Skip to content

Instantly share code, notes, and snippets.

View cobanov's full-sized avatar
🦊
Focusing

Mert Cobanov cobanov

🦊
Focusing
View GitHub Profile
@cobanov
cobanov / delete.sh
Created November 3, 2022 05:07
Find all hidden files and it's subdirs and delete it
## Find all hidden files in /tmp/data/ (and it's sub-dirs) and delete it ##
find /tmp/data/ -type f -name ".*" -delete
FROM nvidia/cuda:11.3.0-runtime-ubuntu20.04
WORKDIR /nerfov
RUN rm /bin/sh && ln -s /bin/bash /bin/sh
RUN apt-get update && apt-get -y install \
build-essential libpcre3 libpcre3-dev zlib1g zlib1g-dev libssl-dev wget git libgl1
# Install miniconda
ENV CONDA_DIR /opt/conda
RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh && \
@cobanov
cobanov / find-location.py
Created November 29, 2022 18:56
Easily find location
from geopy.geocoders import Nominatim
from tqdm import tqdm
from geopy.extra.rate_limiter import RateLimiter
geolocator = Nominatim(user_agent="cobanov")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
tqdm.pandas()
df['gcode'] = df['full_adress'].progress_apply(geocode)
df['point'] = df['gcode'].apply(lambda loc: tuple(loc.point) if loc else None)
@cobanov
cobanov / subplot.py
Created January 15, 2023 11:47
Simple subplot using matplotlib
import numpy as np
import matplotlib.pyplot as plt
# Data
x = np.random.randn(20)
y = 3 * x + 0.2 + np.random.randn(20) * 0.3
# Subplot
fig, axs = plt.subplots(1, 2, figsize=(10, 4))
fig.suptitle("Comparison")
from cuml.decomposition import PCA
import pandas as pd
import numpy as np
import cupy
import os
# GPU_ID = 1
# cupy.cuda.Device(GPU_ID).use()
INPUT_PATH = "/mnt/datauniverse/../.."
from cuml.manifold.umap import UMAP
from datetime import datetime
import pandas as pd
import numpy as np
import json
import cupy
import os
import pandas as pd
import utils
import timm
import torch
import shutil
import itertools
import torchvision
import numpy as np
from PIL import Image
from tqdm import tqdm
from pathlib import Path
from torchvision import transforms
from rich.console import Console
from rich.markdown import Markdown
import glob
import os
def read_md(path):
with open(path, "r") as file:
content = file.read()
return Markdown(content)
from atprototools import Session
from tqdm import tqdm
USERNAME = "<username>.bsky.social"
PASSWORD = "<password>"
SKOOTS_TO_DELETE = 63
session = Session(USERNAME, PASSWORD)
DID_KEY = session.DID.split(":")[-1]
import glob
import os
import random
import itertools
import shutil
from pathlib import Path
def scan_folders(sort_images=True):
# Scan folder