Skip to content

Instantly share code, notes, and snippets.

@kogakure
kogakure / .gitignore
Last active November 19, 2024 13:22
Git: .gitignore file for LaTeX projects
*.acn
*.acr
*.alg
*.aux
*.bak
*.bbl
*.bcf
*.blg
*.brf
*.bst
@dadoonet
dadoonet / fr.sh
Created March 21, 2012 10:27
French analyzer for ES
#!/bin/bash
ES='http://localhost:9200'
ESIDX='test3'
ESTYPE='test'
curl -XDELETE $ES/$ESIDX
curl -XPUT $ES/$ESIDX/ -d '{
"settings" : {
@leon
leon / play.conf
Created March 26, 2012 12:27
Upstart script for Play Framework 2.0
# Upstart script for a play application that binds to an unprivileged user.
# put this into a file like /etc/init/play.conf
#
# This could be the foundation for pushing play apps to the server using something like git-deploy
# By calling service play stop in the restart command and play-start in the restart command.
#
# Usage:
# start play
# stop play
# restart play
@starzonmyarmz
starzonmyarmz / utf-8-bug-fix.sass
Created May 10, 2012 13:43
Best Bug Fix Ever via @smith
/*
* Yeah, so rake:assets:precompile will fail if this file is ascii, and something
* it imports is utf-8. To fix it, here is a snowman: ☃ (no, really.)
*/
@jtimberman
jtimberman / Gemfile
Last active December 14, 2015 00:29
source "http://rubygems.org"
gem 'berkshelf'
group :integration do
gem 'test-kitchen', :git => 'git://github.com/opscode/test-kitchen.git', :branch => '1.0'
gem 'kitchen-ec2', :git => 'git://github.com/opscode/kitchen-ec2.git'
gem 'kitchen-vagrant', :git => 'git://github.com/opscode/kitchen-vagrant.git'
end
@rxaviers
rxaviers / gist:7360908
Last active November 20, 2024 12:51
Complete list of github markdown emoji markup

People

:bowtie: :bowtie: 😄 :smile: 😆 :laughing:
😊 :blush: 😃 :smiley: ☺️ :relaxed:
😏 :smirk: 😍 :heart_eyes: 😘 :kissing_heart:
😚 :kissing_closed_eyes: 😳 :flushed: 😌 :relieved:
😆 :satisfied: 😁 :grin: 😉 :wink:
😜 :stuck_out_tongue_winking_eye: 😝 :stuck_out_tongue_closed_eyes: 😀 :grinning:
😗 :kissing: 😙 :kissing_smiling_eyes: 😛 :stuck_out_tongue:
@debasishg
debasishg / gist:8172796
Last active November 11, 2024 07:10
A collection of links for streaming algorithms and data structures

General Background and Overview

  1. Probabilistic Data Structures for Web Analytics and Data Mining : A great overview of the space of probabilistic data structures and how they are used in approximation algorithm implementation.
  2. Models and Issues in Data Stream Systems
  3. Philippe Flajolet’s contribution to streaming algorithms : A presentation by Jérémie Lumbroso that visits some of the hostorical perspectives and how it all began with Flajolet
  4. Approximate Frequency Counts over Data Streams by Gurmeet Singh Manku & Rajeev Motwani : One of the early papers on the subject.
  5. [Methods for Finding Frequent Items in Data Streams](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.9800&rep=rep1&t
@e-mon
e-mon / wn3.1.py
Created April 24, 2015 03:15
WordNet in NLTK version up from 3.0 to 3.1
import os
nltkdata_wn = '/path/to/nltk_data/corpora/wordnet/'
wn31 = "http://wordnetcode.princeton.edu/wn3.1.dict.tar.gz"
if not os.path.exists(nltkdata_wn+'wn3.0'):
os.mkdir(nltkdata_wn+'wn3.0')
os.system('mv '+nltkdata_wn+"* "+nltkdata_wn+"wn3.0/")
if not os.path.exists('wn3.1.dict.tar.gz'):
os.system('wget '+wn31)
os.system("tar zxf wn3.1.dict.tar.gz -C "+nltkdata_wn)
@graphific
graphific / 3_install_deeplearning_libs.sh
Last active August 20, 2023 13:31
Installation script for Deep Learning Libraries on Ubuntu 14.04
#!/usr/bin/env bash
# Installation script for Deep Learning Libraries on Ubuntu 14.04, by Roelof Pieters (@graphific)
# BSD License
orig_executor="$(whoami)"
if [ "$(whoami)" == "root" ]; then
echo "running as root, please run as user you want to have stuff installed as"
exit 1
fi
###################################
@fchollet
fchollet / classifier_from_little_data_script_3.py
Last active July 23, 2024 16:32
Fine-tuning a Keras model. Updated to the Keras 2.0 API.
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats