Skip to content

Instantly share code, notes, and snippets.

@chi-feng
Created October 18, 2019 22:44
Show Gist options
  • Save chi-feng/da9737be423b4e75e7aacfddf4ad6a78 to your computer and use it in GitHub Desktop.
Save chi-feng/da9737be423b4e75e7aacfddf4ad6a78 to your computer and use it in GitHub Desktop.
pagerank.ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# similarity matrix\n",
"S = np.array([[0,1,1,1,0],\n",
" [1,0,1,0,0],\n",
" [1,1,0,1,1],\n",
" [1,0,1,0,1],\n",
" [0,0,1,1,0]])\n",
"\n",
"n = S.shape[0]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# normalize columns\n",
"B = S / np.sum(S, axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# damping coefficient\n",
"c = 0.85"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[0.03 0.455 0.2425 0.31333333 0.03 ]\n",
" [0.31333333 0.03 0.2425 0.03 0.03 ]\n",
" [0.31333333 0.455 0.03 0.31333333 0.455 ]\n",
" [0.31333333 0.03 0.2425 0.03 0.455 ]\n",
" [0.03 0.03 0.2425 0.31333333 0.03 ]]\n"
]
}
],
"source": [
"# pagerank matrix\n",
"A = c * B + (1 - c) * np.full((n, n), 1 / n)\n",
"\n",
"print(A)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1., 1., 1., 1., 1.])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# confirm that A is normalized\n",
"np.sum(A, axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"w, v = np.linalg.eig(A)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 1. 0.2331481 -0.14166667 -0.51648144 -0.425 ]\n"
]
}
],
"source": [
"# eigenvalues\n",
"print(w)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.46193615 0.32416572 0.60254721 0.46193615 0.32416572]\n"
]
}
],
"source": [
"# dominant eigenvector\n",
"print(np.abs(v[:,0]))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment