This example demonstrates how to compute the height h of a circular segment given the fraction k of the circle’s area that should be covered by the segment. For example, for values of k 0, 0.5 and 1, the value of h is k. For other values, h is computed numerically via Newton’s method; I am unaware of an analytical solution to this problem.
function tabname { | |
printf "\e]1;$1\a" | |
} | |
if [ x`type -t cd` == "xfunction" ]; then | |
# previously wrapped cd | |
eval $(type cd | grep -v 'cd is a function' | sed 's/^cd/original_cd/' | sed 's/^}/;}/' ) | |
else | |
# builtin | |
eval "original_cd() { builtin cd \$*; }" |
<!DOCTYPE html> | |
<meta charset="utf-8"> | |
<link rel="stylesheet" href="http://cmx.io/v/0.1/cmx.css"/> | |
<script src="http://cmx.io/v/0.1/cmx.js"></script> | |
<body> | |
<scene id="scene1"> | |
<drawing t="translate(0,31) rotate(1)"> | |
<line stroke="black"> | |
<point x="0" y="0"></point> | |
<point x="250" y="20"></point> |
package com.example.gdg_opensource_codelab_sample_1; | |
import android.os.AsyncTask; | |
import com.google.api.client.extensions.android.http.AndroidHttp; | |
import com.google.api.client.http.HttpRequest; | |
import com.google.api.client.http.HttpRequestInitializer; | |
import com.google.api.client.http.HttpTransport; | |
import com.google.api.client.json.JsonFactory; | |
import com.google.api.client.json.gson.GsonFactory; |
# | |
# zaw-src-git-log | |
# | |
# zaw source for git log. | |
# https://gist.github.com/4350604 | |
# | |
# zaw : https://github.com/nakamuray/zaw | |
# | |
# git log pretty format: For detail, refer to "man git-log" |
<!DOCTYPE html> | |
<html lang="en"> | |
<head> | |
<meta charset="utf-8"> | |
<title>Tree Example</title> | |
<style> | |
.node { |
Download the following ZIPs: | |
ARM Translation Installer v1.1 (http://www.mirrorcreator.com/files/0ZIO8PME/Genymotion-ARM-Translation_v1.1.zip_links) | |
Download the correct GApps for your Android version: | |
Google Apps for Android 4.4.2 (https://www.mediafire.com/?qbbt4lhyu9q10ix) | |
Google Apps for Android 4.3 (http://goo.im/gapps/gapps-jb-20130813-signed.zip) | |
Google Apps for Android 4.2 (http://goo.im/gapps/gapps-jb-20130812-signed.zip) | |
Google Apps for Android 4.1 (http://goo.im/gapps/gapps-jb-20121011-signed.zip) | |
The Voronoi tessellation shows the closest point on the plane for a given set of points. This example updates the Voronoi diagram in response to mouse interaction! Colors by Cynthia Brewer; algorithm by Steven Fortune; implementation based on work by Nicolas Garcia Belmonte; interaction inspired by Raymond Hill.
<!DOCTYPE html> | |
<html> | |
<head> | |
<meta charset="utf-8" /> | |
<link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css" /> | |
<script src="http://d3js.org/d3.v3.min.js" type="text/javascript"></script> | |
<script src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js"></script> | |
<script src='https://api.tiles.mapbox.com/mapbox.js/v1.6.4/mapbox.js'></script> | |
<link href='https://api.tiles.mapbox.com/mapbox.js/v1.6.4/mapbox.css' rel='stylesheet' /> |
Mario Klingemann has made some beautiful Voronoi diagrams. This is my attempt to recreate them using D3. To achieve the curved cells, each side of the Voronoi polygon is subdivided into three equal-length segments and then joined using the "basis-closed" line interpolator. There are some discontinuities in the animation when the sides of a polygon approach zero which could likely be avoided by adding a minimum-length threshold to the subdivision.
If you’d like to see other instances of this pattern, Mario describes the algorithm on Flickr.