Skip to content

Instantly share code, notes, and snippets.

View cobanov's full-sized avatar
🦊
Focusing

Mert Cobanov cobanov

🦊
Focusing
View GitHub Profile
# !/usr/bin/python
import os
import shutil
folder_path = "/Users/cobanov/Downloads/audio_files/"
dst_folder = "destionat_path"
extension = (".mp3", ".mp4") # has to be tuple
for root, dirs, files in os.walk(folder_path, topdown=False):
@cobanov
cobanov / emojis.json
Created September 28, 2022 22:05
all emoji list
{
"0": "\ud83d\udc69\u200d\ud83d\udc69\u200d\ud83d\udc67\u200d\ud83d\udc67",
"1": "\ud83d\udc69\u200d\ud83d\udc69\u200d\ud83d\udc67\u200d\ud83d\udc66",
"2": "\ud83d\udc69\u200d\ud83d\udc69\u200d\ud83d\udc66\u200d\ud83d\udc66",
"3": "\ud83d\udc68\u200d\ud83d\udc69\u200d\ud83d\udc67\u200d\ud83d\udc67",
"4": "\ud83d\udc68\u200d\ud83d\udc69\u200d\ud83d\udc67\u200d\ud83d\udc66",
"5": "\ud83d\udc68\u200d\ud83d\udc69\u200d\ud83d\udc66\u200d\ud83d\udc66",
"6": "\ud83d\udc68\u200d\ud83d\udc68\u200d\ud83d\udc67\u200d\ud83d\udc67",
"7": "\ud83d\udc68\u200d\ud83d\udc68\u200d\ud83d\udc67\u200d\ud83d\udc66",
"8": "\ud83d\udc68\u200d\ud83d\udc68\u200d\ud83d\udc66\u200d\ud83d\udc66",
@cobanov
cobanov / img2audio.py
Created September 20, 2022 08:24
mel spectrogram image to audio file
import librosa
import numpy as np
from PIL import Image
import soundfile as sf
def image_to_audio(image, sr=22050, n_fft=2048, hop_length=512, top_db=80):
"""Converts spectrogram to audio.
Args:
import numpy as np
import cv2
import pickle
from shapely.geometry import Polygon
import matplotlib.pyplot as plt
def angle_cos(p0, p1, p2):
d1, d2 = (p0-p1).astype('float'), (p2-p1).astype('float')
return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) )
import numpy as np
import os
path = ''
files = os.listdir(path)
data = np.zeros((1, 128))
identifiers = np.full((data.shape[0]), 0)
for file in files:
temp = np.load(path+file)
import pandas as pd
import umap
import sys
import numpy as np
import os
def load_data(file_path, dimension=3):
# If file path extension is numpy extension, load it as numpy array
if file_path.endswith('.npy'):
import numpy as np
import sys
filename = sys.argv[1]
def npy2csv(filename):
data = np.load(filename)
np.savetxt(filename[:-4] + ".csv", data, delimiter=",")
import os
import pandas as pd
all_files = os.listdir()
csv_files = [i for i in all_files if i.endswith(".csv")]
print(f'Found {len(csv_files)} files.')
def merge_csv_files(csv_files):
df = pd.DataFrame()
import pandas as pd
import numpy as np
import sys
filename = sys.argv[1]
def csv2npz(filename):
df = pd.read_csv(filename)
data = df.values
import pandas as pd
import numpy as np
import sys
# for f in rumi*.csv; do python csv2npy.py $f; done
filename = sys.argv[1]
def csv2npy(filename):