I hereby claim:
- I am ciprian-cimpan on github.
- I am ciprian42 (https://keybase.io/ciprian42) on keybase.
- I have a public key ASAFJVuXrpaYfsFfCKnC-2Bg9Hn1SA0HbI5_u1BkwRzOdwo
To claim this, I am signing this object:
I hereby claim:
To claim this, I am signing this object:
ipv6_regex := `^(([0-9a-fA-F]{1,4}:){7,7}[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,7}:|([0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,5}(:[0-9a-fA-F]{1,4}){1,2}|([0-9a-fA-F]{1,4}:){1,4}(:[0-9a-fA-F]{1,4}){1,3}|([0-9a-fA-F]{1,4}:){1,3}(:[0-9a-fA-F]{1,4}){1,4}|([0-9a-fA-F]{1,4}:){1,2}(:[0-9a-fA-F]{1,4}){1,5}|[0-9a-fA-F]{1,4}:((:[0-9a-fA-F]{1,4}){1,6})|:((:[0-9a-fA-F]{1,4}){1,7}|:)|fe80:(:[0-9a-fA-F]{0,4}){0,4}%[0-9a-zA-Z]{1,}|::(ffff(:0{1,4}){0,1}:){0,1}((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])\.){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])|([0-9a-fA-F]{1,4}:){1,4}:((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])\.){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]))$` | |
ipv4_regex := `^(((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(\.|$)){4})` | |
domain_regex := `^(?:[a-z0-9](?:[a-z0-9-]{0,61}[a-z0-9])?\.)+[a-z0-9][a-z0-9-]{0,61}[a-z0-9]$` | |
match, _ := regexp.MatchString(ipv4_regex+`|`+ipv6_regex+`|`+domain_regex, host) | |
if match { | |
fmt.Println("Input is valid") | |
} else { | |
fmt.Println("Given input does not match") | |
re |
File | Purpose |
---|---|
/etc/compose/docker-compose.yml |
Compose file describing what to deploy |
/etc/systemd/system/docker-compose-reload.service |
Executing unit to trigger reload on docker-compose.service |
/etc/systemd/system/docker-compose-reload.timer |
Timer unit to plan the reloads |
/etc/systemd/system/docker-compose.service |
Service unit to start and manage docker compose |
def get_grid_points(self, mask_arr: np.ndarray, pad_ratio: int = 50) -> np.ndarray: | |
""" | |
Returns a grid of points that are in the foreground of the given binary mask. | |
The padding between points in the grid is adjusted based on the size of the mask. | |
Parameters: | |
- mask: A 2D binary numpy array, where 1 represents foreground and 0 represents background. | |
- pad_ratio: Scaling factor (divisor) used to compute the padding between points in the grid. Larger values result in smaller padding. |
In this tutorial, we optimize GPT-4.1 Mini's Chain of Thought (dspy.ChainOfThought) for generating profitable trading strategies using the dspy.GEPA optimizer! We demonstrate how to evolve prompts for different strategy themes (momentum, mean reversion, breakout, arbitrage, volume) with proper risk management.
This implementation realizes Kagen Atkinson's vision of an autonomous LLM-powered trading system with:
--theme
flag for different strategy types (as Kagen intended)test_gepa_enhanced.py
): GEPA evolves theme-specific prompts through reflective optimizationrun_gepa_trading.py
): Uses evolved prompts for strategy generation and backtesting