Skip to content

Instantly share code, notes, and snippets.

View cobanov's full-sized avatar
🦊
Focusing

Mert Cobanov cobanov

🦊
Focusing
View GitHub Profile
#NoEnv ; Recommended for performance and compatibility with future AutoHotkey releases.
; #Warn ; Enable warnings to assist with detecting common errors.
SendMode Input ; Recommended for new scripts due to its superior speed and reliability.
SetWorkingDir %A_ScriptDir% ; Ensures a consistent starting directory.
<^>!a::
Send, {(}
return
<^>!s::
#NoEnv ; Recommended for performance and compatibility with future AutoHotkey releases.
; #Warn ; Enable warnings to assist with detecting common errors.
SendMode Input ; Recommended for new scripts due to its superior speed and reliability.
SetWorkingDir %A_ScriptDir% ; Ensures a consistent starting directory.
<^>!a::
Send, {(}
return
<^>!s::
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
import argparse
# Parser
parser = argparse.ArgumentParser()
parser.add_argument("--path","-p")
parser.add_argument("--target","-t")
def print_return_type(func):
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
print(f"{func.__name__}, {type(result)}")
return result
return wrapper
from manimlib.imports import *
import math
class Shape(Scene):
def construct(self):
circle = Circle()
self.play(ShowCreation(Circle()))
self.wait(1)
[[inputs.file]]
files = ["avocado.csv"]
data_format = "csv"
csv_header_row_count = 0
csv_column_names = []
csv_column_types = []
csv_skip_rows = 0
csv_skip_columns = 1
csv_delimiter = ","
csv_comment = ""
import pandas as pd
import numpy as np
d = {'col1': [1, 2, 3, 4, 5, 6, 100], 'col2': [ 2, 4, 6, 8, 10, 12, 200]}
df = pd.DataFrame(d)
print(df)
def detect_outlier(df, threshold):
outliers = []
print("sumeyye")
print("sumeyye")
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 3 00:47:42 2019
@author: coban
"""
import pandas as pd
import numpy as np