This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
diffusers>=0.5.1 | |
numpy==1.23.4 | |
wandb==0.13.4 | |
torch | |
torchvision | |
transformers>=4.21.0 | |
huggingface-hub>=0.10.0 | |
Pillow==9.2.0 | |
tqdm==4.64.1 | |
ftfy==6.1.1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
diffusers>=0.5.1 | |
numpy==1.23.4 | |
wandb==0.13.4 | |
torch | |
torchvision | |
transformers>=4.21.0 | |
huggingface-hub>=0.10.0 | |
Pillow==9.2.0 | |
tqdm==4.64.1 | |
ftfy==6.1.1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Install bitsandbytes: | |
# `nvcc --version` to get CUDA version. | |
# `pip install -i https://test.pypi.org/simple/ bitsandbytes-cudaXXX` to install for current CUDA. | |
# Example Usage: | |
# Single GPU: torchrun --nproc_per_node=1 trainer_dist.py --model="CompVis/stable-diffusion-v1-4" --run_name="liminal" --dataset="liminal-dataset" --hf_token="hf_blablabla" --bucket_side_min=64 --use_8bit_adam=True --gradient_checkpointing=True --batch_size=10 --fp16=True --image_log_steps=250 --epochs=20 --resolution=768 --use_ema=True | |
# Multiple GPUs: torchrun --nproc_per_node=N trainer_dist.py --model="CompVis/stable-diffusion-v1-4" --run_name="liminal" --dataset="liminal-dataset" --hf_token="hf_blablabla" --bucket_side_min=64 --use_8bit_adam=True --gradient_checkpointing=True --batch_size=10 --fp16=True --image_log_steps=250 --epochs=20 --resolution=768 --use_ema=True | |
import argparse | |
import socket | |
import torch |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
from flask import Flask, jsonify, request, send_file, Response | |
from pathlib import Path | |
from zipfile import ZipFile | |
import os | |
import argparse | |
import time | |
from io import BytesIO | |
from datetime import datetime | |
import threading |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Install bitsandbytes: | |
# `nvcc --version` to get CUDA version. | |
# `pip install -i https://test.pypi.org/simple/ bitsandbytes-cudaXXX` to install for current CUDA. | |
# Example Usage: | |
# Single GPU: torchrun --nproc_per_node=1 trainer_dist.py --model="CompVis/stable-diffusion-v1-4" --run_name="liminal" --dataset="liminal-dataset" --hf_token="hf_blablabla" --bucket_side_min=64 --use_8bit_adam=True --gradient_checkpointing=True --batch_size=10 --fp16=True --image_log_steps=250 --epochs=20 --resolution=768 --use_ema=True | |
# Multiple GPUs: torchrun --nproc_per_node=N trainer_dist.py --model="CompVis/stable-diffusion-v1-4" --run_name="liminal" --dataset="liminal-dataset" --hf_token="hf_blablabla" --bucket_side_min=64 --use_8bit_adam=True --gradient_checkpointing=True --batch_size=10 --fp16=True --image_log_steps=250 --epochs=20 --resolution=768 --use_ema=True | |
import argparse | |
import socket | |
import torch |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from video_diffusion_pytorch import Unet3D, GaussianDiffusion, Trainer | |
model = Unet3D( | |
dim = 64, | |
dim_mults = (1, 2, 4, 8), | |
) | |
diffusion = GaussianDiffusion( | |
model, |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""make variations of input image""" | |
import argparse, os, sys, glob | |
import PIL | |
import torch | |
import numpy as np | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import tqdm, trange | |
from itertools import islice |
NewerOlder