVUVt5BZWVoJE9HVy7VIabxI1LV0hOllHuF\nEKcQiCQyabGajhKMjiaKI/GUs71JRuGiQm6/fYJj28u2RqrYj22gd+8nOHxYZTp7PPfj8/0KlU4T\nkMEscBeQT2XrDhhQQ23tXPr37x/yLEMjmlT2bwvTwsq2/9PPISl60IeZpb1jx0cMHz6YiRPPdd1e\nsqrqz7zyyrvA1wwbNpjk5KNa+w1HOs4cZHNzR1gyvkOT2IIjeRoaGpgzpxTAscpqOKzP083n3d7v\nnxNulEs3+q3Hre3lEtSnvhXnvIL0WC6k6Xl0ZJJRe5r5WFtIPvXUGj755NlWmX2+IpQ5x5z6+oyG\nMmoQXLhwPl7vDZglKurrs8nKms+WLVMIhI8GrmOdRbfwjbAyWc1A0Qh0S+sLqBl5Tc0Sli+fELUE\nhwrbvRb1Uy7jT3/6iKam2wBP2Ph8pzh+lWhXY/RuDl+x1eczK8reAeBYZdUNbj7veH//jvT8hbA+\nAylltvHvICllevBfx4mo6anEGhXSXjvx6tVNfPLJxJD3Bwz4pyFDI6mpj1FZeQezZ+cwefI6Jk8+\nEXgcqwPW6705rFO0oOAiWuij+go7kMQdjMx4IiZbu+qW1mCTYdu2KVEds4FoqEAUVFPTj1Dzu/DO\nXSd7fVXVdgoLx7BgwfSIn1k8Q4872i8Q77Dp7oabTmfHoeLYTgeuNP5/q5TyMzcXEEK8A5iRR/8E\nfg+UorJ4/grM6MQieJp2kJs7gvvvD3ThSk2dR27u5ChH2Zfi5owTEtO608QeIhnIdPZ4ipk+PZN+\n/VayY8dHtrpEtbWFjBu3ivT0JrzeKBf44gvSTvu246aXGUcuK4EFwDTq6vpRXr6KadPc9URYvHgP\nKqK782nLCs1tV7lY0Z3V4oubaKJFwA6UB60J+D9UcHVUhBAeUI1yjL9rgfnAnVLKUShfxGWRzqHp\nugQcrJuATTQ23hhSqz+Y4JDByZPXkZ8/KubZn+m4XrRoNYsWrYkY2eLzBUw/1ub2/foV4PP9iuLi\nyaxe3eQYwpmcnMyGDTNsEUnW2XC/Rx9S4aEOiqB+x3t8vGcfZXkjUGGoMzHLcbsNb1XJdLeg+hkE\nEupGjlzquIqyRkaNHXsmKSkPEIikmscxx7yFio4KvxKLtmKLNGMPLRe+iJqaz2NK+nNLvENMj/T8\nBTfRROlSyj8IIaZLKX3Ab4QQ/+vy/GcB/YQQG4xrFQHDpJTm2msdKiqpKlbBNZHpuCgLs2kMqB+R\nnYaGBm67bQm7d+8jLy+D5OS+7bbzBmy7P0dlA6vViJONN7DvTQT6D5vN7Z/AzAGorc1n3Lg1ZGaG\nzjQ9Hg9btkxxrBd0tIN8Vn+AB1iwYDrvvrsUr3cs9vDWTTHcd0CJ5eS82xrRZEX1g3ihtW7SwoV3\n0dRUhNnhDW7ktttepl+/Ta334eQvqKjYyrhxKYwbt8ooYRG7fybQuW6Are1nbW0hs2aVkJl5Rsj3\nsi2RafHsrNYev1RPwI0y8AshjjVfCCEGo9babvgSeFBKucQ4bn3Q9i+AY0MP07SHjnKERVumNzQ0\ncM45pcaABDt3lnDqqfXAhHZd117p1LSjOysWu3noeOBBcnKaGTbsu8yd+zKmIlGK4uiwg4E56ESq\nHBrOKewc3upmUR78jHuRmbnPURH4fD6ysp601WbyekcSrKz79evXWqspuBpsvKJzrAO0Obhbqaw8\nk8rKS23fS+UkX8GWLQXGPp3jvD2i23a2tLRE/BsyZMglQ4YM+cuQIUPqhwwZ8vKQIUP2DRkyZFy0\n44xj+wwZMsRjeb19yJAhfsvry4YMGfJ4lPNoYmThwtUtcKgFWoy/5paFC1cn5FoHDx5sWbhwdcvC\nhatbDh48aNuWn//7EDngnpbBg+cZ/29uGT16Schx0QjcX/T7VPs2tsASY99DLYMHz2t5+OHlIcc+\n9lhl+IsGdgz9c/mcRo9eEtN9m8/2scdWtTz2WKXjM7bfZ1XQPX0e8qw/++wzQw71LM4//+nWcz/2\n2Kq4f2+C7xsWtcDBkPN35Hf2CCLqGG39i7oykFKuF0K8DYwAegPXSSk/dalrfgGcCcwQQnwbFYu3\nUQgxWkq5BRiLypWPSDeJ6e0ycjY1hdpkm5p87N/flBA5J0wYZVzDT1NTINu1udkp8zWZwsKTLfX0\nx4ccF03G7OwRhjknn4DpR61MsrPzbMdmZ48gPb3YNmP+8MNZvPFGSch5fb7DtmN7ef/JgIyzHWX4\nYm4xx9xzp9rf5fMsLx9vWXWE3rddFudZerhj1Gc+BqtzPD19IWvWTGLz5k00NfnIzx/PokWbjdm3\nyoN4/fXevP56trH/fFRuRLLtvOE+C7emSPO+VVjqTVhbeJrnj/Sd7Wp0pd96JNLSUqLvZMFNCevj\ngHzUGru1r4GU8t5oJxdCHAU8C5xqvDUbVf5xEaoh7PvAtCjRRDrpLEYiJezEImd7/Q4BM9Ec4515\n/PjHx7By5f+ELU1RXv4K7723m6FDB1FQcFHUpCi//xCQFLE886JFa2x2a9U9bCWrVzc5PqNjr8yl\nz2uvOl53/6690K8fEP4zN++jrk4CkJEhonY4C37WTm0zo5WrDrTtfJX09G1s2DAjJDnOnki3BqVA\nYu+C1haTUqTvpc/no6Cghi1bro567c6mK/3WI5GItpdbgU9Rhdxbd5ZS/jbsQfFFK4M2EG4gdytn\nvOzHpgPZ6/03p5ySxk9+8kPHQd6eWKXs+CNHqsQqoF1KKdwgFHxeN01krDg9y8B9JGP2RYYyMjKa\nWbHiStcD67hxqSEKLFrNfjefuf1ZhGYTh2vxGUxbewpEmmCkpCTz+ONrol67s+lqv/VwJEIZvCel\nHNouqdqHVgYxEG023xkNRNwoFnW9owjug1xcvIrVqxuNyKFXSU+vbZ3xRrqe257JQNiqoQBJRoRU\nevp8NmyYhMfjMVYkfjyeXrzxhmT48NNbZ/6LFq2mqOifqEVwaD9np+fn3Pc4/MolVoIHWaB1VVVT\n87mtZpHbaySiwUxX+Q1FoxvJGbdyFCZ/FUIMl1LuaKNMmg6iq6bTt6dswI4dHxphoSuAArzeS1vL\nQbiZZVufge16LS2kneAcyHaIZPpSidWE4vXezJgxRZx44neNrF5Q/oqbqKxcRnX1csrLc+KWIJac\n3CcuYY7honTMZ1FQENou0w064avnETa+TQjhFUJ4gQuAOiHEx+Z7Qoh/dpyIGrfEM52+oxNw8vNH\nkZHxL6ylnkeMWMzhw37gMWAibspBRHsGfV7ZoJLEHBRBw8oaHpz3En350vHcu3b1DynvoEo7XENd\nXRoTJ/4er/d7QAYqUd9M9nqO4cN3t2biBiddqXt/BpVuU0VGxqLW1YvZca2iYmubSkZXVGy1OIxD\nm/u4KfngVOJb9xToeURaGVzQYVJouhzxTMBxM4v0eDysWHGl4UCez/e+dxLr1rVQXX2XsUcZKkrG\nbCQTW43+SKagB0tWQFIS+T/OIP/HGLLmo5Llbzb2eh5wajIDKgLHy86dC4zXjwLXo2zyHwCnsH//\nXoqKfgk4r9iSknpj5gMkJS0JnDkBq73Fi9+N6Jy33VmE6x/RMfk9kKg+gy6A9hm4xE3Z3/bI2Z7o\noliaqq9Zs52NG9+x1Qky7e7Kp/AcxcVHM23aOMfjrc+ghb5hZfp4zz5HXwaoGfWBA19QVvY3vN6f\nABdy6qmPsXv3QKDQOMNzqHJdvwfuDZL1QeBWlPKqIlLZ50j2d6cy2nl577FgwXTX5aezsyv48MNZ\nxtYFwGTmzXvdlTNahYPaP4dENZ/vCr8hN3QjOePuM9B0ExKZTt/eGaqbWaT9Gl857PEBalC6kuTk\nTQ7bA8/gO6eEVwJmpnBF6cYQX4ZZQM6UdcqUS42BdRMHDpzC3Ll5qPIOfiCVs866g5NPPo41a4Kv\n8kPUauJK0tO34fVehMqYBlUbKFbM1pMFVFZmhy0N7fQ5XXvtidxxxz2oVpnTgWX4/U6FNJzOoYeI\nIwV3OfGabkOiyv621x8RrrVk+GtkYfUfpKbOA36J6m9c4ey/+OIL0gamOoaINl86no/37OPBeS9R\nWrqRhoYGS/G6AMEF5Kx2+3XrmlC1kH4GXMr5539OTc1v+clPfmCTVSmBLOAa8vIWUF19LampC1AO\n6TGkpj5Gbu6I1mtE8s8Etq3H2noylvLT77yzB7VyuQyV93kNof2qwp3D/jkcacXbjiTclLCejMov\nML89XwMHgQ+klH9NoGyaHkLbVhUe4Ery8lRRs9zcyVRVORdY+8bTT3DM3Xc6nqV+x3t8fcqpIS02\n779/AY2NNxHsFwhXQK6iYit1ddbOr34mTjwej8dDcnIfYJxxru+jag95UIPnGaxb9780Ns7BXIE0\nNs6mqipgaom2ohs3LoUDBzayc2f0ktdO9OoV2kLUzCWIjv1zONKKtx1JuFkD5gA/Qhk+k1DGz/8D\njhZCvCilnJ9A+TRdhGhO4Eg+AbehpaHXqLDZxoP3j+QUDi4aZ5dho2VwHoIqnhtaQM56TyrTGQKF\n3w61mqqU3C9SW/tLVEe0XgRm0XmuVlBOZjS7AhtHamqgd0S4UE6nz2nhwuns3u0+DDTa56DpmbhR\nBt9ClZ1uABBC3AOsBn4CvI2aDml6OJFmr8Ez/5UrnyEnZ0BriYhYr7FmjVlLx3kW6lYJ2AfzcNFH\nY1FmnUB9o/z8vJB7GjlyCRkZz1BXN611v8LCa2hq8luezSb8/qPx+5exc+cuhg8/3XhWoQN0bu5Y\nW7lmCM2yDjb5NDbeGHWG7vQ59e/fPyZf0pFeyvlIxU0G8t+BM6SUXxmvk4G/SCl/KIR4V0rpXMkr\nfuhoojiSCDlDI16exywpkZmp+ucGGqpHz3QNJ2MsK4HgwTwj4xk+/bSRXbtuNWR8HLjd2LbIprw8\nHk+YrOBVQEtrU/pbbskNKRrnpETGjzdzGlQNpUCD+YBsSUm9W5PZzKimcPWJzLwDa12m3NwRrY2F\nQjKsj+DvZiLoRnLGPZpoJfCqEGIZqmrpBKBSCHEN8O/YRdT0bDYT6DHgo7Z2IHPmlFJWVhi2vWWw\nicnaaD7p0085fqhzfP9/nl5Cy+WhPY0h1DRVVzeNnJz72bXLNAnNANZGDdO002KUiFBN6TduLKe8\nfLyDSeznqCJwH7Bt22ls25YE5NoG+UCPhc1Gf+NA+QrTjBZuRRHa2Mf0gaiCgB2Red5xzZM0HUXU\naCIp5a9RQdNDgEHAA1LKu4C/o4ysmiMIp6ggezSMOVM2QyGzqay8w9beEmg9R0NDg60NptkW8RuP\nzSdtYKqjIuiLjySauW7DJ46RSYE2l2sNORQZGWeQmfkpKhqoH5mZ+1oVQfB9OUX4QJLNbLNly9Uh\n/gA1W38R5Ve4FWgEPgQOB0UAmc9nDOHKVzhl+VZVbTdk2EpA6W61+EAS38g9uHWp21aWbiLKNJ2H\n2yBiL2qFkAQghBhlaV2pOUKIFBVk2phV8bMlbNt2IoFQSPts13qOhQvvsvUaeLP2evjG9Y7XV0Xj\nAiaTysoz2bu30jYLDsh4h7FfGXAlmZkVFBTkUVBAiC083H0F283dDbBJqGqlppzXoJTSZpQSUspz\n4UJrjwUzfNPut4Cu2XmrLbWmumrdLE2AqCsDIcSTqG/zvcBc46+jyldr4kx7ZmeRcg3MQWvatHEs\nXz6BnJx3Q473+/0h51CtGaGFJFrCxL7v39fIx3v22WbqZiy/VYaGhgbGj7/Hdn4z1j+4hII1D8Nu\nttlIbe1Ali5dh8fjsTl3c3NH2GQYPfr5EAd5+JBNf2uMvmqDaXW1BcI3o9X5CaxYzicQ/38+qamB\nWkhdMRcgnnWzNInBzcpgDCCklAcTLYwmsXRUn1mPx0NGhqC6OjDbVaUbgrNeW2jBOcTx4M+v5osF\nT9nOuWxZHrNmlVBZeSbWWH4wG+kspqnppJBzZWae4eIefZiVUQEeeGAuEybs5brr/mSbzZaVjW31\nfcycOSnEgZyfP4qnnnrIcFSb972XnJxDPPHEzFY5CgouYvVq5/DNSI3hPR4PZWVjmTNnAYcPH2bY\nsAr69TvayMPomOgfXbG0Z+JGGfwTnancI7BXsIytlDTENggEErHMshGqhER+/ije+ePveHHnXMfj\n/v3K63zrovP4Iky0xvDhg3n33Vq83gtQDeKVDL/61eM0NZ0CXEU4k4sTPp8Pv/8Q/frdxoEDT2A+\nG5/vHq6++iaj+FzgeZnJYmrA3myEwAYGbI/Hw7RpgygqqkH5CgRwJeedtylkUHcK34xmTvH5fEYk\nkjKD7d//LMuWje1Qc1JbQk9jVSDaQd3xuFEGnwHvCyHeJOCNa5FSTkmcWJquiN034AdSqKjY6vhj\nDSRiFQLqxz/9/+0g5ZQreNHh3Ps//RySkjgKHGfG9kFyAgMG3MfMmaczZYoaiHbv/g9wF2rgvhpY\ny0knvcSyZY+EHUgaGhrIynoSrzcTCN/lLJhoA3ZBwcWsXl1Jbe0trffuNPA5DeBO9vhZs8zcglHt\n6vnujwMAACAASURBVA0RT2JVPrEoEO1f6BzczPjXA/cAG4Atlj9NNyM/fxSjR5fTHtuyaUdfvbqR\noqIrHKNJzFnduHGpFBevpIW+vFl7PSnPLgo53/59jSpHICmp9dhLLnkhJFKlvHyzzeZcX/8bysoC\ntYXy8jKtUgKXMm1aVsQBJyvrBcOJeylwMnA/1lpIzz9/c0hEUW7uCGbNepra2hNQPgZl//7Vr55M\nUK1/H5WVvZg9+ygmTlzumDwXaznvzsJt3SztX+gcwq4MhBAnSin3An/CXpsILL2QNd0Hj8fD+vWT\nePzx8LMzN8vzSLNT66yuhT6Ocnx93HHUf7DLcZuTKau8fCWLF+9EpbgE8HpHMmvW02RmnsGECSNZ\nurSEPXtUuYbhw59hypSrwj6LioqteL23EIj6+QWwkrPOuonTTvsWJSWFIZm7ubljbSYaKMcsYVFd\n3cy///1HcnNPbE1ea8tsPTd3BE8++Wt27/4mkA78A1DXq6srY+zYZkaOXNLaqhKeo7q6mYICX9jc\njZkz21bTSHNkEclMtAQVLL2F0MG/BTgtUUJpEkek5b3b5bmKpV+L+vpchHWBufz5zSo8lNDw0MbH\nn6b5qthTU3bs+Aivtwg1+F5tvLsAuJ7KyiQqKy/kvvseoqnpRFSdIejVK/b5Snr6Tmpqfhti27fm\nRliVoGmOgv8CN/PWW8/y1ltKYTnZ+qMpWZ/PR0FBNbt3fw+VQ7AWpQgCYao7d5YwfvzpbNtmJs9d\nTV1dL5upKPhzXLMmNDmuK6Md1J1DWGUgpTSnE7+SUq7uIHk0nYgbe7TP56Om5nPgCuOdMjIymrlm\ncDppA1O5NeSssODe55g0PTfq9ZUz18/pp/+Gjz46B+hDRsYnDB8+mMpKD2oWbvYSOBVVFO5qYDNN\nTcNQ5h4l+/bthxxltzZ9sQ446emPsGHDjDYMmB8AN6GsqYGVRrjVEoRXsqoy6smW+wj9eQ4fPtgI\nXw3cqxlRZT2P9XNUyXEd71doK7o2UufgxoE8D1WYTqOhomKrpQ8wlLKFyXXP4xQhmkSzqkNUeEnU\n8wY7iFVE0FUkJf2RiRPPtYRh/oz09EcYOvRLqqtvx2yDGdv5Q8NE8/OnxBwRk5o6j8bGG1ErozrM\ntpXBuHX6qhXXB8arLNSqKxAZNXLkUgoKAiuPjpo5d0ZkT1dMtuvpuFEG/xBCLEV9263RRM8lTixN\nZ5CfP4pVqwL26JEjl5KfP8Fx33AJYqDaSVZUbGUeNa5ndcEDphoAN7Ft2xSqqmqCZopKvv37zWil\n80lJeZimpv1YB87c3OzWqCS/3x8yIFt7CrgheMY6bdqveOqptezY8SFnnfU91q8PPLtYB+jAimu2\n8Y7KnB4x4iCXXlrBzp27GT58sKMcwc84N3cE998fKHd97LEPkpt7DVZiaUPqNrLHPKdyaLeQnNxH\nh4V2I9wog3rU1Gdk0PtaGfRAWloOY9rd1f/t3D77CqPWp52/ZGZx8ssrADVXj/eszoxiqqjY2hrO\nanfuTmXFijfYsaOE4cMHM3Fitq0yaHr6XQQ7oN3Q0NDAnDmlAK1OZfPe+vdPYdq0bKapqtZMmeJz\nHKDd2MDtKy4fcDxDh85myZJbjcQ3VRxv8eL5bNgwySYHhJbrbmychZnj8fnnM6mq2hTWp7Bqlaqs\n6jR4u13VBJ9TKbNxVFa+qMNCuwlRlYGUstAoW30mqjHte1LKrxMumabDCXTzMit9Krv7LyaM5Pjv\nnux4zDn8mXcYzry8mtY28W0heFViNps3VyfhZqjWQWnatHGtA3PA2asqg3q9wxg0KJAZ7Gbm3tDQ\nwPDhZTQ2qmiezZtL2LFjMv3793fcP5xpI7h2E6SGzc+w9jp+771scnLm4/X+EvMz8XpvJivrbrZs\nuTVsP4mA4jPNVpF9Ctu2TTEc0pe2OaY/3Mqus/IgNLHjpjbRz4DdwDNAKcpsNCLiQZoewTm8ze2z\nr3BUBOePfIokmnmH4XGphePxeIy6/+tQUTQDgFcZP/5Yx0Yv7mLPrZVB82hpOUxx8SrXsf9z5pQa\nM+yNqO5oN7auEtpyfyo/o4miogmtORQNDQ2Ulm7E7z/EyJFLCO517PXeDLxqO5fXO5Ly8ldaa0wt\nXbrWyHvYCBzG672T9PT5RKqhFMpROD3XSP2ZNT0LN2aiR4FLpZTvAgghhgNPA8MTKZim4zHNGRfX\nfsK93Ou4j9lE5gWfs0mkPagSFvYomeTkmjadK7QyKOzePZvk5PCz1GA7+uHDfgI9AwDKjPfCH2tt\nOOPG5JKVdbcho2pyk5PzLtXVdkf0gAGbqa8fa7x6HhjH4sXPGnkSPjyeh4DfGNtLgWMZOvQgU6eu\nJDm5T0gNpWCzlVqFXY0TbiN7nM95pQ4L7Ua4UQY+UxEASCl3CCFi6qCj6R58e8RZvLk3tF/RwWuv\n44vfP2R7LxHRHpFs67HGnpuVQYuK3F3byQx18cWDqK4OJMDBNQwbtizCsdaGM+7KKKhSGIEGPMXF\nK9m/336fzzwzk5ycu40Kr1eQnv47i5LbiM/3G4uMk4F1VFcXGXWL1PWtyiC4rEhV1Re89dZ6ADIy\nPiE//8qQZxntsw4tVXK0UYtK+wu6C26UwZtCiIWo1cBh4H+Af5qmIinl9gTKp0k0LS2knXCs46aG\nlTX4zx/dYaJE6oHcltjz0Mqg4RWI06z9xBNLQvbr16+f7bXP5zPKU5yJvctbIHtarXhCcxsGDXqY\nXbt+FXSFJMf73LLlVmPVsgm/P5qSs5p8arj99lDHuTnAqyimlZj+haSkJZFOHBEdDtq9caMMhqIy\njh8Net/8pVwQV4k0HUJSU2NYp/B//r6blv7f7GCJFB6Ph+nTsx17zCayOJodH7Cew4f9ttIPpjIx\nTUIeTy9eeOFTtm0zy1Pcgz3XwMfixXsMc05obsOBA99m7txlBJf5Dr7P0LagWJSc6mVghpFGMvk4\nEZw3sm3bFO3wPUKJVJuoXEpZAJRLKds+XdB0Lf7yF9KGDXPcZFYO7QnEmigVMEPlozKbJ1NdnU1G\nxjMUF68yfABqVREwJ60FAgOpKh0xH7gZIMicE5rboHIgxhBc5jv4PqJ1YTN7Gfj9fqqrm6mr60XA\n2avt9Rp3JLW0ONdwEULsRpVx/A2qNrCNDkw6a3GaJXY10tJSHGezXQXPs4tJmXNLyPv+YefQsP5P\nnSBReNr7LIMHULMRfTSFYJp8Kiut9YAOMW+efQCfPTvH2L4GNZgH9s3JuZ+MjDNITk7G7/dTVDQh\n7LkCoatqVp+aOi8kdNV+PXWOuXOX8ctfOpf3cFKCkZ5n4FkVGs+qtNPyArr6b8ikG8kZ08wukplo\nOjAROAZnU5BOOusGHJt/OX1efSXk/c+fq+DQJZeqwSNMV62uQFtKIbitsRR8Xo/HQ2bmGVRWupXO\nXi4iM7PU1s3M5/NF9FlUVW23JIcdorHxe8yZU9ra8Swcv/99LZMm/dQx36HjTGmankYkZXC7lPJC\nIcRdUsr7OkwiTfs5fJi0b4Wx+e/axf5+xwHuSg20tS5NPOrZJKrJSaTzRotasm/vRUZGMzk5ATOS\nm25mdjwopaISzSorL2PvXrs8JSX3UV9vho4+T3PzA8yZs4A//OGmdj0Hq5zaR6CJZCbyor6hU4CF\nqH4GZl+DFimlcyB6/NFmoghYB92fjx/Gyd93riy+/1//gT59bHI6mSCsZoz2mFvacpyJKWM0+aJf\nv9C4finPPHMBd99dweHDfg4f/po1a36MKgbncbzvSIrM3J6S4iE7e0SblVNAzoEox7PzfU6d+iDV\n1edgLRmel1fiWhl0I7OGljOOxNNMNAHVxBaUAkiy/F/TBTAHk3/X/pS3Gclxsz+zbff/aBgNG15r\n8/nb2mIxXq0ZnTp41daq7maRVhvBM/KxYy/g3HOX0dh4E/YkskeBaUC/kOMjyWpub++gYMqp/BTh\nG9A89NA0XnvN7lsoKSls83U1Gici9TN4B3hHCPGWlHJdB8qkccmfi5/izdq5Ie9//sflHPpZ9LLR\nXbGJiM/n4+mnt/Lf/zby8sv/wWqTT0kpobLyJiorPVFNRtYB/frrHzXqC23EmgcAs4B7yMg4OSTR\nypQl0aWbPR4PCxZMZ+/e8J9D//792bFjMnPmqGhus2CeRhNPIuYZCCFGA7cKISqMt7YD90kpdUPS\nTsSz5BlSfn0b+Zb3PmUgP+bPzJy3k8KfuZuBR7Npt1VZtPU4u3lpLSqG4TBmQ5umpu8BKUA8G8Fn\nMHZsk6MpKN7+inDKxY1voX///nHzEWg0TkTyGVyI6jN4P/A60AfIBIqA/5FSdlQ8ovYZAHz1Fcfc\nfhPf+KM9iKu2/w+4qOENDtLPVVhgrHJ2pAM5WtimKmJ3WetrN/4DsIZw3ojKITCTvJ7HLO9grQIa\nKovz9WJ5lu31o7SHbmTj1nLGkXj6DOYC2da6RCiz0TaUsfX82MXTxErSZ//l2CsuI/m9nbb3D8y6\nlS/vvJuTm5v5bcVmIDFhgW2NNGl/hEpol6+WlsPU1alyzBkZi/D7B1BaujFE2Tgpolmzvs3DD0/j\nwIHvAjOBsajWncvweu+komJTwiJqGhoamDjx9+zceRLwJdBfl3bWdDkiKYPUIEUAgJTybSHEcQmU\nSQP0lh9w3PmhlcIbn3mW5txArZmeFBYYOWxT3bPZE6CmpreR0GU34QTPwFeufIakpN5GyYUCVFXP\nvqg4iD8Bzq054uVPCaxKFhjvzANmEOy01mg6m0jK4GghxFFSyq+sbwohjgJ6J1asI5c+G9ZxbMFV\nIe9/tvl1vhp6VsRjO6NXbTwJLVR3Zcg9FBaOobR0o62ejioIp5RGbe371NYGMojr6k7CHrapqnpa\nzU3p6XeTn3+royztTcZSPRGsGc23Aw+SmZnW6c56jcZKJGWwEVWMrvVXYiiCR1EGXU28aGmh36MP\ncfTv7bl9X50+mIaX19OSlhb1FIlK0OpoIhWqi8Tixe8adYDc1F60M3Xq2Y7PKXrBuJSYrwVw1lmf\nsGzZdd3us9H0bCJ1OpsDDBNC/EMIUSGEWAn8AzgN5UTWtJfmZlKnFJB2wrE2ReC7/Ar2/+s/fPbm\n264UAQTH9rvtBNY9Ce6+lZ7+CF5vEeres1C+BrVtxIiPjQ5i6vWgQQ9z6qnvYe3cVVBwEaAGe7N7\nmM/ns13TVLazZ+e0dikL3seJkpJCUlNLWq+XmjqPFSt+rRWBpssRKc/gCyOiaDTwY5Rx9REp5Rsd\nJVxPpdene+mfPYbee3bZ3v/invs5OOPGzhGqGxFswvH7T6GoyBxcPcCVqOqh3+Oyy46noOBii7ln\nKkCI+Sfaysopka60dBMTJoyKaJ7TOQKa7kLENbWUsgV4zfjTtJOj/vI238wKrfn3+Ysvceii9jmB\nu2ICWVswk86UzyBylrG1fIS1IBy8BNz0/9u79/Co6juP429wA1MtYGXx9rjbpg/mV12vSOGJl6KC\nsjXeFeGhhIuCN/qI1VaoWKu7Zb0VrFoXrJeCuGsEJRQQBWQRyi6E4rbqevlqa3T71KIsdzCBCLN/\n/M6EmcnJMBNmMifJ5/U8eTJzZubMNzM553vO7/x+3x/QmZKShaEX2dPvt3TUdDbNcxojIG1BpmYi\nyZOuc6vodWT3lEQQ79qVzf/1Bhs/337QiQD2Hy0/+ODCrCd8b22ZmmESjw8dWs1NN12YU1NM4m+f\nMmUepaV347uMds7r5O1hE8OPHj2wQzXPSfuW+9W2HDnnjgTewHccPwxYBHwQPDzdzOYUOoai2LeP\nw+79CYdOfyxlccMZ32Zb1UvEe+S/qSDK3UyzOYI+mJpGsViMceMqqKwcSFWVnyDmQD2A6uvrmT37\nNdav/yOnnvr1lFnN+vV7itWrN7BmzbuNTTsq9SztWUGTgXOuBHgCP9KmE3AGMNXMphXyfYtq5056\njBxGl9WpR4d1o6/zk8ofEv1euYXootrSHf2aNe/mFEO2CbG+vp4hQ+ZQU9MVmER1NfTrN4MpU+bR\n0NDA1KmfsW6dn9Np+fIHGiedSV93e2meEyn0mcFD+PLXPw7u9wGcc+4y4EPgVjPbWeAYWkdtLT1P\n70PnbVtTFu/4+SPUjxzT6uEcTBmJ1uqimr6jT9+xwrNUV9/Khg3P520eg8Rn0tCwh5qa44CLSCSo\ndetu4OqrF7J+/Yfs2HFX4/Lt2+9g4sTwktGaHEbai4JdM3DOjQY2mtnSpMXrgB+a2QDgI/wM4m1a\nyepV9DqyO3zzmymJYMuCJWz8fHvREkFLukFC4bqopre5J3b0ybEldqzDhk3DDwwbAXRjzZphTJgw\no9lrDdmor6/nmmteavxMfvWr2iCOg5c4Gxk9+kIlAmm74vF4QX7KyspWlpWVvV5WVrairKxsS1lZ\n2dqysrKjkh4/says7LUs1hVNv/xlPA6pP0cdFY9/8kmxI4tPn74oDnuSQtsdnz59UcFfeyB1dXXx\nYcPui8P8ONQ1u/7UGOri8GRwf098wICn43V1dTm/96OPVjf5u+CmYN2747A73rv3/fEtW7bEp06d\nE4/Fbo7Dtjjsjvfo8bP4li1b8vIZiLSinPbZBWsmCo7+AXDOrcDXI57vnLvFzH6Hv6C8Ppt1RaZC\nYDOVQ3cPvICuC+azcddev6DI8e7Y0fToeceOejZu3EGvXt348583Mnv2ctav/5C+fXtTWTmo8Yi2\noqIf5eWpbeAVFVfk7Tvo0+d4qqr2N80kx5ZoxonFOiddzH2V5DkIVq4cwWOP5V7gbcWKt/FlKZIN\nxA+fGQ+cz4gRR3PRRXOCM6PL6dnznznrLD+5TEPDIU0+gzZUvVJx5lFbijMXrdm1NI5PCA8HyaEc\nXx478jpt2czhA8+h17FHpCSCXbf+kI2fbWP78y/BodEpPBbWDTLRxTLRXDJ58lVUV09i8uRdDBky\np0lTTaG6qDYXW3LT1i23XEw8vpcpU+ZxxRVv5+V9+/btTfLIZHgWnxyGAI9TWvomJSVdU5rINm26\ni7PPPlWDxKRDKHjXUgAzSx5pdXZrvGc+HPL+exzxnf5Nlm9/cia7L7uyCBFlJ9NFzZkzl6cUeYOR\n1NQspqpqVePRdqG7qF58cXeOPvqB4KzExzZz5tKU3kY1NeO46qqFB5wFLFuVlYNYsGAONTWLgXeA\n64HlwaPnMHbsaZSUlDS/ApF2rlWSQVvTXPnozctXs/fkU4oQUe6iNubA9+lfHhSUmwzE2LDh11RW\nZn5dIrHNnj2vsVkr03s014MqFosxd+41VFWt4osvjmPq1Bns2DEJgO7dH2DIkFHEYjF1E5UOq9mZ\nziKk1Wc66zZuNLHfzAPgy+PL2Dr/lQMWjGsr7YjdupVw3nkzGwdXwbP077+buXOblovOl/Tuqn4C\nveFA58bZw/Y/ZzRAyqxtzc0SBjTu/C+/vB+jRr2S1UximWYxy6VLblv5zhVnfrWhOPM201mHteuu\ne2g46xzqh1dCly7FDievYrEYc+ZclXKkXVl5WUG7RKYPOPNdRpcBF6TElWja6tYtRkVF5iJxzzzz\nArNmfUpt7W0ATJ8+jdram5OeM4wJEx6hvPzEggxaE2lvdGaQJ23oaKHV4ww7EofFlJd/Hnr0nh5j\n2Ot79ryJTZtmED5Hcj1+fuNRAJSWTmPJkuGNF4IznYXkQt95finO/Mr1zECF6iQvMhWhC5t/YMqU\nuiY74MQ6Zsx4OWUdYa/ftOkfm8RQWromeE5yd9QSamt/wODBj7dajymRtkhnBnnSho4W8h5nc236\nB5qkPpd1pJeSmDz5YmAuvskJSksfZsmS4UycOJPq6s7AHaSfiTz44N68NgF15O+8EBRnfunMQFrd\ngUpYZHNR9kDrSC75UFk5iPLy5/GlqhdTWnp3YzNQefmJwC342VkTYwqeA84vzB8v0k7oArIctIYG\nf+Tt/50GknyMsXXrVgYPfpza2nLgfKqrsy8619DQELp8/8XmRKnq29OK3T3PmjWj8KWv+gNXU15e\npW6iIhkoGaQpRPnm9qy+vp6FC7fhj9IBZtG//26GDbuG+vp6Bg/+92CieoDZrFkzjKqqZaGloOfN\nezqly+uCBbuprKzParL65OU+UayioeEUoJ6SkmWqJipyAEoGSVqzfHN7UVW1qsmI5ksvndc4qth3\n/UzuUro4dD2xWIxLLunB2rWv4P8tR1BTs0fdQ0Vaia4ZJNEUhvmRqaxDaenaZqeiLCnpgp9fIFFQ\nbg7V1ZNyLsMtIrlTMpCDkqkoXliX0CVLxjeOKk7vipr6/NTuoUrMIoWlZqIkmsIwd5mK4jV97NrQ\n8hLJzXEvvHAFL7+8jKVL36a6Or3ktIgUipJBEk1h2DK5ttFnmg85Fotx440VVFT0y0u1UhHJjpJB\nGl18zF6uA8kSZwDZUGIWaV1KBtIi2fS8au4MINvmOCVmkdajZCAtkqmpJxthE9yISPGoN5EUTFhP\no8sv78fQodWN024uWhT9Gi8iHYGSgbRIpi6lCWHVQefPX6exHCIRpGYiaZFsL/Cq3V+kbVAykBZr\nyY5eYzlEoknJQFqVuoyKRJOSgbQ6NR2JRI8uIIuIiM4M2qOWzsmguRxEOi4lg3ampXMyaC4HkY5N\nzUTtTEvnZNBcDiIdm5KBiIgoGbQ32YwMzufrRKR90DWDdqal/fjV/1+kY1MyaIda2o9f/f9FOi41\nE4mIiJKBiIgoGYiICEoGIiKCkoGIiKBkICIiKBmIiAhKBiIigpKBiIigZCAiIigZiIgISgYiIoKS\ngYiIoGQgIiIoGYiICEoGIiJCK0xu45w7EngDGAjsA2YGv/8HGG9m8ULHICIimRX0zMA5VwI8AewC\nOgHTgDvN7DvB/csK+f4iIpKdQjcTPQRMB/4a3O9jZquC268Agwr8/iIikoWCJQPn3Ghgo5ktDRZ1\nCn4SdgI9CvX+IiKSvUJeMxgDxJ1zg4DTgFlAr6THuwFbC/j+IiKSpU7xeOGv3zrnVgA34puNpprZ\nSufcDGC5mc0teAAiIpJRwXsTJYkDtwNPOue6AO8CL7bi+4uISDNa5cxARESiTYPOREREyUBERJQM\nREQEJQMREaF1exNlLa2e0aHAo8BeYDcw0sw+L2J4QGqMZvZBsGw48H0zO7OowSVJ+yy3Ak8Ch+MH\nAI40s4+LF91+aXF2Bp7C90D7ABgbhRpWzrn/BrYFdz8C7iOCtbbS4qzFbz+PAV8SrW0o5fM0s+uC\n5ZHajkK+90n4/89IbUchcT5EDttR5JJBSD2jX+D/Md5yzl0PTMR3US2atBgTy04Hri1aUCFCPssH\ngdlm9qJz7lzgJODjogUYCInzHuBnZvaqc+45oAJYVLwIwTkXAzCz85KWLcDX2lrlnJuOr7U1v0gh\nJmIKi/N1fKKK0jbUJM5geaS2o2Y+z5lEbDtqJs4qctiOIpcM2F/P6Mf4jDbUzD4LHisB6ooVWJLk\nGHHO9QSmALfij7yjIiVO4EzgTefcMvw/74QixZUuPc46oKdzrhN+pPqeYgWW5FTgUOfcEvx2M5mm\ntbYupMjJgKZx3kk0t6GwOP9I9LajsO89ittRWJw5bUeRumYQVs8o8U/snDsTGA88XKTwCOIYTWqM\nJcDTwG34ekuR0ExtqG8Am83sAuB/8UeIRRUSJ/gmjUfwAxOPBFYWIbR0u4CHzGwwfjT9v6U9HpVa\nW2FxboTobEOB9Dir8E1ukdqOCP88exOx7YimcT4H/Cs5bEeRSgb4ekYXBOUrTgNmOeeOcs4NxR85\nXmRmm4oaYdMY3wL+AR/f88CJzrlpRYwvoclniW8zXhA8vhDoW6TYkqXH+SwwFzjHzE4AZgNTixhf\nwgcECcDMPgQ2AUclPR6VWlthcR4bsW0Imsb5deBbRG87Cvs89xK97Sg9zs3AC+SwHUWqmcjMBiRu\nBzuHG4ALgOuBc81sS7FiSwiLMekC8teBKjO7rVjxJTTzWU7Btxs+BwzAX/QsqpA4bwSWADuCxX/F\nn5YX2xjgFGC8c+5Y/M5/qXNugJmtBL4LLC9mgIH0OLsD5xKhbSiQHuf7wElmti9K2xHh33s1EduO\nCI+zhBy2o0glgzRxfHyPAJ8A85xzACvN7J4ixpVJJ3zcUXU78JRz7ib8UezwIsfTnLHAi865enzv\nl3FFjgd8U+CvnXOJawRj8EeJUau1lRxnHLgOf/QatW0o/fO81sz2BbejtB2Ffe+fEr3tKCzOr5LD\ndqTaRCIiErlrBiIiUgRKBiIiomQgIiJKBiIigpKBiIigZCAiIkR7nIF0IM65b+BHUb6D72PeBd+f\ne4yZ/aWA73s9sN3MqtKWzwRWmNmsLNdzCdDXzH6a4TmvAz8NBqmlv7a3mTUpE+GcOw74JzNrcfE2\n59xX8SPQhyT15RdJoTMDiZK/mNnpZtbHzE4C1uPrFBXSmUDXkOU5DcAxs4WZEsEB1nkGfqRwmF8A\n9+cSSzoz2wm8hh+FLhJKZwYSZb8FLgVwzg3BFzH7SvAz1sx+Gxxtb8LXhxoKHAPcix+KXwuMM7PN\nzrmP8XWPBgOHASOBI4BLgPOcc5+a2bK0969wzt2Mr0E0xcyeDI6yHw/e7xDgATOrCgruDTCzMUFZ\n40fxtaDWAicklRYe65ybCnwNX+3yT/gSHHHn3MfJZyLOud7AMUnlTgYBP8cfxH2CH/l6Fb40wrHA\ncfjk8ffA+cHn8l0z240vBLcWX/tHpAmdGUgkBXMcDAVWByV4bwAqzOw04AHgR8FT48CbZvYtfLPS\nfcCFZtYHWBo8N/G8/zOz/sAM/DwEr+ELjv0kJBF0AroGz6/A13UCuAtYb2Z98XVpJjvnSoP1x51z\nf4MvCjY8iGEP+88IOgFbgtfeAtxtZu/hd9DTQ5qkLsYnRJxzXfG1cEaa2Sn4AomjgnV/G5/kzsEX\nI1tsZqcG6xgMENQk2umcOyXjBy8dls4MJEqOdc79PrjdFagBJplZ3Dl3BXCp88V1BuCPuhNqhe1m\nPQAAAjRJREFUgt/98UfFrwc1eA7BHx0nvBr8fge4Mml5p5BY4sBvgtvvAn8b3B4EfMU5l2jDPxR/\nlpBYz8nAZ2aWKF72DL6+VmKdifkOktcZ9v7gSyW/H9w+Gd+M9haAmU2GxhLg/xk0Be0M/u5EwbxP\n8GcgJN0/Hp9IRFIoGUiUfGpmp6cvDJpm1uMvgr4OvAl8P+kpiclaOgOrzeyy4HUxfPXGhPrgd5zU\nHXBzbfl7AYJklFjWGfiemf0heI+j8QlneNJrks+403f0iSSWHkOYfYkYgIbkB5xz3fHXGeKkTVqS\n4SJxQ9L6RFKomUjagjL8Tuw+fDK4CH/Un24dUO6cOz64fxf7m4ma8yX++kK2/gO4GcA5dwzwe+Dv\n2L9jfw/4mnPupOD+cPxOPZMGwg/M/oSv8w9gQC/n3AnB/YnkfkG4FD+bmEgTSgYSJc0dof8h+HkP\nP1vTW/jmoBRmtgE/f+4c59xbwOmEz/UbT3qv14A7nXNXNvO89Nv34puJ3sY3x9xhZh8l1mlmDcAI\n4Fnn3Hr8Rd3mpplMrHMV8D3n3Pi0xxfh5yLAzOqT1vsmfiKY+zLEmXLfOXc40COp+UokhUpYi+RR\ncLH7fuBeM/vCOXcbvkfQjw7w0ubW9xL+QvM7BxnXBGCPmak3kYTSmYFIHplZHD/l4O+Ci+FnA/9y\nEKv8Aft7TrVIcM1lIPDEwaxH2jedGYiIiM4MREREyUBERFAyEBERlAxERAQlAxERQclARESA/wf6\nCNV0dgJTuwAAAABJRU5ErkJggg==\n", | |
"text": "<matplotlib.figure.Figure at 0x11cdcb350>" | |
} | |
], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "S = 0.6", | |
"prompt_number": 112, | |
"outputs": [], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "$V_A = h^2S$" | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "V_A = slope*S\nV_A", | |
"prompt_number": 113, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 113, | |
"metadata": {}, | |
"text": "0.50802737015030208" | |
} | |
], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
} | |
], | |
"metadata": {} | |
} | |
], | |
"metadata": { | |
"name": "", | |
"signature": "sha256:b8c444c132e1da090265380c3348714373edf4df144d9e9315c4f87534363b62", | |
"gist_id": "d08dd9e61bd736b6e0d5" | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment