Skip to content

Instantly share code, notes, and snippets.

View chasemc's full-sized avatar
:octocat:

Chase Clark chasemc

:octocat:
View GitHub Profile
plot(protein_peak_dend$dendrogram )
z<-sapply(protein_peak_data, function(x) x@mass[x@mass > 4000 & x@mass < 15000])
z <- z[ match(labels(protein_peak_dend$dendrogram),labels(z))]
plot(1, xlim=c(0,861), ylim=c(4000,15000))
for(i in seq_along(z)) points(z[[i]], x=rep(i, length(z[[i]])), col = rgb(red = 0, green = 0, blue = 0, alpha = 0.1), pch=16, cex=.5)
server <- function(input, output, server) {
output$out <- renderText({
validate(
need(input$x < 0, "x can not be negative"),
need(input$trans %in% c("log", "square-root"), "trans blah blah")
)
switch(input$trans,
square = input$x ^ 2,
"square-root" = sqrt(input$x),
library(ggplot2)
library(data.table)
library(geofacet)
library(magrittr)
raw_data <- data.table::fread("http://covidtracking.com/api/states/daily.csv")
raw_data$date <- as.Date(as.character(raw_data$date), "%Y%m%d")
raw_data <- raw_data[date > "2020-03-15", ]
library(ggplot2)
library(data.table)
library(geofacet)
raw_data <- data.table::fread("http://covidtracking.com/api/states/daily.csv")
raw_data$date <- as.Date(as.character(raw_data$date), "%Y%m%d")
raw_data <- raw_data[date > "2020-03-15", ]
raw_data[positiveIncrease > 0, ] %>%
library(ggplot2)
library(data.table)
library(geofacet)
raw_data <- data.table::fread("http://covidtracking.com/api/states/daily.csv")
raw_data$date <- as.Date(as.character(raw_data$date), "%Y%m%d")
raw_data <- raw_data[date > "2020-03-15", ]
@chasemc
chasemc / script.R
Created May 13, 2020 22:23
Is Illinois flattening, or still not testing enough?
library(data.table)
library(reshape2)
library(ggplot2)
a <- "https://covidtracking.com/api/v1/states/IL/daily.csv"
a <- data.table::fread(a)
a$date <- as.Date(as.character(a$date), "%Y%m%d")
@chasemc
chasemc / lca_height.R
Last active May 7, 2020 22:40
Find the height of the least common ancestor of two nodes in a dendrogram in R (requires dendextend package)
# install.packages("dendexted")
lca_height <- function(dend,
input_a,
input_b) {
subtrees <- dendextend::partition_leaves(dend)
find_ancestors <- function(input_labels) {
which(sapply(subtrees, function(x) input_labels %in% x))
@chasemc
chasemc / bruker_bts.csv
Last active April 2, 2020 17:18
Bruker BTS Standard Masses
protein average
RL29 [M+2H]2+ 3637.8
RS32 [M+H]+ 5096.8
RS34 [M+H]+ 5381.4
RS33meth [M+H]+ 6255.4
RL29 [M+H]+ 7274.5
RS19 [M+H]+ 10300.1
RNAse A [M+H]+ 13683.2
Myoglobin [M+H]+ 16952.3
@chasemc
chasemc / combn_iterative.R
Created April 2, 2020 14:30
combn, one at a time
N=5
for( i in 1:(N-1) ){
for( j in (i+1):N ){
print(paste(i,j))
}
}
library(ggplot2)
library(data.table)
library(geofacet)
library(grid)
library(gganimate)
# Accessed 2020-03-24 at 9pm CST
confirmed <- data.table::fread("http://covidtracking.com/api/states/daily.csv")
confirmed$date <- as.Date(as.character(confirmed$date), "%Y%m%d")
confirmed <- confirmed[confirmed$date != "2020-03-24", ]