Skip to content

Instantly share code, notes, and snippets.

@chienhsiang-hung
Created November 14, 2022 09:29
Show Gist options
  • Save chienhsiang-hung/e533d937f4db749dde5cf918785869af to your computer and use it in GitHub Desktop.
Save chienhsiang-hung/e533d937f4db749dde5cf918785869af to your computer and use it in GitHub Desktop.
Heap data structure is mainly used to represent a priority queue. In Python, it is available using the “heapq” module. The property of this data structure in Python is that each time the smallest heap element is popped(min-heap).
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'list'> [1, 3, 9, 7, 5]\n"
]
}
],
"source": [
"import heapq\n",
"\n",
"li = [5,7,9,1,3]\n",
"li_copy = li.copy()\n",
"\n",
"heapq.heapify(li)\n",
"heapq.heapify(li_copy)\n",
"\n",
"print(type(li), li)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1, 3, 4, 7, 5, 9]\n",
"1\n",
"3\n",
"4\n",
"5\n",
"7\n",
"9\n",
"[]\n",
"[1, 3, 9, 7, 5]\n"
]
}
],
"source": [
"heapq.heappush(li_copy, 4)\n",
"\n",
"print(li_copy)\n",
"for _ in range(len(li_copy)):\n",
" print(heapq.heappop(li_copy))\n",
"\n",
"print(li_copy)\n",
"print(li)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1, 3, 4, 7, 5, 9]\n",
"1\n",
"3\n",
"4\n",
"5\n",
"7\n",
"9\n",
"[]\n"
]
}
],
"source": [
"heapq.heappush(li, 4)\n",
"\n",
"print(li)\n",
"for _ in range(len(li)):\n",
" print(heapq.heappop(li))\n",
"print(li)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1, 3, 9, 7, 5]\n",
"1\n",
"[2, 3, 9, 7, 5]\n"
]
}
],
"source": [
"# push and pop simultaneously\n",
"\n",
"li = [5,7,9,1,3]\n",
"\n",
"heapq.heapify(li)\n",
"print(li)\n",
"\n",
"print(heapq.heappushpop(li, 2))\n",
"print(li)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1, 3, 9, 7, 5]\n",
"1\n",
"[2, 3, 9, 7, 5]\n"
]
}
],
"source": [
"# push and pop simultaneously\n",
"\n",
"li = [5,7,9,1,3]\n",
"\n",
"heapq.heapify(li)\n",
"print(li)\n",
"\n",
"print(heapq.heapreplace(li, 2))\n",
"print(li)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[9, 7, 5]\n",
"[1, 3, 5]\n"
]
}
],
"source": [
"# find largest and smallest\n",
"li = [5,7,9,1,3]\n",
"heapq.heapify(li)\n",
"\n",
"print(heapq.nlargest(3, li))\n",
"print(heapq.nsmallest(3, li))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.5 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "1b231fd55510270dbc2eaafeacb1ac5de2910453973c3eda2b3f9024c6c2bec4"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment